WO2022030395A1 - Frequency selection surface loading member and window member for vehicle - Google Patents

Frequency selection surface loading member and window member for vehicle Download PDF

Info

Publication number
WO2022030395A1
WO2022030395A1 PCT/JP2021/028388 JP2021028388W WO2022030395A1 WO 2022030395 A1 WO2022030395 A1 WO 2022030395A1 JP 2021028388 W JP2021028388 W JP 2021028388W WO 2022030395 A1 WO2022030395 A1 WO 2022030395A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
frequency
loading member
fss
member according
Prior art date
Application number
PCT/JP2021/028388
Other languages
French (fr)
Japanese (ja)
Inventor
章代 野上
修 加賀谷
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022541508A priority Critical patent/JPWO2022030395A1/ja
Publication of WO2022030395A1 publication Critical patent/WO2022030395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the visible light transmittance of the FSS loading member according to the present embodiment can be increased as described above because a transparent conductive film such as Ag or ITO is used for the conductive portion constituting the FSS.
  • the FSS loading member according to the present embodiment is provided with a coating layer such as a black ceramic layer as the first layer or the nth layer on the second layer or the n-1 layer, it becomes a coating layer.
  • the coating layer such as the black ceramic layer is a layer that shields visible light and is also called a shielding layer.
  • the upper limit of the frequency F is not particularly limited, but may be, for example, 90 GHz or less, or 80 GHz or less.
  • the attenuation for radio waves having a frequency F of 10 GHz or higher tends to be large, and by loading the FSS for radio waves having a frequency F of 10 GHz or higher, the radio wave transparency is improved. It is effective.

Abstract

The present embodiment relates to a frequency selection surface loading member which has a laminated member including a total of n dielectric layers laminated in order from a first layer to an nth layer (n is an integer of 3 or more) and in which a frequency selection surface through which a radio wave having a predetermined frequency F passes is provided on at least one among the main surfaces of the dielectric layers constituting the laminated member, the frequency selection surface has a conductive portion and a non-conductive portion, and the solar transmittance specified in ISO9050:2003 is 54% or less.

Description

周波数選択表面装荷部材および車両用窓部材Frequency selection surface loading member and vehicle window member
 本発明は、周波数選択表面装荷部材および車両用窓部材に関する。 The present invention relates to a frequency selective surface loading member and a vehicle window member.
 近年、通信速度の高速化、通信容量の大容量化に伴い、通信に使用される電波の周波数帯域は、高周波数帯域に拡大している。例えば、近年の第4世代移動通信システム(以下「4G」という)や第5世代移動通信システム(以下「5G」という)においては、数百MHz~数十GHzの周波数帯域の電波が用いられている。 In recent years, the frequency band of radio waves used for communication has expanded to a high frequency band with the increase in communication speed and communication capacity. For example, in recent 4th generation mobile communication systems (hereinafter referred to as "4G") and 5th generation mobile communication systems (hereinafter referred to as "5G"), radio waves in a frequency band of several hundred MHz to several tens of GHz are used. There is.
 このような高周波数帯域での通信を行うため、例えば、車両においては、従来レーダ装置を車両外部のエンブレム内やフロントグリル内に搭載することが提案されてきた。さらに近年では、レーダ装置を車両内部、特にウィンドシールドの内側に搭載することにより、エンブレム内やフロントグリル内よりも、車両において比較的地面から高い位置から効率よく通信が可能となる。 In order to perform communication in such a high frequency band, for example, in a vehicle, it has been proposed to mount a radar device in an emblem outside the vehicle or in the front grill. Further, in recent years, by mounting the radar device inside the vehicle, particularly inside the windshield, it becomes possible to efficiently communicate from a position relatively higher than the ground in the vehicle rather than inside the emblem or the front grill.
 しかし、ウィンドシールドに用いられる合わせガラスは、電波が通過する際に反射や吸収が生じることにより、電波透過率が低下するという問題がある。また、ウィンドシールドの角度やガラスの厚さの違いによっても電波透過率が変化する。さらには、ウィンドシールドには冷房負荷軽減等を目的とした熱線反射膜が使用されるが、この場合、熱線反射膜に含まれる導電膜により電波が遮蔽されるという問題もある。 However, the laminated glass used for the windshield has a problem that the radio wave transmittance decreases due to reflection and absorption when radio waves pass through. In addition, the radio wave transmittance changes depending on the angle of the windshield and the thickness of the glass. Further, a heat ray reflecting film for the purpose of reducing the cooling load is used for the windshield, but in this case, there is a problem that radio waves are shielded by the conductive film contained in the heat ray reflecting film.
 上記問題は、車両の合わせガラスに限らずビルなどの窓ガラスに用いられるLow-E複層ガラス等においても同様に生じ得るものであり、通信の高周波帯域利用に伴い、熱的性能を良好に維持しつつ、電波透過性を向上させることが求められている。 The above problem can occur not only in laminated glass of vehicles but also in Low-E double glazing used for window glass of buildings and the like, and the thermal performance is improved with the use of the high frequency band of communication. It is required to improve radio wave transmission while maintaining it.
 上記問題に対して、例えば特許文献1には、弧状破断線を設けた強化周波数選択性表面を有する通信用窓が提案されており、かかる通信用窓は選択した無線周波数を減衰させずに通過させるように設計されている。 To solve the above problem, for example, Patent Document 1 proposes a communication window having an enhanced frequency selectivity surface provided with an arc-shaped break line, and the communication window passes through the selected radio frequency without attenuating it. Designed to let you.
 また、特許文献2には、一方の面に複数の凸形状の誘電体部が周期的に配置された誘電体基板が提案されており、誘電体面に入射されるレーダ波の透過特性を改善させている。 Further, Patent Document 2 proposes a dielectric substrate in which a plurality of convex-shaped dielectric portions are periodically arranged on one surface, and improves the transmission characteristics of radar waves incident on the dielectric surface. ing.
国際公開第2004/093497号International Publication No. 2004/093497 国際公開第2019/180926号International Publication No. 2019/180926
 特許文献1に記載の通信用窓においては、電波が斜めに入射した場合の電波透過性は十分ではなく改善の余地があった。また、特許文献2に記載の誘電体基板は、複数の凸形状の誘電体部が配置されていることにより、美的外観や視認性が悪いという問題があった。 In the communication window described in Patent Document 1, the radio wave permeability when the radio wave is obliquely incident is not sufficient and there is room for improvement. Further, the dielectric substrate described in Patent Document 2 has a problem that the aesthetic appearance and visibility are poor because a plurality of convex-shaped dielectric portions are arranged.
 本発明は、熱的性能や加工性を損ねずに、電波透過性を向上させることが可能な周波数選択表面装荷部材および車両用窓部材を提供する。 The present invention provides a frequency selective surface loading member and a vehicle window member capable of improving radio wave transmission without impairing thermal performance and workability.
 本発明にかかる周波数選択表面装荷部材は、第1層から第n層まで順に積層された計n個の誘電体層を備える積層部材を有し(ただし、nは3以上の整数である)、前記積層部材を構成する誘電体層の主表面の少なくとも1つに所定の周波数Fの電波を透過する周波数選択表面が設けられており、前記周波数選択表面は導電部および非導電部を有し、ISO9050:2003で規定された日射透過率が54%以下である。 The frequency selective surface loading member according to the present invention has a laminated member including a total of n dielectric layers laminated in order from the first layer to the nth layer (where n is an integer of 3 or more). At least one of the main surfaces of the dielectric layer constituting the laminated member is provided with a frequency selection surface that transmits radio waves of a predetermined frequency F, and the frequency selection surface has a conductive portion and a non-conductive portion. The solar transmittance specified in ISO 9050: 2003 is 54% or less.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記積層部材は、誘電体層として前記積層部材の最外層の誘電体層以外に連続する2つの中間体を有し、前記連続する2つの中間体の間に、前記周波数選択表面が設けられていてもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the laminated member has two continuous intermediates as the dielectric layer other than the dielectric layer of the outermost layer of the laminated member, and is continuous. The frequency selection surface may be provided between the two intermediates.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記連続する2つの中間体は、同じ樹脂材料であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the two continuous intermediates may be made of the same resin material.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記樹脂材料は、PVBまたはEVAであってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the resin material may be PVB or EVA.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記第1層および前記第n層は、ガラス基板であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the first layer and the nth layer may be glass substrates.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記第1層または前記第n層は、可視光を遮蔽する遮蔽層であり、前記積層部材の平面視において、前記周波数選択表面の少なくとも一部が前記遮蔽層と重複してもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the first layer or the nth layer is a shielding layer that shields visible light, and in a plan view of the laminated member, the frequency selective surface is At least a part thereof may overlap with the shielding layer.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記遮蔽層と隣接する前記誘電体層はガラス基板であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the dielectric layer adjacent to the shielding layer may be a glass substrate.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記周波数選択表面から前記第1層のうち第2層とは反対側の表面までの距離と、前記周波数選択表面から前記第n層のうち第n-1層とは反対側の表面までの距離と、が略同一であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the distance from the frequency selective surface to the surface of the first layer opposite to the second layer and the nth layer from the frequency selective surface. Of these, the distance to the surface opposite to the n-1th layer may be substantially the same.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記積層部材は、4層の誘電体層からなり、前記第1層から順に、第1ガラス基板、第1樹脂層、第2樹脂層、第2ガラス基板が積層されてもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the laminated member is composed of four dielectric layers, and the first glass substrate, the first resin layer, and the second resin are in order from the first layer. The layer and the second glass substrate may be laminated.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記積層部材は、5層の誘電体層からなり、前記第1層から順に、第1ガラス基板、第1樹脂層、第3樹脂層、第2樹脂層、第2ガラス基板が積層されてもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the laminated member is composed of five dielectric layers, and the first glass substrate, the first resin layer, and the third resin are in order from the first layer. The layer, the second resin layer, and the second glass substrate may be laminated.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記積層部材が有する2つの最表面の少なくとも1つに、前記周波数選択表面が設けられていてもよい。 Further, in the frequency selection surface loading member according to one aspect of the present invention, the frequency selection surface may be provided on at least one of the two outermost surfaces of the laminated member.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、ISO9050:2003で規定された可視光透過率が60%以上であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the visible light transmittance specified in ISO 9050: 2003 may be 60% or more.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、ISO9050:2003で規定された日射反射率が8%以上であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the solar reflectance specified in ISO 9050: 2003 may be 8% or more.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、ISO9050:2003で規定された可視光反射率が15%以下であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the visible light reflectance specified in ISO 9050: 2003 may be 15% or less.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、ISO9050:2003で規定された可視光反射色調のRvaが-10~5であり、Rvbが-10~10であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the visible light reflection color tone Rva * specified in ISO 9050: 2003 may be −10 to 5 and Rvb * may be −10 to 10. ..
 また、本発明の一態様にかかる周波数選択表面装荷部材において、ISO9050:2003で規定された可視光透過色調のTaが-8~5であり、Tbが-8~6であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, Ta * of the visible light transmission color tone defined in ISO 9050: 2003 may be −8 to 5 and Tb * may be −8 to 6. ..
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記周波数選択表面の非導電部の幅Gが、0.01mm~0.5mmであってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the width G of the non-conductive portion of the frequency selective surface may be 0.01 mm to 0.5 mm.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記周波数選択表面の導電部のシート抵抗が、50Ω/□以下であってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the sheet resistance of the conductive portion of the frequency selective surface may be 50 Ω / □ or less.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記周波数選択表面の導電部が、Ag、ITO、フッ素及びアンチモンの少なくとも一つがドープされた酸化スズ、及びCuからなる群より選ばれる少なくとも1種を含んでもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the conductive portion of the frequency selective surface is selected from the group consisting of tin oxide doped with at least one of Ag, ITO, fluorine and antimony, and Cu. At least one may be contained.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記周波数選択表面装荷部材を窓部材として用いた際に、前記周波数選択表面の非導電部が、地面と水平方向及び垂直方向の少なくとも一方の成分を有してもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, when the frequency selective surface loading member is used as a window member, the non-conductive portion of the frequency selective surface is at least horizontal and perpendicular to the ground. It may have one component.
 また、本発明の一態様にかかる周波数選択表面装荷部材は、平面視において、前記周波数選択表面を備える第1領域と、前記周波数選択表面を備えない第2領域とを有してもよい。 Further, the frequency selection surface loading member according to one aspect of the present invention may have a first region having the frequency selection surface and a second region not having the frequency selection surface in a plan view.
 また、本発明の一態様にかかる周波数選択表面装荷部材は、平面視において、前記第1領域の外縁は前記第2領域の外縁よりも内側にあってもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the outer edge of the first region may be inside the outer edge of the second region in a plan view.
 また、本発明の一態様にかかる周波数選択表面装荷部材において、前記周波数Fは、1GHz~100GHzの範囲に含まれてもよい。 Further, in the frequency selective surface loading member according to one aspect of the present invention, the frequency F may be included in the range of 1 GHz to 100 GHz.
 本発明にかかる車両用窓部材は、上記周波数選択表面装荷部材を備える。 The vehicle window member according to the present invention includes the above frequency selection surface loading member.
 本発明の一態様にかかる車両用窓部材は、車両用のウィンドシールドであってもよい。 The vehicle window member according to one aspect of the present invention may be a windshield for a vehicle.
 本発明にかかる周波数選択表面装荷部材によれば、熱的性能や加工性を損ねずに電波透過性を向上できる。 According to the frequency selection surface loading member according to the present invention, radio wave transmission can be improved without impairing thermal performance and workability.
図1は、本実施形態にかかるFSS装荷部材の構造の概略を示す断面図である。FIG. 1 is a cross-sectional view showing an outline of the structure of the FSS loading member according to the present embodiment. 図2は、平面視における本実施形態にかかるFSS装荷部材の一例であり、FSSを備える第1領域A、FSSを備えない第2領域Bを示す図である。FIG. 2 is an example of an FSS loading member according to the present embodiment in a plan view, and is a diagram showing a first region A having an FSS and a second region B not having an FSS. 図3の(A)、(B)は、本実施形態におけるFSSの形状(平面視)の例を示す図である。図3の(A)は、平面視において、非導電部が二重格子縞状に形成された形状を示す。図3の(B)は、平面視において、複数のリング状の非導電部が形成された円形ループスロット型を示す。3 (A) and 3 (B) are views showing an example of the shape (plan view) of the FSS in the present embodiment. FIG. 3A shows a shape in which the non-conductive portion is formed in a double lattice stripe shape in a plan view. FIG. 3B shows a circular loop slot type in which a plurality of ring-shaped non-conductive portions are formed in a plan view. 図4は、本発明の一実施形態のFSS装荷部材の断面図である。FIG. 4 is a cross-sectional view of an FSS loaded member according to an embodiment of the present invention. 図5は、本発明の別の実施形態のFSS装荷部材の断面図である。FIG. 5 is a cross-sectional view of an FSS loaded member according to another embodiment of the present invention. 図6は、例1のFSS装荷部材の断面図である。FIG. 6 is a cross-sectional view of the FSS loading member of Example 1. 図7は、例2のFSS装荷部材の断面図である。FIG. 7 is a cross-sectional view of the FSS loading member of Example 2.
 以下、本発明の実施形態について、詳細に説明する。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際の製品のサイズや縮尺を必ずしも正確に表したものではない。 Hereinafter, embodiments of the present invention will be described in detail. Further, in the following drawings, members / parts having the same function may be described with the same reference numerals, and duplicate description may be omitted or simplified. In addition, the embodiments described in the drawings are schematically for the purpose of clearly explaining the present invention, and do not necessarily accurately represent the size or scale of an actual product.
 なお、本実施形態において、「積層部材」とは、複数の誘電体層が積層された積層体を意味し、周波数選択表面を含まない構成である。一方、「周波数選択表面装荷部材」とは、積層部材を構成する複数の誘電体層の主表面の少なくとも1つに周波数選択表面が装荷された構成である。このように、本明細書において、「積層部材」と「周波数選択表面装荷部材」とは、周波数選択表面を含む構成と含まない構成とで区別されるものとする。 In the present embodiment, the "laminated member" means a laminated body in which a plurality of dielectric layers are laminated, and is configured not to include a frequency selection surface. On the other hand, the "frequency selective surface loading member" is a configuration in which the frequency selective surface is loaded on at least one of the main surfaces of the plurality of dielectric layers constituting the laminated member. As described above, in the present specification, the "laminated member" and the "frequency-selective surface-loaded member" are distinguished by a configuration including a frequency-selective surface and a configuration not including the frequency-selective surface.
 本実施形態にかかる周波数選択表面装荷部材(以下、FSS装荷部材ともいう)は、第1層から第n層まで順に積層された計n個の誘電体層を備える積層部材を有する(ただし、nは3以上の整数である)。そして、積層部材を構成する複数の誘電体層の主表面の少なくとも1つに所定の周波数Fの電波を透過する周波数選択表面(Frequency Selective Surface;以下、FSSともいう)が設けられている。FSSは、導電部および非導電部を有し、ISO9050:2003で規定された日射透過率が54%以下であることを特徴とする。 The frequency selection surface loading member (hereinafter, also referred to as FSS loading member) according to the present embodiment has a laminated member including a total of n dielectric layers laminated in order from the first layer to the nth layer (however, n). Is an integer greater than or equal to 3). Further, a frequency selection surface (Frequency Selective Surface; hereinafter also referred to as FSS) that transmits radio waves of a predetermined frequency F is provided on at least one of the main surfaces of the plurality of dielectric layers constituting the laminated member. The FSS has a conductive portion and a non-conductive portion, and is characterized in that the solar transmittance specified in ISO 9050: 2003 is 54% or less.
 このように、本実施形態にかかるFSS装荷部材は、複数の誘電体層を備える積層部材に、所定の周波数Fの電波を透過するFSSを装荷し、かつ日射透過率を低く抑えることにより、熱的性能を損ねずに電波透過性を向上できる。 As described above, in the FSS loading member according to the present embodiment, the laminated member provided with a plurality of dielectric layers is loaded with FSS that transmits radio waves of a predetermined frequency F, and the solar transmittance is suppressed to a low level, thereby causing heat. Radio wave transmission can be improved without impairing the performance.
 図1は、本実施形態にかかるFSS装荷部材の構造を示す断面図である。図1に示すように、FSS装荷部材10は、第1層から第n層まで順に積層された計n個の誘電体層を備える積層部材を有する。言い換えると、かかる積層部材は、その一方の最表面側に位置する誘電体層を第1層とし、第1層が有する2つの主表面のうち、積層部材の最表面とは反対側の主表面側に第2層から第n層まで順に積層されて構成される。また、FSS装荷部材10における積層部材は3層以上の誘電体層からなる。すなわち、nは3以上の整数である。 FIG. 1 is a cross-sectional view showing the structure of the FSS loading member according to the present embodiment. As shown in FIG. 1, the FSS loading member 10 has a laminated member including a total of n dielectric layers laminated in order from the first layer to the nth layer. In other words, the laminated member has a dielectric layer located on the outermost surface side of the first layer as the first layer, and of the two main surfaces of the first layer, the main surface opposite to the outermost surface of the laminated member. The second layer to the nth layer are laminated in order on the side. Further, the laminated member in the FSS loading member 10 is composed of three or more dielectric layers. That is, n is an integer of 3 or more.
 本実施形態にかかるFSS装荷部材において、積層部材を構成する複数の誘電体層の主表面の少なくとも1つには、所定の周波数Fの電波を透過させるFSSが設けられる。かかるFSSは、予め設定された周波数Fの電波を選択的に透過させ、その周波数帯域以外の他の周波数の電波透過を抑止する機能を有する。本実施形態にかかるFSS装荷部材は、このように所定の周波数Fの電波を透過するFSSを所定の位置に設けられることにより、電波透過性を高めることが可能となる。 In the FSS loading member according to the present embodiment, at least one of the main surfaces of the plurality of dielectric layers constituting the laminated member is provided with an FSS that transmits radio waves of a predetermined frequency F. Such an FSS has a function of selectively transmitting a radio wave having a preset frequency F and suppressing radio wave transmission of a frequency other than the frequency band. The FSS loading member according to the present embodiment can improve the radio wave transmission by providing the FSS that transmits the radio wave of the predetermined frequency F at the predetermined position.
 ここで、「本実施形態にかかるFSS装荷部材において、積層部材を構成する複数の誘電体層の主表面の少なくとも1つにFSSが設けられる」とは、かかる積層部材を構成するすべての誘電体層の主表面のうち、少なくとも1つの主表面にFSSが設けられることを意味する。 Here, "in the FSS loading member according to the present embodiment, the FSS is provided on at least one of the main surfaces of the plurality of dielectric layers constituting the laminated member" means that all the dielectrics constituting the laminated member are provided. It means that the FSS is provided on at least one main surface of the main surface of the layer.
 例えば、上記積層部材が計3層の誘電体層を備える場合(n=3)、かかる積層部材が有する主表面は、第1層側の最表面と、第1層と第2層との間の主表面と、第2層と第3層との間の主表面と、第3層側の最表面との計4つとなる。なお、主表面同士が重なる場合は、主表面の数は1つと数えるものとする。したがって、この場合にFSS装荷部材は、積層部材が備えるこれらの4つの主表面のうち、少なくとも1つの主表面にFSSが設けられる。 For example, when the laminated member includes a total of three dielectric layers (n = 3), the main surface of the laminated member is between the outermost surface on the first layer side and between the first layer and the second layer. There are a total of four main surfaces, the main surface between the second layer and the third layer, and the outermost surface on the third layer side. When the main surfaces overlap each other, the number of main surfaces is counted as one. Therefore, in this case, the FSS loading member is provided with the FSS on at least one of these four main surfaces included in the laminated member.
 本実施形態にかかるFSS装荷部材は、ISO9050:2003で規定された日射透過率が54%以下である。これにより、良好な遮熱効果が得られ、熱的特性に優れる。また、本実施形態にかかるFSS装荷部材の前記日射透過率は、54%以下が好ましく、50%以下がより好ましく、45%以下がさらに好ましく、41%以下が特に好ましく38%以下が最も好ましい。 The FSS loading member according to this embodiment has a solar transmittance of 54% or less specified in ISO 9050: 2003. As a result, a good heat shielding effect is obtained and the thermal characteristics are excellent. The solar transmittance of the FSS loaded member according to the present embodiment is preferably 54% or less, more preferably 50% or less, further preferably 45% or less, particularly preferably 41% or less, and most preferably 38% or less.
 本実施形態にかかるFSS装荷部材の前記日射透過率が上記のように低く抑えられるのは、FSSを形成する導電部が日射反射機能を有するためである。日射反射機能は導電部の面積に比例する。FSSを適切に設計しなければ、電波透過部材として導電部の広い部分を除かなければならず、日射反射能と電波透過性を両立することはできない。しかし、FSSを適切に設計することで導電部の残存率を高く維持したまま電波透過性を向上することができ、日射反射能と電波透過性の両立が可能となる。 The reason why the solar transmittance of the FSS loading member according to the present embodiment is suppressed to a low level as described above is that the conductive portion forming the FSS has a solar radiation reflection function. The solar reflection function is proportional to the area of the conductive portion. If the FSS is not properly designed, a wide part of the conductive portion must be removed as a radio wave transmitting member, and it is not possible to achieve both solar reflectivity and radio wave transmission. However, by appropriately designing the FSS, it is possible to improve the radio wave transmission while maintaining a high residual ratio of the conductive portion, and it is possible to achieve both solar reflectivity and radio wave transmission.
 また、本実施形態にかかるFSS装荷部材は、ISO9050:2003で規定された可視光透過率は60%以上が好ましい。これにより、FSS装荷部材の視認性が優れる。また、本実施形態にかかるFSS装荷部材の前記可視光透過率は、65%以上が好ましく、70%以上がより好ましい。 Further, the FSS loading member according to the present embodiment preferably has a visible light transmittance of 60% or more specified in ISO 9050: 2003. As a result, the visibility of the FSS loading member is excellent. Further, the visible light transmittance of the FSS loaded member according to the present embodiment is preferably 65% or more, more preferably 70% or more.
 本実施形態にかかるFSS装荷部材の前記可視光透過率を上記のように高くできるのは、FSSを構成する導電部にAgやITOなどの透明導電膜を用いるためである。 The visible light transmittance of the FSS loading member according to the present embodiment can be increased as described above because a transparent conductive film such as Ag or ITO is used for the conductive portion constituting the FSS.
 また、本実施形態にかかるFSS装荷部材のISO9050:2003で規定された日射反射率は、8%以上が好ましく、12%以上がより好ましい。日射反射率が上記範囲であることにより良好な遮熱効果が得られ、熱的特性に優れる。 Further, the solar reflectance specified in ISO 9050: 2003 of the FSS loading member according to the present embodiment is preferably 8% or more, more preferably 12% or more. When the solar reflectance is in the above range, a good heat shielding effect can be obtained and the thermal characteristics are excellent.
 また、本実施形態にかかるFSS装荷部材のISO9050:2003で規定された可視光反射率は、15%以下が好ましく、10%以下がより好ましい。可視光反射率が上記範囲であることにより、FSS装荷部材の視認性が優れる。 Further, the visible light reflectance specified in ISO 9050: 2003 of the FSS loading member according to the present embodiment is preferably 15% or less, more preferably 10% or less. When the visible light reflectance is within the above range, the visibility of the FSS loaded member is excellent.
 本実施形態にかかるFSS装荷部材のISO9050:2003で規定された可視光反射色調のRvaは、-10~5が好ましく、Rvbは-10~10が好ましい。RvaおよびRvbが上記範囲であると非導電部との色差が小さくなりFSSパターンが見え難くなるため、FSS装荷部材の美的外観が優れる。 The visible light reflection color tone Rva * specified in ISO 9050: 2003 of the FSS loading member according to the present embodiment is preferably -10 to 5, and Rvb * is preferably -10 to 10. When Rva * and Rvb * are in the above range, the color difference from the non-conductive portion becomes small and the FSS pattern becomes difficult to see, so that the aesthetic appearance of the FSS loading member is excellent.
 また、本実施形態にかかるFSS装荷部材のISO9050:2003で規定された可視光透過色調のTaは、-8~5が好ましく、Tbは-8~6が好ましい。TaおよびTbが上記範囲であると非導電部との色差が小さくなりFSSパターンが見え難いため、FSS装荷部材の美的外観が優れる。 Further, the Ta * of the visible light transmission color tone specified in ISO 9050: 2003 of the FSS loading member according to the present embodiment is preferably −8 to 5, and the Tb * is preferably −8 to 6. When Ta * and Tb * are in the above range, the color difference from the non-conductive portion becomes small and the FSS pattern is difficult to see, so that the aesthetic appearance of the FSS loading member is excellent.
 本実施形態におけるFSS装荷部材10は、平面視において、当該FSSの外縁がFSS装荷部材10の外縁よりも内側に位置するように設けられてもよい。つまり、FSS装荷部材10は、周波数Fの電波の透過性を向上する特定の領域が設けられてもよい。 The FSS loading member 10 in the present embodiment may be provided so that the outer edge of the FSS is located inside the outer edge of the FSS loading member 10 in a plan view. That is, the FSS loading member 10 may be provided with a specific region for improving the transparency of radio waves having a frequency F.
 なお、平面視とは、FSS装荷部材10の主表面の法線方向から見た場合に相当する。例えば、図2では、FSS装荷部材10が車両用窓部材である場合を例示するが、本実施形態にかかるFSS装荷部材10は、平面視においてFSSを備える第1領域Aと、FSSを備えない第2領域Bとを有してもよい。 Note that the plan view corresponds to the case where the FSS loading member 10 is viewed from the normal direction of the main surface. For example, FIG. 2 illustrates a case where the FSS loading member 10 is a window member for a vehicle, but the FSS loading member 10 according to the present embodiment does not include a first region A having an FSS and an FSS in a plan view. It may have a second region B.
 なお、図2に示すFSS装荷部材10は、第1領域Aの外縁は第2領域Bの外縁よりも内側にある場合を示すが、FSS装荷部材10の平面視において、第1領域Aの外縁の一部が第2領域Bの外縁の一部を共有または重複する形態でもよい。 The FSS loading member 10 shown in FIG. 2 shows a case where the outer edge of the first region A is inside the outer edge of the second region B. However, in the plan view of the FSS loading member 10, the outer edge of the first region A is shown. A part of the second region B may share or overlap a part of the outer edge of the second region B.
 または、本実施形態にかかるFSS装荷部材は、平面視において、当該FSSの外縁が積層部材の外縁と略一致するにように設けられてもよい。すなわち、本実施形態にかかるFSS装荷部材は、FSSと他の誘電体層のサイズが略同一でもよい。 Alternatively, the FSS loading member according to the present embodiment may be provided so that the outer edge of the FSS substantially coincides with the outer edge of the laminated member in a plan view. That is, in the FSS loading member according to the present embodiment, the size of the FSS and the other dielectric layer may be substantially the same.
 また、本実施形態にかかるFSS装荷部材10が車両のウィンドシールドである場合、第1領域Aは平面視において、例えば、FSS装荷部材の上部中央付近(図2)や下部など、運転者の視界を遮らない位置に設けてもよい。 Further, when the FSS loading member 10 according to the present embodiment is a windshield of the vehicle, the first region A is the driver's view in a plan view, for example, near the upper center (FIG. 2) or the lower part of the FSS loading member. May be provided at a position that does not block.
 ここで、車両のウィンドシールドの上下方向の長さを「D」としたとき、例えば、「上部」とはウィンドシールドの上辺から下方へ0.3×D以下の距離までの領域を例示でき、「下部」とはウィンドシールドの下辺から上方へ0.3×D以下の距離までの領域を例示できる。 Here, when the vertical length of the windshield of the vehicle is "D", for example, the "upper part" can exemplify a region from the upper side of the windshield to a distance of 0.3 × D or less from the upper side to the lower side. The “lower part” can be exemplified as an area from the lower side of the windshield to an upper side up to a distance of 0.3 × D or less.
 また、「上部」は、ウィンドシールドの上辺から0.2×D以下の距離までの領域でもよく、「下部」はウィンドシールドの下辺から0.2×D以下の距離までの領域でもよい。 Further, the "upper part" may be an area up to a distance of 0.2 × D or less from the upper side of the windshield, and the “lower part” may be an area up to a distance of 0.2 × D or less from the lower side of the windshield.
 さらに、本実施形態にかかるFSS装荷部材10が車両用のウィンドシールドである場合、運転者の視界を十分に維持できればFSS装荷部材10は、ウィンドシールドの一部の領域に限らず全面に設けてもよい。少なくとも、FSS装荷部材は、所定の周波数Fの電波の送受が確保できる程度の領域に設けるとよい。 Further, when the FSS loading member 10 according to the present embodiment is a windshield for a vehicle, the FSS loading member 10 is provided not only in a part of the windshield but also on the entire surface as long as the driver's field of vision can be sufficiently maintained. May be good. At least, the FSS loading member may be provided in a region where radio waves of a predetermined frequency F can be transmitted and received.
 なお、本実施形態にかかるFSS装荷部材10を車両用窓部材として用いる場合、ウィンドシールドに限らず、リアガラスやサイドガラス、リアクォーターガラス、ルーフガラス、樹脂ドアや樹脂ルーフ、リアスポイラー等の樹脂製のエアロパーツに使用してもよい。 When the FSS loading member 10 according to the present embodiment is used as a vehicle window member, it is not limited to the windshield, but is not limited to the windshield, but is made of resin such as rear glass, side glass, rear quarter glass, roof glass, resin door, resin roof, and rear spoiler. It may be used for parts.
 以下、本実施形態にかかるFSS装荷部材の各部材についてさらに詳細に説明する。 Hereinafter, each member of the FSS loading member according to the present embodiment will be described in more detail.
<誘電体層>
 誘電体層は、導電性よりも誘電性が優位な物質であり、外部電場をかけたときに、その誘電体が電気的に分極する性質を持つものをいう。FSS装荷部材に含まれる誘電体層の種類は特に限定されず、例えば、ガラス基板及び樹脂基板等の誘電体基板、誘電体基板間に設けられる中間体、コーティング層、誘電体基板表面(FSS装荷部材最表面側)に設けられるコーティング層、空気等が挙げられる。なお、誘電体層が空気である場合、空気は第2層~第n-1層のいずれかに限定され、誘電体基板間の誘電体層、とくにガラス基板間の誘電体層として使用できる。
<Dielectric layer>
The dielectric layer is a substance in which dielectric property is superior to conductivity, and the dielectric layer has a property of being electrically polarized when an external electric field is applied. The type of the dielectric layer included in the FSS loading member is not particularly limited, and for example, a dielectric substrate such as a glass substrate and a resin substrate, an intermediate provided between the dielectric substrates, a coating layer, and a dielectric substrate surface (FSS loading). Examples include a coating layer provided on the outermost surface side of the member), air, and the like. When the dielectric layer is air, the air is limited to any of the second layer to the n-1 layer, and can be used as a dielectric layer between dielectric substrates, particularly a dielectric layer between glass substrates.
 ガラス基板としては、例えば、ソーダライムガラス、無アルカリガラス、ボロシリケートガラス、石英ガラス等を使用できる。ガラス基板には物理強化処理や化学強化処理が施されている強化ガラス基板を使用してもよい。ガラス基板は、フロート法で作製されるフロートガラスが好ましい。ガラス基板は、フュージョン法で作製されるガラスでもよい。 As the glass substrate, for example, soda lime glass, non-alkali glass, borosilicate glass, quartz glass and the like can be used. A tempered glass substrate that has been physically or chemically strengthened may be used as the glass substrate. The glass substrate is preferably float glass produced by the float method. The glass substrate may be glass manufactured by the fusion method.
 樹脂基板としては、例えば、ポリメチルメタクリレート等のアクリル系樹脂やポリフェニレンカーボネート等の芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂等からなる基板が挙げられる。 Examples of the resin substrate include an acrylic resin such as polymethylmethacrylate, an aromatic polycarbonate resin such as polyphenylene carbonate, and an aromatic polyester resin such as polyethylene terephthalate (PET).
 誘電体基板間、例えばガラス基板間に設けられる中間体としては、ポリビニルブチラール(PVB)、エチレンビニルアセタール(EVA)、ポリエチレンテレフタレート(PET)等の樹脂材料を含む樹脂層を使用できる。 As an intermediate provided between the dielectric substrates, for example, between the glass substrates, a resin layer containing a resin material such as polyvinyl butyral (PVB), ethylene vinyl acetal (EVA), and polyethylene terephthalate (PET) can be used.
 また、中間体としては、加熱前は液状である熱硬化性樹脂を用いてもよい。すなわち、中間体は積層部材とした状態の際に層状であればよく、誘電体基板等の接合前の状態であれば中間体が液状でもよい。 Further, as the intermediate, a thermosetting resin which is liquid before heating may be used. That is, the intermediate may be layered when it is made into a laminated member, and the intermediate may be liquid as long as it is in a state before joining such as a dielectric substrate.
 さらに、中間体としては上記に例示したように空気(真空)でもよく、PVB、EVAまたは空気より選ばれる少なくとも1種を含んでもよい。そして、FSSの非導電部が、PVB、EVAまたは空気より選ばれる少なくとも1種を含んでもよい。 Further, the intermediate may be air (vacuum) as exemplified above, or may contain at least one selected from PVB, EVA or air. Then, the non-conductive portion of the FSS may contain at least one selected from PVB, EVA or air.
 本実施形態にかかるFSS装荷部材において、中間体は、複数層有してもよい。本明細書では、合計m層の中間体を有するとき、第1中間体、第2中間体、・・・、第m中間体と称する。ただし、mは、1以上n-2以下の整数である。 In the FSS loading member according to the present embodiment, the intermediate may have a plurality of layers. In the present specification, when there are intermediates having a total of m layers, they are referred to as first intermediates, second intermediates, ..., Mth intermediates. However, m is an integer of 1 or more and n-2 or less.
 コーティング層としては、種々の機能を有する機能性コーティング層が挙げられ、例えば黒色セラミックス層等の光遮蔽層、撥水機能、親水機能、防曇機能等を付与するコーティング層、熱線反射層等が挙げられる。これらのコーティング層としては、誘電体基板に比べて厚さが薄い層や、誘電体基板に比べて剛性が小さい材料からなる層が挙げられる。コーティング層は、例えば、所定の厚さを有し剛性の大きいガラス基板からなる誘電体基板の主表面をコーティングするように配置される場合が多い。 Examples of the coating layer include functional coating layers having various functions, such as a light shielding layer such as a black ceramic layer, a coating layer imparting a water repellent function, a hydrophilic function, an antifog function, and the like, and a heat ray reflecting layer. Can be mentioned. Examples of these coating layers include a layer having a thickness thinner than that of a dielectric substrate and a layer made of a material having a lower rigidity than that of a dielectric substrate. The coating layer is often arranged, for example, to coat the main surface of a dielectric substrate made of a glass substrate having a predetermined thickness and high rigidity.
 コーティング層は、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等の物理蒸着法を用いて形成できる。また、コーティング層は、化学蒸着法、またはウェットコーティング法を用いて形成してもよい。 The coating layer can be formed by using a physical vapor deposition method such as a sputtering method, a vacuum vapor deposition method, or an ion plating method. Further, the coating layer may be formed by using a chemical vapor deposition method or a wet coating method.
 本実施形態にかかるFSS装荷部材においては、その最外層側の誘電体層(第1層及び第n層の少なくとも一方)には、通常誘電体基板が用いられることが多い。とくに、本実施形態にかかるFSS装荷部材が車両用の合わせガラスとして用いられる場合、第1層及び第n層は、ガラス基板を用いるとよい。 In the FSS loading member according to the present embodiment, a dielectric substrate is usually used for the dielectric layer (at least one of the first layer and the nth layer) on the outermost layer side. In particular, when the FSS loading member according to the present embodiment is used as a laminated glass for a vehicle, it is preferable to use a glass substrate for the first layer and the nth layer.
 ただし、本実施形態にかかるFSS装荷部材が、第1層又は第n層として黒色セラミックス層等のコーティング層が、第2層又は第n-1層上に設けられるときは、コーティング層となる場合がある。なお、黒色セラミックス層等のコーティング層は、可視光を遮蔽する層であり、遮蔽層ともいう。 However, when the FSS loading member according to the present embodiment is provided with a coating layer such as a black ceramic layer as the first layer or the nth layer on the second layer or the n-1 layer, it becomes a coating layer. There is. The coating layer such as the black ceramic layer is a layer that shields visible light and is also called a shielding layer.
 このようにFSS装荷部材の誘電体層の最外層として遮蔽層を用いると、とくに車両用の合わせガラスとして用いる場合デザイン性を向上できる。また、FSS装荷部材が車両用の合わせガラスであって、平面視においてFSSが遮蔽層の少なくとも一部と重なることで、FSSが視認されにくくなり好ましく、FSSが遮蔽層の全部と重なるとより好ましい。 When the shielding layer is used as the outermost layer of the dielectric layer of the FSS loading member in this way, the design can be improved especially when it is used as a laminated glass for vehicles. Further, it is preferable that the FSS loading member is a laminated glass for a vehicle and the FSS overlaps with at least a part of the shielding layer in a plan view, so that the FSS is less likely to be visually recognized, and it is more preferable that the FSS overlaps with the entire shielding layer. ..
 なお、誘電体層の最外層(第1層または第n層)が遮蔽層である場合、遮蔽層と隣接する誘電体層(第2層または第n-1層)は、ガラス基板が好ましい。また、中間体は、最外層側の誘電体層以外(第1層および第n層以外)、すなわち第2層~第n-1層のいずれかに用いられる。 When the outermost layer (first layer or nth layer) of the dielectric layer is a shielding layer, the dielectric layer (second layer or n-1 layer) adjacent to the shielding layer is preferably a glass substrate. Further, the intermediate is used for any of layers other than the dielectric layer on the outermost layer side (other than the first layer and the nth layer), that is, the second layer to the n-1th layer.
 誘電体層の形状は特に限定されず、平面状でもよく、主面が有限の曲率半径を有して湾曲する曲面状でもよい。 The shape of the dielectric layer is not particularly limited, and may be a planar shape or a curved surface whose main surface has a finite radius of curvature and is curved.
 誘電体層の比誘電率は、1以上が好ましく、2.3以上がより好ましい。また、誘電体層の比誘電率は、7.2以下が好ましく、7.0以下がより好ましく、6.8以下がさらに好ましい。誘電体層の比誘電率は、ASTM D150に準拠した変成器ブリッジ法にしたがい、温度を23℃±2℃の範囲内、相対湿度を50%±5%RHの範囲内に保持した試験環境において、絶縁破壊試験装置を用いて1MHzで求めた値である。 The relative permittivity of the dielectric layer is preferably 1 or more, more preferably 2.3 or more. The relative permittivity of the dielectric layer is preferably 7.2 or less, more preferably 7.0 or less, and even more preferably 6.8 or less. The relative permittivity of the dielectric layer is in a test environment where the temperature is kept within the range of 23 ° C ± 2 ° C and the relative humidity is kept within the range of 50% ± 5% RH according to the transformer bridge method based on ASTM D150. , It is a value obtained at 1 MHz using a dielectric breakdown test device.
 誘電体層の第1層および第n層の比誘電率は、2.3以上が好ましい。また、誘電体層の第1層および第n層の比誘電率は、7.2以下が好ましく、7.0以下がより好ましく、6.8以下がさらに好ましい。 The relative permittivity of the first layer and the nth layer of the dielectric layer is preferably 2.3 or more. The relative permittivity of the first layer and the nth layer of the dielectric layer is preferably 7.2 or less, more preferably 7.0 or less, and even more preferably 6.8 or less.
 とくに、本実施形態にかかるFSS装荷部材の第1層~第n層の誘電体層の少なくとも1層は、その比誘電率が、隣接する誘電体層の比誘電率に近い値が好ましい。これにより、誘電体層と誘電体層の界面での反射を低減できるため電波透過性が向上する。 In particular, at least one of the dielectric layers of the first layer to the nth layer of the FSS loading member according to the present embodiment preferably has a relative permittivity close to the relative permittivity of the adjacent dielectric layer. As a result, reflection at the interface between the dielectric layer and the dielectric layer can be reduced, so that radio wave transmission is improved.
 FSS装荷部材における誘電体層としては、少なくとも1層はガラス基板を用いてもよい。ガラス基板の組成はとくに限定されないが、例えば、ガラス基板としてソーダライムガラスを用いる場合、各成分の酸化物基準のモル百分率表示で、
 50%≦SiO≦80%
 0.1%≦Al≦25%
 3%≦RO≦30%(ROは、LiO、NaO、KOの合計量を表す)
 0%≦B≦10%
 0%≦MgO≦25%
 0%≦CaO≦25%
 0%≦SrO≦5%
 0%≦BaO≦5%
 0%≦ZrO≦5%
 0%≦SnO≦5%
を満足するものが挙げられる。
As the dielectric layer in the FSS loading member, a glass substrate may be used for at least one layer. The composition of the glass substrate is not particularly limited, but for example, when soda lime glass is used as the glass substrate, the molar percentage of each component is displayed based on the oxide.
50% ≤ SiO 2 ≤ 80%
0.1% ≤ Al 2 O 3 ≤ 25%
3% ≤ R 2 O ≤ 30% (R 2 O represents the total amount of Li 2 O, Na 2 O, K 2 O)
0% ≤ B 2 O 3 ≤ 10%
0% ≤ MgO ≤ 25%
0% ≤ CaO ≤ 25%
0% ≤ SrO ≤ 5%
0% ≤ BaO ≤ 5%
0% ≤ ZrO 2 ≤ 5%
0% ≤ SnO 2 ≤ 5%
There are things that satisfy.
 また、FSS装荷部材に用いるガラス基板として無アルカリガラスを用いる場合、各成分の酸化物基準のモル百分率表示の含有量が、
 50%≦SiO≦80%
 0%≦Al≦30%
 0%≦B≦25%
 0%≦MgO≦25%
 0%≦CaO≦25%
 0%≦SrO≦25%
 0%≦BaO≦25%
 0%≦ZrO≦5%
 5%≦RO≦40%(ROは、MgO、CaO、SrO、BaOの合計量を表す)
を満足するものが挙げられる。
Further, when non-alkali glass is used as the glass substrate used for the FSS loading member, the content of each component in terms of molar percentage display based on the oxide is determined.
50% ≤ SiO 2 ≤ 80%
0% ≤ Al 2 O 3 ≤ 30%
0% ≤ B 2 O 3 ≤ 25%
0% ≤ MgO ≤ 25%
0% ≤ CaO ≤ 25%
0% ≤ SrO ≤ 25%
0% ≤ BaO ≤ 25%
0% ≤ ZrO 2 ≤ 5%
5% ≤ RO ≤ 40% (RO represents the total amount of MgO, CaO, SrO, BaO)
There are things that satisfy.
 さらに、ガラス基板としては、二酸化ケイ素を主成分とし、かつホウ素成分を含有する酸化物系ガラスであるボロシリケートガラスを用いてもよい。ボロシリケートガラス中のホウ素成分は酸化ホウ素(三酸化二ホウ素(B)等のホウ素酸化物の総称)であり、ガラス中の酸化ホウ素の割合はB換算で表す。ガラス中の主な成分は、同様に、SiO、Al、B、MgO、CaO、SrO、BaO、LiO、NaO、KO等の酸化物で表し、その割合は酸化物基準で表す。 Further, as the glass substrate, borosilicate glass, which is an oxide-based glass containing silicon dioxide as a main component and a boron component as a main component, may be used. The boron component in the borosilicate glass is boron oxide (a general term for boron oxides such as diboron trioxide (B 2 O 3 )), and the ratio of boron oxide in the glass is expressed in terms of B 2 O 3 . Similarly, the main components in the glass are represented by oxides such as SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, LiO 2 , Na 2 O, K 2 O, and the like. The ratio is expressed on an oxide basis.
 本実施形態においてボロシリケートガラスは、酸化物基準のモル百分率表示で1.0%以上のBを含む、二酸化ケイ素を主成分とする酸化物系ガラスをいう。 In the present embodiment, the borosilicate glass refers to an oxide-based glass containing silicon dioxide as a main component , which contains 1.0% or more of B2O3 in terms of molar percentage display based on oxides.
 ガラス基板の比重は、2.4以上、3.0以下が好ましい。また、ガラス基板のヤング率は60GPa以上、100GPa以下が好ましい。 The specific gravity of the glass substrate is preferably 2.4 or more and 3.0 or less. The Young's modulus of the glass substrate is preferably 60 GPa or more and 100 GPa or less.
 ガラス基板の、50℃から350℃までの平均熱膨張係数は50×10-7/℃以上が好ましい。また、ガラス基板の50℃から350℃までの平均熱膨張係数は、120×10-7/℃以下が好ましい。ガラス基板がこれらの物性要件を満たせば、例えば窓材等として充分好適に使用できる。 The average coefficient of thermal expansion of the glass substrate from 50 ° C to 350 ° C is preferably 50 × 10 -7 / ° C or higher. The average coefficient of thermal expansion of the glass substrate from 50 ° C. to 350 ° C. is preferably 120 × 10 -7 / ° C. or less. If the glass substrate satisfies these physical characteristics requirements, it can be sufficiently suitably used as, for example, a window material.
<周波数選択表面>
 周波数選択表面(FSS)は平面視において、導電部および非導電部を有し、所定の周波数Fの電波を透過させ、その周波数帯域以外の他の周波数の電波の透過を抑止する。
<Frequency selection surface>
The frequency selection surface (FSS) has a conductive portion and a non-conductive portion in a plan view, transmits radio waves of a predetermined frequency F, and suppresses transmission of radio waves of frequencies other than the frequency band.
 ここで、FSSにおける導電部とは、FSSのうち20℃におけるシート抵抗が50Ω/□以下の部分をいう。また、FSSにおける非導電部とは20℃におけるシート抵抗が50Ω/□超の部分をいう。 Here, the conductive portion in the FSS means a portion of the FSS having a sheet resistance of 50 Ω / □ or less at 20 ° C. The non-conductive portion in FSS means a portion where the sheet resistance at 20 ° C. exceeds 50 Ω / □.
 また、FSSにおいて、導電部と非導電部との間の、20℃におけるシート抵抗の差は、50Ω/□以上であればよく、100Ω/□以上が好ましく、1000Ω/□以上がより好ましい。 Further, in FSS, the difference in sheet resistance between the conductive portion and the non-conductive portion at 20 ° C. may be 50 Ω / □ or more, preferably 100 Ω / □ or more, and more preferably 1000 Ω / □ or more.
 FSSの導電部を構成する材料は特に制限されないが、例えば、Ag、インジウムスズ酸化物(ITO)、Cu、Al、フッ素及びアンチモンの少なくとも一つがドープされた酸化スズ(SnO:F,Sb)、窒化チタン、窒化ニオブ、窒化クロム、窒化ジルコニウム及び窒化ハフニウム等の金属を含む材料が挙げられる。 The material constituting the conductive portion of FSS is not particularly limited, and for example, tin oxide (SnO 2 : F, Sb) doped with at least one of Ag, indium tin oxide (ITO), Cu, Al, fluorine and antimony is used. , Titanium nitride, niobide, chromium nitride, zirconium nitride and hafnium nitride and other metals.
 なかでも、Ag、ITO、フッ素及びアンチモンの少なくとも一つがドープされた酸化スズ(SnO:F,Sb)、及びCuからなる群より選ばれる少なくとも1種を含むことが好ましい。なお、非導電部は例えば、誘電体層を構成する誘電体材料でもよく、空気でもよい。 Among them, it is preferable to contain at least one selected from the group consisting of tin oxide (SnO 2 : F, Sb) doped with at least one of Ag, ITO, fluorine and antimony, and Cu. The non-conductive portion may be, for example, a dielectric material constituting the dielectric layer or air.
 本実施形態におけるFSSの導電部のシート抵抗は、50Ω/□以下が好ましく、30Ω/□以下がより好ましく、10Ω/□以下がさらに好ましい。導電部のシート抵抗が上記範囲であることにより、FSSの導電部や非導電部がインダクタもしくはキャパシタとして有効に機能するため電波透過性が向上する。 The sheet resistance of the conductive portion of the FSS in this embodiment is preferably 50 Ω / □ or less, more preferably 30 Ω / □ or less, and even more preferably 10 Ω / □ or less. When the sheet resistance of the conductive portion is within the above range, the conductive portion and the non-conductive portion of the FSS effectively function as an inductor or a capacitor, so that the radio wave transmission property is improved.
 FSSの導電部のシート抵抗は、例えば、DELCOM社製、非接触渦電流法、抵抗値測定器 717 conductance monitorを用いて測定できる。 The sheet resistance of the conductive part of the FSS can be measured by using, for example, a non-contact eddy current method manufactured by DELCOM, a resistance value measuring device 717, a conductance monitor.
 本実施形態にかかるFSS装荷部材を窓部材として用いた際に、FSSの非導電部が、地面と水平方向の成分及び垂直方向の成分の少なくとも一方の成分を有することが好ましい。これは、車両用窓部材のような窓部材として用いた際に非導電部の一部が地面と水平であることにより、垂直偏波の電波透過性が良好となる。また、非導電部の一部が地面と垂直であることにより、水平偏波の電波透過性が良好となる。 When the FSS loading member according to the present embodiment is used as a window member, it is preferable that the non-conductive portion of the FSS has at least one component of a component in the horizontal direction and a component in the direction perpendicular to the ground. This is because when used as a window member such as a window member for a vehicle, a part of the non-conductive portion is horizontal to the ground, so that the radio wave transmission of vertically polarized waves becomes good. Further, since a part of the non-conductive portion is perpendicular to the ground, the radio wave transmission of horizontally polarized waves is improved.
 また、平面視におけるFSSの形状は特に制限されない。具体例として、図3の(A)、(B)に、平面視(XY平面)の本実施形態におけるFSSの形状について以下説明するが、FSSの形状は、これらに制限されない。 Further, the shape of the FSS in a plan view is not particularly limited. As a specific example, the shape of the FSS in the present embodiment in a plan view (XY plane) will be described below in FIGS. 3A and 3B, but the shape of the FSS is not limited thereto.
 まず、図3の(A)に示すFSS30aは、導電部31aおよび非導電部32aを有し、平面視において非導電部32aが二重格子縞状に形成されている。 First, the FSS 30a shown in FIG. 3A has a conductive portion 31a and a non-conductive portion 32a, and the non-conductive portion 32a is formed in a double lattice stripe shape in a plan view.
 ここで二重格子縞状とは、複数の二重の縦線と、複数の二重の横線とが、互いに直交して形成される格子縞をいう。別の言い方をすれば、二重格子縞状とは、導電部31aに対し、非導電部32aがX軸方向、およびX軸に垂直なY軸方向に沿った線条からなる二重格子縞状に形成された形状をいう。 Here, the double plaid is a plaid in which a plurality of double vertical lines and a plurality of double horizontal lines are formed orthogonally to each other. In other words, the double plaid is a double plaid consisting of a conductive portion 31a and a non-conductive portion 32a along the X-axis direction and the Y-axis direction perpendicular to the X axis. It refers to the formed shape.
 かかる形状では、複数の寸法パラメータにより繰り返しの一単位Aが構成されるため、設計自由度が高いという利点がある。図3の(A)に示すFSS30aは、導電部31aおよび非導電部32aからなる四角形の一単位A(基本パターン)が、X軸方向およびY軸方向に二次元状に規則的に隙間なく配列されるパターンで構成される。 With such a shape, there is an advantage that the degree of freedom in design is high because one unit A of repetition is composed of a plurality of dimensional parameters. In the FSS 30a shown in FIG. 3A, one unit A (basic pattern) of a quadrangle composed of a conductive portion 31a and a non-conductive portion 32a is regularly arranged two-dimensionally in the X-axis direction and the Y-axis direction without gaps. Consists of patterns that are
 図3の(A)に示すFSS30aにおいて四角形の一単位Aは、各辺の長さが等しい正方形でもよく、二辺の長さが異なる長方形でもよい。また、隣り合う二重格子同士に挟まれて形成される四角形の導電部31aのY軸方向における一辺の長さ(Y軸方向に隣り合う二重格子間の最短距離)L1、二重格子内に形成される導電部31aの長さL2、二重格子縞を形成する非導電部32aの幅Gは、適宜設定できる。 In the FSS 30a shown in FIG. 3A, one unit A of a quadrangle may be a square having the same length on each side or a rectangle having different lengths on two sides. Further, the length of one side in the Y-axis direction of the rectangular conductive portion 31a formed by being sandwiched between the adjacent double lattices (the shortest distance between the adjacent double lattices in the Y-axis direction) L1, in the double lattice. The length L2 of the conductive portion 31a formed in the above and the width G of the non-conductive portion 32a forming the double lattice fringes can be appropriately set.
 L1およびL2は0.05mm~5mmが好ましく、幅Gは0.01mm~0.5mmが好ましい。なお、図3の(A)では、FSSの長さL1、長さL2、及び、幅Gは、いずれも、Y軸方向の長さ、または幅として示しているが、X軸方向における上記各寸法についても、上記好ましい数値範囲であればよい。 L1 and L2 are preferably 0.05 mm to 5 mm, and the width G is preferably 0.01 mm to 0.5 mm. In FIG. 3A, the length L1, the length L2, and the width G of the FSS are all shown as the length or the width in the Y-axis direction, but each of the above in the X-axis direction. The dimensions may be within the above preferable numerical range.
 また、FSS装荷部材におけるFSS30aの装荷面積は、適宜設定できるが、透過する電波の周波数Fに対応する空気中の波長をλ(mm)としたときに、λmm以上が好ましく、2λmm以上がより好ましく、3λmm以上がさらに好ましい。 Further, the loading area of the FSS 30a in the FSS loading member can be appropriately set, but when the wavelength in the air corresponding to the frequency F of the transmitted radio wave is λ (mm), λ 2 mm 2 or more is preferable, and 2λ 2 M2 or more is more preferable, and 3λ 2 mm 2 or more is further preferable.
 また、非導電部32aの幅Gは250μm以下がより好ましく、200μm以下がさらに好ましい。非導電部32aの幅Gは、10μm~250μmが好ましく、10μm~200μmがより好ましい。非導電部32aの幅Gが上記範囲であることにより、非導電部32aに電界が集中しキャパシタンスとして効果的に働くため電波透過性が向上する。 Further, the width G of the non-conductive portion 32a is more preferably 250 μm or less, further preferably 200 μm or less. The width G of the non-conductive portion 32a is preferably 10 μm to 250 μm, more preferably 10 μm to 200 μm. When the width G of the non-conductive portion 32a is within the above range, the electric field is concentrated on the non-conductive portion 32a and effectively acts as a capacitance, so that the radio wave transmission property is improved.
 また、本実施形態にかかるFSS装荷部材を窓部材として用いた際に、FSSの非導電部が、地面と水平方向及び垂直方向の少なくとも一方の成分を有することが好ましい。ここで、地面と水平方向の成分とは、図3の(A)に示すFSSにおいては、図3の(A)に示す向きに車両用のウィンドシールドに設置された場合、複数の二重の横線が該当する。また、地面と垂直方向の成分とは、図3の(A)に示すFSSにおいては、図3の(A)に示す向きに車両用のウィンドシールドに設置された場合、複数の二重の縦線が該当する。 Further, when the FSS loading member according to the present embodiment is used as a window member, it is preferable that the non-conductive portion of the FSS has at least one component in the horizontal direction and the vertical direction with respect to the ground. Here, the components in the horizontal direction with respect to the ground are a plurality of double components in the FSS shown in FIG. 3 (A) when installed in the windshield for a vehicle in the direction shown in FIG. 3 (A). The horizontal line corresponds. Further, the components in the direction perpendicular to the ground are a plurality of double vertical components in the FSS shown in FIG. 3 (A) when installed on the windshield for the vehicle in the direction shown in FIG. 3 (A). The line is applicable.
 FSSの別の形状として、図3の(B)に示すFSS30bは、導電部31bおよび非導電部32bを有し、平面視において、複数のリング状の非導電部32bが形成される、円形ループスロット形状である。かかる形状を有するFSS30bでは、部分Aを構成する六角形を、六角形の各辺を共有するように(XY平面に沿って)規則的に隙間なく三角配列されるパターンを含むことで円形ループスロットを効率よく充填できる。図3の(B)に示すFSS30bは、図3の(A)に示すFSS30aのような四角配列よりもスロット間距離を小さくできるため、設計自由度を高くできる利点がある。 As another shape of the FSS, the FSS 30b shown in FIG. 3B has a conductive portion 31b and a non-conductive portion 32b, and a circular loop in which a plurality of ring-shaped non-conductive portions 32b are formed in a plan view. It has a slot shape. The FSS 30b having such a shape includes a circular loop slot in which the hexagons constituting the portion A are regularly arranged in a triangular array (along the XY plane) so as to share each side of the hexagon. Can be filled efficiently. The FSS30b shown in FIG. 3B has an advantage that the degree of freedom in design can be increased because the distance between slots can be made smaller than that of the square arrangement like the FSS30a shown in FIG. 3A.
 図3の(B)のFSS30bにおける上記部分Aのうち、六角形の各頂点から中心(重心)までの長さp、リング状の非導電部32bの幅Wの中心を通る仮想円cの半径t、リング状の非導電部32bの幅Wの長さは、適宜設定できる。半径tは、長さpよりも短く、幅Wは、長さpよりも短い。 Of the above portion A in the FSS 30b of FIG. 3B, the length p from each apex of the hexagon to the center (center of gravity), the radius of the virtual circle c passing through the center of the width W of the ring-shaped non-conductive portion 32b. t, The length of the width W of the ring-shaped non-conductive portion 32b can be appropriately set. The radius t is shorter than the length p, and the width W is shorter than the length p.
 長さpは0.25mm~3mmが好ましく、tは0.3mm~1.5mmが好ましく、幅Wは0.03mm~1mmが好ましい。また、FSS装荷部材におけるFSS30bの装荷面積も適宜決設定できるが、透過する電波の周波数Fに対応する空気中の波長をλ(mm)としたときに、λmm以上が好ましく、2λmm以上がより好ましく、3λmm以上がさらに好ましい。 The length p is preferably 0.25 mm to 3 mm, t is preferably 0.3 mm to 1.5 mm, and the width W is preferably 0.03 mm to 1 mm. Further, the loading area of the FSS 30b in the FSS loading member can be appropriately set, but when the wavelength in the air corresponding to the frequency F of the transmitted radio wave is λ (mm), λ 2 mm 2 or more is preferable, and 2λ 2 M2 or more is more preferable, and 3λ 2 mm 2 or more is further preferable.
 また、非導電部の幅Wは250μm以下がより好ましく、200μm以下がさらに好ましい。つまり、幅Wは、30μm~250μmがより好ましく、30μm~200μmがさらに好ましい。非導電部の幅Wが上記範囲であることにより、非導電部に電界が集中しキャパシタンスとして効果的に働くため電波透過性が向上する。 Further, the width W of the non-conductive portion is more preferably 250 μm or less, further preferably 200 μm or less. That is, the width W is more preferably 30 μm to 250 μm, and even more preferably 30 μm to 200 μm. When the width W of the non-conductive portion is within the above range, the electric field is concentrated on the non-conductive portion and works effectively as a capacitance, so that the radio wave transmission property is improved.
 図3の(B)に示すFSS30bにおいて、リング状の非導電部32bは、個々の部分Aにおける、長さp、半径tおよび幅Wを、上記数値範囲内で適宜設計できる。また、非導電部32cは、隣り合うリング状の非導電部同士の中心間の距離がすべて等しくなるように設計してもよい。別の言い方をすれば、平面視において、導電部31cおよび非導電部32cからなる正六角形の部分Aを一単位とし、かかる正六角形の部分Aは、正六角形の中心と同一の中心を有しかつ正六角形の内部に形成されるリング状の非導電部32bと、それ以外の導電部31bからなる円形ループスロット形状としてもよい。 In the FSS 30b shown in FIG. 3B, the ring-shaped non-conductive portion 32b can appropriately design the length p, radius t, and width W in each portion A within the above numerical ranges. Further, the non-conductive portions 32c may be designed so that the distances between the centers of the adjacent ring-shaped non-conductive portions are all equal. In other words, in a plan view, a regular hexagonal portion A composed of a conductive portion 31c and a non-conductive portion 32c is regarded as one unit, and the regular hexagonal portion A has the same center as the center of the regular hexagon. Further, it may have a circular loop slot shape including a ring-shaped non-conductive portion 32b formed inside a regular hexagon and other conductive portions 31b.
 また、本実施形態にかかるFSS装荷部材を窓部材として用いた際に、FSSの非導電部が、地面と水平方向及び垂直方向の少なくとも一方の成分を有することが好ましい。ここで、地面と水平方向の成分とは、図3の(B)に示すFSSにおいては、図3の(B)に示す向きに車両用のウィンドシールドに設置された場合、円の上部と下部の一部が該当する。また、地面と垂直方向の成分とは、図3の(B)に示すFSSにおいては、図3の(B)に示す向きに車両用のウィンドシールドに設置された場合、円の左部と右部の一部が該当する。 Further, when the FSS loading member according to the present embodiment is used as a window member, it is preferable that the non-conductive portion of the FSS has at least one component in the horizontal direction and the vertical direction with respect to the ground. Here, the components in the horizontal direction with respect to the ground are the upper part and the lower part of the circle in the FSS shown in FIG. 3B when the windshield is installed in the windshield for the vehicle in the direction shown in FIG. Part of is applicable. Further, the components in the direction perpendicular to the ground are the left and right parts of the circle in the FSS shown in FIG. 3 (B) when installed on the windshield for the vehicle in the direction shown in FIG. 3 (B). Part of the department is applicable.
 なお、本実施形態にかかるFSS装荷部材が複数のFSSを有する場合においては、FSSごとに上述した平面視におけるFSSの形状パターンを任意に組み合わせてFSS装荷部材を設計できる。 When the FSS loading member according to the present embodiment has a plurality of FSSs, the FSS loading member can be designed by arbitrarily combining the above-mentioned FSS shape patterns in the plan view for each FSS.
 FSSの厚さは、特に制限されないが、電波透過性向上の観点から、0.1mm以下が好ましく、0.05mm以下がより好ましく、0.02mm以下がさらに好ましい。また、FSSの厚さは、導電部の膜としての安定性の観点から、0.003μm以上であればよく、0.005μm以上が好ましく、0.010μm以上がより好ましい。 The thickness of the FSS is not particularly limited, but is preferably 0.1 mm or less, more preferably 0.05 mm or less, still more preferably 0.02 mm or less, from the viewpoint of improving radio wave transmission. The thickness of the FSS may be 0.003 μm or more, preferably 0.005 μm or more, and more preferably 0.010 μm or more, from the viewpoint of stability of the conductive portion as a film.
 FSSは所定の周波数Fの電波を選択的に透過するが、FSS装荷部材を透過する所定の周波数Fとしては、好ましくは、1GHz~100GHzの範囲に含まれる。 The FSS selectively transmits radio waves of a predetermined frequency F, but the predetermined frequency F transmitted through the FSS loading member is preferably included in the range of 1 GHz to 100 GHz.
 また、周波数Fの電波は、FSSによるFSS装荷部材の電波透過性が向上しやすい観点から、10GHz以上がより好ましく、20GHz以上がさらに好ましい。 Further, the radio wave having a frequency F is more preferably 10 GHz or more, and further preferably 20 GHz or more, from the viewpoint that the radio wave transmission of the FSS loading member by FSS is easily improved.
 また、周波数Fの上限はとくに制限されないが、例えば90GHz以下でもよく、80GHz以下でもよい。例えば、車両用の合わせガラスの場合、周波数Fが10GHz以上の電波に対する減衰が大きくなる傾向があり、周波数Fが10GHz以上の電波に対してFSSを装荷することで電波透過性を向上するのに効果的である。 Further, the upper limit of the frequency F is not particularly limited, but may be, for example, 90 GHz or less, or 80 GHz or less. For example, in the case of laminated glass for vehicles, the attenuation for radio waves having a frequency F of 10 GHz or higher tends to be large, and by loading the FSS for radio waves having a frequency F of 10 GHz or higher, the radio wave transparency is improved. It is effective.
 また、本実施形態にかかるFSS装荷部材の総厚は、ハンドリングの容易性や所定の強度を保持しやすい理由から1.5mm以上であるとよく、2.0mm以上が好ましく、4.0mm以上がより好ましい。ここでFSS装荷部材の総厚とは、平面視においてFSSが装荷された領域における、FSS装荷部材の厚さをいう。また、本実施形態にかかるFSS装荷部材の総厚はとくに制限はないが、FSS装荷部材の重量が大きくなるなどの理由から40mm以下が好ましく、30mm以下がより好ましい。 Further, the total thickness of the FSS loading member according to the present embodiment is preferably 1.5 mm or more, preferably 2.0 mm or more, preferably 4.0 mm or more, for the reason that it is easy to handle and maintain a predetermined strength. More preferred. Here, the total thickness of the FSS-loaded member means the thickness of the FSS-loaded member in the area where the FSS is loaded in a plan view. The total thickness of the FSS loading member according to the present embodiment is not particularly limited, but is preferably 40 mm or less, more preferably 30 mm or less because the weight of the FSS loading member becomes large.
 以下、本実施形態にかかるFSS装荷部材におけるFSSの好ましい装荷態様について説明する。なお、本実施形態にかかるFSS装荷部材が複数のFSSを有する場合においては、FSSごとに後述する装荷パターンを任意に組み合わせてFSS装荷部材を設計できる。 Hereinafter, a preferable loading mode of FSS in the FSS loading member according to the present embodiment will be described. When the FSS loading member according to the present embodiment has a plurality of FSSs, the FSS loading member can be designed by arbitrarily combining the loading patterns described later for each FSS.
 本実施形態にかかるFSS装荷部材が有する積層部材は、誘電体層として連続する2つの中間体を有し、当該連続する2つの中間体の間に、FSSが設けられることが好ましい。すなわち、図4に示すFSS装荷部材20における積層部材を構成する誘電体層のうち、一部の連続する2つの誘電体層がいずれも中間体であり、かかる第1中間体21と第2中間体22との間aにFSSが設けられている。この場合、nは4以上の整数である。 It is preferable that the laminated member of the FSS loading member according to the present embodiment has two continuous intermediates as a dielectric layer, and the FSS is provided between the two continuous intermediates. That is, among the dielectric layers constituting the laminated member in the FSS loaded member 20 shown in FIG. 4, a part of two continuous dielectric layers are intermediates, and the first intermediate 21 and the second intermediate are intermediates. An FSS is provided between the body 22 and a. In this case, n is an integer of 4 or more.
 また、連続する2つの中間体(誘電体層)は、いずれも樹脂材料が好ましく、いずれも同じ樹脂材料がより好ましい。例えば、第1中間体21と第2中間体22は、いずれもPVBを使用したり、いずれもEVAを使用したりしてもよい。第1中間体21と第2中間体22が同じ材料であると、密着性が向上しこれらの界面での光学特性の変化や温度変化による熱膨張等の物性の変化が低減され好ましい。 Further, as the two continuous intermediates (dielectric layers), a resin material is preferable, and the same resin material is more preferable. For example, PVB may be used for both the first intermediate 21 and the second intermediate 22, or EVA may be used for both. It is preferable that the first intermediate 21 and the second intermediate 22 are made of the same material because the adhesion is improved and changes in physical properties such as changes in optical characteristics at these interfaces and changes in thermal expansion due to temperature changes are reduced.
 このように中間体と中間体との間にFSSが設けられることによって、FSS装荷部材が電波透過方向に関してFSSから車外側の表面(第n層のうち第n-1層とは反対側の表面)までの距離(d1)と、車内側の表面(第1層のうち第2層側とは反対側の表面)までの距離(d2)が略同一で略対称な構成となる。すなわち、FSS装荷部材の2つの最表面からの距離(d1,d2)が略同一となる位置にFSSが設けられる構成となる。これにより、効果的にFSS装荷部材全体の反射を低減できるため、電波透過性が向上する。 By providing the FSS between the intermediates in this way, the surface of the FSS loading member outside the vehicle with respect to the radio wave transmission direction (the surface of the nth layer opposite to the n-1th layer). ) And the distance (d2) to the inner surface of the vehicle (the surface of the first layer opposite to the second layer side) are substantially the same and have a substantially symmetrical configuration. That is, the FSS is provided at a position where the distances (d1 and d2) from the two outermost surfaces of the FSS loading member are substantially the same. As a result, the reflection of the entire FSS loading member can be effectively reduced, so that the radio wave transmission is improved.
 ここで、FSSから車外側の表面までの距離(d1)と、車内側の表面までの距離(d2)が略同一とは、d1/d2またはd2/d1が90%~110%の範囲であることをいう。d1/d2またはd2/d1は、95%~105%の範囲が好ましく、97%~103%の範囲がより好ましく、98%~102%の範囲がさらに好ましい。 Here, the distance (d1) from the FSS to the outer surface of the vehicle and the distance (d2) to the inner surface of the vehicle are substantially the same in the range of 90% to 110% for d1 / d2 or d2 / d1. Say that. For d1 / d2 or d2 / d1, the range of 95% to 105% is preferable, the range of 97% to 103% is more preferable, and the range of 98% to 102% is further preferable.
 とくに、FSS装荷部材が、車両用窓ガラスとして用いられる場合、誘電体層の層数nを、n=4として、第1層から順に、第1ガラス基板、第1樹脂層、第2樹脂層、第2ガラス基板とする構成が挙げられる。この場合、第1ガラス基板の厚さと第2ガラス基板の厚さが略同一であり、第1樹脂層の厚さと第2樹脂層の厚さが略同一であるとよく、このとき、連続する2つの中間体(第1樹脂層と第2樹脂層)の間にFSSを設けるとよい。そして、第1ガラス基板および第2ガラス基板の材料が同一であり、第1樹脂層と第2樹脂層の材料が同一であればより好ましい。 In particular, when the FSS loading member is used as a window glass for a vehicle, the number of layers n of the dielectric layer is set to n = 4, and the first glass substrate, the first resin layer, and the second resin layer are in order from the first layer. , A configuration in which the second glass substrate is used can be mentioned. In this case, it is preferable that the thickness of the first glass substrate and the thickness of the second glass substrate are substantially the same, and the thickness of the first resin layer and the thickness of the second resin layer are substantially the same. It is advisable to provide an FSS between the two intermediates (first resin layer and second resin layer). It is more preferable that the materials of the first glass substrate and the second glass substrate are the same, and the materials of the first resin layer and the second resin layer are the same.
 また、FSS装荷部材が、車両用窓ガラスとして用いられる場合、誘電体層の層数nを、n=5として、第1層から順に、第1ガラス基板、第1樹脂層、第3樹脂層、第2樹脂層、第2ガラス基板とする構成が挙げられる。この場合、第1ガラス基板の厚さと第2ガラス基板の厚さが略同一であり、第1樹脂層の厚さと第2樹脂層の厚さが略同一であるとよい。また第3樹脂層上にFSSを設けることにより、連続する2つの中間体(第1樹脂層と第3樹脂層、または第2樹脂層と第3樹脂層)の間にFSSを設けるとよい。 When the FSS loading member is used as a window glass for a vehicle, the number of layers n of the dielectric layer is set to n = 5, and the first glass substrate, the first resin layer, and the third resin layer are ordered from the first layer. , A second resin layer and a second glass substrate. In this case, it is preferable that the thickness of the first glass substrate and the thickness of the second glass substrate are substantially the same, and the thickness of the first resin layer and the thickness of the second resin layer are substantially the same. Further, by providing the FSS on the third resin layer, it is preferable to provide the FSS between two continuous intermediates (the first resin layer and the third resin layer, or the second resin layer and the third resin layer).
 ここで、第3樹脂層はPETのように、FSS装荷部材の総厚に対して非常に薄い樹脂層を使用でき、この場合、FSS装荷部材における第3樹脂層の厚さが無視できる。そのため、FSS装荷部材が電波透過方向に関して、FSSから車外側の表面(第n層のうち第n-1層とは反対側の表面)までの距離と、車内側の表面(第1層のうち第2層側とは反対側の表面)までの距離が略同一となる。
 また、第1ガラス基板および第2ガラス基板の材料が同一であり、第1樹脂層と第2樹脂層の材料が同一であればより好ましい。
Here, as the third resin layer, a resin layer that is very thin with respect to the total thickness of the FSS loaded member can be used, such as PET, and in this case, the thickness of the third resin layer in the FSS loaded member can be ignored. Therefore, the distance of the FSS loading member from the FSS to the surface on the outside of the vehicle (the surface of the nth layer opposite to the n-1 layer) and the surface on the inside of the vehicle (of the first layer) with respect to the radio wave transmission direction. The distance to the surface on the side opposite to the second layer side) is substantially the same.
Further, it is more preferable that the materials of the first glass substrate and the second glass substrate are the same, and the materials of the first resin layer and the second resin layer are the same.
 また、本実施形態にかかるFSS装荷部材は、積層部材が有する2つの最表面の少なくとも1つに、FSSが設けられてもよい。すなわち、図5に示すFSS装荷部材30が有する第1層側の最表面a上および第n層側の最表面b上の少なくとも一方に、FSSが設けられてもよい。このように本実施形態にかかるFSS装荷部材は、積層部材が有する2つの最表面の少なくとも1つに、FSSが設けられることによって、最表面での反射を効率的に低減できるため、電波透過性が向上する。さらに、本実施形態にかかるFSS装荷部材は、積層部材が有する2つの最表面の両方に、FSSが設けられてもよい。 Further, in the FSS loading member according to the present embodiment, the FSS may be provided on at least one of the two outermost surfaces of the laminated member. That is, FSS may be provided on at least one of the outermost surface a on the first layer side and the outermost surface b on the nth layer side of the FSS loading member 30 shown in FIG. As described above, in the FSS loading member according to the present embodiment, the reflection on the outermost surface can be efficiently reduced by providing the FSS on at least one of the two outermost surfaces of the laminated member, so that the radio wave transmission is transmitted. Is improved. Further, in the FSS loading member according to the present embodiment, FSS may be provided on both of the two outermost surfaces of the laminated member.
 本実施形態にかかるFSS装荷部材の製造方法は、特に制限されない。誘電体層の主表面にFSSを装荷する方法としては、誘電体層の主表面に直接形成してもよく、間接的に形成してもよい。例えば、樹脂等のフィルム上にある導電体層に予めパターニングを施してFSSを形成しておいたものを、その樹脂ごとFSSを誘電体層の主表面に貼付してもよい。または、誘電体層の主表面上に、所望の金属等をめっき法や、スパッタリング法を使用して、直接誘電体の主表面にFSSを装荷してもよい。その後、誘電体基板や中間体等の誘電体層を積層し、加熱及び加圧する工程を経ることでFSS装荷部材を得てもよい。 The method for manufacturing the FSS loading member according to the present embodiment is not particularly limited. As a method of loading the FSS on the main surface of the dielectric layer, it may be formed directly on the main surface of the dielectric layer or indirectly. For example, a conductor layer on a film such as a resin may be patterned in advance to form an FSS, and the FSS together with the resin may be attached to the main surface of the dielectric layer. Alternatively, the FSS may be directly loaded on the main surface of the dielectric layer by plating a desired metal or the like on the main surface of the dielectric layer or using a sputtering method. After that, an FSS loaded member may be obtained by laminating a dielectric layer such as a dielectric substrate or an intermediate, and performing a step of heating and pressurizing.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[FSS導電部のシート抵抗の測定]
 実施例および比較例におけるFSSの導電部のシート抵抗は、DELCOM社製、非接触渦電流法、抵抗値測定器 717 conductance monitorを用いて測定した。
[Measurement of sheet resistance of FSS conductive part]
The sheet resistance of the conductive portion of the FSS in Examples and Comparative Examples was measured using a non-contact eddy current method manufactured by DELCOM and a resistance value measuring device 717 conductance monitor.
[FSSの寸法測定]
 実施例および比較例におけるFSSの各種寸法は、オリンパス製光学顕微鏡DSX-500を用いて測定した。
[FSS dimension measurement]
Various dimensions of FSS in Examples and Comparative Examples were measured using an Olympus optical microscope DSX-500.
[光学特性評価]
 日立製分光光度計U-4100を用いて250nm~2500nmの透過・反射スペクトルを測定し、ISO9050:2003に基づいて、日射反射率Re、日射透過率Te、可視光反射率Rv、可視光反射色調(Rva,Rvb)、可視光透過率Tv、可視光透過色調(Ta,Tb)、を算出した。
[Evaluation of optical characteristics]
Transmittance / reflection spectra from 250 nm to 2500 nm are measured using a Hitachi spectrophotometer U-4100, and based on ISO9050: 2003, solar reflectance Re, solar transmittance Te, visible light reflectance Rv, and visible light reflectance color tone. (Rva * , Rvb * ), visible light transmittance Tv, and visible light transmittance (Ta * , Tb * ) were calculated.
[電波透過性評価]
 実施例および比較例におけるFSS装荷部材または積層部材に対し、28GHzまたは78GHzの垂直偏波(TM波)もしくは水平偏波(TE波)を所定の入射角度で入射させた場合の反射特性(S11)および透過特性(S21)を算出した。なお、これらは、1GHzにおける、使用した各材料の比誘電率εと誘電正接tanδ(δは損失角)の値に基づき、28GHz、78GHzにおける値を算出した。ここで、入射角度とは、FSS装荷部材の主表面の法線から周波数Fの電波の入射方向の角度を意味する。
[Radio transmission evaluation]
Reflection characteristics (S11) when a vertically polarized wave (TM wave) or a horizontally polarized wave (TE wave) of 28 GHz or 78 GHz is incident on an FSS loaded member or a laminated member in Examples and Comparative Examples at a predetermined incident angle. And the transmission characteristic (S21) was calculated. For these, the values at 28 GHz and 78 GHz were calculated based on the values of the relative permittivity ε r and the dielectric loss tangent tan δ (δ is the loss angle) of each material used at 1 GHz. Here, the incident angle means the angle in the incident direction of the radio wave of frequency F from the normal of the main surface of the FSS loading member.
 具体的には、アンテナを対向させ、それらの中間に、得られた各FSS装荷部材または積層部材を入射角度が所定の角度となるように設置した。そして周波数28GHzまたは78GHzの垂直偏波(TM波)もしくは水平偏波(TE波)に対し、100mmΦの開口部にて電波透過性基板がない場合を0[dB]としたときの反射特性(S11)及び透過特性(S21)を測定した。 Specifically, the antennas were opposed to each other, and each of the obtained FSS loading members or laminated members was installed between them so that the incident angle was a predetermined angle. Then, for vertically polarized waves (TM waves) or horizontally polarized waves (TE waves) having a frequency of 28 GHz or 78 GHz, the reflection characteristics (S11) are set to 0 [dB] when there is no radio wave transmitting substrate at the opening of 100 mmΦ. ) And the transmission characteristics (S21) were measured.
[FSS装荷部材の作製]
 以下の手順でFSS装荷部材を作製した。なお、例1、例3、例4が実施例、例2が比較例に相当する。
[Manufacturing of FSS loading members]
The FSS loading member was manufactured by the following procedure. In addition, Example 1, Example 3, Example 4 corresponds to Example, and Example 2 corresponds to a comparative example.
<例1>
 まず、0.1mmの厚さのPETフィルム上に、Agと酸化亜鉛を含む多層膜をスパッタリング法により、シート抵抗が2Ω/□になるように成膜したのち、波長532nmのレーザを用いて、図3の(A)で示す二重格子縞状の第1周波数選択表面F11を形成した。図3の(A)に示す周波数選択表面F11の各部の寸法は、幅G:0.03mm,L1:0.2mm,L2:0.24mmとした。
<Example 1>
First, a multilayer film containing Ag and zinc oxide was formed on a PET film having a thickness of 0.1 mm by a sputtering method so that the sheet resistance became 2 Ω / □, and then a laser having a wavelength of 532 nm was used. The double lattice-striped first frequency selection surface F11 shown in FIG. 3A was formed. The dimensions of each part of the frequency selection surface F11 shown in FIG. 3A are width G: 0.03 mm, L1: 0.2 mm, and L2: 0.24 mm.
 つづいて、図6に示すように、厚さ1.98mmのソーダライムガラスからなる第1誘電体基板111、厚さ0.38mmのPVBフィルムからなる第1中間体112、第1周波数選択表面F11、厚さ0.1mmのPETフィルムからなる第3中間体113、厚さ0.38mmのPVBフィルムからなる第2中間体114、厚さ1.98mmのソーダライムガラスからなる第2誘電体基板115の順となるように、各部材を積層し、1MPaの圧力下で130℃90分加熱し徐冷することで、例1の周波数選択表面装荷部材110を作製した。なお、第1誘電体基板111、第1中間体112、第3中間体113、第2中間体114、第2誘電体基板115は、いずれも主表面が300mm×300mmの正方形である。誘電体基板および中間体の比誘電率、誘電正接、厚さ、FSSの各種寸法および透過位相、総厚は表1に示す。 Subsequently, as shown in FIG. 6, a first dielectric substrate 111 made of soda lime glass having a thickness of 1.98 mm, a first intermediate 112 made of a PVB film having a thickness of 0.38 mm, and a first frequency selection surface F11. A third intermediate 113 made of PET film having a thickness of 0.1 mm, a second intermediate 114 made of PVB film having a thickness of 0.38 mm, and a second dielectric substrate 115 made of soda lime glass having a thickness of 1.98 mm. The frequency-selective surface-loaded member 110 of Example 1 was produced by laminating the members in the order of 1 and heating them at 130 ° C. for 90 minutes under a pressure of 1 MPa and slowly cooling them. The first dielectric substrate 111, the first intermediate 112, the third intermediate 113, the second intermediate 114, and the second dielectric substrate 115 are all squares having a main surface of 300 mm × 300 mm. Table 1 shows the relative permittivity, dielectric loss tangent, thickness, various dimensions and transmission phase of FSS, and total thickness of the dielectric substrate and intermediate.
<例2>
 主表面300mm×300mmの正方形、厚さ1.98mmのソーダライムガラスからなる第1誘電体基板211と厚さ1.98mmのソーダライムガラスからなる第2誘電体基板213の間に厚さ0.76mmのPVBフィルムからなる第1中間体212を挿入し、1MPaの圧力下で130℃90分加熱し徐冷し、図7に示す例2の積層部材210を作製した。なお、第1誘電体基板211、第1中間体212、第2誘電体基板213は、いずれも主表面が300mm×300mmの正方形である。誘電体基板および中間体の比誘電率、誘電正接、厚さ、総厚は表1に示す。
<Example 2>
The thickness is 0. Between the first dielectric substrate 211 made of soda lime glass having a main surface of 300 mm × 300 mm and a thickness of 1.98 mm and the second dielectric substrate 213 made of soda lime glass having a thickness of 1.98 mm. A first intermediate 212 made of a 76 mm PVB film was inserted, heated at 130 ° C. for 90 minutes under a pressure of 1 MPa and slowly cooled to prepare the laminated member 210 of Example 2 shown in FIG. 7. The first dielectric substrate 211, the first intermediate 212, and the second dielectric substrate 213 are all squares having a main surface of 300 mm × 300 mm. Table 1 shows the relative permittivity, dielectric loss tangent, thickness, and total thickness of the dielectric substrate and the intermediate.
<例3>
 厚さ0.38mmのPVBフィルム上に厚さ10μmのCuをめっきにより成膜した後、エッチングすることにより、PVBフィルム上に、図3の(A)で示す二重格子縞状の第1周波数選択表面F11を形成する。図3の(A)に示す第1周波数選択表面F11の各部の寸法は、幅G:0.03mm,L1:0.16mm,L2:0.26mmとする。
 つづいて、図6に示すように、主表面300mm×300mmの正方形、厚さ2.00mmのボロシリケートガラスからなる第1誘電体基板111、厚さ0.38mmのPVBフィルムからなる第1中間体112、第1周波数選択表面F11、厚さ0.38mmのPVBフィルムからなる第2中間体114、厚さ2.00mmのボロシリケートガラスからなる第2誘電体基板115の順となるように、各部材を積層し、1MPaの圧力下で130℃90分加熱し徐冷することで、例3の周波数選択表面装荷部材110を作製する。なお、本例では、図6に示す第3の中間体113は設けない。誘電体基板および中間体の比誘電率、誘電正接、厚さ、総厚は表1に示す。
<Example 3>
A 10 μm-thick Cu film is formed on a 0.38 mm-thick PVB film by plating, and then etched to select the first frequency of the double lattice stripes shown in FIG. 3 (A) on the PVB film. The surface F11 is formed. The dimensions of each part of the first frequency selection surface F11 shown in FIG. 3A are width G: 0.03 mm, L1: 0.16 mm, L2: 0.26 mm.
Subsequently, as shown in FIG. 6, a square having a main surface of 300 mm × 300 mm, a first dielectric substrate 111 made of borosilicate glass having a thickness of 2.00 mm, and a first intermediate body made of a PVB film having a thickness of 0.38 mm. 112, the first frequency selection surface F11, the second intermediate 114 made of PVB film with a thickness of 0.38 mm, and the second dielectric substrate 115 made of borosilicate glass with a thickness of 2.00 mm, respectively. The frequency-selective surface-loaded member 110 of Example 3 is manufactured by laminating the members, heating them at 130 ° C. for 90 minutes under a pressure of 1 MPa, and slowly cooling them. In this example, the third intermediate 113 shown in FIG. 6 is not provided. Table 1 shows the relative permittivity, dielectric loss tangent, thickness, and total thickness of the dielectric substrate and the intermediate.
<例4>
 厚さ0.38mmのPVBフィルム上に厚さ10μmのCuをめっきにより成膜した後、エッチングすることにより、PVBフィルム上に、図3の(B)で示す円形ループスロット形状の第1周波数選択表面F11を形成する。図3の(B)に示す周波数選択表面F51の各部の寸法は、第1周波数選択表面F51においては、p:0.54mm,t:0.44mm,W:0.055mmの周期的な正六角形パターンとする。
 つづいて、図6に示すように、主表面300mm×300mmの正方形、厚さ1.98mmのソーダライムガラスからなる第1誘電体基板111、厚さ0.38mmのPVBフィルムからなる第1中間体112、第1周波数選択表面F11、厚さ0.38mmのPVBフィルムからなる第2中間体114、厚さ1.98mmのソーダライムガラスからなる第2誘電体基板115の順となるように、各部材を積層し、1MPaの圧力下で130℃90分加熱し徐冷することで、例4の周波数選択表面装荷部材110を作製する。なお、本例では、図6に示す第3の中間体113は設けない。誘電体基板および中間体の比誘電率、誘電正接、厚さ、総厚は表1に示す。
<Example 4>
A 10 μm-thick Cu film is formed on a 0.38 mm-thick PVB film by plating, and then etched to select the first frequency of the circular loop slot shape shown in FIG. 3 (B) on the PVB film. The surface F11 is formed. The dimensions of each part of the frequency selection surface F51 shown in FIG. 3B are periodic regular hexagons having p: 0.54 mm, t: 0.44 mm, and W: 0.055 mm on the first frequency selection surface F51. Let it be a pattern.
Subsequently, as shown in FIG. 6, a square having a main surface of 300 mm × 300 mm, a first dielectric substrate 111 made of soda lime glass having a thickness of 1.98 mm, and a first intermediate body made of a PVB film having a thickness of 0.38 mm. 112, the first frequency selection surface F11, the second intermediate 114 made of PVB film with a thickness of 0.38 mm, and the second dielectric substrate 115 made of soda lime glass with a thickness of 1.98 mm, respectively. The frequency-selective surface-loaded member 110 of Example 4 is manufactured by laminating the members, heating them at 130 ° C. for 90 minutes under a pressure of 1 MPa, and slowly cooling them. In this example, the third intermediate 113 shown in FIG. 6 is not provided. Table 1 shows the relative permittivity, dielectric loss tangent, thickness, and total thickness of the dielectric substrate and the intermediate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、例1~例4の周波数選択表面装荷部材または積層部材の光学特性評価の結果を表2に示し、電波透過性評価の結果を表3に示す。 Table 2 shows the results of optical characteristic evaluation of the frequency-selective surface-loaded member or laminated member of Examples 1 to 4, and Table 3 shows the results of radio wave transmission evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、例1と例2を比較すると、所定の位置にFSSを配置した例1のFSS装荷部材は、FSSを設けない例2よりも、日射反射率が高く、かつ日射透過率が低い結果となった。また、例3及び例4と、例2を比較すると、所定の位置にFSSを配置した例3及び例4のFSS装荷部材は、FSSを設けない例2よりも、日射反射率が高く、かつ日射透過率が低い結果となった。 Comparing Example 1 and Example 2 from the results in Table 2, the FSS loading member of Example 1 in which the FSS is arranged at a predetermined position has a higher solar reflectance and the solar transmittance than Example 2 in which the FSS is not provided. Was a low result. Further, comparing Example 3 and Example 4 with Example 2, the FSS loading member of Example 3 and Example 4 in which the FSS is arranged at a predetermined position has a higher solar reflectance than Example 2 in which the FSS is not provided, and The result was that the solar transmittance was low.
 また、表3の結果から、例1と例2を比較すると、所定の位置にFSSを配置した例1のFSS装荷部材は、FSSを設けない例2よりも、78GHzにおける反射特性S11が低く、かつ、透過特性S21が高く、電波透過性が向上した。また、例3及び例4と、例2を比較すると、所定の位置にFSSを配置した例3及び例4のFSS装荷部材は、FSSを設けない例2よりも、78GHzにおける反射特性S11が低く、かつ、透過特性S21が高く、電波透過性が向上した。
 したがって、本発明のFSS装荷部材は、熱的特性および電波透過性が良好であることがわかった。
Further, comparing Example 1 and Example 2 from the results of Table 3, the FSS loading member of Example 1 in which the FSS is arranged at a predetermined position has a lower reflection characteristic S11 at 78 GHz than that of Example 2 in which the FSS is not provided. Moreover, the transmission characteristic S21 is high, and the radio wave transparency is improved. Further, comparing Example 3 and Example 4 with Example 2, the FSS loading member of Example 3 and Example 4 in which the FSS is arranged at a predetermined position has a lower reflection characteristic S11 at 78 GHz than that of Example 2 in which the FSS is not provided. Moreover, the transmission characteristic S21 is high, and the radio wave transparency is improved.
Therefore, it was found that the FSS loading member of the present invention has good thermal characteristics and radio wave transmission.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2020年8月3日出願の日本特許出願(特願2020-131976)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on the Japanese patent application filed on August 3, 2020 (Japanese Patent Application No. 2020-131976), the contents of which are incorporated herein by reference.
10,20,30,110 周波数選択表面装荷部材
111,115,211,213 誘電体基板
21,22,112,113,114 中間体
210 積層部材
30a,30b,F11 周波数選択表面
31a,31b 導電部
32a,32b 非導電部
10, 20, 30, 110 Frequency selection surface loading member 111, 115, 211,213 Dielectric substrate 21, 22, 112, 113, 114 Intermediate 210 Laminated member 30a, 30b, F11 Frequency selection surface 31a, 31b Conductive part 32a , 32b Non-conductive part

Claims (25)

  1.  第1層から第n層まで順に積層された計n個の誘電体層を備える積層部材を有し(ただし、nは3以上の整数である)、
     前記積層部材を構成する誘電体層の主表面の少なくとも1つに所定の周波数Fの電波を透過する周波数選択表面が設けられており、
     前記周波数選択表面は導電部および非導電部を有し、
     ISO9050:2003で規定された日射透過率が54%以下である、周波数選択表面装荷部材。
    It has a laminated member having a total of n dielectric layers laminated in order from the first layer to the nth layer (where n is an integer of 3 or more).
    A frequency selection surface that transmits radio waves of a predetermined frequency F is provided on at least one of the main surfaces of the dielectric layer constituting the laminated member.
    The frequency selection surface has a conductive portion and a non-conductive portion, and has a conductive portion and a non-conductive portion.
    A frequency-selective surface-loaded member having an ISO 9050: 2003 solar transmittance of 54% or less.
  2.  前記積層部材は、誘電体層として前記積層部材の最外層の誘電体層以外に連続する2つの中間体を有し、前記連続する2つの中間体の間に、前記周波数選択表面が設けられている、請求項1に記載の周波数選択表面装荷部材。 The laminated member has two continuous intermediates as a dielectric layer other than the dielectric layer of the outermost layer of the laminated member, and the frequency selection surface is provided between the two continuous intermediates. The frequency-selective surface-loaded member according to claim 1.
  3.  前記連続する2つの中間体は、同じ樹脂材料である、請求項2に記載の周波数選択表面装荷部材。 The frequency-selective surface loading member according to claim 2, wherein the two consecutive intermediates are made of the same resin material.
  4.  前記樹脂材料は、PVBまたはEVAである、請求項3に記載の周波数選択表面装荷部材。 The frequency-selective surface loading member according to claim 3, wherein the resin material is PVB or EVA.
  5.  前記第1層および前記第n層は、ガラス基板である、請求項1~4のいずれか1項に記載の周波数選択表面装荷部材。 The frequency-selective surface loading member according to any one of claims 1 to 4, wherein the first layer and the nth layer are glass substrates.
  6.  前記第1層または前記第n層は、可視光を遮蔽する遮蔽層であり、前記積層部材の平面視において、前記周波数選択表面の少なくとも一部が前記遮蔽層と重複する、請求項1~4のいずれか1項に記載の周波数選択表面装荷部材。 The first layer or the nth layer is a shielding layer that shields visible light, and at least a part of the frequency selection surface overlaps with the shielding layer in a plan view of the laminated member, claims 1 to 4. The frequency selection surface loading member according to any one of the above items.
  7.  前記遮蔽層と隣接する前記誘電体層はガラス基板である、請求項6に記載の周波数選択表面装荷部材。 The frequency-selective surface loading member according to claim 6, wherein the dielectric layer adjacent to the shielding layer is a glass substrate.
  8.  前記周波数選択表面から前記第1層のうち第2層とは反対側の表面までの距離と、前記周波数選択表面から前記第n層のうち第n-1層とは反対側の表面までの距離と、が略同一である、請求項1~7のいずれか1項に記載の周波数選択表面装荷部材。 The distance from the frequency selection surface to the surface of the first layer opposite to the second layer, and the distance from the frequency selection surface to the surface of the nth layer opposite to the n-1 layer. The frequency-selective surface-loaded member according to any one of claims 1 to 7, wherein is substantially the same.
  9.  前記積層部材は、4層の誘電体層からなり、前記第1層から順に、第1ガラス基板、第1樹脂層、第2樹脂層、第2ガラス基板が積層される、請求項1~8のいずれか1項に記載の周波数選択表面装荷部材。 The laminated member is composed of four dielectric layers, and the first glass substrate, the first resin layer, the second resin layer, and the second glass substrate are laminated in this order from the first layer. The frequency selection surface loading member according to any one of the above items.
  10.  前記積層部材は、5層の誘電体層からなり、前記第1層から順に、第1ガラス基板、第1樹脂層、第3樹脂層、第2樹脂層、第2ガラス基板が積層される、請求項1~8のいずれか1項に記載の周波数選択表面装荷部材。 The laminated member is composed of five dielectric layers, and a first glass substrate, a first resin layer, a third resin layer, a second resin layer, and a second glass substrate are laminated in this order from the first layer. The frequency-selective surface-loaded member according to any one of claims 1 to 8.
  11.  前記積層部材が有する2つの最表面の少なくとも1つに、前記周波数選択表面が設けられている、請求項1~10のいずれか1項に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to any one of claims 1 to 10, wherein the frequency selection surface is provided on at least one of the two outermost surfaces of the laminated member.
  12.  ISO9050:2003で規定された可視光透過率が60%以上である、請求項1~11のいずれか1項に記載の周波数選択表面装荷部材。 The frequency-selective surface loading member according to any one of claims 1 to 11, wherein the visible light transmittance specified in ISO 9050: 2003 is 60% or more.
  13.  ISO9050:2003で規定された日射反射率が8%以上である、請求項1~12のいずれか1項に記載の周波数選択表面装荷部材。 The frequency-selective surface loading member according to any one of claims 1 to 12, wherein the solar reflectance specified in ISO 9050: 2003 is 8% or more.
  14.  ISO9050:2003で規定された可視光反射率が15%以下である、請求項1~13のいずれか1項に記載の周波数選択表面装荷部材。 The frequency-selective surface loading member according to any one of claims 1 to 13, wherein the visible light reflectance specified in ISO 9050: 2003 is 15% or less.
  15.  ISO9050:2003で規定された可視光反射色調のRvaが-10~5であり、Rvbが-10~10である、請求項1~14のいずれか1項に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to any one of claims 1 to 14, wherein the visible light reflection color tone Rva * is -10 to 5 and Rvb * is -10 to 10 specified in ISO 9050: 2003. ..
  16.  ISO9050:2003で規定された可視光透過色調のTaが-8~5であり、Tbが-8~6である、請求項1~15のいずれか1項に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to any one of claims 1 to 15, wherein Ta * of the visible light transmission color tone defined in ISO 9050: 2003 is -8 to 5 and Tb * is -8 to 6. ..
  17.  前記周波数選択表面の非導電部の幅Gが、0.01mm~0.5mmである、請求項1~16のいずれか1項に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to any one of claims 1 to 16, wherein the width G of the non-conductive portion of the frequency selection surface is 0.01 mm to 0.5 mm.
  18.  前記周波数選択表面の導電部のシート抵抗が、50Ω/□以下である、請求項1~17のいずれか1項に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to any one of claims 1 to 17, wherein the sheet resistance of the conductive portion of the frequency selection surface is 50Ω / □ or less.
  19.  前記周波数選択表面の導電部が、Ag、ITO、フッ素及びアンチモンの少なくとも一つがドープされた酸化スズ、及びCuからなる群より選ばれる少なくとも1種を含む、請求項1~18のいずれか1項に記載の周波数選択表面装荷部材。 Any one of claims 1 to 18, wherein the conductive portion of the frequency selection surface comprises at least one selected from the group consisting of tin oxide doped with at least one of Ag, ITO, fluorine and antimony, and Cu. Frequency selective surface loading member according to.
  20.  前記周波数選択表面装荷部材を窓部材として用いた際に、前記周波数選択表面の非導電部が、地面と水平方向及び垂直方向の少なくとも一方の成分を有する、請求項1~19のいずれか1項に記載の周波数選択表面装荷部材。 Any one of claims 1 to 19, wherein when the frequency selective surface loading member is used as a window member, the non-conductive portion of the frequency selective surface has at least one component in the horizontal direction and the vertical direction with respect to the ground. The frequency selection surface loading member described in.
  21.  平面視において、前記周波数選択表面を備える第1領域と、前記周波数選択表面を備えない第2領域とを有する、請求項1~20のいずれか1項に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to any one of claims 1 to 20, which has a first region having the frequency selection surface and a second region not having the frequency selection surface in a plan view.
  22.  平面視において、前記第1領域の外縁は前記第2領域の外縁よりも内側にある、請求項21に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to claim 21, wherein the outer edge of the first region is inside the outer edge of the second region in a plan view.
  23.  前記周波数Fが、1GHz~100GHzの範囲に含まれる、請求項1~22のいずれか1項に記載の周波数選択表面装荷部材。 The frequency selection surface loading member according to any one of claims 1 to 22, wherein the frequency F is included in the range of 1 GHz to 100 GHz.
  24.  請求項1~23のいずれか1項に記載の周波数選択表面装荷部材を備えた、車両用窓部材。 A window member for a vehicle provided with the frequency selection surface loading member according to any one of claims 1 to 23.
  25.  前記周波数選択表面装荷部材は、車両用のウィンドシールドである、請求項24に記載の車両用窓部材。 The vehicle window member according to claim 24, wherein the frequency selection surface loading member is a windshield for a vehicle.
PCT/JP2021/028388 2020-08-03 2021-07-30 Frequency selection surface loading member and window member for vehicle WO2022030395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541508A JPWO2022030395A1 (en) 2020-08-03 2021-07-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131976 2020-08-03
JP2020131976 2020-08-03

Publications (1)

Publication Number Publication Date
WO2022030395A1 true WO2022030395A1 (en) 2022-02-10

Family

ID=80117959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028388 WO2022030395A1 (en) 2020-08-03 2021-07-30 Frequency selection surface loading member and window member for vehicle

Country Status (2)

Country Link
JP (1) JPWO2022030395A1 (en)
WO (1) WO2022030395A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026071A (en) * 1999-07-16 2001-01-30 Central Glass Co Ltd Radio wave transmissible wavelength selective substrate and production thereof
WO2011019062A1 (en) * 2009-08-12 2011-02-17 旭硝子株式会社 Laminated glass for use in vehicles
JP2012144218A (en) * 2011-01-14 2012-08-02 Asahi Glass Co Ltd Window glass for automobile
JP2013534095A (en) * 2010-06-14 2013-08-29 サン−ゴバン グラス フランス Antenna assembly and antenna structure with improved signal-to-noise ratio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026071A (en) * 1999-07-16 2001-01-30 Central Glass Co Ltd Radio wave transmissible wavelength selective substrate and production thereof
WO2011019062A1 (en) * 2009-08-12 2011-02-17 旭硝子株式会社 Laminated glass for use in vehicles
JP2013534095A (en) * 2010-06-14 2013-08-29 サン−ゴバン グラス フランス Antenna assembly and antenna structure with improved signal-to-noise ratio
JP2012144218A (en) * 2011-01-14 2012-08-02 Asahi Glass Co Ltd Window glass for automobile

Also Published As

Publication number Publication date
JPWO2022030395A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP4176019B2 (en) Substrate with electromagnetic energy attenuating coating having frequency selective surface
CA2705332C (en) Electromagnetic radiation shielding device
EP2552846B1 (en) Solar control coatings with discontinuous metal layer
EP1923362B1 (en) Infrared reflective glass plate and laminated glass for vehicle window
US20050074591A1 (en) Transparent substrate with antiglare coating having abrasion-resistant properties
JP7439760B2 (en) Radio wave transparent substrate
JP2007148330A (en) Near infrared ray reflective substrate and near infrared ray reflective laminated glass using the same
WO2007049478A1 (en) Near infrared ray reflective substrate and near infrared ray reflective laminated glass employing that substrate, near infrared ray reflective double layer glass
JP2003069282A (en) Specified electromagnetic wave transmitting plate
US11267221B2 (en) Laminated glass structures for electronic devices and electronic device covers
WO2022030395A1 (en) Frequency selection surface loading member and window member for vehicle
WO2022030394A1 (en) Frequency selection surface loading member
WO2024014417A1 (en) Heat reflective substrate, manufacturing method therefor, and window glass
KR101242102B1 (en) Transparent conductive thin film and display filter containing the same
WO2023228715A1 (en) Heat-ray reflecting substrate and window glass
CN217265466U (en) Low-emissivity coated laminated glass containing crystalline silver layer
JP7255179B2 (en) Heat ray shielding laminated glass
JP2018002534A (en) Glass laminate and closing member
JP2000086308A (en) Glass laminate and production of coated synthetic resin film therefor
JP2023095367A (en) Frequency selective surface loading member and vehicle window member
JP2002173339A (en) Electromagnetic wave low-reflection coating glass
EA041197B1 (en) RADIO TRANSPARENT SUBSTRATE
JP2023519264A (en) Electromagnetic radiation transparent glazing
WO2023203102A1 (en) Method for fabricating a transparent open container
CN114702252A (en) Low-emissivity coated laminated glass containing crystalline silver layer and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852993

Country of ref document: EP

Kind code of ref document: A1