WO2022027841A1 - 一种胶囊内窥镜的帧率调节系统和方法 - Google Patents

一种胶囊内窥镜的帧率调节系统和方法 Download PDF

Info

Publication number
WO2022027841A1
WO2022027841A1 PCT/CN2020/125748 CN2020125748W WO2022027841A1 WO 2022027841 A1 WO2022027841 A1 WO 2022027841A1 CN 2020125748 W CN2020125748 W CN 2020125748W WO 2022027841 A1 WO2022027841 A1 WO 2022027841A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame rate
module
image
motion
matrix
Prior art date
Application number
PCT/CN2020/125748
Other languages
English (en)
French (fr)
Inventor
阚述贤
夏波
王长明
吴良信
Original Assignee
深圳市资福医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市资福医疗技术有限公司 filed Critical 深圳市资福医疗技术有限公司
Publication of WO2022027841A1 publication Critical patent/WO2022027841A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/0002Operational features of endoscopes provided with data storages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image

Definitions

  • the invention relates to the field of medical instruments, in particular to a system and method for adjusting the frame rate of a capsule endoscope.
  • the capsule endoscope system consists of a capsule endoscope, an image receiving memory, and a reading terminal. After the subject swallows the capsule, the capsule captures images along the digestive tract, and transmits the image to the external image receiving memory through radio frequency signals. The image receiving memory processes and saves the received images. After the examination is completed, the interpreting doctor imports the image files into the interpreting terminal for image reading.
  • the motion sensor cannot solve the influence of human breathing and motion, and It will also increase the power consumption of the capsule; the other is to monitor the similarity between adjacent images to adjust the capsule shooting frame rate.
  • the higher the similarity between adjacent images the slower the movement of the capsule in the body, and vice versa.
  • the lower the similarity between adjacent images the faster the movement of the capsule in the body.
  • This method cannot be implemented in the capsule due to the complexity of the algorithm.
  • the similarity calculation can only be performed on the receiving device outside the body. However, the communication link The delay will affect the real-time accuracy of frame rate adjustment.
  • the present invention proposes a method and system for adjusting the frame rate of a capsule endoscope, which can simply, quickly and accurately perform real-time motion detection and frame rate adjustment for the capsule.
  • the present invention provides a system and method for adjusting the frame rate of a capsule endoscope.
  • the present invention provides a frame rate adjustment system for a capsule endoscope, comprising a capsule endoscope, an image receiving memory and a film reading terminal, further comprising an image acquisition module, a pixel matrix extraction module, and a histogram image probability statistics module, A motion matrix calculation module, a motion coefficient calculation module and a frame rate control module, wherein:
  • the image acquisition module is used to collect image data and output it to the pixel matrix extraction module;
  • the pixel matrix extraction module is used to extract the pixel matrix of the image and output it to the histogram probability statistics module;
  • the histogram image probability statistics module further processes the pixel matrix to obtain the histogram image probability matrix, and outputs it to the motion matrix calculation module;
  • the motion matrix calculation module performs a difference operation on the histogram probability matrices of two adjacent images to obtain the motion matrices of the two images, and outputs them to the motion coefficient calculation module;
  • the motion coefficient calculation module further calculates the motion coefficient of the capsule according to the output of the motion matrix calculation module, and outputs it to the frame rate control module;
  • the frame rate control module calculates the shooting frame rate of the capsule endoscope according to the motion coefficient, and adjusts the shooting frame rate to collect image data.
  • the pixel matrix extraction module, the histogram image probability statistics module, the motion matrix calculation module, and the motion coefficient calculation module are built in the capsule endoscope or the image receiving memory.
  • the pixel matrix is any one of an RGB color pixel matrix, a pixel matrix of any color component of RGB, and a grayscale pixel matrix, wherein the depth of color or grayscale information is ⁇ 8 bits.
  • the motion coefficient takes an integer value and ranges from 0 to 2 ⁇ , where ⁇ is the depth of color or grayscale information.
  • the present invention provides a method for adjusting the frame rate of a capsule endoscope, comprising the following steps:
  • the motion coefficient of the capsule is further calculated
  • the pixel matrix is any one of an RGB color pixel matrix, a pixel matrix of any color component of RGB, and a grayscale pixel matrix, wherein the depth of color or grayscale information is ⁇ 8 bits.
  • the motion coefficient takes an integer value and ranges from 0 to 2 ⁇ , where ⁇ is the depth of color or grayscale information.
  • the motion state of the capsule endoscope can be monitored in real time.
  • the pixel matrix of the image is extracted, and then the probability of the histogram image is counted.
  • the motion matrix calculation module and the motion coefficient calculation module are used to obtain the capsule endoscope.
  • the motion coefficient of the mirror is used to send the frame rate adjustment command to the capsule endoscope to adjust the shooting frame rate of the capsule endoscope.
  • the data can be processed in real time, and the frame rate adjustment has no delay.
  • Fig. 1 The module diagram of the frame rate adjustment system of the capsule endoscope of the present invention.
  • Fig. 2 is a flow chart of the frame rate adjustment method of the capsule endoscope according to the present invention.
  • Fig. 3 is a schematic diagram of the composition of the first embodiment of the capsule endoscope system of the present invention.
  • Fig. 4 is a schematic diagram of the composition of the second embodiment of the capsule endoscope system of the present invention.
  • Figure 5 Schematic diagram of pixel matrix extraction of the present invention.
  • Fig. 6 is a schematic diagram of the probability statistics of histogram images of the present invention.
  • Figure 7 Schematic diagram of the motion matrix of the present invention.
  • FIG. 8 is a schematic diagram of the calculation of the motion coefficient of the present invention.
  • the frame rate adjustment system includes an image acquisition module 101, a pixel matrix extraction module 102, a histogram image probability statistics module 103, a motion matrix calculation module 104, and a motion coefficient calculation module. module 105 and frame rate control module 106 .
  • the image collected by the image acquisition module 101 is transmitted to the pixel matrix extraction module 102 to extract the color or grayscale pixel matrix of the image, and output to the histogram image probability statistics module 103, wherein the pixel matrix It can be an RGB color pixel matrix, a pixel matrix of any color component of RGB, or a grayscale pixel matrix.
  • the depth of color or grayscale information is ⁇ 8 bits; the pixel matrix can be a pixel matrix of original resolution, It can also be a low-resolution pixel matrix after scaling. The low-resolution pixel matrix can improve the execution efficiency of the algorithm without serious distortion.
  • the pixel matrix with a resolution of 240 ⁇ 240 is preferred.
  • the histogram probability statistics module 103 further counts the distribution of color or grayscale information in the pixel matrix, obtains the color or grayscale histogram probability matrix, and outputs it to the motion matrix for calculation.
  • Module 104 the color or grayscale histogram probability matrix here, in the order from low to high, each element corresponds to a color or grayscale value, and the element value represents the statistical quantity of the corresponding color or grayscale value.
  • the motion matrix calculation module 104 further performs a difference operation on the histogram probability matrix of the adjacent two images, obtains the motion matrix of the two images, and outputs it to the motion coefficient calculation module 105,
  • Each element in the motion matrix here represents the quantitative deviation of the corresponding color or gray value of two adjacent images.
  • the motion coefficient calculation module 105 performs threshold filtering on the elements in the motion matrix, and counts the number of filtered elements to obtain the motion coefficient of the capsule, and the motion coefficient is between 0 and 2 ⁇ .
  • the frame rate control module 204 calculates the shooting frame rate of the capsule according to the motion coefficient, and controls the image acquisition module 101 to collect image data at the new shooting frame rate.
  • step 201 collects image data
  • step 202 extracts pixel matrix and histogram image probability from the image data to obtain a histogram image probability matrix
  • step 203 performs motion detection and calculation , obtain the motion coefficient of the capsule
  • step 204 adjusts the shooting frame rate and collects image data according to the instructions issued by the frame rate control module.
  • FIG. 3 a schematic diagram of the composition of the first embodiment of the capsule endoscope system of the present invention.
  • the motion matrix calculation module 104 and the motion coefficient calculation module 105 are placed inside the capsule endoscope.
  • the first embodiment includes :
  • the image acquisition module 101 uses a CMOS chip to convert the optical signal into a digital signal, and outputs image data in YUV or RAW format to the pixel matrix extraction module 102 and the image compression module 205.
  • the CMOS chip here can use a common analog-to-digital conversion chip, The present invention does not limit this.
  • the histogram image probability statistics module 103 calculates the histogram image probability matrix according to the output result of the pixel matrix extraction module 102, and outputs it to the motion matrix calculation module 104, and the motion coefficient calculation module 105 calculates the movement of the capsule according to the output result of the motion matrix calculation module 104.
  • the coefficient is output to the frame rate control module 106, and the shooting frame rate of the capsule is further calculated according to the motion coefficient, and the image acquisition module 101 is controlled to collect image data at the new shooting frame rate.
  • the image compression module 205 compresses the image data in YUV or RAW format into image data in JPEG format and outputs it to the image sending module 206 , and transmits the JPEG format image data in packets to the image receiving memory 20 through a radio frequency communication link.
  • the image receiving memory 20 includes an image receiving module 207 , an image storage module 208 and an image exporting module 209 .
  • the image receiving module 207 receives the image data packets in JPEG format through the radio frequency communication link, performs packet verification on the data packets, obtains a complete JPEG image, and outputs it to the image storage module 208 .
  • the image storage module 208 saves the JPEG image into an image file corresponding to the storage chip. In order to manage the image files more rationally, it is preferable to create a separate image file for each examination and name the image file with the serial number of the capsule.
  • the image export module 209 outputs the designated image file from the image receiving memory 20 to the reading terminal 30 .
  • the reading terminal 30 includes an image import module 210, a subject management module 211, an image browsing module 212 and a diagnosis report module 213, wherein:
  • the image import module 210 imports the designated image file from the image receiving memory 20 to the reading terminal 30 .
  • the subject management module 211 registers the subject's personal information and examination information before the examination, and associates the imported image file with the subject information according to the capsule serial number after the examination.
  • the image browsing module 212 is for the reading doctor to browse the image files of the subject, and select valuable images from them and mark them for diagnosis.
  • the diagnosis report module 213 is used for the doctor to edit and output a diagnosis report according to the image information of the subject.
  • FIG. 4 a schematic diagram of the composition of the second embodiment of the capsule endoscope system of the present invention.
  • the motion matrix calculation module 104 and the motion coefficient calculation module 105 are placed in the image receiving memory 20 .
  • the capsule endoscope 10 includes an image acquisition module 101, a frame rate control module 106, an image compression module 205, an image transmission module 206 and an instruction reception module 214, wherein:
  • the image acquisition module 101 uses a CMOS chip to convert the optical signal into a digital signal, and outputs image data in YUV or RAW format to the image compression module 205 .
  • the instruction receiving module 214 receives the motion coefficient transmitted from the image receiving memory 20 through the radio frequency communication link, and outputs it to the frame rate control module 106, calculates the shooting frame rate of the capsule according to the motion coefficient, and controls the image with the new shooting frame rate
  • the acquisition module 101 acquires image data.
  • the image compression module 205 compresses the image data in YUV or RAW format into image data in JPEG format, and outputs the image data to the image transmission module 206 , and transmits the JPEG format image data in packets to the image receiving memory 20 through the radio frequency communication link.
  • the image receiving memory 20 includes an image receiving module 207, a pixel matrix extraction module 102, a histogram image probability statistics module 103, a motion matrix calculation module 104, a motion coefficient calculation module 105, a data processing module 202, an instruction sending module 215, an image storage module 208 and Image export module 209, where:
  • the image receiving module 207 receives the image data packets in JPEG format through the radio frequency communication link, performs packet verification on the data packets, obtains a complete JPEG image, and outputs it to the pixel matrix extraction module 102 and the image storage module 208 .
  • the pixel matrix extracted by the pixel matrix extraction module 102 is transmitted to the histogram image probability statistics module 103 , and the histogram image probability matrix is further calculated and output to the motion matrix calculation module 104 .
  • the motion coefficient calculation module 105 calculates the motion coefficient of the capsule endoscope according to the output of the motion matrix calculation module 104, and outputs the motion coefficient to the instruction sending module 215, and sends the motion coefficient to the capsule endoscope 10 through the radio frequency communication link.
  • the image storage module 208 is used to save the JPEG image into the image file corresponding to the storage chip. In order to manage the image file more reasonably, it is preferable to create an independent image file for each inspection, and use the capsule serial number to name the image file.
  • the image export module 209 outputs the designated image file from the image receiving memory 20 to the reading terminal 30 .
  • the reading terminal 30 includes an image import module 210, a subject management module 211, an image browsing module 212 and a diagnosis report module 213, wherein:
  • the image import module 210 imports the designated image file from the image receiving memory 20 to the reading terminal 30 .
  • the subject management module 211 registers the subject's personal information and examination information before the examination, and associates the imported image file with the subject information according to the capsule serial number after the examination.
  • the image browsing module 212 is for the reading doctor to browse the image files of the subject, obtain valuable images and mark them for diagnosis.
  • the diagnosis report module 213 is used for the doctor to edit and output a diagnosis report according to the image information of the subject.

Abstract

一种胶囊内窥镜的帧率调节系统和方法,包括胶囊内窥镜、图像接收存储器及阅片终端,进一步包括图像采集模块(101),像素矩阵提取模块(102),直方图像概率统计模块(103),运动矩阵计算模块(104),运动系数计算模块(105)及帧率控制模块(106),像素矩阵提取模块(102)及直方图像概率统计模块(103)对图像提取像素矩阵和获取直方图像概率矩阵,并输出给运动矩阵计算模块(104)和运动系数计算模块(105),进一步输出给帧率控制模块(106)调整拍摄帧率。通过实时监测胶囊内窥镜的运动状态,提取图像的像素矩阵,进而统计直方图像的概率,采用运动矩阵计算运动系数,从而发送帧率调整指令至胶囊内窥镜,进而调整胶囊内窥镜的拍摄帧率,数据可以实时处理,帧率调整无延迟。

Description

一种胶囊内窥镜的帧率调节系统和方法 技术领域
本发明涉及医疗器械领域,具体涉及到一种胶囊内窥镜的帧率调节系统和方法。
背景技术
胶囊内窥镜系统由胶囊内窥镜、图像接收存储器、阅片终端组成,受检者吞服胶囊后,胶囊沿着消化道拍摄图像,并通过射频信号将图像传输到体外的图像接收存储器,图像接收存储器将接收到的图像进行处理并保存,检查完成后,阅片医生将图像文件导入到阅片终端中进行阅片。
现有的胶囊内窥镜通常以固定的帧率拍摄图像,而胶囊在人体内是借助消化道蠕动和重力作用来运动的,其移动速度极不均匀,当胶囊在消化道内静止或缓慢移动时,会产生大量的冗余图像,既浪费了电池电量,又增加了阅片人员的负担;当胶囊在消化道内快速移动时,由于帧率不够而可能导致漏拍。
目前主要有两种方法来进行胶囊运动检测和帧率调节,一种是采用运动传感器检测胶囊的位移和角度变化来调整拍摄帧率,运动传感器无法解决人的呼吸及运动带来的影响,而且还会增加胶囊的功耗;另一种是采用监测相邻图像间的相似度来调节胶囊拍摄帧率,相邻图像之间的相似度越高,表明胶囊在体内的运动越慢,反之,相邻图像之间的相似度越低,表明胶囊在体内的运动越快,该方法由于算法复杂而无法在胶囊中实现,只能在体外的接收设备上进行相似度计算,然而通信链路上的延时会影响帧率调节的实时准确性。
    鉴于上述问题,本发明提出了一种胶囊内窥镜帧率调节方法及系统,能够简单、快捷和准确地对胶囊进行实时运动检测和帧率调节。
技术问题
为了解决现有技术的不足,本发明提出一种胶囊内窥镜的帧率调节系统和方法。
技术解决方案
第一方面,本发明提供一种胶囊内窥镜的帧率调节系统,包括胶囊内窥镜、图像接收存储器及阅片终端,进一步包括图像采集模块,像素矩阵提取模块,直方图像概率统计模块,运动矩阵计算模块,运动系数计算模块及帧率控制模块,其中:
图像采集模块用于采集图像数据,并输出给像素矩阵提取模块;
像素矩阵提取模块用于提取图像的像素矩阵,并输出给直方图概率统计模块;
直方图像概率统计模块对像素矩阵进一步处理以获取直方图像概率矩阵,并输出给运动矩阵计算模块;
运动矩阵计算模块对相邻两张图像的直方图概率矩阵进行差值运算,得到两张图像的运动矩阵,并输出给运动系数计算模块;
运动系数计算模块根据运动矩阵计算模块的输出进一步计算得到胶囊的运动系数,并输出给帧率控制模块;
    帧率控制模块根据运动系数计算出胶囊内窥镜的拍摄帧率,并调整拍摄帧率采集图像数据。
进一步的,所述像素矩阵提取模块,直方图像概率统计模块,运动矩阵计算模块,运动系数计算模块内置于胶囊内窥镜或图像接收存储器。
进一步的,所述像素矩阵是RGB颜色像素矩阵、RGB任一颜色分量的像素矩阵、灰度像素矩阵的任一种,其中颜色或灰度信息的深度≤8bits。
进一步的,所述运动系数取值为整数,数值范围为0~2 α之间,其中α为颜色或灰度信息的深度。
进一步的,所述拍摄帧率采用公式F y = F min + (F max - F min) * C x / (C max - C min)计算,其中F min为最低拍摄帧率,F max为最高拍摄帧率, C min为运动系数的下限值,C max为运动系数的上限值,C x为当前运动系数。
第二方面,本发明提供一种胶囊内窥镜的帧率调节方法,包括以下步骤:
  采集胶囊内窥镜拍摄的图像数据;
  提取图像数据的像素矩阵;
  获取像素矩阵的直方图像概率矩阵;
  对相邻两张图像的直方图像概率矩阵进行差值运算,得到两张图像的运动矩阵;
  根据图像的运动矩阵进一步计算得到胶囊的运动系数;
  根据胶囊的运动系数调整拍摄帧率。
进一步的,所述像素矩阵是RGB颜色像素矩阵、RGB任一颜色分量的像素矩阵、灰度像素矩阵的任一种,其中颜色或灰度信息的深度≤8bits。
进一步的,所述运动系数取值为整数,数值范围为0~2 α之间,其中α为颜色或灰度信息的深度。
进一步的,所述拍摄帧率采用公式F y = F min + (F max - F min) * C x / (C max - C min)计算,其中F min为最低拍摄帧率,F max为最高拍摄帧率, C min为运动系数的下限值,C max为运动系数的上限值,C x为当前运动系数。
有益效果
采用本发明的帧率调节系统和方法,可以实时监测胶囊内窥镜的运动状态,首先提取图像的像素矩阵,进而统计直方图像的概率,采用运动矩阵计算模块和运动系数计算模块得到胶囊内窥镜的运动系数,从而发送帧率调整指令至胶囊内窥镜,进而调整胶囊内窥镜的拍摄帧率,数据可以实时处理,帧率调整无延迟。
附图说明
图1:本发明胶囊内窥镜帧率调节系统模块图。
图2:本发明胶囊内窥镜帧率调节方法流程图。
图3:本发明胶囊内窥镜系统的第一实施例组成示意图。
图4:本发明胶囊内窥镜系统的第二实施例组成示意图。
图5:本发明的像素矩阵提取示意图。
图6:本发明的直方图像概率统计示意图。
图7:本发明的运动矩阵示意图。
图8:本发明运动系数计算示意图。
本发明的最佳实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
    请参考图1本发明胶囊内窥镜帧率调节系统模块图,该帧率调节系统包括图像采集模块101,像素矩阵提取模块102、直方图像概率统计模块103、运动矩阵计算模块104、运动系数计算模块105及帧率控制模块106。
    进一步参考图5本发明的像素矩阵提取示意图,图像采集模块101采集的图像传输给像素矩阵提取模块102提取图像的颜色或灰度像素矩阵,并输出给直方图像概率统计模块103,其中的像素矩阵可以是RGB颜色像素矩阵,也可以是RGB任一颜色分量的像素矩阵,也可以是灰度像素矩阵,颜色或灰度信息的深度≤8bits;像素矩阵可以是可以是原始分辨率的像素矩阵,也可以是缩放之后的低分辨率像素矩阵,低分辨率像素矩阵在不严重失真的情况下可以提升算法的执行效率,优先选择240×240分辨率的像素矩阵。
    进一步参考图6本发明的直方图像概率统计示意图,直方图像概率统计模块103进一步统计像素矩阵中的颜色或灰度信息的分布情况,获取颜色或灰度直方图像概率矩阵,并输出给运动矩阵计算模块104,此处的颜色或灰度直方图像概率矩阵,按从低到高的次序每个元素对应一个颜色或灰度值,元素值表示对应颜色或灰度值的统计数量。
    进一步参考图7本发明的运动矩阵示意图,运动矩阵计算模块104进一步对相邻两张图像的直方图像概率矩阵进行差值运算,得到两张图像的运动矩阵,并输出给运动系数计算模块105,此处的运动矩阵中每个元素表示相邻两张图像对应颜色或灰度值的数量偏差。
    进一步参考图8本发明的运动系数计算示意图,运动系数计算模块105对运动矩阵中的元素进行阈值滤波,并统计滤波后的元素数量,得到胶囊的运动系数,运动系数是0~2 α之间的一个整数,其中α表示颜色或灰度信息的深度,数值越高,表明胶囊在体内的运动越快,反之,数值越低,表明胶囊在体内的运动越慢。帧率控制模块204根据运动系数计算出胶囊的拍摄帧率,并以新的拍摄帧率控制图像采集模块101采集图像数据。本发明的拍摄帧率采用公式:F y = F min + (F max - F min) * C x / (C max - C min)计算,其中F min为胶囊设定的最低拍摄帧率,F max为胶囊设定的最高拍摄帧率, C min为运动系数的下限值,C max为运动系数的上限值,C x为当前输入的运动系数。
    请参考图2本发明胶囊内窥镜帧率调节方法流程图,步骤201采集图像数据,接着步骤202对图像数据提取像素矩阵和直方图像概率,得到直方图像概率矩阵,步骤203进行运动检测和计算,得到胶囊的运动系数,步骤204根据帧率控制模块发出的指令调整拍摄帧率和采集图像数据。
    请参考图3本发明胶囊内窥镜系统的第一实施例组成示意图,该第一实施例将运动矩阵计算模块104、运动系数计算模块105置于胶囊内窥镜内部,该第一实施例包括:
胶囊内窥镜10、图像接收存储器20及阅片终端30,其中胶囊内窥镜10包括图像采集模块101、像素矩阵提取模块102、直方图像概率统计模块103、运动矩阵计算模块104、运动系数计算模块105、帧率控制模块106、图像压缩模块205及图像发送模块206。
图像采集模块101使用CMOS芯片将光信号转换为数字信号,并输出YUV或RAW格式的图像数据至像素矩阵提取模块102和图像压缩模块205,此处的CMOS芯片可以采用常见的模数转换芯片,本发明对此不作限制。
直方图像概率统计模块103根据像素矩阵提取模块102的输出结果计算得到直方图像概率矩阵,并输出给运动矩阵计算模块104,运动系数计算模块105根据运动矩阵计算模块104的输出结果计算得到胶囊的运动系数,并输出给帧率控制模块106,进一步根据运动系数计算出胶囊的拍摄帧率,并以新的拍摄帧率控制图像采集模块101采集图像数据。
图像压缩模块205将YUV或RAW格式的图像数据压缩为JPEG格式的图像数据后输出至图像发送模块206,通过射频通信链路将JPEG格式的图像数据分包传输至图像接收存储器20。
图像接收存储器20包括图像接收模块207、图像存储模块208及图像导出模块209。
图像接收模块207通过射频通信链路接收JPEG格式的图像数据包,对数据包进行组包校验,得到一张完整的JPEG图像,并输出给图像存储模块208。
图像存储模块208将JPEG图像保存到存储芯片对应的图像文件中。为了更合理地管理图像文件,优选每次检查创建一个独立的图像文件,并使用胶囊序列号命名图像文件。
图像导出模块209将指定的图像文件从图像接收存储器20输出到阅片终端30。
阅片终端30包括图像导入模块210、受检者管理模块211、图像浏览模块212及诊断报告模块213,其中:
图像导入模块210将指定的图像文件从图像接收存储器20导入到阅片终端30。
受检者管理模块211在检查前登记受检者的个人信息和检查信息,检查后根据胶囊序列号将导入的图像文件与受检者信息进行关联。
图像浏览模块212供阅片医生浏览受检者的图像文件,从中筛选有价值的图像并进行标注,以备诊断使用。
诊断报告模块213供阅片医生根据受检者的影像信息,编辑并输出诊断报告。
    请参考图4本发明胶囊内窥镜系统的第二实施例组成示意图,该实施例将运动矩阵计算模块104、运动系数计算模块105置于图像接收存储器20内,该第二实施例包括胶囊内窥镜10、图像接收存储器20及阅片终端30,其中:
胶囊内窥镜10包括图像采集模块101、帧率控制模块106、图像压缩模块205、图像发送模块206及指令接收模块214,其中:
图像采集模块101使用CMOS芯片将光信号转换为数字信号,并输出YUV或RAW格式的图像数据至图像压缩模块205。
指令接收模块214,通过射频通信链路接受图像接收存储器20传输过来的运动系数,并输出给帧率控制模块106,根据运动系数计算出胶囊的拍摄帧率,并以新的拍摄帧率控制图像采集模块101采集图像数据。
图像压缩模块205将YUV或RAW格式的图像数据压缩为JPEG格式的图像数据,并输出至图像发送模块206,通过射频通信链路将JPEG格式的图像数据分包传输到图像接收存储器20。
图像接收存储器20包括图像接收模块207、像素矩阵提取模块102、直方图像概率统计模块103、运动矩阵计算模块104、运动系数计算模块105、数据处理模块202、指令发送模块215、图像存储模块208及图像导出模块209,其中:
图像接收模块207通过射频通信链路接收JPEG格式的图像数据包,对数据包进行组包校验,得到一张完整的JPEG图像,并输出至像素矩阵提取模块102和图像存储模块208。
像素矩阵提取模块102提取的像素矩阵传输至直方图像概率统计模块103,进一步计算得到直方图像概率矩阵,并输出至运动矩阵计算模块104。
运动系数计算模块105根据运动矩阵计算模块104的输出计算得到胶囊内窥镜的运动系数,并输出至指令发送模块215,通过射频通信链路将运动系数发送至胶囊内窥镜10。
图像存储模块208用于将JPEG图像保存到存储芯片对应的图像文件中,为了更合理地管理图像文件,优选每次检查创建一个独立的图像文件,并使用胶囊序列号命名图像文件。
图像导出模块209将指定的图像文件从图像接收存储器20输出到阅片终端30。
阅片终端30包括图像导入模块210、受检者管理模块211、图像浏览模块212及诊断报告模块213,其中:
图像导入模块210将指定的图像文件从图像接收存储器20导入到阅片终端30。
受检者管理模块211在检查前登记受检者的个人信息和检查信息,检查后根据胶囊序列号将导入的图像文件与受检者信息进行关联。
图像浏览模块212供阅片医生浏览受检者的图像文件,从中获取有价值的图像并进行标注,以备诊断使用。
诊断报告模块213供阅片医生根据受检者的影像信息,编辑并输出诊断报告。
   以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种胶囊内窥镜的帧率调节系统,包括胶囊内窥镜、图像接收存储器及阅片终端,其特征在于:进一步包括图像采集模块,像素矩阵提取模块,直方图像概率统计模块,运动矩阵计算模块,运动系数计算模块及帧率控制模块,其中:
    图像采集模块用于采集图像数据,并输出给像素矩阵提取模块;
    像素矩阵提取模块用于提取图像的像素矩阵,并输出给直方图概率统计模块;
    直方图像概率统计模块对像素矩阵进一步处理以获取直方图像概率矩阵,并输出给运动矩阵计算模块;
    运动矩阵计算模块对相邻两张图像的直方图概率矩阵进行差值运算,得到两张图像的运动矩阵,并输出给运动系数计算模块;
    运动系数计算模块根据运动矩阵计算模块的输出进一步计算得到胶囊的运动系数,并输出给帧率控制模块;
    帧率控制模块根据运动系数计算出胶囊内窥镜的拍摄帧率,并调整拍摄帧率采集图像数据。
  2. 如权利要求1所述的帧率调节系统,其特征在于,所述像素矩阵提取模块,直方图像概率统计模块,运动矩阵计算模块,运动系数计算模块内置于胶囊内窥镜或图像接收存储器。
  3. 如权利要求1所述的帧率调节系统,其特征在于,所述像素矩阵是RGB颜色像素矩阵、RGB任一颜色分量的像素矩阵、灰度像素矩阵的任一种,其中颜色或灰度信息的深度≤8bits。
  4. 如权利要求1所述的帧率调节系统,其特征在于,所述运动系数取值为整数,数值范围为0~2 α之间,其中α为颜色或灰度信息的深度。
  5. 如权利要求1所述的帧率调节系统,其特征在于,所述拍摄帧率采用公式F y = F min + (F max - F min) * C x / (C max - C min)计算,其中F min为最低拍摄帧率,F max为最高拍摄帧率, C min为运动系数的下限值,C max为运动系数的上限值,C x为当前运动系数。
  6. 一种胶囊内窥镜的帧率调节方法,其特征在于,包括以下步骤:
      采集胶囊内窥镜拍摄的图像数据;
      提取图像数据的像素矩阵;
      获取像素矩阵的直方图像概率矩阵;
      对相邻两张图像的直方图像概率矩阵进行差值运算,得到两张图像的运动矩阵;
      根据图像的运动矩阵进一步计算得到胶囊的运动系数;
      根据胶囊的运动系数调整拍摄帧率。
  7. 如权利要求7所述的帧率调节方法,其特征在于,所述像素矩阵是RGB颜色像素矩阵、RGB任一颜色分量的像素矩阵、灰度像素矩阵的任一种,其中颜色或灰度信息的深度≤8bits。
  8. 如权利要求7所述的帧率调节方法,其特征在于,所述运动系数取值为整数,数值范围为0~2 α之间,其中α为颜色或灰度信息的深度。
  9. 如权利要求7所述的帧率调节方法,其特征在于,所述拍摄帧率采用公式F y = F min + (F max - F min) * C x / (C max - C min)计算,其中F min为最低拍摄帧率,F max为最高拍摄帧率, C min为运动系数的下限值,C max为运动系数的上限值,C x为当前运动系数。
PCT/CN2020/125748 2020-08-03 2020-11-02 一种胶囊内窥镜的帧率调节系统和方法 WO2022027841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010765699.6 2020-08-03
CN202010765699.6A CN111932586B (zh) 2020-08-03 2020-08-03 一种胶囊内窥镜的帧率调节系统和方法

Publications (1)

Publication Number Publication Date
WO2022027841A1 true WO2022027841A1 (zh) 2022-02-10

Family

ID=73306320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125748 WO2022027841A1 (zh) 2020-08-03 2020-11-02 一种胶囊内窥镜的帧率调节系统和方法

Country Status (2)

Country Link
CN (1) CN111932586B (zh)
WO (1) WO2022027841A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113920042B (zh) * 2021-09-24 2023-04-18 深圳市资福医疗技术有限公司 图像处理系统及胶囊内窥镜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091126A1 (en) * 2008-10-14 2010-04-15 Sony Corporation Method and unit for motion detection based on a difference histogram
CN104243887A (zh) * 2014-09-10 2014-12-24 上海交通大学 一种基于不规则采样的电影模式检测方法和装置
CN106204650A (zh) * 2016-07-11 2016-12-07 北京航空航天大学 一种基于空地视频关联技术的车辆目标跟踪方法
CN111345772A (zh) * 2018-12-20 2020-06-30 重庆金山医疗器械有限公司 一种调节图像采集帧率的方法及胶囊内窥镜系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067802A1 (ja) * 2014-10-27 2016-05-06 オリンパス株式会社 誘導装置、カプセル型内視鏡誘導システム、及び誘導装置の作動方法
CN109819161A (zh) * 2019-01-21 2019-05-28 北京中竞鸽体育文化发展有限公司 一种帧率的调整方法、装置、终端及可读存储介质
CN110897596A (zh) * 2019-12-05 2020-03-24 重庆金山医疗技术研究院有限公司 自动调节胶囊拍摄速率的方法、内窥镜、记录仪及系统
CN110897595A (zh) * 2019-12-05 2020-03-24 重庆金山医疗技术研究院有限公司 运动检测方法、帧率调节方法、胶囊式内窥镜、记录仪及系统
CN110996009B (zh) * 2019-12-20 2021-07-23 安翰科技(武汉)股份有限公司 胶囊内窥镜系统及其自动帧率调整方法及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091126A1 (en) * 2008-10-14 2010-04-15 Sony Corporation Method and unit for motion detection based on a difference histogram
CN104243887A (zh) * 2014-09-10 2014-12-24 上海交通大学 一种基于不规则采样的电影模式检测方法和装置
CN106204650A (zh) * 2016-07-11 2016-12-07 北京航空航天大学 一种基于空地视频关联技术的车辆目标跟踪方法
CN111345772A (zh) * 2018-12-20 2020-06-30 重庆金山医疗器械有限公司 一种调节图像采集帧率的方法及胶囊内窥镜系统

Also Published As

Publication number Publication date
CN111932586A (zh) 2020-11-13
CN111932586B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
JP4496019B2 (ja) 生体内で撮影された画像ストリームの伝送を減らすための方法
CN1586082A (zh) 使用数据压缩的诊断器件
EP2020201B1 (en) Image processing device
CN110213502A (zh) 图像处理方法、装置、存储介质及电子设备
CN109993722A (zh) 图像处理方法、装置、存储介质及电子设备
US20210353220A1 (en) Camera having transdermal optical imaging function
WO2020062393A1 (zh) 一种基于机器学习的初始数据处理方法和系统
CN111345772B (zh) 一种调节图像采集帧率的方法及胶囊内窥镜系统
WO2022027841A1 (zh) 一种胶囊内窥镜的帧率调节系统和方法
CN110414558A (zh) 基于事件相机的特征点匹配方法
CN107798656A (zh) 一种基于距离传感器和陀螺仪的口腔全景图像拼接方法
CN113222957A (zh) 一种基于胶囊镜图像的多类别病灶高速检测方法及系统
CN110897596A (zh) 自动调节胶囊拍摄速率的方法、内窥镜、记录仪及系统
US20230326072A1 (en) Image-based position detection method, electronic device, and readable storage medium
CN201044473Y (zh) 进行图像采集和摄像的装置
CN206133565U (zh) 一种手掌口腔检测装置
CN110634564B (zh) 一种病理信息处理方法、装置、系统、电子设备及存储介质
CN101247475B (zh) 进行图像采集和摄像的装置和方法
CN110772210A (zh) 一种诊断交互系统及方法
JP2023548226A (ja) 画像処理方法、電子機器および可読記憶媒体
CN102857684A (zh) 一种智能数码变焦方法
EP1942800A2 (en) System and method for concurrent transfer and processing and real time viewing of in-vivo images
CN204909366U (zh) 胶囊式内窥镜图片信息发送装置
CN103767658B (zh) 电子阴道镜图像的采集方法及装置
CN106454274A (zh) 一种适应特殊环境的监视摄像机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948457

Country of ref document: EP

Kind code of ref document: A1