WO2022028433A1 - 一种储能电池模组的热管式热管理装置及方法 - Google Patents

一种储能电池模组的热管式热管理装置及方法 Download PDF

Info

Publication number
WO2022028433A1
WO2022028433A1 PCT/CN2021/110384 CN2021110384W WO2022028433A1 WO 2022028433 A1 WO2022028433 A1 WO 2022028433A1 CN 2021110384 W CN2021110384 W CN 2021110384W WO 2022028433 A1 WO2022028433 A1 WO 2022028433A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
battery module
heat
energy storage
runner
Prior art date
Application number
PCT/CN2021/110384
Other languages
English (en)
French (fr)
Inventor
曹传钊
刘明义
裴杰
曹曦
刘大为
朱勇
徐若晨
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能集团技术创新中心有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022028433A1 publication Critical patent/WO2022028433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of thermal management of battery energy storage systems, and relates to a heat pipe type thermal management device and method of an energy storage battery module.
  • Energy storage batteries will release heat during charging and discharging, and temperature is a key factor affecting its performance, which is mainly reflected in three aspects: (1) The temperature rises, which aggravates the decline of battery capacity, and the excessively high temperature even causes thermal runaway; (2) If the temperature is too low, the power and capacity of the battery will be significantly attenuated, and the charging and discharging efficiency will decrease; (3) The temperature difference between different cells in the battery pack will lead to the inconsistency and uneven aging of the internal resistance and capacity of the battery pack, resulting in the performance of the entire battery system. with short lifespan. Therefore, the working performance of the energy storage battery is greatly affected by the temperature.
  • the optimal operating temperature of the energy storage battery is 20-30 °C, and the temperature difference between the single cells should be less than 5 °C, while the temperature in northern my country is generally below -20 °C in winter, and even reaches -40 °C in some areas. Due to this low temperature environment, the heat exchange system of the air conditioning system has been difficult to function, so the current energy storage system needs to be equipped with an electric heater to maintain the temperature in the energy storage container. However, due to the huge power consumption of the electric heater and the remote installation location of the container, most of the electric energy consumed by the heater is the electric energy stored in the battery, which seriously reduces the overall efficiency of the energy storage system.
  • the battery module adopts the method of air cooling for thermal management. This method is simple and low in cost, but the cooling effect is limited. The temperature field consistency of the battery module is affected by the uniformity of the air volume and the accumulation of heat in the cooling air, and the temperature difference is often large.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a heat pipe heat management device and method for an energy storage battery module, which can improve the uniformity and consistency of temperature distribution in the battery module.
  • the heat pipe heat management device of the energy storage battery module includes a battery module and a heat exchanger, wherein a heat pipe is arranged between adjacent batteries in the battery module, and the top of the battery module is provided with a heat pipe.
  • a cold runner is arranged, a hot runner is arranged at the bottom of the battery module, the lower end of the heat pipe is inserted into the hot runner, the upper end of the heat pipe is inserted into the cold runner, the heat exchanger is located below the surface, and the inlet of the heat exchanger is connected to the cold runner.
  • One end of the heat exchanger is communicated with one end of the hot runner, and the outlet of the heat exchanger is communicated with the other end of the cold runner and the other end of the hot runner.
  • the battery modules are placed in the battery cluster cabinet.
  • the heat pipe is a gravity heat pipe, a siphon heat pipe or an oscillating heat pipe.
  • the heat pipe is in a loop structure.
  • Heat dissipation fins are installed on the portion of the heat pipe that is located in the cold runner.
  • An upper soaking plate is arranged on the part of the heat pipe located in the hot runner.
  • the working fluid flowing in the cold runner and the hot runner is an antifreeze liquid
  • the antifreeze liquid is water or an aqueous glycol solution.
  • It also includes a circulating pump, wherein the hot runner and the cold runner communicate with the inlet of the heat exchanger through the circulating pump.
  • a heat pipe heat management method for an energy storage battery module includes the following steps:
  • the heat pipe When the working temperature of the battery module exceeds the upper limit warning temperature, the heat pipe starts to work, the heat pipe absorbs the heat released by the cells in the battery module, the working medium in the vacuum state in the heat pipe is heated, and a column between liquid and vapor phases is formed.
  • the plug forms a pressure difference between the cold and hot ends. Due to the staggered distribution of the vapor-liquid plungers, a reciprocating oscillating motion is generated in the heat pipe.
  • the working fluid in the heat pipe transfers heat to the antifreeze liquid in the cold runner.
  • the antifreeze liquid enters the heat exchanger, transfers heat to the soil below the surface, and then enters the cold runner;
  • the antifreeze liquid is heated through the heat exchanger, and then the heated antifreeze liquid is input into the hot runner, and the heat is transferred to the heat pipe through the hot runner, so that the inside of the heat pipe is in a vacuum
  • the working fluid in the state is heated to generate a plunger between the liquid and vapor phases, and a pressure difference is formed between the cold and hot ends. Due to the staggered distribution of the vapor-liquid plunger, a reciprocating oscillating motion is generated in the heat pipe, thereby transferring heat to the battery module. , so that the battery module heats up to the operating temperature range.
  • the upper end of the heat pipe is inserted into the cold runner, and the lower end of the heat pipe is inserted into the hot runner, and the working fluid in the cold runner and the hot runner passes through the cold runner.
  • Adjust the temperature of the working fluid in the heat pipe and at the same time use the strong heat exchange capacity and temperature uniformity of the heat pipe to efficiently thermally manage the temperature in the battery module, reduce the temperature difference in the battery module, and improve the temperature distribution in the battery module. Uniformity and consistency; at the same time, the present invention makes full use of the surface cold and heat sources to manage the heat dissipation and heating of the battery module. Since the heat transfer of the heat pipe is formed by its own internal structure mechanism, no additional energy consumption is required, and the energy consumption is low.
  • Fig. 1 is the working schematic diagram of the present invention in the heating process
  • Fig. 2 is the working schematic diagram of the present invention in the process of heat dissipation
  • FIG. 3 is a schematic structural diagram of the heat pipe 2 in the present invention.
  • 1 is a battery module
  • 2 is a heat pipe
  • 3 is a cold runner
  • 4 is a hot runner
  • 5 is a circulating pump
  • 6 is a heat exchanger
  • 21 is a heat dissipation fin
  • 22 is a soaking plate.
  • the heat pipe type thermal management device of the energy storage battery module includes a battery module 1 and a heat exchanger 6 , wherein a heat pipe 2 is arranged between adjacent batteries in the battery module 1 , the top of the battery module 1 is provided with a cold runner 3, the bottom of the battery module 1 is provided with a hot runner 4, the lower end of the heat pipe 2 is inserted into the hot runner 4, and the upper end of the heat pipe 2 is inserted into the cold runner 3.
  • the heat exchanger 6 is located below the surface, and the inlet of the heat exchanger 6 is connected to one end of the cold runner 3 and one end of the hot runner 4, and the outlet of the heat exchanger 6 is connected to the other end of the cold runner 3 and the other end of the hot runner 4. connected at one end.
  • the battery module 1 is placed in the battery cluster cabinet, and the heat pipe 2 is a gravity heat pipe, a siphon heat pipe or an oscillating heat pipe.
  • the heat pipe 2 is a loop structure, the pipe material is stainless steel, and the working medium in the heat pipe 2 is a high-purity heat pipe compatible with the pipe material. Ethanol, the inside of the heat pipe 2 is evacuated, and the vacuum degree is 10-2 to 10-4Pa.
  • the part of the heat pipe 2 located in the cold runner 3 is equipped with a cooling fin 21, and the part of the heat pipe 2 located in the hot runner 4 is installed.
  • An upper soaking plate 22 is provided.
  • the working fluid flowing in the cold runner 3 and the hot runner 4 is an antifreeze liquid, and the antifreeze liquid is water or ethylene glycol aqueous solution.
  • the hot runner 4 and the cold runner 3 are connected to the inlet of the heat exchanger 6 through the circulating pump 5 Pass.
  • the heat pipe heat management method of the energy storage battery module of the present invention includes the following steps:
  • the heat pipe 2 starts to work.
  • the plunger between the vapor phases forms a pressure difference between the cold and hot ends. Due to the staggered distribution of the vapor-liquid plunger, a reciprocating oscillating motion is generated in the heat pipe 2, and the working fluid in the heat pipe 2 transfers heat to the cold runner 3.
  • the antifreeze liquid output from the cold runner 3 enters the heat exchanger 6, transfers heat to the soil below the surface, and then enters the cold runner 3;
  • the antifreeze liquid is heated by the heat exchanger 6 , and then the heated antifreeze liquid is input into the hot runner 4 , and the heat is transferred to the heat pipe 2 through the hot runner 4 , so that the working medium in the vacuum state in the heat pipe 2 is heated to generate a plunger between the liquid and vapor phases, and a pressure difference is formed between the cold and hot ends. Due to the staggered distribution of the vapor-liquid plunger, the heat pipe 2 produces a reciprocating oscillation motion. Thus, the heat is transferred to the battery module 1, so that the battery module 1 is heated to a working temperature range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种储能电池模组(1)的热管式热管理装置及方法,包括电池模组(1)及换热器(6),其中,电池模组(1)中相邻电池之间设置有热管(2),电池模组(1)的顶部设置有冷流道(3),电池模组(1)的底部设置有热流道(4),热管(2)的下端插入于热流道(4)内,热管(2)的上端插入于冷流道(3)内,换热器(6)位于地表以下,且换热器(6)的入口与冷流道(3)的一端及热流道(4)的一端相连通,换热器(6)的出口与冷流道(3)的另一端及热流道(4)的另一端相连通,该装置及方法能够提高电池模组(1)内温度分布的均匀性及一致性。

Description

一种储能电池模组的热管式热管理装置及方法 技术领域
本发明属于电池储能系统热管理技术领域,涉及一种储能电池模组的热管式热管理装置及方法。
背景技术
储能电池在充放电时会释放热量,温度是影响其性能的关键因素,主要体现于三方面:(1)温度升高,加剧电池容量衰退,过高的温度甚至造成热失控;(2)温度过低,电池功率、容量显著衰减,充放电效率下降;(3)电池组中不同电池之间温度差异,会导致单体内阻、容量的不一致性和不均速老化,形成整个电池系统性能与寿命短板。因此,储能电池工作性能在较大程度上受到温度影响,需通过设计合理的热管理系统结构、开发先进的热管理控制策略,使储能电池工作在适宜温度范围内,并有效控制单体间温差,从而提高储能电池性能。如何对电池模组内电池单体和电池组的温度进行精确的控制成为当前电池热管理系统研究需要重点解决的问题。
储能电池的最佳运行温度在20-30℃,单体电池间温差需小于5℃,而我国北方冬天普遍温度在-20℃以下,甚至部分地区达到-40℃。由于这种低温环境下,空调系统的热交换系统已经很难起到作用,故目前储能系统内部都需要配备电加热器来维持储能集装箱内的温度。但是,电加热器耗电巨大以及集装箱安装位置的偏僻,加热器消耗的电能绝大部分都是电池内部储存的电能,这严重降低的储能系统的整体效率。而电池模组采取风冷进行热管理的方法,该方法简单且成本较低,但冷却效果有限,电池模组温度场一致性受风量均匀性和冷却空气热量堆积的影响,温差往往较大。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种储能电池模组的热管式热管理装置及方法,该装置及方法能够提高电池模组内温度分布的均匀性及一致性。
为达到上述目的,本发明所述的储能电池模组的热管式热管理装置包括电池模组及换热器,其中,电池模组中相邻电池之间设置有热管,电池模组的顶部设置有冷流道,电池模组的底部设置有热流道,热管的下端插入于热流道内,热管的上端插入于冷流道内,换热器位于地表以下,且换热器的入口与冷流道的一端及热流道的一端相连通,换热器的出口与冷流道的另一端及热流道的另一端相连通。
电池模组摆放于电池簇机柜内。
热管为重力热管、虹吸热管或振荡热管。
热管呈回路结构。
热管上位于冷流道内的部分上安装有散热翅片。
热管上位于热流道内的部分上设置有上均热板。
冷流道及热流道内流动的工质均为防冻液体,所述防冻液体为水或者乙二醇水溶液。
还包括循环泵,其中,热流道及冷流道通过循环泵与换热器的入口相连通。
一种储能电池模组的热管式热管理方法包括以下步骤:
当电池模组的工作温度超出上限警戒温度时,热管开始工作,热管吸收电池模组中各电芯内部释放出的热量,热管内处于真空状态的工质被加热,生成液、汽相间的柱塞,在冷、热端间形成压差,由于汽液柱塞交错分布,因而在热管内产生往复振荡运动,热管内的工质将热量传递到冷流道内的防冻液体,冷流道输出的防冻液体进入到换热器中,将热量传递给地表以下土壤,然后再进入到冷流道中;
当电池模组的工作温度低于下限警戒温度时,通过换热器对防冻液体进行加热,再将加热后的防冻液体输入到热流道内,通过热流道将热量传递给热管,使热管内处于真空状态的工质被加热,生成液、汽相间的柱塞,在冷、热端间形成压差,由于汽液柱塞交错分布,使得热管内产生往复振荡运动,从而将热量传递给电池模组,使得电池模组升温到工作温度范围内。
本发明具有以下有益效果:
本发明所述的储能电池模组的热管式热管理装置及方法在具体操作时,热管的上端插入于冷流道内,热管的下端插入于热流道内,通过冷流道及热流道内的工质对热管内的工质进行温度调节,同时利用热 管较强的换热能力及均温能力对电池模组内的温度进行高效热管理,缩小电池模组内温差,提升电池模组内温度分布的均匀性及一致性;同时本发明充分利用地表冷热源对电池模组散热和加热进行管理,由于热管传热是通过自身内部结构机理形成,无需额外消耗能源,能耗较低。
附图说明
图1为本发明在加热过程的工作示意图;
图2为本发明在散热过程的工作示意图;
图3为本发明中热管2的结构示意图。
其中,1为电池模组、2为热管、3为冷流道、4为热流道、5为循环泵、6为换热器、21为散热翅片、22为均热板。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1至图3,本发明所述的储能电池模组的热管式热管理装置包括电池模组1及换热器6,其中,电池模组1中相邻电池之间设置有热管2,电池模组1的顶部设置有冷流道3,电池模组1的底部设置有热流道4,热管2的下端插入于热流道4内,热管2的上端插入于冷流道3内,换热器6位于地表以下,且换热器6的入口与冷流道3的一端及热流道4的一端相连通,换热器6的出口与冷流道3的另一端及热流道4的另一端相连通。
电池模组1摆放于电池簇机柜内,热管2为重力热管、虹吸热管或振荡热管,其中,热管2呈回路结构,管材为不锈钢,热管2内的工质为与管材相容的高纯度乙醇,热管2内抽成真空,真空度为10-2~10-4Pa,热管2上位于冷流道3内的部分上安装有散热翅片21,热管2上位于热流道4内的部分上设置有上均热板22。
冷流道3及热流道4内流动的工质均为防冻液体,所述防冻液体为水或者乙二醇水溶液,热流道4及冷流道3通过循环泵5与换热器6的入口相连通。
本发明所述的储能电池模组的热管式热管理方法包括以下步骤:
当电池模组1的工作温度超出上限警戒温度时,热管2开始工作,热管2吸收电池模组1中各电芯内部释放出的热量,热管2内处于真空状态的工质被加热,生成液、汽相间的柱塞,在冷、热端间形成压差,由于汽液柱塞交错分布,因而在热管2内产生往复振荡运动,热管2内的工质将热量传递到冷流道3内的防冻液体,冷流道3输出的防冻液体进入到换热器6中,将热量传递给地表以下土壤,然后再进入到冷流道3中;
当电池模组1的工作温度低于下限警戒温度时,通过换热器6对防冻液体进行加热,再将加热后的防冻液体输入到热流道4内,通过热流道4将热量传递给热管2,使热管2内处于真空状态的工质被加热,生成液、汽相间的柱塞,在冷、热端间形成压差,由于汽液柱塞交错分布,使得热管2内产生往复振荡运动,从而将热量传递给电池模组1,使得电池模组1升温到工作温度范围内。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (9)

  1. 一种储能电池模组的热管式热管理装置,其特征在于,包括电池模组(1)及换热器(6),其中,电池模组(1)中相邻电池之间设置有热管(2),电池模组(1)的顶部设置有冷流道(3),电池模组(1)的底部设置有热流道(4),热管(2)的下端插入于热流道(4)内,热管(2)的上端插入于冷流道(3)内,换热器(6)位于地表以下,且换热器(6)的入口与冷流道(3)的一端及热流道(4)的一端相连通,换热器(6)的出口与冷流道(3)的另一端及热流道(4)的另一端相连通。
  2. 根据权利要求1所述的储能电池模组的热管式热管理装置,其特征在于,电池模组(1)摆放于电池簇机柜内。
  3. 根据权利要求1所述的储能电池模组的热管式热管理装置,其特征在于,热管(2)为重力热管、虹吸热管或振荡热管。
  4. 根据权利要求1所述的储能电池模组的热管式热管理装置,其特征在于,热管(2)呈回路结构。
  5. 根据权利要求1所述的储能电池模组的热管式热管理装置,其特征在于,热管(2)上位于冷流道(3)内的部分上安装有散热翅片(21)。
  6. 根据权利要求1所述的储能电池模组的热管式热管理装置,其特征在于,热管(2)上位于热流道(4)内的部分上设置有上均热板(22)。
  7. 根据权利要求1所述的储能电池模组的热管式热管理装置,其特征在于,冷流道(3)及热流道(4)内流动的工质均为防冻液体,所述防冻液体为水或者乙二醇水溶液。
  8. 根据权利要求1所述的储能电池模组的热管式热管理装置,其特征在于,还包括循环泵(5),其中,热流道(4)及冷流道(3)通过循环泵(5)与换热器(6)的入口相连通。
  9. 一种储能电池模组的热管式热管理方法,其特征在于,包括以下步骤:
    当电池模组(1)的工作温度超出上限警戒温度时,热管(2)开始工作,热管(2)吸收电池模组(1)中各电芯内部释放出的热量,热管(2)内处于真空状态的工质被加热,生成液、汽相间的柱塞,在冷、热端间形成压差,由于汽液柱塞交错分布,因而在热管(2)内产生往复振荡运动,热管(2)内的工质将热量传递到冷流道(3)内的防冻液体,冷流道(3)输出的防冻液体进入到换热器(6)中,将热量传递给地表以下土壤,然后再进入到冷流道(3)中;
    当电池模组(1)的工作温度低于下限警戒温度时,通过换热器(6)对防冻液体进行加热,再将加热后的防冻液体输入到热流道(4)内,通过热流道(4)将热量传递给热管(2),使热管(2)内处于真空状态的工质被加热,生成液、汽相间的柱塞,在冷、热端间形成压差,由于汽液柱塞交错分布,使得热管(2)内产生往复振荡运动,从而将热量传递给电池模组(1),使得电池模组(1)升温到工作温度范围内。
PCT/CN2021/110384 2020-08-04 2021-08-03 一种储能电池模组的热管式热管理装置及方法 WO2022028433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010774454.X 2020-08-04
CN202010774454.XA CN111816955A (zh) 2020-08-04 2020-08-04 一种储能电池模组的热管式热管理装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/074,123 Continuation US20230092995A1 (en) 2020-06-05 2022-12-02 Foaming spray device and toilet with foam foaming spray device

Publications (1)

Publication Number Publication Date
WO2022028433A1 true WO2022028433A1 (zh) 2022-02-10

Family

ID=72863613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110384 WO2022028433A1 (zh) 2020-08-04 2021-08-03 一种储能电池模组的热管式热管理装置及方法

Country Status (2)

Country Link
CN (1) CN111816955A (zh)
WO (1) WO2022028433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614157A (zh) * 2022-03-28 2022-06-10 山东新大陆电力股份有限公司 一种电池簇热管理设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816955A (zh) * 2020-08-04 2020-10-23 中国华能集团清洁能源技术研究院有限公司 一种储能电池模组的热管式热管理装置及方法
CN114094231B (zh) * 2021-11-24 2023-05-05 贵州工程应用技术学院 一种基于平板热管的动力电池热管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009040067A1 (de) * 2009-09-04 2011-03-10 Fev Motorentechnik Gmbh Batterie mit Kühlung der Batteriezellen nach dem Wärmerohr-Prinzip
CN202839901U (zh) * 2012-09-29 2013-03-27 北京有色金属研究总院 动力电池热管理系统
CN103227354A (zh) * 2012-01-27 2013-07-31 昭和电工株式会社 电池组的冷却兼加热结构
CN206758585U (zh) * 2017-05-13 2017-12-15 赣州市创翔电源有限公司 一种高性能汽车用动力蓄电池
CN109361036A (zh) * 2018-10-31 2019-02-19 华南理工大学 一种高效节能的电池模组热管理装置
CN111816955A (zh) * 2020-08-04 2020-10-23 中国华能集团清洁能源技术研究院有限公司 一种储能电池模组的热管式热管理装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009040067A1 (de) * 2009-09-04 2011-03-10 Fev Motorentechnik Gmbh Batterie mit Kühlung der Batteriezellen nach dem Wärmerohr-Prinzip
CN103227354A (zh) * 2012-01-27 2013-07-31 昭和电工株式会社 电池组的冷却兼加热结构
CN202839901U (zh) * 2012-09-29 2013-03-27 北京有色金属研究总院 动力电池热管理系统
CN206758585U (zh) * 2017-05-13 2017-12-15 赣州市创翔电源有限公司 一种高性能汽车用动力蓄电池
CN109361036A (zh) * 2018-10-31 2019-02-19 华南理工大学 一种高效节能的电池模组热管理装置
CN111816955A (zh) * 2020-08-04 2020-10-23 中国华能集团清洁能源技术研究院有限公司 一种储能电池模组的热管式热管理装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614157A (zh) * 2022-03-28 2022-06-10 山东新大陆电力股份有限公司 一种电池簇热管理设备
CN114614157B (zh) * 2022-03-28 2024-02-06 山东新大陆电力股份有限公司 一种电池簇热管理设备

Also Published As

Publication number Publication date
CN111816955A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2022028433A1 (zh) 一种储能电池模组的热管式热管理装置及方法
CN109037726B (zh) 一种用于燃料电池传热均温的风冷式模块
CN208208922U (zh) 一种可对动力电池冷却和加热的装置
CN106785213A (zh) 带有板式热管的电动汽车电池热管理系统
CN210607400U (zh) 一种散热优良的移动储能电池柜
CN109037731B (zh) 一种用于大功率燃料电池传热均温的液冷式模块
CN108511850B (zh) 一种基于自然循环的动力电池复合热管理系统及其方法
CN110400945A (zh) 燃料电池余热回收系统、燃料电池汽车及其工作方法
CN201368606Y (zh) 一种采用热管冷却的平板型太阳能光伏电-热转换装置
CN112864490A (zh) 一种基于冷媒气液两相换热的鼓泡式动力电池热管理系统
CN207572495U (zh) 一种用于电池组加热和冷却装置
CN209641783U (zh) 一种基于热管原理的电池两相散热装置
CN206160547U (zh) 一种利用cpu余热的高热密度机房综合散热系统
CN202119308U (zh) 一种辐射式平板热管散热器
CN111834698A (zh) 一种基于温差发电耦合pcm-翅片-空冷电池热管理系统
CN204011608U (zh) 一种用于圆电池的相变散热装置
CN106568118A (zh) 一种聚光型太阳能热泵供暖发电系统
CN110544807A (zh) 动力电池的液冷系统及其控制方法
CN212303772U (zh) 一种储能电池模组的热管式热管理装置
CN109577422A (zh) 一种冷凝制水装置
CN212627813U (zh) 一种光伏电站发电设备用散热装置
CN209766601U (zh) 一种基于平板热管的电池组热管理系统
CN210014561U (zh) 一种蓄热式节能加热系统及光伏组件层压设备
CN206961981U (zh) 一种新型锂电池模块散热装置
CN220914365U (zh) 一种联合热管理液冷储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853210

Country of ref document: EP

Kind code of ref document: A1