WO2022030159A1 - Welding flux and production method therefor, and submerged arc welding method using same welding flux - Google Patents

Welding flux and production method therefor, and submerged arc welding method using same welding flux Download PDF

Info

Publication number
WO2022030159A1
WO2022030159A1 PCT/JP2021/025376 JP2021025376W WO2022030159A1 WO 2022030159 A1 WO2022030159 A1 WO 2022030159A1 JP 2021025376 W JP2021025376 W JP 2021025376W WO 2022030159 A1 WO2022030159 A1 WO 2022030159A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
raw material
powder raw
flux
oxide
Prior art date
Application number
PCT/JP2021/025376
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 鳩本
統宣 佐藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2022030159A1 publication Critical patent/WO2022030159A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Definitions

  • the present invention relates to a welding flux having excellent moisture absorption resistance and a method for producing the same, and a submerged arc welding method using the welding flux.
  • Examples of welding methods to which welding flux is applied generally include submerged arc welding and electroslag welding.
  • submerged arc welding is a welding method used for pipe making welding for pipelines that transport petroleum, natural gas, and the like.
  • the flux designed for this submerged arc welding has a property that when it is left in a high temperature and high humidity atmosphere, moisture is adsorbed inside or on the surface of the pores of the flux particles and it is easy to absorb moisture.
  • the water adsorbed on the particles decomposes into hydrogen and oxygen, which increases the amount of diffusible hydrogen in the weld metal, causes low-temperature cracking, and adversely affects welding workability. Therefore, in submerged arc welding, improving the moisture absorption resistance of the welding flux is mentioned as one of the extremely important issues.
  • Patent Document 1 describes at least one of Al 2 O 3 , SiO 2 , MgO, CaF 2 converted value, Mn O converted value, Na 2 O converted value, K 2 O converted value and Li 2 O converted value in the flux.
  • Submerged arc that appropriately adjusts the content of one or more total, FeO conversion value, CaO, water-soluble SiO 2 , water-soluble Na 2 O, and water-soluble K 2 O, and limits the values obtained by a predetermined formula.
  • Welding flux has been proposed.
  • Patent Document 2 discloses a flux for submerged arc welding in which the contents of the oxide and TiO 2 in the flux and the values obtained by a predetermined mathematical formula are limited.
  • Patent Documents 1 and 2 describe that it is possible to reduce the amount of moisture absorbed by the flux and the amount of diffusible hydrogen in the weld metal.
  • the amount of moisture absorbed is evaluated by performing forced moisture absorption for 2 hours after re-drying the flux and measuring the amount of water contained in the flux.
  • the present invention has been made in view of the above problems, and excellent moisture absorption resistance can be obtained even when the weld metal is left for a long time, which is one of the causes of cracking of the weld metal. It is an object of the present invention to provide a welding flux capable of reducing the amount of diffusible hydrogen in a weld metal, a method for producing the same, and a submerged arc welding method using the welding flux.
  • the present inventors focused on oxides containing Si contained in welding flux. That is, since the particles containing the oxide containing Si are extremely easy to absorb moisture, the present inventors have improved the moisture absorption resistance of the flux by forming a compound layer having high moisture absorption resistance on the surface of the particles. , Found that the amount of diffusible hydrogen in the weld metal can be reduced.
  • the flux for welding may be simply referred to as flux.
  • the welding flux has particles containing oxides and has particles.
  • the oxide contains Si and contains A compound layer is formed on at least a part of the outer surface of the particles.
  • the compound layer contains a strongly deoxidizing element constituting an oxide having a standard produced Gibbs energy lower than the SiO 2 standard produced Gibbs energy in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
  • a preferred embodiment of the present invention relating to a welding flux relates to the following [2] to [5].
  • the strongly deoxidizing element is Ellingham The element for welding according to [1], which is an element constituting an oxide having an oxide standard production Gibbs energy value of ⁇ 800 kJ / g ⁇ molO 2 or less in the entire temperature range of 500 to 1000 ° C. in the figure. flux.
  • the oxide containing Si is an oxide of Si alone or a composite oxide containing at least one selected from K, Na and Al and Si, [1] to [3].
  • the welding flux according to any one.
  • TiO 2 conversion value of all Ti 0.5% by mass or more, 5.0% by mass or less, MnO conversion value of all Mn: 0.5% by mass or more, 13.0% by mass or less, and FeO conversion value of all Fe: 0.5% by mass or more, 7.0% by mass or less, As well as containing At least one selected from Mg, Ca and Ba, MgO conversion value of all Mg: 15.0% by mass or more, 30.0% by mass or less, CaO conversion value of all Ca: 7.0% by mass or more, 30.0% by mass or less, BaO conversion value of all Ba: 8.0% by mass or less, The welding flux according to any one of [1] to [4], which is contained in the range of.
  • the method for producing a welding flux according to any one of [1] to [5]. It has a step of adding a binder to a blending flux containing a powder raw material, granulating, and then firing at a temperature of 500 to 1000 ° C.
  • the compounded flux contains, as the powder raw material, a powder raw material of an oxide containing Si, and a powder raw material of a metal containing a strongly deoxidizing element or a powder raw material of a compound.
  • the method for producing a welding flux, wherein the strongly deoxidizing element is an element constituting an oxide having a standard enthalpy of formation lower than SiO 2 in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
  • a preferred embodiment of the present invention relating to a method for producing a flux for welding relates to the following [7].
  • the powder raw material of the metal containing the strongly deoxidizing element or the powder raw material of the compound is at least one selected from the powder raw material containing Mg, the powder raw material containing Ca and the powder raw material containing Ba.
  • Contains powder raw material The powder raw material containing Mg contains 25% by mass or more of Mg with respect to the total mass of the powder raw material containing Mg.
  • the powder raw material containing Ca contains 30% by mass or more of Ca with respect to the total mass of the powder raw material containing Ca.
  • the powder raw material containing Ba contains 60% by mass or more of Ba with respect to the total mass of the powder raw material containing Ba.
  • the ratio of the powder raw material containing Mg having a particle size of 75 ⁇ m or less to the total mass of the powder raw material containing Mg is [a].
  • the ratio of the powder raw material containing Ca having a particle size of 75 ⁇ m or less to the total mass of the powder raw material containing Ca is [b].
  • the ratio of the powder raw material containing Ba having a particle size of 75 ⁇ m or less to the total mass of the powder raw material containing Ba is [c].
  • the ratio of the powder raw material of the oxide containing Si having a particle size of 75 ⁇ m or less to the powder raw material of the oxide containing Si is determined by mass% with respect to the total amount of the powder raw material of the oxide containing Si [d]. ]
  • the present invention excellent moisture absorption resistance can be obtained even when the product is left for a long time, whereby the amount of diffusible hydrogen in the weld metal, which is one of the causes of cracking of the weld metal, can be reduced. It is possible to provide a welding flux that can be reduced, a method for producing the same, and a submerged arc welding method using the welding flux.
  • FIG. 1 is an example of an SEM photograph taken of a cross section of the welding flux obtained by the present embodiment.
  • the present invention is not limited to the embodiments described below. Further, in the present specification, "-" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
  • the welding flux in the present invention include a flux for submerged arc welding and a flux for electroslag welding.
  • the flux for submerged arc welding will be described as an example of the flux for welding, but the present invention is not limited to the flux for submerged welding.
  • the welding flux according to the present embodiment has particles containing an oxide, the oxide contains Si, and a compound layer is formed on at least a part of the outer surface of the particles, and the compound layer is an eringham.
  • the above compound layer is formed on 50% or more of the outer surface containing a strongly deoxidizing element constituting an oxide having a standard production Gibbs energy lower than the SiO 2 standard production Gibbs energy.
  • the particles are present at a ratio of 50% or more with respect to the total number of particles containing the oxide containing Si.
  • Oxides containing Si are widely used as a powder raw material for producing a flux for welding, mainly because the appearance and shape of the bead are improved by imparting an appropriate viscosity to the molten slag.
  • the particles containing an oxide containing Si are extremely easy to absorb moisture, they have a characteristic of containing a large amount of water. Therefore, if a compound layer having high moisture absorption resistance, which will be described later, is formed on the outer surface of the particles containing an oxide containing Si, the moisture absorption resistance of the flux can be improved, whereby the moisture absorption resistance of the flux can be improved.
  • the amount of diffusible hydrogen can be reduced.
  • the oxide containing Si examples include an oxide of Si alone or a composite oxide containing at least one selected from K, Na and Al and Si, and these have characteristics that are particularly easy to absorb moisture. Therefore, the effect of the present invention can be expected. Further, among the oxides containing Si, the composite oxide containing Si and at least one selected from K, Na and Al has the property of being more easily absorbed by moisture, so that the effect of the present invention can be expected more. .. Specific examples of the composite oxide include KAlSi 3 O 8 , NaAlSi 3 O 8 , CaAl 2 Si 2 O 8 , and the like.
  • the compound layer contains a strongly deoxidizing element constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard produced Gibbs energy in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
  • This compound layer is, for example, a metal powder raw material containing a strongly deoxidizing element having a high affinity for oxygen or a compound powder raw material, an oxide powder raw material containing Si, and a binder such as water glass. It can be produced by granulating the flux using the above and baking it at a predetermined temperature.
  • the compound layer does not have to be formed on the outer surface of all the particles containing the oxide containing Si, nor does it need to be formed on the entire outer surface of the particles.
  • the amount of particles in which the compound layer is formed on 50% or more of the outer surface of the particles containing the oxide containing Si is 50% or more of the total number of particles of the particles containing the oxide. It suffices if it exists in proportion.
  • the ratio of the particles in which the compound layer is formed on 50% or more of the outer surface of the particles containing the oxide containing Si is preferably 60% or more with respect to the total number of particles containing the oxide. Yes, more preferably 65% or more, still more preferably 75% or more.
  • the outer surface of the particle referred to here refers to the circumference of the cross section of the particle, which is determined by observing the cross section of the particle.
  • the powder raw material of an oxide containing Si means a raw material containing particles containing an oxide containing Si.
  • the strongly deoxidizing element refers to an element constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy, and examples thereof include Ti, Ce, Al, Zr, Ba, Ca and Mg. ..
  • the particles of the metal or compound containing a strongly deoxidizing element come into contact with the outer surface of the particles containing an oxide containing Si to form Si with the particles of the metal or compound containing a strongly deoxidizing element. It is considered that the particles containing the oxide contained are produced by an interfacial reaction due to the heat at the time of firing in the flux manufacturing process.
  • a metal containing a strongly deoxidizing element constituting an oxide having a standard production Gibbs energy lower than the SiO 2 standard production Gibbs energy within the firing temperature range in the flux manufacturing process It is necessary to use the powder raw material of the above or the powder raw material of the compound as the powder raw material of the compounding flux.
  • the elements constituting the oxide having a standard generated Gibbs energy value of ⁇ 800 kJ / g ⁇ molO 2 or less in the entire temperature range of 500 to 1000 ° C. in the Ellingham diagram are adopted. Then, the difference from the SiO 2 standard generated Gibbs energy becomes large, and the compound layer is more easily formed, which is preferable.
  • the elements constituting the oxide having a standard generated Gibbs energy value of ⁇ 800 kJ / g ⁇ molO 2 or less in the entire temperature range of 500 to 1000 ° C. include Al, Zr, Ba, Ca and Mg.
  • the strongly deoxidizing element it is more preferable to select at least one element selected from Mg, Ca and Ba, and when a powder raw material of a metal or compound containing these strongly deoxidizing elements is used, Si A compound layer having high moisture absorption resistance is produced by contacting with the outer surface of particles containing an oxide containing an oxide and undergoing an interfacial reaction due to the heat during firing in the flux manufacturing process.
  • the content in the present embodiment means mass% with respect to the total mass of the flux unless otherwise specified.
  • the flux content has a component specified by a converted value due to the restrictions of the analysis method. Therefore, the total content of each component with respect to the total mass of the flux may exceed 100% by mass due to the property of using the converted value.
  • Total F amount 5.0% by mass or more and 20.0% by mass or less
  • Fluoride has the effect of increasing the electrical conductivity and fluidity of the molten slag, and also contributes to welding workability because it is one of the components that affect the high temperature viscosity of the molten slag.
  • the partial pressure of water vapor in the arc atmosphere can be reduced and the amount of diffusible hydrogen in the weld metal can be reduced by the decomposition reaction of fluoride during arc welding.
  • the content of fluoride with respect to the total mass of the flux is defined by the mass% of F (also referred to as the total amount of F) with respect to the total mass of the flux.
  • the total F amount is preferably 5.0% by mass or more. It is more preferably 0.0% by mass or more, and further preferably 12.0% by mass or more.
  • the total F amount is preferably 20.0% by mass or less, and 18.0% by mass or less. It is more preferably 17.0% by mass or less, and further preferably 17.0% by mass or less.
  • the F source in the flux of the present embodiment mainly includes CaF 2 , and may also contain BaF 2 , AlF 3 , MgF 2 , etc. However, if the total F amount is within the above range, the above-mentioned There is no change in the effect of fluoride.
  • SiO 2 conversion value of all Si 10.0% by mass or more, 25.0% by mass or less
  • the oxide containing Si mainly improves the bead appearance and the bead shape by imparting an appropriate viscosity to the molten slag.
  • Si in alloys such as metallic Si and Fe—Si acts as a reducing agent, prevents deterioration of mechanical properties due to an increase in the amount of oxygen in the weld metal, and suppresses the generation of pock marks.
  • the content of Si with respect to the total mass of the flux is defined by the value converted to SiO 2 in which the total amount of Si in the flux is converted to SiO 2 .
  • the SiO 2 conversion value is preferably 10.0% by mass or more, and more preferably 11.0% by mass or more.
  • the SiO 2 conversion value is preferably 25.0% by mass or less, and more preferably 20.0% by mass or less.
  • the SiO 2 conversion value specified here includes the SiO 2 conversion value of Si derived from a binder such as water glass, in addition to the above-mentioned Si-containing oxides, metal Si, and alloys such as Fe—Si. included.
  • Al is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Al to the flux, a compound layer containing Al is formed on the outer surface of the particles containing the oxide containing Si, thereby improving the moisture absorption resistance of the flux. It can be improved and the amount of diffusible hydrogen in the weld metal can be reduced.
  • the Al content with respect to the total mass of the flux is defined by the Al 2 O 3 conversion value obtained by converting the total Al content in the flux into Al 2 O 3 .
  • the Al 2 O 3 conversion value is preferably 14.0% by mass or more. Further, it is preferably 30.0% by mass or less.
  • the powder raw material containing Al for example, it can be added in the form of an alloy such as Al 2 O 3 , Al F 3 , metal Al and Al—Mg.
  • Al 2 O 3 greatly contributes to the improvement of slag peelability and low temperature toughness, and is a component that improves the bead shape and bead appearance at the time of welding. Therefore, it can be added in the form of Al 2 O 3 . preferable.
  • the Al 2 O 3 conversion value is more preferably 16.0% by mass or more because a good bead shape and bead appearance can be obtained.
  • the Al 2 O 3 conversion value is more preferably 27.0% by mass or less because it can prevent the melting point of the molten slag from rising excessively and maintain good slag peelability at the bead end. ..
  • the alkali metals Na and K are components that mainly affect the arc stability during welding and the moisture absorption characteristics of the flux. From the viewpoint of arc stability during welding, it is preferable that the flux contains either or both of Na and K.
  • the contents of Na and K with respect to the total mass of the flux are defined by the Na 2 O conversion value and the K 2 O conversion value obtained by converting the total Na and total K amounts in the flux into Na 2 O and K 2 O, respectively.
  • the total of the Na 2 O conversion value and the K 2 O conversion value is preferably 1.0% by mass or more, and more preferably 1.5% by mass or more.
  • the total of the Na 2 O conversion value and the K 2 O conversion value is preferably 6.0% by mass or less, and more preferably 5.0% by mass or less. preferable.
  • a powder raw material containing Na and K for example, it can be added in the form of an oxide such as Na 2 O, K 2 O, KAlSi 3 O 8 , NaAlSi 3 O 8 , CaAl 2 Si 2 O 8 , etc.
  • the Na 2 O conversion value and the K 2 O conversion value specified here include the Na 2 O conversion of Na and K derived from a binder such as water glass in addition to the above-mentioned oxide containing Na and K. Values and K2O conversion values are also included.
  • Ti is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Ti to the flux, a compound layer containing Ti is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced.
  • the content of Ti with respect to the total mass of the flux is defined by the value converted to TiO 2 in which the total amount of Ti in the flux is converted to TiO 2 .
  • the TiO 2 conversion value is preferably 0.5% by mass or more. Further, it is preferably 5.0% by mass or less.
  • the powder raw material containing Ti for example, it can be added in the form of an alloy such as TiO 2 , metal Ti, or Fe—Ti.
  • TiO 2 is a component that can improve the peelability and low temperature toughness of slag, and is a component that improves the bead shape and bead appearance at the time of welding. Therefore, it should be added in the form of TiO 2 . Is preferable. It is more preferable that the TiO 2 conversion value is 1.0% by mass or more because a good bead shape and bead appearance can be obtained. On the other hand, the TiO 2 conversion value is more preferably 4.0% by mass or less because it can prevent the melting point of the molten slag from rising excessively and maintain good slag peelability at the bead end.
  • MnO conversion value of all Mn 0.5% by mass or more and 13.0% by mass or less
  • Mn affects the viscosity and solidification temperature of the molten slag, and is effective in improving the pockmark resistance. Further, when Mn is contained in an appropriate amount in the flux, good low temperature toughness can be obtained and the occurrence of pore defects can be prevented.
  • the Mn content with respect to the total mass of the flux is defined by the MnO conversion value obtained by converting the total Mn amount in the flux into MnO. In order to obtain the above effect, the MnO conversion value is preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and even more preferably 0.8% by mass or more. preferable.
  • the MnO conversion value is 13.0. It is preferably 5% by mass or less, more preferably 11.0% by mass or less, and further preferably 5.0% by mass or less.
  • a powder raw material containing Mn for example, oxides such as MnO, MnO 2 and Mn 2 O 3 and alloys such as metal Mn and Fe—Si—Mn can be added, but among various forms, in particular. When it is added in the form of an oxide and the MnO conversion value is 0.5% by mass or more and 13.0% by mass or less, the usefulness of Mn is more exhibited, which is more preferable.
  • FeO conversion value of all Fe 0.5% by mass or more, 7.0% by mass or less
  • Fe has the effect of promoting the deoxidation phenomenon and enhancing the pockmark resistance, and can obtain a higher effect particularly when the welding current is direct current (DC).
  • the Fe content with respect to the total mass of the flux is defined by the FeO conversion value obtained by converting the total Fe amount in the flux into FeO.
  • the FeO conversion value is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more.
  • the FeO conversion value is preferably 7.0% by mass or less, and preferably 4.0% by mass or less. Is more preferable.
  • a powder raw material containing Fe for example, it can be added in the form of an oxide such as FeO, Fe 2 O 3 and Fe 3 O 4 , or an alloy such as metal Fe and Fe—Si, and in particular, Fe—Si and the like.
  • the FeO conversion value is 0.5% by mass or more and 7.0% by mass or less while being added in the form of the alloy or metal Fe of the above, the usefulness of Fe is more exhibited, which is more preferable.
  • the flux of the present embodiment more preferably contains at least one selected from Mg, Ba and Ca as the above-mentioned strongly deoxidizing element in the content shown below in addition to the above-mentioned contained components, preferably Mg and Ca. It is more preferable to contain at least one selected from the above in the content shown below, and it is most preferable to contain both Mg and Ca in the content shown below. The preferred contents of these components will be described below.
  • Mg is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Mg to the flux, a compound layer containing Mg is formed on the outer surface of the oxide particles containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced.
  • the Mg content with respect to the total mass of the flux is defined by the MgO conversion value obtained by converting the total Mg content in the flux into MgO.
  • the MgO conversion value is preferably 15.0% by mass or more. Further, the MgO conversion value is preferably 30.0% by mass or less.
  • the Mg source converted into MgO include alloys such as MgO, MgF 2 , MgCO 3 , and Al—Mg, and forms such as metallic Mg.
  • the form of MgO is preferable because it is a component that greatly contributes to the improvement of slag peelability. Regardless of the polarity of the electrode, good slag peelability can be ensured and slag seizure can be prevented. Therefore, the MgO conversion value is more preferably 19.0% by mass or more, and 20.0% by mass or more.
  • the MgO conversion value is more preferably 26.0% by mass or less, and 25.0% by mass or less. Is more preferable.
  • CaO conversion value of all Ca: 7.0% by mass or more and 30.0% by mass or less Ca is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard produced Gibbs energy. Therefore, by adding the powder raw material containing CaO to the flux, a compound layer containing Ca is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced.
  • the Ca content with respect to the total mass of the flux is defined by the CaO conversion value obtained by converting the total Ca content in the flux into CaO.
  • the CaO conversion value is preferably 7.0% by mass or more. Further, the CaO conversion value is preferably 30.0% by mass or less.
  • the Ca source converted into CaO include alloys such as CaO, CaF 2 , CaCO 3 , and Ca—Si, and forms such as metallic Ca.
  • the CaF 2 is a component that greatly contributes to the improvement of slag removability, it is preferable to add it in the form of CaF 2 .
  • the CaO conversion value is more preferably 17.0% by mass or more, and 20.0% by mass. The above is more preferable.
  • the CaO conversion value is more preferably 26.0% by mass or less, more preferably 24.0% by mass, because it prevents the fluidity of the molten slag from becoming excessively high and a good bead appearance and shape can be obtained. % Or less is more preferable.
  • Ba (BaO conversion value of all Ba: 8.0% by mass or less) Ba is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing BaO to the flux, a compound layer containing Ba is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced.
  • the Ba content with respect to the total mass of the flux is defined by the BaO conversion value obtained by converting the total Ba content of the flux into BaO.
  • the BaO conversion value is preferably 0.1% by mass or more. Further, the BaO conversion value is preferably 8.0% by mass or less.
  • the Ba source converted into BaO include forms such as BaO, BaF 2 , BaCO 3 , and metal Ba.
  • the lower limit of the BaO conversion value is not particularly limited, but Ba is optionally added in order to improve the mechanical properties of the weld metal by increasing the basicity of the slag and increasing the cleanliness of the weld metal. In this case, the BaO conversion value is more preferably 1.0% by mass or more.
  • the BaO conversion value is preferably 6.0% by mass or less in order to prevent the fluidity of the molten slag from becoming excessively high and to obtain a good bead appearance and shape.
  • the total F amount shown above SiO 2 conversion value, Al 2 O 3 conversion value, Na 2 O conversion value, K 2 O conversion value, TiO 2 conversion value, MgO conversion value, CaO conversion value, BaO conversion value.
  • the total of the MnO-converted value and the FeO-converted value is preferably 92% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, from the viewpoint of obtaining good slag peelability and bead shape.
  • the flux of the present embodiment may contain at least one selected from Zr and B, if necessary, in addition to the above-mentioned components. The contents of these elements will be described below.
  • B 2 O 3 conversion value of all B: 0.50 mass% or less B is an effective component for improving the toughness of the weld metal.
  • the content of B with respect to the total mass of the flux is defined by the B 2 O 3 conversion value obtained by converting the total B content in the flux into B 2 O 3 .
  • the lower limit of the B 2 O 3 conversion value is not particularly set, but if the above effect is desired, the B 2 O 3 conversion value is preferably 0.01% by mass or more, and 0.03% by mass or more. Is more preferable.
  • the B2O3 conversion value is preferably 0.50% by mass or less, preferably 0.30% by mass or less. Is more preferable.
  • the powder raw material containing B for example, it can be added in the form of an alloy such as metal B, Fe—B, Fe—Si—B, an oxide of B, or the like.
  • ZrO 2 conversion value of all Zr: 3.0% by mass or less Zr is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Zr to the flux, a compound layer containing Zr is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced.
  • Zr affects the viscosity and solidification temperature of molten slag, and is an effective component for obtaining arc stability in high-speed welding, good bead shape and bead appearance, and good slag peeling property.
  • the Zr content with respect to the total mass of the flux is defined by the ZrO 2 conversion value obtained by converting the total Zr amount in the flux into ZrO 2 . Since the powder raw material containing Zr is relatively expensive, no lower limit is set, but if the above effect is desired, the ZrO2 conversion value is preferably 0.01% by mass or more , and 3.0% by mass. % Or less is preferable.
  • a powder raw material containing Zr for example, it can be added in the form of an alloy containing ZrO 2 , ZrSiO 4 and Zr.
  • the flux of this embodiment may contain elements such as Ni, Mo, Cu and Cr in addition to the above-mentioned contained components.
  • Ni, Mo, Cu and Cr are added to the flux, the total value thereof is preferably 5% by mass or less.
  • Examples of elements other than the above contained in the flux include unavoidable impurities such as P, S, Nb and V.
  • unavoidable impurities such as P, S, Nb and V.
  • Nb and V reduce the low temperature toughness of the weld metal, so it is preferable to regulate each to 0.5% by mass or less with respect to the total mass of the flux, and P and S which affect the welding quality. Is preferably regulated to 0.20% by mass or less with respect to the total mass of the flux.
  • the welding flux of the present invention can be obtained by adding a binder to a blended flux containing the following powder raw materials, granulating the flux, and then firing at a temperature of 500 to 1000 ° C.
  • the compounded flux contains, as the powder raw material, a powder raw material of an oxide containing Si, and a powder raw material of a metal containing the above-mentioned strongly deoxidizing element or a powder raw material of a compound.
  • the powder raw material of the metal containing the strongly deoxidizing element or the powder raw material of the compound the powder raw material containing the Mg, the powder raw material containing Ca, the powder raw material containing Ba, and the above-mentioned flux can be used.
  • Examples thereof include a powder raw material of an oxide containing a component, and a powder raw material containing a fluoride or a carbonate.
  • the binder for example, water glass, polyvinyl alcohol and the like can be used.
  • the granulation method is not particularly limited, but a method using a rolling granulation machine, an extrusion type granulation machine, or the like is preferable.
  • the firing after granulation can be performed in a rotary kiln, a stationary batch furnace, a belt-type firing furnace, or the like.
  • a flux raw material containing a strongly deoxidizing element constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard produced Gibbs energy in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
  • the firing temperature is preferably 500 to 1000 ° C, preferably 700 to 900 ° C.
  • the present inventors have found that a compound layer is likely to be formed on the outer surface of particles containing an oxide containing Si by appropriately defining the particle size of the powder raw material.
  • the particles having a particle size of 75 ⁇ m or less are particularly easy to absorb moisture, and therefore various strong deoxidization agents are used.
  • the mass ratio of the total amount of the powder raw materials having a particle size of 75 ⁇ m or less is 75 ⁇ m or less among the powder raw materials containing Si. It is preferable that it is larger than the mass ratio of a certain powder raw material.
  • particle size of 75 ⁇ m or less means that the particle size passes through the sieve when it is sieved using a sieve with a mesh size of 75 ⁇ m based on JIS Z 8801: 2019 by a method based on JIS Z 8815: 1994. Means that.
  • the metal powder raw material containing the strongly deoxidizing element and the compound powder raw material are at least one kind of powder selected from the powder raw material containing Mg, the powder raw material containing Ca, and the powder raw material containing Ba. It is preferable to contain a body material. Further, the powder raw material containing Mg contains 25% by mass or more of Mg with respect to the total mass of the powder raw material containing Mg, and the powder raw material containing Ca contains Ca with respect to the total mass of the powder raw material containing Ca. 30% by mass or more, and the powder raw material containing Ba is preferably one containing 60% by mass or more of Ba with respect to the total mass of the powder raw material containing Ba.
  • the ratio of the powder raw material containing Mg having a particle size of 75 ⁇ m or less is [a] in mass% with respect to the total mass of the powder raw material containing Mg, and the powder containing Ca is used.
  • the ratio of the powder raw material containing Ca having a particle size of 75 ⁇ m or less to the total mass of the powder raw material containing Ca is [b]
  • the ratio of the powder raw material containing Ba is calculated.
  • [C] is the mass% of the total mass of the powder raw material containing Ba
  • the ratio of the powder raw material containing Si having a particle size of 75 ⁇ m or less among the powder raw materials containing Si is the powder containing Si.
  • the powder raw material containing Mg it is more preferable to use one containing 50% by mass or more of Mg with respect to the total mass of the powder raw material containing Mg, and it is more preferable to use one containing 52% by mass or more.
  • the powder raw material containing such Mg for example, MgO, MgCO 3 , MgF 2 , and the like can be used.
  • the powder raw material containing Ca it is more preferable to use a powder raw material containing 40% by mass or more of Ca with respect to the total mass of the powder raw material containing Ca, and it is further preferable to use a powder raw material containing 45% by mass or more. preferable.
  • the powder raw material containing Ca for example, CaF 2 , CaCO 3 , CaO and the like can be used.
  • the powder raw material containing Ba it is more preferable to use a powder raw material containing 62% by mass or more of Ba with respect to the total mass of the powder raw material containing Ba, and it is further preferable to use a powder raw material containing 65% by mass or more. preferable.
  • the powder raw material containing such Ba for example, BaF 2 , BaCO 3 , BaO and the like can be used.
  • the content of each element with respect to the total mass of the powder raw material including Mg, Ca and Ba will be described.
  • the Mg content is 60% by mass with respect to the total mass of the powder raw material composed only of Mg ⁇ .
  • the Mg content is the total mass of magnesia clinker.
  • the Mg content is the total mass of the powder containing all Mg.
  • the powder raw material of the oxide containing Si for example, SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 , CaAl 2 Si 2 O 8 and the like can be used, and among these, SiO 2 , KAlSi can be used. It is more preferable to use 3 O 8 and NaAlSi 3 O 8 .
  • the present invention also relates to the submerged arc welding method using the welding flux of the present invention.
  • the composition and preferable components of the welding flux are as described above.
  • the L pole represents the leading pole
  • the T pole represents the trailing pole.
  • Welding current / arc voltage 500 to 1200A / 26 to 40V (1st, L pole), 500 to 1200A / 26 to 40V (1st, T pole), 500 to 1500A / 26 to 40V (2nd, L pole), 500 to 1500A / 26-40V (2nd, T pole)
  • Welding speed 10-1000 cm / min (1st, 2nd)
  • Electrode arrangement The angle between the L pole and the T pole is 0 to 45 °.
  • Steel type JIS G 3106: 2015 compliant
  • the powder raw material containing Mg contains 53 to 58% by mass of Mg with respect to the total mass of the powder raw material containing Mg, and the powder raw material containing Ca is the total mass of the powder raw material containing Ca.
  • the powder raw material containing 45 to 50% by mass of Ca and containing Ba a powder raw material containing 65 to 70% by mass of Ba with respect to the total mass of the powder raw material containing Ba was used.
  • EDX analysis was performed on the cross section of the compound layer using energy dispersive X-ray spectroscopy (EDX), and particles containing an oxide containing Si and compounds around it.
  • the elements contained in the layer were analyzed by mapping.
  • EDX analysis by SEM can be performed as follows. For example, a tabletop microscope (manufactured by Hitachi High-Technologies Corporation: Miniscope TM3030) is used to observe the polished observation surface at a magnification of 1000 times. In this example, the presence or absence of particles containing an oxide containing Si was observed, and elements other than Si were investigated in the particles containing an oxide containing Si. In addition, the compound layer on the outer surface of the particles containing the oxide containing Si was observed, and the coverage was evaluated. In addition, in the column of K, Na, Ti, Al and Mg in "elements other than Si in particles containing oxide containing Si" shown in Table 3 below, those in which these elements are detected are " ⁇ ". , "-" Was not detected.
  • any three fields of view (field of view 1, field of view 2, field of view 3) that are rectangles of 200 ⁇ m ⁇ 170 ⁇ m are selected, and particles containing an oxide containing Si are selected for each of the three fields of view.
  • the outer surface of one particle is observed per field of view, and the field of view in which the compound layer is formed in 50% or more of the outer surface is marked with " ⁇ ", and the compound layer is formed on the outer surface.
  • the visual field in which the compound layer is formed is less than 50% of the outer surface of the particles is defined as “ ⁇ ”, and the visual field in which the compound layer is not formed on the outer surface is defined as “x”, and the visual fields 1, the visual fields 2 and the visual fields 3 are observed.
  • 50% of the outer surface of the particles
  • x the visual field in which the compound layer is not formed on the outer surface
  • FIG. 1 is an example of an SEM photograph taken of a cross section of the welding flux obtained by the present embodiment.
  • a compound layer 2 is formed on the outer surface of the particles 1 containing an oxide containing Si.
  • elemental analysis was performed on the particles 1 and the compound layer 2 by EDX, Si, O, K, Na, Al and the like were observed in the particles 1, and Mg and Ca were observed in the compound layer 2.
  • the moisture absorption resistance was evaluated by the water content of the flux after forced moisture absorption for 24 hours. Specifically, the obtained flux was re-dried at 250 ° C. for 1 hour, and then left to stand for 24 hours under the conditions of a temperature of 30 ° C. and a humidity of 80 RH%, and a moisture measuring device ( The water content in the flux was measured by the curl fisher (KF) method using CA-200) manufactured by Mitsubishi Chemical Corporation. In this example, those having a water content of 1200 ppm or less measured by the KF method were regarded as acceptable.
  • KF curl fisher
  • Welding current 450-550A Arc voltage: 30-34V Welding speed: 480 to 520 mm / min Steel grade: JIS G 3106: 2015 SM400 compliant Plate thickness: 12 mm Overhang length: 30 mm
  • oxides are obtained by forming a compound layer containing a strongly deoxidizing element at a predetermined coverage, that is, 50% or more of the outer surface, on the outer surface of particles containing an oxide containing Si. Since it is present at a ratio of 50% or more with respect to the total number of particles containing the above, excellent moisture absorption resistance can be obtained, whereby the amount of diffusible hydrogen in the weld metal is 3.5 ml / 100 g or less. We were able to obtain the welding flux.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

Provided is a welding flux allowing excellent moisture absorption resistance to be obtained even when left standing for a long period of time, thereby allowing for a reduction in the amount of diffusing hydrogen in the welded metal, which is one factor causing welded metal cracking; also provided are a production method for the welding flux, and a submerged arc welding method using the welding flux. The welding flux comprises particles (1) containing an oxide. The oxide contains Si. A compound layer (2) has been formed over at least a portion of the outer surface on each of the particles (1). The compound layer (2) contains a strong deoxidizing element constituting an oxide having a lower standard Gibbs energy of formation than the standard Gibbs energy of formation of SiO2 in a temperature range of 500 to 1,000°C in an Ellingham diagram. The particles (1) having the compound layer formed over 50% or more of the outer surface are present at a proportion of 50% or higher with respect to the total particle count for the particles containing the oxide.

Description

溶接用フラックス及びその製造方法、並びに該溶接用フラックスを使用したサブマージアーク溶接方法Welding flux and its manufacturing method, and submerged arc welding method using the welding flux.
 本発明は、耐吸湿性に優れた溶接用フラックス及びその製造方法、並びに該溶接用フラックスを使用したサブマージアーク溶接方法に関する。 The present invention relates to a welding flux having excellent moisture absorption resistance and a method for producing the same, and a submerged arc welding method using the welding flux.
 溶接用フラックスが適用される溶接方法の例として、一般的にサブマージアーク溶接やエレクトロスラグ溶接等が挙げられる。例えば、サブマージアーク溶接は、石油や天然ガス等を輸送するパイプライン用の造管溶接等に用いられる溶接方法である。このサブマージアーク溶接用に設計されたフラックスは、高温多湿の雰囲気に放置した場合、フラックス粒子の細孔内部や表面に水分が吸着して、吸湿しやすい性質を有している。そして、粒子に吸着した水分は、高温のアークにさらされると分解して水素及び酸素となり、溶接金属の拡散性水素量を増加させて低温割れを引き起こすとともに、溶接作業性に悪影響を及ぼす。したがって、サブマージアーク溶接においては、溶接用フラックスの耐吸湿性の向上が極めて重要な課題の一つとして挙げられている。 Examples of welding methods to which welding flux is applied generally include submerged arc welding and electroslag welding. For example, submerged arc welding is a welding method used for pipe making welding for pipelines that transport petroleum, natural gas, and the like. The flux designed for this submerged arc welding has a property that when it is left in a high temperature and high humidity atmosphere, moisture is adsorbed inside or on the surface of the pores of the flux particles and it is easy to absorb moisture. When the particles are exposed to a high-temperature arc, the water adsorbed on the particles decomposes into hydrogen and oxygen, which increases the amount of diffusible hydrogen in the weld metal, causes low-temperature cracking, and adversely affects welding workability. Therefore, in submerged arc welding, improving the moisture absorption resistance of the welding flux is mentioned as one of the extremely important issues.
 そこで、特許文献1には、フラックス中のAl、SiO、MgO、CaF換算値、MnO換算値、NaO換算値、KO換算値及びLiO換算値のうち少なくとも一つ以上の合計、FeO換算値、CaO、水溶性SiO、水溶性NaO、並びに水溶性KOの含有量を適切に調整し、所定の数式により得られる値を限定したサブマージアーク溶接用フラックスが提案されている。
 また、特許文献2には、フラックス中の上記酸化物及びTiOの含有量、並びに所定の数式により得られる値を限定したサブマージアーク溶接用フラックスが開示されている。
Therefore, Patent Document 1 describes at least one of Al 2 O 3 , SiO 2 , MgO, CaF 2 converted value, Mn O converted value, Na 2 O converted value, K 2 O converted value and Li 2 O converted value in the flux. Submerged arc that appropriately adjusts the content of one or more total, FeO conversion value, CaO, water-soluble SiO 2 , water-soluble Na 2 O, and water-soluble K 2 O, and limits the values obtained by a predetermined formula. Welding flux has been proposed.
Further, Patent Document 2 discloses a flux for submerged arc welding in which the contents of the oxide and TiO 2 in the flux and the values obtained by a predetermined mathematical formula are limited.
 上記特許文献1及び2には、フラックスの吸湿量及び溶接金属中の拡散性水素量を低減することが可能となる旨が記載されている。特に、吸湿量については、フラックスを再乾燥した後に、2時間の強制吸湿を実施し、フラックスが有する水分量を測定することにより評価している。 The above-mentioned Patent Documents 1 and 2 describe that it is possible to reduce the amount of moisture absorbed by the flux and the amount of diffusible hydrogen in the weld metal. In particular, the amount of moisture absorbed is evaluated by performing forced moisture absorption for 2 hours after re-drying the flux and measuring the amount of water contained in the flux.
日本国特開2016-140888号公報Japanese Patent Application Laid-Open No. 2016-140888 日本国特開2016-140889号公報Japanese Patent Application Laid-Open No. 2016-1408889
 しかしながら、一般的な使用現場では、再乾燥後に2時間を超えて放置されたフラックスを使用することがあり、上記特許文献1及び2に記載のサブマージアーク溶接用フラックスは、長時間放置後の吸湿性について、十分な検討がなされていなかった。 However, in a general use site, a flux left for more than 2 hours after re-drying may be used, and the flux for submerged arc welding described in Patent Documents 1 and 2 above absorbs moisture after being left for a long time. The sex has not been fully examined.
 本発明は上記課題を鑑みてなされたものであって、長時間放置された場合であっても優れた耐吸湿性を得ることができ、これにより、溶接金属の割れの要因の一つである溶接金属中の拡散性水素量を低減することができる溶接用フラックス及びその製造方法、並びに該溶接用フラックスを使用したサブマージアーク溶接方法を提供することを目的とする。 The present invention has been made in view of the above problems, and excellent moisture absorption resistance can be obtained even when the weld metal is left for a long time, which is one of the causes of cracking of the weld metal. It is an object of the present invention to provide a welding flux capable of reducing the amount of diffusible hydrogen in a weld metal, a method for producing the same, and a submerged arc welding method using the welding flux.
 本発明者らは鋭意研究を重ねた結果、溶接用フラックスに含まれるSiを含む酸化物について着目した。すなわち、本発明者らは、このSiを含む酸化物を含有する粒子は極めて吸湿しやすいため、この粒子の表面に耐吸湿性の高い化合物層を生成させることによりフラックスの耐吸湿性を向上し、溶接金属中の拡散性水素量を低減することができることを見出した。以下、溶接用フラックスを単にフラックスということがある。 As a result of diligent research, the present inventors focused on oxides containing Si contained in welding flux. That is, since the particles containing the oxide containing Si are extremely easy to absorb moisture, the present inventors have improved the moisture absorption resistance of the flux by forming a compound layer having high moisture absorption resistance on the surface of the particles. , Found that the amount of diffusible hydrogen in the weld metal can be reduced. Hereinafter, the flux for welding may be simply referred to as flux.
 本発明の上記目的は、溶接用フラックスに係る下記[1]の構成により達成される。 The above object of the present invention is achieved by the configuration of the following [1] relating to the welding flux.
[1] 溶接用フラックスであって、
 前記溶接用フラックスは酸化物を含有する粒子を有し、
 前記酸化物はSiを含み、
 前記粒子の外表面の少なくとも一部には化合物層が生成されており、
 前記化合物層は、エリンガム図における500~1000℃の温度範囲で、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素を含み、
 前記外表面の50%以上に前記化合物層が生成されている前記粒子が、前記酸化物を含有する粒子の全粒子数に対して50%以上の割合で存在する、溶接用フラックス。
[1] Welding flux
The welding flux has particles containing oxides and has particles.
The oxide contains Si and contains
A compound layer is formed on at least a part of the outer surface of the particles.
The compound layer contains a strongly deoxidizing element constituting an oxide having a standard produced Gibbs energy lower than the SiO 2 standard produced Gibbs energy in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
A welding flux in which the particles having the compound layer formed on 50% or more of the outer surface are present at a ratio of 50% or more with respect to the total number of particles containing the oxide.
 また、溶接用フラックスに係る本発明の好ましい実施形態は、以下の[2]~[5]に関する。 Further, a preferred embodiment of the present invention relating to a welding flux relates to the following [2] to [5].
[2] 前記強脱酸元素は、
 エリンガム図における500~1000℃の全温度領域において、酸化物標準生成ギブスエネルギーの値が、-800kJ/g・molO以下である酸化物を構成する元素である、[1]に記載の溶接用フラックス。
[2] The strongly deoxidizing element is
Ellingham The element for welding according to [1], which is an element constituting an oxide having an oxide standard production Gibbs energy value of −800 kJ / g · molO 2 or less in the entire temperature range of 500 to 1000 ° C. in the figure. flux.
[3] 前記強脱酸元素は、Mg、Ca及びBaから選択された少なくとも一種の元素である、[1]又は[2]に記載の溶接用フラックス。 [3] The welding flux according to [1] or [2], wherein the strongly deoxidizing element is at least one element selected from Mg, Ca and Ba.
[4] 前記Siを含む酸化物は、Si単体の酸化物、又は、K、Na及びAlから選択された少なくとも一種とSiとを含有する複合酸化物である、[1]~[3]のいずれか1つに記載の溶接用フラックス。 [4] The oxide containing Si is an oxide of Si alone or a composite oxide containing at least one selected from K, Na and Al and Si, [1] to [3]. The welding flux according to any one.
[5] 溶接用フラックス全質量あたり、
 全F量:5.0質量%以上、20.0質量%以下、
 全SiのSiO換算値:10.0質量%以上、25.0質量%以下、
 全AlのAl換算値:14.0質量%以上、30.0質量%以下、
 Na及びKのいずれか一方又は両方:全NaのNaO換算値及び全KのKO換算値の合計で1.0質量%以上、6.0質量%以下、
 全TiのTiO換算値:0.5質量%以上、5.0質量%以下、
 全MnのMnO換算値:0.5質量%以上、13.0質量%以下、及び
 全FeのFeO換算値:0.5質量%以上、7.0質量%以下、
を含有するとともに、
 Mg、Ca及びBaから選択された少なくとも一種を、
 全MgのMgO換算値:15.0質量%以上、30.0質量%以下、
 全CaのCaO換算値:7.0質量%以上、30.0質量%以下、
 全BaのBaO換算値:8.0質量%以下、
の範囲で含有する、[1]~[4]のいずれか1つに記載の溶接用フラックス。
[5] Per total mass of welding flux
Total F amount: 5.0% by mass or more, 20.0% by mass or less,
SiO 2 conversion value of all Si: 10.0% by mass or more, 25.0% by mass or less,
Al 2 O 3 conversion value of all Al: 14.0% by mass or more, 30.0% by mass or less,
Either or both of Na and K: 1.0% by mass or more and 6.0% by mass or less in total of the Na 2 O conversion value of all Na and the K 2 O conversion value of all K.
TiO 2 conversion value of all Ti: 0.5% by mass or more, 5.0% by mass or less,
MnO conversion value of all Mn: 0.5% by mass or more, 13.0% by mass or less, and FeO conversion value of all Fe: 0.5% by mass or more, 7.0% by mass or less,
As well as containing
At least one selected from Mg, Ca and Ba,
MgO conversion value of all Mg: 15.0% by mass or more, 30.0% by mass or less,
CaO conversion value of all Ca: 7.0% by mass or more, 30.0% by mass or less,
BaO conversion value of all Ba: 8.0% by mass or less,
The welding flux according to any one of [1] to [4], which is contained in the range of.
 また、本発明の上記目的は、溶接用フラックスの製造方法に係る下記[6]の構成により達成される。 Further, the above object of the present invention is achieved by the configuration of the following [6] relating to the method for producing a flux for welding.
[6] [1]~[5]のいずれか1つに記載の溶接用フラックスを製造する溶接用フラックスの製造方法であって、
 粉体原料を配合した配合フラックスに結合剤を添加して造粒後、500~1000℃の温度で焼成する工程を有し、
 前記配合フラックスは、前記粉体原料として、Siを含む酸化物の粉体原料、及び、強脱酸元素を含む金属の粉体原料又は化合物の粉体原料を含有し、
 前記強脱酸元素は、エリンガム図における500~1000℃の温度範囲でSiOよりも低い標準生成ギブスエネルギーを有する酸化物を構成する元素である、溶接用フラックスの製造方法。
[6] The method for producing a welding flux according to any one of [1] to [5].
It has a step of adding a binder to a blending flux containing a powder raw material, granulating, and then firing at a temperature of 500 to 1000 ° C.
The compounded flux contains, as the powder raw material, a powder raw material of an oxide containing Si, and a powder raw material of a metal containing a strongly deoxidizing element or a powder raw material of a compound.
The method for producing a welding flux, wherein the strongly deoxidizing element is an element constituting an oxide having a standard enthalpy of formation lower than SiO 2 in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
 また、溶接用フラックスの製造方法に係る本発明の好ましい実施形態は、以下の[7]に関する。 Further, a preferred embodiment of the present invention relating to a method for producing a flux for welding relates to the following [7].
[7] 前記強脱酸元素を含む金属の粉体原料又は化合物の粉体原料は、Mgを含む粉体原料、Caを含む粉体原料及びBaを含む粉体原料から選択された少なくとも一種の粉体原料を含有し、
 前記Mgを含む粉体原料は、Mgを含む粉体原料全質量に対してMgを25質量%以上含有し、
 前記Caを含む粉体原料は、Caを含む粉体原料全質量に対してCaを30質量%以上含有し、
 前記Baを含む粉体原料は、Baを含む粉体原料全質量に対してBaを60質量%以上含有するものであり、
 前記Mgを含む粉体原料のうち、粒径が75μm以下であるMgを含む粉体原料の割合を、前記Mgを含む粉体原料全質量に対する質量%で[a]、
 前記Caを含む粉体原料のうち、粒径が75μm以下であるCaを含む粉体原料の割合を、前記Caを含む粉体原料全質量に対する質量%で[b]、
 前記Baを含む粉体原料のうち、粒径が75μm以下であるBaを含む粉体原料の割合を、前記Baを含む粉体原料全質量に対する質量%で[c]、
 前記Siを含む酸化物の粉体原料のうち、粒径が75μm以下であるSiを含む酸化物の粉体原料の割合を、前記Siを含む酸化物の粉体原料全量に対する質量%で[d]としたとき、
 下記式(1)により得られる値が2.5以上である、[6]に記載の溶接用フラックスの製造方法。
 ([a]+[b]+[c])/[d]・・・(1)
[7] The powder raw material of the metal containing the strongly deoxidizing element or the powder raw material of the compound is at least one selected from the powder raw material containing Mg, the powder raw material containing Ca and the powder raw material containing Ba. Contains powder raw material,
The powder raw material containing Mg contains 25% by mass or more of Mg with respect to the total mass of the powder raw material containing Mg.
The powder raw material containing Ca contains 30% by mass or more of Ca with respect to the total mass of the powder raw material containing Ca.
The powder raw material containing Ba contains 60% by mass or more of Ba with respect to the total mass of the powder raw material containing Ba.
The ratio of the powder raw material containing Mg having a particle size of 75 μm or less to the total mass of the powder raw material containing Mg is [a].
The ratio of the powder raw material containing Ca having a particle size of 75 μm or less to the total mass of the powder raw material containing Ca is [b].
The ratio of the powder raw material containing Ba having a particle size of 75 μm or less to the total mass of the powder raw material containing Ba is [c].
The ratio of the powder raw material of the oxide containing Si having a particle size of 75 μm or less to the powder raw material of the oxide containing Si is determined by mass% with respect to the total amount of the powder raw material of the oxide containing Si [d]. ] When
The method for producing a welding flux according to [6], wherein the value obtained by the following formula (1) is 2.5 or more.
([A] + [b] + [c]) / [d] ... (1)
 また、本発明の上記目的は、サブマージアーク溶接方法に係る下記[8]の構成により達成される。 Further, the above object of the present invention is achieved by the configuration of the following [8] relating to the submerged arc welding method.
[8] [1]~[5]のいずれか1つに記載の溶接用フラックスを用いたサブマージアーク溶接方法。 [8] The submerged arc welding method using the welding flux according to any one of [1] to [5].
 本発明によれば、長時間放置された場合であっても優れた耐吸湿性を得ることができ、これにより、溶接金属の割れの要因の一つである溶接金属中の拡散性水素量を低減することができる溶接用フラックス及びその製造方法、並びに該溶接用フラックスを使用したサブマージアーク溶接方法を提供することができる。 According to the present invention, excellent moisture absorption resistance can be obtained even when the product is left for a long time, whereby the amount of diffusible hydrogen in the weld metal, which is one of the causes of cracking of the weld metal, can be reduced. It is possible to provide a welding flux that can be reduced, a method for producing the same, and a submerged arc welding method using the welding flux.
図1は、本実施形態により得られた溶接用フラックスの断面を撮影したSEM写真の一例である。FIG. 1 is an example of an SEM photograph taken of a cross section of the welding flux obtained by the present embodiment.
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、本明細書において、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 本発明における溶接用フラックスとしては、サブマージアーク溶接用フラックス及びエレクトロスラグ溶接用フラックス等が挙げられる。以下、本実施形態においては、溶接用フラックスの一例として、サブマージアーク溶接用フラックスに関して説明するが、本発明はサブマージ溶接用フラックスに限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be described in detail. The present invention is not limited to the embodiments described below. Further, in the present specification, "-" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
Examples of the welding flux in the present invention include a flux for submerged arc welding and a flux for electroslag welding. Hereinafter, in the present embodiment, the flux for submerged arc welding will be described as an example of the flux for welding, but the present invention is not limited to the flux for submerged welding.
[溶接用フラックス]
 本実施形態に係る溶接用フラックスは、酸化物を含有する粒子を有し、酸化物はSiを含み、粒子の外表面の少なくとも一部には化合物層が生成されており、化合物層は、エリンガム図における500~1000℃の温度範囲で、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素を含み、外表面の50%以上に上記化合物層が生成されている粒子が、Siを含む酸化物を含有する粒子の全粒子数に対して50%以上の割合で存在するものである。
 以下、各要件について更に詳細に説明する。
[Flux for welding]
The welding flux according to the present embodiment has particles containing an oxide, the oxide contains Si, and a compound layer is formed on at least a part of the outer surface of the particles, and the compound layer is an eringham. In the temperature range of 500 to 1000 ° C. in the figure, the above compound layer is formed on 50% or more of the outer surface containing a strongly deoxidizing element constituting an oxide having a standard production Gibbs energy lower than the SiO 2 standard production Gibbs energy. The particles are present at a ratio of 50% or more with respect to the total number of particles containing the oxide containing Si.
Hereinafter, each requirement will be described in more detail.
<Siを含む酸化物を含有する粒子>
 Siを含む酸化物は、溶融スラグに適度の粘性を与えることによって、主にビード外観及びビード形状を良好にするため、溶接用フラックスを製造するための粉体原料として、広く使用される。しかし、Siを含む酸化物を含有する粒子は極めて吸湿しやすいため、水分を多く含む特徴がある。そこで、Siを含む酸化物を含有する粒子の外表面に、後述する耐吸湿性の高い化合物層が生成されていると、フラックスの耐吸湿性を向上させることができ、これにより溶接金属中の拡散性水素量を低減することができる。
 なお、Siを含む酸化物としては、Si単体の酸化物、又は、K、Na及びAlから選択された少なくとも一種とSiとを含有する複合酸化物が挙げられ、これらは特に吸湿しやすい特性を有することから、本発明の効果が期待できる。また、Siを含む酸化物のうち、K、Na及びAlから選択された少なくとも一種とSiとを含有する複合酸化物は、より吸湿しやすい特性を有することから、本発明の効果がより期待できる。なお、上記複合酸化物の具体的な例としては、KAlSi、NaAlSi、CaAlSi等が挙げられる。
<Particles containing oxides containing Si>
Oxides containing Si are widely used as a powder raw material for producing a flux for welding, mainly because the appearance and shape of the bead are improved by imparting an appropriate viscosity to the molten slag. However, since the particles containing an oxide containing Si are extremely easy to absorb moisture, they have a characteristic of containing a large amount of water. Therefore, if a compound layer having high moisture absorption resistance, which will be described later, is formed on the outer surface of the particles containing an oxide containing Si, the moisture absorption resistance of the flux can be improved, whereby the moisture absorption resistance of the flux can be improved. The amount of diffusible hydrogen can be reduced.
Examples of the oxide containing Si include an oxide of Si alone or a composite oxide containing at least one selected from K, Na and Al and Si, and these have characteristics that are particularly easy to absorb moisture. Therefore, the effect of the present invention can be expected. Further, among the oxides containing Si, the composite oxide containing Si and at least one selected from K, Na and Al has the property of being more easily absorbed by moisture, so that the effect of the present invention can be expected more. .. Specific examples of the composite oxide include KAlSi 3 O 8 , NaAlSi 3 O 8 , CaAl 2 Si 2 O 8 , and the like.
<化合物層>
 化合物層は、エリンガム図における500~1000℃の温度範囲で、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素を含有する。この化合物層は、例えば、酸素との親和性が高い強脱酸元素を含む金属の粉体原料又は化合物の粉体原料と、Siを含む酸化物の粉体原料と、水ガラス等の結合剤を用いてフラックスを造粒し、所定の温度で焼成することにより生成することができる。
 なお、化合物層は、Siを含む酸化物を含有する全ての粒子の外表面に生成されている必要はなく、また、粒子の外表面全面に生成されている必要もない。具体的には、Siを含む酸化物を含有する粒子の外表面の50%以上に化合物層が生成されている粒子が、上記酸化物を含有する粒子の全粒子数に対して50%以上の割合で存在していればよい。また、上記酸化物を含有する粒子の全粒子数に対する、Siを含む酸化物を含有する粒子の外表面の50%以上に化合物層が生成されている粒子の割合は、好ましくは60%以上であり、より好ましくは65%以上であり、更に好ましくは75%以上である。
 なお、ここで指す粒子の外表面とは、該粒子の断面における観察により判断するものとし、粒子の断面の円周を指す。また、本願明細書において、Siを含む酸化物の粉体原料とは、Siを含む酸化物を含有する粒子を含む原料をいう。
<Compound layer>
The compound layer contains a strongly deoxidizing element constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard produced Gibbs energy in the temperature range of 500 to 1000 ° C. in the Ellingham diagram. This compound layer is, for example, a metal powder raw material containing a strongly deoxidizing element having a high affinity for oxygen or a compound powder raw material, an oxide powder raw material containing Si, and a binder such as water glass. It can be produced by granulating the flux using the above and baking it at a predetermined temperature.
The compound layer does not have to be formed on the outer surface of all the particles containing the oxide containing Si, nor does it need to be formed on the entire outer surface of the particles. Specifically, the amount of particles in which the compound layer is formed on 50% or more of the outer surface of the particles containing the oxide containing Si is 50% or more of the total number of particles of the particles containing the oxide. It suffices if it exists in proportion. Further, the ratio of the particles in which the compound layer is formed on 50% or more of the outer surface of the particles containing the oxide containing Si is preferably 60% or more with respect to the total number of particles containing the oxide. Yes, more preferably 65% or more, still more preferably 75% or more.
The outer surface of the particle referred to here refers to the circumference of the cross section of the particle, which is determined by observing the cross section of the particle. Further, in the present specification, the powder raw material of an oxide containing Si means a raw material containing particles containing an oxide containing Si.
<強脱酸元素>
 強脱酸元素とは、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する元素を指し、例えば、Ti、Ce、Al、Zr、Ba、Ca及びMg等が挙げられる。上記化合物層は、強脱酸元素を含む金属又は化合物の粒子が、Siを含む酸化物を含有する粒子の外表面に接触して、強脱酸元素を含む金属又は化合物の粒子と、Siを含む酸化物を含有する粒子とが、フラックス製造工程における焼成時の熱により、界面反応することで生成されると考えられる。したがって、上記化合物層を生成するためには、フラックス製造工程における焼成温度の範囲内において、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素を含む金属の粉体原料又は化合物の粉体原料を、配合フラックスの粉体原料として用いることが必要である。
<Strong deoxidizing element>
The strongly deoxidizing element refers to an element constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy, and examples thereof include Ti, Ce, Al, Zr, Ba, Ca and Mg. .. In the compound layer, the particles of the metal or compound containing a strongly deoxidizing element come into contact with the outer surface of the particles containing an oxide containing Si to form Si with the particles of the metal or compound containing a strongly deoxidizing element. It is considered that the particles containing the oxide contained are produced by an interfacial reaction due to the heat at the time of firing in the flux manufacturing process. Therefore, in order to form the compound layer, a metal containing a strongly deoxidizing element constituting an oxide having a standard production Gibbs energy lower than the SiO 2 standard production Gibbs energy within the firing temperature range in the flux manufacturing process. It is necessary to use the powder raw material of the above or the powder raw material of the compound as the powder raw material of the compounding flux.
 これらの強脱酸元素のうち、特に、エリンガム図における500~1000℃の全温度領域において、標準生成ギブスエネルギーの値が、-800kJ/g・molO以下である酸化物を構成する元素を採用すると、SiO標準生成ギブスエネルギーとの差が大きくなり、より化合物層が生成されやすくなるため好ましい。500~1000℃の全温度領域において、標準生成ギブスエネルギーの値が、-800kJ/g・molO以下である酸化物を構成する元素としては、Al、Zr、Ba、Ca及びMgが挙げられる。なお、強脱酸元素としては、Mg、Ca及びBaから選択された少なくとも一種の元素を選択することがより好ましく、これらの強脱酸元素を含む金属又は化合物の粉体原料を使用すると、Siを含む酸化物を含有する粒子の外表面に接触して、フラックス製造工程における焼成時の熱により界面反応することで、耐吸湿性が高い化合物層が生成される。 Among these strongly deoxidized elements, the elements constituting the oxide having a standard generated Gibbs energy value of −800 kJ / g · molO 2 or less in the entire temperature range of 500 to 1000 ° C. in the Ellingham diagram are adopted. Then, the difference from the SiO 2 standard generated Gibbs energy becomes large, and the compound layer is more easily formed, which is preferable. Examples of the elements constituting the oxide having a standard generated Gibbs energy value of −800 kJ / g · molO 2 or less in the entire temperature range of 500 to 1000 ° C. include Al, Zr, Ba, Ca and Mg. As the strongly deoxidizing element, it is more preferable to select at least one element selected from Mg, Ca and Ba, and when a powder raw material of a metal or compound containing these strongly deoxidizing elements is used, Si A compound layer having high moisture absorption resistance is produced by contacting with the outer surface of particles containing an oxide containing an oxide and undergoing an interfacial reaction due to the heat during firing in the flux manufacturing process.
<フラックスの組成>
 以下、本実施形態に係るフラックスにおける各成分の含有量について説明する。なお、本実施形態における含有量とは、特に説明がない限り、フラックス全質量に対する質量%を意味する。なお、フラックスの含有量は、分析方法の制約上換算値で規定する成分が存在する。そのため、フラックス全質量に対する各成分の含有量の合計は、換算値を用いる性質上、100質量%を超える場合がある。
<Composition of flux>
Hereinafter, the content of each component in the flux according to this embodiment will be described. The content in the present embodiment means mass% with respect to the total mass of the flux unless otherwise specified. The flux content has a component specified by a converted value due to the restrictions of the analysis method. Therefore, the total content of each component with respect to the total mass of the flux may exceed 100% by mass due to the property of using the converted value.
(全F量:5.0質量%以上、20.0質量%以下)
 フッ化物は、溶融スラグの電気伝導性や流動性を高める効果があり、また、溶融スラグの高温粘性に影響を与える成分の1つでもあることから、溶接作業性に寄与する。また、アーク溶接時のフッ化物の分解反応によって、アーク雰囲気中の水蒸気分圧を下げ、溶接金属中の拡散性水素量を低減することができる。このフラックス全質量に対するフッ化物の含有量は、フラックス全質量に対するFの質量%(全F量とも言う)で規定する。したがって、良好なスラグ剥離性と、スラグ焼付きの発生防止、及び溶接金属中の拡散性水素量の低減化の観点より、全F量は、5.0質量%以上であることが好ましく、10.0質量%以上であることがより好ましく、12.0質量%以上であることが更に好ましい。
 一方、ビードの波目が粗くなってビード外観が劣化することを防ぎ、良好なビード形状を得るため、全F量は20.0質量%以下であることが好ましく、18.0質量%以下であることがより好ましく、17.0質量%以下であることが更に好ましい。
(Total F amount: 5.0% by mass or more and 20.0% by mass or less)
Fluoride has the effect of increasing the electrical conductivity and fluidity of the molten slag, and also contributes to welding workability because it is one of the components that affect the high temperature viscosity of the molten slag. In addition, the partial pressure of water vapor in the arc atmosphere can be reduced and the amount of diffusible hydrogen in the weld metal can be reduced by the decomposition reaction of fluoride during arc welding. The content of fluoride with respect to the total mass of the flux is defined by the mass% of F (also referred to as the total amount of F) with respect to the total mass of the flux. Therefore, from the viewpoint of good slag peelability, prevention of slag seizure, and reduction of the amount of diffusible hydrogen in the weld metal, the total F amount is preferably 5.0% by mass or more. It is more preferably 0.0% by mass or more, and further preferably 12.0% by mass or more.
On the other hand, in order to prevent the bead from becoming rough and deteriorating the appearance of the bead and to obtain a good bead shape, the total F amount is preferably 20.0% by mass or less, and 18.0% by mass or less. It is more preferably 17.0% by mass or less, and further preferably 17.0% by mass or less.
 本実施形態のフラックスにおけるF源としては、主にCaFが挙げられ、その他にBaF、AlFやMgFなどが含まれることがあるが、全F量が上記範囲内であれば、前述したフッ化物の効果に変わりはない。 The F source in the flux of the present embodiment mainly includes CaF 2 , and may also contain BaF 2 , AlF 3 , MgF 2 , etc. However, if the total F amount is within the above range, the above-mentioned There is no change in the effect of fluoride.
(全SiのSiO換算値:10.0質量%以上、25.0質量%以下)
 Siを含む酸化物は、溶融スラグに適度な粘性を与えることによって、主にビード外観及びビード形状を良好にする。また、金属Si及びFe-Si等の合金中のSiは、還元剤として働き、溶接金属の酸素量の増加に伴う機械的性質の劣化を防ぎ、ポックマークの発生を抑制する。このフラックス全質量に対するSiの含有量は、フラックス中の全Si量を、SiOに換算したSiO換算値で規定する。上記効果を得るためには、SiO換算値は10.0質量%以上であることが好ましく、11.0質量%以上であることがより好ましい。
 一方、SiO換算値の上限が適切に規定されていると、ビード形状やスラグ剥離性及び靱性が劣化を防止することができる。したがって、SiO換算値は25.0質量%以下であることが好ましく、20.0質量%以下であることがより好ましい。
(SiO 2 conversion value of all Si: 10.0% by mass or more, 25.0% by mass or less)
The oxide containing Si mainly improves the bead appearance and the bead shape by imparting an appropriate viscosity to the molten slag. Further, Si in alloys such as metallic Si and Fe—Si acts as a reducing agent, prevents deterioration of mechanical properties due to an increase in the amount of oxygen in the weld metal, and suppresses the generation of pock marks. The content of Si with respect to the total mass of the flux is defined by the value converted to SiO 2 in which the total amount of Si in the flux is converted to SiO 2 . In order to obtain the above effect, the SiO 2 conversion value is preferably 10.0% by mass or more, and more preferably 11.0% by mass or more.
On the other hand, if the upper limit of the SiO 2 conversion value is appropriately defined, deterioration of the bead shape, slag peelability and toughness can be prevented. Therefore, the SiO 2 conversion value is preferably 25.0% by mass or less, and more preferably 20.0% by mass or less.
 なお、ここで規定するSiO換算値には、前述したSiを含む酸化物、金属Si及びFe-Si等の合金の他に、水ガラス等の結合剤に由来するSiのSiO換算値も含まれる。 The SiO 2 conversion value specified here includes the SiO 2 conversion value of Si derived from a binder such as water glass, in addition to the above-mentioned Si-containing oxides, metal Si, and alloys such as Fe—Si. included.
(全AlのAl換算値:14.0質量%以上、30.0質量%以下)
 Alは、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素の一つである。そのため、フラックス中にAlを含む粉体原料を添加することにより、上記Siを含む酸化物を含有する粒子の外表面に、Alを含む化合物層が生成され、これにより、フラックスの耐吸湿性を向上させることができ、溶接金属中の拡散性水素量を低減することができる。このフラックス全質量に対するAlの含有量は、フラックス中の全Al量を、Alに換算したAl換算値で規定する。上記効果を得るためには、Al換算値は14.0質量%以上であることが好ましい。また、30.0質量%以下であることが好ましい。上記Alを含む粉体原料として、例えば、Al、AlF、金属Al及びAl-Mg等の合金等の形態で添加することができる。特にAlは、スラグの剥離性や低温靱性の向上に大きく寄与し、溶接時のビード形状及びビード外観を良好にする成分であることから、Alの形態で添加することが好ましい。良好なビード形状及びビード外観を得られることからAl換算値は、16.0質量%以上であることがより好ましい。
 一方、溶融スラグの融点が過度に上昇することを防ぎ、ビード端の良好なスラグ剥離性を保つことができるため、Al換算値は、27.0質量%以下であることがより好ましい。
(Al 2 O 3 conversion value of all Al: 14.0% by mass or more and 30.0% by mass or less)
Al is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Al to the flux, a compound layer containing Al is formed on the outer surface of the particles containing the oxide containing Si, thereby improving the moisture absorption resistance of the flux. It can be improved and the amount of diffusible hydrogen in the weld metal can be reduced. The Al content with respect to the total mass of the flux is defined by the Al 2 O 3 conversion value obtained by converting the total Al content in the flux into Al 2 O 3 . In order to obtain the above effect, the Al 2 O 3 conversion value is preferably 14.0% by mass or more. Further, it is preferably 30.0% by mass or less. As the powder raw material containing Al, for example, it can be added in the form of an alloy such as Al 2 O 3 , Al F 3 , metal Al and Al—Mg. In particular, Al 2 O 3 greatly contributes to the improvement of slag peelability and low temperature toughness, and is a component that improves the bead shape and bead appearance at the time of welding. Therefore, it can be added in the form of Al 2 O 3 . preferable. The Al 2 O 3 conversion value is more preferably 16.0% by mass or more because a good bead shape and bead appearance can be obtained.
On the other hand, the Al 2 O 3 conversion value is more preferably 27.0% by mass or less because it can prevent the melting point of the molten slag from rising excessively and maintain good slag peelability at the bead end. ..
(Na及びKのいずれか一方又は両方:全NaのNaO換算値及び全KのKO換算値の合計で1.0質量%以上、6.0質量%以下)
 アルカリ金属であるNa及びKは、主に溶接時のアーク安定性とフラックスの吸湿特性に影響を与える成分である。溶接時のアーク安定性の観点より、フラックス中にNa及びKのいずれか一方又は両方が含有されていることが好ましい。このフラックス全質量に対するNa及びKの含有量は、フラックス中の全Na及び全K量を、それぞれNaO及びKOに換算したNaO換算値及びKO換算値で規定する。良好なアーク安定性が得られることから、NaO換算値及びKO換算値の合計は1.0質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。
 一方、フラックスが過剰に吸湿することを防ぐため、NaO換算値及びKO換算値の合計は6.0質量%以下であることが好ましく、5.0質量%以下であることがより好ましい。Na及びKを含む粉体原料として、例えばNaO、KO、KAlSi、NaAlSi、CaAlSi等の酸化物の形態で添加することができるが、より良好なアーク安定性を得るためにKAlSi、NaAlSiの形態でフラックス中に添加されることがより好ましい。
 なお、ここで規定するNaO換算値及びKO換算値には、前述したNa及びKを含む酸化物の他に、水ガラス等の結合剤に由来するNa及びKのNaO換算値及びKO換算値も含まれる。
(One or both of Na and K: 1.0% by mass or more and 6.0% by mass or less in total of the Na 2 O conversion value of all Na and the K 2 O conversion value of all K)
The alkali metals Na and K are components that mainly affect the arc stability during welding and the moisture absorption characteristics of the flux. From the viewpoint of arc stability during welding, it is preferable that the flux contains either or both of Na and K. The contents of Na and K with respect to the total mass of the flux are defined by the Na 2 O conversion value and the K 2 O conversion value obtained by converting the total Na and total K amounts in the flux into Na 2 O and K 2 O, respectively. Since good arc stability can be obtained, the total of the Na 2 O conversion value and the K 2 O conversion value is preferably 1.0% by mass or more, and more preferably 1.5% by mass or more.
On the other hand, in order to prevent the flux from absorbing excessive moisture, the total of the Na 2 O conversion value and the K 2 O conversion value is preferably 6.0% by mass or less, and more preferably 5.0% by mass or less. preferable. As a powder raw material containing Na and K, for example, it can be added in the form of an oxide such as Na 2 O, K 2 O, KAlSi 3 O 8 , NaAlSi 3 O 8 , CaAl 2 Si 2 O 8 , etc. It is more preferable to add it to the flux in the form of KAlSi 3 O 8 and NaAlSi 3 O 8 in order to obtain good arc stability.
The Na 2 O conversion value and the K 2 O conversion value specified here include the Na 2 O conversion of Na and K derived from a binder such as water glass in addition to the above-mentioned oxide containing Na and K. Values and K2O conversion values are also included.
(全TiのTiO換算値:0.5質量%以上、5.0質量%以下)
 Tiは、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素の一つである。したがって、フラックス中にTiを含む粉体原料を添加することにより、上記Siを含む酸化物を含有する粒子の外表面に、Tiを含む化合物層が生成される。これにより、フラックスの耐吸湿性を向上させることができ、溶接金属中の拡散性水素量を低減することができる。このフラックス全質量に対するTiの含有量は、フラックス中の全Ti量を、TiOに換算したTiO換算値で規定する。上記効果を得るためには、TiO換算値は0.5質量%以上であることが好ましい。また、5.0質量%以下であることが好ましい。上記Tiを含む粉体原料として、例えばTiO、金属Ti、又はFe-Ti等の合金等の形態で添加することができる。特に、TiOは、スラグの剥離性や低温靱性を向上させることができる成分であるとともに、溶接時のビード形状及びビード外観を良好にする成分であることから、TiOの形態で添加することが好ましい。良好なビード形状及びビード外観を得られることからTiO換算値は1.0質量%以上であることがより好ましい。
 一方、溶融スラグの融点が過度に上昇しすぎることを防ぎ、ビード端の良好なスラグ剥離性を保つことができるため、TiO換算値は4.0質量%以下であることがより好ましい。
(TIO 2 conversion value of all Ti: 0.5% by mass or more, 5.0% by mass or less)
Ti is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Ti to the flux, a compound layer containing Ti is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced. The content of Ti with respect to the total mass of the flux is defined by the value converted to TiO 2 in which the total amount of Ti in the flux is converted to TiO 2 . In order to obtain the above effect, the TiO 2 conversion value is preferably 0.5% by mass or more. Further, it is preferably 5.0% by mass or less. As the powder raw material containing Ti, for example, it can be added in the form of an alloy such as TiO 2 , metal Ti, or Fe—Ti. In particular, TiO 2 is a component that can improve the peelability and low temperature toughness of slag, and is a component that improves the bead shape and bead appearance at the time of welding. Therefore, it should be added in the form of TiO 2 . Is preferable. It is more preferable that the TiO 2 conversion value is 1.0% by mass or more because a good bead shape and bead appearance can be obtained.
On the other hand, the TiO 2 conversion value is more preferably 4.0% by mass or less because it can prevent the melting point of the molten slag from rising excessively and maintain good slag peelability at the bead end.
(全MnのMnO換算値:0.5質量%以上、13.0質量%以下)
 Mnは、溶融スラグの粘性及び凝固温度に影響を与えるとともに、耐ポックマーク性改善に有効である。また、フラックス中にMnが適切な量で含まれていると、良好な低温靱性が得られ、気孔欠陥の発生を防止することができる。このフラックス全質量に対するMnの含有量は、フラックス中の全Mn量を、MnOに換算したMnO換算値で規定する。上記効果を得るためには、MnO換算値で0.5質量%以上であることが好ましく、0.6%質量%以上であることがより好ましく、0.8質量%以上であることがさらにより好ましい。
 一方、溶接金属の低温における機械的性質の劣化を防ぎ、スラグ焼付きの発生を抑制することができるとともに、良好なビード形状及びスラグ剥離性を得ることができることから、MnO換算値で13.0質量%以下であることが好ましく、11.0質量%以下であることがより好ましく、5.0質量%以下であることが更に好ましい。Mnを含む粉体原料として、例えばMnO、MnO及びMnなどの酸化物、金属Mn及びFe-Si-Mn等の合金の形態で添加することができるが、各種形態の中でも、特に酸化物の形態で添加するとともに、MnO換算値が0.5質量%以上、13.0質量%以下であると、Mnの有用性がより発揮されるため、より好ましい。
(MnO conversion value of all Mn: 0.5% by mass or more and 13.0% by mass or less)
Mn affects the viscosity and solidification temperature of the molten slag, and is effective in improving the pockmark resistance. Further, when Mn is contained in an appropriate amount in the flux, good low temperature toughness can be obtained and the occurrence of pore defects can be prevented. The Mn content with respect to the total mass of the flux is defined by the MnO conversion value obtained by converting the total Mn amount in the flux into MnO. In order to obtain the above effect, the MnO conversion value is preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and even more preferably 0.8% by mass or more. preferable.
On the other hand, since it is possible to prevent deterioration of the mechanical properties of the weld metal at low temperature, suppress the occurrence of slag seizure, and obtain a good bead shape and slag peelability, the MnO conversion value is 13.0. It is preferably 5% by mass or less, more preferably 11.0% by mass or less, and further preferably 5.0% by mass or less. As a powder raw material containing Mn, for example, oxides such as MnO, MnO 2 and Mn 2 O 3 and alloys such as metal Mn and Fe—Si—Mn can be added, but among various forms, in particular. When it is added in the form of an oxide and the MnO conversion value is 0.5% by mass or more and 13.0% by mass or less, the usefulness of Mn is more exhibited, which is more preferable.
(全FeのFeO換算値:0.5質量%以上、7.0質量%以下)
 Feは、脱酸現象を促進し、耐ポックマーク性を高める効果があり、特に溶接電流が直流(DC:Direct Current)の場合に、より高い効果を得ることができる。このフラックス全質量に対するFeの含有量は、フラックス中の全Fe量を、FeOに換算したFeO換算値で規定する。上記効果を得るためには、FeO換算値で0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましい。
 一方、溶融スラグの凝固温度を適切にしてビード外観、ビード形状及びスラグ剥離性を向上させるため、FeO換算値で7.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。Feを含む粉体原料として、例えばFeO、Fe及びFeなどの酸化物、金属Fe及びFe-Si等の合金の形態で添加することができるが、特に、Fe-Si等の合金や金属Feの形態で添加するとともに、FeO換算値が0.5質量%以上、7.0質量%以下であると、Feの有用性がより発揮されるため、より好ましい。
(FeO conversion value of all Fe: 0.5% by mass or more, 7.0% by mass or less)
Fe has the effect of promoting the deoxidation phenomenon and enhancing the pockmark resistance, and can obtain a higher effect particularly when the welding current is direct current (DC). The Fe content with respect to the total mass of the flux is defined by the FeO conversion value obtained by converting the total Fe amount in the flux into FeO. In order to obtain the above effect, the FeO conversion value is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more.
On the other hand, in order to appropriately adjust the solidification temperature of the molten slag and improve the bead appearance, bead shape and slag peelability, the FeO conversion value is preferably 7.0% by mass or less, and preferably 4.0% by mass or less. Is more preferable. As a powder raw material containing Fe, for example, it can be added in the form of an oxide such as FeO, Fe 2 O 3 and Fe 3 O 4 , or an alloy such as metal Fe and Fe—Si, and in particular, Fe—Si and the like. When the FeO conversion value is 0.5% by mass or more and 7.0% by mass or less while being added in the form of the alloy or metal Fe of the above, the usefulness of Fe is more exhibited, which is more preferable.
 本実施形態のフラックスは、前述した含有成分に加えて、上記強脱酸元素として、Mg、Ba及びCaから選択された少なくとも一種を以下に示す含有量で含有することがより好ましく、Mg及びCaから選択された少なくとも一種を以下に示す含有量で含有することが更に好ましく、Mg及びCaの両方を、いずれも以下に示す含有量で含有することが最も好ましい。これらの成分の好ましい含有量について、以下に説明する。 The flux of the present embodiment more preferably contains at least one selected from Mg, Ba and Ca as the above-mentioned strongly deoxidizing element in the content shown below in addition to the above-mentioned contained components, preferably Mg and Ca. It is more preferable to contain at least one selected from the above in the content shown below, and it is most preferable to contain both Mg and Ca in the content shown below. The preferred contents of these components will be described below.
(全MgのMgO換算値:15.0質量%以上、30.0質量%以下)
 Mgは、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素の一つである。したがって、フラックス中にMgを含む粉体原料を添加することにより、上記Siを含む酸化物粒子の外表面に、Mgを含む化合物層が生成される。これにより、フラックスの耐吸湿性を向上させることができ、溶接金属中の拡散性水素量を低減することができる。このフラックス全質量に対するMgの含有量は、フラックス中の全Mg量を、MgOに換算したMgO換算値で規定する。上記効果を得るため、MgO換算値は15.0質量%以上であることが好ましい。また、MgO換算値は30.0質量%以下であることが好ましい。MgOに換算されるMg源としては、例えばMgO、MgF、MgCO、Al-Mg等の合金、又は金属Mg等の形態が挙げられる。特に、上記Mg源のうち、スラグ剥離性の向上にも大きく寄与する成分であることから、MgOの形態であることが好ましい。電極の極性によらず、良好なスラグ剥離性を確保し、スラグ焼付きを防ぐことができることから、MgO換算値は19.0質量%以上であることがより好ましく、20.0質量%以上であることが更に好ましい。
 一方、ビード形状が凸になるのを防ぐことができ、良好なスラグ剥離性を保つことができるため、MgO換算値は26.0質量%以下であることがより好ましく、25.0質量%以下であることが更に好ましい。
(MgO conversion value of all Mg: 15.0% by mass or more, 30.0% by mass or less)
Mg is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Mg to the flux, a compound layer containing Mg is formed on the outer surface of the oxide particles containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced. The Mg content with respect to the total mass of the flux is defined by the MgO conversion value obtained by converting the total Mg content in the flux into MgO. In order to obtain the above effect, the MgO conversion value is preferably 15.0% by mass or more. Further, the MgO conversion value is preferably 30.0% by mass or less. Examples of the Mg source converted into MgO include alloys such as MgO, MgF 2 , MgCO 3 , and Al—Mg, and forms such as metallic Mg. In particular, among the above Mg sources, the form of MgO is preferable because it is a component that greatly contributes to the improvement of slag peelability. Regardless of the polarity of the electrode, good slag peelability can be ensured and slag seizure can be prevented. Therefore, the MgO conversion value is more preferably 19.0% by mass or more, and 20.0% by mass or more. It is more preferable to have.
On the other hand, since it is possible to prevent the bead shape from becoming convex and maintain good slag peelability, the MgO conversion value is more preferably 26.0% by mass or less, and 25.0% by mass or less. Is more preferable.
(全CaのCaO換算値:7.0質量%以上、30.0質量%以下)
 Caは、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素の一つである。したがって、フラックス中にCaOを含む粉体原料を添加することにより、上記Siを含む酸化物を含有する粒子の外表面に、Caを含む化合物層が生成される。これにより、フラックスの耐吸湿性を向上させることができ、溶接金属中の拡散性水素量を低減することができる。このフラックス全質量に対するCaの含有量は、フラックス中の全Ca量を、CaOに換算したCaO換算値で規定する。上記効果を得るため、CaO換算値は7.0質量%以上であることが好ましい。また、CaO換算値は30.0質量%以下であることが好ましい。CaOに換算されるCa源としては、例えばCaO、CaF、CaCO、Ca-Si等の合金、又は金属Ca等の形態が挙げられる。特に、CaFは、スラグ剥離性の向上にも大きく寄与する成分であることから、CaFの形態で添加することが好ましい。スラグの塩基度を高めて溶接金属の清浄度を高めることにより、溶接金属の機械的性質を向上させるため、CaO換算値は17.0質量%以上であることがより好ましく、20.0質量%以上であることが更に好ましい。
 一方、溶融スラグの流動性が過度に高くなることを防ぎ、良好なビード外観及び形状を得ることができるため、CaO換算値は26.0質量%以下であることがより好ましく、24.0質量%以下であることが更に好ましい。
(CaO conversion value of all Ca: 7.0% by mass or more and 30.0% by mass or less)
Ca is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard produced Gibbs energy. Therefore, by adding the powder raw material containing CaO to the flux, a compound layer containing Ca is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced. The Ca content with respect to the total mass of the flux is defined by the CaO conversion value obtained by converting the total Ca content in the flux into CaO. In order to obtain the above effect, the CaO conversion value is preferably 7.0% by mass or more. Further, the CaO conversion value is preferably 30.0% by mass or less. Examples of the Ca source converted into CaO include alloys such as CaO, CaF 2 , CaCO 3 , and Ca—Si, and forms such as metallic Ca. In particular, since CaF 2 is a component that greatly contributes to the improvement of slag removability, it is preferable to add it in the form of CaF 2 . In order to improve the mechanical properties of the weld metal by increasing the basicity of the slag and increasing the cleanliness of the weld metal, the CaO conversion value is more preferably 17.0% by mass or more, and 20.0% by mass. The above is more preferable.
On the other hand, the CaO conversion value is more preferably 26.0% by mass or less, more preferably 24.0% by mass, because it prevents the fluidity of the molten slag from becoming excessively high and a good bead appearance and shape can be obtained. % Or less is more preferable.
(全BaのBaO換算値:8.0質量%以下)
 Baは、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素の一つである。したがって、フラックス中にBaOを含む粉体原料を添加することにより、上記Siを含む酸化物を含有する粒子の外表面に、Baを含む化合物層が生成される。これにより、フラックスの耐吸湿性を向上させることができ、溶接金属中の拡散性水素量を低減することができる。このフラックス全質量に対するBaの含有量は、フラックスの全Ba量を、BaOに換算したBaO換算値で規定する。
 上記効果を得るため、任意でBaを添加する場合、BaO換算値は0.1質量%以上であることが好ましい。また、BaO換算値は8.0質量%以下であることが好ましい。BaOに換算されるBa源としては、例えばBaO、BaF、BaCO、又は金属Ba等の形態が挙げられる。BaO換算値の下限値は特に限定されるものではないが、スラグの塩基度を高めて溶接金属の清浄度を高めることにより、溶接金属の機械的性質を向上させるため、任意でBaを添加する場合、BaO換算値は1.0質量%以上であることがより好ましい。
 一方、溶融スラグの流動性が過度に高くなることを防ぎ、良好なビード外観及び形状を得ることができるため、BaO換算値は6.0質量%以下であることが好ましい。
(BaO conversion value of all Ba: 8.0% by mass or less)
Ba is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing BaO to the flux, a compound layer containing Ba is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced. The Ba content with respect to the total mass of the flux is defined by the BaO conversion value obtained by converting the total Ba content of the flux into BaO.
In order to obtain the above effect, when Ba is optionally added, the BaO conversion value is preferably 0.1% by mass or more. Further, the BaO conversion value is preferably 8.0% by mass or less. Examples of the Ba source converted into BaO include forms such as BaO, BaF 2 , BaCO 3 , and metal Ba. The lower limit of the BaO conversion value is not particularly limited, but Ba is optionally added in order to improve the mechanical properties of the weld metal by increasing the basicity of the slag and increasing the cleanliness of the weld metal. In this case, the BaO conversion value is more preferably 1.0% by mass or more.
On the other hand, the BaO conversion value is preferably 6.0% by mass or less in order to prevent the fluidity of the molten slag from becoming excessively high and to obtain a good bead appearance and shape.
 ところで、上記で示した全F量、SiO換算値、Al換算値、NaO換算値、KO換算値、TiO換算値、MgO換算値、CaO換算値、BaO換算値、MnO換算値及びFeO換算値の合計は、良好なスラグ剥離性及びビード形状を得る観点から92質量%以上であることが好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。 By the way, the total F amount shown above, SiO 2 conversion value, Al 2 O 3 conversion value, Na 2 O conversion value, K 2 O conversion value, TiO 2 conversion value, MgO conversion value, CaO conversion value, BaO conversion value. The total of the MnO-converted value and the FeO-converted value is preferably 92% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, from the viewpoint of obtaining good slag peelability and bead shape.
 本実施形態のフラックスは、前述した成分に加えて、必要に応じてZr及びBから選択された少なくとも一種を含有してもよい。これらの元素の含有量について、以下に説明する。 The flux of the present embodiment may contain at least one selected from Zr and B, if necessary, in addition to the above-mentioned components. The contents of these elements will be described below.
(全BのB換算値:0.50質量%以下)
 Bは、溶接金属の靱性向上に有効な成分である。フラックス全質量に対するBの含有量は、フラックス中の全B量を、Bに換算したB換算値で規定する。B換算値の下限は特に設けないが、上記効果を得たい場合は、B換算値は0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましい。
 一方、溶接金属の硬化による高温割れの発生及び靱性の低下を防止することができることから、B換算値は0.50質量%以下であることが好ましく、0.30質量%以下であることがより好ましい。Bを含む粉体原料として、例えば金属B、Fe-B、Fe-Si-B等の合金、Bの酸化物等の形態で添加することができる。
(B 2 O 3 conversion value of all B: 0.50 mass% or less)
B is an effective component for improving the toughness of the weld metal. The content of B with respect to the total mass of the flux is defined by the B 2 O 3 conversion value obtained by converting the total B content in the flux into B 2 O 3 . The lower limit of the B 2 O 3 conversion value is not particularly set, but if the above effect is desired, the B 2 O 3 conversion value is preferably 0.01% by mass or more, and 0.03% by mass or more. Is more preferable.
On the other hand, since it is possible to prevent the occurrence of high - temperature cracking and the decrease in toughness due to the hardening of the weld metal , the B2O3 conversion value is preferably 0.50% by mass or less, preferably 0.30% by mass or less. Is more preferable. As the powder raw material containing B, for example, it can be added in the form of an alloy such as metal B, Fe—B, Fe—Si—B, an oxide of B, or the like.
(全ZrのZrO換算値:3.0質量%以下)
 Zrは、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素の一つである。したがって、フラックス中にZrを含む粉体原料を添加することにより、上記Siを含む酸化物を含有する粒子の外表面に、Zrを含む化合物層が生成される。これにより、フラックスの耐吸湿性を向上させることができ、溶接金属中の拡散性水素量を低減することができる。また、Zrは溶融スラグの粘性及び凝固温度に影響を与えるとともに、高速度の溶接でのアーク安定性、良好なビード形状及びビード外観、良好なスラグ剥離性を得るために有効な成分である。フラックス全質量に対するZrの含有量は、フラックス中の全Zr量を、ZrOに換算したZrO換算値で規定する。Zrを含む粉体原料は比較的高価であるため、特に下限は設けないが、上記効果を得たい場合は、ZrO換算値は0.01質量%以上であることが好ましく、3.0質量%以下とすることが好ましい。Zrを含む粉体原料として、例えばZrO、ZrSiO及びZrを含む合金等の形態で添加することができる。
(ZrO 2 conversion value of all Zr: 3.0% by mass or less)
Zr is one of the strongly deoxidizing elements constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard generated Gibbs energy. Therefore, by adding the powder raw material containing Zr to the flux, a compound layer containing Zr is formed on the outer surface of the particles containing the oxide containing Si. As a result, the moisture absorption resistance of the flux can be improved, and the amount of diffusible hydrogen in the weld metal can be reduced. In addition, Zr affects the viscosity and solidification temperature of molten slag, and is an effective component for obtaining arc stability in high-speed welding, good bead shape and bead appearance, and good slag peeling property. The Zr content with respect to the total mass of the flux is defined by the ZrO 2 conversion value obtained by converting the total Zr amount in the flux into ZrO 2 . Since the powder raw material containing Zr is relatively expensive, no lower limit is set, but if the above effect is desired, the ZrO2 conversion value is preferably 0.01% by mass or more , and 3.0% by mass. % Or less is preferable. As a powder raw material containing Zr, for example, it can be added in the form of an alloy containing ZrO 2 , ZrSiO 4 and Zr.
 本実施形態のフラックスは、前述した含有成分に加えて、Ni、Mo、Cu及びCr等の元素を含有していてもよい。フラックス中にNi、Mo、Cu及びCrを添加する場合に、これらの合計値は、5質量%以下とすることが好ましい。 The flux of this embodiment may contain elements such as Ni, Mo, Cu and Cr in addition to the above-mentioned contained components. When Ni, Mo, Cu and Cr are added to the flux, the total value thereof is preferably 5% by mass or less.
 フラックスに含まれる上記以外の元素として、P、S、Nb及びVなどの不可避的不純物が挙げられる。これらの不可避的不純物のうち、Nb及びVは溶接金属の低温靱性を低下させるため、フラックス全質量に対して各々0.5質量%以下に規制することが好ましく、溶接品質に影響するP及びSはそれぞれ、フラックス全質量に対して0.20質量%以下に規制することが好ましい。 Examples of elements other than the above contained in the flux include unavoidable impurities such as P, S, Nb and V. Of these unavoidable impurities, Nb and V reduce the low temperature toughness of the weld metal, so it is preferable to regulate each to 0.5% by mass or less with respect to the total mass of the flux, and P and S which affect the welding quality. Is preferably regulated to 0.20% by mass or less with respect to the total mass of the flux.
[溶接用フラックスの製造方法]
 本発明の溶接用フラックスは、以下の粉体原料を配合した配合フラックスに結合剤を添加して造粒後、500~1000℃の温度で焼成することにより得られる。
 上記配合フラックスは、粉体原料として、Siを含む酸化物の粉体原料、及び、上述の強脱酸元素を含む金属の粉体原料又は化合物の粉体原料を含有するものである。強脱酸元素を含む金属の粉体原料又は化合物の粉体原料としては、上記Mgを含む粉体原料、上記Caを含む粉体原料及び上記Baを含む粉体原料の他、上述したフラックスの成分を含む酸化物の粉体原料、及びフッ化物又は炭酸塩等を含む粉体原料が挙げられる。さらに、結合剤としては、例えば、水ガラス、ポリビニルアルコール等を使用することができる。造粒法は、特に限定されるものではないが、転動式造粒機や押し出し式造粒機などを用いる方法が好ましい。
[Manufacturing method of welding flux]
The welding flux of the present invention can be obtained by adding a binder to a blended flux containing the following powder raw materials, granulating the flux, and then firing at a temperature of 500 to 1000 ° C.
The compounded flux contains, as the powder raw material, a powder raw material of an oxide containing Si, and a powder raw material of a metal containing the above-mentioned strongly deoxidizing element or a powder raw material of a compound. As the powder raw material of the metal containing the strongly deoxidizing element or the powder raw material of the compound, the powder raw material containing the Mg, the powder raw material containing Ca, the powder raw material containing Ba, and the above-mentioned flux can be used. Examples thereof include a powder raw material of an oxide containing a component, and a powder raw material containing a fluoride or a carbonate. Further, as the binder, for example, water glass, polyvinyl alcohol and the like can be used. The granulation method is not particularly limited, but a method using a rolling granulation machine, an extrusion type granulation machine, or the like is preferable.
 造粒後の焼成は、ロータリーキルン、定置式バッチ炉及びベルト式焼成炉などで行うことができる。本発明においては、エリンガム図における500~1000℃の温度範囲で、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素を含むフラックス原料を採用するため、焼成温度は500~1000℃とし、700~900℃とすることが好ましい。 The firing after granulation can be performed in a rotary kiln, a stationary batch furnace, a belt-type firing furnace, or the like. In the present invention, in order to employ a flux raw material containing a strongly deoxidizing element constituting an oxide having a standard generated Gibbs energy lower than the SiO 2 standard produced Gibbs energy in the temperature range of 500 to 1000 ° C. in the Ellingham diagram. The firing temperature is preferably 500 to 1000 ° C, preferably 700 to 900 ° C.
 また、本発明者らは、上記粉体原料の粒径を適切に規定することにより、Siを含む酸化物を含有する粒子の外表面に化合物層が生成されやすいことを見出した。本発明では、後述する式(1)で表されるように、Siを含む酸化物の粉体原料のうち、粒径が75μm以下である粒子が特に吸湿しやすいことから、種々の強脱酸元素を含む金属の粉体原料及び化合物の粉体原料のうち、粒径が75μm以下である粉体原料の合計量の質量割合が、Siを含む粉体原料のうち、粒径が75μm以下である粉体原料の質量割合よりも大きいことを好ましいとしている。これにより、Siを含む酸化物の粉体原料の表面と、強脱酸元素を含む金属の粉体原料又は化合物の粉体原料の粒子の表面との接触面積及び接触回数が増加し、反応層が生成されやすくなる。
 なお、『粒径が75μm以下』とは、JIS Z 8815:1994に準拠した方法により、JIS Z 8801:2019に基づく目開き75μmの篩いを用いてふるい分けを行った際に、その篩いを通過することを意味する。
Further, the present inventors have found that a compound layer is likely to be formed on the outer surface of particles containing an oxide containing Si by appropriately defining the particle size of the powder raw material. In the present invention, as represented by the formula (1) described later, among the powder raw materials of the oxide containing Si, the particles having a particle size of 75 μm or less are particularly easy to absorb moisture, and therefore various strong deoxidization agents are used. Among the powder raw materials of metal containing elements and the powder raw materials of compounds, the mass ratio of the total amount of the powder raw materials having a particle size of 75 μm or less is 75 μm or less among the powder raw materials containing Si. It is preferable that it is larger than the mass ratio of a certain powder raw material. As a result, the contact area and the number of contacts between the surface of the powder raw material of the oxide containing Si and the surface of the powder raw material of the metal containing the strongly deoxidizing element or the powder raw material of the compound are increased, and the reaction layer is formed. Is more likely to be generated.
In addition, "particle size of 75 μm or less" means that the particle size passes through the sieve when it is sieved using a sieve with a mesh size of 75 μm based on JIS Z 8801: 2019 by a method based on JIS Z 8815: 1994. Means that.
 なお、上記強脱酸元素を含む金属の粉体原料及び化合物の粉体原料は、Mgを含む粉体原料、Caを含む粉体原料及びBaを含む粉体原料から選択された少なくとも一種の粉体原料を含有することが好ましい。また、Mgを含む粉体原料は、Mgを含む粉体原料全質量に対してMgを25質量%以上含有し、Caを含む粉体原料は、Caを含む粉体原料全質量に対してCaを30質量%以上含有し、Baを含む粉体原料は、Baを含む粉体原料全質量に対してBaを60質量%以上含有するものであることが好ましい。
 さらに、Mgを含む粉体原料のうち、粒径が75μm以下であるMgを含む粉体原料の割合を、上記Mgを含む粉体原料全質量に対する質量%で[a]、上記Caを含む粉体原料のうち、粒径が75μm以下であるCaを含む粉体原料の割合を、上記Caを含む粉体原料全質量に対する質量%で[b]、上記Baを含む粉体原料の割合を、上記Baを含む粉体原料全質量に対する質量%で[c]、上記Siを含む粉体原料のうち、粒径が75μm以下であるSiを含む粉体原料の割合を、上記Siを含む粉体原料全質量に対する質量%で[d]としたとき、下記式(1)により得られる値が2.5以上であると、反応層が所望の被覆率で生成されやすくなるため、好ましい。
 ([a]+[b]+[c])/[d]・・・(1)
The metal powder raw material containing the strongly deoxidizing element and the compound powder raw material are at least one kind of powder selected from the powder raw material containing Mg, the powder raw material containing Ca, and the powder raw material containing Ba. It is preferable to contain a body material. Further, the powder raw material containing Mg contains 25% by mass or more of Mg with respect to the total mass of the powder raw material containing Mg, and the powder raw material containing Ca contains Ca with respect to the total mass of the powder raw material containing Ca. 30% by mass or more, and the powder raw material containing Ba is preferably one containing 60% by mass or more of Ba with respect to the total mass of the powder raw material containing Ba.
Further, among the powder raw materials containing Mg, the ratio of the powder raw material containing Mg having a particle size of 75 μm or less is [a] in mass% with respect to the total mass of the powder raw material containing Mg, and the powder containing Ca is used. The ratio of the powder raw material containing Ca having a particle size of 75 μm or less to the total mass of the powder raw material containing Ca is [b], and the ratio of the powder raw material containing Ba is calculated. [C] is the mass% of the total mass of the powder raw material containing Ba, and the ratio of the powder raw material containing Si having a particle size of 75 μm or less among the powder raw materials containing Si is the powder containing Si. When the mass% with respect to the total mass of the raw material is [d], when the value obtained by the following formula (1) is 2.5 or more, the reaction layer is likely to be formed with a desired coverage, which is preferable.
([A] + [b] + [c]) / [d] ... (1)
 Mgを含む粉体原料としては、Mgを含む粉体原料全質量に対してMgを50質量%以上含有するものを用いることがより好ましく、52質量%以上含有するものを用いることがより好ましい。このようなMgを含む粉体原料としては、例えば、MgO及びMgCO、MgF等を用いることができる。
 また、Caを含む粉体原料としては、Caを含む粉体原料全質量に対してCaを40質量%以上含有するものを用いることがより好ましく、45質量%以上含有するものを用いることが更に好ましい。このようなCaを含む粉体原料としては、例えば、CaF及びCaCO、CaO等を用いることができる。
 また、Baを含む粉体原料としては、Baを含む粉体原料全質量に対してBaを62質量%以上含有するものを用いることがより好ましく、65質量%以上含有するものを用いることが更に好ましい。このようなBaを含む粉体原料としては、例えば、BaF及びBaCO、BaO等を用いることができる。
As the powder raw material containing Mg, it is more preferable to use one containing 50% by mass or more of Mg with respect to the total mass of the powder raw material containing Mg, and it is more preferable to use one containing 52% by mass or more. As the powder raw material containing such Mg, for example, MgO, MgCO 3 , MgF 2 , and the like can be used.
Further, as the powder raw material containing Ca, it is more preferable to use a powder raw material containing 40% by mass or more of Ca with respect to the total mass of the powder raw material containing Ca, and it is further preferable to use a powder raw material containing 45% by mass or more. preferable. As the powder raw material containing Ca, for example, CaF 2 , CaCO 3 , CaO and the like can be used.
Further, as the powder raw material containing Ba, it is more preferable to use a powder raw material containing 62% by mass or more of Ba with respect to the total mass of the powder raw material containing Ba, and it is further preferable to use a powder raw material containing 65% by mass or more. preferable. As the powder raw material containing such Ba, for example, BaF 2 , BaCO 3 , BaO and the like can be used.
 ここで、Mg、Ca及びBaを含む粉体原料全質量に対する各元素の含有量について説明する。例えば、Mgを含む粉体原料で例示すると、MgОのみからなる粉体原料のみを使用する場合は、MgОのみからなる粉体原料全質量に対するMg含有量とし、60質量%となる。また、マグネシアクリンカーのようなMgО以外の成分や不純物を含む粉体原料の場合は、マグネシアクリンカー全質量に対するMg含有量となる。さらに、Mgを含む粉体原料を複数種使用する場合は、全てのMgを含む粉体の全質量に対するMg含有量となる。 Here, the content of each element with respect to the total mass of the powder raw material including Mg, Ca and Ba will be described. For example, in the case of a powder raw material containing Mg, when only a powder raw material composed of MgО is used, the Mg content is 60% by mass with respect to the total mass of the powder raw material composed only of MgО. Further, in the case of a powder raw material containing components and impurities other than MgО such as magnesia clinker, the Mg content is the total mass of magnesia clinker. Further, when a plurality of types of powder raw materials containing Mg are used, the Mg content is the total mass of the powder containing all Mg.
 さらに、Siを含む酸化物の粉体原料としては、例えば、SiO、KAlSi、NaAlSi、CaAlSi等を用いることができ、これらのうち、SiO、KAlSi、NaAlSiを用いることがより好ましい。 Further, as the powder raw material of the oxide containing Si, for example, SiO 2 , KAlSi 3 O 8 , NaAlSi 3 O 8 , CaAl 2 Si 2 O 8 and the like can be used, and among these, SiO 2 , KAlSi can be used. It is more preferable to use 3 O 8 and NaAlSi 3 O 8 .
[溶接用フラックスを使用したサブマージアーク溶接方法]
 本発明は、上記本発明の溶接用フラックスを用いたサブマージアーク溶接方法にも関する。溶接用フラックスの構成及び好ましい成分については、上記の通りである。
[Submerged arc welding method using welding flux]
The present invention also relates to the submerged arc welding method using the welding flux of the present invention. The composition and preferable components of the welding flux are as described above.
(溶接条件)
 本実施形態に係るフラックスを用いた1電極溶接として、例えば以下の条件が例示できるが、下記条件になんら限定されるものではない。なお、1stとは鋼板の表面側の溶接を表し、2ndとは鋼板の裏面側の溶接を表す。
 溶接電流:400~1000A(1st)、600~1000A(2nd)
 アーク電圧:26~36V(1st)、26~36V(2nd)
 溶接速度:60~150cm/分(1st、2nd)
 鋼種:JIS G 3106:2015準拠
 板厚:9~60mm
 突出し長さ:15~45mm
(Welding conditions)
As the one-electrode welding using the flux according to the present embodiment, for example, the following conditions can be exemplified, but the conditions are not limited to the following. Note that 1st represents welding on the front surface side of the steel sheet, and 2nd represents welding on the back surface side of the steel sheet.
Welding current: 400-1000A (1st), 600-1000A (2nd)
Arc voltage: 26 to 36V (1st), 26 to 36V (2nd)
Welding speed: 60-150 cm / min (1st, 2nd)
Steel type: JIS G 3106: 2015 compliant Plate thickness: 9-60 mm
Overhang length: 15-45 mm
 本実施形態に係るフラックスを用いた2電極溶接として、例えば以下の条件が例示できるが、下記条件になんら限定されるものではない。なお、L極とは先行極を表し、T極とは後行極を表す。
 溶接電流/アーク電圧:500~1200A/26~40V(1st、L極)、500~1200A/26~40V(1st、T極)、500~1500A/26~40V(2nd、L極)、 500~1500A/26~40V(2nd、T極)
 溶接速度:10~1000cm/分(1st、2nd)
 電極配置:L極とT極とのなす角が0~45°
 鋼種:JIS G 3106:2015準拠
As the two-electrode welding using the flux according to the present embodiment, for example, the following conditions can be exemplified, but the conditions are not limited to the following. The L pole represents the leading pole, and the T pole represents the trailing pole.
Welding current / arc voltage: 500 to 1200A / 26 to 40V (1st, L pole), 500 to 1200A / 26 to 40V (1st, T pole), 500 to 1500A / 26 to 40V (2nd, L pole), 500 to 1500A / 26-40V (2nd, T pole)
Welding speed: 10-1000 cm / min (1st, 2nd)
Electrode arrangement: The angle between the L pole and the T pole is 0 to 45 °.
Steel type: JIS G 3106: 2015 compliant
 以下に実施例を挙げて本実施形態を更に具体的に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present embodiment will be described in more detail with reference to examples, but the present invention is not limited to these examples, and the present invention shall be carried out with modifications to the extent that it can be adapted to the gist of the present invention. Are possible, all of which are within the technical scope of the invention.
<発明例No.1~5及び比較例No.6~12>
 JIS Z 8815:1994に準拠した方法により、JIS Z 8801:2019に基づく目開き75μmの篩いを用いてふるい分けを行った下記表1に示す粒度分布を有する粉体原料と、その他の粉体原料を配合し、結合剤としての水ガラスとともに混錬した後、造粒し、更にロータリーキルンを使用して600~900℃で焼成して、整粒することにより、下記表2に示す溶接用フラックスを製造した。
 なお、発明例No.1~5及び比較例No.6~12において、Mgを含む粉体原料は、Mgを含む粉体原料全質量に対してMgを53~58質量%含有し、Caを含む粉体原料は、Caを含む粉体原料全質量に対してCaを45~50質量%含有し、Baを含む粉体原料は、Baを含む粉体原料全質量に対してBaを65~70質量%含有する粉体原料を使用した。
<Invention Example No. 1 to 5 and Comparative Example No. 6-12>
The powder raw material having the particle size distribution shown in Table 1 below and other powder raw materials obtained by sieving using a sieve having a mesh size of 75 μm based on JIS Z 8801: 2019 by a method conforming to JIS Z 8815: 1994 were obtained. The welding flux shown in Table 2 below is manufactured by blending, kneading with water glass as a binder, granulating, firing at 600 to 900 ° C. using a rotary kiln, and sizing. did.
In addition, invention example No. 1 to 5 and Comparative Example No. In 6 to 12, the powder raw material containing Mg contains 53 to 58% by mass of Mg with respect to the total mass of the powder raw material containing Mg, and the powder raw material containing Ca is the total mass of the powder raw material containing Ca. As the powder raw material containing 45 to 50% by mass of Ca and containing Ba, a powder raw material containing 65 to 70% by mass of Ba with respect to the total mass of the powder raw material containing Ba was used.
 その後、得られたフラックスの断面を観察し、化合物層の有無及びその組成等を測定するとともに、フラックスの耐吸湿性を測定した。
 フラックス断面の観察方法、耐吸湿性及び拡散性水素量の測定方法等について、以下に具体的に説明する。また、これらの測定結果を下記表3に示す。
Then, the cross section of the obtained flux was observed, the presence or absence of the compound layer, its composition, and the like were measured, and the hygroscopicity of the flux was measured.
The method of observing the cross section of the flux, the method of measuring the hygroscopicity and the amount of diffusible hydrogen, and the like will be specifically described below. The measurement results are shown in Table 3 below.
(フラックス断面の観察)
 得られた溶接用フラックスを樹脂に埋め込んで、フラックス垂直断面が観察面となるように研磨を行い、観察面を走査型電子顕微鏡(Scanning Electron Microscope;SEM)で観察した。なお、SEMの倍率を1000倍、加速電圧を5~15kVとし、反射電子(BackScattered Electron;BSE)像による組成像を観察することにより、化合物層の生成有無及び状態を確認した。
(Observation of flux cross section)
The obtained welding flux was embedded in a resin, polished so that the vertical cross section of the flux became an observation surface, and the observation surface was observed with a scanning electron microscope (SEM). The presence or absence and state of formation of the compound layer were confirmed by observing the composition image by the backscattered electron (BSE) image with the SEM magnification of 1000 times and the acceleration voltage of 5 to 15 kV.
 また、化合物層の断面に対して、エネルギー分散型X線分光法(Energy Dispersive X-ray spectroscopy;EDX)を用いて元素分析をし、Siを含む酸化物を含有する粒子、及びその周りの化合物層に含まれる元素を、マッピングにて分析した。
 SEMによるEDX分析は次のようにして行うことができる。例えば、卓上顕微鏡(株式会社日立ハイテクノロジーズ製:Miniscope TM3030)を用いて、上記研磨を行った観察面を1000倍の倍率にて観察する。
 本実施例では、Siを含む酸化物を含有する粒子の有無を観察するとともに、Siを含む酸化物を含有する粒子において、Si以外の元素について調査した。また、Siを含む酸化物を含有する粒子の外表面における化合物層を観察し、被覆率の評価を行った。
 なお、下記表3に示す「Siを含む酸化物を含有する粒子中のSi以外の元素」における、K、Na、Ti、Al及びMgの欄において、これらの元素が検出されたものを「○」、検出されなかったものを「-」とした。
In addition, elemental analysis was performed on the cross section of the compound layer using energy dispersive X-ray spectroscopy (EDX), and particles containing an oxide containing Si and compounds around it. The elements contained in the layer were analyzed by mapping.
EDX analysis by SEM can be performed as follows. For example, a tabletop microscope (manufactured by Hitachi High-Technologies Corporation: Miniscope TM3030) is used to observe the polished observation surface at a magnification of 1000 times.
In this example, the presence or absence of particles containing an oxide containing Si was observed, and elements other than Si were investigated in the particles containing an oxide containing Si. In addition, the compound layer on the outer surface of the particles containing the oxide containing Si was observed, and the coverage was evaluated.
In addition, in the column of K, Na, Ti, Al and Mg in "elements other than Si in particles containing oxide containing Si" shown in Table 3 below, those in which these elements are detected are "○". , "-" Was not detected.
 化合物層の観察による被覆率の評価は、200μm×170μmの矩形である任意の3視野(視野1、視野2、視野3)を選定し、各3視野について、Siを含む酸化物を含有する粒子を任意で1粒子選択することにより行った。具体的には、1視野につき1粒子の外表面を観察し、外表面の50%以上の領域に化合物層が生成されている視野を「○」、外表面に化合物層が生成されているが、化合物層の生成領域が粒子の外表面の50%未満である視野を「△」、外表面に化合物層が生成されていない視野を「×」とし、視野1、視野2及び視野3の観察結果として、下記表3の「任意の1粒子における化合物層の被覆率評価」の欄にそれぞれ示す。
 また、上記3視野における化合物層の観察による被覆率の評価結果に基づき、全3視野に対する上記で「○」と判断した視野の比率を分数で表し、下記表3の「被覆率評価で「○」と判断した視野の比率」の欄に示す。
 さらに、2視野以上で「○」となったもの、すなわち、上記比率が2/3以上であるものを、化合物層が「有」と評価し、2視野以上で「○」とならなかったもの、すなわち上記比率が1/3以下であるものを、化合物層が「無」と評価し、下記表3の「化合物層の有無」の欄に示す。
For the evaluation of the coverage by observing the compound layer, any three fields of view (field of view 1, field of view 2, field of view 3) that are rectangles of 200 μm × 170 μm are selected, and particles containing an oxide containing Si are selected for each of the three fields of view. Was performed by arbitrarily selecting one particle. Specifically, the outer surface of one particle is observed per field of view, and the field of view in which the compound layer is formed in 50% or more of the outer surface is marked with "○", and the compound layer is formed on the outer surface. , The visual field in which the compound layer is formed is less than 50% of the outer surface of the particles is defined as “Δ”, and the visual field in which the compound layer is not formed on the outer surface is defined as “x”, and the visual fields 1, the visual fields 2 and the visual fields 3 are observed. As a result, they are shown in the columns of "Evaluation of coverage of compound layer in any one particle" in Table 3 below.
Further, based on the evaluation result of the coverage by observing the compound layer in the above three visual fields, the ratio of the visual fields judged to be "○" to all three visual fields is expressed as a fraction, and "○ in the coverage evaluation" in Table 3 below. It is shown in the column of "Ratio of visual fields judged".
Further, those having "○" in two or more visual fields, that is, those having the above ratio of 2/3 or more were evaluated as "Yes" in the compound layer, and those having no "○" in two or more visual fields. That is, the compound layer having the above ratio of 1/3 or less is evaluated as "absent" and is shown in the column of "presence or absence of compound layer" in Table 3 below.
 また、上記元素分析により、化合物層に含まれる元素について調査した。下記表3に示す「化合物層に含まれる元素」におけるSi、Ti、Ce、Al、Zr、Ba、Ca及びMgの欄において、これらの成分が検出されたものを「○」、検出されなかったものを「-」とした。 In addition, the elements contained in the compound layer were investigated by the above elemental analysis. In the columns of Si, Ti, Ce, Al, Zr, Ba, Ca and Mg in the "elements contained in the compound layer" shown in Table 3 below, those in which these components were detected were marked with "○" and were not detected. The thing was set to "-".
 図1は、本実施形態により得られた溶接用フラックスの断面を撮影したSEM写真の一例である。図1に示すように、Siを含む酸化物を含有する粒子1の外表面には、化合物層2が生成されている。粒子1及び化合物層2について、EDXにより元素分析を実施すると、粒子1にはSi、O、K、Na及びAl等が観測され、化合物層2にはMg及びCaが観測された。 FIG. 1 is an example of an SEM photograph taken of a cross section of the welding flux obtained by the present embodiment. As shown in FIG. 1, a compound layer 2 is formed on the outer surface of the particles 1 containing an oxide containing Si. When elemental analysis was performed on the particles 1 and the compound layer 2 by EDX, Si, O, K, Na, Al and the like were observed in the particles 1, and Mg and Ca were observed in the compound layer 2.
(耐吸湿性)
 耐吸湿性は、24時間の強制吸湿後のフラックスの水分量により評価した。具体的には、得られたフラックスに対して、250℃で1時間の再乾燥を実施した後、気温が摂氏30℃、湿度が80RH%である条件下において24時間放置し、水分測定装置(三菱化学株式会社製 CA-200)を用いて、フラックス中の水分量をカールフィッシャー(KF)法により測定した。本実施例においては、KF法により測定された水分量が1200ppm以下であるものを合格とした。
(Hygroscopicity)
The moisture absorption resistance was evaluated by the water content of the flux after forced moisture absorption for 24 hours. Specifically, the obtained flux was re-dried at 250 ° C. for 1 hour, and then left to stand for 24 hours under the conditions of a temperature of 30 ° C. and a humidity of 80 RH%, and a moisture measuring device ( The water content in the flux was measured by the curl fisher (KF) method using CA-200) manufactured by Mitsubishi Chemical Corporation. In this example, those having a water content of 1200 ppm or less measured by the KF method were regarded as acceptable.
 また、得られたフラックスを使用して、以下に示す溶接条件にてサブマージアーク溶接を実施し、得られた溶接金属中の拡散性水素量を測定した。 In addition, using the obtained flux, submerged arc welding was performed under the welding conditions shown below, and the amount of diffusible hydrogen in the obtained weld metal was measured.
 溶接電流:450~550A
 アーク電圧:30~34V
 溶接速度:480~520mm/分
 鋼種:JIS G 3106:2015 SM400準拠
 板厚:12mm
 突出し長さ:30mm
Welding current: 450-550A
Arc voltage: 30-34V
Welding speed: 480 to 520 mm / min Steel grade: JIS G 3106: 2015 SM400 compliant Plate thickness: 12 mm
Overhang length: 30 mm
(拡散性水素量)
 直径が4.0mmであり、JIS Z 3351 2012に準拠した組成を有するワイヤを使用して、上記溶接条件でサブマージアーク溶接を実施し、得られた溶接金属について拡散性水素量を測定した。拡散性水素量は、JIS Z 3118:2007に規定される鋼溶接部の水素量測定方法に準拠して測定した。本実施例では、溶接金属中の拡散性水素量が3.5ml/100g以下であるものを合格とした。耐吸湿性及び溶接金属中の拡散性水素量の測定結果を下記表3に併せて示す。
(Amount of diffusible hydrogen)
Submerged arc welding was performed under the above welding conditions using a wire having a diameter of 4.0 mm and a composition conforming to JIS Z 3351 2012, and the amount of diffusible hydrogen was measured for the obtained weld metal. The amount of diffusible hydrogen was measured according to the method for measuring the amount of hydrogen in a steel weld specified in JIS Z 3118: 2007. In this example, those having a diffusible hydrogen content of 3.5 ml / 100 g or less in the weld metal were accepted. The measurement results of moisture absorption resistance and the amount of diffusible hydrogen in the weld metal are also shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表1~表3に示すように、発明例No.1~5は、Siを含む酸化物を含有する粒子の外表面に、所定の被覆率、すなわち外表面の50%以上で強脱酸元素を含む化合物層が生成されているものが、酸化物を含有する粒子の全粒子数に対して50%以上の割合で存在するため、優れた耐吸湿性を得ることができ、これにより、溶接金属中の拡散性水素量を3.5ml/100g以下とする溶接用フラックスを得ることができた。 As shown in Tables 1 to 3 above, Invention Example No. In Nos. 1 to 5, oxides are obtained by forming a compound layer containing a strongly deoxidizing element at a predetermined coverage, that is, 50% or more of the outer surface, on the outer surface of particles containing an oxide containing Si. Since it is present at a ratio of 50% or more with respect to the total number of particles containing the above, excellent moisture absorption resistance can be obtained, whereby the amount of diffusible hydrogen in the weld metal is 3.5 ml / 100 g or less. We were able to obtain the welding flux.
 一方、比較例No.6~12は、Siを含む酸化物を含有する粒子の外表面に、上記所定の被覆率で所定の化合物層が生成されているものが、酸化物を含有する粒子の全粒子数に対して50%未満であったため、発明例と比較してフラックスの水分量が高くなり、このフラックスを用いて得られた溶接金属中の拡散性水素量が、発明例と比較して高くなった。 On the other hand, Comparative Example No. In Nos. 6 to 12, the outer surface of the particles containing the oxide containing Si has the predetermined compound layer formed at the above-mentioned predetermined coverage, with respect to the total number of particles of the particles containing the oxide. Since it was less than 50%, the water content of the flux was higher than that of the invention example, and the diffusible hydrogen content in the weld metal obtained by using this flux was higher than that of the invention example.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2020年8月3日出願の日本特許出願(特願2020-131935)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on the Japanese patent application filed on August 3, 2020 (Japanese Patent Application No. 2020-131935), the contents of which are incorporated herein by reference.
1 Siを含む酸化物を含有する粒子
2 化合物層
1 Particles containing oxides containing Si 2 Compound layer

Claims (8)

  1.  溶接用フラックスであって、
     前記溶接用フラックスは酸化物を含有する粒子を有し、
     前記酸化物はSiを含み、
     前記粒子の外表面の少なくとも一部には化合物層が生成されており、
     前記化合物層は、エリンガム図における500~1000℃の温度範囲で、SiO標準生成ギブスエネルギーよりも低い標準生成ギブスエネルギーを有する酸化物を構成する強脱酸元素を含み、
     前記外表面の50%以上に前記化合物層が生成されている前記粒子が、前記酸化物を含有する粒子の全粒子数に対して50%以上の割合で存在する、溶接用フラックス。
    Welding flux
    The welding flux has particles containing oxides and has particles.
    The oxide contains Si and contains
    A compound layer is formed on at least a part of the outer surface of the particles.
    The compound layer contains a strongly deoxidizing element constituting an oxide having a standard produced Gibbs energy lower than the SiO 2 standard produced Gibbs energy in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
    A welding flux in which the particles having the compound layer formed on 50% or more of the outer surface are present at a ratio of 50% or more with respect to the total number of particles containing the oxide.
  2.  前記強脱酸元素は、
     エリンガム図における500~1000℃の全温度領域において、酸化物標準生成ギブスエネルギーの値が、-800kJ/g・molO以下である酸化物を構成する元素である、請求項1に記載の溶接用フラックス。
    The strongly deoxidizing element is
    The welding element according to claim 1, which is an element constituting an oxide having an oxide standard production Gibbs energy value of −800 kJ / g · molO 2 or less in the entire temperature range of 500 to 1000 ° C. in the Ellingham diagram. flux.
  3.  前記強脱酸元素は、Mg、Ca及びBaから選択された少なくとも一種の元素である、請求項1又は2に記載の溶接用フラックス。 The welding flux according to claim 1 or 2, wherein the strongly deoxidizing element is at least one element selected from Mg, Ca and Ba.
  4.  前記Siを含む酸化物は、Si単体の酸化物、又は、K、Na及びAlから選択された少なくとも一種とSiとを含有する複合酸化物である、請求項1又は2に記載の溶接用フラックス。 The welding flux according to claim 1 or 2, wherein the oxide containing Si is an oxide of Si alone or a composite oxide containing at least one selected from K, Na and Al and Si. ..
  5.  溶接用フラックス全質量あたり、
     全F量:5.0質量%以上、20.0質量%以下、
     全SiのSiO換算値:10.0質量%以上、25.0質量%以下、
     全AlのAl換算値:14.0質量%以上、30.0質量%以下、
     Na及びKのいずれか一方又は両方:全NaのNaO換算値及び全KのKO換算値の合計で1.0質量%以上、6.0質量%以下、
     全TiのTiO換算値:0.5質量%以上、5.0質量%以下、
     全MnのMnO換算値:0.5質量%以上、13.0質量%以下、及び
     全FeのFeO換算値:0.5質量%以上、7.0質量%以下、
    を含有するとともに、
     Mg、Ca及びBaから選択された少なくとも一種を、
     全MgのMgO換算値:15.0質量%以上、30.0質量%以下、
     全CaのCaO換算値:7.0質量%以上、30.0質量%以下、
     全BaのBaO換算値:8.0質量%以下、
    の範囲で含有する、請求項1又は2に記載の溶接用フラックス。
    Per total mass of welding flux
    Total F amount: 5.0% by mass or more, 20.0% by mass or less,
    SiO 2 conversion value of all Si: 10.0% by mass or more, 25.0% by mass or less,
    Al 2 O 3 conversion value of all Al: 14.0% by mass or more, 30.0% by mass or less,
    Either or both of Na and K: 1.0% by mass or more and 6.0% by mass or less in total of the Na 2 O conversion value of all Na and the K 2 O conversion value of all K.
    TiO 2 conversion value of all Ti: 0.5% by mass or more, 5.0% by mass or less,
    MnO conversion value of all Mn: 0.5% by mass or more, 13.0% by mass or less, and FeO conversion value of all Fe: 0.5% by mass or more, 7.0% by mass or less,
    As well as containing
    At least one selected from Mg, Ca and Ba,
    MgO conversion value of all Mg: 15.0% by mass or more, 30.0% by mass or less,
    CaO conversion value of all Ca: 7.0% by mass or more, 30.0% by mass or less,
    BaO conversion value of all Ba: 8.0% by mass or less,
    The welding flux according to claim 1 or 2, which is contained in the range of.
  6.  請求項1又は2に記載の溶接用フラックスを製造する溶接用フラックスの製造方法であって、
     粉体原料を配合した配合フラックスに結合剤を添加して造粒後、500~1000℃の温度で焼成する工程を有し、
     前記配合フラックスは、前記粉体原料として、Siを含む酸化物の粉体原料、及び、強脱酸元素を含む金属の粉体原料又は化合物の粉体原料を含有し、
     前記強脱酸元素は、エリンガム図における500~1000℃の温度範囲でSiOよりも低い標準生成ギブスエネルギーを有する酸化物を構成する元素である、溶接用フラックスの製造方法。
    A method for manufacturing a welding flux according to claim 1 or 2, wherein the welding flux is manufactured.
    It has a step of adding a binder to a blending flux containing a powder raw material, granulating, and then firing at a temperature of 500 to 1000 ° C.
    The compounded flux contains, as the powder raw material, a powder raw material of an oxide containing Si, and a powder raw material of a metal containing a strongly deoxidizing element or a powder raw material of a compound.
    The method for producing a welding flux, wherein the strongly deoxidizing element is an element constituting an oxide having a standard enthalpy of formation lower than SiO 2 in the temperature range of 500 to 1000 ° C. in the Ellingham diagram.
  7.  前記強脱酸元素を含む金属の粉体原料又は化合物の粉体原料は、Mgを含む粉体原料、Caを含む粉体原料及びBaを含む粉体原料から選択された少なくとも一種の粉体原料を含有し、
     前記Mgを含む粉体原料は、Mgを含む粉体原料全質量に対してMgを25質量%以上含有し、
     前記Caを含む粉体原料は、Caを含む粉体原料全質量に対してCaを30質量%以上含有し、
     前記Baを含む粉体原料は、Baを含む粉体原料全質量に対してBaを60質量%以上含有するものであり、
     前記Mgを含む粉体原料のうち、粒径が75μm以下であるMgを含む粉体原料の割合を、前記Mgを含む粉体原料全質量に対する質量%で[a]、
     前記Caを含む粉体原料のうち、粒径が75μm以下であるCaを含む粉体原料の割合を、前記Caを含む粉体原料全質量に対する質量%で[b]、
     前記Baを含む粉体原料のうち、粒径が75μm以下であるBaを含む粉体原料の割合を、前記Baを含む粉体原料全質量に対する質量%で[c]、
     前記Siを含む酸化物の粉体原料のうち、粒径が75μm以下であるSiを含む酸化物の粉体原料の割合を、前記Siを含む酸化物の粉体原料全量に対する質量%で[d]としたとき、
     下記式(1)により得られる値が2.5以上である、請求項6に記載の溶接用フラックスの製造方法。
     ([a]+[b]+[c])/[d]・・・(1)
    The powder raw material of the metal containing the strongly deoxidizing element or the powder raw material of the compound is at least one kind of powder raw material selected from the powder raw material containing Mg, the powder raw material containing Ca and the powder raw material containing Ba. Contains,
    The powder raw material containing Mg contains 25% by mass or more of Mg with respect to the total mass of the powder raw material containing Mg.
    The powder raw material containing Ca contains 30% by mass or more of Ca with respect to the total mass of the powder raw material containing Ca.
    The powder raw material containing Ba contains 60% by mass or more of Ba with respect to the total mass of the powder raw material containing Ba.
    The ratio of the powder raw material containing Mg having a particle size of 75 μm or less to the total mass of the powder raw material containing Mg is [a].
    The ratio of the powder raw material containing Ca having a particle size of 75 μm or less to the total mass of the powder raw material containing Ca is [b].
    The ratio of the powder raw material containing Ba having a particle size of 75 μm or less to the total mass of the powder raw material containing Ba is [c].
    The ratio of the powder raw material of the oxide containing Si having a particle size of 75 μm or less to the powder raw material of the oxide containing Si is determined by mass% with respect to the total amount of the powder raw material of the oxide containing Si [d]. ] When
    The method for producing a welding flux according to claim 6, wherein the value obtained by the following formula (1) is 2.5 or more.
    ([A] + [b] + [c]) / [d] ... (1)
  8.  請求項1又は2に記載の溶接用フラックスを用いたサブマージアーク溶接方法。 Submerged arc welding method using the welding flux according to claim 1 or 2.
PCT/JP2021/025376 2020-08-03 2021-07-05 Welding flux and production method therefor, and submerged arc welding method using same welding flux WO2022030159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131935 2020-08-03
JP2020131935A JP7355718B2 (en) 2020-08-03 2020-08-03 Welding flux and its manufacturing method, and submerged arc welding method using the welding flux

Publications (1)

Publication Number Publication Date
WO2022030159A1 true WO2022030159A1 (en) 2022-02-10

Family

ID=80119751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025376 WO2022030159A1 (en) 2020-08-03 2021-07-05 Welding flux and production method therefor, and submerged arc welding method using same welding flux

Country Status (2)

Country Link
JP (1) JP7355718B2 (en)
WO (1) WO2022030159A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130793A (en) * 1985-12-02 1987-06-13 Nippon Steel Corp Baked flux for submerged arc welding
JPH0237833B2 (en) * 1985-04-19 1990-08-27 Nippon Steel Corp SABUMAAJIAAKUYOSETSUYOSHOSEIFURATSUKUSU
JPH0999392A (en) * 1995-07-28 1997-04-15 Kawasaki Steel Corp Baked flux for submerged arc welding having excellent hygroscopic resistance
JPH11239893A (en) * 1998-02-25 1999-09-07 Mitsui Eng & Shipbuild Co Ltd Welding flux
JP2003039196A (en) * 2001-07-24 2003-02-12 Kobe Steel Ltd Bond flux for submerged arc welding and manufacturing method therefor
WO2018182025A1 (en) * 2017-03-31 2018-10-04 株式会社神戸製鋼所 Flux for submerged arc welding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237833A (en) * 1988-07-27 1990-02-07 Nec Corp Output circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237833B2 (en) * 1985-04-19 1990-08-27 Nippon Steel Corp SABUMAAJIAAKUYOSETSUYOSHOSEIFURATSUKUSU
JPS62130793A (en) * 1985-12-02 1987-06-13 Nippon Steel Corp Baked flux for submerged arc welding
JPH0999392A (en) * 1995-07-28 1997-04-15 Kawasaki Steel Corp Baked flux for submerged arc welding having excellent hygroscopic resistance
JPH11239893A (en) * 1998-02-25 1999-09-07 Mitsui Eng & Shipbuild Co Ltd Welding flux
JP2003039196A (en) * 2001-07-24 2003-02-12 Kobe Steel Ltd Bond flux for submerged arc welding and manufacturing method therefor
WO2018182025A1 (en) * 2017-03-31 2018-10-04 株式会社神戸製鋼所 Flux for submerged arc welding

Also Published As

Publication number Publication date
JP2022028494A (en) 2022-02-16
JP7355718B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
JP5207994B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
WO2011074689A1 (en) Wire containing flux for gas-sealed arc welding, allowing all-position welding
CN109789519B (en) Welding wire for electroslag welding, flux for electroslag welding, and welded joint
KR101764008B1 (en) Ni-based alloy coated arc welding rod
JP6901868B2 (en) Electroslag welding wire, electroslag welding flux and welded joints
WO2015087843A1 (en) Flux for submerged arc welding
WO2015019684A1 (en) Flux for submerged arc welding
JP5802624B2 (en) Covered arc welding rod
WO2016125568A1 (en) Flux for use in submerged arc welding
WO2016125570A1 (en) Flux for use in submerged arc welding
WO2018182025A1 (en) Flux for submerged arc welding
WO2020217963A1 (en) Ni-BASED ALLOY FLUX-CORED WIRE
JP5952597B2 (en) Flux-cored wire for gas shielded arc welding
WO2022030159A1 (en) Welding flux and production method therefor, and submerged arc welding method using same welding flux
US20220362892A1 (en) Flux-cored wire and welding method
JP5912969B2 (en) Fused flux used for submerged arc welding and welding method using the same
EP3511111A1 (en) Flux cored wire for gas shield arc welding and welding metal
JP4581842B2 (en) Fused flux for submerged arc welding
WO2019188628A1 (en) Flux for submerged arc welding
JP4454112B2 (en) Flux-cored wire for gas shielded arc welding
JP2017170515A (en) Flux-cored wire for gas shield arc welding
JP2005088039A (en) Titania-based flux cored wire
JP7448433B2 (en) Flux for submerged arc welding, submerged arc welding method, and method for producing flux for submerged arc welding
JP6657737B2 (en) Flux for submerged arc welding
JP7084261B2 (en) Shielded metal arc welding rod and shielded metal arc welding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852840

Country of ref document: EP

Kind code of ref document: A1