WO2022028611A1 - 水下清洗机器人系统 - Google Patents

水下清洗机器人系统 Download PDF

Info

Publication number
WO2022028611A1
WO2022028611A1 PCT/CN2021/111338 CN2021111338W WO2022028611A1 WO 2022028611 A1 WO2022028611 A1 WO 2022028611A1 CN 2021111338 W CN2021111338 W CN 2021111338W WO 2022028611 A1 WO2022028611 A1 WO 2022028611A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning robot
robot
underwater
pump
driving
Prior art date
Application number
PCT/CN2021/111338
Other languages
English (en)
French (fr)
Inventor
魏建仓
张永强
陈超
谢翠芳
Original Assignee
深之蓝海洋科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深之蓝海洋科技股份有限公司 filed Critical 深之蓝海洋科技股份有限公司
Priority to AU2021323310A priority Critical patent/AU2021323310A1/en
Priority to US18/006,953 priority patent/US20230264362A1/en
Priority to EP21853590.4A priority patent/EP4194330A1/en
Publication of WO2022028611A1 publication Critical patent/WO2022028611A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/024Cleaning by means of spray elements moving over the surface to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0075Means for protecting the manipulator from its environment or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/06Cleaning devices for hulls
    • B63B59/08Cleaning devices for hulls of underwater surfaces while afloat

Definitions

  • the present disclosure relates to the technical field of underwater robots, in particular to an underwater cleaning robot system.
  • the present disclosure provides an underwater cleaning system tradition, which can greatly expand the use distance and depth of an underwater cleaning robot.
  • an underwater cleaning robot system comprising: an underwater robot and a water control platform, the underwater robot includes a cleaning robot and a driving robot, and the cleaning robot is mounted on the driving robot, wherein: the The cleaning robot includes a motor and a pump, the pump is connected to the motor, and the motor drives the pump to generate high-pressure fluid; the water control platform is connected in communication with the cleaning robot and the driving robot, and is used to control the the cleaning robot and the driving robot.
  • the motor comprises a high voltage frameless brushless motor.
  • a spray gun the pump including a plunger pump connected to the spray gun for delivering high pressure fluid to the spray gun.
  • the pump further comprises a filter device connected to the water inlet of the pump.
  • the cleaning robot includes a controller in communication with the aquatic control platform for controlling the motor.
  • the cleaning robot further includes a pressure sensor for detecting the pressure in the pump, the pressure sensor is signally connected to the controller, and transmits the pressure data in the pump to the controller .
  • a speed reducer is further included, the speed reducer is connected to the motor and the pump, and the motor and the speed reducer drive the pump to generate a specified constant high pressure.
  • a zero buoyancy cable is further included, and the zero buoyancy cable is connected to the water control platform, the cleaning robot and the driving robot for the water control platform, the cleaning robot and the driving The communication connection of the robot.
  • the cleaning robot includes a watertight head for a sealed connection of the cleaning robot and the zero buoyancy cable.
  • a wireless connection device is further included, and the wireless connection device is used for the communication connection between the water control platform, the driving robot and the cleaning robot.
  • a traditional high-pressure water pump can be mounted on the driving robot, and the underwater robot can be flexibly operated through the water control platform.
  • FIG. 1 shows a schematic block diagram of a robot system for cleaning underwater attachments according to an exemplary embodiment of the present application
  • FIG. 2 shows a schematic block diagram of a robot system for cleaning underwater attachments according to an exemplary embodiment of the present application
  • FIG. 3 shows a schematic three-dimensional structure diagram of a cleaning robot according to an exemplary embodiment of the present application
  • FIG. 4 shows a line graph of simulated data of a brushless motor according to an example embodiment of the present application
  • the structure of the underwater cleaning robot system is composed of a high-pressure water pump placed on the shore and an ROV equipment equipped with a high-pressure gun underwater, and the middle is connected by a high-pressure water pipe and a control line.
  • the part above the water surface is the high-pressure water pump station and the control cabinet. Its function is to pressurize the water, but due to its large size and bulk, it can only be placed on the shore, and the high-pressure water is sent to the underwater spray gun through the high-pressure water pipe for spraying. , so as to clean the underwater target.
  • the high-pressure water pump can only be placed on the shore, and the high-pressure water can only be delivered to the underwater spray gun through the high-pressure water pipe, the thick and heavy high-pressure water pipe not only increases the weight of the entire equipment, but also limits the working range of the underwater cleaning robot, so that the underwater The mobility of the robot can become very poor. At present, this is a common problem of existing underwater cleaning robot systems. This underwater cleaning robot cannot perform long-distance work, and generally can only operate within a range of about 20 to 30 meters.
  • FIG. 1 shows a schematic block diagram of a robotic system for cleaning underwater attachments according to an exemplary embodiment of the present application.
  • an underwater cleaning robot 31 system includes: a water control platform 1 and an underwater robot 3 .
  • the underwater robot 3 includes a cleaning robot 31 and a driving robot 33 , and the cleaning robot 31 is mounted on the driving robot 33 .
  • the cleaning robot 31 includes a motor and a pump.
  • the pump is connected to the motor, and the motor drives the pump to generate high-pressure fluid.
  • the water control platform 1 is connected in communication with the cleaning robot 31 and the driving robot 33 for controlling the cleaning robot 31 and the driving robot 33 .
  • the cleaning robot 31 is described as being matched with the driving robot 33 in this exemplary embodiment, the present disclosure is not limited thereto.
  • the cleaning robot 31 may also be used alone (eg, sold) or used in conjunction with other components.
  • Example embodiments of the present disclosure in order to facilitate the description of the underwater cleaning robot system of this exemplary embodiment, the structure of the above-water control platform 1 and the structure of the underwater robot 3 will be described below, and then the above-water control platform 1 and the underwater robot will be described. 3 connections. Referring to Figure 1, it can be seen that they can be connected together by a zero buoyancy cable. For another example, they can also be controlled via a wireless device connection. Of course, they can be connected in other ways, as long as they can achieve the relationship of controlling and being controlled.
  • FIG. 2 shows a schematic block diagram of a robot system for cleaning underwater attachments according to an exemplary embodiment of the present application
  • the driving robot 33 in the present disclosure is an ROV device.
  • the ROV equipment is a general ROV equipment, which is made of buoyancy materials, thereby reducing the weight of the underwater robot 3 .
  • the material thereof is not specifically limited.
  • ROV equipment has electronic warehouses, manipulators, hydroacoustic positioning, sonar, thrusters, cameras and lighting, making it capable of perfect underwater operations.
  • the specific model of the ROV equipment is not limited in the present disclosure, and any ROV equipment model can be equipped with the cleaning robot 31 .
  • the water control platform 1 in the present disclosure includes a control system, a communication system, a display system, and a power supply. It is set in a small-volume control box, which is convenient to carry and arrange, so it is flexible and convenient to use.
  • the water control platform 1 is connected to the cleaning robot 31 and the driving robot 33 through a zero buoyancy cable.
  • FIG. 3 shows a schematic three-dimensional structure diagram of a cleaning robot according to an exemplary embodiment of the present application.
  • the cleaning robot 31 in the present disclosure includes a controller 311 , a brushless motor 312 , a machine base 313 , a watertight head 314 , a reducer 315 , a plunger pump 316 , a water inlet 317 , and a spray gun 318 , control valve 319 and pressure sensor 320 .
  • the controller 311 includes a motor driving controller and a communication controller (not shown in the figure), which can be used to control and drive the brushless motor 312 .
  • the brushless motor drive controller is used for connection and control of the rotational speed of the brushless motor 312
  • the communication controller is used for communication connection.
  • the watertight head 314 is firmly connected to the connection end of the zero buoyancy cable of the brushless motor 312.
  • the base 313 is disposed on the bottom of the brushless motor 312 and the controller 311 .
  • the brushless motor 312 is firmly connected to the reducer 315 .
  • the reducer 315 is firmly connected to the plunger pump 316 .
  • Plunger pump 316 is securely attached to spray gun 318 .
  • the control valve 319 is connected to the plunger pump 316 .
  • the pressure sensor 320 is connected to the plunger pump 316 .
  • the pressure sensor 320 is connected to the controller 311.
  • the brushless motor 312 in the present disclosure may adopt a high-voltage frameless brushless motor with compact structure and small volume.
  • the present disclosure does not limit its type, as long as it can satisfy the cleaning of this embodiment.
  • the rated power of the brushless motor 312 is 10KW, and in order to reduce the current and improve the efficiency, the power supply voltage is set to 800V.
  • the power supply voltage is set to 800V.
  • its specific value is not limited in the present disclosure.
  • the controller 311 in the embodiment of the present disclosure may adopt the controller 311 of the STM32F303 as the main control chip to control the rotational speed of the brushless motor 312 and collect communication signals respectively.
  • the controller 311 may control the brushless motor 312 through a three-phase full bridge.
  • the controller 311 collects the three-phase current of the brushless motor 312 through the current sensor, and uses the Hall sensor to detect the rotor position, so as to realize the control of the magnetic field orientation of the brushless motor 312, so as to achieve precise control of its rotational speed.
  • the controller 311 will detect and upload the operation information of the cleaning robot 31 in real time, including the power, temperature, rotation speed, torque, water pressure and other operation information of the motor, and also detect and upload the fault information in real time, including: Overvoltage protection, undervoltage protection, overtemperature protection, overpressure protection, overcurrent protection, etc.
  • the machine base 313 is used for the cleaning robot 31 to be firmly connected to the driving robot 33 .
  • accurate assembly and disassembly between the cleaning robot 31 and the driving robot 33 can be achieved through the fixing and disassembly of the machine base 313 .
  • the cleaning robot 31 and the driving robot 33 may also be fixed in a snap-type or binding-type manner.
  • the present disclosure does not limit the fixing method between them, as long as the cleaning robot 31 and the driving robot 33 can be detachably fixed together.
  • the watertight head 314 is disposed at the connection between the cleaning robot 31 and the zero buoyancy cable. It has the function of sealing and waterproofing.
  • the plunger pump 316 is a device that can absorb water and compress water.
  • the specific model is not limited in the present disclosure, and the model can be selected according to the actual working environment.
  • the water inlet 317 is disposed on the plunger pump 316 .
  • the water inlet 317 is provided with a filter.
  • the water inlet 317 passes through a filter, and after filtering the impurities in the water, it flows into the plunger pump 316 .
  • the spray gun 318 is used for the spray channel of the high pressure water flow generated by the plunger pump 316 .
  • the spray gun 318 can accurately spray high-speed water on the target.
  • control valve 319 is connected to the plunger pump 316, and the pressure sensor 320 is connected to the plunger pump 316 and the brushless motor 312 to collect signal data.
  • the cleaning robot 31 generates the driving force through the brushless motor 312; transmits it to the reducer 315; and then transmits the low-speed and high-torque driving force of the reducer 315 to the plunger pump 316; After the water is compressed, it is ejected from the channel of the spray gun 318 .
  • the control valve 319 and the pressure sensor 320 detect, collect and adjust the water pressure of the plunger pump 316, compare with the set water pressure, and adjust the speed of the brushless motor 312 through the controller 311, so as to perform constant water pressure control.
  • FIG. 4 shows a line graph of simulated data of a brushless motor according to an example embodiment of the present application
  • the reducer 315 may use a two-stage star reducer.
  • its size and model are not limited, as long as it can be connected to the brushless motor 312 in the embodiment of the present disclosure, and the feature of small size is achieved.
  • the target rotational speed of the brushless motor 312 is 18000 rpm
  • the reduction ratio is 12:1
  • the torque of the brushless motor 312 is 5NM
  • the output torque of the reducer 315 is 60NM.
  • the efficiency of the brushless motor 312 is optimal.
  • its specific value is not limited in the present disclosure.
  • the underwater robot 3 is connected to the water control platform 1 through the zero buoyancy cable, and transmits the operation information of the cleaning robot 31 detected by the controller 311 in real time to the water control platform 1 through the zero buoyancy cable.
  • the umbilical cable of the driving robot 33 of the underwater robot 3 is connected to the water control platform 1 , and the real-time detected operation information of the driving robot 33 is transmitted to the water control platform 1 through the zero buoyancy cable.
  • the control system and communication system of the water control platform 1 transmit the target signal and the error signal underwater and on the ground through the zero buoyancy cable. Through the display system of the water control platform 1, the underwater situation can be clearly observed, and the work of the underwater robot 3 can be adjusted in real time.
  • the power supply provides sufficient power for the underwater robot 3 and the water control platform 1 .
  • the underwater cleaning robot 31 system greatly reduces the volume of the underwater robot, and the cleaning robot 31 with a high-pressure water pump is mounted on the ROV equipment.
  • the water control platform 1 is arranged in a small-volume control box, which is convenient to carry and arrange.
  • only a small zero-buoyancy cable is required for connection between the water control platform 1 and the underwater robot 3, and the working range is increased from the original 20-30 meters to more than 1000 meters.
  • the arrangement structure of the underwater cleaning system in the present disclosure realizes the system arrangement structure that cannot be realized by traditional underwater cleaning robots.
  • only the control box is on the water surface, and the cleaning robot of the high-pressure water pump is mounted on the ROV equipment that drives the robot.
  • the traditional underwater cleaning system can only put the control cabinet on the water surface due to the large volume and heavy weight of the high-pressure water pump, and cannot be mounted on the underwater robot at all, and the system arrangement structure of the present invention cannot be realized at all.

Abstract

一种水下清洗机器人系统,包括:水下机器人(3)和水上控制平台(1),水下机器人(3)包括清洗机器人(31)和驱动机器人(33),清洗机器人(31)搭载于驱动机器人(33)上,其中:清洗机器人(31)包括电机、泵,泵连接于电机,电机带动泵产生高压流体;水上控制平台(1)与清洗机器人(31)和驱动机器人(33)通信连接,用于控制清洗机器人(31)和驱动机器人(33);水上控制平台(1)和水下机器人(3)之间只需要一根细小的零浮力缆连接,工作范围由原来的20~30米提升至1000米以上。

Description

水下清洗机器人系统 技术领域
本公开涉及水下机器人技术领域,具体涉及一种水下清洗机器人系统。
背景技术
用于清洗船底、养殖网箱、桥墩及大坝等由藻类、贝类等附着物构成的垢层,这些垢层会将表面破损遮挡,对于检测造成严重的不利影响,也有的垢层下面没有破损,但却影响到了被遮挡部分的正常使用和使用寿命,因此必须清理垢层,用水下清洗机器人进行清洗无疑是最好的选择。目前已有使用水下清洗机器人完成水下清洗工作的相关发明,但当清洗较为复杂时,现有的水下清洗机器人进行工作时比较耗时耗力,效率低。
发明内容
本公开提供一种水下清洗系统传统,能够极大扩展水下清洗机器人的使用距离和深度。
根据本公开,提供一种水下清洗机器人系统,包括:水下机器人和水上控制平台,所述水下机器人包括清洗机器人和驱动机器人,所述清洗机器人搭载于所述驱动机器人上,其中:所述清洗机器人包括电机、泵,所述泵连接于所述电机,所述电机带动所述泵产生高压流体;所述水上控制平台与所述清洗机器人和所述驱动机器人通信连接,用于控制所述清洗机器人和所述驱动机器人。
根据一些实施例,所述电机包括高压无框无刷电机。还包括喷射枪,所述泵包括柱塞泵,所述柱塞泵连接到所述喷射枪,用于为所述喷射枪输送高压流体。
根据一些实施例,所述泵还包括过滤装置,所述过滤装置连接于所述泵的进水口。
根据一些实施例,所述清洗机器人包括控制器,所述控制器与所述水上控制平台通信连接,用于控制所述电机。
根据一些实施例,所述清洗机器人还包括压力传感器,用于检测所述泵内的压力,所述压力传感器与所述控制器信号连接,将所述泵内的压力数据传输给所述控制器。
根据一些实施例,还包括减速机,所述减速机连接所述电机与所述泵,所述电机与所述减速机带动所述泵产生指定的恒定高压。
根据一些实施例,还包括零浮力缆,所述零浮力缆连接于所述水上控制平台与所述清洗机器人及所述驱动机器人,用于所述水上控制平台与所述清洗机器人及所述驱动机器人的通信连接。
根据一些实施例,所述清洗机器人包括水密头,所述水密头用于所述清洗机器人与所述零浮力缆的密封连接。
根据一些实施例,还包括无线连接装置,所述无线连接装置用于所述水上控制平台与所述驱动机器人及所述清洗机器人的通信连接。
根据本申请的一些实施例,通过清洗机器人搭载在驱动机器人上,能够实现传统的高压水泵搭载到驱动机器人上,通过水上控制平台可以灵活操作水下机器人。
为能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,但是此说明和附图仅用来说明本发明,而非对本发明的保护范围作任何的限制。
附图说明
下面结合附图详细说明本公开的实施方式。这里,构成本公开一部分的附图用来提供对本公开的进一步理解。本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。附图中:
图1示出根据本申请示例实施例的清洗水下附着物的机器人系统的原理方框图;
图2示出根据本申请示例实施例的清洗水下附着物的机器人系统的原理方框图;
图3示出根据本申请示例实施例的清洗机器人的立体结构示意图;
图4示出根据本申请示例实施例的无刷电机的仿真数据线条图;
附图标记列表:
1水上控制平台                315减速机
3水下机器人                  316柱塞泵
31清洗机器人                 317进水口
311控制器                    318喷射枪
312无刷电机                  319控制阀
313机座                      320压力传感器
314水密头                    33驱动机器人
具体实施方式
下面结合附图来说明本公开的示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本公开的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
需要理解的是,在本公开中,术语"长度"、"上"、"下"、"前"、"后"、"左"、"右"、"水平"、"顶"、"底"、"内"、"外"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于说明本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
目前,水下清洗机器人系统的结构是由放在岸上的高压水泵和 水下搭载高压枪的ROV设备组成,中间通过高压水管和控制线连接。水面以上的部分是高压水泵站和控制柜,它的作用是将水进行增压,但由于其体积庞大且笨重,只能放在岸上,通过高压水管将高压水输送到水下喷射枪进行喷射,从而对水下目标物进行清洗。由于高压水泵只能放在岸上,只能通过高压水管将高压水输送到水下喷射枪,因此粗重的高压水管不但增加了整个设备重量,还限制了水下清洗机器人的工作范围,从而水下机器人的机动性的灵活度能变得很差。目前这是现有水下清洗机器人系统共同的问题。这种水下清洗机器人无法进行长距离的作业工作,一般只能在20~30米左右范围内作业。
于是,本发明人认为上述发明可改善,通过合理运用科学原理进行潜心研究,终于提出一项设计合理且有效改善的发明。
以下将结合附图,对本申请的技术方案进行详细说明。
图1示出根据本申请示例实施例的清洗水下附着物的机器人系统的原理方框图。
参见图1,根据提出本申请的示例实施例,水下清洗机器人31系统,包括:水上控制平台1和水下机器人3。所述水下机器人3包括清洗机器人31和驱动机器人33,所述清洗机器人31搭载于所述驱动机器人33上。当然,本公开对其搭载位置和方向不做限定。本实施例中,所述清洗机器人31包括电机、泵。所述泵连接于所述电机,所述电机带动所述泵产生高压流体。所述水上控制平台1与所述清洗机器人31和所述驱动机器人33通信连接,用于控制所述清洗机器人31和所述驱动机器人33。
需先说明的是,所述清洗机器人31于本示例实施例中虽是以搭配于所述驱动机器人33来说明,但本公开不以此为限。举例来说,本发明未公开的其他实施例中,所述清洗机器人31也可以是单独地被应用(如:贩卖)或搭配其他部件使用。
本公开的示例实施例。其中,为便于说明本示例实施例的水下清洗机器人系统,以下将介绍所述水上控制平台1的构造与所述水 下机器人3的构造,然后再说明所述水上控制平台1与水下机器人3的连接关系。参考图1可见,它们之间可以通过零浮力缆连接于一体。再例如,它们之间也可以通过无线装置连接控制。当然,它们之间可以用其他方式连接,只要它们之间能够达到控制与被控制的关系即可。
图2示出根据本申请示例实施例的清洗水下附着物的机器人系统的原理方框图;
参图2可见,本公开中的驱动机器人33为ROV设备。本公开中,ROV设备为通用ROV设备,其采用浮力材料制作而成,从而减轻水下机器人3的重量。本公开中,对其材料不做具体限定。ROV设备具有电子仓、机械手、水声定位、声呐、推进器、摄像机和照明灯,使其具备很完善的水下作业的能力。当然,本公开中对ROV设备的具体型号不做限定,任何ROV设备型号都可以进行搭载清洗机器人31。
如图2所示,本公开中的水上控制平台1包括控制系统、通讯系统、显示系统、电源。其设置于一小体积的控制箱内,方便携带和布置,因此使用时灵活方便。本公开示例实施例中,水上控制平台1通过零浮力缆连接于清洗机器人31和驱动机器人33。
图3示出根据本申请示例实施例的清洗机器人的立体结构示意图。
参图3可见,根据一些实施例,本公开中的清洗机器人31包括控制器311、无刷电机312、机座313、水密头314、减速机315、柱塞泵316、进水口317、喷射枪318、控制阀319和压力传感器320。
本公开中,控制器311包括电机驱动控制器和通信控制器(图中未示出),可以用来控制驱动无刷电机312。无刷电机驱动控制器用于连接控制无刷电机312的转速,通信控制器用于通信连接。
见图3可见,水密头314牢固地连接于无刷电机312的零浮力 缆的连接端。机座313设置于无刷电机312及控制器311的底部。
本公开中,无刷电机312牢固地连接于减速机315。减速机315牢固地连接于柱塞泵316。柱塞泵316牢固地连接于喷射枪318。控制阀319连接于柱塞泵316。压力传感器320连接于柱塞泵316。压力传感器320连接于控制器311.
本公开中的无刷电机312可以采用结构紧凑和体积小的高压无框无刷电机。当然,本公开并不限定其类型,只要能够满足本实施例的清洗即可。本公开示例实施例中,无刷电机312的额定功率为10KW,并且为了减少电流,提高效率,因此设置供电电压为800V。当然,本公开中并不限定其具体值。
本公开实施例中的控制器311可以采用STM32F303为主控芯片的控制器311,分别控制无刷电机312的转速和收集通讯信号。当然,本公开并不限定其型号,只要能够满足准确的控制本实施例的清洗机器人31即可。比如,本公开实施例中,控制器311可以通过三相全桥进行控制无刷电机312。控制器311通过电流传感器采集无刷电机312的三相电流,并利用霍尔传感器检测转子位置,实现对无刷电机312的磁场定向的控制,从而达到对其转速精确的控制。再如,本公开中,控制器311会实时检测上传清洗机器人31运行信息,包括电机的功率、温度、转速、力矩、水压等运行信息,同时也实时检测并上传发生的故障信息,包括:过压保护、欠压保护、过温保护、压力过高保护、过流保护等等。
参图3可见,机座313用于清洗机器人31牢固地连接于驱动机器人33上。此外,通过机座313的固定与拆卸,可以达到清洗机器人31与驱动机器人33之间的准确组装和拆卸。再如,清洗机器人31和驱动机器人33也可以采用卡扣式或捆绑式的固定方式。当然,本公开中对它们之间的固定方式不做限定,只要清洗机器人31和驱动机器人33之间能够可拆卸地固定到一起即可。
本实施例中,水密头314设置于清洗机器人31和零浮力缆连接 处。其具有密封防水的作用。
如图3所示,本实施例中,柱塞泵316可以吸水并压缩水的装置。本公开中不限定其具体型号,可根据实际工作环境来选定其型号。
本实施例中,进水口317设置于柱塞泵316上。进水口317设置有过滤器。进水口317通过过滤器,将水中杂质过滤后,流进柱塞泵316。
参图3可见,喷射枪318用于柱塞泵316产生的高压水流的喷射通道。喷射枪318可以使高速水流准确的喷射到目标物上。
本实施例中,控制阀319连接于柱塞泵316,压力传感器320连接于柱塞泵316、及无刷电机312上,进行信号数据的采集。
本公开中清洗机器人31是通过无刷电机312产生驱动力;传输到减速机315;再将减速机315的低转速和高扭矩的驱动力传输到柱塞泵316;同时,柱塞泵316将水压缩后,从喷射枪318的通道中射出。并且通过控制阀319及压力传感器320检测采集调节柱塞泵316的水压,与设定水压进行对比,通过控制器311调节无刷电机312的转速,从而进行水压恒压控制。
图4示出根据本申请示例实施例的无刷电机的仿真数据线条图;
参图4,减速机315可以使用二级星型减速机。本公开中,不限定其尺寸和型号,只要能够连接于本公开实施例中的无刷电机312上即可,并实现体积小的特点。本实施例中,无刷电机312的目标转速为18000rpm,减速比为12:1,无刷电机312的扭矩为5NM,减速机315的输出扭矩为60NM。根据对无刷电机312的进行模拟仿真,当无刷电机312设置为以上数据仿真时,无刷电机312的效率为最优。当然,本公开中并不限定其具体值。
本公开示例实施例中,水下机器人3通过零浮力缆与水上控制 平台1相连接,并将控制器311实时检测到的清洗机器人31运行信息,通过零浮力缆传输到水上控制平台1。水下机器人3的驱动机器人33的脐带缆与水上控制平台1相连接,并将其实时检测到的驱动机器人33运行信息,通过零浮力缆传输到水上控制平台1。水上控制平台1的控制系统、通讯系统通过零浮力缆将目标信号和错误信号进行水下与地上的相互传输。通过水上控制平台1的显示系统可以很清晰的观察水下情况,并实时做出对水下机器人3的工作进行调整。电源为水下机器人3和水上控制平台1提供充足的电能。
由上可见,本公开的实施例具有以下优点中的至少一个。
根据一些实施例,水下清洗机器人31系统极大的缩小了水下机器人的体积,具有高压水泵的清洗机器人31搭载在ROV设备上。
根据一些实施例,水上控制平台1设置于一小体积的控制箱内,方便携带和布置。
根据一些实施例,水上控制平台1和水下机器人3之间只需要一根细小的零浮力缆连接,工作范围由原来的20~30米提升至1000米以上。
本公开中的水下清洗系统布置结构,实现了传统水下清洗机器人无法实现的系统布置结构。这种布置结构只有控制箱在水面上,高压水泵的清洗机器人搭载在驱动机器人的ROV设备上。传统水下清洗系统由于高压水泵体积庞大且笨重,只能将控制柜放在水面上,根本无法搭载在水下机器人上,根本无法实现本发明的系统布置结构。
最后应说明的是:以上所述仅为本公开的示例实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种水下清洗机器人系统,其特征在于,包括:水下机器人和水上控制平台,所述水下机器人包括清洗机器人和驱动机器人,所述清洗机器人搭载于所述驱动机器人上,其中:
    所述清洗机器人包括电机、泵,所述泵连接于所述电机,所述电机带动所述泵产生高压流体;
    所述水上控制平台与所述清洗机器人和所述驱动机器人通信连接,用于控制所述清洗机器人和所述驱动机器人。
  2. 如权利要求1所述的水下清洗机器人系统,其特征在于,所述电机包括高压无框无刷电机。
  3. 如权利要求1所述的水下清洗机器人系统,其特征在于,还包括喷射枪,所述泵包括柱塞泵,所述柱塞泵连接到所述喷射枪,用于为所述喷射枪输送高压流体。
  4. 如权利要求1所述的水下清洗机器人系统,其特征在于,所述泵还包括过滤装置,所述过滤装置连接于所述泵的进水口。
  5. 如权利要求1所述的水下清洗机器人系统,其特征在于,所述清洗机器人包括控制器,所述控制器与所述水上控制平台通信连接,用于控制所述电机。
  6. 如权利要求5所述的水下清洗机器人系统,其特征在于,所述清洗机器人还包括压力传感器,用于检测所述泵内的压力,所述压力传感器与所述控制器信号连接,将所述泵内的压力数据传输给所述控制器。
  7. 如权利要求1所述的水下清洗机器人系统,其特征在于,还包括减速机,所述减速机连接所述电机与所述泵,所述电机与所述减速机带 动所述泵产生指定的恒定高压。
  8. 如权利要求1所述的水下清洗机器人系统,其特征在于,还包括零浮力缆,所述零浮力缆连接于所述水上控制平台与所述清洗机器人及所述驱动机器人,用于所述水上控制平台与所述清洗机器人及所述驱动机器人的通信连接。
  9. 如权利要求8所述的水下清洗机器人系统,其特征在于,所述清洗机器人包括水密头,所述水密头用于所述清洗机器人与所述零浮力缆的密封连接。
  10. 如权利要求1所述的水下清洗机器人系统,其特征在于,还包括无线连接装置,所述无线连接装置用于所述水上控制平台与所述驱动机器人及所述清洗机器人的通信连接。
PCT/CN2021/111338 2020-08-06 2021-08-06 水下清洗机器人系统 WO2022028611A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021323310A AU2021323310A1 (en) 2020-08-06 2021-08-06 Underwater cleaning robot system
US18/006,953 US20230264362A1 (en) 2020-08-06 2021-08-06 Underwater cleaning robot system
EP21853590.4A EP4194330A1 (en) 2020-08-06 2021-08-06 Underwater cleaning robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010781941.9A CN112845275A (zh) 2020-08-06 2020-08-06 水下清洗机器人系统
CN202010781941.9 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028611A1 true WO2022028611A1 (zh) 2022-02-10

Family

ID=75995298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111338 WO2022028611A1 (zh) 2020-08-06 2021-08-06 水下清洗机器人系统

Country Status (5)

Country Link
US (1) US20230264362A1 (zh)
EP (1) EP4194330A1 (zh)
CN (1) CN112845275A (zh)
AU (1) AU2021323310A1 (zh)
WO (1) WO2022028611A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441455A (zh) * 2022-11-07 2022-12-06 深之蓝海洋科技股份有限公司 一种水下机器人系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182231B (zh) * 2021-07-02 2021-09-14 智真海洋科技(威海)有限公司 一种水下智能清刷机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200948597Y (zh) * 2006-09-25 2007-09-19 湖南大学 大型冷凝设备水下智能清洗机器人
JP2008018745A (ja) * 2006-07-10 2008-01-31 Mitsui Eng & Shipbuild Co Ltd 水中清掃ロボット
KR20080093536A (ko) * 2007-04-17 2008-10-22 박원철 선저 청소 및 검사용 수중로봇
CN101850836A (zh) * 2010-04-30 2010-10-06 湛江市海洋水下清洗科技有限公司 船舶水下空化清洗装置
CN107719599A (zh) * 2017-11-08 2018-02-23 武汉理工大学 一种节能环保的水下清洗机器人
CN109050823A (zh) * 2018-08-14 2018-12-21 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 螺旋桨用水下空化清洗装置及其使用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209436A (zh) * 2006-12-29 2008-07-02 中国科学院沈阳自动化研究所 一种作业型水下机器人用高压海水喷枪
KR101364473B1 (ko) * 2012-01-18 2014-02-26 김창호 다목적 수중 청소로봇
CN204065836U (zh) * 2014-08-20 2014-12-31 浙江大学 基于手机蓝牙技术的水下机器人控制系统
CN104503060B (zh) * 2014-12-30 2017-10-20 中英海底系统有限公司 振动射流联合作用的光缆埋设水下机器人
CN108423138A (zh) * 2018-05-10 2018-08-21 深圳市智能机器人研究院 一种面向海洋附着物的水下清洗机器人系统
CN208985011U (zh) * 2018-11-13 2019-06-14 武汉交通职业学院 一种船底智能水下清洗机器人
CN109849000A (zh) * 2019-04-04 2019-06-07 南京林业大学 一种水下清洗机器人系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018745A (ja) * 2006-07-10 2008-01-31 Mitsui Eng & Shipbuild Co Ltd 水中清掃ロボット
CN200948597Y (zh) * 2006-09-25 2007-09-19 湖南大学 大型冷凝设备水下智能清洗机器人
KR20080093536A (ko) * 2007-04-17 2008-10-22 박원철 선저 청소 및 검사용 수중로봇
CN101850836A (zh) * 2010-04-30 2010-10-06 湛江市海洋水下清洗科技有限公司 船舶水下空化清洗装置
CN107719599A (zh) * 2017-11-08 2018-02-23 武汉理工大学 一种节能环保的水下清洗机器人
CN109050823A (zh) * 2018-08-14 2018-12-21 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 螺旋桨用水下空化清洗装置及其使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441455A (zh) * 2022-11-07 2022-12-06 深之蓝海洋科技股份有限公司 一种水下机器人系统

Also Published As

Publication number Publication date
AU2021323310A1 (en) 2023-02-02
CN112845275A (zh) 2021-05-28
US20230264362A1 (en) 2023-08-24
EP4194330A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2022028611A1 (zh) 水下清洗机器人系统
CN104590516B (zh) 一种浅水桥墩水下检测机器人的检测方法
CN105711779B (zh) 一种八推进器水下清刷机器人
CN111605676B (zh) 一种船舶清洗机器人及清洗方法
CN102224067B (zh) 船体用机器人
WO2020253172A1 (zh) 一种腿-臂-桨复合式水下机器人
TWI706895B (zh) 水下船體清洗器、船體清洗系統以及清洗船體的方法
CN204489154U (zh) 一种浅水桥墩水下检测机器人
CN111232150B (zh) 一种船体壁面清洁系统及清刷作业方法
CN111361702A (zh) 基于空化射流技术的船底清洗潜水器系统及其使用方法
AU2013393525A1 (en) Subsea system comprising a crawler
CN108787567B (zh) 一种电磁吸附式导管架立柱生物清理装置
CN112874725A (zh) 用于水下检测与抓取作业的碟形机器人系统
CN109250052A (zh) 多鳍扭波水下机器人
KR101475203B1 (ko) 수중 청소로봇
CN109849000A (zh) 一种水下清洗机器人系统
CN105225707B (zh) 一种核电站水下带吸盘的浮游装置
CN112141289B (zh) 一种用于船底附着物清洁开架式全自动水下机器人
CN105197209A (zh) 水下机器人
CN116691972A (zh) 一种水下机器人保护控制系统及保护方法
CN214493302U (zh) 用于水下检测与抓取作业的碟形机器人系统
CN110371269A (zh) 一种用于海洋结构物除锈的装置
CN208085969U (zh) 水下清污装置
CN208412074U (zh) 多鳍扭波水下机器人
CN208163363U (zh) 机器人除锈设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021323310

Country of ref document: AU

Date of ref document: 20210806

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021853590

Country of ref document: EP

Effective date: 20230306