WO2022030532A1 - UAV(Unmanned Aerial Vehicle) - Google Patents

UAV(Unmanned Aerial Vehicle) Download PDF

Info

Publication number
WO2022030532A1
WO2022030532A1 PCT/JP2021/028909 JP2021028909W WO2022030532A1 WO 2022030532 A1 WO2022030532 A1 WO 2022030532A1 JP 2021028909 W JP2021028909 W JP 2021028909W WO 2022030532 A1 WO2022030532 A1 WO 2022030532A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu session
identification information
uav
procedure
network
Prior art date
Application number
PCT/JP2021/028909
Other languages
English (en)
French (fr)
Inventor
晶貴 泉
雄大 河崎
真史 新本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US18/020,078 priority Critical patent/US20230308865A1/en
Priority to CN202180057408.0A priority patent/CN116158070A/zh
Priority to EP21852169.8A priority patent/EP4195641A1/en
Publication of WO2022030532A1 publication Critical patent/WO2022030532A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]

Definitions

  • the present invention relates to a UAV (Unmanned Aerial Vehicle).
  • UAV Unmanned Aerial Vehicle
  • Non-Patent Documents 1 to 3 the system architecture of 5GS (5G System), which is a 5th generation (5G) mobile communication system, is being studied, and discussions are held to support new procedures and new functions.
  • 5G System 5th generation
  • the mobile communication system for drones is discussed in Release 17 of the 5G standard (see Non-Patent Document 4).
  • 3GPP TS 23.501 V16.5.1 (2020-08); 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2 (Release 16) 3GPP TS 23.502 V16.5.0 (2020-07); 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System; Stage 2 (Release 16) 3GPP TS 24.501 V16.5.1 (2020-07); 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3 (Release 16) 3GPP TR 23.754 V0.2.0 (2020-06); 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on supporting Unmanned Aerial Systems (UAS) connectivity, Identification and tracking (Rele)
  • UAS Unmanned Aerial Systems
  • UAV Unmanned Aerial Vehicle
  • UTM Unmanned Aerial System Traffic Management
  • One aspect of the present invention has been made in consideration of the above circumstances, and clarifies the information included in the PDU session change command message transmitted by the network device to the UAV and the behavior of the UAV that received the message. Also, clarify the information to be included in the message in the UAV PDU session establishment procedure.
  • a UAV Unmanned Aerial Vehicle
  • the transmission / reception unit is a PDU session change command including a first identification information and a second identification information from a network.
  • the control unit updates the stored UAV controller identification information to the identification information indicated by the first identification information based on the reception of the first identification information, and the second identification information.
  • the stored IP address of the UAV controller is updated to the IP address indicated by the second identification information, where the first identification information is the new UAV controller.
  • the second identification information is the new IP address of the UAV controller, and the UAV is associated with the UAV controller.
  • the UAV includes a transmission / reception unit and a control unit, and the transmission / reception unit establishes a PDU session that provides a QoS flow for performing C2 (Command and Control) communication.
  • the transmission / reception unit establishes a PDU session that provides a QoS flow for performing C2 (Command and Control) communication.
  • C2 Common and Control
  • the information included in the PDU session change command message transmitted by the network device to the UAV and the behavior of the UAV that received the message can be clarified.
  • the information to be included in the message in the UAV PDU session establishment procedure can be clarified.
  • EPS / 5GS It is a figure explaining the outline of the mobile communication system (EPS / 5GS). It is a figure explaining the detailed structure of the mobile communication system (EPS / 5GS). It is a figure explaining the apparatus configuration of UE. It is a figure explaining the structure of the access network apparatus (gNB) in 5GS. It is a figure explaining the structure of the core network apparatus (AMF / SMF / UPF) in 5GS. It is a figure explaining the registration procedure. It is a figure explaining the PDU session establishment procedure. It is a figure which shows the session management procedure led by a network. It is a figure which shows the session management procedure led by UE. It is a figure which shows the communication procedure. It is a figure explaining the communication form of UAV.
  • gNB access network apparatus
  • AMF / SMF / UPF core network apparatus
  • PDU session establishment procedure It is a figure which shows the session management procedure led by a network. It is a figure which shows the session management procedure led by UE. It
  • FIG. 1 is a diagram for explaining the outline of the mobile communication system 1 used in each embodiment
  • FIG. 2 is a diagram for explaining a detailed configuration of the mobile communication system 1.
  • the mobile communication system 1 is composed of UE_A10, access network_A80, core network_A90, PDN (Packet Data Network) _A5, access network _B120, core network _B190, and DN (Data Network) _A6. It is stated that
  • these devices / functions may be described by omitting symbols such as UE, access network_A, core network_A, PDN, access network_B, core network_B, DN, etc. ..
  • Fig. 2 shows the devices / functions of UE_A10, E-UTRAN80, MME40, SGW35, PGW-U30, PGW-C32, PCRF60, HSS50, 5GAN120, AMF140, UPF130, SMF132, PCF160, UDM150, N3IWF170, etc. An interface for connecting these devices / functions to each other is described.
  • these devices / functions are described as UE, E-UTRAN, MME, SGW, PGW-U, PGW-C, PCRF, HSS, 5GAN, AMF, UPF, SMF, PCF, UDM, N3IWF, etc. , Symbol may be omitted.
  • the EPS Evolved Packet System
  • 4G system is configured to include an access network_A and a core network_A, but may further include a UE and / or a PDN.
  • 5GS which is a 5G system, is configured to include a UE, an access network_B, and a core network_B, but may further include a DN.
  • the UE is a device that can connect to network services via 3GPP access (3GPP access network, also called 3GPPAN) and / or non-3GPP access (non-3GPP access network, also called non-3GPPAN).
  • 3GPP access network also called 3GPPAN
  • non-3GPP access network also called non-3GPPAN
  • the UE may be a terminal device capable of wireless communication such as a mobile phone or a smartphone, and may be a terminal device capable of connecting to EPS or 5GS.
  • the UE may be equipped with a UICC (Universal Integrated Circuit Card) or an eUICC (Embedded UICC).
  • UICC Universal Integrated Circuit Card
  • eUICC embedded UICC
  • the UE may be expressed as a user device or a terminal device.
  • the access network_A corresponds to E-UTRAN (Evolved Universal Terrestrial Radio Access Network) and / or wireless LAN access network.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • eNB evolved Node B
  • eNB45 may be described by omitting a symbol like eNB. If there are a plurality of eNBs, each eNB is connected to each other by, for example, an X2 interface.
  • one or more access points are arranged in the wireless LAN access network.
  • access network_B corresponds to 5G access network (5GAN).
  • 5GAN is composed of NG-RAN (NG Radio Access Network) and / or non-3GPP access network.
  • NG-RAN NG Radio Access Network
  • gNB NR Node B
  • gNB122 may be described by omitting a symbol like gNB.
  • the gNB is a node that provides the NR (New Radio) user plane and the control plane to the UE, and is a node that connects to the 5GCN via an NG interface (including an N2 interface or an N3 interface).
  • gNB is a base station device newly designed for 5GS and has a different function from the base station device (eNB) used in EPS, which is a 4G system.
  • eNB base station device
  • EPS base station device
  • each gNB is connected to each other by, for example, an Xn interface.
  • the non-3GPP access network may be an untrusted non-3GPP (untrusted non-3GPP) access network or a trusted non-3GPP (trusted non-3GPP) access network.
  • the unreliable non-3GPP access network may be a non-3GPP access network that does not perform security management in the access network, for example, a public wireless LAN.
  • the reliable non-3GPP access network may be an access network defined by 3GPP, and may include TNAP (trusted non-3GPP access point) and TNGF (trusted non-3GPP Gateway function).
  • E-UTRAN and NG-RAN may be referred to as 3GPP access.
  • wireless LAN access network and non-3GPP AN may be referred to as non-3GPP access.
  • the nodes arranged in the access network_B may be collectively referred to as NG-RAN nodes.
  • the device included in the access network_A and / or the access network_B and / or the access network_A, and / or the device included in the access network_B is the access network or the access network device. May be called.
  • core network_A corresponds to EPC (Evolved Packet Core).
  • EPC includes, for example, MME (Mobility Management Entity), SGW (Serving Gateway), PGW (Packet Data Network Gateway) -U, PGW-C, PCRF (Policy and Charging Rules Function), HSS (Home Subscriber Server), etc. Be placed.
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • PGW Packet Data Network Gateway
  • PGW-C Packet Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • core network_B corresponds to 5GCN (5G Core Network).
  • 5GCN 5G Core Network
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • PCF Policy Control Function
  • UDM Unified Data Management
  • 5GCN may be expressed as 5GC.
  • the core network_A and / or the core network_B, the device included in the core network_A, and / or the device included in the core network_B are the core network, or the core network device or the core network. Sometimes referred to as an internal device.
  • the core network is a mobile network operator (Mobile) that connects the access network (access network_A and / or access network_B) with the PDN and / or DN. It may be an IP mobile communication network operated by Network Operator; MNO), it may be a core network for a mobile communication operator that operates and manages mobile communication system 1, or it may be an MVNO (Mobile Virtual Network Operator). ), MVNE (Mobile Virtual Network Enabler), and other virtual mobile communication operators and virtual mobile communication service providers.
  • MNO IP mobile communication network operated by Network Operator
  • MNO Mobile Virtual Network Operator
  • MVNE Mobile Virtual Network Enabler
  • the PDN may be a DN (Data Network) that provides a communication service to the UE.
  • the DN may be configured as a packet data service network or may be configured for each service.
  • the PDN may include a connected communication terminal. Therefore, connecting to the PDN may be connecting to a communication terminal or server device arranged in the PDN. Further, sending and receiving user data to and from the PDN may be sending and receiving user data to and from a communication terminal or server device arranged in the PDN.
  • PDN may be expressed as DN
  • DN may be expressed as PDN.
  • access network_A, core network_A, PDN, access network_B, core network_B, at least a part of DN, and / or one or more devices included in these are referred to as a network or network device. May be called. That is, the fact that the network and / or the network device sends and receives messages and / or executes the procedure means that the access network_A, core network_A, PDN, access network_B, core network_B, and DN are used. It means that at least a part and / or one or more devices contained therein send / receive messages and / or perform procedures.
  • the UE can connect to the access network.
  • the UE can also connect to the core network via the access network.
  • the UE can connect to the PDN or DN via the access network and core network. That is, the UE can send / receive (communicate) user data with the PDN or DN.
  • IP Internet Protocol
  • non-IP communication may be used.
  • IP communication is data communication using IP, and data is transmitted and received by IP packets.
  • An IP packet is composed of an IP header and a payload part.
  • the payload section may include devices / functions included in EPS and data transmitted / received by devices / functions included in 5GS.
  • non-IP communication is data communication that does not use IP, and data is transmitted and received in a format different from the structure of IP packets.
  • non-IP communication may be data communication realized by sending and receiving application data to which an IP header is not added, or a UE may add another header such as a Mac header or an Ethernet (registered trademark) frame header. User data to be sent and received may be sent and received.
  • the access network_A, the core network_A, the access network_B, the core network_B, the PDN_A, and the DN_A may be configured with devices not shown in FIG.
  • the core network_A and / or the core network_B may include an AUSF (Authentication Server Function) or a AAA (Authentication, authorization, and accounting) server (AAA-S).
  • AUSF Authentication Server Function
  • AAA Authentication, authorization, and accounting server
  • AUSF is a core network device equipped with an authentication function for 3GPP access and non-3GPP access. Specifically, it is a network function unit that receives an authentication request for 3GPP access and / or non-3GPP access from the UE and executes the authentication procedure.
  • the AAA server is a device that has authentication, approval, and billing functions that directly or indirectly connects to AUSF via other network devices.
  • the AAA server may be a network device in the core network.
  • the AAA server may not be included in the core network_A and / or the core network_B, but may be included in the PLMN. That is, the AAA server may be a core network device or a device outside the core network.
  • the AAA server may be a server device in PLMN managed by 3rd Party.
  • each device / function is described one by one in FIG. 2 for the sake of simplification of the figure, a plurality of similar devices / functions may be configured in the mobile communication system 1.
  • the mobile communication system 1 has multiple UE_A10, E-UTRAN80, MME40, SGW35, PGW-U30, PGW-C32, PCRF60, HSS50, 5GAN120, AMF140, UPF130, SMF132, PCF160, and / or UDM150.
  • Devices / functions such as the above may be configured.
  • UPF_A235 is connected to DN, SMF, other UPFs, and access networks.
  • UPF_A235 is an anchor for intra-RAT mobility or inter-RAT mobility, Packet routing & forwarding, UL CL (Uplink Classifier) function that supports routing of multiple traffic flows to one DN, Routing point function that supports multi-homed PDU session, QoS processing for userplane, uplink traffic verification, downlink packet buffering, downlink data notification (Downlink Data Notification) It may play a role such as a trigger function.
  • UPF_A235 may be a relay device that transfers user data as a gateway between the DN and the core network_B190.
  • UPF_A235 may be a gateway for IP communication and / or non-IP communication.
  • UPF_A235 may have a function of transferring IP communication, and may have a function of converting non-IP communication and IP communication. Further, the multiple gateways may be a gateway connecting the core network_B190 and a single DN. The UPF_A235 may have connectivity with other NFs, or may be connected to each device via another NF.
  • UPF_C239 (also referred to as branching point or uplink classifier), which is a UPF different from UPF_A235, may exist as a device or NF between UPF_A235 and the access network. If UPF_C239 is present, the PDU session between the UE and DN will be established via the access network, UPF_C239, UPF_A235.
  • UPF130 may be the same device as UPF_A235.
  • UPF130 and UPF_A235 may be described by omitting the symbol like UPF.
  • each device may be configured as physical hardware, may be configured as logical (virtual) hardware configured on general-purpose hardware, or may be configured as software. May be done. Further, at least a part (including all) of the functions of each device may be configured as physical hardware, logical hardware, or software.
  • each storage unit in each device / function appearing below may be, for example, a semiconductor memory or SSD (semiconductor memory unit). It consists of Solid State Drive), HDD (Hard Disk Drive), etc.
  • each storage unit has not only the information originally set from the shipping stage, but also devices / functions other than its own device / function (for example, UE and / or access network device, and / or core network device, and /. Or, various information transmitted / received to / from PDN and / or DN) can be stored.
  • each storage unit can store identification information, control information, flags, parameters, and the like included in control messages transmitted and received in various communication procedures described later. Further, each storage unit may store such information for each UE. In addition, each storage unit may store control messages and user data transmitted / received between 5GS and / or the devices / functions included in EPS when an interwork is performed between 5GS and EPS. can. At this time, not only those transmitted / received via the N26 interface but also those transmitted / received without the N26 interface can be stored.
  • the UE is composed of a control unit_A300, an antenna 310, a transmission / reception unit_A320, and a storage unit_A340.
  • the control unit_A300, the transmission / reception unit_A320, and the storage unit_A340 are connected via a bus.
  • the transmitter / receiver_A320 is connected to the antenna 310.
  • Control unit_A300 is a functional unit that controls the operation and functions of the entire UE.
  • the control unit_A300 realizes various processes in the UE by reading and executing various programs stored in the storage unit_A340 as needed.
  • the transmission / reception unit_A320 is a functional unit for wireless communication with the base station device (eNB or gNB) in the access network via the antenna. That is, the UE may send / receive user data and / or control information to / from the access network device and / or the core network device and / or the PDN and / or DN by using the transmission / reception unit_A320. can.
  • the base station device eNB or gNB
  • the UE can communicate with the base station device (eNB) in the E-UTRAN via the LTE-Uu interface by using the transmission / reception unit_A320.
  • the UE can communicate with the base station device (gNB) in the 5GAN by using the transmission / reception unit_A320.
  • the UE can send and receive NAS (Non-Access-Stratum) messages to and from the AMF via the N1 interface by using the transmitter / receiver _A320.
  • NAS Non-Access-Stratum
  • the storage unit_A340 is a functional unit for storing programs, user data, control information, etc. required for each operation of the UE.
  • the gNB is composed of a control unit_B500, an antenna 510, a network connection unit_B520, a transmission / reception unit_B530, and a storage unit_B540.
  • the control unit_B500, network connection unit_B520, transmission / reception unit_B530, and storage unit_B540 are connected via a bus.
  • the transmitter / receiver_B530 is connected to the antenna 510.
  • Control unit_B500 is a functional unit that controls the operation and function of the entire gNB.
  • the control unit_B500 realizes various processes in gNB by reading and executing various programs stored in the storage unit_B540 as needed.
  • the network connection part_B520 is a functional part for gNB to communicate with AMF and / or UPF. That is, the gNB can send and receive user data and / or control information to and from the AMF and / or the UPF using the network connection unit_B520.
  • the transmission / reception unit_B530 is a functional unit for wireless communication with the UE via the antenna 510. That is, the gNB can transmit / receive user data and / or control information to / from the UE by using the transmission / reception unit_B530.
  • gNB in 5GAN can communicate with AMF via the N2 interface by using the network connection part_B520, and UPF via the N3 interface. Can communicate with. Further, the gNB can communicate with the UE by using the transmission / reception unit_B530.
  • the storage unit_B540 is a functional unit for storing programs, user data, control information, etc. required for each operation of gNB.
  • the AMF consists of a control unit_B700, a network connection unit_B720, and a storage unit_B740.
  • the control unit_B700, network connection unit_B720, and storage unit_B740 are connected via a bus.
  • the AMF may be a node that handles the control plane.
  • Control unit_B700 is a functional unit that controls the operation and functions of the entire AMF.
  • the control unit_B700 realizes various processes in AMF by reading and executing various programs stored in the storage unit_B740 as needed.
  • the network connection unit_B720 is a functional unit for AMF to connect to the base station equipment (gNB) in 5GAN and / or SMF, and / or PCF, and / or UDM, and / or SCEF. That is, the AMF uses the network connection _B720 to the user between the base station equipment (gNB) in 5GAN and / or the SMF and / or the PCF, and / or the UDM, and / or the SCEF. Data and / or control information can be sent and received.
  • the AMF within the 5GCN can communicate with the gNB via the N2 interface by using the network connection _A620 and with the UDM via the N8 interface. It can communicate, it can communicate with the SMF via the N11 interface, and it can communicate with the PCF via the N15 interface.
  • AMF can send and receive NAS messages to and from the UE via the N1 interface by using the network connection unit_A620.
  • the N1 interface is logical, communication between the UE and AMF is actually done via 5GAN.
  • the AMF supports the N26 interface, it can communicate with the MME via the N26 interface by using the network connection unit_A620.
  • the storage unit_B740 is a functional unit for storing programs, user data, control information, etc. required for each operation of AMF.
  • AMF has a function to exchange control messages with RAN using N2 interface, a function to exchange NAS messages with UE using N1 interface, a function to encrypt and protect the integrity of NAS messages, and registration management.
  • the RM status for each UE is managed.
  • the RM state may be synchronized between the UE and AMF.
  • the RM state includes a non-registered state (RM-DEREGISTERED state) and a registered state (RM-REGISTERED state).
  • RM-DEREGISTERED state the UE is not registered in the network, and the UE context in the AMF does not have valid location information or routing information for the UE, so the AMF cannot reach the UE.
  • the RM-REGISTERED state the UE is registered in the network, so the UE can receive services that require registration with the network.
  • the RM state may be expressed as a 5GMM state.
  • the RM-DEREGISTERED state may be expressed as the 5GMM-DEREGISTERED state
  • the RM-REGISTERED state may be expressed as the 5GMM-REGISTERED state.
  • 5GMM-REGISTERED may be in a state where each device has established a 5GMM context or a state in which a PDU session context has been established.
  • UE_A10 may start sending and receiving user data and control messages, or may respond to paging. Further, when each device is 5GMM-REGISTERED, UE_A10 may execute a registration procedure other than the registration procedure for initial registration and / or a service request procedure.
  • each device may be in a state where the 5GMM context has not been established, the location information of UE_A10 may not be known to the network, or the network reaches UE_A10. It may be in an impossible state. If each device is 5GMM-DEREGISTERED, UE_A10 may start the registration procedure or establish a 5GMM context by executing the registration procedure.
  • the CM status for each UE is managed.
  • the CM state may be synchronized between the UE and AMF.
  • the CM state includes a non-connected state (CM-IDLE state) and a connected state (CM-CONNECTED state).
  • CM-IDLE state the UE is in the RM-REGISTERED state, but does not have a NAS signaling connection established with the AMF via the N1 interface.
  • the CM-IDLE state the UE does not have an N2 interface connection (N2 connection) or an N3 interface connection (N3 connection).
  • N2 connection N2 interface connection
  • N3 connection N3 interface connection
  • the CM-CONNECTED state it has a NAS signaling connection established with AMF via the N1 interface.
  • the CM-CONNECTED state the UE may have an N2 interface connection (N2 connection) and / or an N3 interface connection (N3 connection).
  • the CM state in 3GPP access and the CM state in non-3GPP access may be managed separately.
  • the CM state in 3GPP access may be a non-connected state in 3GPP access (CM-IDLE state over 3GPP access) and a connected state in 3GPP access (CM-CONNECTED state over 3GPP access).
  • the CM state in non-3GPP access includes the non-connected state (CM-IDLE state over non-3GPP access) in non-3GPP access and the connection state (CM-CONNECTED state over non-3GPP access) in non-3GPP access. ) And so on.
  • the disconnected state may be expressed as an idle mode
  • the connected state mode may be expressed as a connected mode.
  • the CM state may be expressed as 5GMM mode (5GMM mode).
  • the non-connected state may be expressed as 5GMM non-connected mode (5GMM-IDLE mode)
  • the connected state may be expressed as 5GMM connected mode (5GMM-CONNECTED mode).
  • the non-connected state in 3GPP access may be expressed as 5GMM non-connected mode (5GMM-IDLE mode over 3GPP access) in 3GPP access
  • the connected state in 3GPP access may be expressed as 5GMM connection mode (5GMM-) in 3GPP access. It may be expressed as CONNECTED mode over 3GPP access).
  • non-connected state in non-3GPP access may be expressed as 5GMM non-connected mode (5GMM-IDLE mode over non-3GPP access) in non-3GPP access, and the connected state in non-3GPP access is non.
  • -3GPP access may be expressed as 5GMM connection mode (5GMM-CONNECTED mode over non-3GPP access).
  • the 5GMM non-connection mode may be expressed as an idle mode, and the 5GMM connection mode may be expressed as a connected mode.
  • AMF may be placed in the core network_B.
  • AMF may be an NF (Network Function) that manages one or more NSIs (Network Slice Instances).
  • the AMF may be a shared CP function (CCNF; Common CPNF (Control Plane Network Function)) shared among a plurality of NSIs.
  • CCNF Common CPNF (Control Plane Network Function)
  • N3IWF is a device and / or function that is placed between non-3GPP access and 5GCN when the UE connects to 5GS via non-3GPP access.
  • the SMF consists of a control unit_B700, a network connection unit_B720, and a storage unit_B740.
  • the control unit_B700, network connection unit_B720, and storage unit_B740 are connected via a bus.
  • the SMF may be a node that handles the control plane.
  • Control unit_B700 is a functional unit that controls the operation and functions of the entire SMF.
  • the control unit_B700 realizes various processes in the SMF by reading and executing various programs stored in the storage unit_B740 as needed.
  • the network connection part_B720 is a functional part for SMF to connect with AMF and / or UPF, and / or PCF, and / or UDM. That is, the SMF can send and receive user data and / or control information between the AMF and / or the UPF, and / or the PCF, and / or the UDM by using the network connection unit_B720.
  • the SMF within the 5GCN can communicate with the AMF via the N11 interface by using the network connection _A620 and with the UPF via the N4 interface. It can communicate, it can communicate with the PCF via the N7 interface, and it can communicate with the UDM via the N10 interface.
  • the storage unit_B740 is a functional unit for storing programs, user data, control information, etc. required for each operation of SMF.
  • SMF has session management functions such as establishment / modification / release of PDU sessions, IP address allocation and management functions for UEs, UPF selection and control functions, and appropriate destinations (destination). ), UPF setting function for routing traffic to), function to send and receive SM part of NAS message, function to notify that downlink data has arrived (Downlink Data Notification), AN via N2 interface via AMF It has a function to provide SM information peculiar to AN (for each AN) transmitted to, a function to determine the SSC mode (Session and Service Continuity mode) for the session, a roaming function, and the like.
  • SSC mode Session and Service Continuity mode
  • the UPF consists of a control unit_B700, a network connection unit_B720, and a storage unit_B740.
  • the control unit_B700, network connection unit_B720, and storage unit_B740 are connected via a bus.
  • the UPF may be a node that handles the control plane.
  • Control unit_B700 is a functional unit that controls the operation and functions of the entire UPF.
  • the control unit_B700 realizes various processes in the UPF by reading and executing various programs stored in the storage unit_B740 as needed.
  • the network connection unit_B720 is a functional unit for the UPF to connect to the base station device (gNB) in 5GAN and / or the SMF and / or the DN. That is, the UPF uses the network connection _B720 to send and receive user data and / or control information between the base station equipment (gNB) in 5GAN and / or the SMF and / or the DN. Can be done.
  • the UPF within the 5GCN can communicate with the gNB via the N3 interface by using the network connection _A620 and with the SMF via the N4 interface. It can communicate, it can communicate with the DN via the N6 interface, and it can communicate with other UPFs via the N9 interface.
  • the storage unit_B740 is a functional unit for storing programs, user data, control information, etc. required for each operation of UPF.
  • the UPF acts as an anchor point for intra-RAT mobility or inter-RAT mobility, as an external PDU session point for interconnecting the DN (ie, as a gateway between the DN and the core network_B).
  • Data forwarding function ), packet routing and forwarding function, ULCL (Uplink Classifier) function that supports routing of multiple traffic flows to one DN, and multi-homed PDU session support.
  • It has a branching point function, a QoS (Quality of Service) processing function for userplane, a function for verifying uplink traffic, a function for buffering downlink packets, and a function for triggering downlink data notification (Downlink Data Notification).
  • QoS Quality of Service
  • the UPF may also be a gateway for IP communication and / or non-IP communication. Further, the UPF may have a function of transferring IP communication, or may have a function of converting non-IP communication and IP communication. Further, the multiple gateways may be a gateway connecting the core network_B and a single DN. The UPF may have connectivity with other NFs, or may be connected to each device via other NFs.
  • the user plane is user data transmitted and received between the UE and the network.
  • the user plane may be transmitted and received using a PDN connection or a PDU session.
  • the user plane may be transmitted and received using the LTE-Uu interface and / or the S1-U interface and / or the S5 interface and / or the S8 interface and / or the SGi interface.
  • the user plane may be transmitted and received via the interface between the UE and NG RAN and / or the N3 interface and / or the N9 interface and / or the N6 interface.
  • the user plane may be expressed as a U-Plane.
  • control plane is a control message sent and received to control the communication of the UE.
  • the control plane may be transmitted and received using a NAS (Non-Access-Stratum) signaling connection between the UE and the MME.
  • NAS Non-Access-Stratum
  • the control plane may be transmitted / received using the LTE-Uu interface and the S1-MME interface.
  • 5GS the control plane may be transmitted / received using the interface between the UE and NG RAN, and the N2 interface.
  • the control plane may be expressed as a control plane or a C-Plane.
  • the U-Plane (User Plane; UP) may be a communication path for transmitting and receiving user data, and may be composed of a plurality of bearers.
  • the C-Plane (Control Plane; CP) may be a communication path for transmitting and receiving control messages, and may be composed of a plurality of bearers.
  • the network refers to at least a part of the access network_B, core network_B, and DN. Further, one or more devices included in at least a part of the access network_B, the core network_B, and the DN may be referred to as a network or a network device. That is, the fact that the network performs transmission / reception and / or processing of messages may mean that devices (network devices and / or control devices) in the network execute message transmission / reception and / or processing. .. Conversely, the fact that a device in the network performs transmission / reception and / or processing of a message may mean that the network executes transmission / reception and / or processing of a message.
  • NSSF Network Slice Selection Function
  • NF Network Slice Selection Function
  • NWDAF Network Data Analytics Function
  • NF Network Data Analytics Function
  • AF Application Function
  • PCF Policy Control Function
  • Policy Control Function may be an NF having a function of determining a policy for controlling the behavior of the network.
  • the NRF Network Repository Function
  • the NRF may be an NF having a service discovery function.
  • the NRF may be an NF having a function of providing information on the discovered NF when receiving a discovery request of another NF from one NF.
  • SM session management
  • NAS Non-Access-Stratum
  • PDU session modification PDU session modification
  • PDU session modification command PDU session modification command
  • PDU session modification completion message PDU session modification complete
  • PDU session change command rejection PDU session modification command reject
  • PDU session modification rejection PDU session modification reject message
  • PDU session release request message PDU session release reject message
  • PDU session release command message PDU session release complete (PDU session release complete)
  • PDU session release complete PDU session release complete
  • the procedure for SM or SM procedure includes PDU session establishment procedure (PDU session establishment procedure), PDU session modification procedure (PDU session modification procedure), and PDU session release procedure (UE-requested PDU session release procedure). It may be.
  • each procedure may be a procedure started from UE or a procedure started from NW.
  • the MM (Mobility management) message may be a NAS message used for the procedure for MM, and may be a control message sent / received between UE_A10 and AMF.
  • the MM messages include a Registration request message, a Registration acceptance message, a Registration reject message, a De-registration request message, and a De-registration accept message.
  • Messages, configuration update command messages, configuration update complete messages, service request messages, service accept messages, service reject messages, notifications Messages, Notification response messages, etc. may be included.
  • the procedure for MM or MM procedure is registration procedure (Registration procedure), deregistration procedure (De-registration procedure), generic UE configuration update procedure, authentication / approval procedure, service request procedure ( Service request procedure), paging procedure (Paging procedure), notification procedure (Notification procedure) may be included.
  • the 5GS (5G System) service may be a connection service provided using the core network_B190. Further, the 5GS service may be a service different from the EPS service or a service similar to the EPS service.
  • non5GS service may be a service other than the 5GS service, and may include an EPS service and / or a non-EPS service.
  • the PDN (Packet Data Network) type indicates the type of PDN connection, and includes IPv4, IPv6, IPv4v6, and non-IP.
  • IPv4 When IPv4 is specified, it indicates that data is sent and received using IPv4.
  • IPv6 When IPv6 is specified, it indicates that data is sent and received using IPv6.
  • IPv4v6 When IPv6 is specified, it indicates that data is sent and received using IPv4 or IPv6.
  • non-IP it indicates that communication is performed by a communication method other than IP, not communication using IP.
  • a PDU (Protocol Data Unit / Packet Data Unit) session can be defined as a relationship between a DN that provides a PDU connectivity service and a UE, but it is established between the UE and an external gateway. It may be connectivity.
  • the UE can send and receive user data to and from the DN using the PDU session.
  • the external gateway may be UPF, SCEF, or the like.
  • the UE can use the PDU session to send and receive user data to and from devices such as application servers located on the DN.
  • each device may manage one or more identification information in association with each PDU session.
  • these identification information may include one or more of DNN, QoS rule, PDU session type, application identification information, NSI identification information, and access network identification information, and further includes other information. You may. Further, when a plurality of PDU sessions are established, the identification information associated with the PDU session may have the same content or different contents.
  • DNN Data Network Name
  • DNN may be identification information that identifies the core network and / or the external network such as DN.
  • DNN can also be used as information for selecting a gateway such as PGW / UPF to connect the core network B190.
  • the DNN may correspond to an APN (Access Point Name).
  • the PDU (Protocol Data Unit / Packet Data Unit) session type indicates the type of PDU session, and includes IPv4, IPv6, Ethernet, and Unstructured.
  • IPv4 When IPv4 is specified, it indicates that data is sent and received using IPv4.
  • IPv6 When IPv6 is specified, it indicates that data is sent and received using IPv6. If Ethernet is specified, it indicates that Ethernet frames will be sent and received. Further, Ethernet may indicate that communication using IP is not performed.
  • Unstructured it indicates that data is sent / received to the application server etc. in the DN by using the point-to-point (P2P) tunneling technology.
  • P2P point-to-point
  • the PDU session type may include an IP in addition to the above. IP can be specified if the UE can use both IPv4 and IPv6.
  • PLMN Public land mobile network
  • PLMN is a communication network that provides mobile wireless communication services.
  • PLMN is a network managed by an operator who is a telecommunications carrier, and the operator can be identified by the PLMN ID.
  • the PLMN that matches the MCC (Mobile Country Code) and MNC (Mobile Network Code) of the IMSI (International Mobile Subscriber Identity) of the UE may be Home PLMN (HPLMN).
  • the UE may have an Equivalent HPLMN list for identifying one or more EPLMNs (Equivalent HPLMNs) in the USIM.
  • the PLMN different from HPLMN and / or EPLMN may be VPLMN (Visited PLMN).
  • the PLMN successfully registered by the UE may be an RPLMN (Registered PLMN).
  • the tracking area is a single or multiple range that can be represented by the location information of UE_A10 managed by the core network.
  • the tracking area may be composed of a plurality of cells. Further, the tracking area may be a range in which a control message such as paging is broadcast, or a range in which UE_A10 can move without performing a handover procedure. Further, the tracking area may be a routing area, a location area, or the same as these.
  • the tracking area may be TA (Tracking Area).
  • the tracking area may be identified by a TAI (Tracking Area Identity) composed of TAC (Tracking area code) and PLMN.
  • the registration area (Registration area or registration area) is a set of one or more TAs assigned to the UE by AMF.
  • UE_A10 may be able to move without transmitting and receiving a signal for updating the tracking area while moving within one or a plurality of TAs included in the registration area.
  • the registration area may be a group of information indicating an area where UE_A10 can move without executing the tracking area update procedure.
  • the registration area may be identified by a TAI list composed of one or more TAIs.
  • the UE ID is information for identifying the UE.
  • the UE ID is SUCI (SUbscription Concealed Identifier), SUPI (Subscription Permanent Identifier), GUTI (Globally Unique Temporary Identifier), IMEI (International Mobile Subscriber Identity), or IMEISV (IMEI Software Version), or , TMSI (Temporary Mobile Subscriber Identity) may be used.
  • the UE ID may be other information set in the application or network. Further, the UE ID may be information for identifying the user.
  • UAV Unmanned Aerial Vehicle
  • the UAV may be associated with the UAV controller. Further, the UAV may be associated with the UAV controller and managed by the core network device and / or the UTM. Further, when the UAV is managed in association with the UAV controller, it may be managed by the core network device and / or the UTM as a UAS.
  • the UAV may manage its own information (identification information, IP address, location information, etc.) in the core network device and / or the UTM.
  • the UAV may also be a UE.
  • UAV controller Unmanned Aerial Vehicle controller
  • the UAV controller may be associated with the UAV. Further, the UAV controller may be associated with the UAV and managed by the core network device and / or the UTM. Further, when the UAV controller is managed in association with the UAV, it may be managed by the core network device and / or the UTM as a UAS.
  • the UAV controller may manage its own information (identification information, IP address, location information, etc.) in the core network device and / or UTM. Further, the UAV controller may be a UE.
  • the UAV controller may be expressed as UAC or UAV-C.
  • UAS Unmanned Aerial System
  • UAV Unmanned Aerial System
  • the UAS may be managed by the core network device and / or the UTM.
  • the UAS may be composed of one UAV and one UAV controller.
  • UAS Unmanned Aerial System
  • the related function may include a C2 (command and control) link.
  • the C2 (command and control) link may be a link between the UAV and the control device, or may be a link between the UAV and the network.
  • the C2 link may be a link for remote identification.
  • UTM Unmanned Aerial System Traffic Management
  • the UTM may be a device in the core network or a device in the DN.
  • the UTM may also be a device for autonomously maneuvering the UAV.
  • the UTM may have a function for managing UAV and / or UAV controller identification information, IP address, location information, etc., and manage UAV and / or UAV controller information other than the above. It may have a function to do so.
  • the UTM may be managed as a UAS by associating the UAV with the UAV controller.
  • the UTM may also send information to the core network device to request network services.
  • the UTM may be a device that provides one or more functions and services for managing the range of automatic vehicle driving. Further, the UTM may be a device having a USS function. UTM may be expressed as UTM / USS and / or USS / UTM.
  • the USS Unmanned Aerial System Service Supplier
  • the USS may be a device in the UTM.
  • the USS may be a device provided in the UTM.
  • the function that UTM can execute may be the function that USS can execute.
  • the behavior that UTM can execute may be read as the behavior that USS can execute. When it is expressed that UTM performs processing, it may be read as USS processing.
  • An Always-on PDU session is a PDU session in which the user plane resource must be activated each time the UE transitions from the 5GMM-IDLE state to the 5GMM-CONNECTED state.
  • the UE can request the core network and / or the core network device to establish a PDU session as an Always-on PDU session based on the instruction from the upper layer.
  • the core network and / or the core network device determines whether a PDU session can be established as an Always-on PDU session.
  • the establishment of an Always-on PDU session may mean the establishment of a PDU session for C2 communication.
  • establishing an Always-on PDU session may mean establishing a PDU session that handles a QoS flow for C2 communication.
  • the 5GMM-IDLE state may be the CM-IDLE state.
  • the 5GMM-CONNECTED state may be the CM-CONNECTED state.
  • the core network device that determines whether or not a PDU session can be established as an Always-on PDU session may be an SMF.
  • Command and Control (C2) communication is a user plane communication path for delivering a message containing commands and control information for operating the UAV from the UAV controller or UTM to the UAV.
  • the two communications may be a user plane channel for reporting telemetry data from the UAV to the UAV controller or UTM.
  • the C2 communication may be a user plane communication path for delivering a message including commands and control information for operating the UAV from the UAV controller to the UAV via the UTM.
  • C2 communication may be a communication path realized by a PDU session.
  • the PDU session for C2 communication may be realized by Always-on PDU session.
  • establishing a PDU session for C2 communication may mean establishing an Always-on PDU session.
  • establishing a PDU session that handles the QoS flow for C2 communication may mean establishing an Always-on PDU session.
  • the first identification information is information that requires the establishment of a PDU session as an Always-on PDU session.
  • the first identification information may be information indicating whether or not it is required to establish a PDU session as an Always-on PDU session. Further, the first identification information may be an Always-on PDU session requested information element.
  • the first identification information may be information indicating whether or not to request the establishment of an Always-on PDU session.
  • the first identification information may be information indicating that the establishment of an Always-on PDU session is requested.
  • the first identification information may be information indicating that the establishment of the Always-on PDU session is not required.
  • the establishment of an Always-on PDU session may mean the establishment of a PDU session for C2 communication. Further, establishing an Always-on PDU session may mean establishing a PDU session that handles a QoS flow for C2 communication.
  • the second identification information is information indicating that a PDU session is established as an Always-on PDU session.
  • the second identification information may be information indicating whether or not to establish a PDU session as an Always-on PDU session. Further, the second identification information may be information indicating whether or not the establishment of the Always-on PDU session is permitted.
  • the second identification information may be an Always-on PDU session indication information element.
  • the second identification information may be information indicating whether or not an Always-on PDU session is established.
  • the second identification information may be information indicating whether or not the Always-on PDU session is established.
  • the second identification information may be information indicating that it is necessary to establish an Always-on PDU session.
  • the second identification information may be information indicating that the establishment of the Always-on PDU session is not permitted.
  • the establishment of an Always-on PDU session may mean the establishment of a PDU session for C2 communication. Further, establishing an Always-on PDU session may mean establishing a PDU session that handles a QoS flow for C2 communication.
  • the tenth identification information is the identification information of the UAV controller.
  • the tenth identification information may be the identification information of the new UAV controller. Further, the tenth identification information may be different from the identification information of the UAV controller stored in the UAV. On the contrary, the tenth identification information may be the same identification information as the identification information of the UAV controller stored in the UAV.
  • the tenth identification information may be information associated with the eleventh identification information.
  • the UAV controller identified by the tenth identification information may be a UAV controller to which the IP address indicated by the eleventh identification information is assigned.
  • the UAV controller may be a UAV controller associated with the UAV. More specifically, the UAV controller may be a UAV controller associated with a UAV that has received the tenth identification information and / or the eleventh identification information.
  • the eleventh identification information is the IP address of the UAV controller.
  • the eleventh identification information may be the IP address of the new UAV controller. Further, the eleventh identification information may be different from the IP address of the UAV controller stored in the UAV. On the contrary, the eleventh identification information may be the same identification information as the IP address of the UAV controller stored in the UAV.
  • the eleventh identification information may be information associated with the tenth identification information.
  • the IP address indicated by the eleventh identification information may be the IP address of the UAV controller identified by the tenth identification information.
  • the UAV controller may be a UAV controller associated with the UAV. More specifically, the UAV controller may be a UAV controller associated with a UAV that has received the tenth identification information and / or the eleventh identification information.
  • the twelfth identification information is UAV identification information.
  • the twelfth identification information may be the identification information of the new UAV. Further, the twelfth identification information may be different from the UAV identification information stored in the UAV controller. On the contrary, the twelfth identification information may be the same identification information as the UAV identification information stored in the UAV controller.
  • the twelfth identification information may be information associated with the thirteenth identification information.
  • the UAV identified by the twelfth identification information may be a UAV to which the IP address indicated by the thirteenth identification information is assigned.
  • the UAV may be a UAV associated with the UAV controller. More specifically, the UAV may be a UAV associated with a UAV controller that has received a twelfth identification information and / or a thirteenth identification information.
  • the thirteenth identification information is the IP address of the UAV.
  • the thirteenth identification information may be the IP address of the new UAV. Further, the thirteenth identification information may be different from the UAV IP address stored in the UAV controller. On the contrary, the thirteenth identification information may be the same identification information as the IP address of the UAV stored in the UAV controller.
  • the thirteenth identification information may be information associated with the twelfth identification information.
  • the IP address indicated by the thirteenth identification information may be the IP address of the UAV identified by the twelfth identification information.
  • the UAV may be a UAV associated with the UAV controller. More specifically, the UAV may be a UAV associated with a UAV controller that has received a twelfth identification information and / or a thirteenth identification information.
  • the 14th identification information is information indicating whether or not a PDU session is established as an Always-on PDU session.
  • the 14th identification information may be the same information as the 2nd identification information.
  • the 14th identification information may be information indicating whether or not the established PDU session is treated as an Always-on PDU session. Further, the 14th identification information may be information indicating whether or not the established PDU session is reestablished as an Always-on PDU session.
  • the content indicated by the 14th identification information may be the same as the information indicated by the second identification information, or may be different from the information indicated by the second identification information.
  • the 14th identification information indicates that an Always-on PDU session needs to be established. You may. Further, if the second identification information indicates that the establishment of an Always-on PDU session is not permitted, the 14th identification information indicates that the establishment of an Always-on PDU session is not permitted. May be good.
  • the 14th identifier indicates that the Always-on PDU session is not allowed to be established. May be good. Further, if the second identification information indicates that the establishment of an Always-on PDU session is not permitted, the 14th identification information may indicate that the establishment of an Always-on PDU session is required. good.
  • the establishment of an Always-on PDU session may mean the establishment of a PDU session for C2 communication. Further, establishing an Always-on PDU session may mean establishing a PDU session that handles a QoS flow for C2 communication.
  • the 20th identification information is information indicating one or more reason values (Cause Value) indicating the reason why the PDU session change procedure and / or the PDU session release procedure is rejected.
  • the reason value may be information indicating that the UE is in flight, or may be information indicating a reason value indicating a refusal other than that the UE is in flight.
  • HSS and UDM, PCF and PCRF, SMF and PGW-C, and UPF and PGW-U have the same device / function (that is, the same).
  • the case where it is configured as physical hardware, the same logical hardware, or the same software) will be described as an example. However, the content described in this embodiment is also applicable when they are configured as different devices / functions (ie, different physical hardware, or different logical hardware, or different software). be.
  • data may be transmitted / received directly between them, data may be transmitted / received via the N26 interface between AMF and MME, or data may be transmitted / received via UE.
  • the communication procedure is also referred to as this procedure, and this procedure includes a registration procedure (Registration procedure), a UE-led PDU session establishment procedure (PDU session establishment procedure), and a session management procedure. Details of the registration procedure, PDU session establishment procedure, and session management procedure will be described later.
  • Registration procedure Registration procedure
  • PDU session establishment procedure UE-led PDU session establishment procedure
  • session management procedure Details of the registration procedure, PDU session establishment procedure, and session management procedure will be described later.
  • the UE transitions to the state registered in the network (RM-REGISTERED state). Then, by each device performing the PDU session establishment procedure (S902), the UE establishes a PDU session with the DN that provides the PDU connection service via the core network_B190, and each device establishes a PDU session. Transition to the first state (S904). It is assumed that this PDU session is established via the access network, UPF_A235, but it is not limited to this. That is, there may be a UPF (UPF_C239) different from UPF_A235 between UPF_A235 and the access network.
  • UPF_C239 UPF
  • each device in the first state may execute the session management procedure at any time (S906).
  • the session management procedure may be a network-led session management procedure or a UE-led session management procedure.
  • each device may execute the session management procedure multiple times. For example, each device may execute a second session management procedure after executing the first session management procedure.
  • the first session management procedure may be a network-led session management procedure or a UE-led session management procedure.
  • the second session management procedure may be a network-led session management procedure or a UE-led session management procedure.
  • the first session management procedure and the second session management procedure may be the same type of procedure or different types of procedures.
  • each device may exchange various capability information and / or various request information of each device in the registration procedure and / or the PDU session establishment procedure and / or the network-led session management procedure.
  • the exchange of various information and / or negotiation of various requests is performed in the PDU session establishment procedure and / or the network-led session management procedure. It may or may not be carried out at.
  • each device does not exchange various information and / or negotiate various requests in the registration procedure, exchange various information and / or negotiate various requests in the PDU session establishment procedure and / or network-led session. It may be carried out by the management procedure.
  • each device exchanges various information and / or negotiates various requests in the registration procedure, but exchanges various information and / or negotiates various requests in the PDU session establishment procedure and / or network-led session management. It may be carried out by the procedure.
  • each device may execute the PDU session establishment procedure in the registration procedure or after the registration procedure is completed. Also, if the PDU session establishment procedure is performed during the registration procedure, the PDU session establishment request message may be included in the registration request message and sent / received, and the PDU session establishment acceptance message may be included in the registration acceptance message and sent / received. The PDU session establishment completion message may be included in the registration completion message and sent / received, and the PDU session establishment rejection message may be included in the registration rejection message and sent / received. Further, when the PDU session establishment procedure is executed in the registration procedure, each device may establish a PDU session based on the completion of the registration procedure, or the PDU session is established between the devices. You may make a transition.
  • each device involved in this procedure sends and receives one or more identification information included in each control message by transmitting and receiving each control message described in this procedure, and stores each transmitted / received identification information as a context. May be good.
  • FIG 11 shows the UAV communication mode in this procedure.
  • the UAV may be managed by the core network device and / or the UTM in association with the UAV controller. Further, when the UAV is managed in association with the UAV controller, it may be managed by the core network device and / or the UTM as a UAS.
  • the UAV is connected to the first 3GPP PLMN (S1400), and the UAV controller is connected to the second 3GPP PLMN (S1402).
  • the UTM is connected to the first 3GPPPLMN and / or the second 3GPPPLMN (S1406) (S1408).
  • Communication between the UAV and the first 3GPP PLMN may be performed using the UAV1 interface (S1400). Further, communication between the UAV controller and the second 3GPP PLMN may also be performed using the UAV1 interface (S1402). Further, communication between the UTM and the first 3GPPPLMN and / or the second 3GPPPLMN may be performed using the UAV6 interface.
  • the UAV and UTM may communicate via the first 3GPP PLMN (S1410). Furthermore, the UAV controller and UTM may communicate via the second 3GPP PLMN (S1412).
  • Communication between UAV and UTM may be performed using the UAV9 interface (S1410). Furthermore, communication between the UAV controller and UTM may also be performed using the UAV9 interface (S1412).
  • the UAV and the UAV controller may communicate with each other between the UAV and the UAV controller.
  • the UAV and the UAV controller may communicate with each other via the first 3GPPPLMN and the second 3GPPPLMN (S1404) without going through the UTM, or the first 3GPPPLMN.
  • the UAV and the UAV controller may communicate with each other via the first 3GPPPLMN and the second 3GPPPLMN (S1404) without going through the UTM, or the first 3GPPPLMN.
  • And may communicate via the UTM and the second 3GPP PLMN (S1410) (S1412).
  • communication between the UAV and the UAV controller via the first 3GPPPLMN and the second 3GPPPLMN without going through the UTM may be performed using the UAV3 interface. Further, communication between the UAV and the UAV controller via the first 3GPPPLMN, the UTM, and the second 3GPPPLMN may be performed using the UAV9 interface.
  • the UAV1 interface may be an interface that connects the UAV and / or the UAV controller and the 3GPP PLMN.
  • the UAV3 interface may be an interface for connecting the UAV and the UAV controller.
  • the UAV6 interface may be an interface for connecting UTM and 3GPP PLMN.
  • the UAV9 interface may be an interface for connecting the UAV and / or the UAV controller and the UTM.
  • first 3GPPPLMN and the second 3GPPPLMN may be communication networks that provide mobile wireless communication services.
  • the first 3GPP PLMN and the second 3GPP PLMN may be a communication network composed of an access network and / or a core network.
  • the first 3GPP PLMN and the second 3GPP PLMN may be simply referred to as PLMN.
  • the first 3GPP PLMN and the second 3GPP PLMN may be the same PLMN or different PLMNs.
  • the PLMN connected to the UAV and the PLMN connected to the UAV controller may be the same PLMN.
  • the first 3GPP PLMN and the second 3GPP PLMN described above may be the same PLMN.
  • the UAV, the UAV controller, and the UTM may be connected to the same PLMN.
  • the communication between the first 3GPP PLMN and the second 3GPP PLMN may be communication within the same PLMN.
  • the communication between the UAV and the UAV controller (S1404), which does not go through the UTM may be a return communication within a single PLMN.
  • the registration procedure is a procedure for the UE to take the initiative in registering with the access network_B and / or the core network_B and / or the DN.
  • the UE can execute this procedure at any time, for example, when the power is turned on, as long as it is not registered in the network. In other words, the UE can start this procedure at any time if it is in the unregistered state (5GMM-DEREGISTERED state).
  • each device can transition to the registration state (5GMM-REGISTEDED state) based on the completion of the registration procedure.
  • each registration state may be managed by each device for each access. Specifically, each device may independently manage the registration status (registered or unregistered status) for 3GPP access and the registration status for non-3GPP access.
  • the registration procedure updates the location registration information of the UE in the network and / or periodically notifies the network of the status of the UE from the UE and / or updates certain parameters about the UE in the network. It may be the procedure of.
  • the UE may start the registration procedure when it has mobility across TAs. In other words, the UE may initiate the registration process when it moves to a TA that is different from the TA shown in the TA list it holds. In addition, the UE may initiate the registration process when the context of each device needs to be updated due to disconnection or invalidation of the PDU session. In addition, the UE may initiate the registration process if there is a change in capability information and / or preferences regarding the establishment of the UE's PDU session. In addition, the UE may initiate the registration process on a regular basis. In addition, the UE may initiate the registration procedure based on the completion of the registration procedure, the completion of the PDU session establishment procedure, or the information received from the network in each procedure. The UE is not limited to these, and can execute the registration procedure at any timing.
  • the procedure for transitioning from the above-mentioned UE not registered in the network (unregistered state) to the registered state (registered state) is the initial registration procedure or registration for initial registration. It may be a procedure (registration procedure for initial registration).
  • the registration procedure executed while the UE is registered in the network (registration state) is the registration procedure (registration procedure for mobility and periodic registration update) for movement and periodic registration renewal, or movement and regular registration. It may be a registration procedure (mobility and periodic registration procedure).
  • the UE starts the registration procedure by sending a registration request message to AMF (S600) (S602) (S604). Specifically, the UE sends an RRC message including a registration request message to a base station device (also referred to as 5GAN or gNB) (S600).
  • the registration request message is a NAS message sent and received on the N1 interface.
  • the RRC message may be a control message transmitted / received between the UE and the base station device.
  • NAS messages are processed in the NAS layer, and RRC messages are processed in the RRC layer.
  • the NAS layer is a layer higher than the RRC layer.
  • the UE may send the registration request message and / or the RRC message including the identification information indicating the type of this procedure.
  • the identification information indicating the type of this procedure may be 5GS registration type IE (Information Element), and this procedure is for initial registration, for updating registration information due to movement, or for regular registration information. It may be information indicating that the registration procedure is for renewal or emergency registration.
  • the UE may include the UE capability information in the registration request message in order to notify the network of the functions supported by the UE.
  • the capability information of the UE may be 5GMM capability IE of 5GS.
  • the UE uses these identification information for control messages different from these, for example, layers lower than the RRC layer (for example, MAC (Medium Access Control) layer, RLC (Radio Link Control) layer, PDCP (Packet Data Convergence Protocol). ) Layer, SDAP (Service Data Adaptation Protocol) layer, etc.) may be included in the control message and sent.
  • RRC layer for example, MAC (Medium Access Control) layer, RLC (Radio Link Control) layer, PDCP (Packet Data Convergence Protocol). ) Layer, SDAP (Service Data Adaptation Protocol) layer, etc.
  • the UE may indicate that the UE supports each function, may indicate a request of the UE, or may indicate both of them.
  • the UE may send, for example, the UE ID and / or the PLMN ID and / or the AMF identification information in the registration request message and / or the RRC message.
  • the AMF identification information may be AMF or information that identifies a set of AMF, for example, 5G-S-TMSI (5G S-Temporary Mobile Subscription Identifier) or GUAMI (Globally Unique AMF Identifier). It's okay.
  • the base station device When the base station device receives the RRC message including the registration request message, it selects the AMF to which the registration request message is forwarded (S602). The base station device extracts the registration request message from the received RRC message and forwards the registration request message to the selected AMF (S604).
  • the AMF When the AMF receives the registration request message, it can execute the first condition determination.
  • the first condition determination is for determining whether or not the network accepts the UE's request. If the AMF determines that the first condition determination is true, the procedure from S610 to S612 may be executed. Further, if the AMF determines that the first condition determination is false, the AMF may execute the procedure of S610.
  • the first condition determination may be executed by a network function (also referred to as NF) other than AMF.
  • the NF may be, for example, NSSF (Network Slice Selection Function), NWDAF (Network Data Analytics Function), or PCF (Policy Control Function).
  • NWDAF Network Data Analytics Function
  • PCF Policy Control Function
  • the AMF will use at least one of the information required to make the first condition determination for that NF, specifically, the information received from the UE. Part may be provided (S606).
  • the NF determines the truth of the first condition determination based on the information received from the AMF, the information including the result of the first condition determination (that is, true or false) is transmitted to the AMF. You may tell.
  • the AMF may determine the identification information and / or the control message to be transmitted to the UE based on the result of the first condition determination received from the NF.
  • control message sent / received by the S610 may be a registration acceptance message, and if the first condition determination is false, the control message sent / received by the S610 may be used.
  • the message may be a Registration reject message.
  • the first condition determination is the reception of the registration request message and / or each identification information contained in the registration request message, and / or the subscriber information, and / or the network capability information, and / or the operator policy, and It may be executed based on / or the state of the network and / or the user's registration information and / or the context held by AMF.
  • the first condition determination may be determined to be true, and if the network does not allow the UE request, the first condition determination may be determined to be false. Also, if the network to which the UE is registered and / or the devices in the network support the functions required by the UE, the first condition determination may be determined to be true, and the functions required by the UE are supported. If not, the first condition determination may be determined to be false. Further, if the transmitted / received identification information is permitted, the first conditional determination may be determined to be true, and if the transmitted / received identification information is not permitted, the first conditional determination may be determined to be false.
  • AMF also receives each identification information and / or subscriber information and / or network capability information, and / or operator policy, and / or network status, and / or user registration information, and / or.
  • the registration acceptance message may be sent to indicate that the UE request has been accepted, or the registration refusal message has been sent to indicate that the UE request has been rejected, based on the context held by the AMF. May be shown.
  • the UE receives a control message (registration acceptance message or registration refusal message) via the base station device (S610).
  • a control message registration acceptance message or registration refusal message
  • the UE recognizes that the UE's request by the registration request message has been accepted and the contents of various identification information contained in the registration acceptance message by receiving the registration acceptance message. can do.
  • the control message is a registration refusal message
  • the UE receives the registration refusal message, so that the UE's request by the registration request message is rejected, and the contents of various identification information included in the registration refusal message. Can be recognized.
  • the UE can send a registration completion message to the AMF via the first base station device as a response message to the registration acceptance message (S612).
  • the registration completion message is a NAS message transmitted / received on the N1 interface, but may be included in the RRC message and transmitted / received between the UE and the first base station device.
  • AMF receives the registration completion message via the first base station device (S612).
  • each device completes this procedure based on the transmission / reception of the registration acceptance message and / or the registration completion message.
  • each device may complete the registration procedure based on the transmission / reception of the registration refusal message.
  • each device may transition or maintain the state in which the UE is registered in the network (RM_REGISTERED state or 5GMM-REGISTERED state) based on the transmission / reception of the registration acceptance message and / or the registration completion message. , Transition or maintenance to the state where the UE is not registered in the network (RM_DEREGISTERED state, or 5GMM-DEREGISTERED state) on the access that received the registration refusal message to the current PLMN based on the transmission and reception of the registration refusal message. You may. Further, the transition to each state of each device may be performed based on the transmission / reception of the registration completion message or the completion of the registration procedure.
  • each device may perform processing based on the information transmitted / received in the registration procedure based on the completion of the registration procedure. For example, when sending and receiving information indicating that a part of the UE's request has been rejected, the reason why the UE's request has been rejected may be recognized. Further, each device may perform this procedure again based on the reason why the request of the UE is rejected, or may perform the registration procedure for the core network_A or another cell.
  • the UE may store the identification information received with the registration acceptance message and / or the registration refusal message based on the completion of the registration procedure, and may recognize the network decision.
  • the registration procedure described in this chapter may be a registration procedure for initial registration, or may be a registration procedure for movement and regular registration.
  • PDU session establishment procedure The behavior of each device when the UE executes the PDU session establishment procedure will be described with reference to FIG. 7. In this chapter, the PDU session establishment procedure may be referred to simply as this procedure or the PDU session establishment procedure.
  • the UE sends a PDU session establishment request message to the SMF and starts the PDU session establishment procedure. Then, the SMF receives the PDU session establishment request message from the UE.
  • the UE starts the PDU session establishment procedure by sending a NAS message including the N1SM container including the PDU session establishment request message to the AMF via the access network (S800).
  • the NAS message is, for example, a message transmitted via the N1 interface and may be an uplink NAS transport (UL NAS TRANSPORT) message.
  • the access network is 3GPP access or non-3GPP access, and may include a base station device. That is, the UE sends a NAS message to the AMF via the base station device.
  • the UE notifies the network side that the UE requests by transmitting the PDU session establishment request message and / or the N1SM container and / or the NAS message including the first identification information.
  • the first identification information may be as described in Chapter 2.7.
  • the UE may send the PDU session establishment request message and / or the N1SM container and / or the NAS message including the first identification information.
  • the UE may send the PDU session establishment request message and / or the N1SM container and / or the NAS message including the first identification information. good.
  • the UE when establishing a PDU session that supports a QoS flow for C2 communication, the UE will include the first identification information in the PDU session establishment request message and / or the N1 SM container and / or NAS message. You may send it.
  • the UE when the UE requests the establishment of a PDU session that supports C2 communication, it may request the establishment of an Always-on PDU session. In other words, if the UE requests the establishment of a PDU session that supports the QoS flow for C2 communication, it may request the establishment of an Always-on PDU session.
  • the UE may send the PDU session establishment request message and / or the N1SM container and / or the NAS message including the first identification information. ..
  • the UE when the UE establishes a PDU session that provides a QoS flow for C2 communication, it puts the first identification information in the PDU session establishment request message and / or the N1SM container and / or NAS message. It may be included and sent.
  • the UE when the UE requests the establishment of a PDU session that provides C2 communication, it may request the establishment of an Always-on PDU session. In other words, if the UE requests the establishment of a PDU session that provides a QoS flow for C2 communication, it may request the establishment of an Always-on PDU session.
  • the UE may send the PDU session establishment request message and / or the N1SM container and / or the NAS message including the first identification information. ..
  • the UE determines whether or not to transmit the first identification information to the network, the capability information of the UE and / or the UE policy, and / or the state of the UE, and / or the registration information of the user, and / or the UE. It may be decided based on the context held by.
  • the UE uses these identification information as a control message different from these, for example, a control message in a layer lower than the NAS layer (for example, RRC layer, MAC layer, RLC layer, PDCP layer, SDAP layer, etc.). It may be included in a control message of a layer higher than the NAS layer (for example, a transport layer, a session layer, a presentation layer, an application layer, etc.) and transmitted.
  • a control message in a layer lower than the NAS layer for example, RRC layer, MAC layer, RLC layer, PDCP layer, SDAP layer, etc.
  • a control message of a layer higher than the NAS layer for example, a transport layer, a session layer, a presentation layer, an application layer, etc.
  • the AMF when the AMF receives the NAS message, it can recognize what the UE is requesting and / or the content of the information (message, container, information) contained in the NAS message.
  • AMF selects SMF as the forwarding destination of at least a part of the information (messages, containers, information) contained in the NAS message received from the UE (S802).
  • AMF may include information (messages, containers, information) contained in NAS messages, and / or subscriber information, and / or network capability information, and / or UE policy, and / or operator policy, and / or.
  • the transfer destination SMF may be selected based on the network status and / or the user's registration information and / or the context held by the AMF.
  • the AMF sends at least a part of the information (message, container, information) contained in the NAS message received from the UE to the selected SMF, for example, via the N11 interface (S804).
  • the SMF receives the information etc. (message, container, information) transmitted from the AMF, what the UE requests and / or the content of the information etc. (message, container, information) received from the AMF. Can be recognized.
  • the SMF may determine the second condition. Further, the second condition determination may be for determining whether or not the network accepts the UE request. If the SMF determines that the second condition determination is true, the procedure (A) in FIG. 7 may be started, and if the second condition determination is determined to be false, the procedure (B) in FIG. 7 may be started. You may start.
  • the second condition determination may be executed by an NF other than SMF.
  • the NF may be, for example, NSSF, NWDAF, PCF, NRF. If an NF other than the SMF makes the second condition determination, the SMF will use at least one of the information required to make the second condition determination for that NF, specifically, the information received from the UE. Department may be provided (S806). Then, when the NF determines the truth of the second condition determination based on the information received from the SMF, the information including the result of the second condition determination (that is, true or false) is transmitted to the SMF. You may tell.
  • the SMF may determine the identification information and / or the control message to be transmitted to the UE based on the result of the second condition determination received from the NF.
  • the second condition determination is information received from AMF (messages, containers, information) and / or subscriber information (subscription information) and / or network capability information, and / or UE policy, and /. Alternatively, it may be executed based on the operator policy and / or the state of the network and / or the user's registration information and / or the context held by the SMF.
  • the second condition determination may be determined to be true, and if the network does not allow the UE request, the second condition determination may be determined to be false. Also, if the network to which the UE is connected and / or the devices in the network support the functions required by the UE, the second condition determination may be determined to be true, and the functions required by the UE are supported. If not, the second condition determination may be determined to be false. Further, if the transmitted / received identification information is permitted, the second condition determination may be determined to be true, and if the transmitted / received identification information is not permitted, the second condition determination may be determined to be false.
  • the truth of the second condition determination is It may be determined based on the above.
  • condition for determining the truth of the second condition determination is not limited to the above-mentioned condition.
  • the SMF may select the UPF for the PDU session to be established and send an N4 session establishment request message to the selected UPF, for example, via the N4 interface (S808).
  • the N4 session establishment request message may contain at least some of the PCC rules received from the PCF.
  • the SMF is the information received from the AMF (messages, containers, information) and / or the information such as the PCC rules received from the PCF, and / or the subscriber information, and / or the network capability information, and /.
  • one or more UPFs may be selected based on the UE policy and / or the operator policy and / or the network status and / or the user's registration information and / or the context held by the SMF.
  • the SMF may send an N4 session establishment request message to each UPF. Here, it is assumed that UPF is selected.
  • the UPF when the UPF receives the N4 session establishment request message (S808), the UPF can recognize the content of the information received from the SMF.
  • the UPF may also send an N4 session establishment response message to the SMF, eg, via the N4 interface, based on the receipt of the N4 session establishment request message (S810).
  • the SMF when the SMF receives the N4 session establishment response message as the response message to the N4 session establishment request message, the SMF can recognize the content of the information received from the UPF.
  • the SMF sends a PDU session establishment acceptance message to the UE based on the reception of the PDU session establishment request message and / or the selection of the UPF and / or the reception of the N4 session establishment response message. Then, the UE receives the PDU session establishment acceptance message from the SMF.
  • the SMF is based on receiving a PDU session establishment request message and / or selecting an UPF and / or receiving an N4 session establishment response message, for example, via an N11 interface, an N1 SM container, and / or an N1 SM container.
  • N2 SM information and / or PDU session ID is sent to AMF (S812).
  • the N1SM container may contain a PDU session establishment acceptance message.
  • the PDU session ID may be included in the PDU session establishment acceptance message.
  • the AMF that receives the N1SM container and / or the N2SM information and / or the PDU session ID sends a NAS message to the UE via the first base station device included in the access network (S814). ) (S816).
  • the NAS message is transmitted, for example, via the N1 interface.
  • the NAS message may be a downlink NAS transport (DL NAS TRANSPORT) message.
  • the AMF sends an N2 PDU session request message to the base station device included in the access network (S814)
  • the base station device that receives the N2 PDU session request message sends the N2 PDU session request message to the UE.
  • Send a NAS message (S816).
  • the N2PDU session request message may include a NAS message and / or N2SM information.
  • the NAS message may also include a PDU session ID and / or an N1SM container.
  • the PDU session establishment acceptance message may be a response message to the PDU session establishment request. Also, the PDU session establishment acceptance message may indicate that the PDU session establishment has been accepted.
  • the SMF and / or AMF are the PDU session establishment acceptance message and / or the N1 SM container and / or the PDU session ID and / or the NAS message, and / or the N2 SM information and / or the N2 PDU session request.
  • the SMF and / or AMF are the PDU session establishment acceptance message and / or the N1 SM container and / or the PDU session ID and / or the NAS message, and / or the N2 SM information and / or the N2 PDU session request.
  • the SMF and / or AMF identify a second identification in the PDU session establishment acceptance message and / or the N1 SM container and / or NAS message, and / or the N2 SM information and / or the N2 PDU session request message. You may send it including information.
  • the second identification information may be as described in Chapter 2.7.
  • the SMF may indicate that the network supports each function by sending these identification information and / or the PDU session establishment acceptance message, and indicate that the UE request has been accepted. It may indicate that the request from the UE is not permitted, or it may indicate information that combines these. Further, when a plurality of identification information is transmitted and received, two or more identification information of these identification information may be configured as one or more identification information.
  • the information indicating the support of each function and the information indicating the request for using each function may be transmitted / received as the same identification information or may be transmitted / received as different identification information.
  • the SMF may send the second identification information by including it in the PDU session establishment acceptance message based on the reception of the first identification information from the UE.
  • the SMF may send the second identification information by including it in the PDU session establishment acceptance message.
  • the SMF may send the PDU session establishment acceptance message including the second identification information.
  • the SMF may send the PDU session establishment acceptance message with a second identification.
  • the SMF may send the PDU session establishment acceptance message including the second identification information.
  • the SMF may send the PDU session establishment acceptance message with the second identification information.
  • the second identification information may be included in the PDU session establishment acceptance message.
  • the second identification information may be included in the PDU session establishment acceptance message.
  • the second identification information may be information indicating that it is necessary to establish an Always-on PDU session.
  • the second identification information may be included in the PDU session establishment acceptance message.
  • the second identification information may be information indicating that the establishment of the Always-on PDU session is not permitted.
  • the Always-on PDU session may be a PDU session that supports C2 communication.
  • the Always-on PDU session may be a PDU session that supports a QoS flow for C2 communication.
  • SMF and / or AMF can notify the UE of the content of these identification information by transmitting at least one of these identification information.
  • identification information should SMF and / or AMF include in the PDU session establishment acceptance message and / or the N1 SM container and / or NAS message, and / or the N2 SM information and / or the N2 PDU session request message?
  • Each received identification information and / or subscriber information and / or network capability information and / or UE policy and / or operator policy and / or network status and / or user registration information, And / or the decision may be made based on the context held by SMF and / or AMF.
  • the UE receives the NAS message via, for example, the N1 interface (S816)
  • the UE's request by the PDU session establishment request message is accepted, and / or the information contained in the NAS message, etc. (message,).
  • the UE is always-on PDU session for which the establishment is accepted based on the reception of the second identification information or the PDU session establishment acceptance message containing the second identification information or the N1SM container or NAS message. You may recognize whether or not it is. In other words, if the UE receives a second identification information, or a PDU session establishment acceptance message or N1SM container or NAS message containing the second identification information, the PDU session for which the establishment was accepted is always-on PDU session. You may recognize whether or not it is.
  • the UE receives the second identification information, or the PDU session establishment acceptance message or N1SM container or NAS message containing the second identification information, and the received second identification information is always-on PDU.
  • the PDU session for which the establishment has been accepted may be recognized as an Always-on PDU session.
  • the UE receives a second identification information, or a PDU session establishment acceptance message or N1SM container or NAS message containing the second identification information, and the received second identification information is always-on PDU session. If it is set to the information indicating that the establishment is not allowed, it may recognize that the PDU session for which the establishment was accepted is not an Always-on PDU session.
  • the Always-on PDU session may be a PDU session that supports C2 communication.
  • the Always-on PDU session may be a PDU session that supports a QoS flow for C2 communication.
  • the SMF transmits the N1 SM container and / or the PDU session ID to the AMF based on the reception of the PDU session establishment request message, for example, via the N11 interface (S818).
  • the N1SM container may contain a PDU session establishment refusal message.
  • the PDU session ID may be included in the PDU session establishment rejection message.
  • the AMF that received the N1SM container and / or the PDU session ID sends a NAS message to the UE via the base station device included in the access network (S820) (S822).
  • the NAS message is transmitted, for example, via the N1 interface.
  • the NAS message may be a downlink NAS transport (DL NAS TRANSPORT) message.
  • the NAS message may also include a PDU session ID and / or an N1SM container.
  • the PDU session establishment refusal message may be a response message to the PDU session establishment request. Also, the PDU session establishment refusal message may indicate that the establishment of the PDU session has been rejected.
  • the SMF and / or AMF sends a PDU session establishment refusal message and / or an N1SM container and / or a PDU session ID and / or a NAS message to request the UE by the PDU session establishment request message. May indicate that was rejected.
  • the SMF may indicate that the request of the UE has been rejected by sending a PDU session establishment refusal message, or may indicate that the request from the UE has not been permitted, and these may be indicated.
  • the combined information may be shown.
  • SMF and / or AMF can notify the UE of the content of these identification information by transmitting at least one of these identification information.
  • identification information should SMF and / or AMF include in the PDU session establishment refusal message and / or N1 SM container and / or NAS message, and / or N2 SM information, and / or N2 PDU session request message?
  • Each received identification information and / or subscriber information and / or network capability information and / or UE policy and / or operator policy and / or network status and / or user registration information, And / or the decision may be made based on the context held by SMF and / or AMF.
  • the UE when the UE receives the NAS message via, for example, the N1 interface (S822), the UE's request by the PDU session establishment request message is rejected, and / or the information contained in the NAS message, etc. (message,). Can recognize the contents of the container (information).
  • Each device may complete this procedure based on the transmission and reception of the PDU session establishment acceptance message. At this time, each device may transition to a state in which it can communicate with the DN using the established PDU session.
  • Each device may complete this procedure based on the transmission / reception of the PDU session establishment acceptance message or the PDU session establishment refusal message. At this time, since each device cannot establish a PDU session, it cannot communicate with the DN if there is no PDU session already established.
  • each process that the UE shown above executes based on the reception of each identification information may be executed during this procedure or after the completion of this procedure, or may be executed based on the completion of this procedure after the completion of this procedure. good.
  • This procedure is a procedure for session management that is executed by the network for the established PDU session.
  • this procedure may be a network-led PDU session change (PDU session modification) procedure and / or a network-led PDU session release (PDU session release) procedure, etc., and is not limited to these. You may perform the session management procedure of.
  • Each device may send and receive a PDU session change message in the network-led PDU session change procedure, and may send and receive a PDU session release message in the network-led PDU session release procedure.
  • the session management request message in this procedure may be a PDU session change command (PDU SESSION MODIFICATION COMMAND) message.
  • the session management request message in this procedure may be a PDU session release command (PDU SESSION RELEASE COMMAND) message.
  • the session management completion message in this procedure may be a PDU session change completion (PDU SESSION MODIFICATION COMPLETE) message.
  • the session management completion message in this procedure may be a PDU session release completion (PDU SESSION RELEASE COMPLETE) message.
  • the UE may be a UAV or a UAV controller.
  • each device in the UE and core network_B190 starts the network-led session management procedure at any time.
  • the device in the core network_B190 may initiate this procedure based on the receipt of the PDU session change request message, or initiate this procedure based on the receipt of the PDU session release request message. May be good. If this procedure is started based on the reception of the PDU session change request message, this procedure may be a network-led PDU session change procedure. Further, if the procedure is initiated based on the receipt of a PDU session release request message, the procedure may be a network-driven PDU session release procedure.
  • the device in the core network_B190 may start this procedure based on the request from the device in the DN or another device in the core network. Specifically, the device in the core network_B190 may initiate this procedure based on a request from the UTM. In other words, the device in core network_B190 may also initiate this procedure when it receives a request from the UTM.
  • the device in the core network_B190 that initiates this procedure may be SMF and / or AMF, and the UE may send and receive messages in this procedure via AMF and / or access network_B. ..
  • the device in the DN may be an AF (Application Function) in the DN.
  • the device in the core network_B190 sends a network-driven session management request message to the UE (S1202) and starts network-driven session management.
  • the UE receives a network-driven session management request message from the device in core network_B190.
  • the device in the core network_B190 may include at least one of the 10th to 14th identification information in the network-driven session management request message, and by including this identification information, the core network. You may indicate a request for _B190.
  • the device in core network_B190 may include the PDU session ID in the network-driven session management request message, or by including the PDU session ID, it can be modified for the PDU session identified by the PDU session ID. May be required to do.
  • the device in the core network_B190 may include the tenth identification information in the network-driven session management request message when the identification information of the UAV controller is changed. Further, the device in the core network_B190 may include the tenth identification information in the network-driven session management request message even if the IP address of the UAV controller is changed.
  • the device in the core network_B190 may include the tenth identification information in the network-driven session management request message when a new UAV controller is assigned.
  • the device in core network_B190 may include the tenth identification in the network-driven session management request message even if a new UAV controller IP address is assigned.
  • the device in the core network_B190 may include the 11th identification information in the network-driven session management request message when the IP address of the UAV controller is changed. Further, the device in the core network_B190 may include the eleventh identification information in the network-driven session management request message even if the identification information of the UAV controller is changed.
  • the device in the core network_B190 may include the 11th identification information in the network-driven session management request message when a new UAV controller IP address is assigned.
  • the device in core network_B190 may include the eleventh identity in the network-driven session management request message even if a new UAV controller is assigned.
  • the device in the core network_B190 may include the twelfth identification information in the network-driven session management request message when the UAV identification information is changed.
  • the device in core network_B190 may include the twelfth identification in the network-driven session management request message even if the UAV's IP address changes.
  • the device in core network_B190 may include the twelfth identification information in the network-driven session management request message when a new UAV is assigned.
  • the device in core network_B190 may include the twelfth identification in the network-driven session management request message even if a new UAV IP address is assigned.
  • the device in the core network_B190 may include the thirteenth identification information in the network-driven session management request message when the IP address of the UAV is changed. Further, the device in the core network_B190 may include the thirteenth identification information in the network-driven session management request message even if the UAV identification information is changed.
  • the device in the core network_B190 may include the thirteenth identification information in the network-driven session management request message when a new UAV IP address is assigned.
  • the device in core network_B190 may include the thirteenth identification in the network-driven session management request message even if a new UAV is assigned.
  • the device in core network_B190 decides to tell the UE whether the PDU session is an Always-on PDU session, it will include the 14th identification in the network-driven session management request message. You may. In addition, the device in core network_B190 may include the 14th identification in the network-driven session management request message if the information on whether the PDU session is an Always-on PDU session changes. ..
  • the device in core network_B190 may include the 14th identification in the network-driven session management request message if the established PDU session needs to be changed to Always-on PDU session. ..
  • the 14th identification information may be information indicating that it is necessary to establish an Always-on PDU session.
  • the 14th identification information will be included in the network-driven session management request message. May be included.
  • the 14th identification information may be information indicating that the establishment of the Always-on PDU session is not permitted.
  • the PDU session ID included in the PDU session change request message may be the PDU session ID of the established PDU session. Furthermore, if this procedure is performed based on a UE-led session management procedure, the PDU session ID included in the PDU session change request message is the PDU included in the PDU session change request message or the PDU session release request message. It may be the same as the session ID.
  • the UE that receives the network-driven session management request message sends a network-driven session management completion message (S1204). Further, the UE may perform the first process (S1206) based on at least one of the 10th to 14th identification information received from the core network_B190, and complete this procedure. .. In addition, the UE may carry out the first process based on the completion of this procedure.
  • the UE may include the PDU session ID in the network-driven session management completion message.
  • the PDU session ID included in the network-driven session management completion message may be the same as the PDU session ID included in the network-driven session management request message.
  • the first process may be a process in which the UE recognizes the matter indicated by the core network_B190, or may be a process in which the UE recognizes the request of the core network_B190. Further, the first process may be a process in which the UE stores the received identification information as a context, or may be a process in which the received identification information is transferred to the upper layer and / or the lower layer. ..
  • the UE may update the UAV controller identification information stored in the UE to the UAV controller identification information indicated by the tenth identification information based on the reception of the tenth identification information. ..
  • the UE may be a UAV.
  • the UAV controller may be a UAV controller associated with the UAV.
  • the UE when the UE receives the tenth identification information, in the first process, the UE updates the UAV controller identification information stored in the UE to the UAV controller identification information indicated by the tenth identification information. You may.
  • the UE deletes the UAV controller identification information stored in the UE in the first process based on the reception of the tenth identification information, and receives the tenth identification as the UAV controller identification information.
  • Information may be stored.
  • the UE deletes the UAV controller identification information stored in the UE, and the received tenth identification information is used as the UAV controller identification information.
  • Information may be stored.
  • the UE may recognize the identification information of the new UAV controller in the first process based on the reception of the tenth identification information. In other words, when the UE receives the tenth identification information, the UE may recognize the identification information of the new UAV controller in the first process.
  • the UE recognizes that the identification information of the old UAV controller is invalid in the first process based on the reception of the tenth identification information, and determines that the identification information of the new UAV controller is valid. You may recognize it. In other words, when the UE receives the tenth identification information, it recognizes that the identification information of the old UAV controller is invalid in the first process, and recognizes that the identification information of the new UAV controller is valid. May be good.
  • the identification information of the new UAV controller may be the information indicated by the received tenth identification information. Further, the identification information of the old UAV controller may be the identification information of the UAV controller stored in the UE.
  • the UE may update the IP address of the UAV controller stored in the UE to the IP address of the UAV controller indicated by the eleventh identification information based on the reception of the eleventh identification information. ..
  • the UE may be a UAV.
  • the UAV controller may be a UAV controller associated with the UAV.
  • the UE when the UE receives the 11th identification information, in the first process, the UE updates the IP address of the UAV controller stored in the UE to the IP address of the UAV controller indicated by the 11th identification information. You may.
  • the UE deletes the IP address of the UAV controller stored in the UE in the first process based on the reception of the eleventh identification information, and receives the 11th identification as the IP address of the UAV controller.
  • Information may be stored.
  • the UE deletes the IP address of the UAV controller stored in the UE, and the received 11th identification is used as the IP address of the UAV controller.
  • Information may be stored.
  • the UE may recognize the IP address of the new UAV controller in the first process based on the reception of the eleventh identification information. In other words, when the UE receives the eleventh identification information, it may recognize the IP address of the new UAV controller in the first process.
  • the UE recognizes that the IP address of the old UAV controller is invalid in the first process based on the reception of the eleventh identification information, and determines that the IP address of the new UAV controller is valid. You may recognize it. In other words, when the UE receives the 11th identification information, it recognizes that the IP address of the old UAV controller is invalid and that the IP address of the new UAV controller is valid in the first process. May be good.
  • the IP address of the new UAV controller may be the information indicated by the received eleventh identification information. Further, the IP address of the old UAV controller may be the IP address of the UAV controller stored in the UE.
  • the UE sets the IP address of the UAV controller identified by the tenth identification information in the first process based on the reception of the tenth identification information and / or the eleventh identification information. It may be updated to the IP address indicated by the identification information.
  • the IP address of the UAV controller identified by the 10th identification information is set to the 11th. It may be updated to the IP address indicated by the identification information.
  • the UE deletes the IP address of the UAV controller identified by the tenth identification information in the first process based on the reception of the tenth identification information and / or the eleventh identification information.
  • the IP address indicated by the 11 identification information may be stored as the IP address of the UAV controller identified by the 10th identification information.
  • the UE when the UE receives the 10th identification information and / or the 11th identification information, in the first process, the UE deletes the IP address of the UAV controller identified by the 10th identification information, and the first The IP address indicated by the 11 identification information may be stored as the IP address of the UAV controller identified by the 10th identification information.
  • the UE may update the UAV identification information stored in the UE to the UAV identification information indicated by the twelfth identification information based on the reception of the twelfth identification information.
  • the UE may be a UAV controller.
  • the UAV may be a UAV associated with the UAV controller.
  • the UE when the UE receives the twelfth identification information, even if the UAV identification information stored by the UE is updated to the UAV identification information indicated by the twelfth identification information in the first process. good.
  • the UE deletes the UAV identification information stored in the UE in the first process, and uses the received twelfth identification information as the UAV identification information. You may remember it. In other words, when the UE receives the twelfth identification information, in the first process, the UAV identification information stored by the UE is deleted, and the received twelfth identification information is used as the UAV identification information. You may remember it.
  • the UE may recognize the new UAV identification information in the first process based on the reception of the twelfth identification information. In other words, if the UE receives the twelfth identification information, it may recognize the new UAV identification information in the first process.
  • the UE recognizes that the old UAV's identification is invalid and the new UAV's identification is valid in the first process, based on the receipt of the twelfth identification. You may. In other words, when the UE receives the twelfth identification information, it may recognize that the old UAV identification information is invalid and the new UAV identification information is valid in the first process. ..
  • the new UAV identification information may be the information indicated by the received 12th identification information. Further, the old UAV identification information may be the UAV identification information stored in the UE.
  • the UE may update the IP address of the UAV stored in the UE to the IP address of the UAV indicated by the thirteenth identification information based on the reception of the thirteenth identification information.
  • the UE may be a UAV controller.
  • the UAV may be a UAV associated with the UAV controller.
  • the UE when the UE receives the thirteenth identification information, even if the UAV IP address stored by the UE is updated to the UAV IP address indicated by the thirteenth identification information in the first process. good.
  • the UE deletes the UAV IP address stored in the UE in the first process based on the reception of the thirteenth identification information, and uses the received thirteenth identification information as the UAV IP address. You may remember it. In other words, when the UE receives the thirteenth identification information, in the first process, the UAV IP address stored by the UE is deleted, and the received thirteenth identification information is used as the UAV IP address. You may remember it.
  • the UE may recognize the IP address of the new UAV in the first process based on the reception of the thirteenth identification information. In other words, the UE may recognize the IP address of the new UAV in the first process when it receives the thirteenth identification information.
  • the UE recognizes that the IP address of the old UAV is invalid and the IP address of the new UAV is valid in the first process based on the receipt of the thirteenth identification information. You may. In other words, when the UE receives the thirteenth identification information, it may recognize that the IP address of the old UAV is invalid and the IP address of the new UAV is valid in the first process. ..
  • the IP address of the new UAV may be the information indicated by the 13th identification information received. Further, the IP address of the old UAV may be the IP address of the UAV stored by the UE.
  • the UE identifies the IP address of the UAV identified by the twelfth identification information in the first process based on the reception of the twelfth identification information and / or the thirteenth identification information. It may be updated to the IP address indicated by the information.
  • the IP address of the UAV identified by the twelfth identification information is identified by the thirteenth identification. It may be updated to the IP address indicated by the information.
  • the UE deletes the IP address of the UAV identified by the twelfth identification information in the first process based on the reception of the twelfth identification information and / or the thirteenth identification information, and the thirteenth.
  • the IP address indicated by the identification information of may be stored as the IP address of the UAV identified by the twelfth identification information.
  • the UE when the UE receives the twelfth identification information and / or the thirteenth identification information, in the first process, the UE deletes the IP address of the UAV identified by the twelfth identification information, and the thirteenth.
  • the IP address indicated by the identification information of may be stored as the IP address of the UAV identified by the twelfth identification information.
  • the UE may recognize whether or not the established PDU session is an Always-on PDU session based on the reception of the 14th identification information. In other words, when the UE receives the 14th identification information, in the first process, the UE may recognize whether or not the established PDU session is an Always-on PDU session.
  • the first In processing when the UE receives the 14th identification information and the received 14th identification information is set to the information indicating that the Always-on PDU session needs to be established, the first In processing, the established and / or modified PDU session may be recognized as an Always-on PDU session.
  • the first process is performed. In, it may be recognized that the established and / or modified PDU session is not an Always-on PDU session.
  • the UE does not receive the 14th identification, it has been established and / or is based on the 2nd identification and / or the 14th identification received during the previously performed procedure. / Or it may recognize whether the modified PDU session is an Always-on PDU session.
  • the UE does not receive the 14th identification information, and the second identification information and / or the 14th identification information received during the previously executed procedure is always-on PDU session.
  • the established and / or modified PDU session may be recognized as an Always-on PDU session in the first process. ..
  • the UE does not receive the 14th identification information, and the second identification information and / or the 14th identification information received during the previously executed procedure is always-on PDU session. If the information is set to indicate that the establishment of is not permitted, the first process recognizes that the established and / or modified PDU session is not an Always-on PDU session. May be good.
  • the Always-on PDU session may be a PDU session that supports C2 communication.
  • the Always-on PDU session may be a PDU session that supports a QoS flow for C2 communication.
  • each device may perform processing based on the identification information transmitted / received in this procedure based on the completion of this procedure.
  • the UE may carry out the first process based on the completion of this procedure, or may complete this procedure after the completion of the first process.
  • each device performs a first network-driven session management procedure based on the completion of the above-mentioned processing and / or transmission / reception of a network-driven session management request message and / or a network-driven session management completion message. Complete.
  • this procedure may be a UE-led PDU session change (PDU session modification) procedure and / or a UE-led PDU session release (PDU session release) procedure, etc., and is not limited to these. You may perform the session management procedure of.
  • each device sends and receives a PDU session change request message and / or a PDU session change command message and / or a PDU session change completion message and / or a PDU session change rejection message. You may.
  • each device completes the UE-led session management procedure based on the completion of the above-mentioned processing and / or the transmission / reception of the UE-led session management request message and / or the UE-led session management completion message.
  • the UE can start the UE-led PDU session change procedure at any time based on the completion of the registration procedure and / or the PDU session establishment procedure. In other words, the UE may initiate a UE-led PDU session change procedure for an established PDU session at any time. In other words, the UE may initiate a UE-led PDU session change procedure using the same PDU session ID as the established PDU session at any time.
  • the UE starts the UE-led PDU session change procedure by sending a PDU session change request message to the SMF (S1302).
  • the UE may include the PDU session ID in the PDU session change request message, or by including the PDU session ID, the UE requests that the PDU session identified by the PDU session ID be changed. May be good.
  • the PDU session ID included in the PDU session change request message may be the PDU session ID of the established PDU session.
  • the UE may not send a PDU session change request message when in flight.
  • the UE may be configured to be prohibited from sending PDU session change request messages when in flight.
  • the UE is a layer lower than the NAS layer (for example, RRC layer, MAC layer, RLC layer, PDCP layer, SDAP layer, etc.) and a layer higher than the NAS layer (for example, transport layer, session layer, presentation). Layers, application layers, etc.) may detect that they are in flight.
  • the NAS layer for example, RRC layer, MAC layer, RLC layer, PDCP layer, SDAP layer, etc.
  • a layer higher than the NAS layer for example, transport layer, session layer, presentation. Layers, application layers, etc.
  • the UE may detect that it is in flight based on the reception of the control message requesting flight before this procedure is carried out. In other words, the UE may detect that it is in flight if it receives a control message requesting flight before this procedure is performed.
  • the UE should have a layer lower than the NAS layer (for example, RRC layer, MAC layer, RLC layer, PDCP layer, SDAP layer, etc.) and a layer higher than the NAS layer (for example, for example).
  • the transport layer, session layer, presentation layer, application layer, etc. may detect that the aircraft is in flight based on the reception of a control message requesting flight.
  • the UE may have a lower layer than the NAS layer (eg, RRC layer, MAC layer, RLC layer, PDCP layer, SDAP layer, etc.) or a higher layer than the NAS layer (eg, RRC layer, SDAP layer, etc.) before this procedure is implemented.
  • Transport layer, session layer, presentation layer, application layer, etc. may detect that it is in flight when it receives a control message requesting flight.
  • the SMF receives the PDU session change request message sent by the UE. If the SMF accepts the UE's request, it initiates a network-led PDU session change procedure. Conversely, if the SMF rejects the UE's request, it sends a PDU session change rejection message to the UE.
  • the SMF rejects the request of the UE will be described.
  • the SMF sends a PDU session change refusal message to the UE based on the acceptance of the PDU session establishment request message (S1304).
  • the SMF may include the identification information of the fifteenth identification information in the PDU session change refusal message, or may include the PDU session ID, and by including this identification information, the UE request may be made. It may indicate that it has been rejected.
  • the SMF may include the 20th identification information in the PDU session change refusal message when the UE is in flight.
  • the SMF may include the 20th identification in the PDU session change rejection message if it recognizes that the UE is in flight.
  • the SMF may include the 20th identification information in the PDU session change refusal message.
  • the SMF may include the 20th identification information in the PDU session change refusal message.
  • the SMF may include the 20th identification information in the PDU session change refusal message.
  • the 20th identification information may be included in the PDU session change refusal message.
  • the PDU session ID included in the PDU session change refusal message may be the same as the PDU session ID included in the PDU session change request message.
  • the PDU session ID included in the PDU session change refusal message may be the same as the PDU session ID provided by the UE during this procedure.
  • the UE receives the PDU session change refusal message. Further, each device completes this procedure based on sending and receiving a PDU session change refusal message and / or completing a network-led PDU session change procedure.
  • the UE may recognize that the request of the UE has been rejected based on the reception of the PDU session change refusal message. Further, the UE may perform a second process based on the receipt of the PDU session change refusal message. The second process may be carried out based on the completion of this procedure.
  • the second process may be a process in which the UE recognizes the matter indicated by the SMF. Further, the second process may be a process in which the UE stores the received identification information as a context, or may be a process in which the received identification information is transferred to the upper layer and / or the lower layer. .. Further, the second process may be a process in which the UE recognizes that the request of this procedure has been rejected.
  • the UE may recognize the reason for rejection based on the reception of the PDU session change refusal message containing the 20th identification information and / or the 20th identification information. .. Specifically, the UE rejects the PDU session change because the UE is in flight based on the receipt of the PDU session change refusal message containing the 20th identification information and / or the 20th identification information. You may recognize that it was done.
  • the UE may recognize the reason for the rejection. Specifically, when the UE receives the PDU session change refusal message containing the 20th identification information and / or the 20th identification information, the PDU session change is rejected because the UE is in flight. You may recognize that.
  • the PDU session change procedure and / or the PDU session release procedure for the same PDU session It may be set so that the start of is prohibited. In other words, if the UE receives a PDU session change refusal message containing the 20th identification information and / or the 20th identification information, the PDU session change request message and / or the PDU session change request message for the same PDU session is received. It may be set to prohibit the transmission of the PDU session release request message.
  • the UE when the UE receives a PDU session change refusal message containing the 20th identification information and / or the 20th identification information, the PDU session change procedure and / or the PDU session change procedure for the same PDU session for a certain period of time. / Or it may be set so that the start of the PDU session release procedure is prohibited. In other words, if the UE receives a PDU session change refusal message containing the 20th identification information and / or the 20th identification information, the PDU session change request message for the same PDU session for a certain period of time, And / or the transmission of the PDU session release request message may be prohibited.
  • the fixed period may be a period determined by the timer and / or the state held by the UE. Specifically, the fixed period may be a period while the timer is being executed. Further, for a certain period of time, the UE may be in flight. In other words, the period may be while indicating that the state is in flight.
  • the fixed period is not limited to these periods and may be any period.
  • the PDU session change procedure and / or the PDU session release procedure for the same PDU session may be the PDU session change procedure and / or the PDU session release procedure using the same PDU session ID.
  • each device completes the UE-led PDU session change procedure based on the completion of the above-mentioned processing and / or the transmission / reception of the UE-led PDU session change refusal message.
  • the UE-led PDU session release procedure may be the same procedure as the above-mentioned PDU session change procedure.
  • the above-mentioned PDU session change request message may be read as a PDU session release request message.
  • the above-mentioned PDU session change request message may be read as a PDU session release request message
  • the above-mentioned PDU session change refusal message may be read as a PDU session release refusal. It may be read as a message. Further, the behavior of changing the PDU session may be read as the behavior of releasing the PDU session.
  • this procedure is a UE-led PDU session release procedure
  • the behavior of the SMF performed based on the reception of the PDU session release request message is the behavior of the SMF performed based on the reception of the above-mentioned PDU session change request message. May be similar to.
  • the behavior of the UE performed based on the reception of the PDU session release refusal message is the behavior of the UE performed based on the reception of the above-mentioned PDU session change rejection message. May be similar to.
  • this procedure is a UE-led PDU session release procedure
  • the SMF may initiate a network-driven PDU session release procedure based on the receipt of the PDU session release request message, or release the PDU session to the UE. You may send a rejection message.
  • each device completes the UE-led PDU session release procedure based on the completion of the above-mentioned processing and / or the transmission / reception of the UE-led PDU session release refusal message.
  • the program that operates on the apparatus according to one aspect of the present invention is a program that controls a Central Processing Unit (CPU) or the like to operate a computer so as to realize the functions of the embodiment according to one aspect of the present invention. Is also good.
  • the program or the information handled by the program is temporarily stored in volatile memory such as Random Access Memory (RAM), non-volatile memory such as flash memory, Hard Disk Drive (HDD), or other storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the program for realizing the function of the embodiment according to one aspect of the present invention may be recorded on a computer-readable recording medium. It may be realized by loading the program recorded on this recording medium into a computer system and executing it.
  • the term "computer system” as used herein is a computer system built into a device and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another recording medium that can be read by a computer. Is also good.
  • each functional block or various features of the device used in the above-described embodiment can be implemented or executed in an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others.
  • Programmable Logic Devices Discrete Gate or Transistor Logic, Discrete Hardware Components, or Combinations thereof.
  • the general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine.
  • the electric circuit described above may be composed of a digital circuit or an analog circuit. Further, when an integrated circuit technology that replaces the current integrated circuit appears due to the progress of semiconductor technology, one or a plurality of aspects of the present invention can also use a new integrated circuit according to the technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • one example of the device has been described, but one aspect of the present invention is not limited to this, and is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device. , Kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other terminal devices or communication devices such as living equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer And Data Communications (AREA)
  • Telephonic Communication Services (AREA)

Abstract

UAV(Unmanned Aerial Vehicle)が、UAV controllerと対応付けて接続を確立する際、接続情報を更新する手続きが明確化されていない。また、UAVの通信を行うための接続は、ユーザプレーンリソースをアクティブにしなければならない。UAVは、ネットワークから、UAV controllerの識別情報とIPアドレスとを含むPDUセッション変更コマンドメッセージの受信に基づいて、記憶しているUAV controllerの識別情報とIPアドレスを更新する。また、UAVは、C2 (Command and Control)コミュニケーションを行うためのQoSフローを提供するPDUセッションを確立する場合、ネットワークと、Always-on PDU sessionを確立するための情報を送受信する。

Description

UAV(Unmanned Aerial Vehicle)
 本発明は、UAV(Unmanned Aerial Vehicle)に関する。本願は、2020年8月7日に日本で出願された特願2020-134326号に基づき優先権を主張し、その内容をここに援用する。
 3GPP(3rd Generation Partnership Project)では、第5世代(5G)の移動通信システムである5GS(5G System)のシステムアーキテクチャが検討されており、新しい手続きや新しい機能のサポートするための議論が行われている(非特許文献1~3を参照)。5G規格のRelease 17において、ドローンの移動通信システムが議論されている(非特許文献4を参照)。
3GPP TS 23.501 V16.5.1 (2020-08); 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2 (Release 16) 3GPP TS 23.502 V16.5.0 (2020-07); 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System; Stage 2 (Release 16) 3GPP TS 24.501 V16.5.1 (2020-07); 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3 (Release 16) 3GPP TR 23.754 V0.2.0 (2020-06); 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on supporting Unmanned Aerial Systems (UAS) connectivity, Identification and tracking (Release 17)
 非特許文献4における議論では、UAV(Unmanned Aerial Vehicle)が、UAV controllerと対応付けて接続を確立することを検討している。接続の確立に対する解決策は示されているが、接続の情報を更新する際の手続きについてはまだ示されていない。また、UAVの通信を行うための接続は、ユーザプレーンリソースをアクティブにしなければ、UAVとUAV controller間、及び/又はUAVとUTM(Unmanned Aerial System Traffic Management)間の通信が行えなくなる可能性があるという課題がある。
 本発明の一態様は、以上のような事情を顧みてなされたものであり、ネットワーク装置がUAVに送信するPDUセッション変更コマンドメッセージに含める情報、及びメッセージを受信したUAVの挙動を明確化する。また、UAVのPDUセッション確立手続きにおけるメッセージに含める情報を明確化する。
 本発明の一態様に係るUAV (Unmanned Aerial Vehicle)は、送受信部と制御部とを備え、前記送受信部は、ネットワークから、第1の識別情報と第2の識別情報とを含むPDUセッション変更コマンドメッセージを受信し、前記制御部は、前記第1の識別情報の受信に基づいて、記憶しているUAV controllerの識別情報を、前記第1の識別情報が示す識別情報に更新し、前記第2の識別情報の受信に基づいて、記憶している前記UAV controllerのIPアドレスを、前記第2の識別情報が示すIPアドレスに更新し、ここで、前記第1の識別情報は、新しい前記UAV controllerの識別情報であり、前記第2の識別情報は、新しい前記UAV controllerのIPアドレスであり、前記UAVは、前記UAV controllerに対応付けられている、ことを特徴とする。
 また、本発明の一態様に係るUAVは、送受信部と制御部とを備え、前記送受信部は、C2 (Command and Control)コミュニケーションを行うためのQoSフローを提供するPDUセッションを確立する場合、ネットワークに、第1の識別情報を含むPDUセッション確立要求メッセージを送信し、ネットワークから、第2の識別情報を含むPDUセッション確立受諾メッセージを受信し、ここで、前記第1の識別情報は、Always-on PDU session requestedであり、前記第2の識別情報は、Always-on PDU session indicationである、ことを特徴とする。
 本発明の一態様によれば、ネットワーク装置がUAVに送信するPDUセッション変更コマンドメッセージに含める情報、及びメッセージを受信したUAVの挙動を明確化することができる。また、UAVのPDUセッション確立手続きにおけるメッセージに含める情報を明確化することができる。
移動通信システム(EPS/5GS)の概略を説明する図である。 移動通信システム(EPS/5GS)の詳細構成を説明する図である。 UEの装置構成を説明する図である。 5GSにおけるアクセスネットワーク装置(gNB)の構成を説明する図である。 5GSにおけるコアネットワーク装置(AMF/SMF/UPF)の構成を説明する図である。 登録手続きを説明する図である。 PDUセッション確立手続きを説明する図である。 ネットワーク主導のセッションマネジメント手続きを示す図である。 UE主導のセッションマネジメント手続きを示す図である。 通信手続きを示す図である。 UAVの通信形態を説明する図である。
 以下、図面を参照して本発明の一態様を実施する為に最良の形態について説明する。尚、本実施形態では1例として、本発明の一態様を適用した場合の移動通信システムの実施形態について説明する。
 [1. システムの概要]
 まず、図1は、各実施形態で使用される移動通信システム1の概略を説明する為の図であり、図2は、その移動通信システム1の詳細構成を説明する為の図である。
 図1には、移動通信システム1は、UE_A10、アクセスネットワーク_A80、コアネットワーク_A90、PDN(Packet Data Network)_A5、アクセスネットワーク_B120、コアネットワーク_B190、DN(Data Network)_A6により構成されることが記載されている。
 以下では、これらの装置・機能について、UE、アクセスネットワーク_A、コアネットワーク_A、PDN、アクセスネットワーク_B、コアネットワーク_B、DN等のように、記号を省略して記載する場合がある。
 また、図2には、UE_A10、E-UTRAN80、MME40、SGW35、PGW-U30、PGW-C32、PCRF60、HSS50、5G AN120、AMF140、UPF130、SMF132、PCF160、UDM150、N3IWF170等の装置・機能、及びこれらの装置・機能を互いに接続するインターフェースが記載されている。
 以下では、これらの装置・機能について、UE、E-UTRAN、MME、SGW、PGW-U、PGW-C、PCRF、HSS、5G AN、AMF、UPF、SMF、PCF、UDM、N3IWF等のように、記号を省略して記載する場合がある。
 尚、4GシステムであるEPS(Evolved Packet System)は、アクセスネットワーク_A及びコアネットワーク_Aを含んで構成されるが、さらにUE及び/又はPDNが含まれても良い。また、5Gシステムである5GS(5G System)は、UE、アクセスネットワーク_B及びコアネットワーク_Bを含んで構成されるが、さらにDNが含まれても良い。
 UEは、3GPPアクセス(3GPPアクセスネットワーク、3GPP ANとも称する)及び/又はnon-3GPPアクセス(non-3GPPアクセスネットワーク、non-3GPP ANとも称する)を介して、ネットワークサービスに対して接続可能な装置である。UEは、携帯電話やスマートフォン等の無線通信が可能な端末装置であってよく、EPSにも5GSにも接続可能な端末装置であってよい。UEは、UICC(Universal Integrated Circuit Card)やeUICC(Embedded UICC)を備えてもよい。尚、UEのことをユーザ装置と表現してもよいし、端末装置と表現してもよい。
 また、アクセスネットワーク_Aは、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)及び/又は無線LANアクセスネットワークに対応する。E-UTRANには、1以上のeNB(evolved Node B)45が配置される。尚、以下では、eNB45は、eNBのように記号を省略して記載する場合がある。また、複数のeNBがある場合は、各eNBは、例えばX2インターフェースにより、互いに接続されている。また、無線LANアクセスネットワークには、1以上のアクセスポイントが配置される。
 また、アクセスネットワーク_Bは、5Gアクセスネットワーク(5G AN)に対応する。5G ANは、NG-RAN(NG Radio Access Network)及び/又はnon-3GPP アクセスネットワークで構成される。NG-RANには、1以上のgNB(NR NodeB)122が配置される。尚、以下では、gNB122は、gNBのように記号を省略して記載する場合がある。gNBは、NR(New Radio)ユーザプレーンと制御プレーンをUEに提供するノードであり、5GCNに対してNGインターフェース(N2インターフェース又はN3インターフェースを含む)を介して接続するノードである。すなわち、gNBは、5GSのために新たに設計された基地局装置であり、4GシステムであるEPSで使用されていた基地局装置(eNB)とは異なる機能を有する。また、複数のgNBがある場合は、各gNBは、例えばXnインターフェースにより、互いに接続している。
 また、non-3GPP アクセスネットワークは、信頼できない非3GPP(untrusted non-3GPP)アクセスネットワークであってもよいし、信頼できる非3GPP(trusted non-3GPP)アクセスネットワークであってもよい。ここで、信頼できない非3GPPアクセスネットワークは、例えば公衆無線LANなど、アクセスネットワーク内でセキュリティ管理を行わないnon-3GPPアクセスネットワークであってよい。一方で、信頼できる非3GPPアクセスネットワークは、3GPPが規定するアクセスネットワークであってよく、TNAP(trusted non-3GPP access point)とTNGF(trusted non-3GPP Gateway function)を備えていてもよい。
 また、以下では、E-UTRANやNG-RANは、3GPPアクセスと称することがある。また、無線LANアクセスネットワークやnon-3GPP ANは、non-3GPPアクセスと称することがある。また、アクセスネットワーク_Bに配置されるノードを、まとめてNG-RANノードとも称することがある。
 また、以下では、アクセスネットワーク_A、及び/又はアクセスネットワーク_B、及び/又はアクセスネットワーク_Aに含まれる装置、及び/又はアクセスネットワーク_Bに含まれる装置は、アクセスネットワーク、又はアクセスネットワーク装置と称する場合がある。
 また、コアネットワーク_Aは、EPC(Evolved Packet Core)に対応する。EPCには、例えば、MME(Mobility Management Entity)、SGW(Serving Gateway)、PGW(Packet Data Network Gateway)-U、PGW-C、PCRF(Policy and Charging Rules Function)、HSS(Home Subscriber Server)等が配置される。
 また、コアネットワーク_Bは、5GCN(5G Core Network)に対応する。5GCNには、例えば、AMF(Access and Mobility Management Function)、UPF(User Plane Function)、SMF(Session Management Function)、PCF(Policy Control Function)、UDM(Unified Data Management)等が配置される。ここで、5GCNは、5GCと表現されてもよい。
 また、以下では、コアネットワーク_A、及び/又はコアネットワーク_B、コアネットワーク_Aに含まれる装置、及び/又はコアネットワーク_Bに含まれる装置は、コアネットワーク、又はコアネットワーク装置又はコアネットワーク内装置と称する場合がある。
 コアネットワーク(コアネットワーク_A及び/又はコアネットワーク_B)は、アクセスネットワーク(アクセスネットワーク_A及び/又はアクセスネットワーク_B)と、PDN及び/又はDNとを接続した移動体通信事業者(Mobile Network Operator; MNO)が運用するIP移動通信ネットワークの事であってもよいし、移動通信システム1を運用、管理する移動体通信事業者の為のコアネットワークでもよいし、MVNO(Mobile Virtual Network Operator)や、MVNE(Mobile Virtual Network Enabler)等の仮想移動通信事業者や仮想移動体通信サービス提供者の為のコアネットワークでもよい。
 また、図1では、PDNとDNが同一である場合が記載されているが、異なっていても良い。PDNは、UEに通信サービスを提供するDN(Data Network)であってよい。尚、DNは、パケットデータサービス網として構成されてもよいし、サービス毎に構成されてもよい。さらに、PDNは、接続された通信端末を含んでもよい。従って、PDNと接続する事は、PDNに配置された通信端末やサーバ装置と接続する事であってもよい。さらに、PDNとの間でユーザデータを送受信する事は、PDNに配置された通信端末やサーバ装置とユーザデータを送受信する事であってもよい。尚、PDNのことをDNと表現してもよいし、DNのことをPDNと表現してもよい。
 また、以下では、アクセスネットワーク_A、コアネットワーク_A、PDN、アクセスネットワーク_B、コアネットワーク_B、DNの少なくとも一部、及び/又はこれらに含まれる1以上の装置を、ネットワーク又はネットワーク装置と呼称する場合がある。つまり、ネットワーク及び/又はネットワーク装置が、メッセージを送受信する、及び/又は手続きを実行するということは、アクセスネットワーク_A、コアネットワーク_A、PDN、アクセスネットワーク_B、コアネットワーク_B、DNの少なくとも一部、及び/又はこれらに含まれる1以上の装置が、メッセージを送受信する、及び/又は手続きを実行することを意味する。
 また、UEは、アクセスネットワークに接続することができる。また、UEは、アクセスネットワークを介して、コアネットワークと接続する事ができる。さらに、UEは、アクセスネットワーク及びコアネットワークを介して、PDN又はDNに接続する事ができる。すなわち、UEは、PDN又はDNとの間で、ユーザデータを送受信(通信)する事ができる。ユーザデータを送受信する際は、IP(Internet Protocol)通信だけでなく、non-IP通信を用いてもよい。
 ここで、IP通信とは、IPを用いたデータ通信の事であり、IPパケットにより、データの送受信が行われる。IPパケットは、IPヘッダとペイロード部で構成される。ペイロード部には、EPSに含まれる装置・機能や、5GSに含まれる装置・機能が送受信するデータが含まれてよい。また、non-IP通信とは、IPを用いないデータ通信の事であり、IPパケットの構造とは異なる形式により、データの送受信が行われる。例えば、non-IP通信は、IPヘッダが付与されていないアプリケーションデータの送受信によって実現されるデータ通信でもよいし、マックヘッダやEthernet(登録商標)フレームヘッダ等の別のヘッダを付与してUEが送受信するユーザデータを送受信してもよい。
 また、アクセスネットワーク_A、コアネットワーク_A、アクセスネットワーク_B、コアネットワーク_B、PDN_A、DN_Aには、図2に記載されない装置が構成されていてもよい。例えば、コアネットワーク_A及び/又はコアネットワーク_Bには、AUSF(Authentication Server Function)やAAA(Authentication, authorization, and accounting)サーバ(AAA-S)が含まれてもよい。
 ここで、AUSFは、3GPPアクセス及びnon-3GPPアクセスに対する認証機能を備える、コアネットワーク装置である。具体的には、3GPPアクセス及び/又はnon-3GPPアクセスに対する認証の要求をUEから受信し、認証手続きを実行するネットワーク機能部である。
 また、AAAサーバは、AUSFと直接的又は他のネットワーク装置を介して間接的に接続する、認証及び承認及び課金機能を備える、装置である。AAAサーバはコアネットワーク内のネットワーク装置であってもよい。なお、AAAサーバは、コアネットワーク_A及び/又はコアネットワーク_Bに含まれず、PLMNに含まれてもよい。つまり、AAAサーバはコアネットワーク装置であってもよいし、コアネットワークの外にある装置であってよい。例えば、AAAサーバは3rd Partyが管理する、PLMN内のサーバ装置であってもよい。
 なお、図2では、図の簡略化のため、各装置・機能は1つずつ記載したが、移動通信システム1には複数の同様の装置・機能が構成されてもよい。具体的には、移動通信システム1には複数のUE_A10、E-UTRAN80、MME40、SGW35、PGW-U30、PGW-C32、PCRF60、HSS50、5G AN120、AMF140、UPF130、SMF132、PCF160、及び/又はUDM150等の装置・機能が構成されていてもよい。
 UPF_A235は、DN、SMF、他のUPF、及び、アクセスネットワークに接続される。UPF_A235は、intra-RAT mobility又はinter-RAT mobilityに対するアンカー、パケットのルーティングと転送(Packet routing & forwarding)、1つのDNに対して複数のトラフィックフローのルーティングをサポートするUL CL(Uplink Classifier)機能、マルチホームPDUセッション(multi-homed PDU session)をサポートするBranching point機能、user planeに対するQoS処理、上りリンクトラフィックの検証(verification)、下りリンクパケットのバッファリング、下りリンクデータ通知(Downlink Data Notification)のトリガ機能等の役割を担ってもよい。また、UPF_A235は、DNとコアネットワーク_B190との間のゲートウェイとして、ユーザデータの転送を行う中継装置でもよい。尚、UPF_A235は、IP通信及び/又はnon-IP通信の為のゲートウェイでもよい。さらに、UPF_A235は、IP通信を転送する機能を持っていてもよく、non-IP通信とIP通信を変換する機能を持っていてもよい。さらに複数配置されるゲートウェイは、コアネットワーク_B190と単一のDNを接続するゲートウェイでもよい。尚、UPF_A235は、他のNFとの接続性を備えてもよく、他のNFを介して各装置に接続してもよい。
 尚、UPF_A235とアクセスネットワークとの間に、UPF_A235とは異なるUPFである、UPF_C239(branching point又はuplink classifierとも称する)が装置又はNFとして存在してもよい。UPF_C239が存在する場合、UEとDNとの間のPDUセッションは、アクセスネットワーク、UPF_C239、UPF_A235を介して確立されることになる。
 また、UPF130は、UPF_A235と同様の装置であってよい。尚、UPF130、及びUPF_A235は、UPFのように、記号を省略して記載する場合がある。
 [2. 各装置の構成]
 次に、各実施形態で使用される各装置(UE、及び/又はアクセスネットワーク装置、及び/又はコアネットワーク装置)の構成について、図を用いて説明する。尚、各装置は、物理的なハードウェアとして構成されても良いし、汎用的なハードウェア上に構成された論理的な(仮想的な)ハードウェアとして構成されても良いし、ソフトウェアとして構成されても良い。また、各装置の持つ機能の少なくとも一部(全部を含む)が、物理的なハードウェア、論理的なハードウェア、ソフトウェアとして構成されても良い。
 尚、以下で登場する各装置・機能内の各記憶部(記憶部_A340、記憶部_A440、記憶部_B540、記憶部_A640、記憶部_B740)は、例えば、半導体メモリ、SSD(Solid State Drive)、HDD(Hard Disk Drive)等で構成されている。また、各記憶部は、出荷段階からもともと設定されていた情報だけでなく、自装置・機能以外の装置・機能(例えば、UE、及び/又はアクセスネットワーク装置、及び/又はコアネットワーク装置、及び/又はPDN、及び/又はDN)との間で、送受信した各種の情報を記憶する事ができる。また、各記憶部は、後述する各種の通信手続き内で送受信する制御メッセージに含まれる識別情報、制御情報、フラグ、パラメータ等を記憶することができる。また、各記憶部は、これらの情報をUE毎に記憶してもよい。また、各記憶部は、5GSとEPSとの間のインターワークをした場合には、5GS及び/又はEPS内に含まれる装置・機能との間で送受信した制御メッセージやユーザデータを記憶することができる。このとき、N26インターフェースを介して送受信されたものだけでなく、N26インターフェースを介さずに送受信されたものも記憶することができる。
 [2.1. UEの装置構成]
 まず、UE(User Equipment)の装置構成例について、図3を用いて説明する。UEは、制御部_A300、アンテナ310、送受信部_A320、記憶部_A340で構成されている。制御部_A300、送受信部_A320、記憶部_A340は、バスを介して接続されている。送受信部_A320は、アンテナ310と接続している。
 制御部_A300は、UE全体の動作・機能を制御する機能部である。制御部_A300は、必要に応じて、記憶部_A340に記憶されている各種プログラムを読み出して実行する事により、UEにおける各種の処理を実現する。
 送受信部_A320は、アンテナを介して、アクセスネットワーク内の基地局装置(eNB又はgNB)と無線通信する為の機能部である。すなわち、UEは、送受信部_A320を用いて、アクセスネットワーク装置、及び/又はコアネットワーク装置、及び/又はPDN、及び/又はDNとの間で、ユーザデータ及び/又は制御情報を送受信することができる。
 図2を参照して詳細に説明すると、UEは、送受信部_A320を用いることにより、LTE-Uuインターフェースを介して、E-UTRAN内の基地局装置(eNB)と通信することができる。また、UEは、送受信部_A320を用いることにより、5G AN内の基地局装置(gNB)と通信することができる。また、UEは、送受信部_A320を用いることにより、N1インターフェースを介してAMFとNAS(Non-Access-Stratum)メッセージの送受信をすることができる。ただし、N1インターフェースは論理的なものであるため、実際には、UEとAMFの間の通信は、5G ANを介して行われる。
 記憶部_A340は、UEの各動作に必要なプログラム、ユーザデータ、制御情報等を記憶する為の機能部である。
 [2.2. gNBの装置構成]
 次に、gNBの装置構成例について、図4を用いて説明する。gNB は、制御部_B500、アンテナ510、ネットワーク接続部_B520、送受信部_B530、記憶部_B540で構成されている。制御部_B500、ネットワーク接続部_B520、送受信部_B530、記憶部_B540は、バスを介して接続されている。送受信部_B530は、アンテナ510と接続している。
 制御部_B500は、gNB全体の動作・機能を制御する機能部である。制御部_B500は、必要に応じて、記憶部_B540に記憶されている各種プログラムを読み出して実行する事により、gNBにおける各種の処理を実現する。
 ネットワーク接続部_B520は、gNBが、AMF及び/又はUPFと通信する為の機能部である。すなわち、gNBは、ネットワーク接続部_B520を用いて、AMF及び/又はUPFとの間で、ユーザデータ及び/又は制御情報を送受信することができる。
 送受信部_B530は、アンテナ510を介して、UEと無線通信する為の機能部である。すなわち、gNBは、送受信部_B530を用いて、UEとの間で、ユーザデータ及び/又は制御情報を送受信することができる。
 図2を参照して詳細に説明すると、5G AN内にあるgNBは、ネットワーク接続部_B520を用いることにより、N2インターフェースを介して、AMFと通信することができ、N3インターフェースを介して、UPFと通信することができる。また、gNBは、送受信部_B530を用いることにより、UEと通信することができる。
 記憶部_B540は、gNBの各動作に必要なプログラム、ユーザデータ、制御情報等を記憶する為の機能部である。
 [2.3. AMFの装置構成]
 次に、AMFの装置構成例について、図5を用いて説明する。AMFは、制御部_B700、ネットワーク接続部_B720、記憶部_B740で構成されている。制御部_B700、ネットワーク接続部_B720、記憶部_B740は、バスを介して接続されている。AMFは、制御プレーンを扱うノードであってよい。
 制御部_B700は、AMF全体の動作・機能を制御する機能部である。制御部_B700は、必要に応じて、記憶部_B740に記憶されている各種プログラムを読み出して実行する事により、AMFにおける各種の処理を実現する。
 ネットワーク接続部_B720は、AMFが、5G AN内の基地局装置(gNB)、及び/又はSMF、及び/又はPCF、及び/又はUDM、及び/又はSCEFと接続する為の機能部である。すなわち、AMFは、ネットワーク接続部_B720を用いて、5G AN内の基地局装置(gNB)、及び/又はSMF、及び/又はPCF、及び/又はUDM、及び/又はSCEFとの間で、ユーザデータ及び/又は制御情報を送受信することができる。
 図2を参照して詳細に説明すると、5GCN内にあるAMFは、ネットワーク接続部_A620を用いることにより、N2インターフェースを介して、gNBと通信することができ、N8インターフェースを介して、UDMと通信することができ、N11インターフェースを介して、SMFと通信することができ、N15インターフェースを介して、PCFと通信することができる。また、AMFは、ネットワーク接続部_A620を用いることにより、N1インターフェースを介して、UEとNASメッセージの送受信をすることができる。ただし、N1インターフェースは論理的なものであるため、実際には、UEとAMFの間の通信は、5G ANを介して行われる。また、AMFは、N26インターフェースをサポートする場合、ネットワーク接続部_A620を用いることにより、N26インターフェースを介して、MMEと通信することができる。
 記憶部_B740は、AMFの各動作に必要なプログラム、ユーザデータ、制御情報等を記憶する為の機能部である。
 尚、AMFは、N2インターフェースを用いたRANとの制御メッセージを交換する機能、N1インターフェースを用いたUEとのNASメッセージを交換する機能、NASメッセージの暗号化及び完全性保護を行う機能、登録管理(Registration management; RM)機能、接続管理(Connection management; CM)機能、到達可能性管理(Reachability management)機能、UE等の移動性管理(Mobility management)機能、UEとSMF間のSM(Session Management)メッセージを転送する機能、アクセス認証(Access Authentication、Access Authorization)機能、セキュリティアンカー機能(SEA; Security Anchor Functionality)、セキュリティコンテキスト管理(SCM; Security Context Management)機能、N3IWF(Non-3GPP Interworking Function)に対するN2インターフェースをサポートする機能、N3IWFを介したUEとのNAS信号の送受信をサポートする機能、N3IWFを介して接続するUEの認証する機能等を有する。
 また、登録管理では、UEごとのRM状態が管理される。RM状態は、UEとAMFとの間で同期がとられていてもよい。RM状態としては、非登録状態(RM-DEREGISTERED state)と、登録状態(RM-REGISTERED state)がある。RM-DEREGISTERED状態では、UEはネットワークに登録されていないため、AMFにおけるUEコンテキストが、そのUEに対する有効な位置情報やルーティング情報を持っていない為、AMFはUEに到達できない状態である。また、RM-REGISTERED状態では、UEはネットワークに登録されているため、UEはネットワークとの登録が必要なサービスを受信することができる。尚、RM状態は、5GMM状態(5GMM state)と表現されてもよい。この場合、RM-DEREGISTERED状態は、5GMM-DEREGISTERED状態と表現されてもよいし、RM-REGISTERED状態は、5GMM-REGISTERED状態と表現されてもよい。
 言い換えると、5GMM-REGISTEREDは、各装置が、5GMMコンテキストを確立した状態であってもよいし、PDUセッションコンテキストを確立した状態であってもよい。尚、各装置が5GMM-REGISTEREDである場合、UE_A10は、ユーザデータや制御メッセージの送受信を開始してもよいし、ページングに対して応答してもよい。さらに、尚、各装置が5GMM-REGISTEREDである場合、UE_A10は、初期登録のための登録手続き以外の登録手続き、及び/又はサービス要求手続きを実行してもよい。
 さらに、5GMM-DEREGISTEREDは、各装置が、5GMMコンテキストを確立していない状態であってもよいし、UE_A10の位置情報がネットワークに把握されていない状態であってもよいし、ネットワークがUE_A10に到達不能である状態であってもよい。尚、各装置が5GMM-DEREGISTEREDである場合、UE_A10は、登録手続きを開始してもよいし、登録手続きを実行することで5GMMコンテキストを確立してもよい。
 また、接続管理では、UEごとのCM状態が管理される。CM状態は、UEとAMFとの間で同期がとられていてもよい。CM状態としては、非接続状態(CM-IDLE state)と、接続状態(CM-CONNECTED state)がある。CM-IDLE状態では、UEはRM-REGISTERED状態にあるが、N1インターフェースを介したAMFとの間で確立されるNASシグナリング接続(NAS signaling connection)を持っていない。また、CM-IDLE状態では、UEはN2インターフェースの接続(N2 connection)、及びN3インターフェースの接続(N3 connection)を持っていない。一方、CM-CONNECTED状態では、N1インターフェースを介したAMFとの間で確立されるNASシグナリング接続(NAS signaling connection)を持っている。また、CM-CONNECTED状態では、UEはN2インターフェースの接続(N2 connection)、及び/又はN3インターフェースの接続(N3 connection)を持っていてもよい。
 さらに、接続管理では、3GPPアクセスにおけるCM状態と、non-3GPPアクセスにおけるCM状態とで分けて管理されてもよい。この場合、3GPPアクセスにおけるCM状態としては、3GPPアクセスにおける非接続状態(CM-IDLE state over 3GPP access)と、3GPPアクセスにおける接続状態(CM-CONNECTED state over 3GPP access)とがあってよい。さらに、non-3GPPアクセスにおけるCM状態としては、non-3GPPアクセスにおける非接続状態(CM-IDLE state over non-3GPP access)と、non-3GPPアクセスにおける接続状態(CM-CONNECTED state over non-3GPP access)とがあってよい。尚、非接続状態はアイドルモード表現されてもよく、接続状態モードはコネクテッドモードと表現されてもよい。
 尚、CM状態は、5GMMモード(5GMM mode)と表現されてもよい。この場合、非接続状態は、5GMM非接続モード(5GMM-IDLE mode)と表現されてもよいし、接続状態は、5GMM接続モード(5GMM-CONNECTED mode)と表現されてもよい。さらに、3GPPアクセスにおける非接続状態は、3GPPアクセスにおける5GMM非接続モード(5GMM-IDLE mode over 3GPP access)と表現されてもよいし、3GPPアクセスにおける接続状態は、3GPPアクセスにおける5GMM接続モード(5GMM-CONNECTED mode over 3GPP access)と表現されてもよい。さらに、non-3GPPアクセスにおける非接続状態は、non-3GPPアクセスにおける5GMM非接続モード(5GMM-IDLE mode over non-3GPP access)と表現されてもよいし、non-3GPPアクセスにおける接続状態は、non-3GPPアクセスにおける5GMM接続モード(5GMM-CONNECTED mode over non-3GPP access)と表現されてもよい。尚、5GMM非接続モードはアイドルモード表現されてもよく、5GMM接続モードはコネクテッドモードと表現されてもよい。
 また、AMFは、コアネットワーク_B内に1以上配置されてもよい。また、AMFは、1以上のNSI(Network Slice Instance)を管理するNF(Network Function)でもよい。また、AMFは、複数のNSI間で共有される共有CPファンクション(CCNF; Common CPNF(Control Plane Network Function))でもよい。
 尚、N3IWFは、UEが5GSに対してnon-3GPPアクセスを介して接続する場合に、non-3GPPアクセスと5GCNとの間に配置される装置及び/又は機能である。
 [2.4. SMFの装置構成]
 次に、SMFの装置構成例について、図5を用いて説明する。SMFは、制御部_B700、ネットワーク接続部_B720、記憶部_B740で構成されている。制御部_B700、ネットワーク接続部_B720、記憶部_B740は、バスを介して接続されている。SMFは、制御プレーンを扱うノードであってよい。
 制御部_B700は、SMF全体の動作・機能を制御する機能部である。制御部_B700は、必要に応じて、記憶部_B740に記憶されている各種プログラムを読み出して実行する事により、SMFにおける各種の処理を実現する。
 ネットワーク接続部_B720は、SMFが、AMF、及び/又はUPF、及び/又はPCF、及び/又はUDMと接続する為の機能部である。すなわち、SMFは、ネットワーク接続部_B720を用いて、AMF、及び/又はUPF、及び/又はPCF、及び/又はUDMとの間で、ユーザデータ及び/又は制御情報を送受信することができる。
 図2を参照して詳細に説明すると、5GCN内にあるSMFは、ネットワーク接続部_A620を用いることにより、N11インターフェースを介して、AMFと通信することができ、N4インターフェースを介して、UPFと通信することができ、N7インターフェースを介して、PCFと通信することができ、N10インターフェースを介して、UDMと通信することができる。
 記憶部_B740は、SMFの各動作に必要なプログラム、ユーザデータ、制御情報等を記憶する為の機能部である。
 SMFは、PDUセッションの確立・修正・解放等のセッション管理(Session Management)機能、UEに対するIPアドレス割り当て(IP address allocation)及びその管理機能、UPFの選択と制御機能、適切な目的地(送信先)へトラフィックをルーティングする為のUPFの設定機能、NASメッセージのSM部分を送受信する機能、下りリンクのデータが到着したことを通知(Downlink Data Notification)する機能、AMF経由でN2インターフェースを介してANに送信されるAN特有の(ANごとの)SM情報を提供する機能、セッションに対するSSCモード(Session and Service Continuity mode)を決定する機能、ローミング機能等を有する。
 [2.5. UPFの装置構成]
 次に、UPFの装置構成例について、図5を用いて説明する。UPFは、制御部_B700、ネットワーク接続部_B720、記憶部_B740で構成されている。制御部_B700、ネットワーク接続部_B720、記憶部_B740は、バスを介して接続されている。UPFは、制御プレーンを扱うノードであってよい。
 制御部_B700は、UPF全体の動作・機能を制御する機能部である。制御部_B700は、必要に応じて、記憶部_B740に記憶されている各種プログラムを読み出して実行する事により、UPFにおける各種の処理を実現する。
 ネットワーク接続部_B720は、UPFが、5G AN内の基地局装置(gNB)、及び/又はSMF、及び/又はDNと接続する為の機能部である。すなわち、UPFは、ネットワーク接続部_B720を用いて、5G AN内の基地局装置(gNB)、及び/又はSMF、及び/又はDNとの間で、ユーザデータ及び/又は制御情報を送受信することができる。
 図2を参照して詳細に説明すると、5GCN内にあるUPFは、ネットワーク接続部_A620を用いることにより、N3インターフェースを介して、gNBと通信することができ、N4インターフェースを介して、SMFと通信することができ、N6インターフェースを介して、DNと通信することができ、N9インターフェースを介して、他のUPFと通信することができる。
 記憶部_B740は、UPFの各動作に必要なプログラム、ユーザデータ、制御情報等を記憶する為の機能部である。
 UPFは、intra-RAT mobility又はinter-RAT mobilityに対するアンカーポイントとしての機能、DNに相互接続するための外部PDUセッションポイントとしての機能(つまり、DNとコアネットワーク_Bとの間のゲートウェイとして、ユーザデータを転送する機能)、パケットのルーティング及び転送する機能、1つのDNに対して複数のトラフィックフローのルーティングをサポートするUL CL(Uplink Classifier)機能、マルチホーム(multi-homed)PDUセッションをサポートするBranching point機能、user planeに対するQoS(Quality of Service)処理機能、上りリンクトラフィックの検証機能、下りリンクパケットのバッファリング、下りリンクデータ通知(Downlink Data Notification)をトリガする機能等を有する。
 また、UPFは、IP通信及び/又はnon-IP通信の為のゲートウェイでもよい。また、UPFは、IP通信を転送する機能を持ってもよく、non-IP通信とIP通信を変換する機能を持っていてもよい。さらに複数配置されるゲートウェイは、コアネットワーク_Bと単一のDNを接続するゲートウェイでもよい。尚、UPFは、他のNFとの接続性を備えてもよく、他のNFを介して各装置に接続してもよい。
 尚、ユーザプレーン(user plane)は、UEとネットワークとの間で送受信されるユーザデータ(user data)のことである。ユーザプレーンは、PDNコネクション、又はPDUセッションを用いて送受信されてもよい。さらに、EPSの場合、ユーザプレーンは、LTE-Uuインターフェース、及び/又はS1-Uインターフェース、及び/又はS5インターフェース、及び/又はS8インターフェース、及び/又はSGiインターフェースを用いて送受信されてもよい。さらに、5GSの場合、ユーザプレーンは、UEとNG RANとの間のインターフェース、及び/又はN3インターフェース、及び/又はN9インターフェース、及び/又はN6インターフェースを介して送受信されてもよい。以下、ユーザプレーンは、U-Planeと表現されてもよい。
 さらに、制御プレーン(control plane)は、UEの通信制御等を行うために送受信される制御メッセージのことである。制御プレーンは、UEとMMEとの間のNAS(Non-Access-Stratum)シグナリングコネクションを用いて送受信されてもよい。さらに、EPSの場合、制御プレーンは、LTE-Uuインターフェース、及びS1-MMEインターフェースを用いて送受信されてもよい。さらに、5GSの場合、制御プレーンは、UEとNG RANとの間のインターフェース、及びN2インターフェースを用いて送受信されてもよい。以下、制御プレーンは、コントロールプレーンと表現されてもよいし、C-Planeと表現されてもよい。
 さらに、U-Plane(User Plane; UP)は、ユーザデータを送受信する為の通信路でもよく、複数のベアラで構成されてもよい。さらに、C-Plane(Control Plane; CP)は、制御メッセージを送受信する為の通信路でもよく、複数のベアラで構成されてもよい。
 [2.6. その他の装置及び/又は機能]
 次に、その他の装置及び/又は機能と識別情報について説明を行う。
 ネットワークとは、アクセスネットワーク_B、コアネットワーク_B、DNのうち、少なくとも一部を指す。また、アクセスネットワーク_B、コアネットワーク_B、DNのうち、少なくとも一部に含まれる1以上の装置を、ネットワーク又はネットワーク装置と称してもよい。つまり、ネットワークがメッセージの送受信及び/又は処理を実行するということは、ネットワーク内の装置(ネットワーク装置、及び/又は制御装置)がメッセージの送受信及び/又は処理を実行することを意味してもよい。逆に、ネットワーク内の装置がメッセージの送受信及び/又は処理を実行するということは、ネットワークがメッセージの送受信及び/又は処理を実行することを意味してもよい。
 また、NSSF(Network Slice Selection Function)とは、UEをサーブするネットワークスライスを選択する機能を有するネットワーク機能(NFとも称する)であってよい。
 また、NWDAF(Network Data Analytics Function)とは、NFやアプリケーション機能(AFとも称する)からデータ収集を行う機能を有するNFであってよい。
 また、PCF(Policy Control Function)とは、ネットワークの挙動を制御するためのポリシーを決定する機能を有するNFであってよい。
 また、NRF(Network Repository Function)とは、サービス発見機能を有するNFであってよい。NRFは、あるNFから、別のNFの発見要求を受信すると、発見されたNFの情報を提供する機能を有するNFであってよい。
 また、SM(セッションマネジメント)メッセージ(NAS(Non-Access-Stratum) SMメッセージとも称する)は、SMのための手続きで用いられるNASメッセージであってよく、AMFを介してUE_A10とSMFの間で送受信される制御メッセージであってよい。さらに、SMメッセージには、PDUセッション確立要求(PDU session establishment request)メッセージ、PDUセッション確立受諾(PDU session establishment accept)メッセージ、PDUセッション拒絶(PDU session establishment reject)メッセージ、PDUセッション変更要求(PDU session modification request)メッセージ、PDUセッション変更コマンド(PDU session modification command)メッセージ、PDUセッション変更完了メッセージ(PDU session modification complete)、PDUセッション変更コマンド拒絶(PDU session modification command reject)メッセージ、PDUセッション変更拒絶(PDU session modification reject)メッセージ、PDUセッション解放要求(PDU session release request)メッセージ、PDUセッション解放拒絶(PDU session release reject)メッセージ、PDUセッション解放コマンド(PDU session release command)メッセージ、PDUセッション解放完了(PDU session release complete)メッセージ等が含まれてもよい。
 また、SMのための手続き又はSM手続きには、PDUセッション確立手続き(PDU session establishment procedure)、PDUセッション変更手続き(PDU session modification procedure)、PDUセッション解放手続き(UE-requested PDU session release procedure)が含まれてもよい。なお、各手続きは、UEから開始される手続きであってもよいし、NWから開始される手続きであってもよい。
 また、MM(Mobility management)メッセージ(NAS MMメッセージとも称する)は、MMのための手続きに用いられるNASメッセージであってよく、UE_A10とAMFの間で送受信される制御メッセージであってよい。さらに、MMメッセージには、登録要求(Registration request)メッセージ、登録受諾(Registration accept)メッセージ、登録拒絶(Registration reject)メッセージ、登録解除要求(De-registration request)メッセージ、登録解除受諾(De-registration accept)メッセージ、configuration updateコマンド(configuration update command)メッセージ、設定更新受諾(configuration update complete)メッセージ、サービス要求(Service request)メッセージ、サービス受諾(Service accept)メッセージ、サービス拒絶(Service reject)メッセージ、通知(Notification)メッセージ、通知応答(Notification response)メッセージ等が含まれてよい。
 また、MMのための手続き又はMM手続きは、登録手続き(Registration procedure)、登録解除手続き(De-registration procedure)、ジェネリックUE設定更新(Generic UE configuration update)手続き、認証・承認手続き、サービス要求手続き(Service request procedure)、ページング手続き(Paging procedure)、通知手続き(Notification procedure)が含まれてよい。
 また、5GS(5G System)サービスは、コアネットワーク_B190を用いて提供される接続サービスでよい。さらに、5GSサービスは、EPSサービスと異なるサービスでもよいし、EPSサービスと同様のサービスでもよい。
 また、non 5GSサービスは、5GSサービス以外のサービスでよく、EPSサービス、及び/又はnon EPSサービスが含まれてもよい。
 また、PDN(Packet Data Network)タイプとは、PDNコネクションのタイプを示すものであり、IPv4、IPv6、IPv4v6、non-IPがある。IPv4が指定された場合、IPv4を用いてデータの送受信を行う事を示す。IPv6が指定された場合は、IPv6を用いてデータの送受信を行う事を示す。IPv4v6が指定された場合は、IPv4又はIPv6を用いてデータの送受信を行う事を示す。non-IPが指定された場合は、IPを用いた通信ではなく、IP以外の通信方法によって通信する事を示す。
 また、PDU(Protocol Data Unit/Packet Data Unit)セッションとは、PDU接続性サービスを提供するDNとUEとの間の関連性として定義することができるが、UEと外部ゲートウェイとの間で確立される接続性であってもよい。UEは、5GSにおいて、アクセスネットワーク_B及びコアネットワーク_Bを介したPDUセッションを確立することにより、PDUセッションを用いて、DNとの間のユーザデータの送受信を行うことができる。ここで、この外部ゲートウェイとは、UPF、SCEF等であってよい。UEは、PDUセッションを用いて、DNに配置されるアプリケーションサーバー等の装置と、ユーザデータの送受信を実行する事ができる。
 尚、各装置(UE、及び/又はアクセスネットワーク装置、及び/又はコアネットワーク装置)は、PDUセッションに対して、1以上の識別情報を対応づけて管理してもよい。尚、これらの識別情報には、DNN、QoSルール、PDUセッションタイプ、アプリケーション識別情報、NSI識別情報、及びアクセスネットワーク識別情報のうち1以上が含まれてもよいし、その他の情報がさらに含まれてもよい。さらに、PDUセッションを複数確立する場合には、PDUセッションに対応づけられる各識別情報は、同じ内容でもよいし、異なる内容でもよい。
 また、DNN(Data Network Name)は、コアネットワーク及び/又はDN等の外部ネットワークを識別する識別情報でよい。さらに、DNNは、コアネットワークB190を接続するPGW/UPF等のゲートウェイを選択する情報として用いることもできる。さらに、DNNは、APN(Access Point Name)に相当するものでもよい。
 また、PDU(Protocol Data Unit/Packet Data Unit)セッションタイプは、PDUセッションのタイプを示すものであり、IPv4、IPv6、Ethernet、Unstructuredがある。IPv4が指定された場合、IPv4を用いてデータの送受信を行うことを示す。IPv6が指定された場合は、IPv6を用いてデータの送受信を行うことを示す。Ethernetが指定された場合は、Ethernetフレームの送受信を行うことを示す。また、Ethernetは、IPを用いた通信を行わないことを示してもよい。Unstructuredが指定された場合は、Point-to-Point(P2P)トンネリング技術を用いて、DNにあるアプリケーションサーバー等にデータを送受信することを示す。P2Pトンネリング技術としては、例えば、UDP/IPのカプセル化技術を用いても良い。尚、PDUセッションタイプには、上記の他にIPが含まれても良い。IPは、UEがIPv4とIPv6の両方を使用可能である場合に指定する事ができる。
 また、PLMN(Public land mobile network)は、移動無線通信サービスを提供する通信ネットワークである。PLMNは、通信事業者であるオペレータが管理するネットワークであり、PLMN IDにより、オペレータを識別することができる。UEのIMSI(International Mobile Subscriber Identity)のMCC(Mobile Country Code)とMNC(Mobile Network Code)と一致するPLMNはHome PLMN(HPLMN)であってよい。さらに、UEは、USIMに1又は複数のEPLMN(Equivalent HPLMN)を識別するための、Equivalent HPLMN listを保持していてもよい。HPLMN、及び/又はEPLMNと異なるPLMNはVPLMN(Visited PLMN)であってよい。UEが登録を成功したPLMNはRPLMN(Registered PLMN)であってよい。
 トラッキングエリアは、コアネットワークが管理する、UE_A10の位置情報で表すことが可能な単数又は複数の範囲である。トラッキングエリアは、複数のセルで構成されもよい。さらに、トラッキングエリアは、ページング等の制御メッセージがブロードキャストされる範囲でもよいし、UE_A10がハンドオーバー手続きをせずに移動できる範囲でもよい。さらに、トラッキングエリアは、ルーティングエリアでもよいし、ロケーションエリアでもよいし、これらと同様のものであればよい。以下、トラッキングエリアはTA(Tracking Area)であってもよい。トラッキングエリアは、TAC(Tracking area code)とPLMNで構成されるTAI(Tracking Area Identityにより識別されてよい。
 レジストレーションエリア(Registration area又は登録エリア)は、AMFがUEに割り当てる1又は複数のTAの集合である。なお、UE_A10は、レジストレーションエリアに含まれる一又は複数のTA内を移動している間は、トラッキングエリア更新のための信号を送受信することなく移動することができてよい。言い換えると、レジストレーションエリアは、UE_A10がトラッキングエリア更新手続きを実行することなく移動できるエリアを示す情報群であってよい。レジストレーションエリアは、1又は複数のTAIにより構成されるTAI listにより識別されてよい。
 UE IDとは、UEを識別する為の情報である。具体的に、例えば、UE IDは、SUCI(SUbscriptionConcealed Identifier)、又はSUPI(Subscription Permanent Identifier)、又はGUTI(Globally Unique Temporary Identifier)、又はIMEI(International Mobile Subscriber Identity)、又はIMEISV(IMEI Software Version)又は、TMSI(Temporary Mobile Subscriber Identity)であってもよい。又は、UE IDはアプリケーション又はネットワーク内で設定されたその他の情報であってもよい。さらに、UE IDは、ユーザを識別する為の情報であってもよい。
 UAV(Unmanned Aerial Vehicle)とは、飛行ドローンである。UAVは、UAV controllerと対応付けられてもよい。さらに、UAVは、UAV controllerと対応付けられて、コアネットワーク装置、及び/又はUTMに管理されてもよい。さらに、UAVは、UAV controllerと対応付けられて管理される場合、UASとしてコアネットワーク装置、及び/又はUTMに管理されてもよい。UAVは、コアネットワーク装置、及び/又はUTMに自身の情報(識別情報、IPアドレス、位置情報など)を管理されてもよい。また、UAVは、UEであってもよい。
 UAV controller(Unmanned Aerial Vehicle controller)とは、UAVを操作するためのコントローラである。UAV controllerは、UAVと対応付けられてもよい。さらに、UAV controllerは、UAVと対応付けられて、コアネットワーク装置、及び/又はUTMに管理されてもよい。さらに、UAV controllerは、UAVと対応付けられて管理される場合、UASとしてコアネットワーク装置、及び/又はUTMに管理されてもよい。UAV controllerは、コアネットワーク装置、及び/又はUTMに、自身の情報(識別情報、IPアドレス、位置情報など)を管理されてもよい。また、UAV controllerは、UEであってもよい。尚、UAV controllerは、UACと表現されてもよいし、UAV-Cと表現されてもよい。
 UAS(Unmanned Aerial System)は、UAVとUAV controllerで構成されてもよい。UASは、コアネットワーク装置、及び/又はUTMに管理されてもよい。UASは、一つのUAVと、一つのUAV controllerで構成されてもよい。
 さらに、UAS(Unmanned Aerial System)は、UAVと関連機能で構成されていてもよい。ここで、関連機能とは、C2(command and control)リンクを含んでいてもよい。さらに、C2(command and control)リンクは、UAVと制御装置との間のリンクであってもよいし、UAVとネットワークとの間のリンクであってもよい。さらに、C2リンクは、遠隔識別のためのリンクであってもよい。
 UTM(Unmanned Aerial System Traffic Management)は、UAV、及び/又はUAV controller、及び/又はUASを管理するための機能を備える装置である。UTMは、コアネットワーク内の装置であってもよいし、DNの装置であってもよい。また、UTMは、UAVを自律的に操縦するための装置であってもよい。また、UTMは、UAV、及び/又はUAV controllerの識別情報やIPアドレス、位置情報などを管理するための機能を備えていてもよいし、前記以外のUAV、及び/又はUAV controllerの情報を管理するための機能を備えていてもよい。さらに、UTMは、UAVとUAV controllerを対応付けて、UASとして管理してもよい。また、UTMは、コアネットワーク装置に、ネットワークサービスを要求するための情報を送信してもよい。
 さらに、UTMは、自動車両運転の範囲を管理するための、一又は複数の機能やサービスを提供する装置であってもよい。また、UTMは、USSの機能を備える装置であってもよい。尚、UTMは、UTM/USS、及び/又はUSS/UTMと表現されてもよい。
 USS(Unmanned Aerial System Service Supplier)は、UTM内の装置であってよい。USSは、UTMに備えられる装置であってもよい。また、UTMが実行可能な機能は、USSが実行可能な機能であってもよい。また、UTMが実行可能な挙動は、USSが実行可能な挙動として読み替えてもよい。UTMが処理を行うと表現した場合、USSが処理を行うと読み替えてもよい。
 Always-on PDU sessionとは、UEが、5GMM-IDLE状態から5GMM-CONNECTED状態に遷移するたびに、ユーザプレーンリソースをアクティブにしなければならないPDUセッションのことである。UEは、上位レイヤからの指示に基づいて、Always-on PDU sessionとしてPDUセッションの確立をコアネットワーク、及び/又はコアネットワーク装置に要求することができる。コアネットワーク、及び/又はコアネットワーク装置は、PDUセッションがAlways-on PDU sessionとして確立できるか否かを決定する。ここで、Always-on PDU sessionの確立は、C2コミュニケーションのためのPDUセッションの確立を意味してもよい。さらに、Always-on PDU sessionの確立は、C2コミュニケーション用のQoSフローを取り扱うPDUセッションの確立を意味してもよい。
 ここで、5GMM-IDLE状態は、CM-IDLE状態であってもよい。さらに、5GMM-CONNECTED状態は、CM-CONNECTED状態であってもよい。さらに、PDUセッションがAlways-on PDU sessionとして確立できるか否かを決定するコアネットワーク装置は、SMFであってもよい。
 Command and Control (C2)コミュニケーションとは、UAV controller又はUTMから、UAVに、UAVを操作するためのコマンド及び制御情報を含むメッセージを配信するためのユーザプレーンの通信路である。さらに、2コミュニケーションは、UAVから、UAV controller又はUTMに、テレメトリーデータを報告するためのユーザプレーンの通信路であってもよい。さらに、C2コミュニケーションは、UAV controllerからUTMを介して、UAVに、UAVを操作するためのコマンド及び制御情報を含むメッセージを配信するためのユーザプレーンの通信路であってもよい。
 ここで、C2コミュニケーションは、PDUセッションによって実現される通信路であってもよい。さらに、C2コミュニケーションのためのPDUセッションは、Always-on PDU sessionによって実現されてもよい。さらに、C2コミュニケーションのためのPDUセッションの確立は、Always-on PDU sessionの確立を意味してもよい。さらに、C2コミュニケーション用のQoSフローを取り扱うPDUセッションの確立は、Always-on PDU sessionの確立を意味してもよい。
 [2.7. 本実施形態における識別情報]
 次に、本実施形態において、各装置により送受信、及び記憶管理される識別情報について説明する。
 まず、第1の識別情報は、Always-on PDU sessionとしてPDUセッションを確立することを要求する情報である。第1の識別情報は、Always-on PDU sessionとしてPDUセッションを確立することを要求しているか否かを示す情報であってもよい。さらに、第1の識別情報は、Always-on PDU session requested情報要素であってもよい。
 さらに、第1の識別情報は、Always-on PDU sessionの確立を要求するか否かを示す情報であってもよい。例えば、第1の識別情報は、Always-on PDU sessionの確立を要求することを示す情報であってもよい。逆に、第1の識別情報は、Always-on PDU sessionの確立を要求しないことを示す情報であってもよい。
 ここで、Always-on PDU sessionの確立は、C2コミュニケーションのためのPDUセッションの確立を意味してもよい。さらに、Always-on PDU sessionの確立は、C2コミュニケーション用のQoSフローを取り扱うPDUセッションの確立を意味してもよい。
 また、第2の識別情報は、Always-on PDU sessionとしてPDUセッションを確立することを示す情報である。第2の識別情報は、Always-on PDU sessionとしてPDUセッションを確立するか否かを示す情報であってもよい。さらに、第2の識別情報は、Always-on PDU sessionの確立が許可されているか否かを示す情報であってもよい。第2の識別情報は、Always-on PDU session indication情報要素であってもよい。
 さらに、第2の識別情報は、Always-on PDU sessionが確立されるか否かを示す情報であってもよい。言い換えると、第2の識別情報は、Always-on PDU sessionの確立が行われるか否かを示す情報であってもよい。例えば、第2の識別情報は、Always-on PDU sessionの確立が必要であることを示す情報であってもよい。逆に、第2の識別情報は、Always-on PDU sessionの確立が許可されていないことを示す情報であってもよい。
 ここで、Always-on PDU sessionの確立は、C2コミュニケーションのためのPDUセッションの確立を意味してもよい。さらに、Always-on PDU sessionの確立は、C2コミュニケーション用のQoSフローを取り扱うPDUセッションの確立を意味してもよい。
 また、第10の識別情報は、UAV controllerの識別情報である。第10の識別情報は、新しいUAV controllerの識別情報であってもよい。さらに、第10の識別情報は、UAVが記憶しているUAV controllerの識別情報とは異なる識別情報であってよい。逆に、第10の識別情報は、UAVが記憶しているUAV controllerの識別情報と同じ識別情報であってもよい。
 さらに、第10の識別情報は、第11の識別情報と関連付けられた情報であってよい。具体的には、第10の識別情報によって識別されるUAV controllerは、第11の識別情報が示すIPアドレスが割り当てられたUAV controllerであってよい。
 ここで、前記UAV controllerは、UAVに対応付けられているUAV controllerであってよい。より詳細には、前記UAV controllerは、第10の識別情報、及び/又は第11の識別情報を受信したUAVに対応付けられているUAV controllerであってよい。
 また、第11の識別情報は、UAV controllerのIPアドレスである。第11の識別情報は、新しいUAV controllerのIPアドレスであってもよい。さらに、第11の識別情報は、UAVが記憶しているUAV controllerのIPアドレスとは異なる識別情報であってよい。逆に、第11の識別情報は、UAVが記憶しているUAV controllerのIPアドレスと同じ識別情報であってよい。
 さらに、第11の識別情報は、第10の識別情報と関連付けられた情報であってよい。具体的には、第11の識別情報が示すIPアドレスは、第10の識別情報で識別されるUAV controllerのIPアドレスであってよい。
 ここで、前記UAV controllerは、UAVに対応付けられているUAV controllerであってよい。より詳細には、前記UAV controllerは、第10の識別情報、及び/又は第11の識別情報を受信したUAVに対応付けられているUAV controllerであってよい。
 また、第12の識別情報は、UAVの識別情報である。第12の識別情報は、新しいUAVの識別情報であってもよい。さらに、第12の識別情報は、UAV controllerが記憶しているUAVの識別情報とは異なる識別情報であってよい。逆に、第12の識別情報は、UAV controllerが記憶しているUAVの識別情報と同じ識別情報であってもよい。
 さらに、第12の識別情報は、第13の識別情報と関連付けられた情報であってよい。具体的には、第12の識別情報によって識別されるUAVは、第13の識別情報が示すIPアドレスが割り当てられたUAVであってよい。
 ここで、前記UAVは、UAV controllerに対応付けられているUAVであってよい。より詳細には、前記UAVは、第12の識別情報、及び/又は第13の識別情報を受信したUAV controllerに対応付けられているUAVであってよい。
 また、第13の識別情報は、UAVのIPアドレスである。第13の識別情報は、新しいUAVのIPアドレスであってもよい。さらに、第13の識別情報は、UAV controllerが記憶しているUAVのIPアドレスとは異なる識別情報であってよい。逆に、第13の識別情報は、UAV controllerが記憶しているUAVのIPアドレスと同じ識別情報であってよい。
 さらに、第13の識別情報は、第12の識別情報と関連付けられた情報であってよい。具体的には、第13の識別情報が示すIPアドレスは、第12の識別情報で識別されるUAVのIPアドレスであってよい。
 ここで、前記UAVは、UAV controllerに対応付けられているUAVであってよい。より詳細には、前記UAVは、第12の識別情報、及び/又は第13の識別情報を受信したUAV controllerに対応付けられているUAVであってよい。
 また、第14の識別情報は、Always-on PDU sessionとしてPDUセッションが確立されるか否かを示す情報である。第14の識別情報は、第2の識別情報と同じ情報であってもよい。
 さらに、第14の識別情報は、確立されているPDUセッションが、Always-on PDU sessionとして扱われるか否かを示す情報であってもよい。さらに、第14の識別情報は、確立されているPDUセッションが、Always-on PDU sessionとして確立し直されるか否かを示す情報であってもよい。
 さらに、第14の識別情報が示す内容は、第2の識別情報が示す情報と同じあってもよいし、第2の識別情報が示す情報とは異なっていてもよい。
 具体的には、第2の識別情報がAlways-on PDU sessionの確立が必要であることを示している場合、第14の識別情報は、Always-on PDU sessionの確立が必要であることを示してもよい。さらに、第2の識別情報がAlways-on PDU sessionの確立が許可されていないことを示している場合、第14の識別情報は、Always-on PDU sessionの確立が許可されていないことを示してもよい。
 逆に、第2の識別情報がAlways-on PDU sessionの確立が必要であることを示している場合、第14の識別情報は、Always-on PDU sessionの確立が許可されていないことを示してもよい。さらに、第2の識別情報がAlways-on PDU sessionの確立が許可されていないことを示している場合、第14の識別情報は、Always-on PDU sessionの確立が必要であることを示してもよい。
 ここで、Always-on PDU sessionの確立は、C2コミュニケーションのためのPDUセッションの確立を意味してもよい。さらに、Always-on PDU sessionの確立は、C2コミュニケーション用のQoSフローを取り扱うPDUセッションの確立を意味してもよい。
 また、第20の識別情報は、PDUセッション変更手続き及び/又はPDUセッション解放手続きが拒絶された理由を示す一つ以上の理由値(Cause Value)を示す情報である。例えば、理由値は、UEが飛行中であることを示す情報であってもよいし、UEが飛行中であること以外の拒絶を示す理由値を示す情報であってもよい。
 [3. 第1の実施形態]
 [3.1. 第1の実施形態で用いられる手続き]
 まず、第1の実施形態で用いられる手続きについて説明する。第1の実施形態で用いられる手続きには、登録手続き(Registration procedure)、PDUセッション確立手続き(PDU session establishment procedure)、PDUセッション変更手続き(PDU session modification procedure)、PDUセッション解放手続き(PDU session release procedure)等が含まれる。以下、各手続きについて説明する。
 尚、第1の実施形態では、図2に記載されているように、HSSとUDM、PCFとPCRF、SMFとPGW-C、UPFとPGW-Uが、それぞれ同一の装置/機能(つまり、同一の物理的なハードウェア、又は同一の論理的なハードウェア、又は同一のソフトウェア)として構成されている場合を例にとって説明する。しかし、本実施形態に記載される内容は、これらが異なる装置/機能(つまり、異なる物理的なハードウェア、又は異なる論理的なハードウェア、又は異なるソフトウェア)として構成される場合にも適用可能である。例えば、これらの間で、直接データの送受信を行ってもよいし、AMF、MME間のN26インターフェースを介してデータを送受信してもよいし、UEを介してデータを送受信してもよい。
 次に、通信手続きを、図10を用いて説明する。以下、通信手続きは本手続きとも称し、本手続きには、登録手続き(Registration procedure)、UE主導のPDUセッション確立手続き(PDU session establishment procedure)、セッションマネジメント手続きが含まれる。登録手続き、PDUセッション確立手続き、セッションマネジメント手続きの詳細は、後述する。
 具体的には、各装置が登録手続き(S900)を実行することにより、UEはネットワークに登録された状態(RM-REGISTERED状態)に遷移する。次に、各装置がPDUセッション確立手続き(S902)を実行することにより、UEは、コアネットワーク_B190を介して、PDU接続サービスを提供するDNとの間でPDUセッションを確立し、各装置は第1の状態に遷移する(S904)。尚、このPDUセッションは、アクセスネットワーク、UPF_A235を介して確立されていることを想定しているが、それに限られない。すなわち、UPF_A235とアクセスネットワークとの間に、UPF_A235とは異なるUPF(UPF_C239)が存在してもよい。このとき、このPDUセッションは、アクセスネットワーク、UPF_C239、UPF_A235を介して確立されることになる。次に、第1の状態の各装置は任意のタイミングで、セッションマネジメント手続きを実行してもよい(S906)。ここで、セッションマネジメント手続きは、ネットワーク主導のセッションマネジメント手続きであってもよいし、UE主導のセッションマネジメント手続きであってもよい。
 尚、各装置は、セッションマネジメント手続きを、複数回実行してもよい。例えば、各装置は、第1のセッションマネジメント手続きを実行した後に、第2のセッションマネジメント手続きを実行してもよい。ここで、第1のセッションマネジメント手続きは、ネットワーク主導のセッションマネジメント手続きであってもよいし、UE主導のセッションマネジメント手続きであってもよい。さらに、第2のセッションマネジメント手続きは、ネットワーク主導のセッションマネジメント手続きであってもよいし、UE主導のセッションマネジメント手続きであってもよい。さらに、第1のセッションマネジメント手続きと第2のセッションマネジメント手続きとは、同じ種類の手続きであってもよいし、異なる種類の手続きであってもよい。
 尚、各装置は、登録手続き及び/又はPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きにおいて、各装置の各種能力情報及び/又は各種要求情報を交換してもよい。また、各装置は、各種情報の交換及び/又は各種要求の交渉を登録手続きで実施した場合、各種情報の交換及び/又は各種要求の交渉をPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きで実施してもよいし、しなくてもよい。また、各装置は、各種情報の交換及び/又は各種要求の交渉を登録手続きで実施しなかった場合、各種情報の交換及び/又は各種要求の交渉をPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きで実施してもよい。また、各装置は、各種情報の交換及び/又は各種要求の交渉を登録手続きで実施した場合でも、各種情報の交換及び/又は各種要求の交渉をPDUセッション確立手続き及び/又はネットワーク主導のセッションマネジメント手続きで実施してもよい。
 また、各装置は、PDUセッション確立手続きを、登録手続きの中で実行してもよく、登録手続きの完了後に実行してもよい。また、PDUセッション確立手続きが登録手続きの中で実行される場合、PDUセッション確立要求メッセージは登録要求メッセージに含まれて送受信されてよく、PDUセッション確立受諾メッセージは登録受諾メッセージに含まれて送受信されてよく、PDUセッション確立完了メッセージは登録完了メッセージに含まれて送受信されてよく、PDUセッション確立拒絶メッセージは登録拒絶メッセージに含まれて送受信されてよい。また、PDUセッション確立手続きが登録手続きの中で実行された場合、各装置は、登録手続きの完了に基づいてPDUセッションを確立してもよいし、各装置間でPDUセッションが確立された状態へ遷移してもよい。
 また、本手続きに関わる各装置は、本手続きで説明する各制御メッセージを送受信することにより、各制御メッセージに含まれる1以上の識別情報を送受信し、送受信した各識別情報をコンテキストとして記憶してもよい。
 また、本手続きにおけるUAVの通信形態を図11に示す。尚、UAVは、UAV controllerと対応付けてコアネットワーク装置、及び/又はUTMに管理されてもよい。さらに、UAVは、UAV controllerと対応付けて管理される場合、UASとしてコアネットワーク装置、及び/又はUTMに管理されてもよい。
 まず、UAVは、第1の3GPP PLMNに接続されており(S1400)、UAV controllerは、第2の3GPP PLMNに接続されている(S1402)。さらに、UTMは、第1の3GPP PLMN、及び/又は第2の3GPP PLMNに接続されている(S1406)(S1408)。
 尚、UAVと第1の3GPP PLMNとの間の通信は、UAV1インターフェースを用いて行われてよい(S1400)。さらに、UAV controllerと第2の3GPP PLMNとの間の通信も、UAV1インターフェースを用いて行われてよい(S1402)。さらに、UTMと第1の3GPP PLMN、及び/又は第2の3GPP PLMNとの間の通信は、UAV6インターフェースを用いて行われてよい。
 次に、UAVとUTMとは、第1の3GPP PLMNを介して通信を行ってよい(S1410)。さらに、UAV controllerとUTMとは、第2の3GPP PLMNを介して通信を行ってよい(S1412)。
 尚、UAVとUTMとの間の通信は、UAV9インターフェースを用いて行われてよい(S1410)。さらに、UAV controllerとUTMとの間の通信も、UAV9インターフェースを用いて行われてよい (S1412)。
 次に、UAVとUAV controllerとは、UAVとUAV controllerとの間で、通信を行ってもよい。具体的には、UAVとUAV controllerとは、UTMを介さずに、第1の3GPP PLMNと、第2の3GPP PLMNとを介して通信を行ってもよいし(S1404)、第1の3GPP PLMNと、UTMと、第2の3GPP PLMNとを介して通信を行ってもよい(S1410)(S1412)。
 尚、UTMを介さずに、第1の3GPP PLMNと、第2の3GPP PLMNとを介した、UAVとUAV controllerとの間の通信は、UAV3インターフェースを用いて行われてよい。さらに、第1の3GPP PLMNと、UTMと、第2の3GPP PLMNとを介した、UAVとUAV controllerとの間の通信は、UAV9インターフェースを用いて行われてよい。
 ここで、UAV1インターフェースは、UAV、及び/又はUAV controllerと、3GPP PLMNとを接続するインターフェースであってよい。さらに、UAV3インターフェースは、UAVとUAV controllerとを接続するインターフェースであってよい。さらに、UAV6インターフェースは、UTMと、3GPP PLMNとを接続するインターフェースであってよい。さらに、UAV9インターフェースは、UAV、及び/又はUAV controllerと、UTMとを接続するインターフェースであってよい。
 さらに、第1の3GPP PLMN、及び第2の3GPP PLMNは、移動無線通信サービスを提供する通信ネットワークであってよい。第1の3GPP PLMN、及び第2の3GPP PLMNは、アクセスネットワーク、及び/又はコアネットワークによって構成された通信ネットワークであってよい。さらに、第1の3GPP PLMN、及び第2の3GPP PLMNは、単に、PLMNと呼称されてもよい。ここで、第1の3GPP PLMNと第2の3GPP PLMNは、同一のPLMNであってもよいし、異なるPLMNであってもよい。
 尚、上記では、UAVが接続するPLMNと、UAV controllerが接続するPLMNとが異なる例について説明してきたが、UAVが接続するPLMNとUAV controllerが接続するPLMNとは同じPLMNであってもよい。この場合、上記で説明してきた第1の3GPP PLMNと第2の3GPP PLMNとは同じPLMNであってよい。さらに、この場合、UAVと、UAV controllerと、UTMとは、同一のPLMNに接続していてよい。さらに、この場合、第1の3GPP PLMNと第2の3GPP PLMNとの間の通信は、同一PLMN内の通信であってよい。例えば、この場合、UTMを介さない、UAVとUAV controllerとの間の通信(S1404)は、単一のPLMN内で折り返される通信であってもよい。
 [3.2. システム情報の取得手続き]
 [3.3. 登録手続き]
 次に、登録手続き(Registration procedure)について、図6を用いて説明する。本章では、この登録手続きを、単に、本手続きと称する場合がある。登録手続きは、UEが主導してアクセスネットワーク_B、及び/又はコアネットワーク_B、及び/又はDNへ登録する為の手続きである。UEは、ネットワークに登録していない状態であれば、例えば、電源投入時等の任意のタイミングで本手続きを実行することができる。言い換えると、UEは、非登録状態(5GMM-DEREGISTERED state)であれば任意のタイミングで本手続きを開始できる。また、各装置(特にUEとAMF)は、登録手続きの完了に基づいて、登録状態(5GMM-REGISTEDED state)に遷移することができる。尚、各登録状態は、アクセス毎に各装置で管理されてよい。具体的には、各装置は3GPPアクセスに対する登録の状態(登録状態又は非登録状態)と、non-3GPPアクセスに対する登録の状態を独立して管理してよい。
 さらに、登録手続きは、ネットワークにおけるUEの位置登録情報を更新する、及び/又は、UEからネットワークへ定期的にUEの状態を通知する、及び/又は、ネットワークにおけるUEに関する特定のパラメータを更新する為の手続きであってもよい。
 UEは、TAを跨ぐモビリティをした際に、登録手続きを開始してもよい。言い換えると、UEは、保持しているTAリストで示されるTAとは異なるTAに移動した際に、登録手続きを開始してもよい。さらに、UEは、PDUセッションの切断や無効化が原因で、各装置のコンテキストの更新が必要な際に、登録手続きを開始してもよい。さらに、UEは、UEのPDUセッション確立に関する、能力情報及び/又はプリファレンスに変化が生じた場合、登録手続きを開始してもよい。さらに、UEは、定期的に登録手続きを開始してもよい。さらに、UEは、登録手続きの完了、又はPDUセッション確立手続きの完了、又は各手続きでネットワークから受信した情報に基づいて、登録手続きを開始してもよい。尚、UEは、これらに限らず、任意のタイミングで登録手続きを実行することができる。
 なお、上述したUEがネットワークに登録していない状態(非登録状態)から登録された状態(登録状態)に遷移する為の手続きは、初期登録手続き(initial registration procedure)又は初期登録のための登録手続き(registration procedure for initial registration)であってよい。また、UEがネットワークに登録された状態(登録状態)で実行された登録手続きは、移動及び定期的な登録更新の為の登録手続き(registration procedure for mobility and periodic registration update)又は移動及び定期的な登録手続き(mobility and periodic registration procedure)であってよい。
 まず、UEは、AMFに登録要求(Registration request)メッセージを送信することにより(S600)(S602)(S604)、登録手続きを開始する。具体的には、UEは、登録要求メッセージを含むRRCメッセージを、基地局装置(5G AN、gNBとも称する)に送信する(S600)。尚、登録要求メッセージは、N1インターフェース上で送受信されるNASメッセージである。また、RRCメッセージは、UEと基地局装置との間で送受信される制御メッセージであってよい。また、NASメッセージはNASレイヤで処理され、RRCメッセージはRRCレイヤで処理される。尚、NASレイヤはRRCレイヤよりも上位のレイヤである。
 ここで、UEは登録要求メッセージ及び/又はRRCメッセージに、本手続きの種類を示す識別情報を含めて送信してよい。ここで、本手続きの種類を示す識別情報は、5GS registration type IE(Information Element)であってよく、本手続きが初期登録の為、又は移動に伴う登録情報更新の為、又は定期的な登録情報更新の為、又は緊急時の登録の為、の登録手続きであることを示す情報であってよい。
 UEは、UEがサポートする機能をネットワークに通知するために、UEの能力情報を登録要求メッセージに含めてもよい。ここで、UEの能力情報は、5GSの5GMM capability IEであってよい。
 UEは、これらの識別情報を、これらとは異なる制御メッセージ、例えば、RRCレイヤよりも下位のレイヤ(例えば、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、PDCP(Packet Data Convergence Protocol)レイヤ、SDAP(Service Data Adaptation Protocol)レイヤ等)の制御メッセージに含めて送信してもよい。尚、UEは、これらの識別情報を送信することで、UEが各機能をサポートしていることを示してもよいし、UEの要求を示してもよいし、これら両方を示してもよい。
 UEは、登録要求メッセージ及び/又はRRCメッセージに、例えばUE ID及び/又はPLMN ID及び/又はAMF識別情報を含めて送信してもよい。ここで、AMF識別情報とは、AMF、又はAMFの集合を識別する情報であってよく、例えば、5G-S-TMSI(5G S-Temporary Mobile Subscription Identifier)やGUAMI(Globally Unique AMF Identifier)であってよい。
 基地局装置は、登録要求メッセージを含むRRCメッセージを受信すると、登録要求メッセージを転送するAMFを選択する(S602)。基地局装置は、受信したRRCメッセージから登録要求メッセージを取り出し、選択したAMFに、登録要求メッセージを転送する(S604)。
 AMFは、登録要求メッセージを受信した場合、第1の条件判別を実行することができる。第1の条件判別とは、ネットワークがUEの要求を受諾するか否かを判別するためのものである。AMFは、第1の条件判別を真と判定した場合、S610からS612 の手続きを実行してよい。また、AMFは、第1の条件判別を偽と判定した場合、S610の手続きを実行してもよい。
 また、第1の条件判別は、AMF以外のネットワーク機能(NFとも称する)が実行してもよい。そのNFは、例えば、NSSF(Network Slice Selection Function)、NWDAF(Network Data Analytics Function)、PCF(Policy Control Function)であってもよい。AMF以外のNFが第1の条件判別を行う場合は、AMFは、そのNFに対して、第1の条件判別を行うために必要な情報、具体的には、UEから受信した情報の少なくとも一部を提供してよい(S606)。そして、そのNFがAMFから受信した情報に基づいて第1の条件判別の真偽を判別した場合は、AMFに対して第1の条件判別の結果(つまり、真か偽か)を含む情報を伝えてよい。AMFは、そのNFから受信した第1の条件判別の結果に基づいて、UEに対して送信する識別情報、及び/又は制御メッセージを決定してよい。
 なお、第1の条件判別が真の場合、S610で送受信される制御メッセージは、登録受諾(Registration accept)メッセージであって良いし、第1の条件判別が偽の場合、S610で送受信される制御メッセージは、登録拒絶(Registration reject)メッセージであってよい。
 尚、第1の条件判別は、登録要求メッセージの受信、及び/又は登録要求メッセージに含まれる各識別情報、及び/又は加入者情報、及び/又はネットワークの能力情報、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はユーザの登録情報、及び/又はAMFが保持するコンテキスト等に基づいて、実行されてもよい。
 例えば、UEの要求をネットワークが許可する場合、第1の条件判別は真と判定されてよく、UEの要求をネットワークが許可しない場合、第1の条件判別は偽と判定されてよい。また、UEの登録先のネットワーク、及び/又はネットワーク内の装置が、UEの要求する機能をサポートしている場合、第1の条件判別は真と判定されてよく、UEの要求する機能をサポートしていない場合、第1の条件判別は偽と判定されてよい。さらに、送受信される識別情報が許可される場合、第1の条件判別は真と判定されてよく、送受信される識別情報が許可されない場合、第1の条件判別は偽と判定されてよい。
 また、AMFは、受信した各識別情報、及び/又は加入者情報、及び/又はネットワークの能力情報、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はユーザの登録情報、及び/又はAMFが保持するコンテキスト等に基づいて、登録受諾メッセージを送信することで、UEの要求が受諾されたことを示してもよいし、登録拒絶メッセージを送信することでUEの要求が拒絶されたことを示してもよい。
 UEは、基地局装置を介して、制御メッセージ(登録受諾メッセージ又は登録拒絶メッセージ)を受信する(S610)。制御メッセージが登録受諾メッセージである場合、UEは、登録受諾メッセージを受信することで、登録要求メッセージによるUEの要求が受諾されたこと、及び登録受諾メッセージに含まれる各種の識別情報の内容を認識することができる。また、制御メッセージが登録拒絶メッセージである場合、UEは、登録拒絶メッセージを受信することで、登録要求メッセージによるUEの要求が拒絶されたこと、及び登録拒絶メッセージに含まれる各種の識別情報の内容を認識することができる。
 UEは、さらに、制御メッセージが登録受諾メッセージである場合、登録受諾メッセージに対する応答メッセージとして、登録完了メッセージを、第1の基地局装置を介して、AMFに送信することができる(S612)。ここで、登録完了メッセージは、N1インターフェース上で送受信されるNASメッセージであるが、UEと第1の基地局装置間はRRCメッセージに含まれて送受信されてよい。
 AMFは、第1の基地局装置を介して、登録完了メッセージを受信する(S612)。また、各装置は、登録受諾メッセージ、及び/又は登録完了メッセージの送受信に基づき、本手続きを完了する。
 また、各装置は、登録拒絶メッセージの送受信に基づいて、登録手続きを完了してもよい。
 尚、各装置は、登録受諾メッセージ及び/又は登録完了メッセージの送受信に基づいて、UEがネットワークに登録された状態(RM_REGISTERED state、又は5GMM-REGISTERED state)への遷移又は維持をしてもよいし、登録拒絶メッセージの送受信に基づいて、UEが現在のPLMNに対して登録拒絶メッセージを受信したアクセス上でネットワークに登録されていない状態(RM_DEREGISTERED state、又は5GMM-DEREGISTERED state)への遷移又は維持をしてもよい。また、各装置の各状態への遷移は、登録完了メッセージの送受信又は登録手続きの完了に基づいて行われてもよい。
 さらに、各装置は、登録手続きの完了に基づいて、登録手続きで送受信した情報に基づいた処理を実施してもよい。例えば、UEの一部の要求が拒絶されたことを示す情報を送受信した場合、UEの要求が拒絶された理由を認識してもよい。さらに、各装置は、UEの要求が拒絶された理由に基づいて、再度本手続きを実施してもよいし、コアネットワーク_Aや別のセルに対して登録手続きを実施してもよい。
 さらに、UEは、登録手続きの完了に基づいて、登録受諾メッセージ、及び/又は登録拒絶メッセージとともに受信した識別情報を記憶してもよいし、ネットワークの決定を認識してもよい。
 尚、本章に記載した登録手続きは、初期登録のための登録手続きであってもよいし、移動及び定期的な登録のための登録手続きであってもよい。
 [3.4. PDUセッション確立手続き]
 UEが、PDUセッション確立手続きを実行する場合の各装置の挙動を、図7を用いて説明する。本章では、PDUセッション確立手続きを、単に、本手続き、又はPDUセッション確立手続きと称する場合がある。
 尚、本手続きは、3.3章の手続きを1回以上実行した後に実行してもよい。
 まず、UEは、SMFにPDUセッション確立要求メッセージを送信し、PDUセッション確立手続きを開始する。そして、SMFは、UEから、PDUセッション確立要求メッセージを受信する。
 具体的には、UEは、アクセスネットワークを介して、AMFにPDUセッション確立要求メッセージを含むN1 SMコンテナを含むNASメッセージを送信することにより(S800)、PDUセッション確立手続きを開始する。NASメッセージは、例えばN1インターフェースを介して送信されるメッセージであり、アップリンクNASトランスポート(UL NAS TRANSPORT)メッセージであってよい。
 ここで、アクセスネットワークは、3GPPアクセス又はnon-3GPPアクセスであり、基地局装置を含んでよい。すなわち、UEは、基地局装置を介して、AMFにNASメッセージを送信する。
 また、UEは、PDUセッション確立要求メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージに、第1の識別情報を含めて送信することにより、UEが要求することを、ネットワーク側に通知することができる。ここで、第1の識別情報は、2.7章の通りであってよい。
 また、UEは、Always-on PDU sessionを確立する場合、PDUセッション確立要求メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージに、第1の識別情報を含めて送信してもよい。
 ここで、UEは、C2コミュニケーションをサポートするPDUセッションを確立する場合、PDUセッション確立要求メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージに、第1の識別情報を含めて送信してもよい。言い換えると、UEは、C2コミュニケーション用のQoSフローをサポートするPDUセッションを確立する場合、PDUセッション確立要求メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージに、第1の識別情報を含めて送信してもよい。
 さらに、UEは、C2コミュニケーションをサポートするPDUセッションの確立を要求する場合、Always-on PDU sessionの確立を要求してもよい。言い換えると、UEは、C2コミュニケーション用のQoSフローをサポートするPDUセッションの確立を要求する場合、Always-on PDU sessionの確立を要求してもよい。
 また、UEは、C2コミュニケーションを提供するPDUセッションを確立する場合、PDUセッション確立要求メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージに、第1の識別情報を含めて送信してもよい。言い換えると、UEは、C2コミュニケーションを行うためのQoSフローを提供するPDUセッションを確立する場合、PDUセッション確立要求メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージに、第1の識別情報を含めて送信してもよい。
 さらに、UEは、C2コミュニケーションを提供するPDUセッションの確立を要求する場合、Always-on PDU sessionの確立を要求してもよい。言い換えると、UEは、C2コミュニケーションを行うためのQoSフローを提供するPDUセッションの確立を要求する場合、Always-on PDU sessionの確立を要求してもよい。
 さらに、UEは、Always-on PDU sessionの確立を要求する場合、PDUセッション確立要求メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージに、第1の識別情報を含めて送信してもよい。
 尚、UEは、第1の識別情報をネットワークに送信するか否かを、UEの能力情報、及び/又はUEポリシー、及び/又はUEの状態、及び/又はユーザの登録情報、及び/又はUEが保持するコンテキスト等に基づいて、決定してもよい。
 尚、UEは、これらの識別情報を、これらとは異なる制御メッセージ、例えば、NASレイヤよりも下位レイヤ(例えば、RRCレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、SDAPレイヤ等)の制御メッセージや、NASレイヤよりも上位レイヤ(例えば、トランスポートレイヤ、セッションレイヤ、プレゼンテーションレイヤ、アプリケーションレイヤ等)の制御メッセージに含めて送信してもよい。
 次に、AMFは、NASメッセージを受信すると、UEが要求していること、及び/又はNASメッセージに含まれる情報等(メッセージ、コンテナ、情報)の内容を認識することができる。
 次に、AMFは、UEから受信したNASメッセージに含まれる情報等(メッセージ、コンテナ、情報)の少なくとも一部の転送先として、SMFを選択する(S802)。尚、AMFは、NASメッセージに含まれる情報等(メッセージ、コンテナ、情報)、及び/又は加入者情報、及び/又はネットワークの能力情報、及び/又はUEポリシー、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はユーザの登録情報、及び/又はAMFが保持するコンテキスト等に基づいて、転送先のSMFを選択してもよい。
 次に、AMFは、選択されたSMFに、例えばN11インターフェースを介して、UEから受信したNASメッセージに含まれる情報等(メッセージ、コンテナ、情報)の少なくとも一部を送信する(S804)。
 次に、SMFは、AMFから送信された情報等(メッセージ、コンテナ、情報)を受信すると、UEが要求していること、及び/又はAMFから受信した情報等(メッセージ、コンテナ、情報)の内容を認識することができる。
 ここで、SMFは、第2の条件判別をしてもよい。また、第2の条件判別は、ネットワークがUEの要求を受諾するか否かを判断する為のものであってよい。SMFは、第2の条件判別を真と判定した場合、図7の(A)の手続きを開始してよく、第2の条件判別を偽と判定した場合、図7の(B)の手続きを開始してよい。
 尚、第2の条件判別は、SMF以外のNFが実行してもよい。そのNFは、例えば、NSSF、NWDAF、PCF、NRFであってもよい。SMF以外のNFが第2の条件判別を行う場合は、SMFは、そのNFに対して、第2の条件判別を行うために必要な情報、具体的には、UEから受信した情報の少なくとも一部を提供してよい(S806)。そして、そのNFがSMFから受信した情報に基づいて第2の条件判別の真偽を判別した場合は、SMFに対して第2の条件判別の結果(つまり、真か偽か)を含む情報を伝えてよい。SMFは、そのNFから受信した第2の条件判別の結果に基づいて、UEに対して送信するべき識別情報、及び/又は制御メッセージを決定してよい。
 尚、第2の条件判別は、AMFから受信した情報等(メッセージ、コンテナ、情報)、及び/又は加入者情報(subscription information)、及び/又はネットワークの能力情報、及び/又はUEポリシー、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はユーザの登録情報、及び/又はSMFが保持するコンテキスト等に基づいて、実行されてもよい。
 例えば、UEの要求をネットワークが許可する場合、第2の条件判別は真と判定されてよく、UEの要求をネットワークが許可しない場合、第2の条件判別は偽と判定されてよい。また、UEの接続先のネットワーク、及び/又はネットワーク内の装置が、UEが要求する機能をサポートしている場合、第2の条件判別は真と判定されてよく、UEが要求する機能をサポートしていない場合、第2の条件判別は偽と判定されてよい。また、送受信された識別情報が許可される場合、第2の条件判別は真と判定されてよく、送受信された識別情報が許可されない場合、第2の条件判別は偽と判定されてよい。
 また、SMFがUEから、第1の識別情報を含まない制御メッセージ(PDUセッション確立要求メッセージ及び/又はN1 SMコンテナ及び/又はNASメッセージ)を受信した場合、第2の条件判別の真偽は、上記に基づいて判定されてよい。
 尚、第2の条件判別の真偽を判定する条件は、前述した条件に限らなくてよい。
 次に、図7の(A)の手続きの各ステップを説明する。
 次に、SMFは、確立するPDUセッションに対するUPFを選択し、選択されたUPFに、例えばN4インターフェースを介して、N4セッション確立要求メッセージを送信してもよい(S808)。N4セッション確立要求メッセージには、PCFから受信したPCCルールの少なくとも一部が含まれてもよい。
 ここで、SMFは、AMFから受信した情報等(メッセージ、コンテナ、情報)、及び/又はPCFから受信したPCCルール等の情報、及び/又は加入者情報、及び/又はネットワークの能力情報、及び/又はUEポリシー、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はユーザの登録情報、及び/又はSMFが保持するコンテキスト等に基づいて、1以上のUPFを選択してもよい。また、複数のUPFが選択された場合、SMFは、各UPFに対してN4セッション確立要求メッセージを送信してよい。ここでは、UPFが選択されたものとする。
 次に、UPFは、N4セッション確立要求メッセージを受信すると(S808)、SMFから受信した情報の内容を認識することができる。また、UPFは、N4セッション確立要求メッセージの受信に基づいて、例えばN4インターフェースを介して、SMFにN4セッション確立応答メッセージを送信してよい(S810)。
 次に、SMFは、N4セッション確立要求メッセージに対する応答メッセージとして、N4セッション確立応答メッセージを受信すると、UPFから受信した情報の内容を認識することができる。
 次に、SMFは、PDUセッション確立要求メッセージの受信、及び/又はUPFの選択、及び/又はN4セッション確立応答メッセージの受信などに基づいて、UEにPDUセッション確立受諾メッセージを送信する。そして、UEは、SMFから、PDUセッション確立受諾メッセージを受信する。
 具体的には、SMFは、PDUセッション確立要求メッセージの受信、及び/又はUPFの選択、及び/又はN4セッション確立応答メッセージの受信などに基づいて、例えばN11インターフェースを介して、N1 SMコンテナ、及び/又はN2 SM情報、及び/又はPDUセッションIDを、AMFに送信する(S812)。ここで、N1 SMコンテナには、PDUセッション確立受諾メッセージが含まれてよい。さらに、PDUセッションIDは、PDUセッション確立受諾メッセージに含まれていてもよい。
 次に、N1 SMコンテナ、及び/又はN2 SM情報、及び/又はPDUセッションIDを受信したAMFは、アクセスネットワークに含まれる第1の基地局装置を介して、UEにNASメッセージを送信する(S814)(S816)。ここで、NASメッセージは、例えばN1インターフェースを介して、送信される。また、NASメッセージは、ダウンリンクNASトランスポート(DL NAS TRANSPORT)メッセージであってよい。
 具体的には、AMFは、アクセスネットワークに含まれる基地局装置に対して、N2 PDUセッション要求メッセージを送信すると(S814)、N2 PDUセッション要求メッセージを受信した基地局装置は、UEに対して、NASメッセージを送信する(S816)。ここで、N2 PDUセッション要求メッセージには、NASメッセージ、及び/又はN2 SM情報が含まれてよい。また、NASメッセージには、PDUセッションID及び/又はN1 SMコンテナが含まれてよい。
 また、PDUセッション確立受諾メッセージは、PDUセッション確立要求に対する応答メッセージであってよい。また、PDUセッション確立受諾メッセージは、PDUセッションの確立が受諾されたことを示してよい。
 ここで、SMF及び/又はAMFは、PDUセッション確立受諾メッセージ、及び/又はN1 SMコンテナ、及び/又はPDUセッションID、及び/又はNASメッセージ、及び/又はN2 SM情報、及び/又はN2 PDUセッション要求メッセージを送信することで、PDUセッション確立要求メッセージによるUEの要求の少なくとも一部が受諾されたことを示してもよい。
 ここで、SMF及び/又はAMFは、PDUセッション確立受諾メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージ、及び/又はN2 SM情報、及び/又はN2 PDUセッション要求メッセージに、第2の識別情報を含めて送信してもよい。ここで、第2の識別情報は、2.7章の通りであってよい。
 尚、SMFは、これらの識別情報及び/又はPDUセッション確立受諾メッセージを送信することで、ネットワークが各機能をサポートしていることを示してもよいし、UEの要求が受諾されたことを示してもよいし、UEからの要求を許可していない事を示してもよいし、これらを組み合わせた情報を示してもよい。さらに、複数の識別情報が送受信される場合、これらの識別情報の2以上の識別情報は、1以上の識別情報として構成されてもよい。尚、各機能のサポートを示す情報と、各機能の使用の要求を示す情報は、同じ識別情報として送受信されてもよいし、異なる識別情報として送受信されてもよい。
 また、SMFは、UEからの第1の識別情報の受信に基づいて、第2の識別情報をPDUセッション確立受諾メッセージに含めて送信してよい。言い換えれば、SMFは、UEから第1の識別情報を受信した場合、第2の識別情報をPDUセッション確立受諾メッセージに含めて送信してよい。
 また、SMFは、UEがC2コミュニケーションをサポートするPDUセッションを確立する場合、PDUセッション確立受諾メッセージに第2の識別情報を含めて送信してよい。言い換えれば、SMFは、UEがC2コミュニケーション用のQoSフローをサポートするPDUセッションを確立する場合、PDUセッション確立受諾メッセージに第2の識別情報を含めて送信してよい。
 また、SMFは、UEがC2コミュニケーションを提供するPDUセッションを確立する場合、PDUセッション確立受諾メッセージに第2の識別情報を含めて送信してよい。言い換えれば、SMFは、UEがC2コミュニケーションを行うためのQoSフローを提供するPDUセッションを確立する場合、PDUセッション確立受諾メッセージに第2の識別情報を含めて送信してよい。
 ここで、SMFは、Always-on PDU sessionとしてのPDUセッションの確立を許可するか否かをUEに示す場合、第2の識別情報をPDUセッション確立受諾メッセージに含めてもよい。
 さらに、SMFは、Always-on PDU sessionとしてPDUセッションを確立することを許可する場合、第2の識別情報をPDUセッション確立受諾メッセージに含めてもよい。この場合、第2の識別情報は、Always-on PDU sessionの確立が必要であることを示す情報であってよい。
 さらに、SMFは、Always-on PDU sessionとしてPDUセッションを確立することを許可しない場合、第2の識別情報をPDUセッション確立受諾メッセージに含めてもよい。この場合、第2の識別情報は、Always-on PDU sessionの確立が許可されていないことを示す情報であってよい。
 ここで、前記Always-on PDU sessionは、C2コミュニケーションをサポートするPDUセッションであってもよい。言い換えると、前記Always-on PDU sessionは、C2コミュニケーション用のQoSフローをサポートするPDUセッションであってもよい。
 SMF及び/又はAMFは、これらの識別情報のうちの少なくとも1つを送信することにより、これらの識別情報の内容を、UEに通知することができる。
 尚、SMF及び/又はAMFは、PDUセッション確立受諾メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージ、及び/又はN2 SM情報、及び/又はN2 PDUセッション要求メッセージにどの識別情報を含めるかを、受信した各識別情報、及び/又は加入者情報、及び/又はネットワークの能力情報、及び/又はUEポリシー、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はユーザの登録情報、及び/又はSMF及び/又はAMFが保持するコンテキスト等に基づいて、決定をしてもよい。
 次に、UEは、例えばN1インターフェースを介して、NASメッセージを受信すると(S816)、PDUセッション確立要求メッセージによるUEの要求が受諾されたこと、及び/又はNASメッセージに含まれる情報等(メッセージ、コンテナ、情報)の内容を認識することができる。
 また、UEは、第2の識別情報、又は第2の識別情報を含むPDUセッション確立受諾メッセージ又はN1 SMコンテナ又はNASメッセージの受信に基づいて、確立が受諾されたPDUセッションがAlways-on PDU sessionであるか否かを認識してもよい。言い換えると、UEは、第2の識別情報、又は第2の識別情報を含むPDUセッション確立受諾メッセージ又はN1 SMコンテナ又はNASメッセージを受信した場合、確立が受諾されたPDUセッションがAlways-on PDU sessionであるか否かを認識してもよい。
 具体的には、UEは、第2の識別情報、又は第2の識別情報を含むPDUセッション確立受諾メッセージ又はN1 SMコンテナ又はNASメッセージを受信し、受信した第2の識別情報がAlways-on PDU sessionの確立が必要であることを示す情報に設定されている場合、確立が受諾されたPDUセッションが、Always-on PDU sessionであると認識してもよい。逆に、UEは、第2の識別情報、又は第2の識別情報を含むPDUセッション確立受諾メッセージ又はN1 SMコンテナ又はNASメッセージを受信し、受信した第2の識別情報がAlways-on PDU sessionの確立が許可されていないことを示す情報に設定されている場合、確立が受諾されたPDUセッションが、Always-on PDU sessionではないと認識してもよい。
 ここで、前記Always-on PDU sessionは、C2コミュニケーションをサポートするPDUセッションであってもよい。言い換えると、前記Always-on PDU sessionは、C2コミュニケーション用のQoSフローをサポートするPDUセッションであってもよい。
 次に、図7の(B)の手続きの各ステップを説明する。
 まず、SMFは、PDUセッション確立要求メッセージの受信に基づいて、例えばN11インターフェースを介して、N1 SMコンテナ、及び/又はPDUセッションIDを、AMFに送信する(S818)。ここで、N1 SMコンテナには、PDUセッション確立拒絶メッセージが含まれてよい。さらに、PDUセッションIDは、PDUセッション確立拒絶メッセージに含まれていてもよい。
 次に、N1 SMコンテナ、及び/又はPDUセッションIDを受信したAMFは、アクセスネットワークに含まれる基地局装置を介して、UEにNASメッセージを送信する(S820)(S822)。ここで、NASメッセージは、例えばN1インターフェースを介して、送信される。また、NASメッセージは、ダウンリンクNASトランスポート(DL NAS TRANSPORT)メッセージであってよい。また、NASメッセージには、PDUセッションID及び/又はN1 SMコンテナが含まれてよい。
 また、PDUセッション確立拒絶メッセージは、PDUセッション確立要求に対する応答メッセージであってよい。また、PDUセッション確立拒絶メッセージは、PDUセッションの確立が拒絶されたことを示してよい。
 ここで、SMF及び/又はAMFは、PDUセッション確立拒絶メッセージ、及び/又はN1 SMコンテナ、及び/又はPDUセッションID、及び/又はNASメッセージを送信することで、PDUセッション確立要求メッセージによるUEの要求が拒絶されたことを示してもよい。
 尚、SMFは、PDUセッション確立拒絶メッセージを送信することで、UEの要求が拒絶されたことを示してもよいし、UEからの要求を許可していない事を示してもよいし、これらを組み合わせた情報を示してもよい。
 SMF及び/又はAMFは、これらの識別情報のうちの少なくとも1つを送信することにより、これらの識別情報の内容を、UEに通知することができる。
 尚、SMF及び/又はAMFは、PDUセッション確立拒絶メッセージ、及び/又はN1 SMコンテナ、及び/又はNASメッセージ、及び/又はN2 SM情報、及び/又はN2 PDUセッション要求メッセージにどの識別情報を含めるかを、受信した各識別情報、及び/又は加入者情報、及び/又はネットワークの能力情報、及び/又はUEポリシー、及び/又はオペレータポリシー、及び/又はネットワークの状態、及び/又はユーザの登録情報、及び/又はSMF及び/又はAMFが保持するコンテキスト等に基づいて、決定をしてもよい。
 次に、UEは、例えばN1インターフェースを介して、NASメッセージを受信すると(S822)、PDUセッション確立要求メッセージによるUEの要求が拒絶されたこと、及び/又はNASメッセージに含まれる情報等(メッセージ、コンテナ、情報)の内容を認識することができる。
 各装置は、PDUセッション確立受諾メッセージの送受信に基づいて、本手続きを完了してもよい。このとき、各装置は、確立されたPDUセッションを用いてDNと通信可能な状態に遷移してよい。
 各装置は、PDUセッション確立受諾メッセージ又はPDUセッション確立拒絶メッセージの送受信に基づいて、本手続きを完了してもよい。このとき、各装置は、PDUセッションを確立することができないため、すでに確立済みのPDUセッションがない場合は、DNと通信できない。
 なお、上記に示すUEが各識別情報の受信に基づき実行する各処理は、本手続き中、又は本手続き完了後に実行されてもよいし、本手続き完了後に、本手続き完了に基づき実行されてもよい。
 [3.5.ネットワーク主導のセッションマネジメント手続きの概要]
 次に、ネットワーク主導のセッションマネジメント手続きの概要について説明する。以下、ネットワーク主導のセッションマネジメント手続きは本手続きとも称する。本手続きは、確立されたPDUセッションに対してネットワークが主導して実行するセッションマネジメントの為の手続きである。
 尚、本手続きは、ネットワーク主導のPDUセッション変更(PDUセッションモディフィケーション)手続き、及び/又はネットワーク主導のPDUセッション解放(PDUセッションリリース)手続き等であってもよいし、これらに限らないネットワーク主導のセッションマネジメント手続きを実行してもよい。尚、各装置は、ネットワーク主導のPDUセッション変更手続きにおいて、PDUセッション変更メッセージを送受信してもよいし、ネットワーク主導のPDUセッション解放手続きにおいて、PDUセッション解放メッセージを送受信してもよい。
 また、本手続きがネットワーク主導のPDUセッション変更手続きの場合、本手続きにおけるセッションマネジメント要求メッセージは、PDUセッション変更コマンド(PDU SESSION MODIFICATION COMMAND)メッセージであってもよい。また、本手続きがネットワーク主導のPDUセッション解放手続きの場合、本手続きにおけるセッションマネジメント要求メッセージは、PDUセッション解放コマンド(PDU SESSION RELEASE COMMAND)メッセージであってもよい。
 また、本手続きがネットワーク主導のPDUセッション変更手続きの場合、本手続きにおけるセッションマネジメント完了メッセージは、PDUセッション変更完了(PDU SESSION MODIFICATION COMPLETE)メッセージであってもよい。また、本手続きがネットワーク主導のPDUセッション解放手続きの場合、本手続きにおけるセッションマネジメント完了メッセージは、PDUセッション解放完了(PDU SESSION RELEASE COMPLETE)メッセージであってもよい。
 また、本手続きにおいて、UEは、UAVであってもよいし、UAV controllerであってもよい。
 [3.5.1.ネットワーク主導のセッションマネジメント手続き例]
 図8を用いて、ネットワーク主導のセッションマネジメント手続きの例を説明する。本章では、本手続きとはネットワーク主導のセッションマネジメント手続きを指す。以下、本手続きの各ステップについて説明する。
 登録手続き及び/又はPDUセッション確立手続きの完了に基づき、UE及びコアネットワーク_B190内の各装置は、任意のタイミングで、ネットワーク主導のセッションマネジメント手続きを開始する。
 具体的には、コアネットワーク_B190内の装置は、PDUセッション変更要求メッセージの受信に基づいて本手続きを開始してもよいし、PDUセッション解放要求メッセージの受信に基づいて本手続きを開始してもよい。尚、PDUセッション変更要求メッセージの受信に基づいて本手続きが開始された場合、本手続きは、ネットワーク主導のPDUセッション変更手続きであってよい。さらに、PDUセッション解放要求メッセージの受信に基づいて本手続きが開始された場合、本手続きは、ネットワーク主導のPDUセッション解放手続きであってよい。
 さらに、コアネットワーク_B190内の装置は、DNにある装置やコアネットワーク内の他の装置から要求に基づいて、本手続きを開始してもよい。具体的には、コアネットワーク_B190内の装置は、UTMからの要求に基づいて、本手続きを開始してもよい。言い換えると、コアネットワーク_B190内の装置は、UTMからの要求を受信した場合にも、本手続きを開始してもよい。
 ここで、本手続きを開始するコアネットワーク_B190内の装置は、SMF及び/又はAMFであってよく、UEはAMF及び/又はアクセスネットワーク_Bを介して本手続きにおけるメッセージを送受信してもよい。さらに、DNにある装置は、DNにあるAF(Application Function)であってもよい。
 コアネットワーク_B190内の装置は、UEにネットワーク主導のセッションマネジメント要求メッセージを送信し(S1202)、ネットワーク主導のセッションマネジメントを開始する。さらに、UEは、コアネットワーク_B190内の装置から、ネットワーク主導のセッションマネジメント要求メッセージを受信する。
 ここで、コアネットワーク_B190内の装置は、ネットワーク主導のセッションマネジメント要求メッセージに第10から14の識別情報のうちの少なくとも1つを含めてもよいし、この識別情報を含めることで、コアネットワーク_B190の要求を示してもよい。さらに、コアネットワーク_B190内の装置は、ネットワーク主導のセッションマネジメント要求メッセージにPDUセッションIDを含めてもよいし、PDUセッションIDを含めることで、PDUセッションIDで識別されるPDUセッションに対して変更を行うことを要求してもよい。
 ここで、コアネットワーク_B190内の装置は、UAV controllerの識別情報が変更された場合、第10の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、UAV controllerのIPアドレスが変更された場合にも、第10の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、新しいUAV controllerが割り当てられた場合、第10の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、新しいUAV controllerのIPアドレスが割り当てられた場合にも、第10の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、UAV controllerのIPアドレスが変更された場合、第11の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、UAV controllerの識別情報が変更された場合にも、第11の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、新しいUAV controllerのIPアドレスが割り当てられた場合、第11の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、新しいUAV controllerが割り当てられた場合にも、第11の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、UAVの識別情報が変更された場合、第12の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、UAVのIPアドレスが変更された場合にも、第12の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、新しいUAVが割り当てられた場合、第12の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、新しいUAVのIPアドレスが割り当てられた場合にも、第12の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、UAVのIPアドレスが変更された場合、第13の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、UAVの識別情報が変更された場合にも、第13の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、新しいUAVのIPアドレスが割り当てられた場合、第13の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、新しいUAVが割り当てられた場合にも、第13の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、UEに、PDUセッションがAlways-on PDU sessionであるか否かを伝えることを決定した場合、第14の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。さらに、コアネットワーク_B190内の装置は、PDUセッションがAlways-on PDU sessionであるか否かの情報が変更された場合、第14の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。
 さらに、コアネットワーク_B190内の装置は、確立しているPDUセッションを、Always-on PDU sessionに変更する必要がある場合、第14の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。この場合、第14の識別情報は、Always-on PDU sessionの確立が必要であることを示す情報であってよい。
 さらに、コアネットワーク_B190内の装置は、確立しているPDUセッションを、Always-on PDU sessionではないPDUセッションに変更する必要がある場合、第14の識別情報をネットワーク主導のセッションマネジメント要求メッセージに含めてもよい。この場合、第14の識別情報は、Always-on PDU sessionの確立が許可されていないことを示す情報であってよい。
 尚、PDUセッション変更要求メッセージに含められるPDUセッションIDは、確立しているPDUセッションのPDUセッションIDであってよい。さらに、本手続きが、UE主導のセッションマネジメント手続きに基づいて実行された場合、PDUセッション変更要求メッセージに含められるPDUセッションIDは、PDUセッション変更要求メッセージ、又はPDUセッション解放要求メッセージに含まれたPDUセッションIDと同一であってよい。
 次に、ネットワーク主導のセッションマネジメント要求メッセージを受信したUEは、ネットワーク主導のセッションマネジメント完了メッセージを送信する(S1204)。さらに、UEは、コアネットワーク_B190から受信した第10から14の識別情報のうちの少なくとも1つの識別情報に基づいて、第1の処理を実行し(S1206)、本手続きを完了してもよい。また、UEは、本手続きの完了に基づいて第1の処理を実施してもよい。
 ここで、UEは、ネットワーク主導のセッションマネジメント完了メッセージにPDUセッションIDを含めてもよい。尚、ネットワーク主導のセッションマネジメント完了メッセージに含まれるPDUセッションIDは、ネットワーク主導のセッションマネジメント要求メッセージに含まれたPDUセッションIDと同一であってよい。
 以下、第1の処理の例について説明する。
 ここで、第1の処理は、UEが、コアネットワーク_B190によって示された事柄を認識する処理であってよいし、コアネットワーク_B190の要求を認識する処理であってもよい。さらに、第1の処理は、UEが、受信した識別情報をコンテキストとして記憶する処理であってもよいし、受信した識別情報を上位層、及び/又は下位層に転送する処理であってもよい。
 第1の処理において、UEは、第10の識別情報の受信に基づいて、UEが記憶しているUAV controllerの識別情報を、第10の識別情報が示すUAV controllerの識別情報に更新してよい。ここで、UEは、UAVであってもよい。また、前記UAV controllerは、前記UAVに対応付けられているUAV controllerであってよい。
 言い換えると、UEは、第10の識別情報を受信した場合、第1の処理において、UEが記憶しているUAV controllerの識別情報を、第10の識別情報が示すUAV controllerの識別情報に更新してもよい。
 さらに、UEは、第10の識別情報の受信に基づいて、第1の処理において、UEが記憶しているUAV controllerの識別情報を削除し、UAV controllerの識別情報として、受信した第10の識別情報を記憶してもよい。言い換えると、UEは、第10の識別情報を受信した場合、第1の処理において、UEが記憶しているUAV controllerの識別情報を削除し、UAV controllerの識別情報として、受信した第10の識別情報を記憶してもよい。
 さらに、UEは、第10の識別情報の受信に基づいて、第1の処理において、新しいUAV controllerの識別情報を認識してもよい。言い換えると、UEは、第10の識別情報を受信した場合、第1の処理において、新しいUAV controllerの識別情報を認識してもよい。
 より詳細には、UEは、第10の識別情報の受信に基づいて、第1の処理において、古いUAV controllerの識別情報が無効であると認識し、新しいUAV controllerの識別情報が有効であると認識してもよい。言い換えると、UEは、第10の識別情報を受信した場合、第1の処理において、古いUAV controllerの識別情報が無効であると認識し、新しいUAV controllerの識別情報が有効であると認識してもよい。
 ここで、新しいUAV controllerの識別情報は、受信した第10の識別情報が示す情報であってもよい。さらに、古いUAV controllerの識別情報は、UEが記憶していたUAV controllerの識別情報であってもよい。
 第1の処理において、UEは、第11の識別情報の受信に基づいて、UEが記憶しているUAV controllerのIPアドレスを、第11の識別情報が示すUAV controllerのIPアドレスに更新してよい。ここで、UEは、UAVであってもよい。また、前記UAV controllerは、前記UAVに対応付けられているUAV controllerであってよい。
 言い換えると、UEは、第11の識別情報を受信した場合、第1の処理において、UEが記憶しているUAV controllerのIPアドレスを、第11の識別情報が示すUAV controllerのIPアドレスに更新してもよい。
 さらに、UEは、第11の識別情報の受信に基づいて、第1の処理において、UEが記憶しているUAV controllerのIPアドレスを削除し、UAV controllerのIPアドレスとして、受信した第11の識別情報を記憶してもよい。言い換えると、UEは、第11の識別情報を受信した場合、第1の処理において、UEが記憶しているUAV controllerのIPアドレスを削除し、UAV controllerのIPアドレスとして、受信した第11の識別情報を記憶してもよい。
 さらに、UEは、第11の識別情報の受信に基づいて、第1の処理において、新しいUAV controllerのIPアドレスを認識してもよい。言い換えると、UEは、第11の識別情報を受信した場合、第1の処理において、新しいUAV controllerのIPアドレスを認識してもよい。
 より詳細には、UEは、第11の識別情報の受信に基づいて、第1の処理において、古いUAV controllerのIPアドレスが無効であると認識し、新しいUAV controllerのIPアドレスが有効であると認識してもよい。言い換えると、UEは、第11の識別情報を受信した場合、第1の処理において、古いUAV controllerのIPアドレスが無効であると認識し、新しいUAV controllerのIPアドレスが有効であると認識してもよい。
 ここで、新しいUAV controllerのIPアドレスは、受信した第11の識別情報が示す情報であってもよい。さらに、古いUAV controllerのIPアドレスは、UEが記憶していたUAV controllerのIPアドレスであってもよい。
 さらに、UEは、第10の識別情報、及び/又は第11の識別情報の受信に基づいて、第1の処理において、第10の識別情報で識別されるUAV controllerのIPアドレスを、第11の識別情報が示すIPアドレスに更新してもよい。言い換えると、UEは、第10の識別情報、及び/又は第11の識別情報を受信した場合、第1の処理において、第10の識別情報で識別されるUAV controllerのIPアドレスを、第11の識別情報が示すIPアドレスに更新してもよい。
 さらに、UEは、第10の識別情報、及び/又は第11の識別情報の受信に基づいて、第1の処理において、第10の識別情報で識別されるUAV controllerのIPアドレスを削除し、第11の識別情報が示すIPアドレスを、第10の識別情報で識別されるUAV controllerのIPアドレスとして記憶してもよい。言い換えると、UEは、第10の識別情報、及び/又は第11の識別情報を受信した場合、第1の処理において、第10の識別情報で識別されるUAV controllerのIPアドレスを削除し、第11の識別情報が示すIPアドレスを、第10の識別情報で識別されるUAV controllerのIPアドレスとして記憶してもよい。
 第1の処理において、UEは、第12の識別情報の受信に基づいて、UEが記憶しているUAVの識別情報を、第12の識別情報が示すUAVの識別情報に更新してよい。ここで、UEは、UAV controllerであってもよい。また、前記UAVは、前記UAV controllerに対応付けられているUAVであってよい。
 言い換えると、UEは、第12の識別情報を受信した場合、第1の処理において、UEが記憶しているUAVの識別情報を、第12の識別情報が示すUAVの識別情報に更新してもよい。
 さらに、UEは、第12の識別情報の受信に基づいて、第1の処理において、UEが記憶しているUAVの識別情報を削除し、UAVの識別情報として、受信した第12の識別情報を記憶してもよい。言い換えると、UEは、第12の識別情報を受信した場合、第1の処理において、UEが記憶しているUAVの識別情報を削除し、UAVの識別情報として、受信した第12の識別情報を記憶してもよい。
 さらに、UEは、第12の識別情報の受信に基づいて、第1の処理において、新しいUAVの識別情報を認識してもよい。言い換えると、UEは、第12の識別情報を受信した場合、第1の処理において、新しいUAVの識別情報を認識してもよい。
 より詳細には、UEは、第12の識別情報の受信に基づいて、第1の処理において、古いUAVの識別情報が無効であると認識し、新しいUAVの識別情報が有効であると認識してもよい。言い換えると、UEは、第12の識別情報を受信した場合、第1の処理において、古いUAVの識別情報が無効であると認識し、新しいUAVの識別情報が有効であると認識してもよい。
 ここで、新しいUAVの識別情報は、受信した第12の識別情報が示す情報であってもよい。さらに、古いUAVの識別情報は、UEが記憶していたUAVの識別情報であってもよい。
 第1の処理において、UEは、第13の識別情報の受信に基づいて、UEが記憶しているUAVのIPアドレスを、第13の識別情報が示すUAVのIPアドレスに更新してよい。ここで、UEは、UAV controllerであってもよい。また、前記UAVは、前記UAV controllerに対応付けられているUAVであってよい。
 言い換えると、UEは、第13の識別情報を受信した場合、第1の処理において、UEが記憶しているUAVのIPアドレスを、第13の識別情報が示すUAVのIPアドレスに更新してもよい。
 さらに、UEは、第13の識別情報の受信に基づいて、第1の処理において、UEが記憶しているUAVのIPアドレスを削除し、UAVのIPアドレスとして、受信した第13の識別情報を記憶してもよい。言い換えると、UEは、第13の識別情報を受信した場合、第1の処理において、UEが記憶しているUAVのIPアドレスを削除し、UAVのIPアドレスとして、受信した第13の識別情報を記憶してもよい。
 さらに、UEは、第13の識別情報の受信に基づいて、第1の処理において、新しいUAVのIPアドレスを認識してもよい。言い換えると、UEは、第13の識別情報を受信した場合、第1の処理において、新しいUAVのIPアドレスを認識してもよい。
 より詳細には、UEは、第13の識別情報の受信に基づいて、第1の処理において、古いUAVのIPアドレスが無効であると認識し、新しいUAVのIPアドレスが有効であると認識してもよい。言い換えると、UEは、第13の識別情報を受信した場合、第1の処理において、古いUAVのIPアドレスが無効であると認識し、新しいUAVのIPアドレスが有効であると認識してもよい。
 ここで、新しいUAVのIPアドレスは、受信した第13の識別情報が示す情報であってもよい。さらに、古いUAVのIPアドレスは、UEが記憶していたUAVのIPアドレスであってもよい。
 さらに、UEは、第12の識別情報、及び/又は第13の識別情報の受信に基づいて、第1の処理において、第12の識別情報で識別されるUAVのIPアドレスを、第13の識別情報が示すIPアドレスに更新してもよい。言い換えると、UEは、第12の識別情報、及び/又は第13の識別情報を受信した場合、第1の処理において、第12の識別情報で識別されるUAVのIPアドレスを、第13の識別情報が示すIPアドレスに更新してもよい。
 さらに、UEは、第12の識別情報、及び/又は第13の識別情報の受信に基づいて、第1の処理において、第12の識別情報で識別されるUAVのIPアドレスを削除し、第13の識別情報が示すIPアドレスを、第12の識別情報で識別されるUAVのIPアドレスとして記憶してもよい。言い換えると、UEは、第12の識別情報、及び/又は第13の識別情報を受信した場合、第1の処理において、第12の識別情報で識別されるUAVのIPアドレスを削除し、第13の識別情報が示すIPアドレスを、第12の識別情報で識別されるUAVのIPアドレスとして記憶してもよい。
 第1の処理において、UEは、第14の識別情報の受信に基づいて、確立しているPDUセッションがAlways-on PDU sessionであるか否かを認識してもよい。言い換えると、UEは、第14の識別情報を受信した場合、第1の処理において、確立しているPDUセッションがAlways-on PDU sessionであるか否かを認識してもよい。
 具体的には、UEは、第14の識別情報を受信し、受信した第14の識別情報がAlways-on PDU sessionの確立が必要であることを示す情報に設定されている場合、第1の処理において、確立されている、及び/又は変更されたPDUセッションが、Always-on PDU sessionであると認識してもよい。逆に、UEは、第14の識別情報を受信し、受信した第14の識別情報がAlways-on PDU sessionの確立が許可されていないことを示す情報に設定されている場合、第1の処理において、確立されている、及び/又は変更されたPDUセッションが、Always-on PDU sessionではないと認識してもよい。
 さらに、UEは、第14の識別情報を受信しなかった場合、以前に実行した手続き中に受信した第2の識別情報、及び/又は第14の識別情報に基づいて、確立されている、及び/又は変更されたPDUセッションが、Always-on PDU sessionであるか否かを認識してもよい。
 具体的には、UEは、第14の識別情報を受信せず、さらに、以前に実行した手続き中に受信した第2の識別情報、及び/又は第14の識別情報がAlways-on PDU sessionの確立が必要であることを示す情報に設定されている場合、第1の処理において、確立されている、及び/又は変更されたPDUセッションが、Always-on PDU sessionであると認識してもよい。逆に、UEは、UEは、第14の識別情報を受信せず、さらに、以前に実行した手続き中に受信した第2の識別情報、及び/又は第14の識別情報がAlways-on PDU sessionの確立が許可されていないことを示す情報に設定されている場合、第1の処理において、確立されている、及び/又は変更されたPDUセッションが、Always-on PDU sessionではないと認識してもよい。
 ここで、前記Always-on PDU sessionは、C2コミュニケーションをサポートするPDUセッションであってもよい。言い換えると、前記Always-on PDU sessionは、C2コミュニケーション用のQoSフローをサポートするPDUセッションであってもよい。
 さらに、各装置は、本手続きの完了に基づいて、本手続きで送受信した識別情報に基づいた処理を実施してもよい。言い換えると、UEは、本手続きの完了に基づいて、第1の処理を実施してもよいし、第1の処理の完了後に本手続きを完了してもよい。
 さらに、各装置は、上述した処理の完了、及び/又は、ネットワーク主導のセッションマネジメント要求メッセージ、及び/又はネットワーク主導のセッションマネジメント完了メッセージの送受信に基づいて、第1のネットワーク主導のセッションマネジメント手続きを完了する。
 [3.6.UE主導のセッションマネジメント手続きの概要]
 次に、UE主導のセッションマネジメント手続きの概要について説明する。以下、UE主導のセッションマネジメント手続きは本手続きとも称する。本手続きは、確立されたPDUセッションに対してUEが主導して実行するセッションマネジメントの為の手続きである。
 尚、本手続きは、UE主導のPDUセッション変更(PDUセッションモディフィケーション)手続き、及び/又はUE主導のPDUセッション解放(PDUセッションリリース)手続き等であってもよいし、これらに限らないUE主導のセッションマネジメント手続きを実行してもよい。尚、各装置は、UE主導のPDUセッション変更手続きにおいて、PDUセッション変更要求メッセージ、及び/又はPDUセッション変更コマンドメッセージ、及び/又はPDUセッション変更完了メッセージ、及び/又はPDUセッション変更拒絶メッセージを送受信してもよい。各装置は、UE主導のPDUセッション解放手続きにおいて、PDUセッション解放要求メッセージ、及び/又はPDUセッション解放コマンドメッセージ、及び/又はPDUセッション解放完了メッセージ、及び/又はPDUセッション解放拒絶メッセージを送受信してもよい。
 さらに、各装置は、上述した処理の完了、及び/又は、UE主導のセッションマネジメント要求メッセージ、及び/又はUE主導のセッションマネジメント完了メッセージの送受信に基づいて、UE主導のセッションマネジメント手続きを完了する。
 [3.6.1.UE主導のPDUセッション変更手続き例]
 本章では、本手続きとはUE主導のPDUセッション変更手続きを指す。以下、図9を用いて、本手続きの各ステップについて説明する。
 尚、登録手続き及び/又はPDUセッション確立手続きの完了に基づき、UEは、任意のタイミングで、UE主導のPDUセッション変更手続きを開始することができる。言い換えると、UEは、任意のタイミングで、確立しているPDUセッションに対してUE主導のPDUセッション変更手続きを開始してもよい。さらに言い換えると、UEは、任意のタイミングで、確立しているPDUセッションと同じPDUセッションIDを用いたUE主導のPDUセッション変更手続きを開始してもよい。
 まず、UEは、SMFに、PDUセッション変更要求メッセージを送信することで(S1302)、UE主導のPDUセッション変更手続きを開始する。ここで、UEは、PDUセッション変更要求メッセージにPDUセッションIDを含めてもよいし、PDUセッションIDを含めることで、PDUセッションIDで識別されるPDUセッションに対して変更を行うことを要求してもよい。
 尚、PDUセッション変更要求メッセージに含められるPDUセッションIDは、確立しているPDUセッションのPDUセッションIDであってよい。
 また、UEは、飛行中の場合、PDUセッション変更要求メッセージを送信してはならなくてもよい。言い換えれば、UEは、飛行中の場合、PDUセッション変更要求メッセージの送信が禁止されるように設定されてもよい。
 ここで、UEは、NASレイヤよりも下位レイヤ(例えば、RRCレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、SDAPレイヤ等)や、NASレイヤよりも上位レイヤ(例えば、トランスポートレイヤ、セッションレイヤ、プレゼンテーションレイヤ、アプリケーションレイヤ等)で、飛行中であることを検知してもよい。
 また、UEは、本手続きが実施される前に、飛行を要求する制御メッセージの受信に基づいて、飛行中であることを検知してもよい。言い換えれば、UEは、本手続きが実施される前に、飛行を要求する制御メッセージを受信した場合、飛行中であることを検知してもよい。
 また、UEは、本手続きが実施される前に、NASレイヤよりも下位レイヤ(例えば、RRCレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、SDAPレイヤ等)や、NASレイヤよりも上位レイヤ(例えば、トランスポートレイヤ、セッションレイヤ、プレゼンテーションレイヤ、アプリケーションレイヤ等)で、飛行を要求する制御メッセージの受信に基づいて、飛行中であることを検知してもよい。言い換えれば、UEは、本手続きが実施される前に、NASレイヤよりも下位レイヤ(例えば、RRCレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、SDAPレイヤ等)や、NASレイヤよりも上位レイヤ(例えば、トランスポートレイヤ、セッションレイヤ、プレゼンテーションレイヤ、アプリケーションレイヤ等)で、飛行を要求する制御メッセージを受信した場合、飛行中であることを検知してもよい。
 次に、SMFは、UEが送信したPDUセッション変更要求メッセージを受信する。SMFは、UEの要求を受諾する場合、ネットワーク主導のPDUセッション変更手続きを開始する。逆に、SMFは、UEの要求を拒絶する場合、UEにPDUセッション変更拒絶メッセージを送信する。以下、SMFが、UEの要求を拒絶した場合について説明する。
 SMFは、PDUセッション確立要求メッセージの受諾に基づき、UEにPDUセッション変更拒絶メッセージを送信する(S1304)。ここで、SMFは、PDUセッション変更拒絶メッセージに、第15の識別情報の識別情報を含めてもよいし、PDUセッションIDを含めてもよいし、この識別情報を含めることで、UEの要求が拒絶されたことを示してもよい。
 ここで、SMFは、UEが飛行中である場合、第20の識別情報をPDUセッション変更拒絶メッセージに含めてもよい。言い換えると、SMFは、UEが飛行中であることを認識した場合、第20の識別情報をPDUセッション変更拒絶メッセージに含めてもよい。
 さらに、SMFは、UTMからUEが飛行中であることを示す情報を受信した場合、第20の識別情報をPDUセッション変更拒絶メッセージに含めてもよい。
 さらに、SMFは、UAV controllerからUEが飛行中であることを示す情報を受信した場合、第20の識別情報をPDUセッション変更拒絶メッセージに含めてもよい。
 さらに、SMFは、コアネットワーク装置からUEが飛行中であることを示す情報を受信した場合、第20の識別情報をPDUセッション変更拒絶メッセージに含めてもよい。
 さらに、SMFは、上記以外でPDUセッションの変更を拒絶する場合、第20の識別情報をPDUセッション変更拒絶メッセージに含めてもよい。
 ここで、PDUセッション変更拒絶メッセージに含まれるPDUセッションIDは、PDUセッション変更要求メッセージに含まれたPDUセッションIDと同一であってよい。言い換えると、PDUセッション変更拒絶メッセージに含まれるPDUセッションIDは、本手続き中に、UEから提供されたPDUセッションIDと同一であってもよい。
 UEは、PDUセッション変更拒絶メッセージを受信する。さらに、各装置は、PDUセッション変更拒絶メッセージの送受信、及び/又はネットワーク主導のPDUセッション変更手続きの完了に基づいて本手続きを完了する。
 ここで、UEは、PDUセッション変更拒絶メッセージの受信に基づいて、UEの要求が拒絶されたことを認識してもよい。さらに、UEは、PDUセッション変更拒絶メッセージの受信に基づいて、第2の処理を実施してもよい。尚、第2の処理は、本手続きの完了に基づいて実施されてもよい。
 ここで、第2の処理は、UEが、SMFによって示された事柄を認識する処理であってよい。さらに、第2の処理は、UEが、受信した識別情報をコンテキストとして記憶する処理であってもよいし、受信した識別情報を上位層、及び/又は下位層に転送する処理であってもよい。さらに、第2の処理は、UEが、本手続きの要求が拒絶されたことを認識する処理であってもよい。
 ここで、第2の処理において、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージの受信に基づいて、拒絶された理由を認識してよい。具体的には、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージの受信に基づいて、UEが飛行中のため、PDUセッションの変更が拒絶されたことを認識してよい。
 言い換えれば、第2の処理において、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージを受信した場合、拒絶された理由を認識してよい。具体的には、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージを受信した場合、UEが飛行中のため、PDUセッションの変更が拒絶されたことを認識してよい。
 さらに、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージを受信した場合、同じPDUセッションに対する、PDUセッション変更手続き、及び/又はPDUセッション解放手続きの開始が禁止されるように設定してもよい。言い換えると、さらに、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージを受信した場合、同じPDUセッションに対する、PDUセッション変更要求メッセージ、及び/又はPDUセッション解放要求メッセージの送信が禁止されるように設定してもよい。
 より詳細には、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージを受信した場合、一定期間、同じPDUセッションに対する、PDUセッション変更手続き、及び/又はPDUセッション解放手続きの開始が禁止されるように設定してもよい。言い換えると、さらに、UEは、第20の識別情報、及び/又は第20の識別情報が含まれたPDUセッション変更拒絶メッセージを受信した場合、一定期間、同じPDUセッションに対する、PDUセッション変更要求メッセージ、及び/又はPDUセッション解放要求メッセージの送信が禁止されるように設定してもよい。
 ここで、一定期間とは、タイマー、及び/又はUEが保持するステートによって決まる期間であってもよい。具体的には、一定期間は、タイマーが実行されている間の期間であってもよい。さらに、一定期間は、UEが飛行中である間であってもよい。言い換えると、一定期間は、前記ステートが飛行中であることを示している間であってもよい。尚、一定期間は、これらの期間以外に限らず任意の期間であってもよい。
 また、同じPDUセッションに対する、PDUセッション変更手続き、及び/又はPDUセッション解放手続きとは、同一のPDUセッションIDを用いたPDUセッション変更手続き、及び/又はPDUセッション解放手続きのことであってよい。
 さらに、各装置は、上述した処理の完了、及び/又は、UE主導のPDUセッション変更拒絶メッセージの送受信に基づいて、UE主導のPDUセッション変更手続きを完了する。
 [3.6.2.UE主導のPDUセッション解放手続き例]
 本章では、本手続きとはUE主導のPDUセッション解放手続きを指す。以下、本手続きの各ステップについて説明する。
 UE主導のPDUセッション解放手続きは、前述したPDUセッション変更手続きと同様の手続きであってよい。
 具体的には、本手続きが、UE主導のPDUセッション解放手続きの場合、前述したPDUセッション変更要求メッセージは、PDUセッション解放要求メッセージと読み替えてもよい。さらに、本手続きが、UE主導のPDUセッション解放手続きの場合、前述したPDUセッション変更要求メッセージは、PDUセッション解放要求メッセージと読み替えてもよいし、前述したPDUセッション変更拒絶メッセージは、PDUセッション解放拒絶メッセージと読み替えてもよい。また、PDUセッションを変更する挙動を、PDUセッションを解放する挙動と読み替えてもよい。
 さらに、本手続きが、UE主導のPDUセッション解放手続きの場合、PDUセッション解放要求メッセージの受信に基づいて行われるSMFの挙動は、前述したPDUセッション変更要求メッセージの受信に基づいて行われるSMFの挙動と同様であってもよい。さらに、本手続きが、UE主導のPDUセッション解放手続きの場合、PDUセッション解放拒絶メッセージの受信に基づいて行われるUEの挙動は、前述したPDUセッション変更拒絶メッセージの受信に基づいて行われるUEの挙動と同様であってもよい。
 さらに、本手続きが、UE主導のPDUセッション解放手続きの場合、SMFは、PDUセッション解放要求メッセージの受信に基づいて、ネットワーク主導のPDUセッション解放手続きを開始してもよいし、UEにPDUセッション解放拒絶メッセージを送信してもよい。
 さらに、各装置は、上述した処理の完了、及び/又は、UE主導のPDUセッション解放拒絶メッセージの送受信に基づいて、UE主導のPDUセッション解放手続きを完了する。
 [4. 変形例]
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)等の揮発性メモリあるいはフラッシュメモリ等の不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 尚、本発明の一態様に関わる実施形態の機能を実現する為のプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する事によって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサでもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いる事も可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の1例を記載したが、本願発明の一態様は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器等の端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。

 

Claims (2)

  1. UAV (Unmanned Aerial Vehicle)であって、
     前記UAVは、送受信部と制御部とを備え、
     前記送受信部は、ネットワークから、第1の識別情報と第2の識別情報とを含むPDUセッション変更コマンドメッセージを受信し、
     前記制御部は、
      前記第1の識別情報の受信に基づいて、記憶しているUAV controllerの識別情報を、前記第1の識別情報が示す識別情報に更新し、
      前記第2の識別情報の受信に基づいて、記憶している前記UAV controllerのIPアドレスを、前記第2の識別情報が示すIPアドレスに更新し、
     ここで、
      前記第1の識別情報は、新しい前記UAV controllerの識別情報であり、
      前記第2の識別情報は、新しい前記UAV controllerのIPアドレスであり、
      前記UAVは、前記UAV controllerに対応付けられている、
     ことを特徴とするUAV。
  2. UAV (Unmanned Aerial Vehicle)であって、
     前記UAVは、送受信部と制御部とを備え、
     前記送受信部は、C2 (Command and Control)コミュニケーションを行うためのQoSフローを提供するPDUセッションを確立する場合、
      ネットワークに、第1の識別情報を含むPDUセッション確立要求メッセージを送信し、
      ネットワークから、第2の識別情報を含むPDUセッション確立受諾メッセージを受信し、
     ここで、
      前記第1の識別情報は、Always-on PDU session requestedであり、
      前記第2の識別情報は、Always-on PDU session indicationである、
     ことを特徴とするUAV。

     
PCT/JP2021/028909 2020-08-07 2021-08-04 UAV(Unmanned Aerial Vehicle) WO2022030532A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/020,078 US20230308865A1 (en) 2020-08-07 2021-08-04 Unmanned aerial vehicle (uav)
CN202180057408.0A CN116158070A (zh) 2020-08-07 2021-08-04 无人飞行器
EP21852169.8A EP4195641A1 (en) 2020-08-07 2021-08-04 Unmanned aerial vehicle (uav)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-134326 2020-08-07
JP2020134326A JP2023127004A (ja) 2020-08-07 2020-08-07 UAV(Unmanned Aerial Vehicle)

Publications (1)

Publication Number Publication Date
WO2022030532A1 true WO2022030532A1 (ja) 2022-02-10

Family

ID=80117410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028909 WO2022030532A1 (ja) 2020-08-07 2021-08-04 UAV(Unmanned Aerial Vehicle)

Country Status (5)

Country Link
US (1) US20230308865A1 (ja)
EP (1) EP4195641A1 (ja)
JP (1) JP2023127004A (ja)
CN (1) CN116158070A (ja)
WO (1) WO2022030532A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134326A (ja) 2019-02-20 2020-08-31 東芝キヤリア株式会社 液体ポンプ装置の流量推定方法、液体ポンプ装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134326A (ja) 2019-02-20 2020-08-31 東芝キヤリア株式会社 液体ポンプ装置の流量推定方法、液体ポンプ装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) protocol for 5G System (5GS", 3GPP TS 24.501, July 2020 (2020-07-01)
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Procedures for the 5G System", 3GPP TS 23.502, July 2020 (2020-07-01)
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on supporting Unmanned Aerial Systems (UAS) connectivity, Identification and tracking", 3GPP TR 23.754, June 2020 (2020-06-01)
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; System Architecture for the 5G System", 3GPP TS 23.501, August 2020 (2020-08-01)
HUAWEI, HISILICON: "KI#6, New Sol: UAS authorization considering association of the UAV and UAV controller", 3GPP DRAFT; S2-2004007, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting ;20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890014 *
INTERDIGITAL: "C2 communication switching for change of UAV-C", 3GPP DRAFT; S2-2004169, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890174 *
SAMSUNG: "KI #6, New Sol: UAV-UAVC association control", 3GPP DRAFT; S2-2004686, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. 20200601 - 20200612, 15 June 2020 (2020-06-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051898982 *
TENCENT: "Pseudo-CR on key issue x: UAV application server QoS provisioning.", 3GPP DRAFT; S6-201041, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG6, no. e-meeting; 20200720 - 20200731, 15 July 2020 (2020-07-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051908811 *

Also Published As

Publication number Publication date
US20230308865A1 (en) 2023-09-28
CN116158070A (zh) 2023-05-23
EP4195641A1 (en) 2023-06-14
CN116158070A8 (zh) 2024-05-24
JP2023127004A (ja) 2023-09-13

Similar Documents

Publication Publication Date Title
WO2021132505A1 (ja) UE(User Equipment)
WO2021261522A1 (ja) UE(User Equipment)及び通信制御方法
WO2021205955A1 (ja) UE(User Equipment)及びUEの通信方法
WO2021241114A1 (ja) UE(User Equipment)、コアネットワーク装置、AMF(Access and Mobility Management Function)、及びSMF(Session Management Function)
WO2021215228A1 (ja) UE(User Equipment)及びAMF(Access and mobility Management Function)
WO2022004699A1 (ja) UE(User Equipment)及びUEの通信制御方法
WO2021235308A1 (ja) UE(User Equipment)及び通信制御方法
WO2021193937A1 (ja) UE(User Equipment)
WO2021132288A1 (ja) UE(User Equipment)
WO2022154062A1 (ja) UE(User Equipment)
WO2022138730A1 (ja) UE(User Equipment)
WO2021132506A1 (ja) UE(User Equipment)
WO2021132502A1 (ja) Ue、制御装置、及び通信制御方法
WO2022030532A1 (ja) UAV(Unmanned Aerial Vehicle)
WO2022163667A1 (ja) UE(User Equipment)
WO2023171153A1 (ja) UE(User Equipment)
WO2021132287A1 (ja) UE(User Equipment)
WO2022030474A1 (ja) UE(User Equipment)
WO2023210556A1 (ja) UE(User Equipment)
WO2023210477A1 (ja) UE(User Equipment)
US20240098841A1 (en) User equipment (ue)
WO2023136166A1 (ja) UE(User Equipment)
WO2023210480A1 (ja) コアネットワーク及びUE(User Equipment)
US20240237093A1 (en) User equipment (ue)
WO2024024690A1 (ja) UE(User Equipment)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180057408.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021852169

Country of ref document: EP

Effective date: 20230307

NENP Non-entry into the national phase

Ref country code: JP