WO2022032468A1 - 抗呼吸道病毒的装置、方法及药物 - Google Patents

抗呼吸道病毒的装置、方法及药物 Download PDF

Info

Publication number
WO2022032468A1
WO2022032468A1 PCT/CN2020/108362 CN2020108362W WO2022032468A1 WO 2022032468 A1 WO2022032468 A1 WO 2022032468A1 CN 2020108362 W CN2020108362 W CN 2020108362W WO 2022032468 A1 WO2022032468 A1 WO 2022032468A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol particles
respiratory virus
module
hypochlorous acid
nebulizer
Prior art date
Application number
PCT/CN2020/108362
Other languages
English (en)
French (fr)
Other versions
WO2022032468A8 (zh
Inventor
黄志祥
Original Assignee
黄志祥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄志祥 filed Critical 黄志祥
Priority to PCT/CN2020/108362 priority Critical patent/WO2022032468A1/zh
Publication of WO2022032468A1 publication Critical patent/WO2022032468A1/zh
Publication of WO2022032468A8 publication Critical patent/WO2022032468A8/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes

Definitions

  • the present invention relates to a device, method and medicine for anti-respiratory virus.
  • Viruses are composed of nucleic acid molecules and proteins, which do not belong to organisms and cannot express life phenomena. Viruses can only infect the host to force the host cells to produce progeny viruses. In detail, after entering the host, the virus will bind to a specific receptor on the surface of the host cell, attach to the surface of the host cell and induce endocytosis or membrane fusion, thereby invading the host cell. The outer protein of the virus entering the host cell is destroyed by the virus itself or by the host cell, thereby releasing the nucleic acid molecules (DNA or RNA) encapsulated therein. Host cells replicate and synthesize viral proteins using viral DNA or RNA as a template.
  • DNA or RNA nucleic acid molecules
  • Nucleic acid molecules and proteins produced by the host cells are assembled into new viruses and released from the host cells. During the release process of most viruses, the host cells will be dissolved and ruptured, and the host cells will die in large numbers due to the reproduction and destruction of the virus, which will eventually lead to the disease of the host.
  • the immune system is one of the ways in which organisms defend against viruses or bacteria.
  • the immune system is further divided into the innate immune system and the acquired immune system.
  • the innate immune system can defend against foreign infections in a nonspecific manner.
  • the acquired immune system is an immune response initiated by the identification of pathogens through antibodies that can recognize and target specific pathogens after contact with specific pathogens.
  • Antibodies play their role in two main ways, one of which is to prevent viruses from entering cells, and the other to guide immune cells to phagocytose and remove viruses.
  • Vaccination is one way to prevent viral diseases. Vaccines can cause a corresponding immune response without causing disease, so that the acquired immune system can learn to resist these viruses by producing antibodies through the vaccine.
  • Respiratory diseases caused by viruses include, for example, the new coronavirus disease (Coronavirus disease 2019, COVID-19) that has exploded globally since 2019.
  • the new coronavirus is a rather cunning virus, and there is still no corresponding drug or treatment method.
  • the research team analyzed the RNA sequencing data of lung cells for patients and healthy individuals, and found that the first place the new coronavirus attacks is not the cells of the upper respiratory tract, but the "type II alveoli" deep in the human body .
  • the new coronavirus binds to the ACE2 protein on the surface of lung cells through the spike protein on its surface, and ACE2 will undergo structural changes to allow the new coronavirus to enter the cell.
  • the new coronavirus uses these cells to synthesize new viruses and release them outside the cells to infect surrounding normal cells. Because there is no nerve distribution in the alveoli, the patient may not have the symptoms of cough, and the inflammatory response caused by the virus may be different from the common type of inflammatory response, so the fever in some patients is not obvious. Therefore, some patients may have no obvious symptoms but have damaged their lungs and even infect others.
  • the mechanism of action of most antiviral drugs is to destroy viruses that enter cells, but such drugs often damage the cells themselves, which in turn can cause harm to the human body. That is to say, the current treatment methods often produce side effects that are harmful to the human body. Therefore, how to minimize the side effects during the treatment process, or even not produce side effects, is also one of the current research directions.
  • the embodiments of the present invention provide an anti-respiratory virus device, method and medicine, which can resist the virus in the respiratory tract and avoid harming the cells themselves.
  • An embodiment of the present invention provides an anti-respiratory virus device, which includes an anti-viral liquid and a nebulizer.
  • Antiviral fluids contain hypochlorous acid.
  • the atomizer has an accommodating space and an outlet. The accommodating space is communicated with the outlet and used to hold the antiviral liquid. The atomizer is used to atomize the antiviral liquid to form aerosol particles and discharge the aerosol particles from the outlet.
  • An embodiment of the present invention provides an anti-respiratory virus method, comprising: starting an atomizer containing an antiviral liquid to atomize the antiviral liquid to form aerosol particles, and discharging the aerosol particles from an outlet of the atomizer,
  • the antiviral solution contains hypochlorous acid; the user inhales the aerosol particles through the mouth; the user holds his breath for 15 to 20 seconds, allowing the aerosol particles to enter the respiratory tract and lungs to kill the virus in the user's respiratory tract and lungs ; and the user exhales through the nose to complete the breathing action.
  • An embodiment of the present invention provides an anti-respiratory virus drug, comprising hypochlorous acid, the effective concentration of hypochlorous acid is 10 to 30 ppm, and the pH value is between pH 5.0 and 6.4.
  • the device, method and medicine for anti-respiratory virus provided by the embodiments of the present invention atomize the anti-viral liquid into extremely fine particles through a nebulizer, so that the anti-viral liquid can penetrate deep into the lungs, so as to eliminate the fresh air in the bronchi, respiratory tract or alveoli.
  • the device and method of the present invention can kill viruses in local areas by atomizing a small dose of antiviral liquid, effectively eliminating viruses that have not yet entered cells, and more importantly, It will not harm the cells themselves and is harmless to the human body.
  • FIG. 1 is a schematic perspective view of an anti-respiratory virus device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of an anti-respiratory virus device according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of an atomizer according to one embodiment of the present invention.
  • Figure 4 is a flow chart of a method for anti-respiratory virus.
  • Reference numerals are as follows: 100 atomizer; 110 main body; 120 atomization module; 130 power supply module; 140 control module; 150 breathing apparatus; 151 aerosol channel; 152 aerosol supply port; S accommodation space; OUT outlet; A antiviral solution; steps S101 to S105.
  • FIG. 1 is a schematic perspective view of an anti-respiratory virus device according to an embodiment of the present invention.
  • 2 is an exploded perspective view of an anti-respiratory virus device according to an embodiment of the present invention.
  • 3 is a schematic block diagram of an atomizer according to one embodiment of the present invention.
  • the anti-respiratory virus device may include a nebulizer 100 and an anti-viral liquid A.
  • the nebulizer 100 includes a main body 110 , a nebulizer module 120 , a power supply module 130 , a control module 140 and a breathing apparatus 150 .
  • the main body 110 has an accommodating space S and an outlet OUT.
  • the accommodating space S is connected to the outlet OUT and is used for containing the antiviral liquid A.
  • the atomization module 120 is connected to the main body 110 for atomizing the antiviral liquid A contained in the accommodating space S of the main body 110 to form aerosol particles.
  • the aerosol particles are discharged out of the main body 110 through the outlet OUT.
  • the atomization module 120 may be an ultrasonic atomization module, a compression type atomization module or a net type atomization module.
  • the ultrasonic atomization module uses the atomizing sheet to oscillate at high frequency of ultrasonic waves to disperse the structure of the liquid antiviral solution A to become elegant fine aerosol particles.
  • the compressed atomization module uses a compressor to compress the clean air passing through the filter into an airflow, and the airflow impacts the antiviral liquid A in the accommodating space, making it atomized into fine and elegant aerosol particles.
  • the mesh-type atomization module utilizes the ultrasonic vibration of the vibrator and the structure of the mesh-type nozzle to make the antiviral liquid form elegant fine aerosol particles.
  • Aerosol particles larger than 50 microns cannot enter the lungs. Aerosol particles between 10 and 50 microns are deposited in the mouth, nose and pharynx. Aerosol particles between 3 and 10 microns are deposited in the pharynx, trachea, and bronchi. Aerosol particles between 0.5 and 3 microns are deposited in bronchioles, alveolar ducts, and alveoli. Aerosol particles smaller than 0.05 microns may drift into the atmosphere with exhaled air without depositing.
  • the preferred size distribution range of the aerosol particles is 0.05 microns to 5 microns.
  • the atomization module 120 can atomize the antiviral liquid A into aerosol particles of a size having medical effects.
  • the antiviral solution A is atomized by the atomization module 120 to generate aerosol particles.
  • the particle size distribution of the aerosol particles can range from 0.05 microns to 5 microns, and the average particle size can be 3 microns.
  • the power supply module 130 is connected to the atomization module 120 through the control module 140 for providing power to the atomization module 120 and the control module 140 .
  • the power supply module 130 can be powered by an external power source, a disposable battery or a rechargeable battery.
  • the power supply module 130 is connected to the atomization module 120 through the control module 140 , but not limited thereto. In other embodiments, the power supply module can be directly connected to the atomization module.
  • the control module 140 is connected to the atomization module 120 and the power supply module 130 .
  • the control module 140 may control the atomization module 120 to adjust the size of the aerosol particles generated by the atomization module 120 .
  • the control module 140 can control the vibration frequency of the atomizing sheet or the vibrator to adjust the size of the generated aerosol particles.
  • the control module 140 can control the pressure of the airflow to adjust the size of the generated aerosol particles.
  • the control module 140 can control the atomization module 120 to generate aerosol particles with a particle size distribution range of 0.05 microns to 5 microns, but not limited thereto. In other embodiments, the control module may control the atomization module to generate aerosol particles with a particle size distribution ranging from 0.5 microns to 10 microns. In other embodiments, the control module may control the atomization module to generate aerosol particles with a particle size distribution ranging from 0.05 microns to 3 microns. In other embodiments, the atomizer 100 may not have a control module, and the atomization module 120 may only generate aerosol particles in a single size range.
  • the breathing apparatus 150 is connected to the main body 110 and has an aerosol channel 151 and an aerosol supply port 152 which are sequentially communicated with the outlet OUT.
  • the antiviral solution A is atomized to form aerosol particles, and the aerosol particles pass through the aerosol channel 151 from the outlet OUT and are finally discharged from the aerosol supply port 152 .
  • the breathing apparatus 150 can centrally provide the aerosol particles discharged from the outlet OUT for the user to absorb, so as to avoid waste of the aerosol particles due to diffusion.
  • the breathing apparatus 150 is exemplified by a breathing mask, and one breathing apparatus 150 is used by one user, but it is not limited thereto. In other embodiments, the breathing apparatus may be a breathing tube.
  • the number of the breathing apparatus is not limited to one, and multiple users can use the corresponding breathing apparatus to use the nebulizer in turn.
  • the nebulizer 100 may not have a breathing apparatus, and the user may directly inhale the aerosol particles from the outlet OUT of the nebulizer 100 .
  • the antiviral solution A may contain hypochlorous acid, the concentration of hypochlorous acid may be 10 to 30 ppm, and the pH value of hypochlorous acid may be pH 5.0 to 6.4.
  • Hypochlorous acid has strong oxidizing power. After contacting with microorganisms, it can quickly destroy the cell membrane of microorganisms or destroy the protein spikes of viruses, so that bacteria or viruses cannot be infected. After the reaction, it is reduced to water, which is non-toxic to the environment and organisms harmless. In the human body, white blood cells also produce hypochlorous acid to defend against bacteria or viruses, so hypochlorous acid is also a natural defense molecule.
  • Hypochlorous acid pH 5.0 to 6.4, has a pH similar to that of human skin, so it does not cause irritation. Hypochlorous acid with a concentration of 10 to 30ppm can be quickly decomposed into water after being sprayed with viruses, bacteria or organic matter, and will not remain or accumulate in the human body to cause harm. Hypochlorous acid at this concentration and pH has a strong ability to kill single-celled organisms, and the cell structure in the human body is complex and will not be easily damaged by hypochlorous acid, so hypochlorous acid in this state will not Affects normal cells in the human body.
  • the antiviral solution A is slightly acidic electrolytic hypochlorous acid water (HClO), the effective concentration of hypochlorous acid is 10 to 30 ppm, and the pH value is between pH 5.0 to 6.4 .
  • Slightly acidic electrolytic hypochlorous acid water is produced by electrolyzing dilute hydrochloric acid using a non-diaphragm electrolytic cell. According to the above properties, it becomes an anti-respiratory virus drug. Studies have confirmed that slightly acidic electrolytic hypochlorous acid water with a concentration of 10 ppm or more has excellent antibacterial effects on various pathogenic bacteria.
  • the slightly acidic electrolyzed hypochlorous acid water had no effect on genetic factors.
  • the rabbit eye irritation test it was determined that the slightly acidic electrolyzed hypochlorous acid water is not irritating to the eyes.
  • the skin cell enlargement reaction test it is determined that the slightly acidic electrolyzed hypochlorous acid water is not irritating to the skin.
  • the rabbit skin irritation test no abnormalities such as erythema and edema were found, and it was confirmed that the slightly acidic electrolyzed hypochlorous acid water had no adverse effect on the skin.
  • the antiviral solution A of this embodiment can be medical grade slightly acidic electrolyzed hypochlorous acid water with precise control of concentration, pH value and no heavy metal ions.
  • the 20ml one-time use is packaged in a single-use package and stored at room temperature to avoid contamination and maintain stable quality.
  • FIG. 4 is a flowchart of a method for anti-respiratory virus.
  • the nebulizer containing the antiviral liquid is activated to atomize the antiviral liquid to form aerosol particles, and the aerosol particles are discharged from the outlet of the nebulizer, and the antiviral liquid contains hypochlorous acid (S101).
  • the antiviral solution is medical grade slightly acidic electrolyzed hypochlorous acid water, wherein the concentration of hypochlorous acid is 10 to 30 ppm, and the pH value of hypochlorous acid is pH 5.0 to 6.4.
  • the nebulizer is a medical grade nebulizer that can produce antiviral liquid into aerosol particles with a particle size distribution ranging from 0.05 microns to 5 microns and discharge the aerosol particles from the outlet to the outside of the nebulizer body .
  • the user inhales the aerosol particles through the mouth (S102).
  • a breathing apparatus is connected to the outlet of the nebulizer.
  • the user first exhales toward a place other than the breathing apparatus and the outlet, and then takes a deep breath through the breathing apparatus to inhale the aerosol particles from the nebulizer.
  • the nebulizer is only connected to one breathing apparatus and used by only one person, so as to avoid cross-infection, but it is not limited thereto.
  • the nebulizer can be connected to multiple breathing apparatuses in turn, and multiple users can use the same nebulizer in turn through the corresponding breathing apparatus.
  • the nebulizer The outlet of the carburetor must be sterilized before it can be used by another person.
  • the user holds his breath for 15 to 20 seconds, so that the aerosol particles enter the respiratory tract and the lungs to kill the virus in the respiratory tract and the lungs of the user ( S103 ).
  • the aerosol particles enter the respiratory tract and the lungs to kill the virus in the respiratory tract and the lungs of the user ( S103 ).
  • the user takes a deep breath of the aerosol particles, hold their breath for 15 to 20 seconds, so that the aerosol particles have enough time to penetrate into the respiratory tract and lungs, and spread between the respiratory tract and alveoli, thereby killing the respiratory tract and the lungs.
  • Viruses between cells in the lungs are examples of the aerosol particles that have enough time to penetrate into the respiratory tract and lungs, and spread between the respiratory tract and alveoli, thereby killing the respiratory tract and the lungs.
  • the user exhales through the nose to complete the breathing action (S104). Specifically, the user exhales with the nose facing the place other than the breathing apparatus and the outlet. Exhaling through the nose can avoid the discharge of aerosol particles that have not yet entered the respiratory tract in the mouth, and can increase the number of aerosol particles entering the body. Exhale away from the respirator and outlet to avoid contaminating the respirator and outlet with virus-laden gas.
  • the user taps the chest or jumps and shakes to loosen the secretions on the alveoli to increase the contact area between the aerosol particles and the virus ( S105 ).
  • the user can loosen the secretions on the alveoli by swinging the body, such as beating the chest or jumping, or by vibrating the massager, so as to increase the contact area between the aerosol particles and the virus between the alveoli, so that the Increase killing effect.
  • users can sit or lie down at 30 to 45 degrees, so that the aerosol particles can reach the lower respiratory tract smoothly with the help of gravity.
  • the atomizer can adjust the particle size of the generated aerosol particles.
  • the user can adjust the nebulizer to generate aerosol particles with a particle size distribution ranging from 0.05 microns to 5 microns, 0.5 microns to 10 microns, or 0.05 microns to 3 microns .
  • the step of inhaling the aerosol particles (S102), the step of holding your breath for 15 to 20 seconds (S103), and the step of exhaling through the nose (S104) may be repeated for a total of 10 to 15 minutes.
  • the user starts the nebulizer he can repeat the steps of exhaling, inhaling, holding his breath, exhaling, and shaking.
  • the user can reuse the device at short intervals after evaluation, and block the chance of the virus invading other cells by drawing the antiviral solution multiple times.
  • the nebulizer is an anti-respiratory virus device according to an embodiment of the present invention shown in FIG. 1 and FIG. 2 , but it is not limited thereto.
  • the Jinghua Ultrasonic Nebulizer KUN-88 manufactured by Jinghua Ultrasonic Co., Ltd. can be used as the ultrasonic atomizer.
  • the ultrasonic frequency is 2.5MHz. Aerosol particles are 1 to 5 microns in diameter.
  • a spray therapy device NE-U100 manufactured by Omron Corporation can be used as a mesh nebulizer.
  • the model is the mesh type of the U100 model.
  • the nebulization rate is 0.25 ml per minute.
  • the particle size (MMAD, median aerodynamic mass diameter) of the aerosol particles was 5 microns.
  • a spray therapy device NE-C803 manufactured by Omron Corporation can be used as a compression nebulizer.
  • the nebulization rate is 0.3 ml per minute.
  • the particle size (MMAD) of the aerosol particles was 3 microns.
  • the Paki Air portable atomizer manufactured by Microbond Technology Co., Ltd. can be used as the net atomizer.
  • the nebulization rate is 0.25 ml per minute. Aerosol particles have a particle size (MMAD) of less than 5 microns.
  • the atomizing sheet of the atomizing module of the atomizer can be made of stainless steel to ensure the safety of the machine and the use of the antiviral liquid.
  • the nebulizer and antiviral liquid can be made in the form of an inhaler, such as a medical-grade small volume nebulizer (SVN) or a meter dose inhaler (MDI), which is convenient to carry and does not require Power is ready to use.
  • an inhaler such as a medical-grade small volume nebulizer (SVN) or a meter dose inhaler (MDI), which is convenient to carry and does not require Power is ready to use.
  • SVN medical-grade small volume nebulizer
  • MDI meter dose inhaler
  • the method of the embodiment of the present invention can prevent the virus from multiplying in the body, and rely on his own immune ability to eliminate the virus. That is to say, if patients can be controlled when their symptoms are mild, the chances of mild patients developing into severe patients can be reduced, and the mortality rate can be greatly reduced.
  • using the method of the embodiment of the present invention in combination with other treatment methods can shorten the onset period of the patient, eliminate the virus in the body as soon as possible to avoid recurrence, thereby reducing the medical burden.
  • the use objects of the device of the embodiment of the present invention can even be extended to close contacts of the diagnosed person, such as family members or medical staff and other undiagnosed persons, so as to prevent the transmission of the virus and prevent the spread of infection.
  • the device and method for anti-respiratory virus provided by the embodiments of the present invention can be used for both bacteria or viruses of respiratory tract infection and pulmonary infection.
  • the antiviral solution is not limited to hypochlorous acid, and other ingredients can also be added or used alternately with other drugs under the instruction of a professional physician.
  • the device, method and medicine for anti-respiratory virus provided by the embodiments of the present invention atomize the anti-viral liquid into extremely fine particles through a nebulizer, so that the anti-viral liquid can penetrate deep into the lungs, so as to eliminate the fresh air in the bronchi, respiratory tract or alveoli.
  • the device and method of the present invention can kill viruses in local areas by atomizing a small dose of antiviral liquid, effectively eliminating viruses that have not yet entered cells, and more importantly, It will not harm the cells themselves and is harmless to the human body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nozzles (AREA)

Abstract

一种抗呼吸道病毒的装置及方法。抗呼吸道病毒的装置包含抗病毒液、雾化器。抗病毒液包含次氯酸。雾化器具有容置空间及出口。容置空间连通于出口并用以盛装抗病毒液。雾化器用以将抗病毒液雾化形成气雾粒子并由出口排出气雾粒子。

Description

抗呼吸道病毒的装置、方法及药物 技术领域
本发明是关于抗呼吸道病毒的装置、方法及药物。
背景技术
病毒是由核酸分子与蛋白质构成,其不属于生物且无法表现生命现象,病毒只能通过感染宿主以迫使宿主细胞制造子代病毒。详细而言,病毒进入宿主体内后会与宿主细胞表面上的特定受体进行结合,附着于宿主细胞的表面并诱发胞吞或膜融合,藉以入侵宿主细胞。进入宿主细胞的病毒的外层蛋白质被病毒本身或是宿主细胞破坏,进而释放出包覆于其中的核酸分子(DNA或RNA)。宿主细胞会以病毒的DNA或RNA为模板进行复制并合成出病毒的蛋白质。由宿主细胞制造出的核酸分子与蛋白质会组装成新的病毒,再从宿主细胞中释放。多数病毒在释放的过程中会使宿主细胞溶解破裂,宿主细胞因病毒的繁殖及破坏而大量死亡,最终导致宿主发病。
免疫系统为生物抵御病毒或细菌的方式之一。免疫系统又分为先天免疫系统及后天免疫系统。先天免疫系统可以非特异性的方式抵御外来感染。后天免疫系统是经由与特定病原体接触后,产生能识别并针对特定病原体的抗体,通过抗体辨识病原体以启动的免疫反应。抗体发挥作用的途径主要可分为两类,其中一类为阻止病毒进入细胞,另一类为引导免疫细胞吞噬、清除病毒。接种疫苗是预防病毒性疾病的方法之一。疫苗能在不致病的情况下,引起相应的免疫反应,使后天免疫系统通过疫苗产生抗体以学习抵御这些病毒。
由病毒引起的呼吸道疾病例如有自2019年起在全球大爆发的新冠病毒病(Coronavirus disease 2019,COVID-19)。就目前的研究已知,新冠病毒为相当狡猾的病毒,至今仍无相应的治疗药物或治疗方法。研究团队通过高通量单细胞测序法,针对患者与健康者,分析肺细胞的RNA测序数据,并发现新冠病毒首先攻击的地方不是上呼吸道的细胞,而是人体深处的“II型肺泡”。新冠病毒通过其表面的刺突蛋白(spike protein)与肺部细胞表面的ACE2蛋白结合,ACE2会发生结构变化使新冠病毒进入细胞中。新冠病毒利用这些细胞合成新的病毒并释放到细胞外,感染周围的正常细胞。由于肺泡里没有神经分布,因此患者不一定会出现咳嗽的症状,且病毒引起的炎症反应可能有别于常见的炎症反应类型,故部分患者的发热现象并不明显。因此,部分患者可能没有明显的症状但肺部已受到伤害,甚至已传染给别人。
大多数抗病毒的药物的作用机制为消灭进入细胞的病毒,然而此种药物往往会伤害细胞本身,进而对人体造成伤害。也就是说,目前的治疗方法往往会产生对人体有害的副作用,因此如何在治疗的过程中使副作用最小化,甚至不产生副作用,亦为目前的研究方向之一。
发明内容
本发明实施例提供一种抗呼吸道病毒的装置、方法及药物,可抵抗呼吸道中的病毒且避免伤害细胞本身。
本发明实施例提供一种抗呼吸道病毒的装置,包含抗病毒液及雾化器。抗病毒液包含次氯酸。雾化器具有容置空间及出口。容置空间连通于出口并用以盛装抗病毒液。雾化器用以将抗病毒液雾化形成气雾粒子(aerosol)并由出口排出该气雾粒子。
本发明实施例提供一种抗呼吸道病毒的方法,包含:启动盛装有抗病毒液的雾化器以将抗病毒液雾化形成气雾粒子,并将气雾粒子从雾化器的出口排出,抗病毒液包含次氯酸;使用者以口自出口吸入气雾粒子;使用者憋气15至20秒钟,使气雾粒子进入呼吸道及肺部以杀死使用者的呼吸道及肺部中的病毒;以及使用者以鼻子呼气以完成呼吸动作。
本发明实施例提供一种抗呼吸道病毒的药物,包含次氯酸,次氯酸的有效浓度为10至30ppm,酸碱值介于pH5.0至6.4之间。
本发明实施例提供的抗呼吸道病毒的装置、方法及药物,通过雾化器将抗病毒液雾化成极细的粒子,可使抗病毒液深入肺部,以消灭在支气管、呼吸道或肺泡中刚从细胞内被复制出来且尚未进入其他细胞的病毒。藉由在病毒进入健康的细胞前将其歼灭,可阻断病毒利用健康的细胞繁殖,瓦解病毒的增生途径。在阻止病毒复制的同时,残留于细胞内的病毒可通过人体的免疫系统将其消灭。阻止病毒的增生及阻断病毒进入细胞内,亦可减轻免疫系统的负担,降低全身性炎症反应综合症发生的机率。不同于熟知的会伤害细胞本身的药物治疗,本发明的装置及方法通过小剂量的抗病毒液雾化后对局部区域进行病毒灭杀,有效地消灭尚未进入细胞的病毒,并且更重要的是不会伤害细胞本身且对人体无害。
附图说明
图1为根据本发明的一个实施例的抗呼吸道病毒的装置的立体示意图。
图2为根据本发明的一个实施例的抗呼吸道病毒的装置的立体分解图。
图3为根据本发明的一个实施例的雾化器的方框示意图。
图4为抗呼吸道病毒的方法的流程图。
附图标记如下:100雾化器;110主体;120雾化模块;130电源供应模块;140控制模块;150呼吸用具;151气雾通道;152气雾供给口;S容置空间;OUT出口;A抗病毒液;S101~S105步骤。
具体实施方式
于以下实施方式中详细叙述本发明的详细特征及优点,其内容足以使任何熟习相关技艺者了解本发明的技术内容并据以实施,且根据本说明书所揭露的内容、权利要求书及附图,任何熟习相关技艺者可轻易理解本发明相关的目的及优点。以下实施例用于进一步详细说明本发明的观点,但非以任何观点限制本发明的范畴。
首先,说明本发明一个实施例的抗呼吸道病毒的装置。请参考图1至图3,图1为根据本发明一个实施例的抗呼吸道病毒的装置的立体示意图。图2为根据本发明一个实施例的抗呼吸道病毒的装置的立体分解图。图3为根据本发明一个实施例的雾化器的方框示意图。于本实施例中,抗呼吸道病毒的装置可包含雾化器100及抗病毒液A。雾化器100包含主体110、雾化模块120、电源供应模块130、控制模块140及呼吸用具150。
主体110具有容置空间S及出口OUT。容置空间S连通于出口OUT并用以盛装抗病毒液A。
雾化模块120连接于主体110,用以将盛装于主体110的容置空间S中的抗病毒液A雾化形成气雾粒子(aerosol)。气雾粒子由出口OUT排出主体110之外。雾化模块120可为超音波雾化模块、压缩式雾化模块或网式雾化模块。超音波雾化模块利用雾化片以超音波的高频率震荡使液态抗病毒液A的结构被打散而成为飘逸的细小气雾粒子。压缩式雾化模块利用压缩机将通过滤网的干净空气压缩为气流,以气流冲击容置空间中的抗病毒液A,使其雾化成为飘逸的细小气雾粒子。网式雾化模块利用振动子的超音波震动并通过网式喷头构造,使抗病毒液形成飘逸的细小气雾粒子。
此外,在临床上,药物微粒在肺内的沉积位置会影响到药物对人体的作用。大于50微米的气雾粒子无法进入肺部。介于10至50微米的气雾粒子,会沉积于口、鼻、咽。介于3至10微米的气雾粒子,会沉积于咽、气管、支气管。介于0.5至3微米的气雾粒子,会沉积于细支气管、肺泡管、肺泡。小于0.05微米的气雾粒子,可能会随着呼出气体飘至大气中而不沉积。因此,为了使气雾粒子抵达气管、支气管乃至肺泡,气雾粒子较佳的尺寸分布范围为0.05微米至5微米。在本实施例中,雾化模块120可使抗病毒液A雾化形成为具有医疗效果的尺寸的气雾粒子。在本实施例中,抗病毒液A经雾化模块120雾化后生成气雾粒子,气雾粒子的粒径分布范围可为0.05微米至5微米,平均粒径可为3微米。
电源供应模块130通过控制模块140连接于雾化模块120,用以提供电源给雾化模块120及控制模块140。电源供应模块130可藉由外接电源、使用一次性电池或充电电池来提供电力。在本实施例中,电源供应模块130通过控制模块140连接于雾化模块120,但不以此为限。在其他实施例中,电源供应模块可直接连接于雾化模块。
控制模块140连接于雾化模块120及电源供应模块130。控制模块140可控制雾化模块120以调整由雾化模块120产生的气雾粒子的大小。举例而言,当雾化模块120为超音波雾化模块或网式雾化模块时,控制模块140可控制雾化片或振动子的震动频率来调整产生的气雾粒子的大小。当雾化模块120为压缩式雾化模块时,控制模块140可控制气流的压力来调整产生的气雾粒子的大小。在本实施例中,控制模块140可控制雾化模块120,使其生成气雾粒子的粒径分布范围介于0.05微米至5微米之间的气雾粒子,但不以此为限。在其他实施例中,控制模块可控制雾化模块,使其生成气雾粒子的粒径分布范围介于0.5微米至10微米之间的气雾粒子。在其他实施例中,控制模块可控制雾化模块,使其生成气雾粒子的粒径分布范围介于0.05微米至3微米之间的气雾粒子。在其他实施例中,雾化器100可不具有控制模块,雾化模块120可仅产生单一粒径范围的气雾粒子。
呼吸用具150连接于主体110且具有与出口OUT依序相连通的气雾通道151及气雾供给口152。抗病毒液A经雾化后形成气雾粒子,气雾粒子从出口OUT经过气雾通道151最后从气雾供给口152排出。呼吸用具150可将从出口OUT排出的气雾粒子集中提供给使用者吸取,以避免气雾粒子因扩散而浪费。在本实施例中,呼吸用具150以一个呼吸面罩作为示例,且一个呼吸用具150供一个使用者使用,但不以此为限。在其他实施例中,呼吸用具可为呼吸管。在其他实施例中,呼吸用具的数量不限于一个,多个使用者可使用对应的呼吸用具轮流使用雾化器。在其他实施例中,雾化器100可不具有呼吸用具,使用者可直接从雾化器100的出口OUT吸取气雾粒子。
抗病毒液A可包含次氯酸,次氯酸的浓度可为10至30ppm,次氯酸的酸碱值可为pH 5.0至6.4。次 氯酸具有强氧化力,在与微生物接触后,可迅速破坏微生物的细胞膜或摧毁病毒的蛋白刺突,使细菌或病毒无法传染,且反应过后还原成水,对环境及生物体皆无毒无害。在人体中,白血球也会产生次氯酸来抵御细菌或病毒,故次氯酸亦为天然防御分子。pH 5.0至6.4的次氯酸的酸碱度与人类皮肤相近,故不会造成刺激。浓度10至30ppm的次氯酸经喷洒后与病毒、细菌或有机物接触,可迅速分解成水,不会残留也不会累积于人体中而产生危害。在此浓度及酸碱度下的次氯酸对单细胞生物具有很强的杀伤能力,而人体内细胞结构复杂,不会轻易受到次氯酸的破坏,故在此状态下的次氯酸并不会影响人体内正常的细胞。
在本实施例中,抗病毒液A为微酸性电解次氯酸水(Slightly acidic hypochlorous acid water,HClO),次氯酸的有效浓度为10至30ppm,酸碱值介于pH 5.0至6.4之间。微酸性电解次氯酸水通过使用无隔膜电解槽电解稀盐酸而制成。依照上述性质使其成为抗呼吸道病毒的药物。研究证实浓度为10ppm以上的微酸性电解次氯酸水对各种病原性细菌等具有优异的抗菌效果。具体而言,利用微生物变异原性试验,确定微酸性电解次氯酸水对遗传因子无任何影响。利用兔子眼睛刺激性试验,确定微酸性电解次氯酸水对眼睛没有刺激性。利用皮肤细胞增大反应试验,确定微酸性电解次氯酸水对皮肤没有刺激性。利用兔子皮肤刺激性试验,没有发现红斑、浮肿等异常,确定微酸性电解次氯酸水对皮肤无不良影响。利用老鼠急性毒性试验,没有观察到异常,确定微酸性电解次氯酸水没有毒性。通过上述试验证实经微酸性电解次氯酸水处理的兔子及老鼠皆未见异常症状和体征,且血液生化指标均位于正常范围内。由此可知微酸性电解次氯酸水对生物体不会造成伤害。并且,经过中国疾病预防控制中心、台湾SGS、台美检验所等权威,证实微酸性电解次氯酸水可有效对抗大肠杆菌、金黄色葡萄球菌、白色念珠菌、铜绿假单胞菌、白色葡萄球菌、牙龈单胞菌、絮状表皮癣菌、淋病变双球菌、李斯特菌、流感嗜血杆菌、口蹄疫病毒、肺炎杆菌、肠病毒71型、冠状病毒等细菌或病毒。
本实施例的抗病毒液A可为精准控制浓度、酸碱值且不含重金属离子的医疗等级的微酸性电解次氯酸水,保存于由不透光材质制成的容器,以10毫升至20毫升的一次使用量做成一次性包装且存放于室温,以避免遭受污染且维持质量稳定。
接下来说明使用根据本发明实施例的抗呼吸道病毒的方法。请参考图4,图4为抗呼吸道病毒的方法的流程图。
首先,启动盛装有抗病毒液的雾化器以将抗病毒液雾化形成气雾粒子,并将气雾粒子从雾化器的出口排出,抗病毒液包含次氯酸(S101)。详细而言,抗病毒液为医疗等级的微酸性电解次氯酸水,其中次氯酸的浓度为10至30ppm,次氯酸的酸碱值为pH 5.0至6.4。雾化器为医疗等级的雾化器,其能将抗病毒液制造成粒径分布范围介于0.05微米至5微米的气雾粒子并使气雾粒子从出口排出至雾化器的本体之外。
接着,使用者以口自出口吸入气雾粒子(S102)。详细而言,雾化器的出口连接有呼吸用具,使用者先朝向呼吸用具及出口以外的地方吐气,再通过呼吸用具以口深吸一口气以自雾化器吸入气雾粒子。在本实施例中,雾化器只连接一个呼吸用具且仅供一人使用,以避免交叉感染,但不以此为限。在其他实施例中,根据物资缺乏程度,雾化器可轮流连接多个呼吸用具,多个使用者可通过对应的呼吸用具轮流使用同一雾化器,在多人共享同一雾化器时,雾化器的出口须经消毒才能换人使用。
接着,使用者憋气15至20秒钟,使气雾粒子进入呼吸道及肺部以杀死使用者的呼吸道及肺部中的病毒(S103)。详细而言,使用者以口深吸一口气雾粒子之后,憋气15至20秒钟,使气雾粒子有足够的时间深入呼吸道及肺部,并在呼吸道及肺泡间扩散,藉以杀死呼吸道及肺部中细胞之间的病毒。
接着,使用者以鼻子呼气以完成呼吸动作(S104)。详细而言,使用者以鼻子朝向呼吸用具及出口以外的地方呼气。以鼻子呼气可避免口中尚未进入呼吸道的气雾粒子排出,可提高气雾粒子进入体内的数量。朝向呼吸用具及出口以外的地方呼气可避免呼出带有病毒的气体污染呼吸用具及出口。
接着,使用者拍打胸部或跳跃抖动,使肺泡上的分泌物松动以增加气雾粒子与病毒的接触面积(S105)。详细而言,使用者可通过肢体摆动,例如拍打胸部或跳跃抖动,或是以按摩器震动的方式,使肺泡上的分泌物松动,藉以增加气雾粒子在肺泡间与病毒的接触面积,以提升杀灭效果。此外,用户在使用此装置时,可以坐姿或仰躺30至45度,使气雾粒子在重力的帮助下可顺利抵达下呼吸道。
在本实施例中,雾化器可调整产生的气雾粒子的粒径。依据治疗部位,使用者可调整雾化器使其产生雾化粒子的粒径分布范围介于0.05微米至5微米之间、0.5微米至10微米之间或0.05微米至3微米之间的气雾粒子。
在本实施例中,可重复依序进行吸入气雾粒子的步骤(S102)、憋气15至20秒钟的步骤(S103)以及以鼻子呼气(S104)的步骤,可重复共10至15分钟。简单来说,使用者启动雾化器后可重复吐气、吸气、憋气、呼气、抖动的步骤。此外,使用者在经过评估后可以较短的时间间隔重复使用此装置,通过多次吸取抗病毒液以阻断病毒入侵其他细胞的机会。
在本实施例的方法中,雾化器为图1及图2所示的本发明一个实施例的抗呼吸道病毒的装置,但不以 此为限。
在一些实施例中,作为超音波雾化器,可使用京华超音波股份有限公司所制的京华超音波喷雾器KUN-88。超音波频率为2.5MHz。气雾粒子直径为1微米至5微米。
在一些实施例中,作为网式雾化器,可使用奥姆龙公司所制的喷雾治疗器NE-U100。机型为U100机型网眼式。雾化率为每分钟0.25毫升。气雾粒子的颗粒大小(MMAD,空气动力质量中位直径)为5微米。
在一些实施例中,作为压缩式雾化器,可使用奥姆龙公司所制的喷雾治疗器NE-C803。雾化率为每分钟0.3毫升。气雾粒子的颗粒大小(MMAD)为3微米。
在一些实施例中,作为网式雾化器,可使用微邦科技股份有限公司所制的帕基艾儿携带式喷雾器。雾化率为每分钟0.25毫升。气雾粒子的颗粒大小(MMAD)小于5微米。
在其他实施例中,雾化器的雾化模块的雾化片可以不锈钢材质制造,以确保机器及抗病毒液使用上的安全。
在其他实施例中,雾化器与抗病毒液可制作成吸入剂的形式,例如医疗级小量喷雾器(small volume nebulizer,SVN)或定量喷雾器(meter dose inhaler,MDI),方便携带且不需电源即可使用。
由于极少数人对微酸性电解次氯酸水有过敏反应,故使用者第一次使用前应在皮肤表面做局部测试。若有任何不适,应停止使用并请教专业医师。使用者确定在皮肤上没有过敏反应后,再吸入少量的雾化次氯酸水,在专业医师的陪同下确定没有任何不良反应后,即可放心使用此装置。
若为刚感染呼吸道疾病者,其体内的病毒数量不多,通过本发明实施例的方法可防止病毒在体内增生,并依靠自身的免疫能力消灭病毒。也就是说,若患者能在症状较轻时得到控制,则可降低轻症患者发展为重症患者的机会,可大大地降低死亡率。并且,使用本发明实施例的方法并搭配其他治疗方法,可缩短患者的发病期间,尽早消灭体内的病毒以避免复发,进而减轻医疗负担。进一步而言,本发明实施例的装置的使用对象甚至可扩大至确诊者的亲密接触者,如家人或医护人员等尚未确诊者,藉以预防性地阻断病毒的传染途径、避免传染扩散。
本发明实施例提供的抗呼吸道病毒的装置及方法,对于呼吸道感染及肺部感染的细菌或病毒皆可使用。此外,抗病毒液不限于次氯酸,亦可在专业医师指示下添加其他成分或与其他药物交替使用。
本发明实施例提供的抗呼吸道病毒的装置、方法及药物,通过雾化器将抗病毒液雾化成极细的粒子,可使抗病毒液深入肺部,以消灭在支气管、呼吸道或肺泡中刚从细胞内被复制出来且尚未进入其他细胞的病毒。藉由在病毒进入健康的细胞前将其歼灭,可阻断病毒利用健康的细胞繁殖,瓦解病毒的增生途径。在阻止病毒复制的同时,残留于细胞内的病毒可通过人体的免疫系统将其消灭。阻止病毒的增生及阻断病毒进入细胞内,亦可减轻免疫系统的负担,降低全身性炎症反应综合症发生的机率。不同于熟知的会伤害细胞本身的药物治疗,本发明的装置及方法通过小剂量的抗病毒液雾化后对局部区域进行病毒灭杀,有效地消灭尚未进入细胞的病毒,并且更重要的是不会伤害细胞本身且对人体无害。

Claims (15)

  1. 一种抗呼吸道病毒的装置,包含:
    抗病毒液,包含次氯酸;以及
    雾化器,具有容置空间及出口,所述容置空间连通于所述出口并用以盛装所述抗病毒液,所述雾化器用以将所述抗病毒液雾化形成气雾粒子并由所述出口排出所述气雾粒子。
  2. 如权利要求1所述的抗呼吸道病毒的装置,其中,所述雾化器包含电源供应模块、雾化模块及主体,所述容置空间及所述出口位于所述主体,所述电源供应模块连接于所述雾化模块以提供电源给所述雾化模块,所述雾化模块连接于所述主体以将所述抗病毒液雾化形成所述气雾粒子。
  3. 如权利要求2所述的抗呼吸道病毒的装置,其中,所述雾化器还包含控制模块,所述电源供应模块通过所述控制模块连接于所述雾化模块,所述电源供应模块提供电源给所述控制模块,所述控制模块控制所述雾化模块以调整所述气雾粒子的大小。
  4. 如权利要求2所述的抗呼吸道病毒的装置,其中,所述雾化器还包含至少一个呼吸用具,所述至少一个呼吸用具连接于所述主体,且所述至少一个呼吸用具具有与所述出口依序相连通的气雾通道与气雾供给口。
  5. 如权利要求2所述的抗呼吸道病毒的装置,其中,所述雾化模块为超音波雾化模块、压缩式雾化模块或网式雾化模块。
  6. 如权利要求1-5中任一项所述的抗呼吸道病毒的装置,其中,所述气雾粒子的粒径分布范围为0.05微米至5微米。
  7. 如权利要求1-5中任一项所述的抗呼吸道病毒的装置,其中,所述气雾粒子的平均粒径为3微米。
  8. 如权利要求1-5中任一项所述的抗呼吸道病毒的装置,其中,次氯酸的浓度为10至30ppm。
  9. 如权利要求1-5中任一项所述的抗呼吸道病毒的装置,其中,次氯酸的酸碱值为pH 5.0至6.4。
  10. 一种抗呼吸道病毒的方法,包含:
    启动盛装有抗病毒液的雾化器以将所述抗病毒液雾化形成气雾粒子,并将所述气雾粒子从所述雾化器的出口排出,所述抗病毒液包含次氯酸;
    使用者以口自所述出口吸入所述气雾粒子;
    所述使用者憋气15至20秒钟,使所述气雾粒子进入呼吸道及肺部以杀死所述使用者的呼吸道及肺部中的病毒;以及
    所述使用者以鼻子呼气以完成呼吸动作。
  11. 如权利要求10所述的抗呼吸道病毒的方法,其中,重复依序进行吸入所述气雾粒子的步骤、憋气15至20秒钟的步骤以及以鼻子呼气的步骤,共10至15分钟。
  12. 如权利要求10或11所述的抗呼吸道病毒的方法,其中,所述气雾粒子的粒径分布范围为0.05微米至5微米。
  13. 如权利要求10或11所述的抗呼吸道病毒的方法,其中,次氯酸的浓度为10至30ppm,次氯酸的酸碱值为pH 5.0至6.4。
  14. 如权利要求10或11所述的抗呼吸道病毒的方法,还包含在所述使用者以鼻子呼气的步骤之后,所述使用者拍打胸部或跳跃抖动的步骤,使肺泡上的分泌物松动以增加所述气雾粒子与病毒的接触面积。
  15. 一种抗呼吸道病毒的药物,包含次氯酸,次氯酸的有效浓度为10至30ppm,酸碱值介于pH 5.0至6.4之间。
PCT/CN2020/108362 2020-08-11 2020-08-11 抗呼吸道病毒的装置、方法及药物 WO2022032468A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108362 WO2022032468A1 (zh) 2020-08-11 2020-08-11 抗呼吸道病毒的装置、方法及药物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108362 WO2022032468A1 (zh) 2020-08-11 2020-08-11 抗呼吸道病毒的装置、方法及药物

Publications (2)

Publication Number Publication Date
WO2022032468A1 true WO2022032468A1 (zh) 2022-02-17
WO2022032468A8 WO2022032468A8 (zh) 2022-04-07

Family

ID=80247534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108362 WO2022032468A1 (zh) 2020-08-11 2020-08-11 抗呼吸道病毒的装置、方法及药物

Country Status (1)

Country Link
WO (1) WO2022032468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115317649A (zh) * 2022-08-09 2022-11-11 中科产业服务中心(广州)有限公司 一种便携式病毒防护方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457770A (zh) * 2003-05-07 2003-11-26 苏晓林 抗病毒雾化吸入药液
CN101405012A (zh) * 2006-01-20 2009-04-08 奥古露丝创新科学公司 使用氧化还原电位水溶液治疗或预防炎症和超敏反应的方法
CN102480972A (zh) * 2009-06-15 2012-05-30 奥古露丝创新科学公司 含有次氯酸的溶液及其使用方法
CN102665808A (zh) * 2010-07-01 2012-09-12 日本Acp株式会社 气雾吸入器
CN109526982A (zh) * 2018-10-25 2019-03-29 广州泰道安医疗科技有限公司 一种低pH的抗微生物溶液及其应用
CN210542564U (zh) * 2019-07-01 2020-05-19 冉金环保科技发展(苏州)有限公司 移动便携式微酸性次氯酸消毒水生成雾化一体机
CN111467550A (zh) * 2020-04-08 2020-07-31 佛山市伊雷斯新能源股份有限公司 一种消毒用的超声波雾化器及其消毒方法
CN111481723A (zh) * 2020-04-17 2020-08-04 重庆有艾生物科技有限公司 一种运用弱酸性次氯酸消毒液在聚集性场所进行空气动态消毒的集成技术与方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457770A (zh) * 2003-05-07 2003-11-26 苏晓林 抗病毒雾化吸入药液
CN101405012A (zh) * 2006-01-20 2009-04-08 奥古露丝创新科学公司 使用氧化还原电位水溶液治疗或预防炎症和超敏反应的方法
CN102480972A (zh) * 2009-06-15 2012-05-30 奥古露丝创新科学公司 含有次氯酸的溶液及其使用方法
CN102665808A (zh) * 2010-07-01 2012-09-12 日本Acp株式会社 气雾吸入器
CN109526982A (zh) * 2018-10-25 2019-03-29 广州泰道安医疗科技有限公司 一种低pH的抗微生物溶液及其应用
CN210542564U (zh) * 2019-07-01 2020-05-19 冉金环保科技发展(苏州)有限公司 移动便携式微酸性次氯酸消毒水生成雾化一体机
CN111467550A (zh) * 2020-04-08 2020-07-31 佛山市伊雷斯新能源股份有限公司 一种消毒用的超声波雾化器及其消毒方法
CN111481723A (zh) * 2020-04-17 2020-08-04 重庆有艾生物科技有限公司 一种运用弱酸性次氯酸消毒液在聚集性场所进行空气动态消毒的集成技术与方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUZAKI SATOSHI: "Mechanisms of Actions of Sodium Hypochlorite in Cleaning and Disinfection Processes", BIOCONTROL SCIENCE, vol. 11, no. 4, 1 January 2006 (2006-01-01), JP , pages 147 - 157, XP055900949, ISSN: 1342-4815, DOI: 10.4265/bio.11.147 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115317649A (zh) * 2022-08-09 2022-11-11 中科产业服务中心(广州)有限公司 一种便携式病毒防护方法及装置

Also Published As

Publication number Publication date
WO2022032468A8 (zh) 2022-04-07

Similar Documents

Publication Publication Date Title
Kesser et al. New aerosol delivery devices for cystic fibrosis
Vecellio The mesh nebuliser: a recent technical innovation for aerosol delivery
TWI510258B (zh) 吸入系統、呼吸裝置及方法
Dessanges A history of nebulization
JP6640832B2 (ja) 薬剤送達用陽圧吸入装置
US20210346613A1 (en) Controlled delivery device for treating coronavirus infections and methods thereof
Wagener et al. Cystic fibrosis: current trends in respiratory care
US20200268656A1 (en) Nebulized Ethanol for Internal Disinfecting and Improvement
CN111956660A (zh) 用含碘消毒液雾化防治病毒性呼吸道疾病的方法
WO2022032468A1 (zh) 抗呼吸道病毒的装置、方法及药物
Lavorini et al. Aerosol delivery systems for treating obstructive airway diseases during the SARS-CoV-2 pandemic
KR101564656B1 (ko) 소금 마스크
WO2022047188A1 (en) Process of using chlorine dioxide for the attenuation and or treatment of coronavirus diseases
US20220160044A1 (en) Smart Electronic Mask, Headset and Inhaler
WO2022038507A1 (en) A solution for use in treating hypoxemia and potential asphyxiation
CN203183443U (zh) 小儿内科用雾化吸入装置
TWI807655B (zh) 用於預防及治療細菌及病毒感染之呼吸道病症的水溶液醫藥組合物及其行動防護給藥裝置
JP2013507147A (ja) 脈動薬物伝達プロトコル及び方法
Tiddens et al. Delivery of therapy to the cystic fibrosis lung
US11179415B1 (en) Process of using chlorine dioxide for the attenuation and/or treatment of Coronavirus diseases such as COVID-19 and disabling, treating or attenuating the SARS CoV-2 virus, and its future infective variants
WO2018094774A1 (zh) 一种用于应对雾霾气候的电子口罩
US20230270968A1 (en) System and plasma for treating and/or preventing a viral, bacterial and/or fungal infection
US20220160973A1 (en) Smart Electronic Mask and Inhaler
Levin Optimal aerosol delivery
US20210401876A1 (en) Pharmaceutical composition of chlorine for treatment of respiratory viral infection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948967

Country of ref document: EP

Kind code of ref document: A1