WO2022028309A1 - 上行传输方法及相关装置 - Google Patents

上行传输方法及相关装置 Download PDF

Info

Publication number
WO2022028309A1
WO2022028309A1 PCT/CN2021/109341 CN2021109341W WO2022028309A1 WO 2022028309 A1 WO2022028309 A1 WO 2022028309A1 CN 2021109341 W CN2021109341 W CN 2021109341W WO 2022028309 A1 WO2022028309 A1 WO 2022028309A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
zero
group
power reference
cdm
Prior art date
Application number
PCT/CN2021/109341
Other languages
English (en)
French (fr)
Inventor
余雅威
余健
郭志恒
周国华
葛莉玮
汪少波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011128974.XA external-priority patent/CN114070449A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21853934.4A priority Critical patent/EP4184816A4/en
Priority to JP2023506554A priority patent/JP2023537334A/ja
Priority to CA3187908A priority patent/CA3187908A1/en
Publication of WO2022028309A1 publication Critical patent/WO2022028309A1/zh
Priority to US18/161,504 priority patent/US20230179362A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of data transmission, and in particular, to an uplink transmission method and a related device.
  • the present application provides an uplink transmission method and related apparatus, which can improve the transmission success rate of data transmission from a terminal device to a network device.
  • an uplink transmission method including:
  • the terminal device sends an uplink signal including a zero-power reference signal to the network device;
  • the transmission power of the uplink signal within the range of the time-frequency resource of the zero-power reference signal is zero.
  • the signal received on the time-frequency resource of the zero-power reference signal can reflect the data transmission from the terminal device's serving cell in neighboring cells to the terminal device.
  • the interference caused by uplink data transmission therefore, the network device can estimate the adjacent cell interference according to the received uplink signal in the range of the time-frequency resource of the zero-power reference signal and perform interference cancellation from the received signal, thereby improving the uplink data transmission efficiency. Demodulation performance, improve the transmission capacity of uplink data.
  • the method before the terminal device sends the uplink signal including the zero-power reference to the network device, the method includes:
  • the uplink signal is generated according to the configuration information of the zero-power reference signal, wherein the configuration information is used to indicate a pattern of time-frequency resources of the zero-power reference signal.
  • the method before generating the uplink signal according to the configuration information of the zero-power reference signal, the method includes:
  • the configuration information sent by the network device is received.
  • the uplink signal further includes a modulation and demodulation reference signal DMRS, and the time-frequency resources of the zero-power reference signal do not overlap with the time-frequency resources of the DMRS.
  • DMRS modulation and demodulation reference signal
  • the zero-power reference signal is a zero-power reference signal corresponding to a serving cell of the terminal device; the zero-power reference signal corresponding to the serving cell and a neighboring cell of the serving cell is a
  • the time-frequency resources do not overlap each other.
  • the number of the zero-power reference signal is one or more;
  • the time domain of the time-frequency resource unit includes: one time slot, or one mini-slot, or at least two time domain symbols.
  • the number of REs occupied by each zero-power reference signal is one or more.
  • the configuration information of the zero-power reference information includes at least one of the following information:
  • the number of the zero-power reference signals the number of the zero-power reference signals
  • the time-domain symbol where the 1 RE is located is the time allowed to be occupied by each of the zero-power reference signals the starting time domain symbol of the domain symbol range;
  • the time-domain symbols where the two REs are located are at least one of the two time-domain symbols starting from the starting time-domain symbol domain symbol;
  • the uplink signal further includes DMRS;
  • the starting time domain symbol of each time domain symbol allowed to occupy by the zero-power reference signal is any one of the following: the time domain symbol after the time domain symbol where the time-frequency resource of the DMRS is located The first time-domain symbol, or, the middle-most time-domain symbol in the time-frequency resource unit; wherein, the middle-most time-domain symbol is different from the time-domain symbol where the time-frequency resource of the DMRS is located, or, The second time-domain symbol after the first time-domain symbol where the time-frequency resource of the DMRS is located.
  • the number of REs occupied by the zero-power reference signal of the serving cell of the terminal equipment is 1, and the number of REs occupied by the zero-power reference signals of the adjacent cells of the serving cell of the terminal equipment is 1 1;
  • the first subcarriers corresponding to the serving cell and neighboring cells of the serving cell are different, and the first subcarriers are the subcarriers where the zero power reference signal is located.
  • the number of REs occupied by a zero-power reference signal corresponding to a target cell is 2, and the target cell is any one of a serving cell of the terminal device and a neighboring cell of the serving cell ;
  • the first subcarrier and the second subcarrier corresponding to the target cell are not adjacent to each other, and the first subcarrier and the second subcarrier are the subcarriers where the two REs corresponding to the target cell are located;
  • the subcarriers where the REs occupied by the zero-power reference signals corresponding to different target cells located in the same time-domain symbol are different.
  • the time-frequency resource unit for sending the uplink signal includes 12 subcarriers; the first subcarrier corresponding to any target cell in the serving cell and the adjacent cells of the serving cell
  • the frequency domain offset FreqOffset is determined according to the cell identifier CID of the target cell, wherein,
  • mod represents the remainder operation
  • Q is the total number of cells of the serving cell and adjacent cells of the serving cell, Q is an integer greater than or equal to 2 and less than 7;
  • CID is an integer greater than or equal to 0.
  • the number of REs occupied by each of the zero-power reference signals is 2;
  • the distribution modes of the time domain symbols where the two REs are located are: a first distribution mode, or a second distribution mode;
  • the first distribution mode is used to indicate that the 2 REs are located in 2 consecutive time domain symbols
  • the second distribution manner is used to indicate that the two REs are located in one time-domain symbol.
  • the distribution mode of the time domain symbols where the two REs are located is the second distribution mode
  • the time domain symbols where the two REs are located are determined according to the serving cell of the terminal equipment.
  • the cell identity is determined; wherein,
  • CID is the cell identifier
  • SumCR is the total number of subcarriers in a time-frequency resource unit
  • T is the number of subcarrier intervals
  • T is an integer greater than or equal to 1 or less than or equal to 6.
  • T is less than or equal to SumCR/Q.
  • the distribution mode of the time domain symbols where the two REs are located is the first distribution mode
  • the subcarrier offset is 1 or 3 or 5; or,
  • the subcarrier offset between the first subcarrier and the second subcarrier where the two REs are located is 2 or 4 or 6.
  • the number of the zero-power reference signals is 2;
  • the subcarriers where the time-frequency resources of the two zero-power reference signals are located are the same or different.
  • the sub-carrier offset between the sub-carriers where the two zero-power reference signals are located is 1 or 3 or 5.
  • the time-frequency resource of the zero-power reference signal includes: P REs located on the to-be-processed time-domain symbol in a time-frequency resource unit used for transmitting the uplink signal;
  • the frequency domain of the time-frequency resource unit includes 12 subcarriers; the subcarriers where the P REs are located are ⁇ i 1 , i 2 , . Other sub-carriers other than the sub-carriers mentioned are ⁇ j 1 , j 2 ,...,j 12-P ⁇ ; wherein, P is an integer greater than or equal to 1 and less than 12;
  • the method also includes:
  • the first data is kP data segments x 1 , x 2 , . . . , x kP , and each RE is used to carry data in one data segment;
  • the second data is determined, wherein the second data x k-P+1 , . . . , x k satisfies:
  • k is the number of time-domain symbols in the time-frequency resource unit, and k is greater than p.
  • the configuration information of the zero-power reference signal includes at least one of the following information:
  • any time-frequency resource unit used for sending the uplink signal whether the zero-power reference signal supports the configuration indication of the code division multiplexing group CDM group; wherein, whether the zero-power reference signal supports the CDM group configuration indication is used to indicate Whether to configure the time-frequency resource where the zero-power reference signal is located according to the time-frequency resource where the DMRS in the uplink signal is located or the CDM configuration type corresponding to the DMRS;
  • the CDM configuration type of the DMRS includes: a first CDM type, a second CDM type, and a third CDM type; wherein, the time-frequency resources of the DMRS are corresponding to the DMRS.
  • the CDM group ID is determined from a group resource set, wherein the group resource set includes multiple group resources, and different CDM group IDs correspond to different group resources in the group resource set, and the multiple group resources The time domain symbols where at least two group resources in the group resources are located are different;
  • a configuration mode of a zero-power reference signal supporting a CDM group wherein, the configuration mode includes: a first configuration mode and a second configuration mode; the REs occupied by the zero-power reference signal using the first configuration mode and the The subcarriers where the REs occupied by the DMRS are located are the same; the subcarriers where the zero-power reference signal using the second configuration mode is located is the set of all the subcarriers where the DMRSs of all CDM groups corresponding to the CDM configuration type are located, wherein all The subcarrier where the DMRS of the CDM group is located is a part of the subcarriers in the time-frequency resource unit used for sending uplink signals;
  • the number of group resource units in each group resource is the number of group resource units in each group resource.
  • the sub-carriers where the zero-power reference signal is located are part of the sub-carriers of the time-frequency resource unit used for sending uplink signals.
  • the uplink signal further includes a DMRS; the subcarrier where the DMRS is located is determined according to the CDM group corresponding to the DMRS;
  • time domain symbols and/or subcarriers where the DMRS of different CDM groups are located are different;
  • the time-frequency resource where the zero-power reference signal is located is determined according to the time-frequency resource of the DMRS or the CDM configuration type.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the first configuration mode
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, the subcarriers where the DMRSs corresponding to different group IDs are located are different;
  • the identifier of the subcarrier where the zero-power reference signal is located is the same as the identifier of the subcarrier where the DMRS of the uplink signal is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, the subcarriers where the DMRSs corresponding to different group IDs are located are different;
  • the subcarrier where the zero-power reference signal is located includes the subcarrier where the DMRS of all CDM groups corresponding to the CDM configuration type are located;
  • the starting time-domain symbol where the REs occupied by the zero-power reference signal are located is the first time-domain symbol after the time-domain symbol where the DMRS is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode
  • the CDM configuration type of the DMRS is the third CDM type
  • the time-frequency resource where the zero-power reference signal is located includes the set of time-frequency resources where the DMRS of all CDM groups corresponding to the CDM configuration type are located, except the time-frequency resource where the DMRS of the uplink signal is located, wherein the time-frequency resource of the DMRS is located.
  • the resource is determined from the group resource set according to the CDM group ID corresponding to the DMRS, wherein the group resource set includes a plurality of group resources, and different CDM group IDs correspond to different groups in the group resource set group resources, at least two group resources in the multiple group resources are located in different time domain symbols; all subcarriers where the DMRS of all CDM groups are located are part of the subcarriers in the time-frequency resource unit used for sending uplink signals carrier.
  • the time domain symbols where the DMRSs corresponding to at least two CDM groups supported by the third CDM type are located are different.
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type
  • the subcarrier where the zero-power reference signal is located includes all subcarriers that satisfy the first condition, and the first condition is the remainder of the subcarrier offset modulo 2 equal to all subcarriers of the CDM group ID;
  • the subcarrier where the zero-power reference signal is located includes all subcarriers that satisfy the second condition, and the second condition is the remainder of the subcarrier offset modulo 6 Equal to all subcarriers of the CDM group ID*2 or the CDM group ID*2+1.
  • each group resource includes at least two group resource units
  • the time domain symbols occupied by the at least two group resource units are the same, and the subcarriers occupied by the at least two group resource units are different;
  • Each group resource unit occupies at least one time domain symbol
  • Each group resource unit occupies at least one subcarrier
  • all subcarriers where the group resource units corresponding to all CDM groups are located are part of the subcarriers in the time-frequency resource unit.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units;
  • Each group resource unit occupies 2 consecutive time domain symbols
  • Each group resource unit occupies 2 consecutive subcarriers
  • the number of time domain symbols occupied by group resource units of all CDM group IDs is 6;
  • the number of subcarriers occupied by group resource units of all CDM group IDs is 4.
  • the difference between the transmit powers of different time-domain symbols is less than a preset deviation power threshold.
  • the transmit powers of symbols in different time domains are equal.
  • the time-frequency resource unit used for sending the uplink signal is a resource block RB; in any target time-domain symbol including the REs occupied by the zero-power reference signal, each The transmit power of an effective RE is the transmit power of the target time-domain symbol divided by the number of effective REs;
  • the valid REs are other REs on the target time-domain symbol except the REs occupied by the zero-power reference signal.
  • REs other than REs occupied by the zero-power reference signal on the target time-domain symbol where the zero-power reference signal is located are data REs used for carrying data.
  • an uplink transmission method including:
  • the network device receives an uplink signal including a zero-power reference signal sent by a terminal device, wherein, in the time-frequency resource used for sending the uplink signal, the uplink signal within the range of the time-frequency resource of the zero-power reference signal The transmit power is zero;
  • the network device may be a base station.
  • the method before receiving the uplink signal including the zero-power reference signal according to the network device, the method includes:
  • the performing channel estimation according to the uplink signal received in the time-frequency resource of the zero-power reference signal includes:
  • the uplink signal received in the time-frequency resource of the zero-power reference signal is acquired according to the configuration information.
  • the uplink signal further includes a modulation and demodulation reference signal DMRS, and the time-frequency resources of the zero-power reference signal do not overlap with the time-frequency resources of the DMRS.
  • DMRS modulation and demodulation reference signal
  • the zero-power reference signal is a zero-power reference signal corresponding to a serving cell of the terminal device; each cell group formed by the serving cell and neighboring cells of the serving cell The time-frequency resources of the zero-power reference signals corresponding to the cells do not overlap with each other.
  • the number of the zero-power reference signal is one or more;
  • the time domain of the time-frequency resource unit includes: one time slot, or one mini-slot, or at least two time domain symbols.
  • the number of REs occupied by each zero-power reference signal is one or more.
  • the configuration information of the zero-power reference information includes at least one of the following information:
  • the number of the zero-power reference signals the number of the zero-power reference signals
  • the time-domain symbol where the 1 RE is located is the time allowed to be occupied by each of the zero-power reference signals the starting time domain symbol of the domain symbol range;
  • the time-domain symbols where the two REs are located are at least one of the two time-domain symbols starting from the starting time-domain symbol domain symbol;
  • the uplink signal further includes DMRS;
  • the initial time domain symbol of the time domain symbol allowed to be occupied by each of the zero-power reference signals is any of the following:
  • the middlemost time-domain symbol in the time-frequency resource unit; wherein, the middlemost time-domain symbol is different from the time-domain symbol where the time-frequency resource of the DMRS is located, or,
  • the number of REs occupied by the zero-power reference signal of the serving cell of the terminal equipment is 1, and the number of REs occupied by the zero-power reference signals of the adjacent cells of the serving cell of the terminal equipment is 1 1;
  • the first subcarriers corresponding to the serving cell and neighboring cells of the serving cell are different, and the first subcarriers are the subcarriers where the zero power reference signal is located.
  • the number of REs occupied by the zero-power reference signal corresponding to a target cell is 2, and the target cell is a serving cell of the terminal device and an adjacent cell of the serving cell. anyone;
  • the first subcarrier and the second subcarrier corresponding to the target cell are not adjacent to each other, and the first subcarrier and the second subcarrier are the subcarriers where the 2 REs corresponding to the target cell are located;
  • the subcarriers where the REs occupied by the zero-power reference signals corresponding to different target cells located in the same time-domain symbol are different.
  • the time-frequency resource unit for sending the uplink signal includes 12 subcarriers; the first subcarrier corresponding to any target cell in the serving cell and the adjacent cells of the serving cell
  • the frequency domain offset FreqOffset is determined according to the cell identifier CID of the target cell, wherein,
  • mod represents the remainder operation
  • Q is the total number of cells of the serving cell and adjacent cells of the serving cell, Q is an integer greater than or equal to 2 and less than 7;
  • CID is an integer greater than or equal to 0.
  • the number of REs occupied by each of the zero-power reference signals is 2;
  • the distribution modes of the time domain symbols where the two REs are located are: a first distribution mode, or a second distribution mode;
  • the first distribution mode is used to indicate that the 2 REs are located in 2 consecutive time domain symbols
  • the second distribution manner is used to indicate that the two REs are located in one time-domain symbol.
  • the distribution mode of the time-domain symbols where the two REs are located is the first distribution mode.
  • the distribution mode of the time domain symbols where the two REs are located is the second distribution mode
  • the time domain symbols where the two REs are located are determined according to the serving cell of the terminal equipment.
  • the cell identity is determined; wherein,
  • CID is the cell identifier
  • SumCR is the total number of subcarriers in a time-frequency resource unit
  • T is the number of subcarrier intervals
  • T is an integer greater than or equal to 1 or less than or equal to 6.
  • the distribution mode of the time domain symbols where the two REs are located is the first distribution mode
  • the subcarrier offset is 1 or 3 or 5; or,
  • the subcarrier offset between the first subcarrier and the second subcarrier where the two REs are located is 2 or 4 or 6.
  • the number of the zero-power reference signals is two; the time-frequency resources of the two zero-power reference signals are located in The subcarriers are the same or different.
  • the sub-carrier offset between the sub-carriers where the two zero-power reference signals are located is 1 or 3 or 5.
  • the configuration information of the zero-power reference signal includes at least one of the following information:
  • any time-frequency resource unit used for sending the uplink signal whether the zero-power reference signal supports the configuration indication of the code division multiplexing group CDM group; wherein, whether the zero-power reference signal supports the CDM group configuration indication is used to indicate Whether to configure the time-frequency resource where the zero-power reference signal is located according to the time-frequency resource where the DMRS in the uplink signal is located or the CDM configuration type corresponding to the DMRS;
  • the CDM configuration type of the DMRS includes: a first CDM type, a second CDM type, and a third CDM type; wherein, the time-frequency resources of the DMRS are corresponding to the DMRS.
  • the CDM group ID is determined from a group resource set, wherein the group resource set includes multiple group resources, and different CDM group IDs correspond to different group resources in the group resource set, and the multiple group resources The time domain symbols where at least two group resources in the group resources are located are different;
  • a configuration mode of a zero-power reference signal supporting a CDM group wherein, the configuration mode includes: a first configuration mode and a second configuration mode; the REs occupied by the zero-power reference signal using the first configuration mode and the The subcarriers where the REs occupied by the DMRS are located are the same; the subcarriers where the zero-power reference signal using the second configuration mode is located is the set of all the subcarriers where the DMRSs of all CDM groups corresponding to the CDM configuration type are located, wherein all The subcarrier where the DMRS of the CDM group is located is a part of the subcarriers in the time-frequency resource unit used for sending uplink signals;
  • the number of group resource units in each group resource is the number of group resource units in each group resource.
  • the sub-carriers where the zero-power reference signal is located are part of the sub-carriers of the time-frequency resource unit used for sending uplink signals.
  • the uplink signal further includes a DMRS; the subcarrier where the DMRS is located is determined according to the CDM group corresponding to the DMRS;
  • time domain symbols and/or subcarriers where the DMRS of different CDM groups are located are different;
  • the time-frequency resource where the zero-power reference signal is located is determined according to the time-frequency resource of the DMRS or the CDM configuration type.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the first configuration mode
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, the subcarriers where the DMRSs corresponding to different group IDs are located are different;
  • the identifier of the subcarrier where the zero-power reference signal is located is the same as the identifier of the subcarrier where the DMRS of the uplink signal is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, the subcarriers where the DMRSs corresponding to different group IDs are located are different;
  • the subcarrier where the zero-power reference signal is located includes the subcarrier where the DMRS of all CDM groups corresponding to the CDM configuration type are located;
  • the starting time-domain symbol where the REs occupied by the zero-power reference signal are located is the first time-domain symbol after the time-domain symbol where the DMRS is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode
  • the CDM configuration type of the DMRS is the third CDM type
  • the time-frequency resource where the zero-power reference signal is located includes the set of time-frequency resources where the DMRS of all CDM groups corresponding to the CDM configuration type are located, except the time-frequency resource where the DMRS of the uplink signal is located, wherein the time-frequency resource of the DMRS is located.
  • the resource is determined from the group resource set according to the CDM group ID corresponding to the DMRS, wherein the group resource set includes a plurality of group resources, and different CDM group IDs correspond to different groups in the group resource set group resources, at least two group resources in the multiple group resources are located in different time domain symbols; all subcarriers where the DMRS of all CDM groups are located are part of the subcarriers in the time-frequency resource unit used for sending uplink signals carrier.
  • the time domain symbols where the DMRSs corresponding to at least two CDM groups supported by the third CDM type are located are different;
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type
  • the subcarrier where the zero-power reference signal is located includes all subcarriers that satisfy the first condition, and the first condition is the remainder of the subcarrier offset modulo 2 equal to all subcarriers of the CDM group ID;
  • the subcarrier where the zero-power reference signal is located includes all subcarriers that satisfy the second condition, and the second condition is the remainder of the subcarrier offset modulo 6 Equal to the CDM group ID*2 and all subcarriers of the CDM group ID*2+1.
  • each group resource includes at least two group resource units
  • the time domain symbols occupied by the at least two group resource units are the same, and the subcarriers occupied by the at least two group resource units are different;
  • Each group resource unit occupies at least one time domain symbol; each group resource unit occupies at least one subcarrier .
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units;
  • Each group resource unit occupies 2 consecutive time domain symbols
  • Each group resource unit occupies 2 consecutive subcarriers
  • the number of time domain symbols occupied by group resource units of all CDM group IDs is 6;
  • the number of subcarriers occupied by group resource units of all CDM group IDs is 4.
  • an embodiment of the present application further provides a method for transmitting a reference signal, including:
  • the terminal device sends DMRS to the network device
  • the time-frequency resources of the DMRS are determined from a group resource set according to a first identifier corresponding to the terminal device, wherein the group resource set includes a plurality of group resources, and different first identifiers correspond to For different group resources in the group resource set, at least two group resources in the multiple group resources have different time domain symbols.
  • the DMRS may be used by the network device to perform channel estimation, remove interference, and demodulate data carried in the uplink signal on the uplink signal including the DMRS.
  • the first identifier is the identifier of the CDM group corresponding to the terminal device.
  • the time domain symbol and/or subcarrier where the DMRS is located is determined according to the identifier of the CDM group corresponding to the terminal device and the CDM configuration type;
  • the time domain symbol where the DMRS corresponding to the first CDM group is located is different from the time domain symbol where the DMRS corresponding to the second CDM group is located, and the first CDM group is the terminal
  • the CDM group corresponding to the device, the second CDM group is at least one other CDM group in at least two CDM groups including the first CDM group supported by the third CDM type.
  • each group resource includes at least two group resource units
  • the time domain symbols occupied by the at least two group resource units are the same, and the subcarriers occupied by the at least two group resource units are different;
  • Each group resource unit occupies at least one time domain symbol; each group resource unit occupies at least one subcarrier.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units;
  • Each group resource unit occupies 2 consecutive time domain symbols
  • Each group resource unit occupies 2 consecutive subcarriers
  • the number of time domain symbols occupied by group resource units of all CDM group IDs is 6;
  • the number of subcarriers occupied by group resource units of all CDM group IDs is 4.
  • an embodiment of the present application further provides a method for transmitting a reference signal, including:
  • the network device receives the DMRS sent by the terminal device
  • the time-frequency resources of the DMRS are determined from a group resource set according to a first identifier corresponding to the terminal device, wherein the group resource set includes a plurality of group resources, and different first identifiers correspond to For different group resources in the group resource set, at least two group resources in the multiple group resources have different time domain symbols.
  • the first identifier is the identifier of the CDM group corresponding to the terminal device.
  • the time domain symbol and/or subcarrier where the DMRS is located is determined according to the identifier of the CDM group corresponding to the terminal device and the CDM configuration type;
  • the time domain symbol where the DMRS corresponding to the first CDM group is located is different from the time domain symbol where the DMRS corresponding to the second CDM group is located, and the first CDM group is the terminal
  • the CDM group corresponding to the device, the second CDM group is at least one other CDM group in at least two CDM groups including the first CDM group supported by the third CDM type.
  • each group resource includes at least two group resource units
  • the time domain symbols occupied by the at least two group resource units are the same, and the subcarriers occupied by the at least two group resource units are different;
  • Each group resource unit occupies at least one time domain symbol; each group resource unit occupies at least one subcarrier .
  • all the subcarriers in which the group resource set is located are part of the subcarriers in the time-frequency resource unit.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units;
  • Each group resource unit occupies 2 consecutive time domain symbols
  • Each group resource unit occupies 2 consecutive subcarriers
  • the number of time domain symbols occupied by group resource units of all CDM group IDs is 6;
  • the number of subcarriers occupied by group resource units of all CDM group IDs is 4.
  • an embodiment of the present application further provides a communication apparatus on the side of a terminal device, and the apparatus may be a terminal device or a chip in the terminal device.
  • the apparatus has the function of implementing any one of the first aspect to the fourth aspect related to the terminal device. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the terminal device when the apparatus is a terminal device, the terminal device includes: a processor and a transceiver, and the processor is configured to support the terminal device to perform corresponding functions in the above method.
  • the transceiver is used to support the communication between the terminal device and the network device, and send the information or instructions involved in the above method to the network device.
  • the terminal device may further include a memory, which is used for coupling with the processor, and which stores necessary program instructions and data of the terminal device.
  • the apparatus includes: a processor, a baseband circuit, a radio frequency circuit and an antenna.
  • the processor is used to control the functions of each circuit part, and the baseband circuit is used to generate various signaling and messages, such as RRC messages, etc., after analog conversion, filtering, amplification and up-conversion processing by the radio frequency circuit, and then sent via the antenna to network equipment.
  • the apparatus may further include a memory, which stores necessary program instructions and data of the terminal device.
  • the apparatus may include a processor and a modem
  • the processor may be used for instructions or an operating system to control the functions of the terminal equipment
  • the modem may encapsulate, encode, decode, and modulate data according to the protocol Demodulation, equalization, etc. are used to generate radio frames to support the terminal equipment to perform the corresponding functions in the above-mentioned first aspect.
  • the chip when the device is a chip in the terminal device, the chip includes: a processing module and a transceiver module, and the processing module can be, for example, a processor, for example, the processor is used to generate various types of messages and After encapsulating various types of messages according to the protocol, encoding, modulating, amplifying and other processing are performed.
  • the processor can also be used to demodulate, decode, and decapsulate to obtain signaling and messages.
  • the transceiver module can It is the input/output interface, pin or circuit, etc. on the chip.
  • the processing module can execute the computer-executed instructions stored in the storage unit, so as to support the terminal device to perform the corresponding function in the above method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit in the terminal device located outside the chip, such as a read-only memory.
  • read-only memory referred to as ROM
  • RAM random access memory
  • the apparatus includes a processor, which is coupled to the memory, reads instructions in the memory, and executes any one of the above-mentioned first to fourth aspects according to the instructions.
  • the memory may be internal to the processor or external to the processor.
  • the memory is used to store a computer program, and the processor is used to invoke and execute the computer program from the memory, causing the communication device to perform the methods of the first aspect and its various possible implementations.
  • an embodiment of the present application further provides a communication device on the side of a terminal device, where the device may be a network device or a chip in the network device.
  • the apparatus has the function of implementing any one of the above-mentioned first to fourth aspects related to the network device. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the network device when the apparatus is a network device, the network device includes: a processor and a transceiver, where the processor is configured to support the network device to perform corresponding functions in the above method.
  • the transceiver is used to support the communication between the network device and the terminal device, and send the information or instructions involved in the above method to the terminal device.
  • the network device may further include a memory, which is coupled to the processor and stores necessary program instructions and data of the network device.
  • the apparatus includes: a processor, a baseband circuit, a radio frequency circuit and an antenna.
  • the processor is used to control the functions of each circuit part, and the baseband circuit is used to generate various signaling and messages, such as RRC messages, which are processed by the radio frequency circuit for analog conversion, filtering, amplification and frequency up-conversion, and then sent to the antenna via the antenna.
  • Terminal Equipment the apparatus may further include a memory, which stores necessary program instructions and data of the network device.
  • the apparatus may include a processor and a modem
  • the processor may be used for instructions or an operating system to control the functions of network equipment
  • the modem may encapsulate, encode, decode, and modulate data according to a protocol.
  • Demodulation, equalization, etc. are used to generate radio frames, so as to support the network device to perform the corresponding functions in the above-mentioned first to fourth aspects.
  • the processing module may be, for example, a processor, for example, the processor is used to generate various types of messages and After encapsulating various types of messages according to the protocol, encoding, modulating, amplifying and other processing are performed.
  • the processor can also be used to demodulate, decode, and decapsulate to obtain signaling and messages.
  • the transceiver module can It is the input/output interface, pin or circuit, etc. on the chip.
  • the processing module can execute the computer-executed instructions stored in the storage unit, so as to support the network device to perform the corresponding function in the above method.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the network device, such as a read-only memory.
  • read-only memory referred to as ROM
  • RAM random access memory
  • the apparatus includes a processor, which is coupled to the memory, reads instructions in the memory, and executes the method according to any one of the second aspects above according to the instructions.
  • the memory may be internal to the processor or external to the processor, and the memory may also be external to the apparatus.
  • the present application provides a computer-readable storage medium having stored therein instructions that can be executed by one or more processors on a processing circuit.
  • the computer When running on a computer, the computer is caused to perform the method of any one of the above-mentioned first to fourth aspects or any possible implementations thereof.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any one of the above-mentioned first to fourth aspects or any possible implementations thereof.
  • the present application provides a system-on-a-chip
  • the system-on-a-chip includes a processor for supporting the execution of the method in any one of the first to fourth aspects or any possible implementations thereof, such as generating or process data and/or information referred to in the above-mentioned aspects.
  • the chip system further includes a memory for storing necessary program instructions and data of the data sending device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the system includes at least one terminal device involved in the above aspect, and a network device. .
  • a chip comprising a processor and a memory, the memory is used for storing a computer program, and the processor is used for calling and running the computer program stored in the memory to execute any one of the first aspect method described in item.
  • FIG. 1 is a schematic diagram 1 of an application scenario involved in an embodiment of the application
  • FIG. 2 is an interactive flowchart 1 of an uplink transmission method provided by an embodiment of the present application
  • 3A to 3G are schematic diagrams 1 to 7 of patterns of zero-power reference signals provided by embodiments of the present application.
  • FIG. 4 is a schematic diagram 1 of the distribution of time-frequency resources of a zero-power reference signal in a multi-cell scenario according to an embodiment of the present application;
  • 5A to 5B are schematic diagrams 1 to 2 of patterns of zero-power reference signals in a multi-cell scenario according to an embodiment of the present application;
  • 6A to 6B are schematic diagrams 3 to 4 of patterns of zero-power reference signals in a multi-cell scenario according to an embodiment of the present application;
  • FIGS. 7A to 7B are schematic diagrams 5 to 6 of patterns of zero-power reference signals in a multi-cell scenario according to an embodiment of the present application;
  • FIG. 8A is a second schematic diagram of the distribution of time-frequency resources of a zero-power reference signal in a multi-cell scenario according to an embodiment of the present application.
  • FIG. 8B is a third schematic diagram of distribution of time-frequency resources of a zero-power reference signal in a multi-cell scenario provided by an embodiment of the present application.
  • 9A to 9D are schematic diagrams 9 to 12 of patterns of zero-power reference signals in a multi-cell scenario according to an embodiment of the present application
  • FIG. 10 is a schematic diagram of a mapping process involved in an embodiment of the present application.
  • Fig. 11 is a set of schematic diagrams of the subcarriers where the DMRS configured based on the CDM group is located;
  • 12 to 15 are schematic diagrams of patterns of zero-power reference signals configured in a first configuration manner according to an embodiment of the present application
  • 16 to 22 are schematic diagrams of patterns of zero-power reference signals configured in a second configuration manner according to an embodiment of the present application
  • FIG. 23 is a schematic structural diagram 1 of a communication device according to an embodiment of the present application.
  • FIG. 24 is a second schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram 1 of a terminal device provided by an embodiment of the present application.
  • FIG. 26 is a second schematic structural diagram of a network device provided by an embodiment of the present application.
  • the embodiment of the present application provides an uplink transmission method, and the method can be applied to a communication network.
  • Several communication devices may be included in a communication network.
  • the communication network may include a network device and a terminal device (user equipment, UE), wherein the network device may receive uplink signals sent by one or more terminal devices on pre-planned time-frequency resources.
  • the uplink signal sent by the terminal device to the network device is interfered, the demodulation performance of the network device will be degraded.
  • FIG. 1 is a schematic diagram 1 of an application scenario involved in an embodiment of the present application.
  • some UEs in the network may be within the coverage of multiple cell gNBs at the same time.
  • the uplink transmission as an example, when the signal transmitted by the UE in the left cell reaches the base station on the left in Figure 1, the base station on the left will also receive the uplink signal sent by the UE in the adjacent right cell to the base station on the right in Figure 1.
  • the network device may be a base station in an LTE communication system, or may be a base station (base station, or g Node B, gNB for short) in a wireless new access technology (New Radio Access Technology, NR) system ).
  • a base station base station, or g Node B, gNB for short
  • a wireless new access technology New Radio Access Technology, NR
  • FIG. 2 is a schematic diagram of an interaction flow of an uplink transmission method provided by an embodiment of the present application. As shown in FIG. 2 , the steps in this embodiment of the present application may include:
  • a terminal device sends an uplink signal including a zero-power reference signal to a base station, wherein, in the time-frequency resource used for sending the uplink signal, the transmit power of the uplink signal within the range of the time-frequency resource of the zero-rate reference signal is zero.
  • a zero power reference signal (Zero Power Channel State Information Reference Signal, ZP CSI-RS) can be used for uplink interference measurement. Since no data is actually transmitted on the time-frequency resources of the zero-power reference signal, it can also be called a mute RE.
  • ZP CSI-RS Zero Power Channel State Information Reference Signal
  • the base station performs interference estimation according to the uplink signal received in the time-frequency resource of the zero-power reference signal
  • the base station may estimate the neighbor cell interference according to the uplink signal received in the time-frequency resource of the zero-power reference signal.
  • the base station demodulates the received uplink signal according to the channel estimation result.
  • the base station may perform interference suppression and data demodulation on the received uplink signal according to the result of the neighboring cell interference estimation.
  • the terminal device may send the uplink signal in the physical uplink shared channel PUSCH.
  • the time-frequency resource used for sending the uplink signal may be the first resource in the PUSCH, and the first resource may include the second resource corresponding to the zero-power reference signal.
  • the transmission power of the uplink signal in the range of the second resource may be zero through configuration.
  • step S101 it may further include:
  • the base station sends the configuration information of the zero-power reference signal to the terminal device.
  • the configuration information is used to identify the range of time-frequency resources of the zero-power reference signal.
  • the gNB may send configuration information to the UE through a radio resource control RRC message or downlink control information (Downlink Control Information, DCI) signaling.
  • RRC message Downlink Control Information
  • DCI Downlink Control Information
  • a new field may be directly added to the message or existing The redundancy status of the field, or indirectly informs the UE by carrying the parameter of whether to configure the zero-power reference signal.
  • the base station may instruct the terminal device to configure a zero-power reference signal in the uplink signal when it is found that the uplink interference measurement result is greater than the preset measurement start threshold by performing interference estimation according to other signals.
  • other signals may be sounding reference signals (Sounding Reference Signal, SRS), modulation and demodulation reference signals (Demodulation Reference Signal, DMRS), and the uplink interference measurement result may be at least one parameter such as RSRP and SINR.
  • the terminal device generates an uplink signal according to the configuration information.
  • the terminal device may also acquire the configuration information of the zero-power reference signal in other ways.
  • the terminal device may pre-configure the configuration information of the zero-power reference signal.
  • a method for determining the time-frequency resources of the zero-power reference signal can be configured for the terminal equipment at the factory.
  • the terminal equipment can be pre-configured to determine the range of the time-frequency resources of the zero-power reference signal according to the cell identifier of the serving cell. determine the way.
  • the base station may also be pre-configured at the factory or obtain configuration information from the network management device to ensure that the range of time-frequency resources of the zero-power reference signal determined by the configuration information of the terminal device and the base station is consistent.
  • the time-frequency resources used for sending uplink signals may include at least one resource block (Resource Block, RB), and the configuration information may be used to identify at least one of the following information: In an RB, the number of REs occupied by the zero-power reference signal, the sub-carrier identifier where it is located, and the position of the corresponding time-domain symbol.
  • Resource Block Resource Block
  • the uplink signal may further include a modulation and demodulation reference signal DMRS
  • the configuration information may include: an offset of the time-domain symbol where the time-frequency resource of the zero-power reference signal is located relative to the time-domain symbol where the time-frequency resource of the DMRS is located quantity.
  • the zero-power reference signal can be placed close to the DMRS, or can be placed far from the DMRS.
  • the time-domain symbol of the zero-power reference signal is located in the time-domain symbol in the middle of the time-frequency resource of the uplink signal, the signal received in the time-frequency resource of the zero-power reference signal can more accurately reflect the receiving channel of the uplink signal. the time-domain-varying interference.
  • the time-frequency resource of the zero-power reference signal is located at a relatively front position in the time-domain of the time-frequency resource of the uplink signal, and the base station can compare Estimate the channel early to improve the processing rate of demodulation.
  • the distribution of the time-frequency resources of the zero-power reference signal will be described in detail in other embodiments of the present application.
  • the base station may obtain the time-frequency resources of the zero-power reference signal from the received uplink signal according to the range of the time-frequency resources of the zero-power reference signal identified by the configuration information. Received upstream signal. Taking one RB in the time-frequency resources used for transmitting uplink signals as an example, the base station can obtain the uplink signals received in the time-frequency resources of the zero-power reference signal, and estimate the channel corresponding to the entire RB.
  • the base station may, according to the result of the channel estimation, perform processing of removing interference signals and noise on the uplink signals received in the REs other than the REs occupied by the zero-power reference signal in each RB, and then Demodulate the uplink signal after removing the interference signal and noise.
  • the signal of the target UE received by the gNB may be interfered by the signals sent by other UEs in the adjacent cell, especially the interference to the edge UEs of the cell is more serious, because the signals sent by the edge users pass through After long-distance transmission loss, the received signal reaching the gNB is very weak, resulting in a large interference effect.
  • the embodiments of the present application can solve the problem of inaccurate interference measurement during uplink transmission, improve uplink interference measurement and upload performance, improve uplink coverage capability, and improve the interference measurement capability of UEs located in edge areas of cells.
  • the terminal device when the terminal device sends an uplink signal including a zero-power reference signal to the base station, in fact, no signal is sent on the time-frequency resource of the zero-power reference signal. Therefore, the base station receives the uplink signal on the time-frequency resource of the uplink signal. , the signal received in the time-frequency resource range of the zero-power reference signal is actually generated by interference, and based on this, the base station The channel of the uplink signal is estimated, and the interference in the uplink transmission process is eliminated based on the result of the channel estimation, so that the demodulation performance and transmission rate of the uplink transmission can be improved.
  • the embodiments of the present application provide various optional implementation manners of the range of the time-frequency resources of the zero-power reference signal.
  • the implementation of the time-frequency resources of the zero-power reference signal will be illustrated below with an example.
  • the time-frequency resource used for sending the uplink signal may include at least one time-frequency resource unit in a Physical Uplink Shared Channel (PUSCH).
  • Each time-frequency resource unit may include multiple resource elements RE.
  • the time domain of each time-frequency resource unit may include: one time slot, or one mini-slot, or at least two time domain symbols.
  • the frequency domain of each time-frequency resource unit may include multiple subcarriers, and in an example, may be 12 subcarriers.
  • the time-frequency resource unit may be a resource block RB.
  • the time domain of each RB may include 14 time domain symbols of one slot, the frequency domain of each RB may include 12 subcarriers, and each RB may include 12*14 REs.
  • the time-frequency resource unit may also be a physical resource block (Physical Resource Block, PRB).
  • PRB Physical Resource Block
  • the time-domain offset of any s-th time-domain symbol in the time-frequency resource unit relative to the first time-domain symbol in the time-frequency resource unit is s-1
  • the time-frequency The frequency domain offset of any f-th subcarrier in the resource unit relative to the first sub-carrier in the time-frequency resource unit is f-1.
  • the time-domain offset of the first time-domain symbol in the time-frequency resource unit is 0, the time-domain offset of the second time-domain symbol is 1, and the frequency-domain offset of the first subcarrier is 0 , the frequency domain offset of the third subcarrier is 2.
  • the set of REs occupied by the zero-power reference signal in each time-frequency resource unit may be referred to as a pattern of the zero-power reference signal.
  • the embodiments of the present application will provide various implementations of the pattern of the zero-power reference signal.
  • the configuration information of the zero-power reference signal may be used to indicate the pattern of the zero-power reference signal in each time-frequency resource unit.
  • the configuration information of the zero-power reference information includes at least one of the following information:
  • the number of the zero-power reference signals the number of the zero-power reference signals
  • the amount of subcarrier spacing between the subcarriers where the two zero-power reference signals are located is different, the amount of subcarrier spacing between the subcarriers where the two zero-power reference signals are located.
  • Table 1 is a set of schematic diagrams of various parameters and value ranges of various parameters in the configuration information.
  • Double represents 2
  • the starting time domain symbol of the time domain symbol allowed to be occupied by the zero-power reference signal may be a time domain offset relative to the time domain symbol where the DMRS is located, or may be relative to the time domain where the PUSCH is located.
  • the time domain offset of the symbol may be a time domain offset relative to the time domain symbol where the DMRS is located, or may be relative to the time domain where the PUSCH is located.
  • the number of zero-power reference signals in each time-frequency resource unit, may be one or more. Wherein, each zero-power reference signal may occupy one or more REs.
  • the time domain symbols where the multiple REs are located may be one or more, and the subcarriers where the multiple REs are located may be one or more.
  • the time-domain symbols where the time-frequency resources of the multiple zero-power reference signals are located are different, and the subcarriers where the time-frequency resources of the multiple zero-power reference signals are located may be the same or different.
  • the uplink signal may further include a DMRS, and in each time-frequency resource unit, the time-frequency resources of the zero-power reference signal and the time-frequency resources of the DMRS may not overlap.
  • the time-frequency resources of the zero-power reference signal and the time-domain symbols of the time-frequency resources of the DMRS may be different.
  • the time-domain symbol where the zero-power reference signal is located may be immediately adjacent to the time-domain symbol where the DMRS is located.
  • the time-domain symbols where the zero-power reference signal is located may be far from the time-domain symbols where the DMRS is located.
  • the time-domain symbol range allowed to be occupied by each zero-power reference signal can be set, and then one or more REs of each zero-power reference signal can be set to be located in one of the time-domain symbol ranges allowed to be occupied. or multiple time domain symbols.
  • the time-domain symbol where the 1 RE is located may be a time-domain symbol allowed to be occupied by each of the zero-power reference signals
  • the starting time-domain symbol of the range; when the number of REs occupied by each of the zero-power reference information numbers is 2, the time-domain symbols where these two REs are located may be 2 starting from the starting time-domain symbol At least one of the time domain symbols. It should be noted that, when the number of zero-power reference signals in each time-frequency resource unit is 2, an allowable occupied time-domain symbol range may be set for each zero-power reference signal.
  • the time-domain symbol range allowed to be occupied by each zero-power reference signal may be one or more time-domain continuous time-domain symbols, and the starting time-domain symbol of the time-domain symbol range may be any of the following setting methods.
  • the starting time-domain symbol may be the first time-domain symbol after the time-domain symbol where the time-frequency resource of the DMRS is located.
  • the starting time-domain symbol may be the middlemost time-domain symbol in a time-frequency resource unit; wherein, in an example, the middlemost time-domain symbol may be a time-frequency resource
  • the middlemost time domain symbol among other time domain symbols other than the time domain symbol occupied by the DMRS in the unit, the middlemost time domain symbol will be described in detail in the following embodiments.
  • the starting time domain symbol may be the Kth time domain symbol after the first time domain symbol where the time-frequency resources of the DMRS are located, where K is the allowed occupation of each DMRS
  • K is the allowed occupation of each DMRS
  • the maximum number of time domain symbols, in one example, K can be 1 or 2.
  • Table 2-1 is a set of schematic diagrams of the initial time domain symbols corresponding to various setting methods.
  • a frequency selective channel is a frequency selective fading channel, that is, REs located in different subcarriers can obtain interference measurement results on different subcarriers.
  • the distribution mode of the time domain symbols where each zero-power reference signal is located may be the first distribution mode or the second distribution mode.
  • the distribution mode adopted by the zero-power reference signal corresponding to the serving cell may be determined according to the number of adjacent cells of the serving cell of the terminal device and the cell identifier of the serving cell. Details will be described in the following examples.
  • 3A to 3G are schematic diagrams 1 to 7 of patterns of zero-power reference signals provided by embodiments of the present application.
  • the time domain symbol of the DMRS is one time domain symbol, such as 0, and the time domain symbol of the zero-power reference signal may be the first time domain symbol after the time domain symbol of the DMRS, For example 1, see the pattern shown in Figure 3A.
  • the time-domain symbols of the DMRS are consecutive time-domain symbols, such as 0 and 1
  • the time-domain symbols of the zero-power reference signal are the first time-domain symbols after the last time-domain symbol of the DMRS.
  • a time domain symbol, for example, 2 can refer to the pattern shown in FIG. 3B.
  • the time-domain symbols of the DMRS are two time-domain symbols that are discontinuous in the time-domain, such as 0 and 5, and the time-domain symbols of the zero-power reference signal are 2, which are respectively the time-domain symbols where the DMRS is located.
  • the first time-domain symbol after 2 time-domain symbols, such as 1 and 6, can be referred to FIG. 3E.
  • the time-frequency resources of the zero-power reference signal may be located in the same subcarrier or in different subcarriers of different time domain symbols, please refer to FIG. 3F .
  • the time-domain symbol of the DMRS is one time-domain symbol, such as 0, and the time-domain symbol of the zero-power reference signal is the middle time-domain symbol, such as 7. Please refer to FIG. 3C. diagram.
  • the time domain symbols of the DMRS are two consecutive time domain symbols in the time domain, such as 0 and 1, and the time domain symbol of the zero-power reference signal is the most middle time domain symbol, such as 7. , please refer to the pattern shown in Figure 3D.
  • the DMRS may be located on the first time-domain symbol in an RB, or, on two time-domain symbols starting from the first time-domain symbol, the time-domain symbol where the zero-power reference signal is located may be from One or more time-domain symbols starting from the initial time-domain symbol, where the time-domain symbol offset of the initial time-domain symbol may be an integer greater than 3 and less than 11; the subcarrier where the zero-power reference signal is located may be a subcarrier One or more subcarriers with a carrier offset greater than or equal to 0.
  • the position and number of time-domain symbols where the zero-power reference signal is located may be flexibly indicated and configured, and may be at any one or more time-domain symbol positions.
  • the offsets of the time domain symbols where the zero-power reference signal is located are 10 and 11, and the subcarrier offsets of the subcarriers where the zero-power reference signal is located are 4, 5, 10, and 11.
  • the offsets of the time domain symbols where the zero-power reference signal is located are 6 and 7, and the subcarrier offsets of the subcarriers where the zero-power reference signal is located are 4, 5, 10, and 11.
  • sub-carriers of the zero-power reference signal shown in FIGS. 3A to 3F are only for illustration, and the sub-carriers of the zero-power reference signal may also be other sub-carriers in a time-frequency resource unit.
  • the zero-power reference signal as the zero-power reference signal corresponding to the serving cell of the terminal device as an example
  • the time-frequency resources of the zero-power reference signals corresponding to the adjacent cells of the serving cell do not overlap with each other. That is, the time-frequency resources of zero-power reference signals corresponding to different cells may not overlap.
  • FIG. 4 is a schematic diagram 1 of distribution of time-frequency resources of a zero-power reference signal in a multi-cell scenario according to an embodiment of the present application.
  • the hexagonal sector model shown in Figure 4 taking the serving cell of the terminal equipment as cell 0 (Cell 0) as an example, there can be 6 adjacent cells around the serving cell, namely Cell 1 to Cell 6. Neighboring cells may cause great interference to the uplink signals of edge users of the serving cell.
  • the sub-carriers where the zero-power reference signals of different cells are located can correspond to Different frequency domain offsets.
  • the RE of the zero-power reference signal corresponding to the serving cell may be pre-planned so that the RE of the zero-power reference signal corresponding to the serving cell is located in a different subcarrier from the RE of the zero-power reference signal corresponding to the neighboring cell, and/or the time-domain symbol where the RE of the zero-power reference signal is located is different. different.
  • the number of REs occupied by the zero-power reference signal of the serving cell of the terminal device is 1, and the zero-power reference signal of the neighboring cell of the serving cell of the terminal device is occupied by the zero-power reference signal.
  • the number of REs is 1, the first subcarriers corresponding to the serving cell and the adjacent cells of the serving cell may be different, and the first subcarrier is the subcarrier where the zero-power reference signal is located.
  • FIGS. 5A to 6B are schematic diagrams 1 to 4 of patterns of zero-power reference signals in a multi-cell scenario according to an embodiment of the present application.
  • the zero-power reference signals corresponding to Cell 0 to Cell 1 occupy 1 RE respectively, and are respectively located in different subcarriers.
  • the time-domain symbols where the zero-power reference signals are located in FIGS. 5A and 5B are set close to the DMRS, and the time-domain symbols where the zero-power reference signals are located in FIGS. 6A and 6B are set away from the DMRS.
  • the RE of the DMRS in FIG. 5A and FIG. 6A occupies 1 time domain symbol
  • the RE of the DMRS in FIG. 5B and FIG. 6B occupies 2 time domain symbols.
  • FIGS. 7A to 7B are schematic diagrams 5 to 6 of patterns of zero-power reference signals in a multi-cell scenario according to an embodiment of the present application.
  • the number of zero-power reference signals corresponding to each cell is 2, and each zero-power reference signal corresponding to Cell 0 to Cell 1 occupies one RE, and are located in different subcarriers.
  • the number of DMRSs corresponding to each cell is 2, and each DMRS occupies one time-domain symbol, and the time-domain symbol where each zero-power reference signal is located is adjacent to the setting of the time-domain symbol of the corresponding DMRS.
  • the subcarriers where the REs of the two zero-power reference signals are located may be the same, as shown in FIG. 7B . can be different.
  • FIG. 8A is a second schematic diagram of distribution of time-frequency resources of zero-power reference signals in a multi-cell scenario provided by an embodiment of the present application
  • FIG. 8B is a schematic diagram of time-frequency resources of zero-power reference signals in a multi-cell scenario provided by an embodiment of the present application. Distribution diagram three.
  • the REs occupied by the zero-power reference signal corresponding to the target cell The number can be 2, and the first subcarrier and the second subcarrier corresponding to the target cell are not adjacent to each other; the first subcarrier and the second subcarrier are the two corresponding to the target cell.
  • the subcarrier where the RE is located For each time-domain symbol in the time-frequency resource unit, the subcarriers where the REs occupied by zero-power reference signals corresponding to different target cells located in the same time-domain symbol may be different.
  • the two time-domain symbols shown on the right side in FIG. 8A and FIG. 8B may be time-domain symbols allowed to be occupied by the zero-power reference signal.
  • the time-domain symbol on the left may be symbol1
  • the time-domain symbol on the right is symbol2, where symbol1 may be the initial time-domain symbol allowed to be occupied by the zero-power reference signal.
  • FIGS. 9A to 9D are schematic diagrams 9 to 12 of patterns of zero-power reference signals in a multi-cell scenario according to an embodiment of the present application.
  • the zero-power reference signals corresponding to Cell 0 to Cell 1 occupy 2 REs respectively, and the 2 REs in the same cell are located on different subcarriers.
  • the time-domain symbols where the zero-power reference signals are located in FIGS. 9A and 9B are set close to the DMRS, and the time-domain symbols where the zero-power reference signals are located in FIGS. 9C and 9D are set away from the DMRS.
  • the frequency domain offset (FreqOffset) of the first subcarrier corresponding to each target cell may be determined according to the cell ID (Cell ID, CID) of each target cell.
  • Cell ID, CID the cell ID of each target cell.
  • the FreqOffset of the first subcarrier corresponding to each cell may be determined in the following manner.
  • mod represents the remainder operation
  • Q is the total number of cells of the serving cell and adjacent cells of the serving cell, Q is an integer greater than or equal to 2 and less than 7;
  • CID is an integer greater than or equal to 0.
  • Table 2-2 is a set of schematic diagrams of the first subcarrier of the zero-power reference signal determined according to the cell identity.
  • the subcarrier positions of the zero-power reference signals shown in Table 2-2 can be referred to as shown in FIG. 4 to FIG. 6A .
  • the zero-power reference signal is configured to occupy one RE, that is, the single type: the position of the sub-carrier occupied by the zero-power reference signal in each PRB can be obtained by querying a predefined table according to the Cell ID as an index.
  • the distribution mode of the time-domain symbols where the two REs of the zero-power reference signal are located may be: the first distribution mode, or , the second distribution mode;
  • the first distribution mode is used to indicate that the 2 REs are located in 2 consecutive time domain symbols
  • the second distribution manner is used to indicate that the two REs are located in one time-domain symbol.
  • the time-domain symbols where the two REs are located may be cells according to the serving cell of the terminal device identified; of which,
  • CID is the cell identifier
  • SumCR is the total number of subcarriers in a time-frequency resource unit
  • T is the number of subcarrier intervals
  • T is an integer greater than or equal to 1 or less than or equal to 6.
  • T is less than or equal to SumCR/Q.
  • the distribution mode of the time-domain symbols where the two REs are located may be set to the first distribution mode.
  • the subcarriers between the first subcarrier and the second subcarrier where the two REs are located are The amount of carrier spacing is 1 or 3 or 5. Taking the subcarrier spacing of 5 as an example, please refer to FIG. 8A , FIG. 9A , FIG. 9C and Table 2-3.
  • the subcarriers between the first subcarrier and the second subcarrier where the two REs are located are The amount of carrier spacing is 2 or 4 or 6. Taking the subcarrier spacing of 5 as an example, please refer to FIG. 8B , FIG. 9B , FIG. 9D and Table 2-4.
  • the number of subcarriers of the zero-power reference signal corresponding to each cell is 2, they are the first subcarrier and the second subcarrier, respectively. Then the identifier of the first subcarrier corresponding to the cell may be determined according to the cell identifier of the cell, and the identifier of the second subcarrier corresponding to the cell may be the sum of the identifier of the first subcarrier and the preset subcarrier offset W The remainder modulo 12. For example, W can be equal to 5. See Figure 5. It should be noted that, when the REs occupied by the zero-power reference signals corresponding to the same cell are located in the same time-domain symbol, this setting method can be considered.
  • Table 2-3 is a schematic diagram showing that the REs of the zero-power reference signals of each cell occupy 2 subcarriers on 2 time domain symbols.
  • FIG. 6 is a schematic diagram 3 of the distribution of subcarriers of zero-power reference signals of the target cell and 6 neighboring cells, please refer to FIG. 6 .
  • the time-frequency resources of the zero-power reference signals shown in cell 0 to cell 5 are two REs located in different subcarriers and located in the same time domain symbol.
  • the number of subcarriers of the zero-power reference signal corresponding to each cell is 2, and the time-frequency resources of the zero-power reference signal corresponding to each cell are located at The domain symbol is 1.
  • the subcarriers and time-domain symbols where the time-frequency resources of the zero-power reference signal corresponding to each cell are located may be determined respectively.
  • Table 2-4 is a set of schematic diagrams showing that the REs of the zero-power reference signals of each cell occupy 1 time domain and 2 subcarriers.
  • Symbol1 is the first time-domain symbol of the two time-domain symbols that each zero-power reference signal is allowed to occupy;
  • Symbol2 is the second time-domain symbol of the two time-domain symbols that each zero-power reference signal is allowed to occupy symbol.
  • "Symbol1: (0, 6)" indicates that the two REs are located in two subcarriers with frequency offsets of 0 and 6 on the first time-domain symbol of the two time-domain symbols allowed to be occupied.
  • the number of the zero-power reference signals is 2;
  • the carrier can be set the same or different.
  • the subcarrier spacing between the subcarriers where the two zero-power reference signals are located may be 1, 3 or 5.
  • a pattern with a subcarrier spacing of 5 can be referred to as shown in FIG. 7B .
  • Type A there are two types of PUSCH resource allocation methods in the NR system, namely Type A and Type B PUSCH.
  • the main difference lies in the starting position of the time domain symbol of the PUSCH in each slot and the scheduled time domain symbol number.
  • Table 3-1 is a schematic diagram of the PUSCH resource allocation method.
  • S represents the initial time-domain symbol position
  • L represents the length of the scheduled consecutive time-domain symbols
  • S+L represents the last time-domain symbol position of the scheduled PUSCH.
  • a DMRS can be configured in the PUSCH, and the DMRS can be used for channel estimation and data demodulation.
  • Table 3-2 is a configuration table of a time-domain symbol position of the DMRS. (See TS38.212 Table 6.4.1.1.3-3)
  • l 0 represents the offset of the first DMRS symbol relative to the starting symbol of PUSCH scheduling to determine the location of the starting symbol of DMRS: in Type A PUSCH, it is configured by the high-level parameter dmrs-TypeA-Position, and in Type B The value in PUSCH is 0, that is, it starts from the first time-domain symbol position of PUSCH.
  • the time-frequency resources of the zero-power reference signal can be set with reference to the configuration of the PUSCH or DMRS. For example, in Type B PUSCH, if one DMRS occupies the first time-domain symbol, the second time-domain symbol can be used for the zero-power reference signal.
  • the embodiments of the present application provide various implementations for generating an uplink signal according to configuration information.
  • FIG. 10 is a schematic diagram of a mapping process involved in an embodiment of the present application.
  • the frequency domain of the time-frequency resource unit may include 12 sub-carriers
  • the time-frequency resource of the zero-power reference signal includes P in one time-frequency resource unit used to transmit the uplink signal located on the time-domain symbol to be processed RE.
  • the sub-carriers where the P REs are located are ⁇ i 1 , i 2 ,...,i P ⁇ , and the 12 sub-carriers are other than the sub-carriers described by the P REs.
  • the carrier is ⁇ j 1 , j 2 ,...,j 12-P ⁇ ; wherein, P is an integer greater than or equal to 1 and less than 12; the method further includes:
  • the first data is kP data segments x 1 , x 2 , . . . , x kP , and each RE is used to carry data in one data segment;
  • the second data is determined, wherein the second data x k-P+1 , . . . , x k satisfies:
  • k is the number of time-domain symbols in the time-frequency resource unit, and k is greater than p.
  • the signal processing process of uplink transmission in the single-carrier system can be exemplified as follows.
  • the zero-power reference signal occupies the 3rd RE and the 9th RE in the frequency domain symbol y. which is
  • y (y 1 ,y 2 ,0,...,y 8 ,0,y 10 ,y 11 ,y 12 ) T
  • every 12 signals to be sent actually have redundancy of 2 signals that is, the above-mentioned x 11 and x 12 are obtained according to the linear combination of the signals from x 1 to x 10 .
  • a zero-power reference signal that is, a mute RE
  • y 3 and y 9 can be sent on the frequencies of y 3 and y 9 , thereby enabling the gNB to perform uplink transmission in the single-carrier system. Interference measurement.
  • the implementation of the uplink signal generation provided in the embodiments of the present application can implement a single-carrier system, thereby achieving the purpose of maintaining a smaller peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • the embodiments of the present application further provide an optional implementation manner of the range of the time-frequency resources of the DMRS and the zero-power reference signal in a group of uplink signals.
  • the terminal device may send an uplink signal including a DMRS to the network device, where the DMRS may occupy one or more REs on the time-frequency resource unit used for sending the uplink signal.
  • the REs occupied by the DMRS may be located on one or more subcarriers in one or more time domain symbols.
  • the REs other than the DMRS can be set as spare REs or data REs.
  • the time-frequency resources corresponding to the spare REs in the uplink signal The transmit power on the range is zero, and the data REs are REs used to transmit data.
  • a zero-power reference signal may or may not be set on a time-frequency resource unit used for sending an uplink signal.
  • the time-frequency resource where the DMRS is located when the uplink signal includes the DMRS and does not include the zero-power reference signal may be the same as the time-frequency resource where the DMRS is located in the various patterns including the DMRS and the zero-power reference signal shown in the drawings in the embodiments of the present application.
  • which is equivalent to the RE where the zero-power reference signal is located may be a data RE or a spare RE.
  • REs located in the same time-domain symbol as the DMRS may be spare REs or data REs, and REs located in different time-domain symbols from the DMRS may be data REs.
  • REs other than REs occupied by the zero-power reference signal in the time-domain symbol where the zero-power reference signal is located are data REs.
  • the zero-power reference signal and the DMRS in the uplink signal will be exemplarily described below with reference to the accompanying drawings.
  • the time-frequency resources of the DMRS may be determined from a group resource set according to a first identifier corresponding to a terminal device, where the group resource set includes multiple group resources, and different first Different group resources in the corresponding group resource set are identified, and time domain symbols where at least two group resources in the plurality of group resources are located are different.
  • the time domain symbols and/or subcarriers where the DMRSs corresponding to different first identifiers are located are different.
  • the time domain symbols and/or subcarriers where the time-frequency resources occupied by different DMRSs corresponding to the first identifier are different can be used to realize the The DMRS of multiple terminal devices are sent in the same time-frequency resource range.
  • the first identifier may be an identifier of a code division multiplex group (code division multiplex group, CDM group) corresponding to the DMRS corresponding to the terminal device.
  • CDM group code division multiplex group
  • the identifier of the code division multiplexing group may be referred to as a CDM group ID.
  • a DMRS in a time-frequency resource unit used for sending uplink signals may correspond to a CDM group ID.
  • the set of time-frequency resources of the DMRS corresponding to all CDM groups is the set of group resources, and the resources in the set of group resources will not be used for data transmission, that is, the embodiment of the present application
  • the CDM group mentioned in corresponds to the CDM group that is not used to transmit data (ie DMRS CDM group without data).
  • the time domain symbol and/or subcarrier where the DMRS in the uplink signal is located may be determined according to the identifier of the CDM group corresponding to the terminal device and the CDM configuration type.
  • the time-frequency resource where the zero-power reference signal is located may be determined based on the code division multiplexing (code division multiplex, CDM) configuration type corresponding to the DMRS and/or the identifier of the CDM group.
  • CDM code division multiplexing
  • the CDM group ID corresponding to the DMRS may be the CDM group ID corresponding to the terminal device that sends the DMRS.
  • the terminal equipment in a cell can be divided into multiple CDM groups.
  • the time-frequency resources where the DMRSs sent by the terminal equipments in different CDM groups are located are different, and the time-frequency resources where the DMRSs sent by the terminal equipments in the same CDM group are located are located. same.
  • the REs where the DMRSs sent by the terminal devices of different CDM groups are located may be different, that is, the interference between the DMRSs sent by the terminal devices of different CDM groups can be avoided through time division and/or frequency division.
  • the code division method is used to avoid interference between DMRSs of different UEs in the same CDM group.
  • the uplink signal may be a signal sent through an antenna port of the terminal device; at this time, the CDM group corresponding to the terminal device may be the CDM group corresponding to the antenna port of the terminal device; wherein, each antenna of the terminal device
  • the ports may correspond to different CDM groups, or each antenna port of the terminal device may correspond to different orthogonal codes in the CDM group.
  • antenna port 0 and antenna port 1 of the terminal device may correspond to group 0, and antenna port 2 and antenna port 3 may correspond to group 1.
  • the first identifier may be a CDM group ID.
  • the CDM group ID corresponding to the terminal device may be the CDM group ID corresponding to the DMRS sent by the antenna port in the terminal device.
  • the configuration information supporting the zero-power reference information of the CDM group may include at least one of the following information:
  • any time-frequency resource unit used for sending the uplink signal whether the zero-power reference signal supports the configuration indication of the code division multiplexing group CDM group; wherein, whether the zero-power reference signal supports the CDM group configuration indication is used to indicate Whether to configure the time-frequency resource where the zero-power reference signal is located according to the time-frequency resource where the DMRS in the uplink signal is located or the CDM configuration type corresponding to the DMRS;
  • the CDM configuration type of the DMRS includes: a first CDM type, a second CDM type, and a third CDM type; wherein, when the CDM configuration type of the DMRS is the third CDM type, all The time-frequency resource of the DMRS is determined from the group resource set according to the CDM group ID corresponding to the DMRS, wherein the group resource set includes a plurality of group resources, and different CDM group IDs correspond to the group resource set different group resources in the plurality of group resources, the time domain symbols where at least two group resources in the plurality of group resources are located are different;
  • a configuration mode of a zero-power reference signal supporting a CDM group wherein, the configuration mode includes: a first configuration mode and a second configuration mode; the REs occupied by the zero-power reference signal using the first configuration mode and the The subcarriers where the REs occupied by the DMRS are located are the same; the subcarriers where the zero-power reference signal using the second configuration mode is located is the set of subcarriers where the DMRSs of all CDM groups corresponding to the CDM configuration type are located, wherein, The subcarriers where the DMRS of all CDM groups are located are part of the subcarriers in the time-frequency resource unit used for sending uplink signals;
  • the number of group resource units in each group resource is the number of group resource units in each group resource.
  • the DMRS included in each group resource unit occupies consecutive time-domain symbols and/or consecutive subcarriers.
  • the terminal device when the configuration indication of whether the zero-power reference signal supports the code division multiplexing group (CDM group) is yes, the terminal device can use the time-frequency resources of the DMRS or according to the DMRS in the uplink signal including the zero-power reference signal.
  • the corresponding CDM configuration type determines the time-frequency resource where the zero-power reference signal is located; when the configuration indication of whether the zero-power reference signal supports the code division multiplexing group CDM group is No, the terminal device can be based on other configuration methods provided by the embodiments of the present application. Or other parameters in the configuration information determine the time-frequency resource where the zero-power reference signal is located.
  • the starting time-domain symbol of the zero-power reference signal may be the first time-domain symbol after the time-domain symbol where the DMRS is located, the number of time-domain symbols occupied by the zero-power reference signal is one or two, and zero
  • the subcarrier where the power reference signal is located is the 0th subcarrier or the 5th subcarrier.
  • the subcarrier where the zero-power reference signal is located may be a CDM group ID corresponding to the DMRS in the uplink signal according to the time-frequency resource of the DMRS in the uplink signal including the zero-power reference signal , determined by at least one type of information in the CDM configuration type.
  • the initial time domain symbol where the zero power reference signal is located may include other time domain symbols that are adjacent or non-adjacent to the time domain symbol where the DMRS is located, for example, the initial time domain symbol where the zero power reference signal is located It may include the first time-domain symbol and/or the second time-domain symbol after the time-domain symbol where the DMRS is located, or, the time-domain symbol where the zero-power reference signal is located may be determined according to the CDM group ID and/or the CDM configuration type other time-domain symbols; the number of time-domain symbols where the zero-power reference signal is located may be 1, 2, 3, 4, 6, and so on.
  • the time-frequency resource position occupied by the zero-power reference signal can be arbitrarily configured by the network device through signaling.
  • at least one subcarrier position can be configured in each time-frequency resource unit for the zero-power reference signal.
  • the number and location of at least one time-domain symbol can be configured in each time-frequency resource unit, and the network device is configured by signaling, including high-layer signaling (egRRC signaling).
  • the number of time-domain symbols occupied by each zero-power reference signal may be the same as the number of time-domain symbols occupied by each DMRS.
  • the number of time-domain symbols occupied by the zero-power reference signal may be a The number of time domain symbols occupied by each DMRS in the configuration information is determined.
  • An exemplary description will be given below in conjunction with the CDM configuration type and the CDM group ID.
  • the time-frequency resource where the zero-power reference signal is located based on information such as the CDM configuration type, CDM group ID, etc. corresponding to the DMRS.
  • the sub-carrier where the zero-power reference signal is located may be the same as the sub-carrier where the DMRS is located, wherein the sub-carrier where the DMRS is located may be the CDM corresponding to the terminal equipment that transmits the DMRS.
  • the group ID is determined. That is to say, the subcarrier where the zero-power reference signal is located may be determined according to the CDM group ID corresponding to the terminal equipment that transmits the zero-power reference signal and the DMRS.
  • the following describes various configuration modes of the subcarrier where the DMRS is located.
  • the subcarrier where the zero-power reference signal is located can be determined in the same way as determining the subcarrier where the DMRS is located based on the CDM group ID.
  • the subcarrier where the DMRS is located may be determined according to the CDM configuration type of the DMRS and the CDM group ID.
  • the CDM configuration types of the DMRS may be the first CDM type, the second CDM type, and the third CDM type.
  • Table 4-1 is an illustration of CDM configuration types.
  • the number of time-domain symbols occupied by the zero-power reference signal may be one or two.
  • the start time-domain symbol in the time-domain symbols allowed to be occupied is the first time-domain symbol after the time-domain symbol occupied by the DMRS.
  • the number of time-domain symbols occupied by the zero-power reference signal may be the same as the number of time-domain symbols occupied by the DMRS.
  • the configuration information of the DMRS may include information such as the number of subcarrier intervals of the DMRS.
  • the number of subcarrier intervals is the number of subcarriers spaced between multiple subcarriers where the DMRS of the same CDM group are located. For example, if the subcarriers where the DMRS corresponding to a certain group ID is located are 3, 7, and 11, the number of subcarrier intervals is 3.
  • the time-frequency resources of the zero-power reference signal may be configured by adopting the above-mentioned first configuration manner or the second configuration manner.
  • the CDM configuration type is the third CDM type
  • the time-frequency resources of the DMRS are determined from a group resource set according to the CDM group ID corresponding to the DMRS, wherein the group resource set includes multiple groups resource, different CDM group IDs correspond to different group resources in the group resource set, and at least two group resources in the multiple group resources have different time domain symbols.
  • the time domain symbol where the DMRS corresponding to the first CDM group is located is different from the time domain symbol where the DMRS corresponding to the second CDM group is located, the first CDM group is the CDM group corresponding to the terminal equipment, the Two CDM groups are at least one other CDM group in at least two CDM groups including the first CDM group supported by the third CDM type.
  • the subcarriers where the DMRS corresponding to different CDM groups are located are different, and there may be various implementations.
  • an exemplary description is given by taking the time-frequency resource unit including 12 subcarriers
  • the pattern configuration type (hereinafter referred to as the CDM configuration type of the DMRS) used by the subcarrier where the DMRS is configured based on the CDM group ID may include:
  • FIG. 11 is a set of schematic diagrams of the subcarriers where the DMRS configured based on the CDM group is located.
  • one cell can support 2 CDM groups, which are CDM group 0 and CDM group 1 respectively.
  • the DMRS sent by the terminal equipment belonging to CDM group 0 is located on the subcarrier whose subcarrier offset is an even number, and the DMRS sent by the terminal equipment belonging to CDM group 0 is located on the subcarrier The offset is on odd-numbered subcarriers.
  • the REs occupied by the DMRS are located on one time domain symbol, that is, the time domain symbol number configuration type of the DMRS is the Single type, and the DMRS of the terminal equipment of each CDM group occupies 6 REs.
  • the REs occupied by the DMRS are located on two adjacent time domain symbols, that is, the configuration type of the number of time domain symbols of the DMRS is Double type, and the DMRS of the terminal equipment of each CDM group occupies 12 DMRSs RE.
  • a cell can support 3 CDM groups, which are CDM group 0, CDM group 1 and CDM group 2 respectively.
  • the sub-carrier where the DMRS is located is all sub-carriers where the remainder of the sub-carrier offset modulo 6 is equal to CDM group ID*2 and CDM group ID*2+1.
  • the DMRS sent by the terminal equipment belonging to CDM group 0 is located on all subcarriers whose remainders of the subcarrier offset modulo 3 are 0 and 1, and the terminal equipment belonging to CDM group 1
  • the DMRS sent by the device is located on all subcarriers with subcarrier offsets of 2 and 3
  • the DMRS sent by terminal equipment belonging to CDM group 2 is located on all subcarriers with subcarrier offsets of 4 and 5.
  • the REs occupied by the DMRS are located on one time domain symbol, that is, the configuration type of the number of time domain symbols of the DMRS is the Single type, and the DMRS of the terminal equipment of each CDM group occupies 4 REs.
  • the REs occupied by the DMRS are located on two adjacent time domain symbols, that is, the configuration type of the number of time domain symbols of the DMRS is Double type, and the DMRS of the terminal equipment of each CDM group occupies 8 RE.
  • the maximum number of terminal devices that can be supported by the two CDM configuration types is the product of the maximum number of terminal devices supported by each CDM group and the number of CDM groups.
  • the maximum number of terminal devices that each CDM group can support is the number of orthogonal codes in the orthogonal code sequence * the number of time-domain symbols.
  • the number of orthogonal codes in the orthogonal code sequence is 2 for exemplary description.
  • the maximum number of terminal devices that each CDM group can support is 2*1, that is, 2.
  • the number of time-domain symbols of the DMRS is configured as Double type, on two adjacent time-domain symbols, the multiplexing of two UEs can also be realized through the time-domain orthogonal code. Therefore, compared with the single type, the double type is It can support double the multiplexing of UEs. Based on this, the maximum number of terminal devices that each CDM group can support is 2*2, that is, 4.
  • Table 4-2 shows the maximum number of terminal devices that each CDM configuration type can support when the number of orthogonal codes in the orthogonal code sequence is 2.
  • one terminal device corresponds to one single-stream transmission
  • one terminal device corresponds to one antenna port
  • the maximum number of antenna ports supported by each CDM group is the maximum number of terminal devices supported by each CDM group.
  • the maximum number of terminal devices that each CDM group can support is 2, and the number of CDM groups supported by the first CDM type is 2, and the maximum number of antenna ports that can be supported by the time-frequency resource of the Single-type DMRS is 4.
  • the maximum number of terminal devices that each CDM group can support in the pattern shown in (2) in FIG. 11 is 4, and the first CDM configuration type and the first CDM type support The number of CDM groups is 2, and the maximum number of antenna ports that can be supported by the time-frequency resources of the Double-type DMRS is 8.
  • the maximum number of terminal devices that each CDM group can support in the pattern shown in (3) in FIG. 11 is 2, and the second CDM configuration type
  • the number of CDM groups supported by the second CDM type is 3, and the maximum number of antenna ports that can be supported by the time-frequency resources of the DMRS of the Single type is 6.
  • the maximum number of terminal devices that each CDM group can support in the pattern shown in (3) in Figure 11 is 4, and the number of CDM groups supported by the second CDM type is 3, and the maximum number of antenna ports that can be supported by the time-frequency resource of the Single-type DMRS is 12.
  • the sub-carrier where the zero-power reference signal is located may be the set of sub-carriers where all the DMRS corresponding to the CDM configuration type are located, wherein the zero-power reference signal is located.
  • the sub-carrier where the sub-carrier is located is part of the sub-carrier in the time-frequency resource unit of the uplink signal. At this time, the subcarriers where the DMRSs corresponding to different group IDs are located may be the same or different.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode;
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, the DMRS corresponding to different group IDs are located.
  • the subcarriers are different;
  • the subcarrier where the zero power reference signal is located includes the subcarrier where the DMRS of all CDM groups corresponding to the CDM configuration type are located;
  • the starting time domain symbol where the REs occupied by the zero power reference signal are located is the DMRS The first time-domain symbol after the time-domain symbol where it is located or any time-domain symbol that is not adjacent to the time-domain symbol occupied by the DMRS.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode; the CDM configuration type of the DMRS is the third CDM type; the time-frequency resource where the zero-power reference signal is located includes the corresponding CDM configuration type
  • the set of time-frequency resources where the DMRS of all CDM groups are located removes the time-frequency resources where the DMRS of the uplink signal is located, wherein the time-frequency resources of the DMRS are from the group resource set according to the CDM group ID corresponding to the DMRS determined in, wherein the group resource set includes multiple group resources, different CDM group IDs correspond to different group resources in the group resource set, and at least two group resources in the multiple group resources
  • the time domain symbols where the group resources are located are different; all the subcarriers where the DMRS of all CDM groups are located are part of the subcarriers in the time-frequency resource unit used for sending uplink signals.
  • the subcarriers where the zero-power reference signal is located are part of the subcarriers of the time-frequency resource unit used for sending uplink signals.
  • FIGS. 12 to 15 are schematic diagrams of patterns of zero-power reference signals configured in a first configuration manner according to an embodiment of the present application.
  • the zero-power reference signal may adopt the first configuration manner, and the CDM configuration type of the DMRS may be the first CDM type or the second CDM type.
  • the subcarriers where the zero-power reference signal is located include all subcarriers that satisfy the first condition, and the first condition is the remainder of the subcarrier offset modulo 2 equal to all subcarriers of the CDM group ID; wherein, the zero-power reference signal in Figure 12 occupies 1 time domain symbol, and the zero-power reference signal in Figure 13 occupies 2 when Domain notation.
  • the subcarriers where the zero-power reference signal is located include all subcarriers that satisfy the second condition, and the second condition
  • the remainder of the subcarrier offset modulo 6 is equal to the CDM group ID*2 and all subcarriers of the CDM group ID*2+1.
  • the zero-power reference signal in FIG. 14 occupies one time-domain symbol
  • the zero-power reference signal in FIG. 15 occupies two time-domain symbols.
  • 16 to 22 are schematic diagrams of patterns of zero-power reference signals configured in a second configuration manner according to an embodiment of the present application.
  • the zero-power reference signal adopts the second configuration manner, and the CDM configuration type of the DMRS is the first CDM type or the second CDM type or the third CDM type.
  • the subcarriers where the zero-power reference signal is located are all CDM group IDs corresponding to the first CDM type All subcarriers where the DMRS are located.
  • the zero-power reference signals in FIG. 16 and FIG. 18 occupy one time-domain symbol
  • the zero-power reference signals in FIG. 17 and FIG. 19 occupy two time-domain symbols.
  • the interval between multiple adjacent sub-carriers where the DMRS corresponding to each group ID is located is the same number of sub-carriers, and in FIG. 18 , the same group ID corresponds to The interval between the adjacent sub-carriers where the DMRS is located is 3 sub-carriers; the interval between the adjacent sub-carriers where the DMRS corresponding to different group IDs are located is 1 or more sub-carriers; Figure 18 corresponds to different group IDs The interval between adjacent subcarriers where the DMRS is located is 1 subcarrier. It should be noted that the configuration information of the DMRS may include the number of spaced subcarriers.
  • the subcarriers where the zero-power reference signal is located are all the subcarriers where the DMRSs of all CDM group IDs corresponding to the second CDM type are located. Wherein, all subcarriers where all DMRSs are located are part of subcarriers in one RB.
  • the time-frequency resource where the zero-power reference signal is located includes the set of time-frequency resources where the DMRS of all CDM groups corresponding to the CDM configuration type are located.
  • the time-frequency resource where the DMRS is located, wherein all the subcarriers where the DMRS of all CDM groups are located are part of the subcarriers in the time-frequency resource unit used for sending uplink signals.
  • each group resource includes at least two group resource units; the time domain symbols occupied by the at least two group resource units are the same, and the subcarriers occupied by the at least two group resource units are different; Each group resource unit occupies at least one time domain symbol; each group resource unit occupies at least one subcarrier; wherein, all subcarriers where the group resource units corresponding to all CDM groups are located are the time-frequency resource units in the time-frequency resource unit. part of the subcarriers.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2, 3 or 4 group resource units; each The group resource unit occupies 2 consecutive time domain symbols; each group resource unit occupies 2 consecutive subcarriers; the number of time domain symbols occupied by the group resource units of all CDM group IDs is 6; The number of subcarriers occupied by the group resource unit of the ID is 4.
  • each group resource in the group resource set in any time-frequency resource unit for transmitting the uplink signal includes 2 group resource units, and the group resources of the DMRS corresponding to all CDM group IDs.
  • the unit occupies 4 time domain symbols and 4 subcarriers; the number of CDM groups supported by the third CDM type is 4; the REs of each group resource unit are located on two consecutive subcarriers on 2 time domain symbols .
  • each group resource in the group resource set in any time-frequency resource unit used to transmit the uplink signal includes 2 group resource units, and the group resources of the DMRS corresponding to all CDM group IDs.
  • the unit occupies 2 time domain symbols and 4 subcarriers; the number of CDM groups supported by the third CDM type is 4; the REs of each group resource unit are located on two consecutive subcarriers on 2 time domain symbols .
  • each group resource in the group resource set in any time-frequency resource unit for transmitting the uplink signal includes 2 group resource units, and the group resources of the DMRS corresponding to all CDM group IDs.
  • the unit occupies 6 time-domain symbols and 4 subcarriers; the number of CDM groups supported by the third CDM type is 6; the REs of each group resource unit are located on two consecutive time-domain symbols on two consecutive
  • the set of time-frequency resources of DMRS corresponding to all CDM group IDs is a set of group resources; the set of group resources in one RB may include two black boxes.
  • each group resource includes two group resource units located in two black boxes, and four REs occupied by each group resource unit , that is, the four REs distributed in the field shape.
  • the time domain symbols where the two group resource units in the group resource of the same group are located are the same, and the subcarriers where the two group resource units are located are separated by 4 subcarriers.
  • Table 5 is a comparative description of various patterns of the zero-power reference signal using the first configuration.
  • 16 to 21 are a set of schematic diagrams of zero-power reference signal patterns of different CDM groups adopting the second configuration.
  • Table 6 is a comparative description of various patterns of the zero-power reference signal using the second configuration.
  • the configurations of zero-power reference signals shown in FIGS. 12 to 22 can ensure that the time-frequency resources of zero-power reference signals corresponding to users of the same CDM group are the same, so that multiple The user's data does not interfere with the zero-power reference signal.
  • the user here can refer to terminal equipment, antenna ports, or data streams. That is, the positions of the REs of the zero-power reference signals of the users corresponding to each group are different from those of the data REs of the users of the same group.
  • the configurations of the zero-power reference signals shown in FIGS. 16 to 22 can ensure that the REs of the zero-power reference signals are different from the data REs of users corresponding to different CDM group IDs in the cell. That is, the zero-power reference signal does not contain the interference from the data REs of the users corresponding to all the CDM group IDs of the cell. Based on this, the network device can accurately measure the interference of adjacent cells according to the zero-power reference signal. That is, the neighbor interference is measured by using only the zero-power reference signal.
  • the number of CDM groups that the DMRS can support is 6, and each CDM group can The number of UEs supporting multiplexing is 4, that is to say, DMRS supports multiplexing of up to 24 UEs, that is, it can support the parallel transmission of 24 layers of data streams at most, which can significantly improve the system capacity of uplink transmission.
  • the time-frequency resources where the zero-power reference signals corresponding to different CDM groups are located may be different or partially the same; the zero-power reference signals of one CDM group cannot occupy all subcarriers of a time-domain symbol; it needs to be explained Yes, the DMRS of a CDM group can occupy all the subcarriers of a time-domain symbol, but the reason is to avoid transmission power interruption; therefore, when sending zero power while sending DMRS, the zero power of all groups cannot occupy all the subcarriers. carrier.
  • the position of the RE where the DMRS corresponding to each group ID is located may be as shown in FIG. Any one of the six patterns shown in 22 only needs to keep the time-frequency resources where the DMRSs corresponding to each group ID are located are different.
  • a group offset may be used to transform the position of the RE where the DMRS corresponding to each group ID is located.
  • the uplink signal may not include a zero-power reference signal.
  • the set of subcarriers where the DMRSs corresponding to all CDM groups are located may be used for All REs or part of REs in the time-frequency resource unit for transmitting uplink signals.
  • the set of subcarriers where the DMRSs corresponding to all CDM groups are located may be all subcarriers in one RB.
  • FIG. 23 is a schematic structural diagram 1 of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1100 may include: a processing module 1101 and a sending module 1102 .
  • the processing module 1101 can be configured to instruct the sending module 1102 to send an uplink signal including a zero-power reference signal to the network device; wherein, in the time-frequency resources used for sending the uplink signal, the time-frequency resources of the zero-power reference signal are The transmit power of the uplink signal within the range is zero.
  • the communication apparatus may further include a receiving module 1103, where the receiving module 1103 is configured to receive configuration information of the zero-power reference signal from a network device.
  • the processing module 1101 may be further configured to generate an uplink signal including the zero-power reference signal according to the configuration information of the zero-power reference signal.
  • the zero-power reference signal is a zero-power reference signal corresponding to a serving cell of the terminal device;
  • the time-frequency resources of the zero-power reference signals corresponding to each cell do not overlap with each other.
  • the configuration information of the zero-power reference information includes at least one of the following information:
  • the number of the zero-power reference signals the number of the zero-power reference signals
  • the time-domain symbol where the 1 RE is located is a time-domain symbol that is allowed to be occupied by each of the zero-power reference signals
  • the time-domain symbols where the two REs are located are at least one of the two time-domain symbols starting from the starting time-domain symbol domain symbol;
  • the uplink signal further includes DMRS;
  • the starting time domain symbol of each time domain symbol allowed to occupy by the zero-power reference signal is any one of the following: the time domain symbol after the time domain symbol where the time-frequency resource of the DMRS is located The first time-domain symbol, or, the middle-most time-domain symbol in the time-frequency resource unit; wherein, the middle-most time-domain symbol is different from the time-domain symbol where the time-frequency resource of the DMRS is located, or, The second time-domain symbol after the first time-domain symbol where the time-frequency resource of the DMRS is located.
  • the number of REs occupied by the zero-power reference signal of the serving cell of the terminal device is 1, and the number of REs occupied by the zero-power reference signal of the neighboring cell of the serving cell of the terminal device is 1 is 1;
  • the first subcarriers corresponding to the serving cell and neighboring cells of the serving cell are different, and the first subcarriers are the subcarriers where the zero power reference signal is located.
  • the number of REs occupied by the zero-power reference signal corresponding to a target cell is 2, and the target cell is a serving cell of the terminal device and a neighboring cell of the serving cell.
  • the first subcarrier and the second subcarrier corresponding to the target cell are not adjacent to each other, and the first subcarrier and the second subcarrier are where the two REs corresponding to the target cell are located.
  • the subcarriers where the REs occupied by the zero-power reference signals corresponding to different target cells located in the same time domain symbol are located are different.
  • the time-frequency resource unit for sending the uplink signal includes 12 subcarriers; the first subcarrier corresponding to any target cell in the serving cell and adjacent cells of the serving cell
  • the frequency domain offset FreqOffset is determined according to the cell identification CID of the target cell, wherein,
  • mod represents the remainder operation
  • Q is the total number of cells of the serving cell and adjacent cells of the serving cell, Q is an integer greater than or equal to 2 and less than 7;
  • CID is an integer greater than or equal to 0.
  • the number of REs occupied by each of the zero-power reference signals is 2; the distribution mode of the time-domain symbols where the two REs are located is: the first distribution mode, or the second distribution mode Distribution mode; wherein, the first distribution mode is used to indicate that the two REs are located in two consecutive time-domain symbols; the second distribution mode is used to indicate that the two REs are located in one time-domain symbol.
  • the distribution mode of the time domain symbols where the two REs are located is the second distribution mode
  • the time domain symbols where the two REs are located are based on the serving cell of the terminal equipment The cell identity of , is determined; wherein,
  • CID is the cell identifier
  • SumCR is the total number of subcarriers in a time-frequency resource unit
  • T is the number of subcarrier intervals
  • T is an integer greater than or equal to 1 or less than or equal to 6.
  • T is less than or equal to SumCR/Q.
  • the difference between the first subcarrier and the second subcarrier where the two REs are located is the first distribution mode.
  • the subcarrier offset between is 1 or 3 or 5; or,
  • the subcarrier offset between the first subcarrier and the second subcarrier where the two REs are located is 2 or 4 or 6.
  • the number of the zero-power reference signals is two; the time-frequency resources of the two zero-power reference signals are The sub-carriers are the same or different.
  • the subcarrier offset between the subcarriers where the two zero-power reference signals are located is 1 or 3 or 5.
  • the time-frequency resources of the zero-power reference signal include: P REs located on the to-be-processed time-domain symbols in a time-frequency resource unit used for transmitting the uplink signal; the The frequency domain of the time-frequency resource unit includes 12 subcarriers; the subcarriers where the P REs are located are ⁇ i 1 , i 2 , . Other sub-carriers other than sub-carriers are ⁇ j 1 , j 2 ,...,j 12-P ⁇ ; where P is an integer greater than or equal to 1 and less than 12;
  • the processing module is further configured to: acquire first data to be sent, wherein the first data is kP data segments x 1 , x 2 , . . . , x kP , and each RE is used to carry one data segment in data; according to the first data and the DFT transformation moment W 12 ⁇ k , determine the second data, wherein, the second data x k-P+1 ,..., x k satisfies:
  • the configuration information of the zero-power reference signal includes at least one of the following information:
  • any time-frequency resource unit used for sending the uplink signal whether the zero-power reference signal supports the configuration indication of the code division multiplexing group CDM group; wherein, whether the zero-power reference signal supports the CDM group configuration indication is used to indicate Whether to configure the time-frequency resource where the zero-power reference signal is located according to the time-frequency resource where the DMRS in the uplink signal is located or the CDM configuration type corresponding to the DMRS;
  • the CDM configuration type of the DMRS includes: a first CDM type, a second CDM type, and a third CDM type; wherein, the time-frequency resources of the DMRS are corresponding to the DMRS.
  • the CDM group ID is determined from a group resource set, wherein the group resource set includes multiple group resources, and different CDM group IDs correspond to different group resources in the group resource set, and the multiple group resources The time domain symbols where at least two group resources in the group resources are located are different;
  • a configuration mode of a zero-power reference signal supporting a CDM group wherein, the configuration mode includes: a first configuration mode and a second configuration mode; the REs occupied by the zero-power reference signal using the first configuration mode and the The subcarriers where the REs occupied by the DMRS are located are the same; the subcarriers where the zero-power reference signal using the second configuration mode is located is the set of all the subcarriers where the DMRSs of all CDM groups corresponding to the CDM configuration type are located, wherein all The subcarrier where the DMRS of the CDM group is located is a part of the subcarriers in the time-frequency resource unit used for sending uplink signals;
  • the number of group resource units in each group resource is the number of group resource units in each group resource.
  • the sub-carriers where the zero-power reference signal is located are part of the sub-carriers of the time-frequency resource unit used for sending uplink signals.
  • the uplink signal further includes a DMRS; the subcarrier where the DMRS is located is determined according to the CDM group corresponding to the DMRS;
  • time domain symbols and/or subcarriers where the DMRS of different CDM groups are located are different;
  • the time-frequency resource where the zero-power reference signal is located is determined according to the time-frequency resource of the DMRS or the CDM configuration type.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the first configuration mode; the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, different groups The subcarriers where the DMRS corresponding to the ID are located are different; the identifier of the subcarrier where the zero-power reference signal is located is the same as the identifier of the subcarrier where the DMRS of the uplink signal is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode;
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, different groups
  • the subcarriers where the DMRSs corresponding to the IDs are located are different;
  • the subcarriers where the zero-power reference signals are located include the subcarriers where the DMRSs of all CDM groups corresponding to the CDM configuration type are located; the initial time when the REs occupied by the zero-power reference signals are located
  • the domain symbol is the first time domain symbol after the time domain symbol where the DMRS is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode; the CDM configuration type of the DMRS is the third CDM type; the time when the zero-power reference signal is located
  • the frequency resource includes the set of time-frequency resources where the DMRS of all CDM groups corresponding to the CDM configuration type are located, and the time-frequency resource where the DMRS of the uplink signal is located is removed, wherein the time-frequency resource of the DMRS is based on the CDM corresponding to the DMRS.
  • the group ID is determined from a group resource set, wherein the group resource set includes multiple group resources, different CDM group IDs correspond to different group resources in the group resource set, and the multiple groups
  • the time domain symbols where at least two group resources in the resources are located are different; all subcarriers where the DMRS of all CDM groups are located are part of the subcarriers in the time-frequency resource unit used for sending uplink signals.
  • the time domain symbols where the DMRSs corresponding to at least two CDM groups supported by the third CDM type are located are different.
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; when the CDM configuration type of the DMRS is the first CDM type, the zero-power reference signal is located in the The subcarriers include all subcarriers that satisfy the first condition, and the first condition is that the remainder of the subcarrier offset modulo 2 is equal to all the subcarriers of the CDM group ID; the CDM configuration type in the DMRS is the second CDM type, the subcarrier where the zero-power reference signal is located includes all subcarriers that satisfy the second condition, and the second condition is that the remainder of the subcarrier offset modulo 6 is equal to the CDM group ID*2 and the CDM All subcarriers of group ID*2+1.
  • each group resource includes at least two group resource units; the time domain symbols occupied by the at least two group resource units are the same, and the time domain symbols occupied by the at least two group resource units are the same.
  • the subcarriers are different; each group resource unit occupies at least one time domain symbol; each group resource unit occupies at least one subcarrier; wherein, all the subcarriers where the group resource units corresponding to all CDM groups are located are the time-frequency Part of the subcarriers in a resource element.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units; Each group resource unit occupies 2 consecutive time domain symbols; each group resource unit occupies 2 consecutive subcarriers; the number of time domain symbols occupied by the group resource units of all CDM group IDs is 6; all The number of subcarriers occupied by the group resource unit of the CDM group ID is 4.
  • the difference between the transmit powers of different time-domain symbols is smaller than a preset deviation power threshold.
  • the transmit powers of symbols in different time domains are equal.
  • the time-frequency resource unit used for sending the uplink signal is a resource block RB; in any target time-domain symbol including the REs occupied by the zero-power reference signal, each The transmit power of the effective REs is the transmit power of the target time-domain symbol divided by the number of effective REs; wherein, the effective REs are other than the REs occupied by the zero-power reference signal on the target time-domain symbol RE.
  • REs other than REs occupied by the zero-power reference signal on the target time-domain symbol where the zero-power reference signal is located are data REs used for carrying data.
  • the processing module 1101 can be used to instruct the sending module 1102 to send the DMRS to the network device;
  • the time-frequency resources of the DMRS are determined from a group resource set according to a first identifier corresponding to the terminal device, wherein the group resource set includes a plurality of group resources, and different first identifiers correspond to For different group resources in the group resource set, at least two group resources in the multiple group resources have different time domain symbols.
  • the time domain symbols and/or subcarriers where the DMRSs corresponding to different first identifiers are located are different.
  • the DMRS may be used by the network device to perform channel estimation, remove interference, and demodulate data carried in the uplink signal on the uplink signal including the DMRS.
  • the first identifier is the identifier of the CDM group corresponding to the terminal device.
  • each group resource includes at least two group resource units; the time domain symbols occupied by the at least two group resource units are the same, and the time domain symbols occupied by the at least two group resource units are the same.
  • the subcarriers are different; each group resource unit occupies at least one time-domain symbol; and each group resource unit occupies at least one subcarrier.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units; Each group resource unit occupies 2 consecutive time domain symbols; each group resource unit occupies 2 consecutive subcarriers; the number of time domain symbols occupied by the group resource units of all CDM group IDs is 6; all The number of subcarriers occupied by the group resource unit of the CDM group ID is 4.
  • FIG. 24 is a second schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1200 includes: a processing module 1201 and a receiving module 1203 .
  • the receiving module 1203 is configured to receive an uplink signal including a zero-power reference signal sent by the terminal device, wherein, in the time-frequency resources used for sending the uplink signal, the time-frequency resources of the zero-power reference signal are within the range of the time-frequency resources.
  • the transmit power of the uplink signal is zero;
  • the processing module 1201 is configured to perform channel estimation according to the uplink signal received in the time-frequency resource of the zero-power reference signal; and, according to the result of the channel estimation, demodulate the received uplink signal.
  • the apparatus 1200 may further include: a sending module 1202, configured to send the configuration information of the zero-power reference signal to the terminal device.
  • the apparatus 1200 may further include a storage module 1204 for storing relevant data and instructions.
  • the zero-power reference signal is a zero-power reference signal corresponding to a serving cell of the terminal device;
  • the time-frequency resources of the zero-power reference signals corresponding to each cell do not overlap with each other.
  • the configuration information of the zero-power reference information includes at least one of the following information:
  • the number of the zero-power reference signals the number of the zero-power reference signals
  • the time-domain symbol where the 1 RE is located is a time-domain symbol that is allowed to be occupied by each of the zero-power reference signals
  • the time-domain symbols where the two REs are located are at least one of the two time-domain symbols starting from the starting time-domain symbol domain symbol;
  • the uplink signal further includes DMRS;
  • the starting time domain symbol of each time domain symbol allowed to occupy by the zero-power reference signal is any one of the following: the time domain symbol after the time domain symbol where the time-frequency resource of the DMRS is located The first time-domain symbol, or, the middle-most time-domain symbol in the time-frequency resource unit; wherein, the middle-most time-domain symbol is different from the time-domain symbol where the time-frequency resource of the DMRS is located, or, The second time-domain symbol after the first time-domain symbol where the time-frequency resource of the DMRS is located.
  • the number of REs occupied by the zero-power reference signal of the serving cell of the terminal device is 1, and the number of REs occupied by the zero-power reference signal of the neighboring cell of the serving cell of the terminal device is 1 is 1; the first subcarriers corresponding to the serving cell and the adjacent cells of the serving cell are different, and the first subcarrier is the subcarrier where the zero-power reference signal is located.
  • the number of REs occupied by the zero-power reference signal corresponding to a target cell is 2, and the target cell is a serving cell of the terminal device and a neighboring cell of the serving cell.
  • the first subcarrier and the second subcarrier corresponding to the target cell are not adjacent to each other, and the first subcarrier and the second subcarrier are where the two REs corresponding to the target cell are located.
  • the subcarriers where the REs occupied by the zero-power reference signals corresponding to different target cells located in the same time domain symbol are located are different.
  • the time-frequency resource unit for sending the uplink signal includes 12 subcarriers; the first subcarrier corresponding to any target cell in the serving cell and adjacent cells of the serving cell
  • the frequency domain offset FreqOffset is determined according to the cell identification CID of the target cell, wherein,
  • mod represents the remainder operation
  • Q is the total number of cells of the serving cell and adjacent cells of the serving cell, Q is an integer greater than or equal to 2 and less than 7;
  • CID is an integer greater than or equal to 0.
  • the number of REs occupied by each of the zero-power reference signals is 2; the distribution mode of the time-domain symbols where the two REs are located is: the first distribution mode, or the second distribution mode Distribution mode; wherein, the first distribution mode is used to indicate that the two REs are located in two consecutive time-domain symbols; the second distribution mode is used to indicate that the two REs are located in one time-domain symbol.
  • the distribution mode of the time domain symbols where the two REs are located is the second distribution mode
  • the time domain symbols where the two REs are located are based on the serving cell of the terminal equipment The cell identity of , is determined; wherein,
  • CID is the cell identifier
  • SumCR is the total number of subcarriers in a time-frequency resource unit
  • T is the number of subcarrier intervals
  • T is an integer greater than or equal to 1 or less than or equal to 6.
  • T is less than or equal to SumCR/Q.
  • the difference between the first subcarrier and the second subcarrier where the two REs are located is the first distribution mode.
  • the subcarrier offset between the two REs is 1 or 3 or 5; or, when the distribution mode of the time domain symbols where the two REs are located is the second distribution mode, the first subcarrier where the two REs are located is The subcarrier offset between the second subcarrier and the second subcarrier is 2 or 4 or 6.
  • the number of the zero-power reference signals is two; the time-frequency resources of the two zero-power reference signals are The sub-carriers are the same or different.
  • the subcarrier offset between the subcarriers where the two zero-power reference signals are located is 1 or 3 or 5.
  • the configuration information of the zero-power reference signal includes at least one of the following information:
  • any time-frequency resource unit used for sending the uplink signal whether the zero-power reference signal supports the configuration indication of the code division multiplexing group CDM group; wherein, whether the zero-power reference signal supports the CDM group configuration indication is used to indicate Whether to configure the time-frequency resource where the zero-power reference signal is located according to the time-frequency resource where the DMRS in the uplink signal is located or the CDM configuration type corresponding to the DMRS;
  • the CDM configuration type of the DMRS includes: a first CDM type, a second CDM type, and a third CDM type; wherein, the time-frequency resources of the DMRS are corresponding to the DMRS.
  • the CDM group ID is determined from a group resource set, wherein the group resource set includes multiple group resources, and different CDM group IDs correspond to different group resources in the group resource set, and the multiple group resources The time domain symbols where at least two group resources in the group resources are located are different;
  • a configuration mode of a zero-power reference signal supporting a CDM group wherein, the configuration mode includes: a first configuration mode and a second configuration mode; the REs occupied by the zero-power reference signal using the first configuration mode and the The subcarriers where the REs occupied by the DMRS are located are the same; the subcarriers where the zero-power reference signal using the second configuration mode is located is the set of all the subcarriers where the DMRSs of all CDM groups corresponding to the CDM configuration type are located, wherein all The subcarrier where the DMRS of the CDM group is located is a part of the subcarriers in the time-frequency resource unit used for sending uplink signals;
  • the number of group resource units in each group resource is the number of group resource units in each group resource.
  • the sub-carriers where the zero-power reference signal is located are part of the sub-carriers of the time-frequency resource unit used for sending uplink signals.
  • the uplink signal further includes a DMRS; the subcarrier where the DMRS is located is determined according to the CDM group corresponding to the DMRS;
  • time domain symbols and/or subcarriers where the DMRS of different CDM groups are located are different;
  • the time-frequency resource where the zero-power reference signal is located is determined according to the time-frequency resource of the DMRS or the CDM configuration type.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the first configuration mode; the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, different groups The subcarriers where the DMRS corresponding to the ID are located are different; the identifier of the subcarrier where the zero-power reference signal is located is the same as the identifier of the subcarrier where the DMRS of the uplink signal is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode;
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; wherein, different groups
  • the subcarriers where the DMRSs corresponding to the IDs are located are different;
  • the subcarriers where the zero-power reference signals are located include the subcarriers where the DMRSs of all CDM groups corresponding to the CDM configuration type are located; the initial time when the REs occupied by the zero-power reference signals are located
  • the domain symbol is the first time domain symbol after the time domain symbol where the DMRS is located.
  • the configuration mode of the zero-power reference signal supporting the CDM group is the second configuration mode; the CDM configuration type of the DMRS is the third CDM type; the time when the zero-power reference signal is located
  • the frequency resource includes the set of time-frequency resources where the DMRS of all CDM groups corresponding to the CDM configuration type are located, and the time-frequency resource where the DMRS of the uplink signal is located is removed, wherein the time-frequency resource of the DMRS is based on the CDM corresponding to the DMRS.
  • the group ID is determined from a group resource set, wherein the group resource set includes multiple group resources, different CDM group IDs correspond to different group resources in the group resource set, and the multiple groups
  • the time domain symbols where at least two group resources in the resources are located are different; all subcarriers where the DMRS of all CDM groups are located are part of the subcarriers in the time-frequency resource unit used for sending uplink signals.
  • the time domain symbols where the DMRSs corresponding to at least two CDM groups supported by the third CDM type are located are different.
  • the CDM configuration type of the DMRS is the first CDM type or the second CDM type; when the CDM configuration type of the DMRS is the first CDM type, the zero-power reference signal is located in the The subcarriers include all subcarriers that satisfy the first condition, and the first condition is that the remainder of the subcarrier offset modulo 2 is equal to all the subcarriers of the CDM group ID; the CDM configuration type in the DMRS is the second CDM type, the subcarrier where the zero-power reference signal is located includes all subcarriers that satisfy the second condition, and the second condition is that the remainder of the subcarrier offset modulo 6 is equal to the CDM group ID*2 and the CDM All subcarriers of group ID*2+1.
  • each group resource includes at least two group resource units
  • the time domain symbols occupied by the at least two group resource units are the same, and the subcarriers occupied by the at least two group resource units are different; each group resource unit occupies at least one time domain symbol; each group resource unit occupy at least one subcarrier.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units; Each group resource unit occupies 2 consecutive time domain symbols; each group resource unit occupies 2 consecutive subcarriers; the number of time domain symbols occupied by the group resource units of all CDM group IDs is 6; all The number of subcarriers occupied by the group resource unit of the CDM group ID is 4.
  • a receiving module 1203, configured to receive a DMRS sent by a terminal device; wherein the time-frequency resources of the DMRS are determined from a group resource set according to a first identifier corresponding to the terminal device, wherein the group resource set It includes a plurality of group resources, different first identifiers correspond to different group resources in the group resource set, and time domain symbols where at least two group resources in the plurality of group resources are located are different.
  • the processing module 1201 can be configured to demodulate the received uplink signal including the DMRS according to the DMRS.
  • the first identifier is the identifier of the CDM group corresponding to the terminal device.
  • the time domain symbol and/or subcarrier where the DMRS is located is determined according to the identifier of the CDM group corresponding to the terminal device and the CDM configuration type;
  • the time domain symbol where the DMRS corresponding to the first CDM group is located is different from the time domain symbol where the DMRS corresponding to the second CDM group is located, and the first CDM group is the terminal
  • the CDM group corresponding to the device, the second CDM group is at least one other CDM group in at least two CDM groups including the first CDM group supported by the third CDM type.
  • each group resource includes at least two group resource units; the time domain symbols occupied by the at least two group resource units are the same, and the time domain symbols occupied by the at least two group resource units are the same.
  • the subcarriers are different; each group resource unit occupies at least one time-domain symbol; and each group resource unit occupies at least one subcarrier.
  • the time-frequency resource unit used for sending the uplink signal including the DMRS is a resource block RB, and any of the RBs includes 2 or 3 or 4 group resource units; Each group resource unit occupies 2 consecutive time domain symbols; each group resource unit occupies 2 consecutive subcarriers; the number of time domain symbols occupied by the group resource units of all CDM group IDs is 6; all The number of subcarriers occupied by the group resource unit of the CDM group ID is 4.
  • FIG. 25 is a schematic structural diagram 1 of a terminal device provided by an embodiment of the present application.
  • the apparatus 1300 in this embodiment of the present application may be a terminal device in the foregoing method embodiment, and the apparatus 1300 may be configured to execute part or all of the functions of the terminal device in the foregoing method embodiment.
  • the apparatus 1300 may include: a processor 1310 , a baseband circuit 1313 , a radio frequency circuit 1340 and an antenna 1350 , and optionally, the apparatus 1300 may further include a memory 1320 .
  • Various components of the device 1300 are coupled together through a bus 1360, wherein the bus system 1360 includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the various buses are labeled as bus system 1360 in the figure.
  • the processor 1310 can be used to control the terminal device, to perform the processing performed by the terminal device in the above-mentioned embodiments, to perform the processing procedures related to the terminal device in the above-mentioned method embodiments and/or to be used for the technology described in this application
  • Other processes that can also run the operating system, are responsible for managing the bus and can execute programs or instructions stored in memory.
  • the baseband circuit 1313, the radio frequency circuit 1340 and the antenna 1350 may be used to support wireless communication between the terminal device and the network device involved in the above embodiments.
  • the frame to be sent that is encapsulated by the PHY layer and sent from the network device is received by the antenna 1350, filtered, amplified, down-converted and digitized by the radio frequency circuit 1340, and then decoded by the baseband circuit 1313 and decapsulated according to the protocol.
  • the processor 1310 After baseband processing such as data, the processor 1310 performs processing to restore the service data and signaling information sent by the network device; in another example, the access control information of the cell carried by the terminal device can be processed by the processor 1310,
  • the baseband circuit 1313 performs baseband processing such as encapsulation and coding according to the protocol, and further performs radio frequency processing such as analog conversion, filtering, amplification and frequency up-conversion by the radio frequency circuit 1340, and then sends it to the network device through the antenna 1350.
  • the memory 1320 may be used to store program codes and data of the terminal device, and the memory 1320 may be the storage module in FIG. 11 . It can be understood that the baseband circuit 1313, the radio frequency circuit 1340 and the antenna 1350 can also be used to support the terminal device to communicate with other network entities, for example, to support the network element on the core network side of the terminal device to communicate.
  • the memory 1320 is shown in FIG. 13 as being separate from the processor 1310 , however, those skilled in the art will readily appreciate that the memory 1320 or any portion thereof may be located external to the device 1300 .
  • memory 1320 may comprise a transmission line, and/or a computer article separate from the wireless node, all of which may be accessed by processor 1310 through bus interface 1360.
  • memory 1320, or any portion thereof may be integrated into processor 1310, eg, may be a cache and/or general purpose registers.
  • FIG. 13 only shows a simplified design of the terminal device.
  • the terminal device may include any number of transmitters, receivers, processors, memories, etc., and all the first nodes that can implement the present invention are within the protection scope of the present invention.
  • the apparatus 1300 may also be used to execute part or all of the functions of the terminal device in the foregoing method embodiments.
  • FIG. 26 is a second schematic structural diagram of a network device provided by an embodiment of the present application.
  • the apparatus 1400 in this embodiment of the present application may be the network device in the foregoing method embodiment.
  • the apparatus 1400 may be configured to perform part or all of the functions of the network device in the foregoing method embodiments.
  • the apparatus 1400 may include: a processor 1410 , a baseband circuit 1414 , a radio frequency circuit 1440 and an antenna 1450 , and optionally, the apparatus 1400 may further include a memory 1420 .
  • Various components of the device 1400 are coupled together through a bus 1460, wherein the bus system 1460 includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the various buses are labeled as bus system 1460 in the figure.
  • the processor 1410 can be used to control the network device, to perform the processing performed by the network device in the above-mentioned embodiments, to perform the processing procedures related to the network device in the above-mentioned method embodiments and/or to be used for the technology described in this application
  • Other processes that can also run the operating system, are responsible for managing the bus and can execute programs or instructions stored in memory.
  • the baseband circuit 1414, the radio frequency circuit 1440 and the antenna 1450 may be used to support wireless communication between the network device and the terminal device involved in the above embodiments.
  • the frame to be sent that is encapsulated by the PHY layer and sent from the network device is received by the antenna 1450, filtered, amplified, down-converted and digitized by the radio frequency circuit 1440, and then decoded by the baseband circuit 1414 and decapsulated according to the protocol.
  • the processor 1410 After baseband processing of data, etc., the processor 1410 performs processing to restore the service data and signaling information sent by the network device; in another example, the carrying configuration information sent by the network device can be processed by the processor 1410 via the baseband circuit 1414.
  • Baseband processing such as encapsulation and coding according to the protocol is further performed by the radio frequency circuit 1440 after radio frequency processing such as analog conversion, filtering, amplification and frequency up-conversion, and then sent to the terminal device via the antenna 1450.
  • the memory 1420 may be used to store program codes and data of the network device, and the memory 1420 may be the storage module in FIG. 12 . It can be understood that the baseband circuit 1414, the radio frequency circuit 1440 and the antenna 1450 can also be used to support the network device to communicate with other network entities, for example, to support the network device to communicate with the network elements on the core network side.
  • the memory 1420 is shown in FIG. 14 as being separate from the processor 1410 , however, those skilled in the art will readily appreciate that the memory 1420 or any portion thereof may be located external to the device 1400 .
  • memory 1420 may comprise a transmission line, and/or a computer article separate from the wireless node, all of which may be accessed by processor 1410 through bus interface 1460.
  • memory 1420, or any portion thereof may be integrated into processor 1410, eg, may be a cache and/or general purpose registers.
  • Figure 14 only shows a simplified design of the network device.
  • a network device may include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present invention fall within the protection scope of the present invention.
  • the apparatus 1400 may also be used to execute part or all of the functions of the terminal device in the foregoing method embodiments.
  • An embodiment of the present application further provides a chip system, including: a processor, where the processor is coupled with a memory, the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • the number of processors in the chip system may be one or more.
  • the processor can be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be provided on different chips.
  • the setting method of the processor is not particularly limited.
  • the system-on-chip may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller). controller unit, MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller microcontroller
  • controller unit, MCU it can also be a programmable logic device (PLD) or other integrated chips.
  • PLD programmable logic device
  • each step in the above method embodiments may be implemented by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the method steps disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer-readable instructions are stored in the computer storage medium, and when the computer reads and executes the computer-readable instructions, the computer is made to execute any of the foregoing method embodiments method in .
  • Embodiments of the present application further provide a computer program product, which, when the computer reads and executes the computer program product, causes the computer to execute the method in any of the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes a network device and a terminal device.
  • the network device and the terminal device can execute any of the above methods.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk), and the like.

Abstract

本申请实施例提供一种上行传输方法及相关装置,其中方法包括:终端设备向网络设备发送包含零功率参考信号的上行信号;其中,在用于发送上行信号的时频资源中,零功率参考信号的时频资源的范围内的上行信号的发射功率为零。本申请提供的技术方案能够使能基站进行上行传输干扰的测量,提高终端设备向网络设备数据传输的性能。

Description

上行传输方法及相关装置
本申请要求于2020年08月01日提交中国专利局、申请号为202010763873.3、申请名称为“上行传输方法及相关装置”的中国专利申请,以及,于2020年10月20日提交中国专利局、申请号为202011128974.X、申请名称为“上行传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据传输领域,尤其涉及一种上行传输方法及相关装置。
背景技术
在移动通信网络中,终端设备与网络设备进行数据传输的过程中,可能受到来自周边相邻小区的终端设备的数据传输带来的干扰,由此可能导致数据传输时因为干扰太大使得接收端无法正确解调接收信号而传输失败。
发明内容
本申请提供了一种上行传输方法及相关装置,能够提高终端设备向网络设备传输数据的传输成功率。
第一方面,本申请实施例提供一种上行传输方法,包括:
终端设备向网络设备发送包含零功率参考信号的上行信号;
其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零。
通过终端设备在上行信号中设置零功率参考信号的方式,由于该零功率参考信号的时频资源上接收的信号能够反映来自终端设备的服务小区周边的相邻小区中的数据传输对终端设备的上行数据传输带来的干扰,因此,网络设备可以根据在零功率参考信号的时频资源的范围上接收到的上行信号来估计邻区干扰并从接收信号中进行干扰消除,从而改善上行数据的解调性能,提高上行数据的传输能力。
在一种可能的实现方式中,在所述终端设备向网络设备发送包含零功率参考的上行信号之前,包括:
根据所述零功率参考信号的配置信息,生成所述上行信号;其中,所述配置信息用于指示所述零功率参考信号的时频资源的图样。
在一种可能的实现方式中,在所述根据所述零功率参考信号的配置信息,生成所述上行信号之前,包括:
接收所述网络设备发送的所述配置信息。
在一种可能的实现方式中,所述上行信号还包括调制解调参考信号DMRS,所述零功率参考信号的时频资源与所述DMRS的时频资源不重叠。
在一种可能的实现方式中,所述零功率参考信号为所述终端设备的服务小区对应的零功率参考信号;所述服务小区与所述服务小区的相邻小区对应的零功率参考信号的时频 资源相互不重叠。
在一种可能的实现方式中,在用于发送所述上行信号的一个时频资源单元中,所述零功率参考信号的数目为1个或多个;
其中,所述时频资源单元的时域包括:一个时隙,或者,一个迷你时隙,或者,至少两个时域符号。
在一种可能的实现方式中,每个零功率参考信号占用的RE的数目为1个或多个。
在一种可能的实现方式中,所述零功率参考信息的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
每个所述零功率参考信号占用的资源元素RE的数目;
每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
每个所述零功率参考信号所在的至少一个子载波;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
在一种可能的实现方式中,在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
在一种可能的实现方式中,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;
所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
在一种可能的实现方式中,目标小区对应的零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小区中的任意一个;
所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波;
位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波 不同。
在一种可能的实现方式中,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
在mod(CID,Q)=6时,FreqOffset=11;
其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
在一种可能的实现方式中,每个所述零功率参考信号占用的RE的数目为2;
所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;
其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;
所述第二分布方式用于表示所述2个RE位于1个时域符号。
在一种可能的实现方式中,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。T小于或者等于SumCR/Q。
在一种可能的实现方式中,在所述2个RE所在的时域符号的分布方式为所述第一分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为1或3或5;或者,
在所述2个RE所在的时域符号的分布方式为所述第二分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为2或4或6。
在一种可能的实现方式中,在用于发送所述上行信号的一个时频资源单元中,所述零功率参考信号的数目为2个;
所述2个零功率参考信号的时频资源所在的子载波相同或不同。
在一种可能的实现方式中,在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量为1或3或5。
在一种可能的实现方式中,所述零功率参考信号的时频资源包括:用于发送所述上行信号的一个时频资源单元中位于待处理时域符号上的P个RE;
所述时频资源单元的频域包括12个子载波;所述P个RE所在的子载波为{i 1,i 2,…,i P},所述12个子载波中除所述P个RE所述的子载波之外的其他子载波为{j 1,j 2,…,j 12-P};其中,P为大于等于1且小于12的整数;
所述方法还包括:
获取待发送的第一数据,其中,所述第一数据为k-P个数据段x 1,x 2,…,x k-P,每个RE用于承载1个数据段中的数据;
根据所述第一数据和DFT变换矩W 12×k,确定第二数据,其中,所述第二数据x k-P+1,…,x k满足:
Figure PCTCN2021109341-appb-000001
将所述第一数据和第二数据组成时域数据x,其中,x=(x 1,x 2,…,x k) T
根据所述DFT变换矩W 12×k,对所述时域数据x进行DFT变换,得到频域数据y;其中,y=(y 1,y 2,y 3,…,y 8,y 9,y 10,y 11,y 12) T,所述P个RE上的所述上行信号
Figure PCTCN2021109341-appb-000002
均为0;
将所述频域数据y作为待处理时域符号中的上行信号;
其中,k为所述时频资源单元中的时域符号的个数,k大于p。
在一种可能的实现方式中,零功率参考信号的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
每个CDM group的零功率参考信号占用的起始时域符号;
每个CDM group的零功率参考信号占用的时域符号的个数;
每个群组资源中的群组资源单元个数。
在一种可能的实现方式中,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
在一种可能的实现方式中,所述上行信号还包括DMRS;所述DMRS所在的子载波为根据所述DMRS对应的CDM group确定的;
其中,不同CDM group的DMRS所在的时域符号和/或子载波不同;
所述零功率参考信号所在的时频资源为根据所述DMRS的时频资源或者CDM配置类 型确定的。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第一配置方式;
所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;
所述零功率参考信号所在的子载波的标识与所述上行信号的DMRS所在的子载波的标识相同。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;
所述零功率参考信号所在的子载波包括CDM配置类型对应的所有CDM group的DMRS所在的子载波;
所述零功率参考信号占用的RE所在的起始时域符号为所述DMRS所在的时域符号之后的第1个时域符号。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
所述DMRS的CDM配置类型为第三CDM类型;
所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
其中,所述第三CDM类型支持的至少两个CDM group对应的DMRS所在的时域符号不同。
在一种可能的实现方式中,所述DMRS的CDM配置类型为第一CDM类型或者第二CDM类型;
在所述DMRS的CDM配置类型为第一CDM类型时,所述零功率参考信号所在的子载波包含满足第一条件的所有子载波,所述第一条件为子载波偏移量模2的余数等于所述CDM group ID的所有子载波;
在所述DMRS的CDM配置类型为第二CDM类型时,所述零功率参考信号所在的子载波包含满足第二条件的所有子载波,所述第二条件为子载波偏移量模6的余数等于所述CDM group ID*2或所述CDM group ID*2+1的所有子载波。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;
所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
每个群组资源单元占用至少一个时域符号;
每个群组资源单元占用至少一个子载波;
其中,所有CDM group对应的群组资源单元所在的所有子载波为所述时频资源单元中的部分子载波。
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
每个群组资源单元占用2个连续的时域符号;
每个群组资源单元占用2个连续的子载波;
所有CDM group ID的群组资源单元占用的时域符号的个数为6;
所有CDM group ID的群组资源单元占用的子载波的个数为4。
在一种可能的实现方式中,其特征在于,在用于发送所述上行信号的时频资源单元中,不同时域符号的发射功率之间的差值小于预设的偏差功率阈值。
在一种可能的实现方式中,在用于发送所述上行信号的时频资源中,不同时域符号的发射功率相等。
在一种可能的实现方式中,所述用于发送所述上行信号的时频资源单元为资源块RB;在包含所述零功率参考信号占用的RE的任一目标时域符号中,每个有效RE的发射功率为所述目标时域符号的发射功率除以有效RE个数;
其中,所述有效RE为所述目标时域符号上除所述零功率参考信号占用的RE之外的其他RE。
在一种可能的实现方式中,所述零功率参考信号所在的目标时域符号上除所述零功率参考信号占用的RE之外的RE为用于承载数据的数据RE。
第二方面,本申请实施例提供一种上行传输方法,包括:
网络设备接收终端设备发送的包含零功率参考信号的上行信号,其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零;
根据在所述零功率参考信号的时频资源中接收到的所述上行信号进行信道估计;
根据所述信道估计的结果,对接收到的所述上行信号进行解调。
其中,网络设备可以是基站。
在一种可能的实现方式中,在所述根据网络设备接收包含零功率参考信号的上行信号之前,包括:
向所述终端设备发送配置信息,其中,所述配置信息用于指示所述零功率参考信号的时频资源的图样。
在一种可能的实现方式中,所述根据在所述零功率参考信号的时频资源中接收到的所述上行信号进行信道估计,包括:
根据所述配置信息,获取在所述零功率参考信号的时频资源中接收到的所述上行信号。
在一种可能的实现方式中,所述上行信号还包括调制解调参考信号DMRS,所述零功率参考信号的时频资源与所述DMRS的时频资源不重叠。
在一种可能的实现方式中,所述零功率参考信号为所述终端设备的服务小区对应的 零功率参考信号;所述服务小区和所述服务小区的相邻小区组成的小区组中的各个小区对应的零功率参考信号的时频资源相互不重叠。
在一种可能的实现方式中,在用于发送所述上行信号的一个时频资源单元中,所述零功率参考信号的数目为1个或多个;
其中,所述时频资源单元的时域包括:一个时隙,或者,一个迷你时隙,或者,至少两个时域符号。
在一种可能的实现方式中,每个零功率参考信号占用的RE的数目为1个或多个。
在一种可能的实现方式中,所述零功率参考信息的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
每个所述零功率参考信号占用的资源元素RE的数目;
每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
每个所述零功率参考信号所在的至少一个子载波;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
在一种可能的实现方式中,在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:
所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,
所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,
所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
在一种可能的实现方式中,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;
所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
在一种可能的实现方式中,目标小区对应的所述零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小区中的任意一个;
所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二 子载波为所述目标小区对应的所述2个RE所在的子载波;
位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波不同。
在一种可能的实现方式中,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
在mod(CID,Q)=6时,FreqOffset=11;
其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
在一种可能的实现方式中,每个所述零功率参考信号占用的RE的数目为2;
所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;
其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;
所述第二分布方式用于表示所述2个RE位于1个时域符号。
在CID×2T≥2×SumCR时,所述2个RE所在的时域符号的分布方式为第一分布方式。
在一种可能的实现方式中,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。
在一种可能的实现方式中,在所述2个RE所在的时域符号的分布方式为所述第一分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为1或3或5;或者,
在所述2个RE所在的时域符号的分布方式为所述第二分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为2或4或6。
在一种可能的实现方式中,在用于发送所述上行信号的一个时频资源单元中,所述零功率参考信号的数目为2个;所述2个零功率参考信号的时频资源所在的子载波相同或不同。
在一种可能的实现方式中,在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量为1或3或5。
在一种可能的实现方式中,零功率参考信号的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类 型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
每个CDM group的零功率参考信号占用的起始时域符号;
每个CDM group的零功率参考信号占用的时域符号的个数;
每个群组资源中的群组资源单元个数。
在一种可能的实现方式中,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
在一种可能的实现方式中,所述上行信号还包括DMRS;所述DMRS所在的子载波为根据所述DMRS对应的CDM group确定的;
其中,不同CDM group的DMRS所在的时域符号和/或子载波不同;
所述零功率参考信号所在的时频资源为根据所述DMRS的时频资源或者CDM配置类型确定的。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第一配置方式;
所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;
所述零功率参考信号所在的子载波的标识与所述上行信号的DMRS所在的子载波的标识相同。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;
所述零功率参考信号所在的子载波包括CDM配置类型对应的所有CDM group的DMRS所在的子载波;
所述零功率参考信号占用的RE所在的起始时域符号为所述DMRS所在的时域符号之后的第1个时域符号。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
所述DMRS的CDM配置类型为第三CDM类型;
所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述 DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
其中,所述第三CDM类型支持的至少两个CDM group对应的DMRS所在的时域符号不同;
在一种可能的实现方式中,所述DMRS的CDM配置类型为第一CDM类型或者第二CDM类型;
在所述DMRS的CDM配置类型为第一CDM类型时,所述零功率参考信号所在的子载波包含满足第一条件的所有子载波,所述第一条件为子载波偏移量模2的余数等于所述CDM group ID的所有子载波;
在所述DMRS的CDM配置类型为第二CDM类型时,所述零功率参考信号所在的子载波包含满足第二条件的所有子载波,所述第二条件为子载波偏移量模6的余数等于所述CDM group ID*2和所述CDM group ID*2+1的所有子载波。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;
所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
每个群组资源单元占用2个连续的时域符号;
每个群组资源单元占用2个连续的子载波;
所有CDM group ID的群组资源单元占用的时域符号的个数为6;
所有CDM group ID的群组资源单元占用的子载波的个数为4。
第三方面,本申请实施例还提供一种参考信号的传输方法,包括:
终端设备向网络设备发送DMRS;
其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
其中,DMRS可用于网络设备对包含所述DMRS的上行信号进行信道估计、去除干扰、以及解调上行信号中承载的数据等。
在一种可能的实现方式中,所述第一标识为所述终端设备对应的CDM group的标识。
在一种可能的实现方式中,所述DMRS所在的时域符号和/或子载波为根据所述终端设备对应的CDM group的标识和CDM配置类型确定的;
在所述CDM配置类型为第三CDM类型时,第一CDM group对应的DMRS所在的时域符号与第二CDM group对应的DMRS所在的时域符号不同,所述第一CDM group为所述终端设备对应的CDM group,所述第二CDM group为所述第三CDM类型支持的包括所述第一CDM group在内的至少两个CDM group中的至少一个其他CDM group。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;
所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
每个群组资源单元占用2个连续的时域符号;
每个群组资源单元占用2个连续的子载波;
所有CDM group ID的群组资源单元占用的时域符号的个数为6;
所有CDM group ID的群组资源单元占用的子载波的个数为4。
第四方面,本申请实施例还提供一种参考信号的传输方法,包括:
网络设备接收终端设备设备发送的DMRS;
其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
在一种可能的实现方式中,第一标识为所述终端设备对应的CDM group的标识。
在一种可能的实现方式中,所述DMRS所在的时域符号和/或子载波为根据所述终端设备对应的CDM group的标识和CDM配置类型确定的;
在所述CDM配置类型为第三CDM类型时,第一CDM group对应的DMRS所在的时域符号与第二CDM group对应的DMRS所在的时域符号不同,所述第一CDM group为所述终端设备对应的CDM group,所述第二CDM group为所述第三CDM类型支持的包括所述第一CDM group在内的至少两个CDM group中的至少一个其他CDM group。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;
所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波
其中,所述群组资源集合所在的所有子载波为所述时频资源单元中的部分子载波。
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
每个群组资源单元占用2个连续的时域符号;
每个群组资源单元占用2个连续的子载波;
所有CDM group ID的群组资源单元占用的时域符号的个数为6;
所有CDM group ID的群组资源单元占用的子载波的个数为4。
又一方面,本申请实施例还提供一种终端设备侧的通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置具有实现上述第一方面至第四方面中任一方面涉及终端设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为终端设备时,终端设备包括:处理器和收发器,所述处理器被配置为支持终端设备执行上述方法中相应的功能。收发器用于支持终端设备和网络设备之间的通信,向网络设备发送上述方法中所涉及的信息或指令。可选的,终端 设备还可以包括存储器,所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,基带电路用于生成各类信令和消息,例如RRC消息等,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,经由天线发送给网络设备。可选的,该装置还可包括存储器,其保存终端设备必要的程序指令和数据。
在一种可能的实现方式中,该装置可以包括处理器和调制解调器,处理器可以用于指令或操作系统,以实现对终端设备功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成无线帧,以支持终端设备执行上述第一方面中相应的功能。
在一个可能的实现方式中,当该装置为终端设备内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,例如,此处理器用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持终端设备执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第一方面至第四方面中中任一种所述的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部。在一示例中,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面及其各种可能实现方式中的方法。
又一方面,本申请实施例还提供一种终端设备侧的通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置具有实现上述第一方面至第四方面中任一方面中涉及网络设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实现方式中,当该装置为网络设备时,网络设备包括:处理器和收发器,所述处理器被配置为支持网络设备执行上述方法中相应的功能。收发器用于支持网络设备和终端设备之间的通信,向终端设备发送上述方法中所涉及的信息或指令。可选的,网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
在一种可能的实现方式中,该装置包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,基带电路用于生成各类信令和消息,例如RRC消息,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,经由天线发送给终端设备。可选的,该装置还可包括存储器,其保存网络设备必要的程序指令和数据。
在一种可能的实现方式中,该装置可以包括处理器和调制解调器,处理器可以用于指令或操作系统,以实现对网络设备功能的控制,调制解调器可以按协议对数据进行封装、 编解码、调制解调、均衡等以生成无线帧,以支持网络设备执行上述第一方面至第四方面中相应的功能。
在一个可能的实现方式中,当该装置为网络设备内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,例如,此处理器用于生成各类消息和信令,并对各类消息按照协议封装后,进行编码,调制,放大等处理,所述处理器还可以用于解调,解码,解封装后获得信令和消息,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持网络设备执行上述方法中相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述网络设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第二方面中任一所述的方法。该存储器可以位于该处理器内部,还可以位于该处理器外部,该存储器还可以位于该装置外部。
又一方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其任意可能的实现方式中的方法。
又一方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面至第四方面中的任一方面或其任意可能的实现方式中的方法。
又一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持执行上述第一方面至第四方面中的任一方面或其任意可能的实现方式中的方法,例如生成或处理上述各方面中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
又一方面,本申请实施例提供一种通信系统,该系统包括上述方面涉及的至少一个终端设备,和,网络设备。。
第五方面,提供了一种芯片,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行第一方面中任一项所述的方法。
附图说明
图1为本申请实施例涉及的应用场景的示意图一;
图2为本申请实施例提供的上行传输方法的交互流程图一;
图3A至图3G为本申请实施例提供的零功率参考信号的图样的示意图一至七;
图4为本申请实施例提供的多小区场景下的零功率参考信号的时频资源的分布示意图一;
图5A至图5B为本申请实施例提供的多小区场景下零功率参考信号的图样的示意图一至二;
图6A至图6B为本申请实施例提供的多小区场景下零功率参考信号的图样的示意图三至四;
图7A至图7B为本申请实施例提供的多小区场景下零功率参考信号的图样的示意图五至六;
图8A为本申请实施例提供的多小区场景下的零功率参考信号的时频资源的分布示意图二;
图8B为本申请实施例提供的多小区场景下的零功率参考信号的时频资源的分布示意图三;
图9A至图9D为本申请实施例提供的多小区场景下零功率参考信号的图样的示意图九至十二;
图10为本申请实施例涉及的映射过程的示意图;
图11为基于CDM group配置的DMRS所在的子载波的一组示意图;
图12至图15为本申请实施例提供的采用第一配置方式配置的零功率参考信号的图样的示意图;
图16至图22为本申请实施例提供的采用第二配置方式配置的零功率参考信号的图样的示意图;
图23为本申请实施例提供的一种通信装置的结构示意图一;
图24为本申请实施例提供的通信装置的结构示意图二;
图25为本申请实施例提供的终端设备的结构示意图一;
图26为本申请实施例提供的网络设备的结构示意图二。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
实施例一
本申请实施例提供一种上行传输方法,该方法可应用于一种通信网络。在通信网络中可以包括若干通信设备。在一示例中,通信网络可以包括网络设备和终端设备(user equipment,UE),其中,网络设备可以接收一个多个终端设备在预先规划的时频资源上发送的上行信号。在终端设备向网络设备发送的上行信号受到干扰时,网络设备的解调性能会下降。
图1为本申请实施例涉及的应用场景的示意图一。如图1所示,示例性地,网络中的部分UE可以同时在多个小区gNB的覆盖范围内,此时,不同UE的上下行传输中会存在传输信息的混叠和干扰。以上行传输为例,左小区UE上行传输的信号到达图1中左侧基站的同时,该左侧基站也会受到临近的右小区UE发送给图1中右侧基站的上行信号,此时,会对左小区UE的信号造成干扰,即左侧基站的接收信号中混叠了较大的干扰信号,可能导致左小区UE的信号无法被准确解调。
下面以网络设备为基站为例对本申请实施例提供的上行传输方法进行说明。在本申请实施例中,网络设备可以是LTE通信系统中的基站,也可以是无线新接入技术(New Radio Access Technology,NR)系统中的基站(base station,或者,g Node B,简称gNB)。
图2为本申请实施例提供的上行传输方法的交互流程示意图。如图2所示,本申请实施例的步骤可以包括:
S101,终端设备向基站发送包含零功率参考信号的上行信号,其中,在用于发送上行信号的时频资源中,零率参考信号的时频资源的范围内的上行信号的发射功率为零。
其中,零功率参考信号(Zero Power Channel State Information Reference Signal,ZP CSI-RS)可以用于上行干扰测量。由于在零功率参考信号的时频资源上实际上不发送数据,因此,也可以称为mute RE。
S102,基站根据在零功率参考信号的时频资源中接收到的上行信号进行干扰估计
其中,基站可以根据在零功率参考信号的时频资源中接收到的上行信号进行邻区干扰的估计。
S103,基站根据信道估计的结果,对接收到的上行信号进行解调。
其中,基站可以根据邻区干扰估计的结果,对接收到的上行信号进行干扰抑制和数据解调。
在本申请实施例中,举例来说,终端设备可以在物理上行共享信道PUSCH中发送上行信号。在一示例中,用于发送上行信号的时频资源可以为PUSCH中的第一资源,第一资源可以包括零功率参考信号对应的第二资源。终端设备在第一资源上发送上行信号时,可以通过配置使得第二资源的范围中的上行信号的发射功率为零。
在本申请实施例中,在步骤S101之前,还可以包括:
S201,基站向终端设备发送零功率参考信号的配置信息。
其中,配置信息用于标识零功率参考信号的时频资源的范围。
在本申请实施例中,gNB可以通过无线资源控制RRC消息或者下行控制信息(Downlink Control Information,DCI)信令向UE发送配置信息,举例来说,可以直接在消息中添加新字段或者利用现有字段的冗余状态,或者,通过携带是否配置零功率参考信号的参数间接通知UE。在一示例中,可以通过RRC信令muteReInterEstimateFlag={0,1}配置是否使能零功率参考信号。
在本申请实施例中,基站可以在根据其他信号进行干扰估计发现上行干扰测量结果大于预设的启动测量门限时,指示终端设备在上行信号中配置零功率参考信号。示例性地,其他信号可以为探测参考信号(Sounding Reference Signal,SRS),调制解调参考信号(Demodulation Reference Signal,DMRS),上行干扰测量结果可以是RSRP、SINR等至少一个参数。
S202,终端设备根据配置信息生成上行信号。
需要说明的是,S201不是本申请实施例必须执行的步骤。在本申请实施例中,终端设备还可以通过其他方式获取零功率参考信号的配置信息。在一种可选的实施方式中,终端设备可以预先配置零功率参考信号的配置信息。例如,可以在出厂时为终端设备配置零 功率参考信号的时频资源的确定方式,在一示例中,终端设备可以预先配置根据服务小区的小区标识确定零功率参考信号的时频资源的范围的确定方式。相应地,基站也可以在出厂时预先配置或者从网管设备获取配置信息,保证终端设备和基站的配置信息确定的零功率参考信号的时频资源的范围一致即可。
在本申请实施例中,举例来说,用于发送上行信号的时频资源可以包括至少一个资源块(Resource Block,RB),配置信息可用于标识以下至少一种信息:在发送上行信号的任一RB中,零功率参考信号占用的RE的数量、所在的子载波标识、以及对应的时域符号的位置。
在一示例中,上行信号还可以包括调制解调参考信号DMRS,配置信息可以包括:零功率参考信号的时频资源所在的时域符号相对于DMRS的时频资源所在的时域符号的偏移量。零功率参考信号可以紧邻DMRS设置,也可以设置在远离DMRS的位置。当零功率参考信号的时域符号位于上行信号的时频资源的中间位置的时域符号时,零功率参考信号的时频资源中接收到的信号能够更准确的反映接收上行信号的信道的受到的随着时域变化的干扰。当零功率参考信号的时频资源所在的时域符号位于上行信号紧邻DMRS的位置时,零功率参考信号的时频资源位于上行信号的时频资源中时域较为靠前的位置,基站可以较早的对信道进行估计,提升解调的处理速率。在本申请其他实施例中将对零功率参考信号的时频资源的分布进行详细说明。
在本申请实施例中,在步骤S102中,基站可以根据配置信息所标识的零功率参考信号的时频资源的范围,然后从接收到的上行信号中获取在零功率参考信号的时频资源中接收到的上行信号。以用于发送上行信号的时频资源中一个RB为例,基站可以获取在零功率参考信号的时频资源中接收到的上行信号,对整个RB对应的信道进行估计。之后,在步骤S103中,基站可以根据信道估计的结果,对每个RB中除零功率参考信号占用的RE之外的其他RE中接收的上行信号进行去除干扰信号和噪声的处理,然后,对去除干扰信号和噪声处理后的上行信号进行解调。
在实际应用中,在上行传输过程中,gNB接收到的目标UE的信号可能会被临近小区其他UE的发送信号所干扰,尤其是对本小区的边缘UE干扰更加严重,因为边缘用户发送的信号经过长距离传输损耗之后到达gNB的接收信号十分微弱,导致干扰影响较大。
本申请实施例能够解决在上行传输时干扰测量不够准确的问题,改善上行的干扰测量和上传性能,提升上行覆盖能力,对于提升位于小区的边缘区域的UE的干扰测量能力。
本申请实施例中,终端设备向基站发送包含零功率参考信号的上行信号,实际上是在零功率参考信号的时频资源不发送信号,因此,基站在上行信号的时频资源上接收上行信号时,在其中的零功率参考信号的时频资源范围上接收到的信号实际上是由干扰产生的,基于此,基站可以根据在零功率参考信号的时频资源范围上接收的信号,对传输上行信号的信道进行估计,并基于信道估计的结果消除上行传输过程中的干扰,从而能够提升上行传输的解调性能和传输速率。
实施例二
本申请实施例提供零功率参考信号的时频资源的范围的多种可选的实施方式。下面对零功率参考信号的时频资源的实施方式进行举例说明。
在本申请实施例中,举例来说,用于发送上行信号的时频资源可以包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的至少一个时频资源单元。每个时频资源单元可以包括多个资源元素RE。每个时频资源单元的时域可以包括:一个时隙,或者,一个迷你时隙,或者至少两个时域符号。每个时频资源单元的频域可以包括多个子载波,在一示例中,可以是12个子载波。
在一种可选的实施方式中,时频资源单元可以是资源块RB。在一示例中,每个RB的时域可以包括一个时隙的14个时域符号,每个RB的频域可以包括12个子载波,每个RB可以包括12*14个RE。在本申请实施例中,时频资源单元也可以是物理资源块(Physical Resource Block,PRB)。
需要说明的是,示例性地,时频资源单元中的任意第s个时域符号相对于该时频资源单元中的第1个时域符号的时域偏移量为s-1,时频资源单元中的任意第f个子载波相对于该时频资源单元中的第1个子载波的频域偏移量为f-1。例如,时频资源单元中的第1个时域符号的时域偏移量为0,第2个时域符号的时域偏移量为1,第1个子载波的频域偏移量为0,第3个子载波的频域偏移量为2。
在本申请实施例中,每个时频资源单元中的零功率参考信号占用的RE的集合可以称为零功率参考信号的图样(pattern)。本申请实施例将提供零功率参考信号的图样的多种实施方式。
在本申请实施例中,零功率参考信号的配置信息可以用于指示每个时频资源单元中的零功率参考信号的图样。举例来说,所述零功率参考信息的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
每个所述零功率参考信号占用的资源元素RE的数目;
每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
每个所述零功率参考信号所在的至少一个子载波;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波间隔量;
在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波间隔量。
表1为配置信息中各种参数及各种参数的取值范围的一组示意。
表1
Figure PCTCN2021109341-appb-000003
其中,Single表示1个,Double表示2个。
在本申请实施例中,零功率参考信号允许占用的时域符号的起始时域符号可以是相对于DMRS所在的时域符号的时域偏移量,也可以是相对于PUSCH所在的时域符号的时域偏移量。
下面对图样的可选实施方式和配置信息中的各种指示信息的含义进行举例说明。
在本申请实施例中,在每个时频资源单元中,零功率参考信号的数量可以为1个或多个。其中,每个零功率参考信号可以占用一个或多个RE。在每个零功率参考信号占用的RE的数目为多个时,多个RE所在的时域符号可以为1个或多个,多个RE所在的子载波可以为1个或多个。多个零功率参考信号的时频资源所在的时域符号不同,多个零功率参考信号的时频资源所在的子载波可以相同也可以不同。
在本申请实施例中,举例来说,上行信号中还可以包括DMRS,在每个时频资源单元中,零功率参考信号的时频资源与DMRS的时频资源可以不重叠。举例来说,零功率参考信号的时频资源与DMRS的时频资源所在的时域符号可以不同。在一示例中,零功率参考信号所在的时域符号可以紧邻DMRS所在的时域符号。在另一示例中,零功率参考信号所在的时域符号可以远离DMRS所在的时域符号。
在实际应用中,可以设置每个零功率参考信号允许占用的时域符号范围,之后,可以设置每个零功率参考信号的1个或多个RE位于允许占用的时域符号范围中的1个或多个时域符号。在本申请实施例中,在每个所述零功率参考信号占用的RE的数目为1时,该1个RE所在的时域符号可以为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;在每个所述零功率参考信息号占用的RE的数目为2时,这2个RE所在的时域符号可以为从所述起始时域符号开始的2个时域符号中的至少一个时域符号。需要说明的是,在每个时频资源单元的零功率参考信号的数量为2时,可以针对每个零功率参考信号设置允许占用的时域符号范围。
举例来说,每个零功率参考信号允许占用的时域符号范围可以一个或多个时域连续的时域符号,时域符号范围的起始时域符号可以为以下任意一种设置方式。
在一种可选的设置方式中,起始时域符号可以是DMRS的时频资源所在的时域符号之后的第1个时域符号。
在另一种可选的设置方式中,起始时域符号可以是一个时频资源单元中最中间的时域符号;其中,在一示例中,最中间的时域符号可以为一个时频资源单元中除DMRS占用的时域符号之外的其他时域符号中最中间的时域符号,在下面的实施例中将对最中间的时域符号进行详细说明。
在又一种可选的设置方式中,起始时域符号可以是DMRS的时频资源所在的第1个时域符号之后的第K个时域符号,其中,K为每个DMRS允许占用的时域符号的最大个数,在一示例中,K可以为1或2。
表2-1为采用各种设置方式对应的起始时域符号的一组示意。
表2-1
Figure PCTCN2021109341-appb-000004
在本申请实施例中,当每个零功率参考信号占用2个时域符号上的不同子载波时,能够测得不同子载波位置上的干扰,增强频选信道的干扰测量能力。频选信道即频率选择性衰落信道,即位于不同子载波的RE可以获得不同子载波上的干扰测量结果。
需要说明的是,当占用的RE的数目为2时,每个零功率参考信号所在的时域符号的分布方式可以为第一分布方式或者第二分布方式。服务小区对应的零功率参考信号所采用的分布方式可以根据终端设备的服务小区的相邻小区的个数和服务小区的小区标识确定。在下面的实施例中将进行详细说明。
图3A至图3G为本申请实施例提供的零功率参考信号的图样的示意图一至七。
在紧邻设置方式的第一种示例中,DMRS的时域符号为1个时域符号,例如0,零功率参考信号的时域符号可以为DMRS的时域符号之后的第一个时域符号,例如1,可参看图3A所示图样。
在紧邻设置方式的第二种示例中,DMRS的时域符号为时域连续的时域符号,例如0和1,零功率参考信号的时域符号为DMRS的最后一个时域符号之后的第一个时域符号,例如2,可参看图3B所示图样。
在紧邻设置方式的第三种示例中,DMRS的时域符号为两个时域不连续的时域符号,例如0和5,零功率参考信号的时域符号为2个,分别为DMRS所在的2个时域符号之后的第一个时域符号,例如1和6,可参看图3E。需要说明的是,零功率参考信号的时频资源可以位于不同时域符号的同一子载波或者不同子载波,可参看图3F。
在远离设置方式的第一种示例中,DMRS的时域符号为1个时域符号,例如0,零功率参考信号的时域符号为最中间的时域符号,例如7,可参看图3C所示图样。
在远离设置方式的第二种示例中,DMRS的时域符号为时域连续的2个时域符号,例如0和1,零功率参考信号的时域符号为最中间的时域符号,例如7,可参看图3D所示图样。
作为一种示例,DMRS可以位于一个RB中的第1个时域符号,或者,从第1个时域符号开始的两个时域符号上,零功率参考信号所在的时域符号可以为从起始时域符号开始的1个或多个时域符号,其中,起始时域符号的时域符号偏移量可以为大于3且小于11的整数;零功率参考信号所在的子载波可以为子载波偏移量大于或者等于0的一个或多个子载波。在本申请实施例中,零功率参考信号的所在时域符号位置、个数,可以是灵活指示配置的,可以是在任意的一个或多个时域符号位置。可参看图3G所示图样,其中,零功率参考信号所在的时域符号的偏移量为10和11,所在的子载波的子载波偏移量为4、5、10、11。又如,零功率参考信号所在的时域符号的偏移量为6和7,所在的子载波的子载波偏移量为4、5、10、11。
需要说明的是,图3A至图3F所示零功率参考信号的子载波仅为示意,零功率参考信号的子载波还可以是一个时频资源单元中的其他子载波。
在本申请实施例中,以上述零功率参考信号为终端设备的服务小区对应的零功率参考信号为例,在设置零功率参考信号的时频资源的图样时,还可以考虑设置该服务小区与该服务小区的相邻小区对应的零功率参考信号的时频资源相互不重叠。即不同小区对应的零功率参考信号的时频资源可以不重叠。
图4为本申请实施例提供的多小区场景下的零功率参考信号的时频资源的分布示意图一。如图4所示的六边形扇区模型中,以终端设备的服务小区为小区0(Cell 0)为例,服务小区周围可以存在6个相邻小区,分别为Cell 1至Cell 6。相邻小区可能会对服务小区的边缘用户的上行信号造成较大干扰,为了保证每个小区的零功率参考信号测量邻区干 扰的准确性,不同小区的零功率参考信号所在的子载波可以对应不同的频域偏移量。
在实际应用中,举例来说,可以预先规划使得服务小区对应的零功率参考信号的RE与相邻小区对应的零功率参考信号的RE所在的子载波不同,和/或,所在的时域符号不同。
在一示例中,可参看图4所示,在所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1时,可以设置所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
图5A至图6B为本申请实施例提供的多小区场景下零功率参考信号的图样的示意图一至四。如图5A至图6B所示,Cell 0至Cell 1对应的零功率参考信号分别占用1个RE,且分别位于不同的子载波。其中,图5A和图5B中零功率参考信号所在的时域符号采用紧邻DMRS的设置方式,图6A和图6B中零功率参考信号所在的时域符号采用远离DMRS的设置方式。图5A和图6A中DMRS的RE占用1个时域符号,图5B和图6B中DMRS的RE占用2个时域符号。
图7A至图7B为本申请实施例提供的多小区场景下零功率参考信号的图样的示意图五至六。如图7A至7B所示,在一个时频资源单元中,每个小区对应的零功率参考信号的数目为2,Cell 0至Cell 1对应的每个零功率参考信号分别占用1个RE,且分别位于不同的子载波。其中,每个小区对应的DMRS的数目为2且每个DMRS占用1个时域符号,每个零功率参考信号所在的时域符号分别紧邻对应的DMRS的时域符号的设置。需要说明的是,对于每个小区对应的2个零功率参考信号来说,可参看图7A所示,两个零功率参考信号的RE所在的子载波可以相同,可参看图7B所示,也可以不同。
图8A为本申请实施例提供的多小区场景下的零功率参考信号的时频资源的分布示意图二;图8B为本申请实施例提供的多小区场景下的零功率参考信号的时频资源的分布示意图三。
在另一示例中,如图8A和8B所示,对于终端设备的服务小区和所述服务小区的相邻小区中的任一目标小区,该目标小区对应的所述零功率参考信号占用的RE的数目可以为2,且该目标小区对应的第一子载波和第二子载波互不相邻;所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波。对于时频资源单元中的每个时域符号来说,位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波可以不同。
需要说明的是,图8A和图8B中右侧所示的两个时域符号可以为零功率参考信号允许占用的时域符号。其中,左侧的时域符号可以为symbol1,右侧的时域符号为symbol2,其中,symble1可以为零功率参考信号允许占用的起始时域符号。
图9A至图9D为本申请实施例提供的多小区场景下零功率参考信号的图样的示意图九至十二。如图9A至图9D所示,Cell 0至Cell 1对应的零功率参考信号分别占用2个RE,同一小区的2个RE位于不同的子载波。其中,图9A和图9B中零功率参考信号所在的时域符号采用紧邻DMRS的设置方式,图9C和图9D中零功率参考信号所在的时域符号采用远离DMRS 的设置方式。
在本申请实施例中,各个目标小区对应的第一子载波的频域偏移量(FreqOffset)可以是根据各个目标小区的小区标识(Cell ID,CID)确定的。以时频资源单元包括12个子载波为例,各个小区对应的第一子载波的FreqOffset可以采用如下方式确定。
在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
在mod(CID,Q)=6时,FreqOffset=11;
其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
表2-2为根据小区标识确定的零功率参考信号的第一子载波的一组示意。
表2-2
Figure PCTCN2021109341-appb-000005
表2-2所示的零功率参考信号的子载波位置可参看图4至图6A所示。在实际应用中,当零功率参考信号配置为占用1个RE,即single类型时:零功率参考信号在每个PRB占用的子载波的位置可以依据Cell ID作为索引查询预定义的表格获知。
在本申请实施例中,在每个所述零功率参考信号占用的RE的数目为2时,零功率参考信号的2个RE所在的时域符号的分布方式可以为:第一分布方式,或,第二分布方式;
其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;
所述第二分布方式用于表示所述2个RE位于1个时域符号。
在本申请实施例中,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号可以为根据所述终端设备的服务小区的小区标识确定的;其中,
在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。T小于或者等于SumCR/Q。
需要说明的是,在一种可选的实施方式中,在CID×2T≥2×SumCR时,所述2个RE所在的时域符号的分布方式可以设置为第一分布方式。
在本申请实施例中,在所述2个RE所在的时域符号的分布方式为所述第一分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波间隔量为1或3或5。以子载波间隔量为5为例,可参看图8A、图9A、图9C及表2-3所示。
在本申请实施例中,在所述2个RE所在的时域符号的分布方式为所述第二分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波间隔量为2或4或6。以子载波间隔量为5为例,可参看图8B、图9B、图9D及表2-4所示。
举例来说,在一种可选的实施方式中,若每个小区对应的零功率参考信号的子载波的数量为2个,分别为第一子载波和第二子载波。则该小区对应的第一子载波的标识可以根据该小区的小区标识确定,该小区对应的第二子载波的标识可以为第一子载波的标识与预设的子载波偏移量W之和模12的余数。例如,W可以等于5。可参看图5。需要说明的是,当同一小区对应的零功率参考信号占用的RE位于同一时域符号时可以考虑采用这种设置方式。
表2-3为各个小区的零功率参考信号的RE占用2个时域符号上的2个子载波的一种示意。
表2-3
小区标识 第一子载波 第二子载波 小区标识 第一子载波 第二子载波
Cell 0 0 0+5=5 Cell 7 0 0+5=5
Cell 1 2 2+5=7 Cell 8 2 2+5=7
Cell 2 4 4+5=9 Cell 8 4 4+5=9
Cell 3 6 6+5=11 Cell 10 6 6+5=11
Cell 4 8 mod(8+5,12)=1 Cell 11 8 mod(8+5,12)=1
Cell 5 10 mod(10+5,12)=3 Cell 12 10 mod(10+5,12)=3
Cell 6 11 mod(11+5,12)=4 Cell 13 11 mod(11+5,12)=4
在另一示例中,图6为目标小区与6个相邻小区的零功率参考信号的子载波的分布示意图三,可参看图6所示。其中,小区0至小区5所示零功率参考信号的时频资源为位于不同子载波且所在的时域符号相同的2个RE。
举例来说,在一种可选的实施方式中,若每个小区对应的零功率参考信号的子载波的数量为2个,且每个小区对应的零功率参考信号的时频资源所在的时域符号为1个。可以分别确定各个小区对应的零功率参考信号的时频资源所在的子载波和时域符号。
表2-4为各个小区的零功率参考信号的RE占用1个时域2个子载波的一组示意。
表2-4
Figure PCTCN2021109341-appb-000006
其中,Symbol1为每个零功率参考信号允许占用的2个时域符号中的第1个时域符号;Symbol2为每个零功率参考信号允许占用的2个时域符号中的第2个时域符号。其中,“Symbol1:(0,6)”表示2个RE位于允许占用的2个时域符号中的第1个时域符号上频率偏移量为0和6的2个子载波。
在本申请实施例中,在用于发送所述上行信号的一个时频资源单元中,所述零功率参考信号的数目为2个;所述2个零功率参考信号的时频资源所在的子载波可以设置相同或不同。
以每个小区对应的零功率参考信号占用1个RE为例,在所在的子载波设置相同时,每个小区对应的零功率参考性信号占用1个RE的图样可参看图7A所示。
在所在的子载波设置不同时,所述2个零功率参考信号所在的子载波之间的子载波间隔量可以为1或3或5。示例性地,子载波间隔量为5的图样可参看图7B所示。
在本申请实施例中,NR系统中有两种类型的PUSCH资源分配方式,分别为TypeA和TypeB的PUSCH,主要差异在于每个slot中PUSCH的时域符号的起始位置和调度的时域符号数目。表3-1为PUSCH资源分配方式的示意。
表3-1
Figure PCTCN2021109341-appb-000007
其中,S表示起始的时域符号位置,L表示调度的连续时域符号长度,S+L表示调度的 PUSCH最后的时域符号位置。
在PUSCH中可以配置DMRS,DMRS可用于信道估计和数据解调,表3-2为DMRS的一种时域符号位置的配置表格。(可参看TS38.212 Table 6.4.1.1.3-3)
表3-2
Figure PCTCN2021109341-appb-000008
其中l 0表示第一个DMRS符号相对于PUSCH调度的起始符号的offset,来确定DMRS的起始符号所在的位置:在Type A PUSCH中通过高层参数dmrs-TypeA-Position来配置,在Type B PUSCH中取值为0,即从PUSCH的第一个时域符号位置开始。
在实际应用中,可以参考PUSCH或者DMRS的配置,设置零功率参考信号的时频资源。举例来说,在Type B PUSCH中,1个DMRS占用第1个时域符号,则第2个时域符号可以用于零功率参考信号。
实施例三
在上述实施例的基础上,本申请实施例提供的根据配置信息生成上行信号的多种实施方式。
图10为本申请实施例中涉及的映射过程的示意图。
举例来说,时频资源单元的频域可以包括12个子载波,零功率参考信号的时频资源包括用于发送所述上行信号的一个时频资源单元中位于待处理时域符号上的P个RE。
在本申请实施例中,P个RE所在的子载波为{i 1,i 2,…,i P},所述12个子载波中除所述P个RE所述的子载波之外的其他子载波为{j 1,j 2,…,j 12-P};其中,P为大于等于1且小于12的整数;所述方法还包括:
获取待发送的第一数据,其中,所述第一数据为k-P个数据段x 1,x 2,…,x k-P,每个RE用于承载1个数据段中的数据;
根据所述第一数据和DFT变换矩W 12×k,确定第二数据,其中,所述第二数据x k-P+1,…,x k满足:
Figure PCTCN2021109341-appb-000009
将所述第一数据和第二数据组成时域数据x,其中,x=(x 1,x 2,…,x k) T
根据所述DFT变换矩W 12×k,对所述时域数据x进行DFT变换,得到频域数据y;
其中,y=(y 1,y 2,y 3,…,y 8,y 9,y 10,y 11,y 12) T,所述P个RE上的所述上行信号
Figure PCTCN2021109341-appb-000010
均为0;
将所述频域数据y作为待处理时域符号中的上行信号;
其中,k为所述时频资源单元中的时域符号的个数,k大于p。
在本申请实施例中,当零功率参考信号在待处理时域符号上占用2个RE,即P等于2,单载波系统中上行传输的信号处理过程可以示例性如下。
示例性地,零功率参考信号占用频域符号y中的第3个RE和第9个RE。即
y=(y 1,y 2,0,…,y 8,0,y 10,y 11,y 12) T
假设传输带传输的时域采样信号为x=(x 1,x 2,…,x k) T,DFT变换矩为W 12×k,则有:
y=W 12×k·x
此时,y中第3个和第9个元素需要为0,因此可得到如下方程:
Figure PCTCN2021109341-appb-000011
因此,计算整理后得到:
Figure PCTCN2021109341-appb-000012
在本申请实施例中,待发送的每12个信号中其实有2个信号的冗余,即上述x 11和x 12为根据x 1至x 10信号的线性组合得到。当x 11和x 12满足该线性组合时,可以实现在y 3和y 9的频率上发送零功率参考信号,即mute RE,进而使能gNB在单载波系统中进行上行传输过程中的邻区干扰测量。
本申请实施例提供的生成上行信号的实施方式可以实现单载波系统,进而达到保持较小的峰均比(Peak to Average Power Ratio,PAPR)的目的。
实施例四
在前述实施例的基础上,本申请实施例还提供一组上行信号中的DMRS和零功率参考信号的时频资源的范围的可选的实施方式。
在本申请实施例中,终端设备可以向网络设备发送包含DMRS的上行信号,其中,DMRS可占用用于发送上行信号的时频资源单元上的一个或多个RE。举例来说,DMRS占用的RE可以位于一个或多个时域符号中的一个或多个子载波上。需要说明的是,在DMRS占用的RE所在的时域符号上,除DMRS之外的RE可被设置为空余RE或者数据RE,在本申请实施例中,上行信号中空余RE对应的时频资源范围上的发射功率为零,数据RE为用于传输数据的RE。
在本申请实施例中,用于发送上行信号的时频资源单元上可以设置零功率参考信号,也可以不设置零功率参考信号。上行信号中包含DMRS且不包含零功率参考信号时的DMRS所在时频资源可以与本申请实施例附图所示的各种同时包含DMRS和零功率参考信号的图样中DMRS所在的时频资源相同,相当于零功率参考信号所在的RE可以为数据RE或者空余RE。示例性地,与DMRS位于同一时域符号的RE可以为空余RE或者数据RE,与DMRS位于不同时域符号的RE可以为数据RE。在本申请实施例中,如未特殊说明,零功率参考信号所在的时域符号中除零功率参考信号占用的RE之外的RE为数据RE。下面将结合附图对上行信号中的零功率参考信号和DMRS进行示例性说明。
在本申请实施例中,DMRS的时频资源可以为根据终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
其中,不同的第一标识对应的DMRS所在的时域符号和/或子载波不同。
需要说明的是,作为一种应用示例,通过规划DMRS对应的第一标识,可以利用对应的第一标识不同的DMRS占用的时频资源所在的时域符号和/或子载波不同,来实现在同一时频资源范围中发送多个终端设备的DMRS。
在本申请实施例中,举例来说,第一标识可以为终端设备对应的DMRS对应的码分复用群组(code divison multiplex group,CDM group)的标识。在本申请实施例中,码分复用分组的标识可以称为CDM group ID。用于发送上行信号的一个时频资源单元中的DMRS可以对应一个CDM group ID。在本申请实施例中,需要说明的是,所有CDM group对应的DMRS的时频资源的集合为群组资源集合,群组资源集合中的资源不会用于传输数据,也即本申请实施例中提及的CDM group对应于不用于传输数据的CDM group(即DMRS CDM group without data)。
在本申请实施例中,上行信号中的DMRS所在的时域符号和/或子载波可以为根据所述终端设备对应的CDM group的标识和CDM配置类型确定的。
在本申请实施例中,零功率参考信号所在的时频资源可以为基于DMRS对应的码分复用(code divison multiplex,CDM)配置类型和/或CDM group的标识确定的。
需要说明的是,DMRS对应的CDM group ID可以为发送DMRS的终端设备对应的CDM group ID。
对于一个小区来说,一个小区下的终端设备可以划分为多个CDM group,不同CDM group的终端设备发送的DMRS所在的时频资源不同,相同CDM group的终端设备发送的DMRS所在的时频资源相同。
举例来说,不同CDM group的终端设备发送的DMRS所在的RE可以不同,即通过时分和/或频分方式,来避免不同CDM group的终端设备发送的DMRS之间的干扰。属于同一CDM group的终端设备发送的DMRS所在的RE相同,每个CDM group对应一个正交码序列,同一CDM group中的不同UE分别使用正交码序列中的不同正交码发送DMRS,即通过码分方式来避免同一CDM group中的不同UE的DMRS之间的干扰。
还需要说明的是,上行信号可以为通过终端设备的一个天线端口发送的信号;此时,终端设备对应的CDM group可以为终端设备的天线端口对应的CDM group;其中,终端设备的每个天线端口可以对应不同的CDM group,或者,终端设备的每个天线端口可以对应CDM group中的不同正交码。例如,终端设备的天线端口0和天线端口1可以对应group 0,天线端口2和天线端口3可以对应group1。第一标识可以为CDM group ID,在一示例中,终端设备对应的CDM group ID可以为终端设备中的天线端口发送的DMRS对应的CDM group ID。
在本申请实施例中,支持CDM group的零功率参考信息的配置信息可以包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,在DMRS的CDM配置类型为第三CDM类型时,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的子载波为所述CDM配置类型对应的所有CDM group的DMRS所在的子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
每个CDM group的零功率参考信号占用的起始时域符号;
每个CDM group的零功率参考信号占用的时域符号的个数;
每个群组资源中的群组资源单元个数。
其中,每个群组资源单元包含的DMRS占用连续的时域符号和/或连续的子载波。
在本申请实施例中,在零功率参考信号是否支持码分复用分组CDM group的配置指示为是时,终端设备可以根据DMRS的时频资源或者按照包含零功率参考信号的上行信号中的DMRS对应的CDM配置类型确定零功率参考信号所在的时频资源;在零功率参考信号是否支持码分复用分组CDM group的配置指示为否时,终端设备可以根据本申请实施例提供的其他配置方式或者配置信息中其他参数确定零功率参考信号所在的时频资源。例如,可以采用零功率参考信号的起始时域符号为DMRS所在的时域符号之后的第1个时域符号,零功率参考信号占用的时域符号的个数为1个或2个,零功率参考信号所在的子载波为第0个子载波或者第5个子载波。
在本申请实施例中,在频域上,零功率参考信号所在的子载波可以为根据包含零功率参考信号的上行信号中的DMRS的时频资源,上述上行信号中的DMRS对应的CDM group ID、CDM配置类型中至少一种信息确定的。在时域上,零功率参考信号所在的起始时域符号可以包括与DMRS所在的时域符号相邻或者不相邻的其他时域符号,例如,零功率参考信号所在的起始时域符号可以包括DMRS所在的时域符号之后的第1个时域符号和/或第2个时域符号,或者,零功率参考信号所在的时域符号可以为根据CDM group ID和/或CDM配置类型确定的其他时域符号;零功率参考信号所在的时域符号的数量可以为1个、2个、3个、4个、6个等。此外,零功率参考信号占用的时频资源位置,可以是由网络设备通过信令任意配置的,例如,频域上可以在每个时频资源单元内配置至少一个子载波位置为零功率参考信号的位置,时域上可以在每个时频资源单元内配置至少一个时域符号的数目和位置,所述网络设备通过信令配置,包括通过高层信令(e.g.RRC信令)。每个零功率参考信号占用的时域符号的个数可以与每个DMRS占用的时域符号的个数相同,在一示例中,零功率参考信号占用的时域符号个数可以为根据DMRS的配置信息中每个DMRS占用的时域符号个数确定的。下面将结合CDM配置类型和CDM group ID进行示例性说明。
在本申请实施例中,基于DMRS对应的CDM配置类型、CDM group ID等信息确定的零功率参考信号所在的时频资源有多种实施方式。
在确定零功率参考信号的一种可选实施方式中,零功率参考信号所在的子载波可以与DMRS所在的子载波相同,其中,DMRS所在的子载波可以为根据发送DMRS的终端设备对应的CDM group ID确定的。也就是说,零功率参考信号所在的子载波可以为根据发送零功率参考信号和DMRS的终端设备对应的CDM group ID确定的。
下面对DMRS所在的子载波的各种配置方式进行说明,零功率参考信号所在的子载波可采用与基于CDM group ID确定DMRS所在子载波相同的方式确定。
在本申请实施例中,DMRS所在的子载波可以为根据DMRS的CDM配置类型和CDM group ID确定的。其中,DMRS的CDM配置类型可以为第一CDM类型、第二CDM类型和第三CDM类型。
表4-1为CDM配置类型的一种示意。
表4-1
Figure PCTCN2021109341-appb-000013
其中,零功率参考信号占用的时域符号的个数可为1个或2个。允许占用的时域符号中的起始时域符号为从DMRS占用的时域符号之后的第1个时域符号。
在一示例中,零功率参考信号占用的时域符号的个数与DMRS占用的时域符号的个数可以相同。
在一种可选的实施方式中,DMRS的配置信息可以包括DMRS的子载波间隔数等信息。子载波间隔数为同一CDM group的DMRS所在的多个子载波之间间隔的子载波个数,例如,某一group ID对应的DMRS所在的子载波为3、7、11,则子载波间隔数为3。
在本申请实施例中,在CDM配置类型为第一CDM类型和第二CDM类型时,不同group ID对应的DMRS所在的子载波不同。可以采用上述第一配置方式或者第二配置方式来配置零功率参考信号的时频资源。在CDM配置类型为第三CDM类型时,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。示例性地,第一CDM group对应的DMRS所在的时域符号与第二CDM group对应的DMRS所在的时域符号不同,所述第一CDM group为所述终端设备对应的CDM group,所述第二CDM group为所述第三CDM 类型支持的包括所述第一CDM group在内的至少两个CDM group中的至少一个其他CDM group。
在本申请实施例中,对应不同CDM group的DMRS所在的子载波不同,可以有多种实施方式。下面以时频资源单元包括12个子载波进行示例性说明
举例来说,基于CDM group ID配置的DMRS所在的子载波所采用的图样配置类型(以下简称为DMRS的CDM配置类型)可以包括:
图11为基于CDM group配置的DMRS所在的子载波的一组示意图。
在第一CDM类型中,一个小区可以支持2个CDM group,分别为CDM group 0和CDM group 1。
如图11中(1)和(2)所示,属于CDM group 0的终端设备发送的DMRS位于子载波偏移量为偶数的子载波上,属于CDM group 0的终端设备发送的DMRS位于子载波偏移量为奇数的子载波上。
如图11中(1)所示,DMRS占用的RE位于一个时域符号上,即DMRS的时域符号数配置类型为Single类型,每个CDM group的终端设备的DMRS占用6个RE。如图11中(2)所示,DMRS占用的RE位于相邻的两个时域符号上,即DMRS的时域符号数配置类型为Double类型,每个CDM group的终端设备的DMRS占用12个RE。
在第二CDM类型中,一个小区可以支持3个CDM group,分别为CDM group 0、CDM group 1和CDM group 2。其中,DMRS所在的子载波为子载波偏移量模6的余数等于CDM group ID*2和CDM group ID*2+1的所有子载波。
如图11中(3)、(4)所示,属于CDM group 0的终端设备发送的DMRS位于子载波偏移量模3的余数为0和1的所有子载波上,属于CDM group 1的终端设备发送的DMRS位于子载波偏移量为2和3的所有子载波上,属于CDM group 2的终端设备发送的DMRS位于子载波偏移量为4和5的所有子载波上。
如图11中(3)所示,DMRS占用的RE位于一个时域符号上,即DMRS的时域符号数配置类型为Single类型,每个CDM group的终端设备的DMRS占用4个RE。如图11中(4)所示,DMRS占用的RE位于相邻的两个时域符号上,即DMRS的时域符号数配置类型为Double类型,每个CDM group的终端设备的DMRS占用8个RE。
需要说明的是,两种CDM配置类型能够支持的终端设备的最大个数为每个CDM group支持的终端设备的最大个数与CDM group个数的乘积。其中,每个CDM group能够支持的终端设备的最大个数为正交码序列中正交码的个数*时域符号数。
下面以正交码序列中正交码个数为2进行示例性说明。当DMRS的时域符号数配置为Single类型时,每个CDM group能够支持的终端设备的最大个数为2*1,即2个。当DMRS的时域符号数配置为Double类型时,相邻的两个时域符号上,也可以通过时域的正交码, 实现2个UE的复用,因此,double类型相比single类型,能够支持多一倍UE的复用,基于此,每个CDM group能够支持的终端设备的最大个数为2*2个,即4个。
表4-2为正交码序列中正交码个数为2时每种CDM配置类型能够支持的终端设备的最大个数的示意。
表4-2
Figure PCTCN2021109341-appb-000014
在一个终端设备对应一个单流传输时,一个终端设备对应的一个天线端口,每个CDM group支持的天线端口的最大个数即每个CDM group支持的终端设备的最大个数。
如表1中第一CDM类型有关说明所示,图11中(1)所示图样中,每个CDM group能够支持的终端设备的最大个数为2,第一CDM类型支持的CDM group个数为2,采用Single类型的DMRS的时频资源能够支持的天线端口的最大个数为4个。
如表1中第一CDM类型有关说明所示,图11中(2)所示图样中的每个CDM group能够支持的终端设备的最大个数为4,第一CDM配置类型第一CDM类型支持的CDM group个数为2,采用Double类型的DMRS的时频资源能够支持的天线端口的最大个数为8个。
如表1中第二CDM配置类型第二CDM类型有关说明所示,图11中(3)所示图样中的每个CDM group能够支持的终端设备的最大个数为2,第二CDM配置类型第二CDM类型支持的CDM group个数为3,采用Single类型的DMRS的时频资源能够支持的天线端口的最大个数为6个。
如表1中第二CDM类型有关说明所示,图11中(3)所示图样中的每个CDM group能够支持的终端设备的最大个数为4,第二CDM类型支持的CDM group个数为3,采用Single类型的DMRS的时频资源能够支持的天线端口的最大个数为12个。
在基于CDM group ID配置零功率参考信号的第二种可选实施方式中,零功率参考信号所在的子载波可以为CDM配置类型对应的所有DMRS所在的子载波的集合,其中,零功率参考信号所在的子载波为上行信号的时频资源单元中的部分子载波。此时,不同group ID对应的DMRS所在的子载波可以相同也可以不同。
在一示例中,支持CDM group的零功率参考信号的配置方式为第二配置方式;所述 DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;所述零功率参考信号所在的子载波包括CDM配置类型对应的所有CDM group的DMRS所在的子载波;所述零功率参考信号占用的RE所在的起始时域符号为所述DMRS所在的时域符号之后的第1个时域符号或者与DMRS占用的时域符号不相邻的任一时域符号。
在又一示例中,支持CDM group的零功率参考信号的配置方式为第二配置方式;DMRS的CDM配置类型为第三CDM类型;所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
在本申请实施例中,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
图12至图15为本申请实施例提供的采用第一配置方式配置的零功率参考信号的图样的示意图。
在实际应用的一种示例中,零功率参考信号可采用第一配置方式,DMRS的CDM配置类型可以为第一CDM类型或者第二CDM类型。
在所述DMRS的CDM配置类型为第一CDM类型时,可参看图12和图13所示,所述零功率参考信号所在的子载波包含满足第一条件的所有子载波,所述第一条件为子载波偏移量模2的余数等于所述CDM group ID的所有子载波;其中,图12中的零功率参考信号占用1个时域符号,图13中的零功率参考信号占用2个时域符号。
在所述DMRS的CDM配置类型为第二CDM类型时,可参看图14和图15所示,所述零功率参考信号所在的子载波包含满足第二条件的所有子载波,所述第二条件为子载波偏移量模6的余数等于所述CDM group ID*2以及所述CDM group ID*2+1的所有子载波。其中,图14中的零功率参考信号占用1个时域符号,图15中的零功率参考信号占用2个时域符号。
图16至图22为本申请实施例提供的采用第二配置方式配置的零功率参考信号的图样的示意图。
在实际应用的另一种示例中,零功率参考信号采用第二配置方式,DMRS的CDM配置类型为第一CDM类型或者第二CDM类型或者第三CDM类型。
在所述DMRS的CDM配置类型为第一CDM类型时,可参看图16、图17、图18、图19 所示,零功率参考信号所在的子载波为第一CDM类型对应的所有CDM group ID的DMRS所在的所有子载波。其中,图16和图18中的零功率参考信号占用1个时域符号,图17和图19中的零功率参考信号占用2个时域符号。
需要说明的是,图18和图19所示的RB中,每个group ID对应的DMRS所在的多个相邻子载波之间的间隔为相同数量的子载波,图18中为同一group ID对应的DMRS所在的相邻子载波之间的间隔为3个子载波;不同group ID对应的DMRS所在的相邻子载波之间的间隔为1个或多个子载波;图18中为不同group ID对应的DMRS所在的相邻子载波之间的间隔为1个子载波。需要说明的是,DMRS的配置信息可以包括间隔的子载波的个数。
在所述DMRS的CDM配置类型为第二CDM类型时,零功率参考信号所在的子载波为第二CDM类型对应的所有CDM group ID的DMRS所在的所有子载波。其中,所有DMRS所在的所有子载波为一个RB中的部分子载波。
在所述DMRS的CDM配置类型为第三CDM类型时,所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
作为一种示例,每个群组资源包括至少两个群组资源单元;所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波;其中,所有CDM group对应的群组资源单元所在的所有子载波为所述时频资源单元中的部分子载波。
在本申请实施例中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;每个群组资源单元占用2个连续的时域符号;每个群组资源单元占用2个连续的子载波;所有CDM group ID的群组资源单元占用的时域符号的个数为6;所有CDM group ID的群组资源单元占用的子载波的个数为4。
可参看图20,用于发送所述上行信号的任一时频资源单元中的群组资源集合中的每个群组资源包括2个群组资源单元,所有CDM group ID对应的DMRS的群组资源单元占用4个时域符号和4个子载波;所述第三CDM类型支持的CDM group的个数为4个;每个群组资源单元的RE位于2时域符号上的两个连续的子载波。
可参看图21,用于发送所述上行信号的任一时频资源单元中的群组资源集合中的每个群组资源包括2个群组资源单元,所有CDM group ID对应的DMRS的群组资源单元占用2个时域符号和4个子载波;所述第三CDM类型支持的CDM group的个数为4个;每个群组资源单元的RE位于2时域符号上的两个连续的子载波。
可参看图22,用于发送所述上行信号的任一时频资源单元中的群组资源集合中的每个群组资源包括2个群组资源单元,所有CDM group ID对应的DMRS的群组资源单元占用6 个时域符号和4个子载波;所述第三CDM类型支持的CDM group的个数为6个;每个群组资源单元的RE位于2个连续的时域符号上的两个连续的子载波,可参看图22(1)所示,所有CDM group ID对应的DMRS的时频资源的集合为群组资源集合;一个RB中的群组资源集合可以包括两个黑框所示的时频资源,其中,每个group ID对应的DMRS为一个群组资源,每个群组资源包括位于两个黑框内的两个群组资源单元,每个群组资源单元占用的四个RE,即田字型分布的4个RE。同一group的群组资源中的两个群组资源单元所在的时域符号相同,两个群组资源单元所在的子载波之间间隔4个子载波。
图12至图15为采用第一配置方式的不同CDM group的零功率参考信号的图样的一组示意图。其中,各个图样的区别及涉及的配置参数的选择如表2所示。
表5为采用第一配置方式的零功率参考信号的各种图样的对比说明。
表5
Figure PCTCN2021109341-appb-000015
图16至图21为采用第二配置方式的不同CDM group的零功率参考信号的图样的一组示意图。
表6为采用第二配置方式的零功率参考信号的各种图样的对比说明。
表6
Figure PCTCN2021109341-appb-000016
Figure PCTCN2021109341-appb-000017
本申请实施例提供的技术方案具有以下技术效果:
在本申请实施例中,图12至图22中所示的零功率参考信号的配置,能够保证同一个CDM group的用户对应的零功率参考信号的时频资源相同,使得该group上的多个用户的数据不会对零功率参考信号造成干扰。这里的用户可以是指终端设备、天线端口或者数据流。即每个group对应的用户的零功率参考信号的RE与同一group的用户的数据RE所在的位置不同。
在本申请实施例中,图16至图22所示的零功率参考信号的配置,能够保证零功率参考信号的RE与本小区中对应不同CDM group ID的用户的数据RE不同。即零功率参考信号中不包含来自本小区的所有CDM group ID对应的用户的数据RE产生的干扰。基于此,网络设备可以根据零功率参考信号对相邻小区的干扰进行准确测量。即利用只利用零功率参考信号测量邻区干扰。
可参看图22所示,在采用零功率参考信号的第二配置方式与DMRS的第三CDM类型相结合的技术方案时,DMRS能够支持的CDM group的个数为6个,每个CDM group能够支持复用的UE的个数为4个,也就是说,DMRS支持最多24个UE复用,即最大能够支持24层数据流的并行发送,能够显著提高上行传输的系统容量。
在本申请实施例中,不同CDM group对应的零功率参考信号所在的时频资源可以不同或者部分相同相同;一个CDM group的零功率参考信号不能占用一个时域符号的全部子载波;需要说明的是,一个CDM group的DMRS可以占用一个时域符号的全部子载波,但是,原因是避免发射功率中断;因此,在发送DMRS的同时发送零功率时,所有group的零功率也不能占满全部子载波。
在本申请实施例中,可参看图22所示,对于DMRS采用第三CDM类型,以及,零功率参考信号采用第二配置方式配置时,各个group ID对应的DMRS所在的RE的位置可以是图22中所示的6种图样中的任一种,只需要保持各个group ID对应的DMRS所在的时频资源不同即可。示例性地,可使用一个群组偏移量变换每个group ID对应的DMRS所在的RE的位置。
在本申请实施例中,需要说明的是,在上行信号也可以不包含零功率参考信号,此时,DMRS采用第三CDM类型时,所有CDM group对应的DMRS所在的子载波集合可以为用于发送上行信号的时频资源单元中的全部RE或部分RE。作为一种示例,所有CDM group对应的DMRS所在的子载波的集合可以为一个RB中的全部子载波。
实施例五
本申请实施例还提供一种通信装置。图23为本申请实施例提供的一种通信装置的结构示意图一。如图23所示,该通信装置1100可以包括:处理模块1101和发送模块1102。
在通信装置1100的第一种可选的实施方式中:
处理模块1101,可用于指示发送模块1102向网络设备发送包含零功率参考信号的上行信号;其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零。
在本申请实施例中,通信装置还可以包括接收模块1103,接收模块1103用于从网络设备接收零功率参考信号的配置信息。
在本申请实施例中,处理模块1101,还可以用于根据零功率参考信号的配置信息生成包含零功率参考信号的上行信号。
在一种可选的实施方式中,所述零功率参考信号为所述终端设备的服务小区对应的零功率参考信号;所述服务小区和所述服务小区的相邻小区组成的小区组中的各个小区对应的零功率参考信号的时频资源相互不重叠。
在一种可选的实施方式中,所述零功率参考信息的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
每个所述零功率参考信号占用的资源元素RE的数目;
每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
每个所述零功率参考信号所在的至少一个子载波;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
在一种可选的实施方式中,在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
在一种可选的实施方式中,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;
所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
在一种可选的实施方式中,目标小区对应的所述零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小区中的任意一个;所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波;位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波不同。
在一种可选的实施方式中,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
在mod(CID,Q)=6时,FreqOffset=11;
其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
在一种可选的实施方式中,每个所述零功率参考信号占用的RE的数目为2;所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;所述第二分布方式用于表示所述2个RE位于1个时域符号。
在一种可选的实施方式中,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。T小于或者等于SumCR/Q。
在一种可选的实施方式中,在所述2个RE所在的时域符号的分布方式为所述第一分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为1或3或5;或者,
在所述2个RE所在的时域符号的分布方式为所述第二分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为2或4或6。
在一种可选的实施方式中,在用于发送所述上行信号的一个时频资源单元中,所述零功率参考信号的数目为2个;所述2个零功率参考信号的时频资源所在的子载波相同或不同。
在一种可选的实施方式中,在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量为1或3或5。
在一种可选的实施方式中,所述零功率参考信号的时频资源包括:用于发送所述上行信号的一个时频资源单元中位于待处理时域符号上的P个RE;所述时频资源单元的频域包括12个子载波;所述P个RE所在的子载波为{i 1,i 2,…,i P},所述12个子载波中除所述P个RE所述的子载波之外的其他子载波为{j 1,j 2,…,j 12-P};其中,P为大于等于1且小于12的整数;
所述处理模块还用于:获取待发送的第一数据,其中,所述第一数据为k-P个数据段x 1,x 2,…,x k-P,每个RE用于承载1个数据段中的数据;根据所述第一数据和DFT变换矩W 12×k,确定第二数据,其中,所述第二数据x k-P+1,…,x k满足:
Figure PCTCN2021109341-appb-000018
将所述第一数据和第二数据组成时域数据x,其中,x=(x 1,x 2,…,x k) T;根据所述DFT变换矩W 12×k,对所述时域数据x进行DFT变换,得到频域数据y;其中,y=(y 1,y 2,y 3,…,y 8,y 9,y 10,y 11,y 12) T,所述P个RE上的所述上行信号
Figure PCTCN2021109341-appb-000019
均为0;将所述频域数据y作为待处理时域符号中的上行信号;其中,k为所述时频资源单元中的时域符号的个数,k大于p。
在一种可能的实现方式中,零功率参考信号的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
每个CDM group的零功率参考信号占用的起始时域符号;
每个CDM group的零功率参考信号占用的时域符号的个数;
每个群组资源中的群组资源单元个数。
在一种可能的实现方式中,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
在一种可能的实现方式中,所述上行信号还包括DMRS;所述DMRS所在的子载波为根据所述DMRS对应的CDM group确定的;
其中,不同CDM group的DMRS所在的时域符号和/或子载波不同;
所述零功率参考信号所在的时频资源为根据所述DMRS的时频资源或者CDM配置类型确定的。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第 一配置方式;所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;所述零功率参考信号所在的子载波的标识与所述上行信号的DMRS所在的子载波的标识相同。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;所述零功率参考信号所在的子载波包括CDM配置类型对应的所有CDM group的DMRS所在的子载波;所述零功率参考信号占用的RE所在的起始时域符号为所述DMRS所在的时域符号之后的第1个时域符号。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;所述DMRS的CDM配置类型为第三CDM类型;所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。所述第三CDM类型支持的至少两个CDM group对应的DMRS所在的时域符号不同。
在一种可能的实现方式中,所述DMRS的CDM配置类型为第一CDM类型或者第二CDM类型;在所述DMRS的CDM配置类型为第一CDM类型时,所述零功率参考信号所在的子载波包含满足第一条件的所有子载波,所述第一条件为子载波偏移量模2的余数等于所述CDM group ID的所有子载波;在所述DMRS的CDM配置类型为第二CDM类型时,所述零功率参考信号所在的子载波包含满足第二条件的所有子载波,所述第二条件为子载波偏移量模6的余数等于所述CDM group ID*2和所述CDM group ID*2+1的所有子载波。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波;其中,所有CDM group对应的群组资源单元所在的所有子载波为所述时频资源单元中的部分子载波。
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;每个群组资源单元占用2个连续的时域符号;每个群组资源单元占用2个连续的子载波;所有CDM group ID的群组资源单元占用的时域符号的个数为6;所有CDM group ID的群组资源单元占用的子载波的个数为4。
在一种可能的实现方式中,在用于发送所述上行信号的时频资源单元中,不同时域符号的发射功率之间的差值小于预设的偏差功率阈值。
在一种可能的实现方式中,在用于发送所述上行信号的时频资源中,不同时域符号的发射功率相等。
在一种可能的实现方式中,所述用于发送所述上行信号的时频资源单元为资源块RB;在包含所述零功率参考信号占用的RE的任一目标时域符号中,每个有效RE的发 射功率为所述目标时域符号的发射功率除以有效RE个数;其中,所述有效RE为所述目标时域符号上除所述零功率参考信号占用的RE之外的其他RE。
在一种可能的实现方式中,所述零功率参考信号所在的目标时域符号上除所述零功率参考信号占用的RE之外的RE为用于承载数据的数据RE。
在通信装置1100的第二种可选的实施方式中:
处理模块1101可用于指示发送模块1102向网络设备发送DMRS;
其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
其中,不同的第一标识对应的DMRS所在的时域符号和/或子载波不同。
其中,DMRS可用于网络设备对包含所述DMRS的上行信号进行信道估计、去除干扰、以及解调上行信号中承载的数据等。
在一种可能的实现方式中,第一标识为所述终端设备对应的CDM group的标识。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;每个群组资源单元占用2个连续的时域符号;每个群组资源单元占用2个连续的子载波;所有CDM group ID的群组资源单元占用的时域符号的个数为6;所有CDM group ID的群组资源单元占用的子载波的个数为4。
图24为本申请实施例提供的通信装置的结构示意图二。如图12所示,该通信装置1200包括:处理模块1201,接收模块1203。
在通信装置1200的第一种可选的实施方式中:
接收模块1203,用于接收终端设备发送的包含零功率参考信号的上行信号,其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零;
处理模块1201,用于根据在所述零功率参考信号的时频资源中接收到的所述上行信号进行信道估计;以及,根据信道估计的结果,对接收到的上行信号进行解调。
在本申请实施例中,装置1200还可以包括:发送模块1202,用于向终端设备发送零功率参考信号的配置信息。在本申请实施例中,装置1200还可以包括存储模块1204,用于存储相关数据及指令。
在一种可选的实施方式中,所述零功率参考信号为所述终端设备的服务小区对应的零功率参考信号;所述服务小区和所述服务小区的相邻小区组成的小区组中的各个小区对应的零功率参考信号的时频资源相互不重叠。
在一种可选的实施方式中,所述零功率参考信息的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
每个所述零功率参考信号占用的资源元素RE的数目;
每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
每个所述零功率参考信号所在的至少一个子载波;
在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
在一种可选的实施方式中,在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
在一种可选的实施方式中,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
在一种可选的实施方式中,目标小区对应的所述零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小区中的任意一个;所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波;位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波不同。
在一种可选的实施方式中,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
在mod(CID,Q)=6时,FreqOffset=11;
其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
在一种可选的实施方式中,每个所述零功率参考信号占用的RE的数目为2;所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;所述第二分布方式用于表示所述2 个RE位于1个时域符号。
在一种可选的实施方式中,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。T小于或者等于SumCR/Q。
在一种可选的实施方式中,在所述2个RE所在的时域符号的分布方式为所述第一分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为1或3或5;或者,在所述2个RE所在的时域符号的分布方式为所述第二分布方式时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量为2或4或6。
在一种可选的实施方式中,在用于发送所述上行信号的一个时频资源单元中,所述零功率参考信号的数目为2个;所述2个零功率参考信号的时频资源所在的子载波相同或不同。
在一种可选的实施方式中,在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量为1或3或5。
在一种可能的实现方式中,所述零功率参考信号的配置信息包括以下至少一种信息:
在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
每个CDM group的零功率参考信号占用的起始时域符号;
每个CDM group的零功率参考信号占用的时域符号的个数;
每个群组资源中的群组资源单元个数。
在一种可能的实现方式中,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
在一种可能的实现方式中,所述上行信号还包括DMRS;所述DMRS所在的子载波为根据所述DMRS对应的CDM group确定的;
其中,不同CDM group的DMRS所在的时域符号和/或子载波不同;
所述零功率参考信号所在的时频资源为根据所述DMRS的时频资源或者CDM配置类型确定的。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第一配置方式;所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;所述零功率参考信号所在的子载波的标识与所述上行信号的DMRS所在的子载波的标识相同。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;所述DMRS的CDM配置类型为第一CDM类型或第二CDM类型;其中,不同group ID对应的DMRS所在的子载波不同;所述零功率参考信号所在的子载波包括CDM配置类型对应的所有CDM group的DMRS所在的子载波;所述零功率参考信号占用的RE所在的起始时域符号为所述DMRS所在的时域符号之后的第1个时域符号。
在一种可能的实现方式中,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;所述DMRS的CDM配置类型为第三CDM类型;所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。所述第三CDM类型支持的至少两个CDM group对应的DMRS所在的时域符号不同。
在一种可能的实现方式中,所述DMRS的CDM配置类型为第一CDM类型或者第二CDM类型;在所述DMRS的CDM配置类型为第一CDM类型时,所述零功率参考信号所在的子载波包含满足第一条件的所有子载波,所述第一条件为子载波偏移量模2的余数等于所述CDM group ID的所有子载波;在所述DMRS的CDM配置类型为第二CDM类型时,所述零功率参考信号所在的子载波包含满足第二条件的所有子载波,所述第二条件为子载波偏移量模6的余数等于所述CDM group ID*2和所述CDM group ID*2+1的所有子载波。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;
所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;每个群组资源单元占用2个连续的时域符号;每个群组资源单元占用2个连续的子载波;所有CDM group ID的群组资源单元占用的时域符号的个数为6;所有CDM group ID的群组资源单元占用的子载波的个数为4。
在通信装置1200的第二种可选的实施方式中:
接收模块1203,可用于接收终端设备发送的DMRS;其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合 包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
处理模块1201,可用于根据所述DMRS对接收到的包含所述DMRS的上行信号进行解调。
在一种可能的实现方式中,所述第一标识为所述终端设备对应的CDM group的标识。
在一种可能的实现方式中,所述DMRS所在的时域符号和/或子载波为根据所述终端设备对应的CDM group的标识和CDM配置类型确定的;
在所述CDM配置类型为第三CDM类型时,第一CDM group对应的DMRS所在的时域符号与第二CDM group对应的DMRS所在的时域符号不同,所述第一CDM group为所述终端设备对应的CDM group,所述第二CDM group为所述第三CDM类型支持的包括所述第一CDM group在内的至少两个CDM group中的至少一个其他CDM group。
在一种可能的实现方式中,每个群组资源包括至少两个群组资源单元;所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
在一种可能的实现方式中,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;每个群组资源单元占用2个连续的时域符号;每个群组资源单元占用2个连续的子载波;所有CDM group ID的群组资源单元占用的时域符号的个数为6;所有CDM group ID的群组资源单元占用的子载波的个数为4。
图25为本申请实施例提供的终端设备的结构示意图一。如图25所示,本申请实施例的装置1300可以是上述方法实施例中的终端设备,装置1300可以用于执行上述方法实施例中的终端设备的部分或全部功能。该装置1300可以包括:处理器1310,基带电路1313,射频电路1340以及天线1350,可选的,该装置1300还可以包括存储器1320。装置1300的各个组件通过总线1360耦合在一起,其中总线系统1360除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1360。
处理器1310可用于实现对终端设备的控制,用于执行上述实施例中由终端设备进行的处理,可以执行上述方法实施例中涉及终端设备的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路1313、射频电路1340以及天线1350可以用于支持终端设备和上述实施例中涉及的网络设备进行无线通信。
一个示例中,来自网络设备发送的经过PHY层封装的待发送帧经由天线1350接收,由射频电路1340进行滤波、放大、下变频以及数字化等处理后,再经由基带电路1313解码、按协议解封装数据等基带处理后,由处理器1310进行处理来恢复网络设备所发送的业务数据和信令信息;又一个示例中,终端设备发送的携带的小区的接入控制信息可由处理器1310进行处理,经由基带电路1313进行按协议封装,编码等基带处理,进一步由射频电路1340进行模拟转换、滤波、放大和上变频等射频处理后,经由天线1350发送给网络设备。
存储器1320可以用于存储终端设备的程序代码和数据,存储器1320可以是图11中的存 储模块。可以理解的,基带电路1313、射频电路1340以及天线1350还可以用于支持终端设备与其他网络实体进行通信,例如,用于支持终端设备核心网侧的网元进行通信。图13中存储器1320被示为与处理器1310分离,然而,本领域技术人员很容易明白,存储器1320或其任意部分可位于装置1300之外。举例来说,存储器1320可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1310通过总线接口1360来访问。可替换地,存储器1320或其任意部分可以集成到处理器1310中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图13仅仅示出了终端设备的简化设计。例如,在实际应用中,终端设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的第一节点都在本发明的保护范围之内。
需要说明的是,在作为接收端时,装置1300可以还可以用于执行上述方法实施例中的终端设备的部分或全部功能。
图26为本申请实施例提供的网络设备的结构示意图二。如图26所示,本申请实施例的装置1400可以是上述方法实施例中的网络设备。装置1400可以用于执行上述方法实施例中的网络设备的部分或全部功能。该装置1400可以包括:处理器1410,基带电路1414,射频电路1440以及天线1450,可选的,该装置1400还可以包括存储器1420。装置1400的各个组件通过总线1460耦合在一起,其中总线系统1460除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1460。
处理器1410可用于实现对网络设备的控制,用于执行上述实施例中由网络设备进行的处理,可以执行上述方法实施例中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路1414、射频电路1440以及天线1450可以用于支持网络设备和上述实施例中涉及的终端设备进行无线通信。
一个示例中,来自网络设备发送的经过PHY层封装的待发送帧经由天线1450接收,由射频电路1440进行滤波、放大、下变频以及数字化等处理后,再经由基带电路1414解码、按协议解封装数据等基带处理后,由处理器1410进行处理来恢复网络设备所发送的业务数据和信令信息;又一个示例中,网络设备发送的携配置信息可由处理器1410进行处理,经由基带电路1414进行按协议封装,编码等基带处理,进一步由射频电路1440进行模拟转换、滤波、放大和上变频等射频处理后,经由天线1450发送给终端设备。
存储器1420可以用于存储网络设备的程序代码和数据,存储器1420可以是图12中的存储模块。可以理解的,基带电路1414、射频电路1440以及天线1450还可以用于支持网络设备与其他网络实体进行通信,例如,用于支持网络设备与核心网侧的网元进行通信。图14中存储器1420被示为与处理器1410分离,然而,本领域技术人员很容易明白,存储器1420或其任意部分可位于装置1400之外。举例来说,存储器1420可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1410通过总线接口1460来访问。可替换地,存储器1420或其任意部分可以集成到处理器1410中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图14仅仅示出了网络设备的简化设计。例如,在实际应用中,网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的网络设备都在本发明的保护范围之内。
需要说明的是,在作为接收端时,装置1400可以还可以用于执行上述方法实施例中的终端设备的部分或全部功能。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC)。还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备和终端设备。网络设备和终端设备可以执行上述任一方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只 读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应理解,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
本申请实施例的其他技术方案细节和技术效果可参见本申请其他实施例中的描述。在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。

Claims (81)

  1. 一种上行传输方法,其特征在于,包括:
    终端设备向网络设备发送包含零功率参考信号的上行信号;
    其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零。
  2. 根据权利要求1所述的方法,其特征在于,所述零功率参考信息的配置信息包括以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
    每个所述零功率参考信号占用的资源元素RE的数目;
    每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
    每个所述零功率参考信号所在的至少一个子载波;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
    在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
    在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
  3. 根据权利要求1或2所述的方法,其特征在于,
    在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
    其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:
    所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,
    所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,
    所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;
    所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
  5. 根据权利要求3所述的方法,其特征在于,目标小区对应的所述零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小区 中的任意一个;
    所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波;
    位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波不同。
  6. 根据权利要求4或5所述的方法,其特征在于,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
    在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
    在mod(CID,Q)=6时,FreqOffset=11;
    其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
  7. 根据权利要求3,5-6任一所述的方法,其特征在于,每个所述零功率参考信号占用的RE的数目为2;
    所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;
    其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;
    所述第二分布方式用于表示所述2个RE位于1个时域符号。
  8. 根据权利要求7所述的方法,其特征在于,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
    在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
    在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
    其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。
  9. 根据权利要求1-2任一所述的方法,其特征在于,所述零功率参考信号的配置信息包括以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
    所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
    支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的 子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
    每个CDM group的零功率参考信号占用的起始时域符号;
    每个CDM group的零功率参考信号占用的时域符号的个数;
    每个群组资源中的群组资源单元个数。
  10. 根据权利要求1或9所述的方法,其特征在于,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
  11. 根据权利要求10所述的方法,其特征在于,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
    所述DMRS的CDM配置类型为第三CDM类型;
    所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
  12. 根据权利要求11所述的方法,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
  13. 根据权利要求12所述的方法,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
  14. 根据权利要求1-13任一所述的方法,其特征在于,在用于发送所述上行信号的时频资源单元中,不同时域符号的发射功率之间的差值小于预设的偏差功率阈值。
  15. 根据权利要求14所述的方法,其特征在于,在用于发送所述上行信号的时频资源中,不同时域符号的发射功率相等。
  16. 根据权利要求15所述的方法,其特征在于,所述用于发送所述上行信号的时频资源单元为资源块RB;在包含所述零功率参考信号占用的RE的任一目标时域符号中,每个有效RE的发射功率为所述目标时域符号的发射功率除以有效RE个数;
    其中,所述有效RE为所述目标时域符号上除所述零功率参考信号占用的RE之外的其他RE。
  17. 根据权利要求16所述的方法,其特征在于,所述零功率参考信号所在的目标时域符号上除所述零功率参考信号占用的RE之外的RE为用于承载数据的数据RE。
  18. 一种上行传输方法,其特征在于,包括:
    网络设备接收终端设备发送的包含零功率参考信号的上行信号,其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零;
    根据在所述零功率参考信号的时频资源中接收到的所述上行信号进行信道估计;
    根据所述信道估计的结果,对接收到的所述上行信号进行解调。
  19. 根据权利要求18所述的方法,其特征在于,所述零功率参考信息的配置信息包括以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
    每个所述零功率参考信号占用的资源元素RE的数目;
    每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
    每个所述零功率参考信号所在的至少一个子载波;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
    在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
    在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
  20. 根据权利要求18或19所述的方法,其特征在于,
    在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
    其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:
    所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,
    所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,
    所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
  21. 根据权利要求20所述的方法,其特征在于,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;
    所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
  22. 根据权利要求21所述的方法,其特征在于,目标小区对应的所述零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小 区中的任意一个;
    所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波;
    位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波不同。
  23. 根据权利要求21或22所述的方法,其特征在于,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
    在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
    在mod(CID,Q)=6时,FreqOffset=11;
    其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
  24. 根据权利要求20,21-23任一所述的方法,其特征在于,每个所述零功率参考信号占用的RE的数目为2;
    所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;
    其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;
    所述第二分布方式用于表示所述2个RE位于1个时域符号。
  25. 根据权利要求24所述的方法,其特征在于,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
    在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
    在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
    其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。
  26. 根据权利要求18-19任一所述的方法,其特征在于,所述零功率参考信号的配置信息包括以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
    所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
    支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的 子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
    每个CDM group的零功率参考信号占用的起始时域符号;
    每个CDM group的零功率参考信号占用的时域符号的个数;
    每个群组资源中的群组资源单元个数。
  27. 根据权利要求18或26所述的方法,其特征在于,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
  28. 根据权利要求27所述的方法,其特征在于,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
    所述DMRS的CDM配置类型为第三CDM类型;
    所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
  29. 根据权利要求28所述的方法,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
  30. 根据权利要求29所述的方法,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
  31. 一种参考信号的传输方法,其特征在于,包括:
    终端设备向网络设备发送DMRS;
    其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
  32. 根据权利要求31所述的方法,其特征在于,所述第一标识为所述终端设备对应的CDM group的标识。
  33. 根据权利要求32所述的方法,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
  34. 根据权利要求33所述的方法,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
  35. 一种参考信号的传输方法,其特征在于,包括:
    网络设备接收终端设备发送的DMRS;
    其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
  36. 根据权利要求35所述的方法,其特征在于,所述第一标识为所述终端设备对应的CDM group的标识。
  37. 根据权利要求36所述的方法,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;
    每个群组资源单元占用至少一个子载波。
  38. 根据权利要求37所述的方法,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
  39. 一种通信装置,其特征在于,用于执行权利要求1-17和/或31-34任一所述的方法。
  40. 一种通信装置,其特征在于,用于执行权利要求18-30和/或35-38任一所述的方法。
  41. 一种计算机存储介质,其特征在于,包括计算机程序,所述计算机程序在通信装置上被执行时,使得所述通信装置执行权利要求1-38中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,其在计算机上运行时,使得计算机执行权利要求1-38中任一项所述的方法。
  43. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1-38中任一项所述的方法。
  44. 一种上行传输装置,其特征在于,应用于终端设备侧,包括:
    处理模块,用于通过发送模块向网络设备发送包含零功率参考信号的上行信号;其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零。
  45. 根据权利要求44所述的装置,其特征在于,所述零功率参考信息的配置信息包括以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
    每个所述零功率参考信号占用的资源元素RE的数目;
    每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
    每个所述零功率参考信号所在的至少一个子载波;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
    在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
    在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
  46. 根据权利要求44或45所述的装置,其特征在于,
    在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
    其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:
    所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,
    所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,
    所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
  47. 根据权利要求46所述的装置,其特征在于,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;
    所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
  48. 根据权利要求46所述的装置,其特征在于,目标小区对应的所述零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小区中的任意一个;
    所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波;
    位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波不同。
  49. 根据权利要求47或48所述的装置,其特征在于,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第 一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
    在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
    在mod(CID,Q)=6时,FreqOffset=11;
    其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
  50. 根据权利要求46,48-49任一所述的装置,其特征在于,每个所述零功率参考信号占用的RE的数目为2;
    所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;
    其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;
    所述第二分布方式用于表示所述2个RE位于1个时域符号。
  51. 根据权利要求50所述的装置,其特征在于,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
    在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
    在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
    其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。
  52. 根据权利要求44-45任一所述的装置,其特征在于,所述零功率参考信号的配置信息包括以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
    所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
    支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
    每个CDM group的零功率参考信号占用的起始时域符号;
    每个CDM group的零功率参考信号占用的时域符号的个数;
    每个群组资源中的群组资源单元个数。
  53. 根据权利要求44或52所述的装置,其特征在于,所述零功率参考信号所在的子载 波为所述用于发送上行信号的时频资源单元的部分子载波。
  54. 根据权利要求53所述的装置,其特征在于,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
    所述DMRS的CDM配置类型为第三CDM类型;
    所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
  55. 根据权利要求54所述的装置,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
  56. 根据权利要求55所述的装置,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
  57. 根据权利要求44-56任一所述的装置,其特征在于,在用于发送所述上行信号的时频资源单元中,不同时域符号的发射功率之间的差值小于预设的偏差功率阈值。
  58. 根据权利要求57所述的装置,其特征在于,在用于发送所述上行信号的时频资源中,不同时域符号的发射功率相等。
  59. 根据权利要求58所述的装置,其特征在于,所述用于发送所述上行信号的时频资源单元为资源块RB;在包含所述零功率参考信号占用的RE的任一目标时域符号中,每个有效RE的发射功率为所述目标时域符号的发射功率除以有效RE个数;
    其中,所述有效RE为所述目标时域符号上除所述零功率参考信号占用的RE之外的其他RE。
  60. 根据权利要求59所述的装置,其特征在于,所述零功率参考信号所在的目标时域符号上除所述零功率参考信号占用的RE之外的RE为用于承载数据的数据RE。
  61. 一种上行传输装置,其特征在于,应用于网络设备侧,包括:
    接收模块,用于接收终端设备发送的包含零功率参考信号的上行信号,其中,在用于发送所述上行信号的时频资源中,所述零功率参考信号的时频资源的范围内的所述上行信号的发射功率为零;
    处理模块,用于根据在所述零功率参考信号的时频资源中接收到的所述上行信号进行信道估计;以及,用于根据所述信道估计的结果,对接收到的所述上行信号进行解调。
  62. 根据权利要求61所述的装置,其特征在于,所述零功率参考信息的配置信息包括 以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,所述零功率参考信号的数目,
    每个所述零功率参考信号占用的资源元素RE的数目;
    每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的时域符号的分布方式;
    每个所述零功率参考信号所在的至少一个子载波;
    在每个所述零功率参考信号占用的RE的数目为2个时,所述2个RE所在的第一子载波和第二子载波之间的子载波偏移量;
    在所述零功率参考信号的数目为2个时,所述2个零功率参考信号所在的子载波是否相同的指示;
    在所述2个零功率参考信号所在的子载波不同时,所述2个零功率参考信号所在的子载波之间的子载波偏移量。
  63. 根据权利要求61或62所述的装置,其特征在于,
    在每个所述零功率参考信号占用的RE的数目为1时,所述1个RE所在的时域符号为每个所述零功率参考信号允许占用的时域符号范围的起始时域符号;
    在每个所述零功率参考信息号占用的RE的数目为2时,所述2个RE所在的时域符号为从所述起始时域符号开始的2个时域符号中的至少一个时域符号;
    其中,所述上行信号还包括DMRS;每个所述零功率参考信号允许占用的时域符号的起始时域符号为以下任一种:
    所述DMRS的时频资源所在的时域符号之后的第1个时域符号,或者,
    所述时频资源单元中最中间的时域符号;其中,所述最中间的时域符号与所述DMRS的时频资源所在的时域符号不同,或者,
    所述DMRS的时频资源所在的第1个时域符号之后的第2个时域符号。
  64. 根据权利要求63所述的装置,其特征在于,所述终端设备的服务小区的零功率参考信号占用的RE的数目为1,所述终端设备的服务小区的相邻小区的零功率参考信号占用的RE数目为1;
    所述服务小区和所述服务小区的相邻小区对应的第一子载波不同,所述第一子载波为零功率参考信号所在的子载波。
  65. 根据权利要求64所述的装置,其特征在于,目标小区对应的所述零功率参考信号占用的RE的数目为2,所述目标小区为所述终端设备的服务小区和所述服务小区的相邻小区中的任意一个;
    所述目标小区对应的第一子载波和第二子载波互不相邻,所述第一子载波和所述第二子载波为所述目标小区对应的所述2个RE所在的子载波;
    位于同一时域符号中的不同目标小区对应的零功率参考信号占用的RE所在的子载波不同。
  66. 根据权利要求64或65所述的装置,其特征在于,发送所述上行信号的时频资源单元包括12个子载波;所述服务小区和所述服务小区的相邻小区中的任一目标小区对应的第一子载波的频域偏移量FreqOffset为根据所述目标小区的小区标识CID确定的,其中,
    在mod(CID,Q)<6时,FreqOffset=mod(CID,Q)×2;
    在mod(CID,Q)=6时,FreqOffset=11;
    其中,mod表示取余运算,Q为所述服务小区和所述服务小区的相邻小区的总小区数,Q为大于等于2且小于7的整数;CID为大于或者等于0的整数。
  67. 根据权利要求63,64-66任一所述的装置,其特征在于,每个所述零功率参考信号占用的RE的数目为2;
    所述2个RE所在的时域符号的分布方式为:第一分布方式,或,第二分布方式;
    其中,所述第一分布方式用于表示所述2个RE位于2个连续的时域符号;
    所述第二分布方式用于表示所述2个RE位于1个时域符号。
  68. 根据权利要求67所述的装置,其特征在于,在所述2个RE所在的时域符号的分布方式为第二分布方式时,所述2个RE所在的时域符号为根据所述终端设备的服务小区的小区标识确定的;其中,
    在CID×2T<SumCR时,所述2个RE所在的时域符号为所述起始时域符号;
    在SumCR≤CID×2T<2×SumCR时,所述2个RE所在的时域符号为所述起始时域符号之后的第1个时域符号;
    其中,CID为所述小区标识,SumCR为一个时频资源单元的子载波总数,T为子载波间隔数,T为大于等于1或者小于等于6的整数。
  69. 根据权利要求61-62任一所述的装置,其特征在于,所述零功率参考信号的配置信息包括以下至少一种信息:
    在用于发送所述上行信号的任一时频资源单元中,零功率参考信号是否支持码分复用分组CDM group的配置指示;其中,所述零功率参考信号是否支持CDM group配置指示用于指示是否根据所述上行信号中的DMRS所在的时频资源或者所述DMRS对应的CDM配置类型配置所述零功率参考信号所在的时频资源;
    所述DMRS的CDM配置类型;其中,所述DMRS的CDM配置类型包括:第一CDM类型、第二CDM类型、第三CDM类型;其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;
    支持CDM group的零功率参考信号的配置方式;其中,所述配置方式包括:第一配置方式和第二配置方式;采用所述第一配置方式的所述零功率参考信号占用的RE与所述DMRS占用的RE所在的子载波相同;采用所述第二配置方式的所述零功率参考信号所在的子载波为CDM配置类型对应的所有CDM group的DMRS所在的所有子载波的集合,其中,所有CDM group的DMRS所在的子载波为用于发送上行信号的时频资源单元中的部分子载波;
    每个CDM group的零功率参考信号占用的起始时域符号;
    每个CDM group的零功率参考信号占用的时域符号的个数;
    每个群组资源中的群组资源单元个数。
  70. 根据权利要求61或69所述的装置,其特征在于,所述零功率参考信号所在的子载波为所述用于发送上行信号的时频资源单元的部分子载波。
  71. 根据权利要求70所述的装置,其特征在于,所述支持CDM group的零功率参考信号的配置方式为第二配置方式;
    所述DMRS的CDM配置类型为第三CDM类型;
    所述零功率参考信号所在的时频资源包括CDM配置类型对应的所有CDM group的DMRS所在的时频资源的集合去除所述上行信号的DMRS所在的时频资源,其中,所述DMRS的时频资源为根据所述DMRS对应的CDM group ID从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的CDM group ID对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同;所有CDM group的DMRS所在的所有子载波为用于发送上行信号的时频资源单元中的部分子载波。
  72. 根据权利要求71所述的装置,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
  73. 根据权利要求72所述的装置,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
  74. 一种参考信号的传输装置,其特征在于,应用于终端设备侧,包括:
    处理模块,用于通过发送模块向网络设备发送DMRS;其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
  75. 根据权利要求74所述的装置,其特征在于,所述第一标识为所述终端设备对应的CDM group的标识。
  76. 根据权利要求75所述的装置,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;每个群组资源单元占用至少一个子载波。
  77. 根据权利要求76所述的装置,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
  78. 一种参考信号的传输装置,其特征在于,应用于网络设备侧,包括:
    处理模块,用于通过接收模块接收终端设备发送的DMRS;其中,所述DMRS的时频资源为根据所述终端设备对应的第一标识从群组资源集合中确定的,其中,所述群组资源集合包括多个群组资源,不同的第一标识对应群组资源集合中的不同的群组资源,所述多个群组资源中的至少两个群组资源所在的时域符号不同。
  79. 根据权利要求78所述的装置,其特征在于,所述第一标识为所述终端设备对应的CDM group的标识。
  80. 根据权利要求79所述的装置,其特征在于,每个群组资源包括至少两个群组资源单元;
    所述至少两个群组资源单元占用的时域符号相同,所述至少两个群组资源单元占用的子载波不同;
    每个群组资源单元占用至少一个时域符号;
    每个群组资源单元占用至少一个子载波。
  81. 根据权利要求80所述的装置,其特征在于,所述用于发送包含所述DMRS的上行信号的时频资源单元为资源块RB,任一所述RB包括2个或3个或4个群组资源单元;
    每个群组资源单元占用2个连续的时域符号;
    每个群组资源单元占用2个连续的子载波;
    所有CDM group ID的群组资源单元占用的时域符号的个数为6;
    所有CDM group ID的群组资源单元占用的子载波的个数为4。
PCT/CN2021/109341 2020-08-01 2021-07-29 上行传输方法及相关装置 WO2022028309A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21853934.4A EP4184816A4 (en) 2020-08-01 2021-07-29 UPLINK TRANSMISSION METHOD AND APPARATUS
JP2023506554A JP2023537334A (ja) 2020-08-01 2021-07-29 アップリンク伝送方法および関連装置
CA3187908A CA3187908A1 (en) 2020-08-01 2021-07-29 Uplink transmission method and related apparatus
US18/161,504 US20230179362A1 (en) 2020-08-01 2023-01-30 Uplink transmission method and related apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010763873 2020-08-01
CN202010763873.3 2020-08-01
CN202011128974.X 2020-10-20
CN202011128974.XA CN114070449A (zh) 2020-08-01 2020-10-20 上行传输方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/161,504 Continuation US20230179362A1 (en) 2020-08-01 2023-01-30 Uplink transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022028309A1 true WO2022028309A1 (zh) 2022-02-10

Family

ID=80119933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109341 WO2022028309A1 (zh) 2020-08-01 2021-07-29 上行传输方法及相关装置

Country Status (5)

Country Link
US (1) US20230179362A1 (zh)
EP (1) EP4184816A4 (zh)
JP (1) JP2023537334A (zh)
CA (1) CA3187908A1 (zh)
WO (1) WO2022028309A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056221A (zh) * 2022-12-06 2023-05-02 深圳市极客空间科技有限公司 改进频域资源分配实现lte在物联网的应用的方法及系统
WO2023207762A1 (zh) * 2022-04-26 2023-11-02 华为技术有限公司 一种通信的方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557046B (zh) * 2014-01-24 2019-07-19 华为技术有限公司 导频信号的传输方法及装置
CN110417524A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 一种传输参数配置方法和装置
US20200146016A1 (en) * 2018-11-02 2020-05-07 Qualcomm Incorporated Cyclic prefix orthogonal frequency division multiplexing sequence configuration of a downlink / uplink
CN111132173A (zh) * 2017-05-26 2020-05-08 Oppo广东移动通信有限公司 上行信号的传输方法及终端、网络设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018044715A1 (en) * 2016-08-30 2018-03-08 Intel IP Corporation System and method for imr associated with data transmission
WO2018079969A1 (ko) * 2016-10-26 2018-05-03 엘지전자(주) 무선 통신 시스템에서 빔 관리를 수행하는 방법 및 이를 위한 장치
CN109995499B (zh) * 2017-08-11 2020-04-03 华为技术有限公司 接收解调参考信号的方法、接收端、芯片、存储介质和通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557046B (zh) * 2014-01-24 2019-07-19 华为技术有限公司 导频信号的传输方法及装置
CN111132173A (zh) * 2017-05-26 2020-05-08 Oppo广东移动通信有限公司 上行信号的传输方法及终端、网络设备
CN110417524A (zh) * 2018-04-28 2019-11-05 华为技术有限公司 一种传输参数配置方法和装置
US20200146016A1 (en) * 2018-11-02 2020-05-07 Qualcomm Incorporated Cyclic prefix orthogonal frequency division multiplexing sequence configuration of a downlink / uplink

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184816A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207762A1 (zh) * 2022-04-26 2023-11-02 华为技术有限公司 一种通信的方法及设备
CN116056221A (zh) * 2022-12-06 2023-05-02 深圳市极客空间科技有限公司 改进频域资源分配实现lte在物联网的应用的方法及系统
CN116056221B (zh) * 2022-12-06 2024-03-22 深圳市极客空间科技有限公司 改进频域资源分配实现lte在物联网的应用的方法及系统

Also Published As

Publication number Publication date
JP2023537334A (ja) 2023-08-31
EP4184816A4 (en) 2024-01-24
CA3187908A1 (en) 2022-02-10
US20230179362A1 (en) 2023-06-08
EP4184816A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
AU2018215316B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US10609702B2 (en) Base station apparatus, terminal apparatus, and communication method
US20190090138A1 (en) Power metric optimization and uplink dm-rs design for lte/lte-a uplink transmissions in unlicensed spectrum
EP3579638A1 (en) Base station device, terminal device, communication method, and integrated circuit
US11329761B2 (en) Base station apparatus, terminal apparatus, and communication method
WO2018082544A1 (zh) 无线通信的方法和装置
US9819462B2 (en) Method and apparatus for signaling to support flexible reference signal configuration
WO2017092697A1 (zh) 通信系统中处理通信信号的方法和装置
JPWO2016147994A1 (ja) 端末装置および通信方法
WO2022028309A1 (zh) 上行传输方法及相关装置
WO2017121237A1 (zh) 一种窄带pbch传输方法及装置
US11121848B2 (en) Communication method and network device
TWI797105B (zh) 上行傳輸方法、裝置、終端設備、接入網設備及系統
TW202231107A (zh) 無線通訊系統及基地台的操作方法
WO2018081975A1 (zh) 用于传输上行信号的方法和装置
US20210045121A1 (en) Method and apparatus for transmitting and receiving control information in wireless communication system
WO2021233369A1 (zh) 一种资源配置方法以及网络节点
CN112235087B (zh) 一种解调参考信号配置方法、终端及网络侧设备
US11962521B2 (en) Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
CN114902774A (zh) 一种确定参考信号的方法及装置
WO2022205236A1 (zh) 一种跳频间隔确定、指示方法及装置
WO2019136729A1 (zh) 参数配置方法及相关产品
US10616749B2 (en) Method and apparatus for radio communication
CN115039373B (zh) 解调参考信号dmrs的传输方法和装置
WO2023051173A1 (zh) 数据传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506554

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3187908

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023001894

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021853934

Country of ref document: EP

Effective date: 20230215

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023001894

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230201