WO2022025721A1 - 무선전력 수신장치 및 무선전력 전송장치 - Google Patents

무선전력 수신장치 및 무선전력 전송장치 Download PDF

Info

Publication number
WO2022025721A1
WO2022025721A1 PCT/KR2021/010010 KR2021010010W WO2022025721A1 WO 2022025721 A1 WO2022025721 A1 WO 2022025721A1 KR 2021010010 W KR2021010010 W KR 2021010010W WO 2022025721 A1 WO2022025721 A1 WO 2022025721A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
communication
band communication
power transmitter
wireless
Prior art date
Application number
PCT/KR2021/010010
Other languages
English (en)
French (fr)
Inventor
윤진호
최진구
육경환
박용철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US18/018,679 priority Critical patent/US20230299615A1/en
Priority to KR1020237003133A priority patent/KR20230043856A/ko
Priority to EP21849372.4A priority patent/EP4191829A1/en
Publication of WO2022025721A1 publication Critical patent/WO2022025721A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present specification relates to a wireless power receiver and a wireless power transmitter that support in-band communication and out-band communication.
  • the wireless power transmission technology is a technology for wirelessly transferring power between a power source and an electronic device.
  • the wireless power transfer technology enables charging of the battery of a wireless terminal by simply placing a wireless terminal such as a smartphone or tablet on a wireless charging pad, so that it is more efficient than a wired charging environment using a conventional wired charging connector. It can provide excellent mobility, convenience and safety.
  • wireless power transmission technology is used in various fields such as electric vehicles, wearable devices such as Bluetooth earphones and 3D glasses, home appliances, furniture, underground facilities, buildings, medical devices, robots, and leisure. It is attracting attention as it will replace the existing wired power transmission environment.
  • the wireless power transmission method is also referred to as a contactless power transmission method, a no point of contact power transmission method, or a wireless charging method.
  • a wireless power transmission system includes a wireless power transmission device for supplying electrical energy in a wireless power transmission method, and wireless power reception for receiving electrical energy wirelessly supplied from the wireless power transmission device and supplying power to a power receiving device such as a battery cell. It may consist of a device.
  • Wireless power transmission technology includes a method of transmitting power through magnetic coupling, a method of transmitting power through radio frequency (RF), a method of transmitting power through microwaves, and ultrasound
  • the magnetic coupling-based method is again classified into a magnetic induction method and a magnetic resonance method.
  • the magnetic induction method is a method of transmitting energy using current induced in the receiving coil due to the magnetic field generated by the transmitting coil battery cell according to electromagnetic coupling between the transmitting coil and the receiving coil.
  • the magnetic resonance method is similar to the magnetic induction method in that it uses a magnetic field. However, in the magnetic resonance method, resonance occurs when a specific resonant frequency is applied to the coil of the transmitting side and the coil of the receiving side. It is different from magnetic induction.
  • An object of the present specification is to provide a protocol for terminating out-band communication between a wireless power receiver and a wireless power transmitter.
  • a wireless power receiver includes a power pickup circuit for receiving wireless power from a wireless power transmitter and in-band communication using a power signal of the wireless power and a communication/control circuit that communicates with the wireless power transmitter using at least one of out-band communication, which is a wireless communication different from the in-band communication, and controls reception of the wireless power, wherein the communication / The control circuit terminates the connection of the out-band communication based on the removal of the power signal from the wireless power transmitter in a state in which the connection between the wireless power transmitter and the out-band communication is established.
  • a wireless power transmitter includes a power conversion circuit for transmitting wireless power to a wireless power receiver and in-band communication using a power signal of the wireless power and a communication/control circuit for communicating with the wireless power receiver using at least one of out-band communication, which is a wireless communication different from the in-band communication, and controlling the transmission of the wireless power, wherein the communication / The control circuit terminates the connection of the out-band communication based on the removal of the power signal in a state in which the connection between the wireless power receiver and the out-band communication is established.
  • Out-band communication between the wireless power receiver and the wireless power transmitter may be terminated in a situation in which the power signal of the wireless power is removed or the basic profile is switched to the power transmission stage.
  • the effect according to the present invention is not limited by the contents exemplified above, and more various effects are included in the present specification.
  • FIG. 1 is a block diagram of a wireless power system 10 according to an embodiment.
  • FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
  • 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
  • 3B shows an example of WPC NDEF in a wireless power transmission system.
  • 4A is a block diagram of a wireless power transmission system according to another embodiment.
  • 4B is a diagram illustrating an example of a Bluetooth communication architecture to which an embodiment according to the present specification can be applied.
  • 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
  • 4D is a block diagram illustrating a wireless power transmission system using BLE communication according to another example.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • FIG. 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment.
  • FIG 8 shows an apparatus for receiving wireless power according to another embodiment.
  • FIG. 9 shows a communication frame structure according to an embodiment.
  • FIG. 10 is a structure of a sync pattern according to an embodiment.
  • FIG. 11 illustrates operation states of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
  • FIG. 12 is a flowchart schematically illustrating a protocol of a ping step according to an embodiment.
  • FIG. 13 is a flowchart schematically illustrating a protocol of a configuration step according to an embodiment.
  • FIG. 14 is a diagram illustrating a message field of a configuration packet (CFG) of a wireless power receiver according to an embodiment.
  • CFG configuration packet
  • 15 is a flowchart schematically illustrating a protocol of a negotiation phase or a renegotiation phase according to an embodiment.
  • FIG. 16 is a diagram illustrating a message field of a capability packet (CAP) of a wireless power transmitter according to an embodiment.
  • CAP capability packet
  • 17 is a flowchart schematically illustrating a protocol for determining a communication mode to be used in a negotiation phase or a renegotiation phase according to an embodiment.
  • SRQ specific request packet
  • 19 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a foreign material is detected in a negotiation step.
  • 20 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when an illegal data packet is received in a negotiation step.
  • 21 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a power transmission stop packet is received in a negotiation step.
  • 22 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a power transmission stop packet is received in a power transmission step.
  • 23 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when an illegal data packet is received in a power transmission step.
  • 24 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a NAK response is transmitted for power reduction in a power transmission step.
  • 25 is a diagram for describing a method of terminating out-band communication between a wireless power transmitter and a wireless power receiver according to an embodiment.
  • 26 is a diagram for explaining a first out-band timing and a second out-band timing according to an embodiment.
  • 27 is a diagram for explaining a first outband timing and a second outband timing according to another embodiment.
  • 28 is a diagram for explaining a first outband timing, a second outband timing, and a third outband timing according to another embodiment.
  • 29 is a diagram for explaining a first outband timing, a second outband timing, and a third outband timing according to another embodiment.
  • a or B (A or B) may mean “only A”, “only B” or “both A and B”.
  • a or B (A or B)” may be interpreted as “A and/or B (A and/or B)”.
  • A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
  • a slash (/) or a comma (comma) used herein may mean “and/or”.
  • A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
  • A, B, C may mean “A, B, or C”.
  • At least one of A and B may mean “only A”, “only B” or “both A and B”.
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “at least one of A and B”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” Any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means may mean “at least one of A, B and C”.
  • parentheses used herein may mean “for example”. Specifically, when displayed as “control information (PDCCH)”, “PDCCH” may be proposed as an example of “control information”. In other words, “control information” of the present specification is not limited to “PDCCH”, and “PDDCH” may be proposed as an example of “control information”. Also, even when displayed as “control information (ie, PDCCH)”, “PDCCH” may be proposed as an example of “control information”.
  • wireless power refers to any form of electric field, magnetic field, electromagnetic field, etc. transmitted from a wireless power transmitter to a wireless power receiver without the use of physical electromagnetic conductors. It is used to mean the energy of Wireless power may also be called a wireless power signal, and may refer to an oscillating magnetic flux enclosed by a primary coil and a secondary coil. Power conversion in a system is described herein for wirelessly charging devices including, for example, mobile phones, cordless phones, iPods, MP3 players, headsets, and the like.
  • a basic principle of wireless power transmission is, for example, a method of transmitting power through magnetic coupling, a method of transmitting power through a radio frequency (RF), and a microwave (microwave) method.
  • RF radio frequency
  • microwave microwave
  • FIG. 1 is a block diagram of a wireless power system 10 according to an embodiment.
  • a wireless power system 10 includes a wireless power transmitter 100 and a wireless power receiver 200 .
  • the wireless power transmitter 100 receives power from an external power source S to generate a magnetic field.
  • the wireless power receiving apparatus 200 receives power wirelessly by generating a current using the generated magnetic field.
  • the wireless power transmitter 100 and the wireless power receiver 200 may transmit/receive various information required for wireless power transmission.
  • the communication between the wireless power transmitter 100 and the wireless power receiver 200 is in-band communication using a magnetic field used for wireless power transmission or out-band communication using a separate communication carrier.
  • (out-band communication) may be performed according to any one method.
  • Out-band communication may be referred to as out-of-band communication.
  • terms will be unified as out-band communication. Examples of out-band communication may include NFC, Bluetooth (bluetooth), BLE (bluetooth low energy), and the like.
  • the wireless power transmitter 100 may be provided as a fixed type or a mobile type.
  • fixed types include embedded in furniture such as ceilings, walls, tables, etc., installed in outdoor parking lots, bus stops, subway stations, etc. There is this.
  • the portable wireless power transmission device 100 may be implemented as a portable device having a movable weight or size, or as a part of another device, such as a cover of a notebook computer.
  • the wireless power receiver 200 should be interpreted as a comprehensive concept including various electronic devices including batteries and various home appliances that are driven by receiving power wirelessly instead of a power cable.
  • Representative examples of the wireless power receiver 200 include a mobile terminal, a cellular phone, a smart phone, a personal digital assistant (PDA), and a portable media player (PMP: Portable Media Player), Wibro terminals, tablets, phablets, notebooks, digital cameras, navigation terminals, televisions, electric vehicles (EVs), and the like.
  • FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
  • the wireless power transmitter 100 and the wireless power receiver 200 exchange power on a one-to-one basis, but as shown in FIG. 2 , one wireless power transmitter 100 includes a plurality of wireless power receivers. It is also possible to transfer power to (200-1, 200-2,..., 200-M). In particular, when wireless power transmission is performed in a magnetic resonance method, one wireless power transmission device 100 applies a simultaneous transmission method or a time division transmission method to simultaneously multiple wireless power reception devices 200-1, 200-2, ...,200-M) can deliver power.
  • FIG. 1 shows a state in which the wireless power transmitter 100 directly transmits power to the wireless power receiver 200
  • the wireless power transmitter 100 and the wireless power receiver 200 are connected wirelessly.
  • a separate wireless power transmission/reception device such as a relay or repeater for increasing the power transmission distance may be provided.
  • power may be transmitted from the wireless power transmitter 100 to the wireless power transceiver, and the wireless power transceiver may again transmit power to the wireless power receiver 200 .
  • the wireless power receiver, the power receiver, and the receiver referred to in this specification refer to the wireless power receiving apparatus 200 .
  • the wireless power transmitter, the power transmitter, and the transmitter referred to in this specification refer to the wireless power receiving and transmitting apparatus 100 .
  • 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
  • FIG. 3A shows electronic devices classified according to the amount of power transmitted and received in the wireless power transmission system.
  • wearable devices such as a smart watch, a smart glass, a head mounted display (HMD), and a smart ring and an earphone, a remote control, a smart phone, a PDA, a tablet
  • a low-power (about 5W or less or about 20W or less) wireless charging method may be applied to mobile electronic devices (or portable electronic devices) such as a PC.
  • a medium-power (about 50W or less or about 200W or less) wireless charging method can be applied to small and medium-sized home appliances such as laptop computers, robot cleaners, TVs, sound devices, vacuum cleaners, and monitors.
  • Kitchen appliances such as blenders, microwave ovens, and electric rice cookers, personal mobility devices (or electronic devices/mobilities) such as wheelchairs, electric kickboards, electric bicycles, and electric vehicles, use high power (about 2 kW or less or 22 kW or less)
  • a wireless charging method may be applied.
  • the electronic devices/mobile means described above may each include a wireless power receiver to be described later. Accordingly, the above-described electronic devices/mobile means may be charged by wirelessly receiving power from the wireless power transmitter.
  • Standards for wireless power transmission include a wireless power consortium (WPC), an air fuel alliance (AFA), and a power matters alliance (PMA).
  • WPC wireless power consortium
  • AFA air fuel alliance
  • PMA power matters alliance
  • the WPC standard defines a baseline power profile (BPP) and an extended power profile (EPP).
  • BPP relates to a wireless power transmitter and receiver supporting 5W power transmission
  • EPP relates to a wireless power transmitter and receiver supporting power transmission in a range greater than 5W and less than 30W.
  • the WPC classifies a wireless power transmitter and a receiver into power class (PC) -1, PC0, PC1, and PC2, and provides standard documents for each PC.
  • PC power class
  • the PC-1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of less than 5W.
  • Applications of PC-1 include wearable devices such as smart watches.
  • the PC0 standard relates to a wireless power transmitter and receiver that provide a guaranteed power of 5W.
  • the PC0 standard includes EPP with guaranteed power up to 30W.
  • in-band (IB) communication is a mandatory communication protocol of PC0
  • out-band (OB) communication used as an optional backup channel may also be used.
  • the wireless power receiver can identify whether OB is supported by setting an OB flag in a configuration packet.
  • the wireless power transmitter supporting the OB may enter the OB handover phase by transmitting a bit-pattern for OB handover as a response to the configuration packet.
  • the response to the configuration packet may be NAK, ND, or a newly defined 8-bit pattern.
  • Applications of PC0 include smartphones.
  • the PC1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 30W to 150W.
  • the OB is an essential communication channel for PC1, and the IB is used for initialization and link establishment to the OB.
  • the wireless power transmitter may enter the OB handover phase by using a bit pattern for OB handover.
  • Applications of PC1 include laptops and power tools.
  • the PC2 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 200W to 2kW, and its applications include kitchen appliances.
  • PCs may be distinguished according to the power level, and whether to support the same compatibility between PCs may be optional or mandatory.
  • compatibility between identical PCs means that power transmission and reception are possible between identical PCs.
  • compatibility between different PCs may be supported.
  • compatibility between different PCs means that power transmission/reception is possible even between different PCs.
  • the wireless power transmitter having PC x can charge the wireless power receiver having PC y, it can be seen that compatibility between different PCs is maintained.
  • a wireless power receiver of the lap-top charging method that can stably charge only when power is continuously transmitted is called a wireless power transmitter of the same PC. Even so, there may be a problem in stably receiving power from the wireless power transmitter of the electric tool type that transmits power discontinuously.
  • the wireless power receiver may There is a risk of breakage. As a result, it is difficult for a PC to be an index/standard representing/indicating compatibility.
  • Wireless power transmission and reception devices can provide a very convenient user experience and interface (UX/UI). That is, a smart wireless charging service may be provided.
  • the smart wireless charging service may be implemented based on the UX/UI of a smartphone including a wireless power transmitter.
  • the interface between the smartphone's processor and the wireless charging receiver allows "drop and play" bidirectional communication between the wireless power transmitter and the receiver.
  • a user may experience a smart wireless charging service in a hotel.
  • the wireless charger transmits wireless power to the smartphone and the smartphone receives wireless power.
  • the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone detects that it is located on the wireless charger, detects reception of wireless power, or the smartphone receives information about the smart wireless charging service from the wireless charger, the smartphone provides the user with consent ( opt-in) is requested.
  • the smartphone may display a message on the screen in such a way that it may or may not include an alarm sound.
  • An example of the message may include a phrase such as "Welcome to ### hotel.
  • the smartphone receives an input from the user who selects Yes or No Thanks, and performs the following procedure selected by the user. If Yes is selected, the smartphone transmits the corresponding information to the wireless charger. And the smartphone and the wireless charger perform the smart charging function together.
  • the smart wireless charging service may also include receiving auto-filled WiFi credentials.
  • the wireless charger transmits the WiFi credentials to the smartphone, and the smartphone automatically enters the WiFi credentials received from the wireless charger by running an appropriate app.
  • the smart wireless charging service may also include running a hotel application that provides hotel promotions, or obtaining remote check-in/check-out and contact information.
  • a user may experience a smart wireless charging service in a vehicle.
  • the wireless charger transmits wireless power to the smartphone and the smartphone receives wireless power.
  • the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone detects that it is located on the wireless charger, detects reception of wireless power, or the smartphone receives information about the smart wireless charging service from the wireless charger, the smartphone prompts the user to confirm identity Enter the inquiry state.
  • the smartphone is automatically connected to the car via WiFi and/or Bluetooth.
  • the smartphone may display the message on the screen in a manner that may or may not include an alarm sound.
  • An example of the message may include a phrase such as "Welcome to your car. Select "Yes" to synch device with in-car controls : Yes
  • the smartphone receives an input from the user who selects Yes or No Thanks, and performs the following procedure selected by the user. If Yes is selected, the smartphone transmits the corresponding information to the wireless charger.
  • the smart phone and the wireless charger can perform in-vehicle smart control functions together by driving in-vehicle application/display software. Users can enjoy the music they want and check the regular map location.
  • the in-vehicle application/display software may include capabilities to provide synchronized access for passers-by.
  • a user may experience smart wireless charging at home.
  • the wireless charger transmits wireless power to the smartphone and the smartphone receives wireless power.
  • the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone detects that it is located on the wireless charger, detects reception of wireless power, or the smartphone receives information about the smart wireless charging service from the wireless charger, the smartphone provides the user with consent ( opt-in) is requested.
  • the smartphone may display a message on the screen in such a way that it may or may not include an alarm sound.
  • An example of the message may include a phrase such as "Hi xxx, Would you like to activate night mode and secure the building?: Yes
  • the smartphone receives an input from the user who selects Yes or No Thanks, and performs the following procedure selected by the user. If Yes is selected, the smartphone transmits the corresponding information to the wireless charger. Smartphones and wireless chargers can at least recognize the user's pattern and encourage the user to lock doors and windows, turn off lights, or set an alarm.
  • a 'profile' will be newly defined as an indicator/standard representing/indicating compatibility. That is, it can be interpreted that compatibility is maintained between wireless power transceivers having the same 'profile' so that stable power transmission and reception is possible, and power transmission and reception is impossible between wireless power transceivers having different 'profiles'.
  • Profiles may be defined according to application and/or compatibility independent of (or independently of) power class.
  • the profile can be broadly divided into three categories: i) mobile and computing, ii) power tools, and iii) kitchen.
  • the profile can be largely divided into i) mobile, ii) electric tool, iii) kitchen, and iv) wearable.
  • PC can be defined as PC0 and/or PC1
  • communication protocol/method is IB and OB
  • operating frequency is 87 ⁇ 205kHz
  • examples of applications include smartphones, laptops, etc.
  • the PC may be defined as PC1
  • the communication protocol/method may be IB
  • the operating frequency may be defined as 87 to 145 kHz
  • an electric tool may exist as an example of the application.
  • the PC may be defined as PC2, the communication protocol/method is NFC-based, and the operating frequency is less than 100 kHz, and examples of the application may include kitchen/home appliances.
  • NFC communication can be used between the wireless power transmitter and the receiver.
  • WPC NDEF NFC Data Exchange Profile Format
  • the wireless power transmitter and the receiver can confirm that they are NFC devices.
  • 3B shows an example of WPC NDEF in a wireless power transmission system.
  • the WPC NDEF is, for example, an application profile field (eg 1B), a version field (eg 1B), and profile specific data (eg 1B).
  • the application profile field indicates whether the device is i) mobile and computing, ii) powered tools, and iii) kitchen, the upper nibble of the version field indicates the major version and the lower nibble (lower nibble) indicates a minor version.
  • Profile-specific data also defines the content for the kitchen.
  • the PC may be defined as PC-1
  • the communication protocol/method may be IB
  • the operating frequency may be defined as 87 to 205 kHz
  • examples of the application may include a wearable device worn on the user's body.
  • Maintaining compatibility between the same profiles may be essential, and maintaining compatibility between different profiles may be optional.
  • profiles may be generalized and expressed as first to nth profiles, and new profiles may be added/replaced according to WPC standards and embodiments.
  • the wireless power transmitter selectively transmits power only to the wireless power receiver having the same profile as itself, thereby enabling more stable power transmission.
  • the burden on the wireless power transmitter is reduced and power transmission to an incompatible wireless power receiver is not attempted, the risk of damage to the wireless power receiver is reduced.
  • PC1 in the 'mobile' profile can be defined by borrowing optional extensions such as OB based on PC0, and in the case of the 'powered tools' profile, the PC1 'mobile' profile can be defined simply as a modified version.
  • OB optional extensions
  • the wireless power transmitter or the wireless power receiver may inform the counterpart of its profile through various methods.
  • the AFA standard refers to the wireless power transmitter as a power transmitting circuit (PTU), and the wireless power receiver as a power receiving circuit (PRU), and the PTU is classified into a number of classes as shown in Table 1, and the PRU is as shown in Table 2 classified into a number of categories.
  • PTU power transmitting circuit
  • PRU power receiving circuit
  • the maximum output power capability of the class n PTU is greater than or equal to the P TX_IN_MAX value of the corresponding class.
  • the PRU cannot draw power greater than the power specified in that category.
  • 4A is a block diagram of a wireless power transmission system according to another embodiment.
  • the wireless power transmission system 10 includes a mobile device 450 wirelessly receiving power and a base station 400 wirelessly transmitting power.
  • the base station 400 is a device that provides inductive power or resonant power, and may include at least one wireless power transmitter 100 and a system circuit 405 .
  • the wireless power transmitter 100 may transmit inductive power or resonant power and control the transmission.
  • the wireless power transmitter 100 transmits power to an appropriate level and a power conversion circuit 110 that converts electrical energy into a power signal by generating a magnetic field through a primary coil(s)
  • a communication/control circuit 120 for controlling communication and power transfer with the wireless power receiver 200 may be included.
  • the system circuit 405 may perform input power provisioning, control of a plurality of wireless power transmitters, and other operation control of the base station 400 such as user interface control.
  • the primary coil may generate an electromagnetic field using AC power (or voltage or current).
  • the primary coil may receive AC power (or voltage or current) of a specific frequency output from the power conversion circuit 110 and may generate a magnetic field of a specific frequency accordingly.
  • the magnetic field may be generated non-radiatively or radially, and the wireless power receiver 200 receives it and generates a current. In other words, the primary coil transmits power wirelessly.
  • the primary coil and the secondary coil may have any suitable shape, for example, a copper wire wound around a high permeability formation such as ferrite or amorphous metal.
  • the primary coil may be referred to as a transmitting coil, a primary core, a primary winding, a primary loop antenna, or the like.
  • the secondary coil may be called a receiving coil, a secondary core, a secondary winding, a secondary loop antenna, a pickup antenna, etc. .
  • the primary coil and the secondary coil may be provided in the form of a primary resonance antenna and a secondary resonance antenna, respectively.
  • the resonant antenna may have a resonant structure including a coil and a capacitor.
  • the resonant frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
  • the coil may be formed in the form of a loop.
  • a core may be disposed inside the loop.
  • the core may include a physical core such as a ferrite core or an air core.
  • the resonance phenomenon refers to a phenomenon in which, when a near field corresponding to a resonant frequency is generated in one resonant antenna, when other resonant antennas are located around, both resonant antennas are coupled to each other and high efficiency energy transfer occurs between the resonant antennas. .
  • a magnetic field corresponding to the resonant frequency is generated between the primary resonant antenna and the secondary resonant antenna, a phenomenon occurs in which the primary resonant antenna and the secondary resonant antenna resonate with each other.
  • the magnetic field is focused toward the secondary resonant antenna with higher efficiency compared to the case where the magnetic field is radiated into free space, and thus energy can be transferred from the primary resonant antenna to the secondary resonant antenna with high efficiency.
  • the magnetic induction method may be implemented similarly to the magnetic resonance method, but in this case, the frequency of the magnetic field does not need to be the resonant frequency. Instead, in the magnetic induction method, matching between the loops constituting the primary coil and the secondary coil is required, and the distance between the loops must be very close.
  • the wireless power transmitter 100 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 120 may transmit/receive information to and from the wireless power receiver 200 .
  • the communication/control circuit 120 may include at least one of an IB communication module and an OB communication module.
  • the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication/control circuit 120 performs in-band communication by loading communication information on the operating frequency of wireless power transmission and transmitting it through the primary coil or by receiving the operating frequency containing the information through the primary coil. can do.
  • modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: Non-return-to-zero level
  • BPSK binary phase shift keying
  • FSK frequency shift keying
  • ASK amplitude shift keying
  • NZR non-zero return level
  • the OB communication module may perform out-band communication through a communication antenna.
  • the communication/control circuit 120 may be provided as a short-range communication module.
  • Examples of the short-distance communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 120 may control the overall operation of the wireless power transmitter 100 .
  • the communication/control circuit 120 may perform calculation and processing of various types of information, and may control each component of the wireless power transmission apparatus 100 .
  • the communication/control circuit 120 may be implemented as a computer or a similar device using hardware, software, or a combination thereof.
  • the communication/control circuit 120 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program for driving the communication/control circuit 120 in hardware. can be provided.
  • the communication/control circuit 120 may control the transmit power by controlling an operating point.
  • the operating point to be controlled may correspond to a combination of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the communication/control circuit 120 may control the transmission power by adjusting at least one of a frequency (or phase), a duty cycle, a duty ratio, and a voltage amplitude.
  • the wireless power transmitter 100 may supply constant power
  • the wireless power receiver 200 may control the received power by controlling the resonance frequency.
  • the mobile device 450 receives and stores the power received from the wireless power receiver 200 and the wireless power receiver 200 for receiving wireless power through a secondary coil, and stores the device. Includes a load (load, 455) to supply to.
  • the wireless power receiver 200 may include a power pick-up circuit 210 and a communication/control circuit 220 .
  • the power pickup circuit 210 may receive wireless power through the secondary coil and convert it into electrical energy.
  • the power pickup circuit 210 rectifies the AC signal obtained through the secondary coil and converts it into a DC signal.
  • the communication/control circuit 220 may control transmission and reception of wireless power (power transmission and reception).
  • the secondary coil may receive wireless power transmitted from the wireless power transmitter 100 .
  • the secondary coil may receive power using a magnetic field generated in the primary coil.
  • the specific frequency is the resonance frequency
  • a magnetic resonance phenomenon occurs between the primary coil and the secondary coil, so that power can be transmitted more efficiently.
  • the communication/control circuit 220 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 220 may transmit/receive information to and from the wireless power transmitter 100 .
  • the communication/control circuit 220 may include at least one of an IB communication module and an OB communication module.
  • the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication/control circuit 220 may perform IB communication by loading information on a magnetic wave and transmitting it through a secondary coil or by receiving a magnetic wave containing information through a secondary coil.
  • modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: Non-return-to-zero level
  • BPSK binary phase shift keying
  • FSK frequency shift keying
  • ASK amplitude shift keying
  • NZR non-zero return level
  • the OB communication module may perform out-band communication through a communication antenna.
  • the communication/control circuit 220 may be provided as a short-range communication module.
  • Examples of the short-distance communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 220 may control the overall operation of the wireless power receiver 200 .
  • the communication/control circuit 220 may perform calculation and processing of various types of information, and may control each component of the wireless power receiver 200 .
  • the communication/control circuit 220 may be implemented in a computer or similar device using hardware, software, or a combination thereof.
  • the communication/control circuit 220 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program that drives the communication/control circuit 220 in hardware. can be provided.
  • the communication/control circuit 120 and the communication/control circuit 220 are Bluetooth or Bluetooth LE as an OB communication module or a short-range communication module
  • the communication/control circuit 120 and the communication/control circuit 220 are respectively shown in FIG. 4b It can be implemented and operated with the same communication architecture as
  • 4B is a diagram illustrating an example of a Bluetooth communication architecture to which an embodiment according to the present specification can be applied.
  • FIG. 4B (a) of FIG. 4B shows an example of a protocol stack of Bluetooth BR (Basic Rate)/EDR (Enhanced Data Rate) supporting GATT, (b) is Bluetooth LE (Low Energy) An example of a protocol stack is shown.
  • Bluetooth BR Basic Rate
  • EDR Enhanced Data Rate
  • GATT GATT
  • Bluetooth LE Low Energy
  • the Bluetooth BR/EDR protocol stack has an upper controller stack (Controller stack, 460) and a lower one based on the host controller interface (HCI, 18). It may include a host stack (Host Stack, 470).
  • the host stack (or host module) 470 refers to a wireless transceiver module that receives a Bluetooth signal of 2.4 GHz and hardware for transmitting or receiving Bluetooth packets, and the controller stack 460 is connected to the Bluetooth module to configure the Bluetooth module. Control and perform actions.
  • the host stack 470 may include a BR/EDR PHY layer 12 , a BR/EDR baseband layer 14 , and a link manager layer 16 .
  • the BR/EDR PHY layer 12 is a layer for transmitting and receiving a 2.4 GHz radio signal.
  • GFSK Gaussian Frequency Shift Keying
  • the BR/EDR baseband layer 14 is responsible for transmitting a digital signal, selects a channel sequence hopping 1400 times per second, and transmits a 625us-long time slot for each channel.
  • the link manager layer 16 controls the overall operation (link setup, control, security) of the Bluetooth connection by using LMP (Link Manager Protocol).
  • LMP Link Manager Protocol
  • the link manager layer 16 may perform the following functions.
  • the host controller interface layer 18 provides an interface between the host module and the controller module so that the host provides commands and data to the controller, and allows the controller to provide events and data to the host.
  • the host stack (or host module, 20) includes a logical link control and adaptation protocol (L2CAP, 21), an attribute protocol (Protocol, 22), a generic attribute profile (GATT, 23), a generic access profile (Generic Access) Profile, GAP, 24), and BR/EDR profile (25).
  • L2CAP logical link control and adaptation protocol
  • Protocol 22
  • GATT generic attribute profile
  • GAP Generic Access Profile
  • BR/EDR profile 25.
  • the logical link control and adaptation protocol may provide one bidirectional channel for data transmission to a specific protocol or profile file.
  • the L2CAP 21 may multiplex various protocols, profiles, etc. provided by the Bluetooth upper layer.
  • L2CAP of Bluetooth BR/EDR uses dynamic channels, supports protocol service multiplexer, retransmission, and streaming mode, and provides segmentation and reassembly, per-channel flow control, and error control.
  • the generic attribute profile GATT 23 may be operable as a protocol that describes how the attribute protocol 22 is used in the configuration of services.
  • the generic attribute profile 23 may be operable to define how ATT attributes are grouped together into services, and may be operable to describe characteristics associated with services.
  • the generic attribute profile 23 and the attribute protocol (ATT) 22 can use features to describe the state and services of a device, how they relate to each other and how they are used.
  • the attribute protocol 22 and the BR/EDR profile 25 define a service (profile) using Bluetooth BR/EDR and an application protocol for sending and receiving these data, and the Generic Access Profile , GAP, 24) define device discovery, connectivity, and security levels.
  • the Bluetooth LE protocol stack includes a controller stack 480 operable to process a timing-critical wireless device interface and a host stack operable to process high level data. (Host stack, 490).
  • the controller stack 480 may be implemented using a communication module that may include a Bluetooth radio, for example, a processor module that may include a processing device such as a microprocessor.
  • the host stack 490 may be implemented as part of an OS running on a processor module, or as an instantiation of a package on the OS.
  • controller stack and host stack may operate or run on the same processing device within a processor module.
  • the controller stack 480 includes a physical layer (PHY) 32, a link layer (Link Layer) 34, and a host controller interface (Host Controller Interface, 36).
  • PHY physical layer
  • Link Layer Link Layer
  • Hos Controller Interface 36
  • the physical layer (PHY, radio transmit/receive module, 32) is a layer for transmitting and receiving a 2.4 GHz radio signal, and uses Gaussian Frequency Shift Keying (GFSK) modulation and a frequency hopping technique composed of 40 RF channels.
  • GFSK Gaussian Frequency Shift Keying
  • the link layer 34 which transmits or receives Bluetooth packets, performs advertising and scanning functions using three advertising channels, and then creates a connection between devices, and a maximum of 257 bytes of data packets through 37 data channels. Provides a function to send and receive
  • the host stack includes Generic Access Profile (GAP, 40), Logical Link Control and Adaptation Protocol (L2CAP, 41), Security Manager (SM, 42), Attribute Protocol (ATT, 440), and Generic Attribute Profile.
  • GAP Generic Access Profile
  • L2CAP Logical Link Control and Adaptation Protocol
  • SM Security Manager
  • ATT Attribute Protocol
  • GATT Generic Attribute Profile
  • GATT General Access Profile
  • 25 may include the LT profile (46).
  • the host stack 490 is not limited thereto and may include various protocols and profiles.
  • the host stack uses L2CAP to multiplex various protocols and profiles provided by the Bluetooth upper layer.
  • L2CAP Logical Link Control and Adaptation Protocol, 41
  • L2CAP may provide one bidirectional channel for data transmission to a specific protocol or profile.
  • the L2CAP 41 may be operable to multiplex data between higher layer protocols, segment and reassemble packages, and manage multicast data transmission.
  • Bluetooth LE 3 fixed channels (1 for signaling CH, 1 for Security Manager, 1 for Attribute protocol) are basically used. And, if necessary, a dynamic channel may be used.
  • BR/EDR Base Rate/Enhanced Data Rate
  • a dynamic channel is basically used, and protocol service multiplexer, retransmission, streaming mode, etc. are supported.
  • SM Security Manager
  • ATT Attribute Protocol, 43
  • ATT has the following 6 message types (Request, Response, Command, Notification, Indication, Confirmation).
  • the Request message is a message for requesting and delivering specific information from the client device to the server device
  • the Response message is a response message to the Request message, a message that can be used for transmission from the server device to the client device.
  • Command message A message transmitted mainly from the client device to the server device to instruct a command for a specific operation.
  • the server device does not transmit a response to the command message to the client device.
  • Notification message A message sent from the server device to the client device for notification such as an event.
  • the client device does not send a confirmation message for the Notification message to the server device.
  • Indication and Confirm message A message transmitted from the server device to the client device for notification such as an event. Unlike the Notification message, the client device transmits a confirmation message for the Indication message to the server device.
  • This specification transmits a value for the data length when requesting long data in the GATT profile using the attribute protocol (ATT, 43) so that the client can clearly know the data length, and uses the UUID to provide a characteristic (Characteristic) from the server value can be sent.
  • ATT attribute protocol
  • the general access profile (GAP, 45) is a newly implemented layer for Bluetooth LE technology, and is used to control role selection and multi-profile operation for communication between Bluetooth LE devices.
  • the general access profile 45 is mainly used for device discovery, connection creation, and security procedures, defines a method for providing information to a user, and defines the types of attributes as follows.
  • the LE profile 46 is mainly applied to Bluetooth LE devices as profiles that depend on GATT.
  • the LE profile 46 may include, for example, Battery, Time, FindMe, Proximity, and Time, and the specific contents of the GATT-based Profiles are as follows.
  • the generic attribute profile GATT 44 may be operable as a protocol describing how the attribute protocol 43 is used in the configuration of services.
  • the generic attribute profile 44 may be operable to define how ATT attributes are grouped together into services, and may be operable to describe characteristics associated with services.
  • the generic attribute profile 44 and the attribute protocol (ATT) 43 can use features to describe the state and services of a device, how they relate to each other and how they are used.
  • the BLE procedure may be divided into a device filtering procedure, an advertising procedure, a scanning procedure, a discovery procedure, a connecting procedure, and the like.
  • the device filtering procedure is a method for reducing the number of devices that respond to requests, instructions, and notifications in the controller stack.
  • the controller stack can reduce the number of requests it transmits, thereby reducing power consumption in the BLE controller stack.
  • An advertising device or a scanning device may perform the device filtering procedure to restrict devices receiving an advertisement packet, a scan request, or a connection request.
  • the advertisement device refers to a device that transmits an advertisement event, that is, performs advertisement, and is also expressed as an advertiser.
  • the scanning device refers to a device that performs scanning and a device that transmits a scan request.
  • a scanning device when a scanning device receives some advertisement packets from an advertisement device, the scanning device has to send a scan request to the advertisement device.
  • the scanning device may ignore advertisement packets transmitted from the advertisement device.
  • a device filtering procedure may also be used in the connection request process. If device filtering is used in the connection request process, it is not necessary to transmit a response to the connection request by ignoring the connection request.
  • the advertisement device performs an advertisement procedure to perform non-directional broadcast to devices in the area.
  • undirected advertising is advertising directed to all (all) devices rather than a broadcast directed to a specific device, and all devices scan advertisements to request additional information or You can make a connection request.
  • a device designated as a receiving device scans the advertisement to request additional information or a connection request.
  • An advertisement procedure is used to establish a Bluetooth connection with a nearby initiating device.
  • the advertisement procedure may be used to provide periodic broadcast of user data to scanning devices that are listening on the advertisement channel.
  • Advertising devices may receive a scan request from listening devices that are listening to obtain additional user data from the advertising device.
  • the advertisement device transmits a response to the scan request to the device that transmitted the scan request through the same advertisement physical channel as the advertisement physical channel on which the scan request is received.
  • Broadcast user data sent as part of advertisement packets is dynamic data, whereas scan response data is generally static data.
  • An advertising device may receive a connection request from an initiating device on an advertising (broadcast) physical channel. If the advertisement device uses a connectable advertisement event and the initiating device is not filtered by the device filtering procedure, the advertisement device stops the advertisement and enters a connected mode. The advertising device may start advertising again after the connected mode.
  • a device performing scanning that is, a scanning device, performs a scanning procedure to listen to a non-directional broadcast of user data from advertisement devices using an advertisement physical channel.
  • the scanning device sends a scan request to the advertisement device through an advertisement physical channel to request additional data from the advertisement device.
  • the advertisement device transmits a scan response, which is a response to the scan request, including additional data requested by the scanning device through the advertisement physical channel.
  • the scanning procedure may be used while being connected to another BLE device in the BLE piconet.
  • the scanning device If the scanning device is in an initiator mode that can receive a broadcast advertisement event and initiate a connection request, the scanning device sends a connection request to the advertisement device through an advertisement physical channel. You can start a Bluetooth connection with
  • the scanning device When the scanning device sends a connection request to the advertising device, the scanning device stops scanning initiator mode for additional broadcast, and enters the connected mode.
  • 'Bluetooth devices' Devices capable of Bluetooth communication (hereinafter, referred to as 'Bluetooth devices') perform advertisement and scanning procedures to discover nearby devices or to be discovered by other devices within a given area.
  • the discovery procedure is performed asymmetrically.
  • a Bluetooth device that tries to find other nearby devices is called a discovering device and listens to find devices that advertise a scannable advertisement event.
  • a Bluetooth device discovered and available from other devices is called a discoverable device and actively broadcasts an advertisement event so that other devices can scan it through an advertisement (broadcast) physical channel.
  • Both the discovering device and the discoverable device may be already connected to other Bluetooth devices in the piconet.
  • connection procedure is asymmetric, and the connection procedure requires that a specific Bluetooth device perform a scanning procedure while another Bluetooth device performs an advertisement procedure.
  • an advertisement procedure may be targeted, as a result of which only one device will respond to the advertisement.
  • a connection After receiving an accessible advertisement event from an advertisement device, a connection may be initiated by sending a connection request to the advertisement device through an advertisement (broadcast) physical channel.
  • the link layer enters the advertisement state by the instruction of the host (stack).
  • the link layer sends advertisement packet data circuits (PDUs) in advertisement events.
  • PDUs advertisement packet data circuits
  • Each advertisement event consists of at least one advertisement PDU, and the advertisement PDUs are transmitted through used advertisement channel indexes.
  • the advertisement event may be terminated earlier when the advertisement PDU is transmitted through the advertisement channel indexes used, respectively, or when the advertisement device needs to secure a space to perform another function.
  • the link layer enters the scanning state under the direction of the host (stack). In the scanning state, the link layer listens for advertisement channel indices.
  • each scanning type is determined by a host.
  • a separate time or advertisement channel index for performing scanning is not defined.
  • the link layer listens for the advertisement channel index for a scanWindow duration.
  • the scanInterval is defined as the interval (interval) between the starting points of two consecutive scan windows.
  • the link layer MUST listen for completion of all scan intervals in the scan window as directed by the host, provided there is no scheduling conflict. In each scan window, the link layer must scan a different advertisement channel index. The link layer uses all available advertising channel indices.
  • the link layer In passive scanning, the link layer only receives packets and transmits no packets.
  • the link layer performs listening depending on the advertisement PDU type, which may request advertisement PDUs and additional information related to the advertisement device from the advertisement device.
  • the link layer enters the initiation state by the instruction of the host (stack).
  • the link layer When the link layer is in the initiating state, the link layer performs listening for advertisement channel indices.
  • the link layer listens for the advertisement channel index during the scan window period.
  • the link layer enters the connected state when the device making the connection request, that is, the initiating device sends a CONNECT_REQ PDU to the advertising device, or when the advertising device receives a CONNECT_REQ PDU from the initiating device.
  • connection After entering the connection state, a connection is considered to be created. However, the connection need not be considered to be established at the time it enters the connected state. The only difference between the newly created connection and the established connection is the link layer connection supervision timeout value.
  • the link layer performing the master role is called a master, and the link layer performing the slave role is called a slave.
  • the master controls the timing of the connection event, and the connection event refers to the synchronization point between the master and the slave.
  • BLE devices use packets defined below.
  • the Link Layer has only one packet format used for both advertisement channel packets and data channel packets.
  • Each packet consists of four fields: a preamble, an access address, a PDU, and a CRC.
  • the PDU When one packet is transmitted in the advertisement channel, the PDU will be the advertisement channel PDU, and when one packet is transmitted in the data channel, the PDU will be the data channel PDU.
  • An advertisement channel PDU Packet Data Circuit
  • PDU Packet Data Circuit
  • the PDU type field of the advertisement channel PDU included in the header indicates the PDU type as defined in Table 3 below.
  • advertisement channel PDU types are called advertisement PDUs and are used in specific events.
  • ADV_IND Linkable non-directional advertising event
  • ADV_NONCONN_IND Non-Linkable Non-Directional Advertising Event
  • ADV_SCAN_IND Scannable non-directional advertising event
  • the PDUs are transmitted in the link layer in the advertisement state and are received by the link layer in the scanning state or initiating state.
  • advertisement channel PDU types are called scanning PDUs and are used in the state described below.
  • SCAN_REQ Sent by the link layer in the scanning state, and received by the link layer in the advertisement state.
  • SCAN_RSP Sent by the link layer in the advertisement state, and received by the link layer in the scanning state.
  • initiation PDUs The following advertisement channel PDU types are called initiation PDUs.
  • CONNECT_REQ Sent by the link layer in the initiating state, and received by the link layer in the advertising state.
  • the data channel PDU may have a 16-bit header, payloads of various sizes, and include a Message Integrity Check (MIC) field.
  • MIC Message Integrity Check
  • the load 455 may be a battery.
  • the battery may store energy using power output from the power pickup circuit 210 .
  • the battery is not necessarily included in the mobile device 450 .
  • the battery may be provided as a detachable external configuration.
  • the wireless power receiving apparatus 200 may include a driving means for driving various operations of the electronic device instead of a battery.
  • the mobile device 450 is shown to include the wireless power receiver 200 and the base station 400 is shown to include the wireless power transmitter 100, in a broad sense, the wireless power receiver ( 200 may be identified with the mobile device 450 , and the wireless power transmitter 100 may be identified with the base station 400 .
  • wireless power transmission including the communication/control circuit 120 may be represented by a simplified block diagram as shown in FIG. 4C .
  • 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
  • the wireless power transmitter 100 includes a power conversion circuit 110 and a communication/control circuit 120 .
  • the communication/control circuit 120 includes an in-band communication module 121 and a BLE communication module 122 .
  • the wireless power receiver 200 includes a power pickup circuit 210 and a communication/control circuit 220 .
  • the communication/control circuit 220 includes an in-band communication module 221 and a BLE communication module 222 .
  • the BLE communication modules 122 , 222 perform the architecture and operation according to FIG. 4B .
  • the BLE communication modules 122 and 222 may be used to establish a connection between the wireless power transmitter 100 and the wireless power receiver 200, and to exchange control information and packets necessary for wireless power transmission. have.
  • the communication/control circuit 120 may be configured to operate a profile for wireless charging.
  • the profile for wireless charging may be GATT using BLE transmission.
  • 4D is a block diagram illustrating a wireless power transmission system using BLE communication according to another example.
  • the communication/control circuits 120 and 220 include only the in-band communication modules 121 and 221, respectively, and the BLE communication modules 122 and 222 include the communication/control circuits 120, 220) and a form separately provided is also possible.
  • the coil or the coil unit may be referred to as a coil assembly, a coil cell, or a cell including a coil and at least one element adjacent to the coil.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • the power transmission from the wireless power transmitter to the receiver is largely a selection phase (selection phase, 510), a ping phase (ping phase, 520), identification and configuration phase (identification) and configuration phase, 530), a negotiation phase (540), a calibration phase (550), a power transfer phase (560), and a renegotiation phase (570). .
  • the selection step 510 transitions when a specific error or a specific event is detected while initiating or maintaining the power transmission - including, for example, reference numerals S502, S504, S508, S510 and S512.
  • the wireless power transmitter may monitor whether an object is present on the interface surface. If the wireless power transmitter detects that an object is placed on the interface surface, it may transition to the ping step 520 .
  • the wireless power transmitter transmits an analog ping signal that is a power signal (or pulse) corresponding to a very short duration, and the current of the transmitting coil or the primary coil Based on the change, it is possible to detect whether an object is present in an active area of the interface surface.
  • the wireless power transmitter may measure a quality factor of a wireless power resonance circuit (eg, a power transmission coil and/or a resonance capacitor).
  • a quality factor may be measured in order to determine whether the wireless power receiver is placed in the charging area together with the foreign material.
  • an inductance and/or a series resistance component in the coil may be reduced due to an environmental change, thereby reducing a quality factor value.
  • the wireless power transmitter may receive a pre-measured reference quality factor value from the wireless power receiver in a state in which the foreign substance is not disposed in the charging area.
  • the presence of foreign substances may be determined by comparing the reference quality factor value received in the negotiation step 540 with the measured quality factor value.
  • a specific wireless power receiving device may have a low reference quality factor value depending on the type, use, and characteristics of the wireless power receiving device. In this case, since there is no significant difference between the measured quality factor value and the reference quality factor value, it may be difficult to determine the presence of foreign substances. Therefore, it is necessary to further consider other determining factors or to determine the presence of foreign substances by using other methods.
  • a quality factor value within a specific frequency domain may be measured in order to determine whether the object is disposed with the foreign material in the charging area.
  • the inductance and/or the series resistance component in the coil may be reduced due to environmental changes, and thus the resonance frequency of the coil of the wireless power transmitter may be changed (shifted). That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value within the operating frequency band is measured, may be moved.
  • the wireless power transmitter wakes up the receiver and transmits a digital ping for identifying whether the detected object is a wireless power receiver.
  • the wireless power transmitter may transition back to the selection step 510 .
  • the wireless power transmitter receives a signal indicating that power transmission is complete from the receiver in the ping step 520 , that is, a charging complete packet, it may transition to the selection step 510 .
  • the wireless power transmitter may transition to the identification and configuration step 530 for identifying the receiver and collecting receiver configuration and state information.
  • the wireless power transmitter receives an unwanted packet (unexpected packet), or a desired packet is not received for a predefined time (time out), or there is a packet transmission error (transmission error), If a power transfer contract is not established (no power transfer contract), the transition may be performed to the selection step 510 .
  • the wireless power transmitter may determine whether it is necessary to enter the negotiation step 540 based on the negotiation field value of the configuration packet received in the identification and configuration step 530 . As a result of the check, if negotiation is necessary, the wireless power transmitter may enter a negotiation step 540 to perform a predetermined FOD detection procedure. On the other hand, as a result of the check, if negotiation is not required, the wireless power transmitter may directly enter the power transmission step 560 .
  • the wireless power transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
  • FOD status packet including the reference peak frequency value may be received.
  • a status packet including a reference quality factor value and a reference peak frequency value may be received.
  • the wireless power transmitter may determine a quality factor threshold for FO detection based on the reference quality factor value.
  • the wireless power transmitter may determine a peak frequency threshold for FO detection based on a reference peak frequency value.
  • the wireless power transmitter can detect whether FO is present in the charging area using the determined quality factor threshold for FO detection and the currently measured quality factor value (quality factor value measured before the ping step), and Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter can detect whether FO is present in the charging area using the determined peak frequency threshold for FO detection and the currently measured peak frequency value (the peak frequency value measured before the ping step), and Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter may return to the selection step 510 .
  • the wireless power transmitter may enter the power transfer step 560 through the correction step 550 .
  • the wireless power transmitter determines the intensity of power received by the receiver in the correction step 550, and the receiver and the receiver to determine the intensity of power transmitted from the transmitter. Power loss at the transmitting end can be measured. That is, the wireless power transmitter may estimate the power loss based on the difference between the transmit power of the transmitter and the receive power of the receiver in the correction step 550 .
  • the wireless power transmitter may correct a threshold for FOD detection by reflecting the predicted power loss.
  • the wireless power transmitter receives an unwanted packet (unexpected packet), a desired packet is not received for a predefined time (time out), or a violation of a preset power transmission contract occurs Otherwise (power transfer contract violation) or when charging is completed, the process may shift to the selection step 510 .
  • the wireless power transmitter may transition to the renegotiation step 570 when it is necessary to reconfigure the power transmission contract according to a change in the state of the wireless power transmitter. In this case, when the renegotiation is normally completed, the wireless power transmitter may return to the power transmission step 560 .
  • the calibration step 550 may be integrated into the power transmission step 560. In this case, in the calibration step 550, Operations may be performed in a power transfer step 560 .
  • the power transmission contract may be established based on status and characteristic information of the wireless power transmitter and the receiver.
  • the wireless power transmitter state information may include information on the maximum transmittable power amount, information on the maximum acceptable number of receivers, and the like, and the receiver state information may include information on required power and the like.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • the wireless power transmitter 100 and the wireless power receiver 200 may control the amount of transmitted power by concurrently communicating with power transmission/reception.
  • the wireless power transmitter and the wireless power receiver operate at a specific control point.
  • the control point represents a combination of voltage and current provided from an output of the wireless power receiver when power transfer is performed.
  • the wireless power receiver selects a desired control point - a desired output current/voltage, a temperature at a specific location of the mobile device, and additionally an actual control point currently operating. ) to determine
  • the wireless power receiver may calculate a control error value using a desired control point and an actual control point, and transmit it to the wireless power transmitter as a control error packet.
  • the wireless power transmitter may control power transfer by setting/controlling a new operating point - amplitude, frequency, and duty cycle - using the received control error packet. Therefore, the control error packet is transmitted/received at regular time intervals in the strategy delivery step, and as an embodiment, the wireless power receiver sets the control error value to a negative number when trying to reduce the current of the wireless power transmitter, and a control error when trying to increase the current. It can be transmitted by setting the value to a positive number. As described above, in the induction mode, the wireless power receiver can control power transfer by transmitting a control error packet to the wireless power transmitter.
  • the resonance mode which will be described below, may operate in a different manner from that in the induction mode.
  • one wireless power transmitter In the resonance mode, one wireless power transmitter must be able to simultaneously serve a plurality of wireless power receivers.
  • the wireless power transmitter transmits basic power in common, and the wireless power receiver attempts to control the amount of power received by controlling its own resonance frequency.
  • the method described with reference to FIG. 6 is not completely excluded even in the resonance mode operation, and additional transmission power control may be performed by the method of FIG. 6 .
  • the 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
  • the shared mode may refer to a mode in which one-to-many communication and charging are performed between the wireless power transmitter and the wireless power receiver.
  • the shared mode may be implemented in a magnetic induction method or a resonance method.
  • the wireless power transmitter 700 includes a cover 720 covering the coil assembly, a power adapter 730 for supplying power to the power transmitter 740 , a power transmitter 740 for wirelessly transmitting power, or at least one of a user interface 750 providing power transfer progress and other related information.
  • the user interface 750 may be optionally included or may be included as another user interface 750 of the wireless power transmitter 700 .
  • the power transmitter 740 may include at least one of a coil assembly 760 , an impedance matching circuit 770 , an inverter 780 , a communication circuit 790 , and a control circuit 710 .
  • the coil assembly 760 includes at least one primary coil that generates a magnetic field, and may be referred to as a coil cell.
  • the impedance matching circuit 770 may provide impedance matching between the inverter and the primary coil(s).
  • the impedance matching circuit 770 may generate a resonance at a suitable frequency to boost the primary coil current.
  • the impedance matching circuitry in the multi-coil power transmitter 740 may further include a multiplex to route a signal from the inverter to a subset of the primary coils.
  • the impedance matching circuit may be referred to as a tank circuit.
  • the impedance matching circuit 770 may include a capacitor, an inductor, and a switching element for switching a connection thereof. Impedance matching detects a reflected wave of wireless power transmitted through the coil assembly 760, and switches a switching element based on the detected reflected wave to adjust the connection state of the capacitor or the inductor, adjust the capacitance of the capacitor, or adjust the inductance of the inductor This can be done by adjusting.
  • the impedance matching circuit 770 may be omitted, and the present specification also includes an embodiment of the wireless power transmitter 700 in which the impedance matching circuit 770 is omitted.
  • Inverter 780 may convert a DC input to an AC signal. Inverter 780 may be driven half-bridge or full-bridge to generate pulse waves of an adjustable frequency and duty cycle. The inverter may also include a plurality of stages to adjust the input voltage level.
  • the communication circuit 790 may communicate with the power receiver.
  • the power receiver performs load modulation to communicate requests and information to the power transmitter.
  • the power transmitter 740 may monitor the amplitude and/or phase of the current and/or voltage of the primary coil to demodulate data transmitted by the power receiver using the communication circuitry 790 .
  • the power transmitter 740 may control the output power to transmit data using a frequency shift keying (FSK) method or the like through the communication circuit 790 .
  • FSK frequency shift keying
  • the control circuit 710 may control communication and power transmission of the power transmitter 740 .
  • the control circuit 710 may control power transmission by adjusting the above-described operating point.
  • the operating point may be determined by, for example, at least one of an operating frequency, a duty cycle, and an input voltage.
  • the communication circuit 790 and the control circuit 710 may be provided as separate circuits/devices/chipsets or as one circuit/device/chipset.
  • FIG. 8 shows an apparatus for receiving wireless power according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
  • the wireless power receiving device 800 includes a user interface 820 that provides power transfer progress and other related information, a power receiver 830 that receives wireless power, a load circuit 840 or a coil assembly. It may include at least one of the base 850 to support and cover. In particular, the user interface 820 may be optionally included or may be included as another user interface 82 of the power receiving equipment.
  • the power receiver 830 may include at least one of a power converter 860 , an impedance matching circuit 870 , a coil assembly 880 , a communication circuit 890 , and a control circuit 810 .
  • the power converter 860 may convert AC power received from the secondary coil into a voltage and current suitable for a load circuit.
  • the power converter 860 may include a rectifier.
  • the rectifier may rectify the received wireless power and convert it from AC to DC.
  • the rectifier may convert alternating current to direct current using a diode or transistor, and smooth it using a capacitor and a resistor.
  • a full-wave rectifier, a half-wave rectifier, and a voltage multiplier implemented as a bridge circuit or the like may be used.
  • the power converter may adapt the reflected impedance of the power receiver.
  • the impedance matching circuit 870 may provide impedance matching between the combination of the power converter 860 and the load circuit 840 and the secondary coil. As an embodiment, the impedance matching circuit may generate a resonance near 100 kHz that may enhance power transfer.
  • the impedance matching circuit 870 may include a capacitor, an inductor, and a switching element for switching a combination thereof. Impedance matching may be performed by controlling a switching element of a circuit constituting the impedance matching circuit 870 based on a voltage value, a current value, a power value, a frequency value, etc. of the received wireless power. In some cases, the impedance matching circuit 870 may be omitted, and the present specification includes an embodiment of the wireless power receiver 200 in which the impedance matching circuit 870 is omitted.
  • the coil assembly 880 includes at least one secondary coil, and may optionally further include an element for shielding a metal part of the receiver from a magnetic field.
  • Communication circuitry 890 may perform load modulation to communicate requests and other information to the power transmitter.
  • the power receiver 830 may switch a resistor or a capacitor to change the reflected impedance.
  • the control circuit 810 may control the received power. To this end, the control circuit 810 may determine/calculate a difference between an actual operating point of the power receiver 830 and a desired operating point. In addition, the control circuit 810 may adjust/reduce the difference between the actual operating point and the desired operating point by adjusting the reflected impedance of the power transmitter and/or performing a request to adjust the operating point of the power transmitter. When this difference is minimized, optimal power reception can be performed.
  • the communication circuit 890 and the control circuit 810 may be provided as separate devices/chipsets or as one device/chipset.
  • FIG. 9 shows a communication frame structure according to an embodiment. This may be a communication frame structure in a shared mode.
  • a slotted frame having a plurality of slots as shown in (A) and a free format frame having no specific shape as shown in (B) may be used.
  • the slot frame is a frame for transmitting short data packets from the wireless power receiver 200 to the wireless power transmitter 100, and the free format frame does not have a plurality of slots, so It may be a frame that can be transmitted.
  • slot frame and the free-form frame may be changed to various names by those skilled in the art.
  • a slot frame may be changed to a channel frame
  • a free-form frame may be changed to a message frame, and the like.
  • the slot frame may include a sync pattern indicating the start of a slot, a measurement slot, nine slots, and an additional sync pattern having the same time interval prior to each of the nine slots.
  • the additional sync pattern is a sync pattern different from the sync pattern indicating the start of the frame described above. More specifically, the additional sync pattern may not indicate the start of a frame, but may indicate information related to adjacent slots (ie, two consecutive slots positioned on either side of the sync pattern).
  • a sync pattern may be positioned between two consecutive slots among the nine slots.
  • the sync pattern may provide information related to the two consecutive slots.
  • the nine slots and the sync patterns provided prior to each of the nine slots may have the same time interval.
  • the nine slots may have a time interval of 50 ms.
  • the nine sync patterns may have a time length of 50 ms.
  • the free-form frame as shown in (B) may not have a specific shape other than a sync pattern and a measurement slot indicating the start of the frame. That is, the free-form frame is for performing a role different from that of the slot frame, for example, long data packets (eg, additional owner information packets) between the wireless power transmitter and the wireless power receiver.
  • long data packets eg, additional owner information packets
  • a wireless power transmitter configured with a plurality of coils or for performing communication, it may be used for a role of selecting one coil from among a plurality of coils.
  • FIG. 10 is a structure of a sync pattern according to an exemplary embodiment.
  • the sync pattern consists of a preamble, a start bit, a response field, a type field, an info field, and a parity bit.
  • the start bit is shown as ZERO.
  • the preamble consists of consecutive bits, and all of them may be set to 0. That is, the preamble may be bits for matching the time length of the sync pattern.
  • the number of bits constituting the preamble may depend on the operating frequency so that the length of the sync pattern is closest to 50 ms, but within a range that does not exceed 50 ms. For example, when the operating frequency is 100 kHz, the sync pattern may be composed of two preamble bits, and when the operating frequency is 105 kHz, the sync pattern may be composed of three preamble bits.
  • the start bit is a bit following the preamble and may mean ZERO.
  • the zero may be a bit indicating the type of the sync pattern.
  • the types of sync patterns may include frame sync including frame-related information and slot sync including slot information. That is, the sync pattern is located between consecutive frames and is a frame sync indicating the start of a frame, or is located between consecutive slots among a plurality of slots constituting a frame, and includes information related to the consecutive slots. It may be a slot sink including
  • the corresponding slot is slot sync located between the slots
  • the corresponding sync pattern is frame sync located between the frames.
  • the parity bit is the last bit of the sync pattern and may indicate information on the number of bits constituting the data fields (ie, the response field, the type field, and the information field) of the sync pattern.
  • the previous parity bit may be 1 when the number of bits constituting the data fields of the sync pattern is an even number, and 0 in other cases (ie, an odd number).
  • the response field may include response information of the wireless power transmitter for communication with the wireless power receiver in a slot before the sync pattern.
  • the response field may have '00' when communication with the wireless power receiver is not detected.
  • the response field may have '01' when a communication error is detected in communication with the wireless power receiver.
  • the communication error may be a case in which two or more wireless power receivers attempt to access one slot and a collision between the two or more wireless power receivers occurs.
  • the response field may include information indicating whether a data packet has been correctly received from the wireless power receiver. More specifically, the response field is "10" (10-not acknowledge, NAK) when the wireless power transmitter rejects the data packet, and when the wireless power transmitter confirms the data packet , "11" (11-acknowledge, ACK).
  • the type field may indicate the type of the sync pattern. More specifically, when the sync pattern is the first sync pattern of the frame (ie, the first sync pattern of the frame and located before the measurement slot), the type field may have '1' indicating frame sync.
  • the type field may have '0' indicating slot sync.
  • the meaning of the value of the information field may be determined according to the type of the sync pattern indicated by the type field. For example, when the type field is 1 (ie, indicating frame sync), the meaning of the information field may indicate the type of frame. That is, the information field may indicate whether the current frame is a slotted frame or a free-format frame. For example, when the information field is '00', it may indicate a slot frame, and when the information field is '01', it may indicate a free-form frame.
  • the information field may indicate the state of the next slot located after the sync pattern. More specifically, the information field is '00' when the next slot is a slot allocated to a specific wireless power receiver, and is a locked slot for temporary use by a specific wireless power receiver, '01' or '10' when any wireless power receiver is a freely usable slot.
  • FIG. 11 illustrates operation states of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
  • the wireless power receiver operating in the shared mode includes a selection phase 1100 , an introduction phase 1110 , a configuration phase 1120 , and a negotiation state. It may operate in any one of a Negotiation Phase 1130 and a Power Transfer Phase 1140 .
  • the wireless power transmitter may transmit a wireless power signal to detect the wireless power receiver. That is, the process of detecting the wireless power receiver using the wireless power signal may be referred to as analog ping.
  • the wireless power receiver receiving the wireless power signal may enter the selection state 1100 .
  • the wireless power receiver entering the selection state 1100 may detect the presence of an FSK signal on the wireless power signal.
  • the wireless power receiver may perform communication in either the exclusive mode or the shared mode according to the presence of the FSK signal.
  • the wireless power receiver may operate in the shared mode, otherwise, the wireless power receiver may operate in the exclusive mode.
  • the wireless power receiver When the wireless power receiver operates in the shared mode, the wireless power receiver may enter the introduction state 1110 .
  • the wireless power receiver may transmit a control information packet to the wireless power transmitter in order to transmit a control information packet (CI) in the setting state, the negotiation state, and the power transmission state.
  • the control information packet may have a header and control-related information.
  • the control information packet may have a header of 0X53.
  • the wireless power receiver attempts to request a free slot to transmit a control information (CI) packet through the following configuration, negotiation, and power transmission steps. At this time, the wireless power receiver selects a free slot and transmits the first CI packet. If the wireless power transmitter responds with ACK to the CI packet, the wireless power transmitter enters the configuration phase. If the wireless power transmitter responds with a NAK, another wireless power receiver is in the process of configuring and negotiating. In this case, the wireless power receiver retryes the request for a free slot.
  • CI control information
  • the wireless power receiver determines the position of a private slot in the frame by counting the remaining slot sinks up to the first frame sync. In all subsequent slot-based frames, the wireless power receiver transmits the CI packet through the corresponding slot.
  • the wireless power transmitter allows the wireless power receiver to proceed to the configuration step, the wireless power transmitter provides a series of locked slots for exclusive use of the wireless power receiver. This ensures that the wireless power receiver proceeds through the configuration phase without conflicts.
  • the wireless power receiver transmits sequences of data packets such as two identification data packets (IDHI and IDLO) using a lock slot. Upon completion of this step, the wireless power receiver enters the negotiation phase. In the negotiation phase, the wireless power transmitter continues to provide a lock slot for exclusive use to the wireless power receiver. This ensures that the wireless power receiver proceeds with the negotiation phase without collision.
  • IDHI and IDLO identification data packets
  • the wireless power receiver transmits one or more negotiation data packets using the corresponding lock slot, which may be mixed with private data packets. Eventually, the sequence ends with a specific request (SRQ) packet. Upon completion of the corresponding sequence, the wireless power receiver enters a power transmission phase, and the wireless power transmitter stops providing the lock slot.
  • SRQ specific request
  • the wireless power receiver transmits the CI packet using the allocated slot and receives power.
  • the wireless power receiver may include a regulator circuit.
  • the regulator circuit may be included in the communication/control circuit.
  • the wireless power receiver may self-regulate the reflected impedance of the wireless power receiver through a regulator circuit. In other words, the wireless power receiver may adjust the impedance reflected in order to transmit the amount of power required by the external load. This can prevent excessive power reception and overheating.
  • the wireless power transmitter may not perform power adjustment in response to the received CI packet (according to the operation mode), in this case, control to prevent an overvoltage condition may be required.
  • the wireless power transmitter and the wireless power receiver go through a ping phase, a configuration phase, and enter a negotiation phase, or a ping phase, a configuration phase , may enter the power transfer phase through the negotiation phase and then enter the re-negotiation phase.
  • FIG. 12 is a flowchart schematically illustrating a protocol of a ping step according to an embodiment.
  • the wireless power transmitter 1010 checks whether an object exists in an operating volume by transmitting an analog ping ( S1101 ).
  • the wireless power transmitter 1010 may detect whether an object exists in the working space based on a change in current of a transmission coil or a primary coil.
  • the wireless power transmitter 1010 When it is determined that there is an object in the working space by analog ping, the wireless power transmitter 1010 performs foreign material detection (FOD) before power transmission to check whether there is a foreign object in the operating volume. It can be done (S1102).
  • the wireless power transmitter 1010 may perform an operation for protecting the NFC card and/or the RFID tag.
  • the wireless power transmitter 1010 identifies the wireless power receiver 1020 by transmitting a digital ping (S1103).
  • the wireless power receiver 1020 recognizes the wireless power transmitter 1010 by receiving the digital ping.
  • the wireless power receiver 1020 Upon receiving the digital ping, the wireless power receiver 1020 transmits a signal strength data packet (SIG) to the wireless power transmitter 1010 ( S1104 ).
  • SIG signal strength data packet
  • the wireless power transmitter 1010 receiving the SIG from the wireless power receiver 1020 may identify that the wireless power receiver 1020 is located in an operating volume.
  • FIG. 13 is a flowchart schematically illustrating a protocol of a configuration step according to an embodiment.
  • the wireless power receiver 1020 transmits its identification information to the wireless power transmitter 1010 , and the wireless power receiver 1020 and the wireless power transmitter 1010 . may establish a baseline Power Transfer Contract.
  • the wireless power receiver 1020 may transmit an identification data packet (ID) to the wireless power transmitter 1010 to identify itself (S1201). Also, the wireless power receiver 1020 may transmit an extended identification data packet (XID) to the wireless power transmitter 1010 ( S1202 ). Also, the wireless power receiver 1020 may transmit a power control hold-off data packet (PCH) to the wireless power transmitter 1010 for a power transmission contract or the like (S1203). Also, the wireless power receiver 1020 may transmit a configuration data packet (CFG) to the wireless power transmitter (S1204).
  • ID identification data packet
  • XID extended identification data packet
  • PCH power control hold-off data packet
  • CFG configuration data packet
  • the wireless power transmitter 1010 may transmit an ACK in response to the CFG (S1205).
  • FIG. 14 is a diagram illustrating a message field of a configuration packet (CFG) of a wireless power receiver according to an embodiment.
  • CFG configuration packet
  • the configuration packet (CFG) may have a header value of 0x51, and referring to FIG. 14 , may include a 5-byte message field.
  • a 1-bit authentication (AI) flag and a 1-bit out-of-band (OB) flag may be included in the message field of the configuration packet (CFG).
  • the authentication flag AI indicates whether the wireless power receiver 1020 supports the authentication function. For example, if the value of the authentication flag AI is '1', it indicates that the wireless power receiver 1020 supports an authentication function or operates as an authentication initiator, and the authentication flag AI If the value of is '0', it may indicate that the wireless power receiver 1020 does not support the authentication function or cannot operate as an authentication initiator.
  • the out-band (OB) flag indicates whether the wireless power receiver 1020 supports out-band communication. For example, if the value of the out-band (OB) flag is '1', the wireless power receiver 1020 instructs out-band communication, and if the value of the out-band (OB) flag is '0', the wireless power receiver ( 1020) may indicate that out-band communication is not supported.
  • the wireless power transmitter 1010 may receive the configuration packet (CFG) of the wireless power receiver 1020 and check whether the wireless power receiver 1020 supports the authentication function and whether out-band communication is supported. .
  • CFG configuration packet
  • 15 is a flowchart schematically illustrating a protocol of a negotiation phase or a renegotiation phase according to an embodiment.
  • a power transmission contract may be renewed, or information may be exchanged for establishing out-band communication.
  • the wireless power receiver 1020 receives an identification data packet (ID) and a capabilities data packet (CAP) of the wireless power transmitter 1010 using a general request data packet (GRQ). can do.
  • ID identification data packet
  • CAP capabilities data packet
  • GRQ general request data packet
  • the general request packet (GRQ) may have a header value of 0x07 and may include a 1-byte message field.
  • the message field of the general request packet (GRQ) may include a header value of a data packet that the wireless power receiver 1020 requests from the wireless power transmitter 1010 using the GRQ packet. For example, when the wireless power receiver 1020 requests the ID packet of the wireless power transmitter 1010 using the GRQ packet, the wireless power receiver 1020 wirelessly enters the message field of the general request packet (GRQ).
  • a general request packet (GRQ/id) including a header value (0x30) of the ID packet of the power transmitter 1010 is transmitted.
  • the wireless power receiver 1020 transmits a GRQ packet (GRQ/id) requesting an ID packet of the wireless power transmitter 1010 to the wireless power transmitter 1010 . It can be transmitted (S1301).
  • GRQ/id GRQ/id
  • the wireless power transmitter 1010 receiving the GRQ/id may transmit the ID packet to the wireless power receiver 1020 (S1302).
  • the ID packet of the wireless power transmitter 1010 includes information on the Manufacturer Code.
  • the ID packet including information on the Manufacturer Code enables the manufacturer of the wireless power transmitter 1010 to be identified.
  • the wireless power receiver 1020 transmits a GRQ packet (GRQ/cap) requesting a performance packet (CAP) of the wireless power transmitter 1010 to the wireless power transmitter ( 1010) (S1303).
  • the message field of the GRQ/cap may include a header value (0x31) of the performance packet (CAP).
  • the wireless power transmitter 1010 receiving the GRQ/cap may transmit a performance packet (CAP) to the wireless power receiver 1020 (S1304).
  • CAP performance packet
  • FIG. 16 is a diagram illustrating a message field of a capability packet (CAP) of a wireless power transmitter according to an embodiment.
  • CAP capability packet
  • the capability packet (CAP) may have a header value of 0x31, and referring to FIG. 16 , may include a message field of 3 bytes.
  • a 1-bit authentication (AR) flag and a 1-bit out-of-band (OB) flag may be included in the message field of the capability packet (CAP).
  • the authentication flag AR indicates whether the wireless power transmitter 1010 supports the authentication function. For example, if the value of the authentication flag AR is '1', it indicates that the wireless power transmitter 1010 supports the authentication function or can operate as an authentication responder, and If the value is '0', it may indicate that the wireless power transmitter 1010 does not support the authentication function or cannot operate as an authentication responder.
  • the out-band (OB) flag indicates whether the wireless power transmitter 1010 supports out-band communication. For example, if the value of the out-band (OB) flag is '1', the wireless power transmitter 1010 instructs out-band communication, and if the value of the out-band (OB) flag is '0', the wireless power transmitter ( 1010) may indicate that out-band communication is not supported.
  • the wireless power receiver 1020 receives the performance packet (CAP) of the wireless power transmitter 1010, and can check whether the wireless power transmitter 1010 supports the authentication function and whether out-band communication is supported. .
  • CAP performance packet
  • the wireless power receiver 1020 uses at least one specific request data packet (SRQ) in the negotiation step or the renegotiation step to transmit power related to the power to be provided in the power transmission step.
  • SRQ specific request data packet
  • the elements of (Power Transfer Contract) may be updated, and the negotiation phase or the renegotiation phase may be terminated (S1305).
  • the wireless power transmitter 1010 may transmit only ACK, only ACK or NAK, or only ACK or ND in response to a specific request packet (SRQ) according to the type of the specific request packet (SRQ) (S1306) .
  • SRQ specific request packet
  • a data packet or message exchanged between the wireless power transmitter 1010 and the wireless power receiver 1020 in the above-described ping step, configuration step, and negotiation/renegotiation step may be transmitted/received through in-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may transmit/receive wireless power based on a power transmission contract.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may control the amount of transmitted power by performing communication together with power transmission/reception.
  • the wireless power transmitter 1010 and/or the wireless power receiver 1020 may re-enter the negotiation step to renew a power transmission contract.
  • the wireless power receiver 1020 may determine a communication mode to be used in the power transmission step in the negotiation step or the renegotiation step.
  • FIG. 17 is a flowchart schematically illustrating a protocol for determining a communication mode to be used in a negotiation phase or a renegotiation phase according to an embodiment
  • FIG. 18 is a message field of a specific request packet (SRQ) according to an embodiment. It is a drawing.
  • SRQ specific request packet
  • the wireless power transmitter 1010 may include an in-band communication module 1011 and an out-band communication module 1012 .
  • the in-band communication module 1011 may perform message modulation, message transmission, message demodulation, etc. through in-band communication
  • the out-band communication module 1012 may perform message modulation, message transmission, message demodulation, etc. through out-band communication. can be performed.
  • the in-band communication module 1011 and the out-band communication module 1012 may be physically separated from each other, but may be physically implemented by one processor.
  • the wireless power receiver 1020 may also include an in-band communication module 1021 and an out-band communication module 1022 .
  • the in-band communication module 1021 may perform message modulation, message transmission, message demodulation, etc. through in-band communication
  • the out-band communication module 1022 may perform message modulation, message transmission, message demodulation, etc. through out-band communication. can be performed.
  • the in-band communication module 1021 and the out-band communication module 1022 may be physically separated from each other, but may be physically implemented by one processor.
  • both the wireless power transmitter 1010 and the wireless power receiver 1020 support out-band communication and BLE communication is used as the out-band communication.
  • the wireless power receiver 1020 may transmit a specific request packet (SRQ/com) including information on a communication mode to be used in the power transmission step to the wireless power transmitter 1010 (S1401). ).
  • SRQ/com specific request packet
  • the specific request packet (SRQ/com) transmitted in S1401 may be a type of the specific request packet (SRQ) transmitted in S1305 of the negotiation step or renegotiation step described with reference to FIG. 15 .
  • the message field of a specific request packet SRQ may include a byte B0 including a request field and a byte B1 including a parameter field.
  • 0x00, 0x01, 0x02, 0x03, 0x04, and 0x05 are SRQ/en, SRQ/gp, SRQ/rpr, SRQ/fsk, and SRQ/ values of the request field (Request) of the SRQ packet, respectively.
  • the Request value of a specific request packet (SRQ/com) containing information on the communication mode to be used in the power transmission phase is a value other than 0x00, 0x01, 0x02, 0x03, 0x04, and 0x05 can be used as
  • the Request value of SRQ/ADT may be 0x06, 0x07, or 0x08.
  • the types of communication modes usable in the power transmission step may be expressed as values different from each other.
  • a communication mode usable in the power transmission step may include an in-band mode, a mixed mode, an out-band mode, and the like.
  • the in-band mode may refer to a communication mode in which the wireless power transmitter 1010 and the wireless power receiver 1020 communicate using only in-band communication in the power transmission step.
  • the mixed mode may refer to a communication mode in which the wireless power transmitter 1010 and the wireless power receiver 1020 communicate using both in-band communication and out-band communication in the power transmission step.
  • the out-band mode may refer to a communication mode in which the wireless power transmitter 1010 and the wireless power receiver 1020 communicate using only out-band communication in the power transmission step.
  • the out-band mode may be indicated.
  • a value indicating each communication mode may vary according to an embodiment.
  • the communication modes usable in the power transmission step may include an in-band mode, a first mixed mode, a second mixed mode, an out-band mode, and the like.
  • the out-band mode can direct A value indicating each communication mode may vary according to an embodiment.
  • the in-band mode and the out-band mode are the same as described above.
  • the first mixed mode may refer to a communication mode in which in-band communication is used as main communication and out-band communication is used as auxiliary communication in the power transmission step.
  • a large-capacity message (or large-capacity data packet) and/or a data packet irrelevant to the control of wireless power is transmitted/received through out-band communication, and is used to control wireless power.
  • the data packet may be in a mode of being transmitted/received through in-band communication.
  • a large-capacity message is a message that takes a certain time or longer when transmitted/received through in-band communication, or for authentication of the wireless power transmitter 1010 (or authentication of the wireless power receiver 1020 ). It may be an authentication message or data for firmware update.
  • a data packet for controlling wireless power includes a control error data packet (CE), a Received Power data packet (RP), a Charge Status data packet (CHS), It may be an end power transfer data packet (EPT) or the like.
  • CE control error data packet
  • RP Received Power data packet
  • CHS Charge Status data packet
  • EPT end power transfer data packet
  • the control error packet CE is a packet including information about the difference between an actual operating point and a target operating point, and the received power packet RP includes information about a received power value.
  • CE and RP are data packets that must be periodically transmitted/received according to an interval required for wireless power control.
  • in-band communication which is the main communication channel, deteriorates (eg, when the quality of encoding and/or decoding of data through in-band communication decreases as the power of wireless power increases, etc.),
  • out-band communication which is an auxiliary communication channel.
  • the second mixed mode may refer to a communication mode in which out-band communication is used as main communication and in-band communication is used as auxiliary communication in the power transmission step.
  • large-capacity messages such as authentication messages or data for firmware update, as well as data packets for controlling wireless power, data packets irrelevant to control of wireless power, etc. are transmitted through out-band communication It may be a mode transmitted/received through .
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may use in-band communication to detect cross-connection.
  • Out-band communication has a longer communication distance than in-band communication, so out-band communication is not connected between the wireless power transmitter 1010 and the wireless power receiver 1020 for transmitting/receiving wireless power, and wireless power transmission
  • a cross-connection may occur in which the device 1010 is connected to another device in out-band communication, or in which the wireless power receiver 1020 is connected to another device in out-band communication.
  • cross-connection is detected by transmitting/receiving data or signals for checking whether cross-connection exists through in-band communication performed between the very close wireless power transmitter 1010 and the wireless power receiver 1020.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 perform out-of-band communication in a state where data exchange through out-band communication is not normal, such as when out-band communication deteriorates.
  • Data or messages to be exchanged may be exchanged through in-band communication, which is an auxiliary communication channel.
  • the wireless power receiver 1020 determines the value of the parameter field of SRQ/com according to the communication mode to be used in the power transmission step, and transmits the SRQ/com to the wireless power transmitter 1010 through in-band communication. do.
  • the wireless power transmitter 1010 may respond with ACK to SRQ/com.
  • the wireless power transmitter 1010 may be forced to respond only with ACK to SRQ/com.
  • the wireless power receiver 1020 may transmit a data packet including the BLE device address through in-band communication (S1403).
  • the wireless power receiver 1020 refers to a data packet including its BLE device address as a BLE connection request message.
  • the wireless power receiver 1020 transmits the BLE connection request message only when it is decided to communicate using the mixed mode (or the first mixed mode, the second mixed mode) or the out-band mode in the power transmission step through SRQ/com. can be transmitted That is, the wireless power receiver 1020 may not transmit the BLE connection request message when it is decided to communicate using the in-band mode in the power transmission step through SRQ/com.
  • the BLE connection request message may include, for example, 6-byte information on the Bluetooth device address of the wireless power receiver 1020.
  • the wireless power receiver 1020 may use a random static device address as a Bluetooth device address to protect user privacy.
  • the wireless power transmitter 1010 that has received the BLE connection request message from the wireless power receiver 1020 may respond with ACK or NAK to inform whether the BLE connection request message is normally received. Alternatively, when the wireless power transmitter 1010 cannot process the BLE connection request message, it may respond with an ND.
  • the wireless power transmitter 1010 that has normally received the BLE connection request message may transmit a data packet including its BLE device address through in-band communication (S1404).
  • the wireless power transmitter 1010 refers to a data packet including its BLE device address as a BLE connection response message.
  • the BLE connection response message may include, for example, 6-byte, Bluetooth device address information of the wireless power transmitter 1010 (see Table 4).
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may establish a BLE connection based on the received counterpart's Bluetooth device address (S1405).
  • the wireless power transmitter 1010 and the wireless power receiver 1020 perform in-band communication and/or out-band communication in the power transmission step. use.
  • the in-band communication is a communication method of modulating the power signal of wireless power, so that the wireless power transmission / The end of reception and the end of communication are the same.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 use the out-band mode as the communication mode, messages related to the end of the transmission/reception of wireless power are exchanged through out-band communication, so that the wireless power The transmitter 1010 and the wireless power receiver 1020 may check the end of wireless charging and the end of communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 use the mixed mode (including the first mixed mode or the second mixed mode) as the communication mode, out-band communication is superior to in-band communication. Since the communicable distance is long, a state in which out-band communication is connected may sufficiently occur even when the wireless power receiver 1020 is separated from the wireless power transmitter 1010 and wireless charging is stopped.
  • a new wireless power receiver is installed on the wireless power transmitter 1010 in a state in which the wireless power receiver 1020 connected to the wireless power transmitter 1010 and out-band communication is separated from the wireless power transmitter 1010 .
  • the wireless power transmitter 1010 provides wireless power to a new wireless power receiver, cross-connection occurs in which out-band communication-connected devices and in-band communication-connected devices are different. .
  • a new wireless power receiver Normal wireless charging may not be performed, or excessive wireless power may be provided to a new wireless power receiver.
  • the new wireless power receiver uses a high-power of power transmission, damage may be inflicted to the new wireless power receiver.
  • the wireless power transmitter 1010 and the wireless power receiver ( 1020) starts a new protocol from the ping phase.
  • the out-band connection between the wireless power transmitter 1010 and the wireless power receiver 1020 must also be terminated, and in the negotiation phase, the wireless power transmitter 1010 and the wireless power receiver again An outband connection between 1020 must be established.
  • Out-band communication is connected in the negotiation phase or power transmission phase. Accordingly, the protocol for terminating the connection of out-band communication may be performed in the negotiation phase or the power transmission phase.
  • 19 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a foreign material is detected in a negotiation step.
  • out-band communication (eg, BLE) connection may be established in the negotiation step (S1405).
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may establish a BLE connection based on each other's Bluetooth device addresses in the negotiation step.
  • the wireless power receiver 1020 transmits a FOD status data packet to the wireless power transmitter 1010 ( S1501 ).
  • the FOD status packet includes a packet including information on a reference quality factor (Qt(ref)) and a packet including information on a reference resonance frequency (f ' t (ref) ). can do.
  • the wireless power transmitter 1010 checks the reference quality factor and the reference resonance frequency from the received FOD status packet, and based on the reference quality factor and the reference resonance frequency, the wireless power transmitter 1010 and the wireless power receiver 1020 Check whether there is a foreign object (FO) in between.
  • FO foreign object
  • the wireless power transmitter 1010 responds with an ACK to the FOD status packet when it is expected that there is no foreign material, but responds with a NAK to the FOD status packet when there is a possibility that there is a foreign material.
  • the wireless power receiver 1020 that has received the NAK in response to the FOD status packet aborts the negotiation step, and receives the wireless power according to the baseline power profile (BPP) in the power transmission step. You can switch to the power transfer phase of the baseline protocol.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 communicate using only in-band communication, and do not use out-band communication. Therefore, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 may transmit a NAK in response to the FOD status packet and remove the wireless power power signal. In this case, since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 transmits the NAK in response to the FOD status packet, but the wireless power receiver 1020 does not switch to the power transmission step of the basic protocol, the power signal of the wireless power is removed.
  • the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • At least one of the wireless power transmitter 1010 and the wireless power receiver 1020 transmits/receives the NAK in response to the FOD status packet based on the removal of the wireless power power signal. , based on the negotiation phase being aborted, or switching to the power transmission phase of the basic protocol, the connection of out-band communication may be terminated.
  • At least one of the wireless power transmitter 1010 and the wireless power receiver 1020 transmits a message (LL_Terminate_IND) informing the end of the out-band communication connection to the counterpart device using the out-band communication (S1601),
  • the wireless power transmitter 1010 or the wireless power receiver 1020 that has received the LL_Terminate_IND transmits an ACK to the counterpart device using out-band communication (S1602), and the wireless power transmitter 1010 and the wireless power receiver 1020 ) so that the out-band communication modules 1012 and 1022 are respectively switched to the standby mode (S1603).
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection when a foreign object is detected in the negotiation step.
  • wireless power transmission may remove a power signal of wireless power. In this case, since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • the wireless power receiver 1020 transmits a packet for which a response of the wireless power transmitter 1010 is requested (simple-query data packet or a data-request data packet), after which the response timeout (t) responsetimeout ), if a response pattern or data packet is not received from the wireless power transmitter 1010, the negotiation step is stopped and the power transmission step of the basic protocol is performed. In this case, since out-band communication is not used in the basic protocol, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • FIG. 20 is a flowchart schematically illustrating a protocol for terminating an outband communication connection when an illegal data packet is received in a negotiation step.
  • the wireless power transmitter 1010 may remove the wireless power power signal. have. In this case, since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • FIG. 21 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a power transmission stop packet is received in the negotiation step.
  • the wireless power receiver 1020 may transmit an end power transfer data packet (EPT) to the wireless power transmitter 1010 ( S1504 ).
  • EPT end power transfer data packet
  • the wireless power transmitter 1010 receiving the EPT from the wireless power receiver 1020 may remove a power signal of wireless power.
  • the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • the negotiation step when the wireless power transmitter 1010 receives CE, RP, or RP8, the negotiation step is stopped, and the power transmission step of the basic protocol may proceed.
  • the negotiation step when the wireless power transmitter 1010 responds with ATN or ND to the SRQ/en transmitted by the wireless power receiver 1020 to request the end of the negotiation step, the negotiation step is stopped and , the power transmission step of the basic protocol may proceed.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • the negotiation step for example, due to the movement of the wireless power receiver 1020 by the user, the in-band communication between the wireless power transmitter 1010 and the wireless power receiver 1020 is terminated, or Even when band communication and/or wireless charging cannot be performed, it is necessary to terminate the out-band communication connection.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • the wireless power transmitter 1010 and the wireless power receiver 1020 At least one of them may cause the out-band communication connection to be terminated.
  • communication may be performed only through in-band communication between the wireless power transmitter 1010 and the wireless power receiver 1020 .
  • the connection of out-band communication is terminated, and as the protocol for wireless charging is restarted, the wireless power transmitter 1010 and the wireless power receiver ( 1020) to establish an outband connection between them.
  • 22 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a power transmission stop packet is received in a power transmission step.
  • the connection of out-band communication (eg, BLE) between the wireless power transmitter 1010 and the wireless power receiver 1020 is established (S1405), the wireless power transmitter ( 1010) and the wireless power receiver 1020 may enter a power transmission stage (S1510).
  • BLE out-band communication
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may establish an out-band communication connection after entering the power transmission stage.
  • the wireless power receiver 1020 may transmit a power transmission stop packet (EPT) to the wireless power transmitter 1010 (S1511).
  • EPT power transmission stop packet
  • the wireless power transmitter 1010 receiving the EPT from the wireless power receiver 1020 may remove a power signal of wireless power.
  • the protocol for wireless power transmission since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • FIG. 23 is a flowchart schematically illustrating a protocol for terminating an outband communication connection when an illegal data packet is received in the power transmission step.
  • the wireless power transmitter 1010 when the wireless power transmitter 1010 receives an illegal data packet in the power transmission step ( S1512 ), the wireless power transmitter 1010 removes the power signal of the wireless power. can In this case, since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • the wireless power receiver 1020 must transmit the first RP or RP8 within the received power interval (t received ) from the start of the power transmission step.
  • the wireless power receiver 1020 should continuously transmit RP or RP8 at the received power interval t received in the power transmission step. More specifically, the interval between the start of consecutive RP or RP8 shall be within the received power interval (t received ).
  • the wireless power transmitter 1010 does not receive a subsequent RP or RP8 within the received power interval (t received ) from the start of the last received RP or RP8, the wireless power transmitter 1010 is the last received RP Alternatively, the power signal of the wireless power may be removed at a time point when the received power timeout (t power ) has elapsed from the start of the RP8. In this case, since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • the wireless power receiver 1020 must transmit the first CE within the control error interval (t interval ) from the start of the power transmission step.
  • the wireless power receiver 1020 should continuously transmit CE at the control error interval (t interval ) in the power transmission step. More specifically, the interval between the start of consecutive CEs should be within the control error interval (t interval ).
  • the wireless power transmitter 1010 When the wireless power transmitter 1010 does not receive a subsequent CE within the control error interval t interval from the start of the last received CE, the wireless power transmitter 1010 controls from the start of the last received CE When the error timeout (t timeout ) has elapsed, the power signal of the wireless power may be removed. In this case, since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • FIG. 24 is a flowchart schematically illustrating a protocol for terminating an out-band communication connection when a NAK response is transmitted for power reduction in the power transmission step.
  • the wireless power receiver 1020 may transmit an RP having a mode value of 0 to the wireless power transmitter 1010 ( S1513 ).
  • the wireless power transmitter 1010 may respond with NAK to RP/0 (S1514).
  • the wireless power receiver 1020 After receiving the NAK in response to the RP/0, the wireless power receiver 1020 reduces power consumption within the NAK window (t nak ) and renegotiates by transmitting a NEGO packet to determine an appropriate power level. You can request to enter a stage.
  • the wireless power transmitter 1010 may remove the wireless power power signal. In this case, since the protocol for wireless power transmission is terminated, it is necessary to terminate the connection of out-band communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • the wireless power transmitter 1010 may remove the power signal of the wireless power or allow the power transmission step of the basic protocol to proceed. .
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • At least one of the wireless power transmitter 1010 and the wireless power receiver 1020 is switched to the power transmission step of the basic protocol in the power transmission step or when the power signal of wireless power is removed.
  • the connection of out-band communication can be terminated.
  • communication may be performed only through in-band communication between the wireless power transmitter 1010 and the wireless power receiver 1020 .
  • the connection of out-band communication is terminated, and as the protocol for wireless charging is restarted, the wireless power transmitter 1010 and the wireless power receiver again in the negotiation step An outband connection between 1020 may be established.
  • a Mobile Laptop Power Profile that supports a higher power (eg, 15 W or more) than a power (eg, 5 to 15 W) supported by the Extended Power Profile (EPP). ; MLP)) of the power transmission step may be performed.
  • EPP Extended Power Profile
  • MLP Extended Power Profile
  • out-band communication is selectively used, whereas in the power transmission stage of the MLP, out-band communication may be essentially used.
  • out-band communication is selectively used in the power transmission phase of the EPP, when the power transmission phase of the MLP is switched to the power transmission phase of the EPP, the connection of out-band communication established in the power transmission phase of the MLP may be terminated. .
  • the wireless power transmitter 1010 and the wireless power receiver 1020 communicate out-of-band through the steps S1601 to S1603 described with reference to FIG. 19 . connection can be terminated.
  • the wireless power transmitter 1010 has a voltage and/or current of a primary coil (s) for transmitting wireless power abnormally decreases or below a preset threshold value. , or when the reduction rate exceeds a preset threshold rate, it is regarded as an abnormal situation, and the connection of out-band communication with the wireless power receiver 1020 may be terminated.
  • the wireless power receiver 1020 has the voltage and/or current of the secondary coil for receiving wireless power abnormally reduced or lowered below a preset threshold, or the reduction rate is preset If the threshold is exceeded, it may be regarded as an abnormal situation, and the connection of out-band communication with the wireless power transmitter 1010 may be terminated.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection through steps S1601 to S1603 described with reference to FIG. 19 .
  • connection termination method of out-band communication between a wireless power transmitter providing wireless power to a plurality of wireless power receivers and the wireless power receivers will be described.
  • 25 is a diagram for describing a method of terminating out-band communication between a wireless power transmitter and a wireless power receiver according to an embodiment.
  • the wireless power transmitter 1010 includes a plurality of primary coils 1111 , 1112 , and 1113 .
  • Each of the primary coils 1111 , 1112 , and 1113 may provide wireless power to each of the wireless power receivers PRx_1 , PRx_2 , and PRx_3 , respectively.
  • the wireless power transmitter 1010 includes an out-band communication module 1012 capable of individually performing out-band communication with each of the wireless power receivers PRx_1 , PRx_2 , PRx_3 .
  • the second wireless power receiver PRx_2 receives wireless power from the primary coil 1112 , and establishes an in-band communication channel IB_2 and an out-band communication channel OOB_2 with the wireless power transmitter 1010 . to be.
  • the third wireless power receiver PRx_3 receives wireless power from the primary coil 1113 and establishes an in-band communication channel (IB_3) and an out-band communication channel (OOB_3) with the wireless power transmitter 1010 . to be.
  • the first wireless power receiver PRx_1 establishes an in-band communication channel and an out-band communication channel OOB_1 with the wireless power transmitter 1010 , and receives wireless power from the primary coil 1111 , wireless power It is in a state separated from the transmission device 1010 .
  • the out-band communication channel OOB_1 has a longer communication distance than in-band communication, even if the first wireless power receiver PRx_1 is separated from the wireless power transmitter 1010, the out-band communication channel OOB_1 is can be maintained
  • the wireless power transmitter 1010 removes the wireless power power signal provided to the first wireless power receiver PRx_1 .
  • the wireless power transmitter 1010 and/or the first wireless power receiver PRx_1 perform a protocol for terminating the out-band communication connection, thereby ending the connection of the out-band communication channel OOB_1.
  • 26 is a diagram for explaining a first out-band timing and a second out-band timing according to an embodiment.
  • the wireless power transmitter 1010 removes a power signal of wireless power at time t A.
  • At least one of the wireless power transmitter 1010 and the wireless power receiver 1020 may terminate the out-band communication connection within the first out-band timing (t oobterminate ) from the point in time when the power signal of the wireless power is removed.
  • the termination of the out-band communication may mean that the power of the out-band communication module is turned off, the out-band communication is disconnected, or the protocol of the out-band communication is initialized.
  • connection termination of the out-band communication includes: 1) a state in which a message (LL_Terminate_IND) notifying the termination of the out-band communication is transmitted to the counterpart device using the out-band communication (S1601), 2) a state in which an ACK for the LL_Terminate_IND is received (S1602), or 3) the out-band communication modules 1012 and 1022 of the wireless power transmitter 1010 and the wireless power receiver 1020 are each switched to the standby mode (S1603) either can mean
  • the first out-band timing (t oobterminate ) may be set so that the connection termination of the out-band communication is completed before the digital ping by restarting the protocol for wireless charging is performed.
  • the connection of out-band communication between the wireless power transmitter 1010 and the wireless power receiver 1020 is terminated within a predetermined time from the time when the power signal of the wireless power is removed. can be forced to do so.
  • the wireless power transmitter 1010 may perform digital ping by restarting the protocol for wireless charging within the second out-band timing (t oobreset ) from the time when the connection of out-band communication is terminated.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 within the second out-band timing t oobreset may discard information used to connect out-band communication with each other.
  • the connection procedure of the out-band communication can be performed stably in the protocol for the newly started wireless charging. have.
  • 27 is a diagram for explaining a first outband timing and a second outband timing according to another embodiment.
  • the timing of the second outband timing is different in the embodiment of FIG. 27 .
  • the wireless power transmitter 1010 restarts the protocol for wireless charging within the second out-band timing (t oobreset ) from the time point (t A ) when the power signal of the wireless power is removed to perform digital ping.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 within the second out-band timing t oobreset may discard information used to connect out-band communication with each other.
  • 28 is a diagram for explaining a first outband timing, a second outband timing, and a third outband timing according to another embodiment.
  • the first outband timing t oobterminate is the same, and thus an additional description thereof will be omitted.
  • the wireless power transmitter 1010 restarts the protocol for wireless charging within the second out-band timing (t nopower ) from a time-out (eg, control error time-out, etc.) that is a cause of removing the power signal of wireless power. to perform a digital ping.
  • a time-out eg, control error time-out, etc.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 discard the information used to connect the out-band communication with each other within the third out-band timing (t reset ) from the time when the connection of the out-band communication is terminated.
  • the sum of the first outband timing t oobterminate and the third outband timing t reset may not exceed the second outband timing t nopower . This is to discard the information used to connect the out-band communication between the wireless power transmitter 1010 and the wireless power receiver 1020 before the digital ping of the new wireless charging protocol is performed.
  • 29 is a diagram for explaining a first outband timing, a second outband timing, and a third outband timing according to another embodiment.
  • the timing of the third outband timing is different in the embodiment of FIG. 29 .
  • the wireless power transmitter 1010 and the wireless power receiver 1020 mutually outband each other within the third outband timing t reset from the time point t A when the power signal of the wireless power is removed. You can discard the information that was used to link the communication.
  • the sum of the first outband timing t oobterminate and the third outband timing t reset may not exceed the second outband timing t nopower . This is to discard the information used to connect the out-band communication between the wireless power transmitter 1010 and the wireless power receiver 1020 before the digital ping of the new wireless charging protocol is performed.
  • the wireless power transmitter in the embodiment according to the above-described FIGS. 12 to 29 corresponds to the wireless power transmitter or the wireless power transmitter or the power transmitter disclosed in FIGS. 1 to 11 . Accordingly, the operation of the wireless power transmitter in this embodiment is implemented by one or a combination of two or more of each component of the wireless power transmitter in FIGS. 1 to 11 . For example, reception/transmission of a message or data packet according to FIGS. 12 to 29 is included in the operation of the communication/control unit 120 , 710 or 790 .
  • the wireless power receiver in the embodiment according to the above-described FIGS. 12 to 29 corresponds to the wireless power receiver or wireless power receiver or power receiver disclosed in FIGS. 1 to 11 . Accordingly, the operation of the wireless power receiver in this embodiment is implemented by one or a combination of two or more of each component of the wireless power receiver in FIGS. 1 to 11 . For example, reception/transmission of a message or data packet according to FIGS. 12 to 29 may be included in the operation of the communication/control unit 220 , 810 , or 890 .
  • the wireless power transmission apparatus and method, or the reception apparatus and method includes the above-described components Or it may be performed including some or all of the steps.
  • the above-described wireless power transmission apparatus and method, or the embodiment of the reception apparatus and method may be performed in combination with each other.
  • each of the above-described components or steps does not necessarily have to be performed in the order described, and it is also possible that the steps described later are performed before the steps described earlier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 명세서의 일 실시예에 따른 무선전력 수신장치는, 무선전력 전송장치로부터 무선전력을 수신하는 전력 픽업 회로 및 상기 무선전력의 전력 시그널을 이용하는 인밴드(in-band) 통신과 상기 인밴드 통신과 다른 무선 통신인 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 전송장치와 통신하며 상기 무선전력의 수신을 제어하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는, 상기 무선전력 전송장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 무선전력 전송장치로부터 상기 전력 시그널이 제거되는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료한다.

Description

무선전력 수신장치 및 무선전력 전송장치
본 명세서는 인밴드 통신 및 아웃밴드 통신을 지원하는 무선전력 수신장치 및 무선전력 전송장치 등에 관한 것이다.
무선 전력 전송 기술은 전원 소스와 전자 기기 사이에 무선으로 전력을 전달하는 기술이다. 일 예로 무선 전력 전송 기술은 스마트폰이나 태블릿 등의 무선 단말기를 단지 무선 충전 패드 상에 올려놓는 것만으로 무선 단말기의 배터리를 충전할 수 있도록 함으로써, 기존의 유선 충전 커넥터를 이용하는 유선 충전 환경에 비해 보다 뛰어난 이동성과 편의성 그리고 안전성을 제공할 수 있다. 무선 전력 전송 기술은 무선 단말기의 무선 충전 이외에도, 전기 자동차, 블루투스 이어폰이나 3D 안경 등 각종 웨어러블 디바이스(wearable device), 가전기기, 가구, 지중시설물, 건물, 의료기기, 로봇, 레저 등의 다양한 분야에서 기존의 유선 전력 전송 환경을 대체할 것으로 주목받고 있다.
무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식, 무선충전(wireless charging) 방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀등 수전장치에 전력을 공급하는 무선전력 수신장치로 구성될 수 있다.
무선 전력 전송 기술은 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식 등 다양하다. 자기 커플링에 기반한 방식은 다시 자기 유도(magnetic induction) 방식과 자기 공진(magnetic resonance) 방식으로 분류된다. 자기유도 방식은 전송 측의 코일과 수신 측의 코일 간의 전자기결합에 따라 전송 측 코일배터리셀에서 발생시킨 자기장으로 인해 수신 측 코일에 유도되는 전류를 이용하여 에너지를 전송하는 방식이다. 자기공진 방식은 자기장을 이용한다는 점에서 자기유도 방식과 유사하다. 하지만, 자기공진 방식은 전송 측의 코일과 수신 측의 코일에 특정 공진 주파수가 인가될 때 공진이 발생하고, 이로 인해 전송 측과 수신 측 양단에 자기장이 집중되는 현상에 의해 에너지가 전달되는 측면에서 자기유도와는 차이가 있다.
본 명세서의 기술적 과제는 무선전력 수신장치와 무선전력 전송장치 사이의 아웃밴드 통신의 종료를 위한 프로토콜 등을 제공함에 있다.
본 명세서의 기술적 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 수신장치는, 무선전력 전송장치로부터 무선전력을 수신하는 전력 픽업 회로 및 상기 무선전력의 전력 시그널을 이용하는 인밴드(in-band) 통신과 상기 인밴드 통신과 다른 무선 통신인 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 전송장치와 통신하며 상기 무선전력의 수신을 제어하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는, 상기 무선전력 전송장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 무선전력 전송장치로부터 상기 전력 시그널이 제거되는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료한다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 전송장치는, 무선전력 수신장치로 무선전력을 전송하는 전력 변환 회로 및 상기 무선전력의 전력 시그널을 이용하는 인밴드(in-band) 통신과 상기 인밴드 통신과 다른 무선 통신인 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 수신장치와 통신하며 상기 무선전력의 전송을 제어하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는, 상기 무선전력 수신장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 전력 시그널을 제거하는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료한다.
본 명세서의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
무선전력의 전력 시그널이 제거되거나, 기본 프로파일의 전력 전송 단계로 전환되는 등의 상황에서 무선전력 수신장치와 무선전력 전송장치 사이의 아웃밴드 통신을 종료할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 3a는 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4b는 본 명세서에 따른 일 실시예가 적용될 수 있는 블루투스 통신 아키텍처(Architecture)의 일 예를 나타낸 도이다.
도 4c는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4d는 다른 예에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 12는 일 실시예에 따른 핑 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 13은 일 실시예에 따른 구성 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 14는 일 실시예에 따른 무선전력 수신장치의 구성 패킷(CFG)의 메시지 필드를 도시한 도면이다.
도 15는 일 실시예에 따른 협상 단계 또는 재협상 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 16은 일 실시예에 따른 무선전력 전송장치의 성능 패킷(CAP)의 메시지 필드를 도시한 도면이다.
도 17은 일 실시예에 따른 협상 단계 또는 재협상 단계에서 사용될 통신 모드를 결정하기 위한 프로토콜을 개략적으로 도시한 흐름도이다.
도 18은 일 실시예에 따른 특정 요청 패킷(SRQ)의 메시지 필드를 도시한 도면이다.
도 19는 협상 단계에서 이물질이 검출된 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 20은 협상 단계에서 부적절한 데이터 패킷(illegal data packet)을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 21은 협상 단계에서 전력전송중단패킷을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 22는 전력 전송 단계에서 전력전송중단패킷을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 23은 전력 전송 단계에서 부적절한 데이터 패킷(illegal data packet)을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 24는 전력 전송 단계에서 전력 감소를 위해 NAK 응답이 전송된 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 25는 일 실시예에 따른 무선전력 전송장치와 무선전력 수신장치들 사이의 아웃밴드 통신의 연결 종료 방법을 설명하기 위한 도면이다.
도 26은 일 실시예에 따른 제1 아웃밴드 타이밍과 제2 아웃밴드 타이밍을 설명하기 위한 도면이다.
도 27은 다른 실시예에 따른 제1 아웃밴드 타이밍과 제2 아웃밴드 타이밍을 설명하기 위한 도면이다.
도 28은 또 다른 실시예에 따른 제1 아웃밴드 타이밍, 제2 아웃밴드 타이밍 및 제3 아웃밴드 타이밍을 설명하기 위한 도면이다.
도 29는 또 다른 실시예에 따른 제1 아웃밴드 타이밍, 제2 아웃밴드 타이밍 및 제3 아웃밴드 타이밍을 설명하기 위한 도면이다.
본 명세서에서 “A 또는 B(A or B)”는 “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 달리 표현하면, 본 명세서에서 “A 또는 B(A or B)”는 “A 및/또는 B(A and/or B)”으로 해석될 수 있다. 예를 들어, 본 명세서에서 “A, B 또는 C(A, B or C)”는 “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 “및/또는(and/or)”을 의미할 수 있다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 이에 따라 “A/B”는 “오직 A”, “오직 B”, 또는 “A와 B 모두”를 의미할 수 있다. 예를 들어, “A, B, C”는 “A, B 또는 C”를 의미할 수 있다.
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “제어 정보(PDCCH)”로 표시된 경우, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “제어 정보”는 “PDCCH”로 제한(limit)되지 않고, “PDDCH”가 “제어 정보”의 일례로 제안될 것일 수 있다. 또한, “제어 정보(즉, PDCCH)”로 표시된 경우에도, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다. 이하에서 사용되는 "무선 전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용없이 무선전력 전송기(wireless power transmitter)로부터 무선전력 수신장치(wireless power receiver)로 전달되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미하도록 사용된다. 무선전력은 무선 전력 신호(wireless power signal)이라고 불릴 수도 있으며, 1차 코일과 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수 있다. 예를 들어, 이동 전화기, 코드리스 전화기, iPod, MP3 플레이어, 헤드셋 등을 포함하는 디바이스들을 무선으로 충전하기 위해 시스템에서의 전력 변환이 여기에 설명된다. 일반적으로, 무선 전력 전송의 기본적인 원리는, 예를 들어, 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식을 모두 포함한다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 1을 참조하면, 무선 전력 시스템(10)은 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)를 포함한다.
무선 전력 전송 장치(100)는 외부의 전원 소스(S)로부터 전원을 인가받아 자기장을 발생시킨다. 무선 전력 수신 장치(200)는 발생된 자기장을 이용하여 전류를 발생시켜 무선으로 전력을 수신받는다.
또한, 무선 전력 시스템(10)에서 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)는 무선 전력 전송에 필요한 다양한 정보를 송수신할 수 있다. 여기서, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)간의 통신은 무선 전력 전송에 이용되는 자기장을 이용하는 인-밴드 통신(in-band communication)이나 별도의 통신 캐리어를 이용하는 아웃-밴드 통신(out-band communication) 중 어느 하나의 방식에 따라 수행될 수 있다. 아웃-밴드 통신은 아웃-오브-밴드(out-of-band) 통신이라 불릴 수도 있다. 이하에서는 아웃-밴드 통신으로 용어를 통일하여 기술한다. 아웃-밴드 통신의 예로서 NFC, 블루투스(bluetooth), BLE(bluetooth low energy) 등을 포함할 수 있다.
여기서, 무선 전력 전송 장치(100)는 고정형 또는 이동형으로 제공될 수 있다. 고정형의 예로는 실내의 천장이나 벽면 또는 테이블 등의 가구에 임베디드(embedded)되는 형태, 실외의 주차장, 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치되는 형태나 차량이나 기차 등의 운송 수단에 설치되는 형태 등이 있다. 이동형인 무선 전력 전송 장치(100)는 이동 가능한 무게나 크기의 이동형 장치나 노트북 컴퓨터의 덮개 등과 같이 다른 장치의 일부로 구현될 수 있다.
또 무선 전력 수신 장치(200)는 배터리를 구비하는 각종 전자 기기 및 전원 케이블 대신 무선으로 전원을 공급받아 구동되는 각종 가전 기기를 포함하는 포괄적인 개념으로 해석되어야 한다. 무선 전력 수신 장치(200)의 대표적인 예로는, 이동 단말기(portable terminal), 휴대 전화기(cellular phone), 스마트폰(smart phone), 개인 정보 단말기(PDA: Personal Digital Assistant), 휴대 미디어 플레이어(PMP: Portable Media Player), 와이브로 단말기(Wibro terminal), 태블릿(tablet), 패블릿(phablet), 노트북(notebook), 디지털 카메라, 네비게이션 단말기, 텔레비전, 전기차량(EV: Electronic Vehicle) 등이 있다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2를 참조하면, 무선 전력 시스템(10)에서 무선 전력 수신 장치(200)는 하나 또는 복수일 수 있다. 도 1에서는 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)가 일대일로 전력을 주고 받는 것으로 표현되고 있으나, 도 2와 같이 하나의 무선 전력 전송 장치(100)가 복수의 무선 전력 수신 장치(200-1, 200-2,..., 200-M)로 전력을 전달하는 것도 가능하다. 특히, 자기 공진 방식으로 무선 전력 전송을 수행하는 경우에는 하나의 무선 전력 전송 장치(100)가 동시 전송 방식이나 시분할 전송 방식을 응용하여 동시에 여러 대의 무선 전력 수신 장치(200-1, 200-2,...,200-M)로 전력을 전달할 수 있다.
또한, 도 1에는 무선 전력 전송 장치(100)가 무선 전력 수신 장치(200)에 바로 전력을 전달하는 모습이 도시되어 있으나, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200) 사이에 무선전력 전송 거리를 증대시키기 위한 릴레이(relay) 또는 중계기(repeater)와 같은 별도의 무선 전력 송수신 장치가 구비될 수 있다. 이 경우, 무선 전력 전송 장치(100)로부터 무선 전력 송수신 장치로 전력이 전달되고, 무선 전력 송수신 장치가 다시 무선 전력 수신 장치(200)로 전력을 전달할 수 있다.
이하 본 명세서에서 언급되는 무선전력 수신기, 전력 수신기, 수신기는 무선 전력 수신 장치(200)를 지칭한다. 또한 본 명세서에서 언급되는 무선전력 전송기, 전력 전송기, 전송기는 무선 전력 수신 전송 장치(100)를 지칭한다.
도 3a은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3a에는 무선 전력 전송 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다. 도 3a을 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다.
노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 명세서에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선전력 전송에 관한 표준(standard)은 WPC(wireless power consortium), AFA(air fuel alliance), PMA(power matters alliance)을 포함한다.
WPC 표준은 기본 전력 프로파일(baseline power profile: BPP)과 확장 전력 프로파일(extended power profile: EPP)을 정의한다. BPP는 5W의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이고, EPP는 5W보다 크고 30W보다 작은 범위의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이다.
서로 다른 전력레벨(power level)을 사용하는 다양한 무선전력 전송장치와 수신장치들이 각 표준별로 커버되고, 서로 다른 전력 클래스(power class) 또는 카테고리로 분류될 수 있다.
예를 들어, WPC는 무선전력 전송장치와 수신장치를 전력 클래스(power class :PC) -1, PC0, PC1, PC2로 분류하고, 각 PC에 대한 표준문서를 제공한다. PC-1 표준은 5W 미만의 보장전력(guaranteed power)을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC-1의 어플리케이션은 스마트 시계와 같은 웨어러블 기기를 포함한다.
PC0 표준은 5W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC0 표준은 보장전력이 30W까지인 EPP를 포함한다. 인-밴드(in-band :IB) 통신이 PC0의 필수적인(mandatory) 통신 프로토콜이나, 옵션의 백업 채널로 사용되는 아웃-밴드(out-band : OB) 통신도 사용될 수 있다. 무선전력 수신장치는 OB의 지원 여부를 구성 패킷(configuration packe)내의 OB 플래그를 설정함으로써 식별할 수 있다. OB를 지원하는 무선전력 전송장치는 상기 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴(bit-pattern)을 전송함으로써 OB 핸드오버 페이즈(handover phase)로 진입할 수 있다. 상기 구성 패킷에 대한 응답은 NAK, ND 또는 새롭게 정의되는 8비트의 패턴일 수 있다. PC0의 어플리케이션은 스마트폰을 포함한다.
PC1 표준은 30W~150W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. OB는 PC1을 위한 필수적인 통신 채널이며, IB는 OB로의 초기화 및 링크 수립(link establishment)로서 사용된다. 무선전력 전송장치는 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴을 이용하여 OB 핸드오버 페이즈로 진입할 수 있다. PC1의 어플리케이션은 랩탑이나 전동 공구(power tool)를 포함한다.
PC2 표준은 200W~2kW의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것으로서, 그 어플리케이션은 주방가전을 포함한다.
이렇듯 전력 레벨에 따라 PC가 구별될 수 있으며, 동일한 PC간 호환성(compatibility)을 지원할지 여부는 선택 또는 필수 사항일 수 있다. 여기서 동일한 PC간 호환성은, 동일한 PC 간에는 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 동일한 PC x를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 동일한 PC간 호환성이 유지되는 것으로 볼 수 있다. 이와 유사하게 서로 다른 PC간의 호환성 역시 지원 가능할 수 있다. 여기서 서로 다른 PC간 호환성은, 서로 다른 PC 간에도 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 PC y를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 서로 다른 PC간 호환성이 유지되는 것으로 볼 수 있다.
PC간 호환성의 지원은 사용자 경험(User Experience) 및 인프라 구축 측면에서 매우 중요한 이슈이다. 다만, PC간 호환성 유지에는 기술적으로 아래와 같은 여러 문제점이 존재한다.
동일한 PC간 호환성의 경우, 예를 들어, 연속적으로 전력이 전송되는 경우에만 안정적으로 충전이 가능한 랩-탑 충전(lap-top charging) 방식의 무선 전력 수신장치는, 동일한 PC의 무선 전력 송신장치라 하더라도, 불연속적으로 전력을 전송하는 전동 툴 방식의 무선 전력 송신장치로부터 전력을 안정적으로 공급받는 데 문제가 있을 수 있다. 또한, 서로 다른 PC간 호환성의 경우, 예를 들어, 최소 보장 전력이 200W인 무선 전력 송신장치는 최대 보장 전력이 5W인 무선 전력 수신장치로 전력을 송신하는 경우, 과전압으로 인해 무선전력 수신장치가 파손될 위험이 있다. 그 결과, PC는 호환성을 대표/지시하는 지표/기준으로 삼기 어렵다.
무선전력 전송 및 수신장치들은 매우 편리한 사용자 경험과 인터페이스(UX/UI)를 제공할 수 있다. 즉, 스마트 무선충전 서비스가 제공될 수 있다, 스마트 무선충전 서비스는 무선전력 전송장치를 포함하는 스마트폰의 UX/UI에 기초하여 구현될 수 있다. 이러한 어플리케이션을 위해, 스마트폰의 프로세서와 무선충전 수신장치간의 인터페이스는 무선전력 전송장치와 수신장치간의 "드롭 앤 플레이(drop and play)" 양방향 통신을 허용한다.
일례로서, 사용자는 호텔에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 호텔 방으로 입장하고 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to ### hotel. Select "Yes" to activate smart charging functions : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 스마트 충전 기능을 함께 수행한다.
스마트 무선 충전 서비스는 또한 WiFi 자격(wifi credentials) 자동 입력(auto-filled)을 수신하는 것을 포함할 수 있다. 예를 들어, 무선충전기는 WiFi 자격을 스마트폰으로 전송하고, 스마트폰은 적절한 앱을 실행하여 무선충전기로부터 수신된 WiFi 자격을 자동적으로 입력한다.
스마트 무선 충전 서비스는 또한 호텔 프로모션을 제공하는 호텔 어플리케이션을 실행하거나, 원격 체크인/체크아웃 및 컨택 정보들을 획득하는 것을 포함할 수 있다.
다른 예로서, 사용자는 차량 내에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 차량에 탑승하고 스마트폰을 무선충전기 위에 올려놓으면, 무선충전기는 스마트폰에 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이러한 과정에서, 무선 충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 신분(identity)을 확인을 문의하는 상태로 진입한다.
이 상태에서, 스마트폰은 WiFi 및/또는 블루투스를 통해 자동적으로 자동차와 연결된다. 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to your car. Select "Yes" to synch device with in-car controls : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 차량내 어플리케이션/디스플레이 소프트웨어를 구동함으로서, 차량 내 스마트 제어 기능을 함께 수행할 수 있다. 사용자는 원하는 음악을 즐길 수 있고, 정규적인 맵 위치를 확인할 수 있다. 차량 내 어플리케이션/디스플레이 소프트웨어는 통행자들을 위한 동기화 접근을 제공하는 성능을 포함할 수 있다.
또 다른 예로서, 사용자는 스마트 무선 충전을 댁내에서 경험할 수 있다. 사용자가 방으로 들어가서 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Hi xxx, Would you like to activate night mode and secure the building?: Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 스마트폰과 무선 충전기는 적어도 사용자의 패턴을 인지하고 사용자에게 문과 창문을 잠그거나 불을 끄거나, 알람을 설정하도록 권유할 수 있다.
이하에서는 호환성을 대표/지시하는 지표/기준으로 '프로필(profile)'을 새롭게 정의하기로 한다. 즉, 동일한 '프로필'을 갖는 무선 전력 송수신 장치간에는 호환성이 유지되어 안정적인 전력 송수신이 가능하며, 서로 다른 '프로필'을 갖는 무선 전력 송수신장치간에는 전력 송수신이 불가한 것으로 해석될 수 있다. 프로필은 전력 클래스와 무관하게(또는 독립적으로) 호환 가능 여부 및/또는 어플리케이션에 따라 정의될 수 있다.
프로필은 크게 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 이렇게 3가지로 구분될 수 있다.
또는, 프로필은 크게 i) 모바일, ii) 전동 툴, iii) 주방 및 iv) 웨어러블 이렇게 4가지로 구분될 수 있다.
'모바일' 프로필의 경우, PC는 PC0 및/또는 PC1, 통신 프로토콜/방식은 IB 및 OB, 동작 주파수는 87~205kHz로 정의될 수 있으며, 어플리케이션의 예시로는 스마트폰, 랩-탑 등이 존재할 수 있다.
'전동 툴' 프로필의 경우, PC는 PC1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~145kHz로 정의될 수 있으며, 어플리케이션의 예시로는 전동 툴 등이 존재할 수 있다.
'주방' 프로필의 경우, PC는 PC2, 통신 프로토콜/방식은 NFC-기반, 동작 주파수는 100kHz 미만으로 정의될 수 있으며, 어플리케이션의 예시로는 주방/가전 기기 등이 존재할 수 있다.
전동 툴과 주방 프로필의 경우, 무선전력 전송장치와 수신장치 간에 NFC 통신이 사용될 수 있다. 무선전력 전송장치와 수신장치는 WPC NDEF(NFC Data Exchange Profile Format)을 교환함으로써 상호간에 NFC 기기임을 확인할 수 있다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 3b를 참조하면, WPC NDEF는 예를 들어, 어플리케이션 프로파일(application profile) 필드(예를 들어 1B), 버전 필드(예를 들어 1B), 및 프로파일 특정 데이터(profile specific data, 예를 들어 1B)를 포함할 수 있다. 어플리케이션 프로파일 필드는 해당 장치가 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 중 어느 것인지를 지시하고, 버전 필드의 상위 니블(upper nibble)은 메이저 버전(major version)을 지시하고 하위 니블(lower nibble)은 마이너 버전(minor version)을 지시한다. 또한 프로파일 특정 데이터는 주방을 위한 컨텐츠를 정의한다.
'웨어러블' 프로필의 경우, PC는 PC-1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~205kHz으로 정의될 수 있으며, 어플리케이션의 예시로는 사용자 몸에 착용하는 웨어러블 기기 등이 존재할 수 있다.
동일한 프로필간에는 호환성 유지는 필수 사항일 수 있으며, 다른 프로필간의 호환성 유지는 선택 사항일 수 있다.
상술한 프로필(모바일 프로필, 전동 툴 프로필, 주방 프로필 및 웨어러블 프로필)들은 제1 내지 제n 프로필로 일반화되어 표현될 수 있으며, WPC 규격 및 실시예에 따라 새로운 프로필이 추가/대체될 수 있다.
이와 같이 프로필이 정의되는 경우, 무선 전력 전송장치가 자신과 동일한 프로필의 무선 전력 수신장치에 대해서만 선택적으로 전력 송신을 수행하여 보다 안정적으로 전력 송신이 가능하다. 또한 무선 전력 전송장치의 부담이 줄어들고, 호환이 불가능한 무선 전력 수신장치로의 전력 송신을 시도하지 않게 되므로 무선 전력 수신장치의 파손 위험이 줄어든다는 효과가 발생한다.
'모바일' 프로필 내의 PC1은 PC0를 기반으로 OB와 같은 선택적 확장을 차용함으로써 정의될 수 있으며, '전동 툴' 프로필의 경우, PC1 '모바일' 프로필이 단순히 변경된 버전으로서 정의될 수 있다. 또한, 현재까지는 동일한 프로필간의 호환성 유지를 목적으로 정의되었으나, 추후에는 서로 다른 프로필간의 호환성 유지 방향으로 기술이 발전될 수 있다. 무선 전력 전송장치 또는 무선 전력 수신장치는 다양한 방식을 통해 자신의 프로필을 상대방에게 알려줄 수 있다.
AFA 표준은 무선 전력 전송장치를 PTU(power transmitting circuit)이라 칭하고, 무선 전력 수신장치를 PRU(power receiving circuit)이라 칭하며, PTU는 표 1과 같이 다수의 클래스로 분류되고, PRU는 표 2와 같이 다수의 카테고리로 분류된다.
PTU PTX_IN_MAX 최소 카테고리 지원 요구사항 지원되는 최대 기기 개수를 위한 최소값
Class 1 2W 1x 카테고리 1 1x 카테고리 1
Class 2 10W 1x 카테고리 3 2x 카테고리 2
Class 3 16W 1x 카테고리 4 2x 카테고리 3
Class 4 33W 1x 카테고리 5 3x 카테고리 3
Class 5 50W 1x 카테고리 6 4x 카테고리 3
Class 6 70W 1x 카테고리 7 5x 카테고리 3
PRU PRX_OUT_MAX' 예시 어플리케이션
Category 1 TBD 블루투스 헤드셋
Category 2 3.5W 피쳐폰
Category 3 6.5W 스마트폰
Category 4 13W 태블릿, 패플릿
Category 5 25W 작은 폼팩터 랩탑
Category 6 37.5W 일반 랩탑
Category 7 50W 가전
표 1에서와 같이, 클래스 n PTU의 최대 출력 전력 성능(capability)은 해당 클래스의 PTX_IN_MAX 값보다 크거나 같다. PRU는 해당 카테고리에서 명세된(specified) 전력보다 더 큰 전력을 끌어당길(draw) 수는 없다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4a를 참조하면, 무선 전력 전송 시스템(10)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(450) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(400)을 포함한다.
베이스 스테이션(400)은 유도 전력 또는 공진 전력을 제공하는 장치로서, 적어도 하나의 무선 전력 전송장치(power transmitter, 100) 및 시스템 회로(405)을 포함할 수 있다. 무선 전력 전송장치(100)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 무선 전력 전송장치(100)는, 1차 코일(primary coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 회로(power conversion circuit, 110) 및 적절한 레벨로 전력을 전달하도록 무선 전력 수신장치(200)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 회로(communications & control circuit, 120)을 포함할 수 있다. 시스템 회로(405)은 입력 전력 프로비저닝(provisioning), 복수의 무선전력 전송장치들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(400)의 기타 동작 제어를 수행할 수 있다.
1차 코일은 교류 전력(또는 전압 또는 전류)을 이용하여 전자기장을 발생시킬 수 있다. 1차 코일은 전력 변환 회로(110)에서 출력되는 특정 주파수의 교류전력(또는 전압 또는 전류)을 인가받고, 이에 따라 특정 주파수의 자기장을 발생시킬 수 있다. 자기장은 비방사형 또는 방사형으로 발생할 수 있는데, 무선 전력 수신 장치(200)는 이를 수신하여 전류를 생성하게 된다. 다시 말해 1차 코일은 무선으로 전력을 전송하는 것이다.
자기 유도 방식에서, 1차 코일과 2차 코일은 임의의 적합한 형태들을 가질 수 있으며, 예컨대, 페라이트 또는 비정질 금속과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다. 1차 코일은 전송 코일(transmitting coil), 1차 코어(primary core), 1차 와인딩(primary winding), 1차 루프 안테나(primary loop antenna) 등으로 불릴 수도 있다. 한편, 2차 코일은 수신 코일(receiving coil), 2차 코어(secondary core), 2차 와인딩(secondary winding), 2차 루프 안테나(secondary loop antenna), 픽업 안테나(pickup antenna) 등으로 불릴 수도 있다.
자기 공진 방식을 이용하는 경우에는 1차 코일과 2차 코일은 각각 1차 공진 안테나와 2차 공진 안테나 형태로 제공될 수 있다. 공진 안테나는 코일과 캐패시터를 포함하는 공진 구조를 가질 수 있다. 이때 공진 안테나의 공진 주파수는 코일의 인덕턴스와 캐패시터의 캐패시턴스에 의해 결정된다. 여기서, 코일은 루프의 형태로 이루어질 수 있다. 또 루프의 내부에는 코어가 배치될 수 있다. 코어는 페라이트 코어(ferrite core)와 같은 물리적인 코어나 공심 코어(air core)를 포함할 수 있다.
1차 공진 안테나와 2차 공진 안테나 간의 에너지 전송은 자기장의 공진 현상을 통해 이루어질 수 있다. 공진 현상이란 하나의 공진 안테나에서 공진 주파수에 해당하는 근접장이 발생할 때 주위에 다른 공진 안테나가 위치하는 경우, 양 공진 안테나가 서로 커플링되어 공진 안테나 사이에서 높은 효율의 에너지 전달이 일어나는 현상을 의미한다. 1차 공진 안테나와 2차 공진 안테나 안테나 사이에서 공진 주파수에 해당하는 자기장이 발생하면, 1차 공진 안테나와 2차 공진 안테나가 서로 공진하는 현상이 발생되고, 이에 따라 일반적인 경우 1차 공진 안테나에서 발생한 자기장이 자유공간으로 방사되는 경우에 비해 보다 높은 효율로 2차 공진 안테나를 향해 자기장이 집속되며, 따라서 1차 공진 안테나로부터 2차 공진 안테나에 높은 효율로 에너지가 전달될 수 있다. 자기 유도 방식은 자기 공진 방식과 유사하게 구현될 수 있으나 이때에는 자기장의 주파수가 공진 주파수일 필요가 없다. 대신 자기 유도 방식에서는 1차 코일과 2차 코일을 구성하는 루프 간의 정합이 필요하며 루프 간의 간격이 매우 근접해야 한다.
도면에 도시되지 않았으나, 무선 전력 전송장치(100)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신 할 수 있다.
통신/컨트롤 회로(120)은 무선 전력 수신 장치(200)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(120)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(120)은 무선전력 전송의 동작 주파수에 통신 정보를 실어 1차 코일을 통해 전송하거나 또는 정보가 담긴 동작 주파수를 1차 코일을 통해 수신함으로써 인-밴드 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(120)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(120)은 근거리 통신 모듈로 제공될 수 있다. 근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(120)은 무선 전력 전송 장치(100)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(120)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력전송 장치(100)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(120)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(120)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(120)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)은 동작 포인트(operating point)를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 통신/컨트롤 회로(120)은 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다. 또한, 무선 전력 전송장치(100)는 일정한 전력을 공급하고, 무선 전력 수신장치(200)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
모바일 기기(450)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 무선전력 수신장치(power receiver, 200)와 무선전력 수신장치(200)에서 수신된 전력을 전력을 전달받아 저장하고 기기에 공급하는 부하(load, 455)를 포함한다.
무선전력 수신장치(200)는 전력 픽업 회로(power pick-up circuit, 210) 및 통신/컨트롤 회로(communications & control circuit, 220)을 포함할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 무선 전력을 수신하여 전기 에너지로 변환할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 얻어지는 교류 신호를 정류하여 직류 신호로 변환한다. 통신/컨트롤 회로(220)은 무선 전력의 송신과 수신(전력 전달 및 수신)을 제어할 수 있다.
2차 코일은 무선 전력 전송 장치(100)에서 전송되는 무선 전력을 수신할 수 있다. 2차 코일은 1차 코일에서 발생하는 자기장을 이용하여 전력을 수신할 수 있다. 여기서, 특정 주파수가 공진 주파수인 경우에는 1차 코일과 2차 코일 간에 자기 공진 현상이 발생하여 보다 효율적으로 전력을 전달받을 수 있다.
도 4a에는 도시되지 않았으나 통신/컨트롤 회로(220)은 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신할 수 있다.
통신/컨트롤 회로(220)은 무선 전력 전송 장치(100)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(220)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(220)은 자기파에 정보를 실어 2차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 2차 코일을 통해 수신함으로써 IB 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(220)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(220)은 근거리 통신 모듈로 제공될 수 있다.
근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(220)은 무선 전력 수신 장치(200)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(220)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력수신 장치(200)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(220)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(220)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(220)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)이 OB 통신 모듈 또는 근거리 통신 모듈로서 블루투스 또는 블루투스 LE일 경우, 통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)은 각각 도 4b와 같은 통신 아키텍처로 구현되어 동작할 수 있다.
도 4b는 본 명세서에 따른 일 실시예가 적용될 수 있는 블루투스 통신 아키텍처(Architecture)의 일 예를 나타낸 도이다.
도 4b를 참고하면, 도 4b의 (a)는 GATT를 지원하는 블루투스 BR(Basic Rate)/EDR(Enhanced Data Rate)의 프로토콜 스택의 일 예를 나타내며, (b)는 블루투스 LE(Low Energy)의 프로토콜 스택의 일 예를 나타낸다.
구체적으로, 도 4b의 (a)에 도시된 바와 같이, 블루투스 BR/EDR 프로토콜 스택은 호스트 컨트롤러 인터페이스(Host Controller Interface, HCI, 18)를 기준으로 상부의 컨트롤러 스택(Controller stack, 460)과 하부의 호스트 스택(Host Stack, 470)을 포함할 수 있다.
상기 호스트 스택(또는 호스트 모듈)(470)은 2.4GHz의 블루투스 신호를 받는 무선 송수신 모듈과 블루투스 패킷을 전송하거나 수신하기 위한 하드웨어를 말하며, 상기 컨트롤러 스택(460)은 블루투스 모듈과 연결되어 블루투스 모듈을 제어하고 동작을 수행한다.
상기 호스트 스택(470)은 BR/EDR PHY 계층(12), BR/EDR Baseband 계층(14), 링크 매니저 계층(Link Manager, 16)을 포함할 수 있다.
상기 BR/EDR PHY 계층(12)은 2.4GHz 무선 신호를 송수신하는 계층으로, GFSK (Gaussian Frequency Shift Keying) modulation을 사용하는 경우 79 개의 RF 채널을 hopping 하여 데이터를 전송할 수 있다.
상기 BR/EDR Baseband 계층(14)은 Digital Signal을 전송하는 역할을 담당하며, 초당 1400번 hopping 하는 채널 시퀀스를 선택하며, 각 채널 별 625us 길이의 time slot을 전송한다.
상기 링크 매니저 계층(16)은 LMP(Link Manager Protocol)을 활용하여 Bluetooth Connection의 전반적인 동작(link setup, control, security)을 제어한다.
상기 링크 매니저 계층(16)은 아래와 같은 기능을 수행할 수 있다.
- ACL/SCO logical transport, logical link setup 및 control을 한다.
- Detach: connection을 중단하고, 중단 이유를 상대 디바이스에게 알려준다.
- Power control 및 Role switch를 한다.
- Security(authentication, pairing, encryption) 기능을 수행한다.
상기 호스트 컨트롤러 인터페이스 계층(18)은 Host 모듈과 Controller 모듈 사이의 인터페이스 제공하여 Host 가 command와 Data를 Controller에게 제공하게 하며, Controller가 event와 Data를 Host에게 제공할 수 있도록 해준다.
상기 호스트 스택(또는 호스트 모듈, 20)은 논리적 링크 제어 및 적응 프로토콜(L2CAP, 21), 속성 프로토콜(Protocol, 22), 일반 속성 프로파일(Generic Attribute Profile, GATT, 23), 일반 접근 프로파일(Generic Access Profile, GAP, 24), BR/EDR 프로파일(25)을 포함한다.
상기 논리적 링크 제어 및 적응 프로토콜(L2CAP, 21)은 특정 프로토콜 또는 포로파일에게 데이터를 전송하기 위한 하나의 양방향 채널을 제공할 수 있다.
상기 L2CAP(21)은 블루투스 상위에서 제공하는 다양한 프로토콜, 프로파일 등을 멀티플렉싱(multiplexing)할 수 있다.
블루투스 BR/EDR의 L2CAP에서는 dynamic 채널 사용하며, protocol service multiplexer, retransmission, streaming mode를 지원하고, Segmentation 및 reassembly, per-channel flow control, error control을 제공한다.
상기 일반 속성 프로파일(GATT, 23)은 서비스들의 구성 시에 상기 속성 프로토콜(22)이 어떻게 이용되는지를 설명하는 프로토콜로서 동작 가능할 수 있다. 예를 들어, 상기 일반 속성 프로파일(23)은 ATT 속성들이 어떻게 서비스들로 함께 그룹화되는지를 규정하도록 동작 가능할 수 있고, 서비스들과 연계된 특징들을 설명하도록 동작 가능할 수 있다.
따라서, 상기 일반 속성 프로파일(23) 및 상기 속성 프로토콜(ATT, 22)은 디바이스의 상태와 서비스들을 설명하고, 특징들이 서로 어떻게 관련되며 이들이 어떻게 이용되는지를 설명하기 위하여, 특징들을 사용할 수 있다.
상기 속성 프로토콜(22) 및 상기 BR/EDR 프로파일(25)은 블루트스 BR/EDR를 이용하는 서비스(profile)의 정의 및 이들 데이터를 주고 받기 위한 application 프로토콜을 정의하며, 상기 일반 접근 프로파일(Generic Access Profile, GAP, 24)은 디바이스 발견, 연결, 및 보안 수준을 정의한다.
도 4b의 (b)에 도시된 바와 같이, 블루투스 LE 프로토콜 스택은 타이밍이 중요한 무선장치 인터페이스를 처리하도록 동작 가능한 컨트롤러 스택(Controller stack, 480)과 고레벨(high level) 데이터를 처리하도록 동작 가능한 호스트 스택(Host stack, 490)을 포함한다.
먼저, 컨트롤러 스택(480)은 블루투스 무선장치를 포함할 수 있는 통신 모듈, 예를 들어, 마이크로프로세서와 같은 프로세싱 디바이스를 포함할 수 있는 프로세서 모듈을 이용하여 구현될 수 있다.
호스트 스택(490)은 프로세서 모듈 상에서 작동되는 OS의 일부로서, 또는 OS 위의 패키지(package)의 인스턴스 생성(instantiation)으로서 구현될 수 있다.
일부 사례들에서, 컨트롤러 스택 및 호스트 스택은 프로세서 모듈 내의 동일한 프로세싱 디바이스 상에서 작동 또는 실행될 수 있다.
상기 컨트롤러 스택(480)은 물리 계층(Physical Layer, PHY, 32), 링크 레이어(Link Layer, 34) 및 호스트 컨트롤러 인터페이스(Host Controller Interface, 36)를 포함한다.
상기 물리 계층(PHY, 무선 송수신 모듈, 32)은 2.4 GHz 무선 신호를 송수신하는 계층으로 GFSK (Gaussian Frequency Shift Keying) modulation과 40 개의 RF 채널로 구성된 frequency hopping 기법을 사용한다.
블루투스 패킷을 전송하거나 수신하는 역할을 하는 상기 링크 레이어(34)는 3개의 Advertising 채널을 이용하여 Advertising, Scanning 기능을 수행한 후에 디바이스 간 연결을 생성하고, 37개 Data 채널을 통해 최대 257bytes 의 데이터 패킷을 주고 받는 기능을 제공한다.
상기 호스트 스택은 GAP(Generic Access Profile, 40), 논리적 링크 제어 및 적응 프로토콜(L2CAP, 41), 보안 매니저(Security Manager, SM, 42), 속성 프로토콜(Attribute Protocol, ATT, 440), 일반 속성 프로파일(Generic Attribute Profile, GATT, 44), 일반 접근 프로파일(Generic Access Profile, 25), LT 프로파일(46)을 포함할 수 있다. 다만, 상기 호스트 스택(490)은 이것으로 한정되지는 않고 다양한 프로토콜들 및 프로파일들을 포함할 수 있다.
호스트 스택은 L2CAP을 사용하여 블루투스 상위에서 제공하는 다양한 프로토콜, 프로파일 등을 다중화(multiplexing)한다.
먼저, L2CAP(Logical Link Control and Adaptation Protocol, 41)은 특정 프로토콜 또는 프로파일에게 데이터를 전송하기 위한 하나의 양방향 채널을 제공할 수 있다.
상기 L2CAP(41)은 상위 계층 프로토콜들 사이에서 데이터를 다중화(multiplex)하고, 패키지(package)들을 분할(segment) 및 재조립(reassemble)하고, 멀티캐스트 데이터 송신을 관리하도록 동작 가능할 수 있다.
블루투스 LE 에서는 3개의 고정 채널(signaling CH을 위해 1개, Security Manager를 위해 1개, Attribute protocol을 위해 1개)을 기본적으로 사용한다. 그리고, 필요에 따라 동적 채널을 사용할 수도 있다.
반면, BR/EDR(Basic Rate/Enhanced Data Rate)에서는 동적인 채널을 기본적으로 사용하며, protocol service multiplexer, retransmission, streaming mode 등을 지원한다.
SM(Security Manager, 42)은 디바이스를 인증하며, 키 분배(key distribution)를 제공하기 위한 프로토콜이다.
ATT(Attribute Protocol, 43)는 서버-클라이언트(Server-Client) 구조로 상대 디바이스의 데이터를 접근하기 위한 규칙을 정의한다. ATT에는 아래의 6가지의 메시지 유형(Request, Response, Command, Notification, Indication, Confirmation)이 있다.
① Request 및 Response 메시지: Request 메시지는 클라이언트 디바이스에서 서버 디바이스로 특정 정보 요청 및 전달 하기 위한 메시지이며, Response 메시지는 Request 메시지에 대한 응답 메시지로서, 서버 디바이스에서 클라이언트 디바이스로 전송하는 용도로 사용할 수 있는 메시지를 말한다.
② Command 메시지: 클라이언트 디바이스에서 서버 디바이스로 주로 특정 동작의 명령을 지시하기 위해 전송하는 메시지로, 서버 디바이스는 Command 메시지에 대한 응답을 클라이언트 디바이스로 전송하지 않는다.
③ Notification 메시지: 서버 디바이스에서 클라이언트 디바이스로 이벤트 등과 같은 통지를 위해 전송하는 메시지로, 클라이언트 디바이스는 Notification 메시지에 대한 확인 메시지를 서버 디바이스로 전송하지 않는다.
④ Indication 및 Confirm 메시지: 서버 디바이스에서 클라이언트 디바이스로 이벤트 등과 같은 통지를 위해 전송하는 메시지로, Notification 메시지와는 달리, 클라이언트 디바이스는 Indication 메시지에 대한 확인 메시지(Confirm message)를 서버 디바이스로 전송한다.
본 명세서는 상기 속성 프로토콜(ATT, 43)을 사용하는 GATT 프로파일에서 긴 데이터 요청 시 데이터 길이에 대한 값을 전송하여 클라이언트가 데이터 길이를 명확히 알 수 있게 하며, UUID를 이용하여 서버로부터 특성(Characteristic) 값을 전송 받을 수 있다.
상기 일반 접근 프로파일(GAP, 45)은 블루투스 LE 기술을 위해 새롭게 구현된 계층으로, 블루투스 LE 디바이스들 간의 통신을 위한 역할 선택, 멀티 프로파일 작동이 어떻게 일어나는지를 제어하는데 사용된다.
또한, 상기 일반 접근 프로파일(45)은 디바이스 발견, 연결 생성 및 보안 절차 부분에 주로 사용되며, 사용자에게 정보를 제공하는 방안을 정의하며, 하기와 같은 attribute의 type을 정의한다.
① Service: 데이터와 관련된 behavior의 조합으로 디바이스의 기본적인 동작을 정의
② Include: 서비스 사이의 관계를 정의
③ Characteristics: 서비스에서 사용되는 data 값
④ Behavior: UUID(Universal Unique Identifier, value type)로 정의된 컴퓨터가 읽을 수 있는 포맷
상기 LE 프로파일(46)은 GATT에 의존성을 가지는 profile 들로 주로 블루투스 LE 디바이스에 적용된다. LE 프로파일(46)은 예를 들면, Battery, Time, FindMe, Proximity, Time 등이 있을 수 있으며, GATT-based Profiles의 구체적인 내용은 하기와 같다.
① Battery: 배터리 정보 교환 방법
② Time: 시간 정보 교환 방법
③ FindMe: 거리에 따른 알람 서비스 제공
④ Proximity: 배터리 정보 교환 방법
⑤ Time: 시간 정보 교환 방법
상기 일반 속성 프로파일(GATT, 44)은 서비스들의 구성 시에 상기 속성 프로토콜(43)이 어떻게 이용되는지를 설명하는 프로토콜로서 동작 가능할 수 있다. 예를 들어, 상기 일반 속성 프로파일(44)은 ATT 속성들이 어떻게 서비스들로 함께 그룹화되는지를 규정하도록 동작 가능할 수 있고, 서비스들과 연계된 특징들을 설명하도록 동작 가능할 수 있다.
따라서, 상기 일반 속성 프로파일(44) 및 상기 속성 프로토콜(ATT, 43)은 디바이스의 상태와 서비스들을 설명하고, 특징들이 서로 어떻게 관련되며 이들이 어떻게 이용되는지를 설명하기 위하여, 특징들을 사용할 수 있다.
이하에서, 블루투스 저전력 에너지(Bluetooth Low Energy:BLE) 기술의 절차(Procedure)들에 대해 간략히 살펴보기로 한다.
BLE 절차는 디바이스 필터링 절차(Device Filtering Procedure), 광고 절차(Advertising Procedure), 스캐닝 절차(Scanning Procedure), 디스커버링 절차(Discovering Procedure), 연결 절차(Connecting Procedure) 등으로 구분될 수 있다.
디바이스 필터링 절차(Device Filtering Procedure)
디바이스 필터링 절차는 컨트롤러 스택에서 요청, 지시, 알림 등에 대한 응답을 수행하는 디바이스들의 수를 줄이기 위한 방법이다.
모든 디바이스에서 요청 수신 시, 이에 대해 응답하는 것이 불필요하기 때문에, 컨트롤러 스택은 요청을 전송하는 개수를 줄여서, BLE 컨트롤러 스택에서 전력 소비가 줄 수 있도록 제어할 수 있다.
광고 디바이스 또는 스캐닝 디바이스는 광고 패킷, 스캔 요청 또는 연결 요청을 수신하는 디바이스를 제한하기 위해 상기 디바이스 필터링 절차를 수행할 수 있다.
여기서, 광고 디바이스는 광고 이벤트를 전송하는 즉, 광고를 수행하는 디바이스를 말하며, 광고자(Advertiser)라고도 표현된다.
스캐닝 디바이스는 스캐닝을 수행하는 디바이스, 스캔 요청을 전송하는 디바이스를 말한다.
BLE에서는, 스캐닝 디바이스가 일부 광고 패킷들을 광고 디바이스로부터 수신하는 경우, 상기 스캐닝 디바이스는 상기 광고 디바이스로 스캔 요청을 전송해야 한다.
하지만, 디바이스 필터링 절차가 사용되어 스캔 요청 전송이 불필요한 경우, 상기 스캐닝 디바이스는 광고 디바이스로부터 전송되는 광고 패킷들을 무시할 수 있다.
연결 요청 과정에서도 디바이스 필터링 절차가 사용될 수 있다. 만약, 연결 요청 과정에서 디바이스 필터링이 사용되는 경우, 연결 요청을 무시함으로써 상기 연결 요청에 대한 응답을 전송할 필요가 없게 된다.
광고 절차(Advertising Procedure)
광고 디바이스는 영역 내 디바이스들로 비지향성의 브로드캐스트를 수행하기 위해 광고 절차를 수행한다.
여기서, 비지향성의 브로드캐스트(Undirected Advertising)는 특정 디바이스를 향한 브로드캐스트가 아닌 전(모든) 디바이스를 향한 광고(Advertising)이며, 모든 디바이스가 광고(Advertising)을 스캔(Scan)하여 추가 정보 요청이나 연결 요청을 할 수 있다.
이와 달리, 지향성 브로드캐스트(Directed advertising)는 수신 디바이스로 지정된 디바이스만 광고(Advertising)을 스캔(Scan)하여 추가 정보 요청이나 연결 요청을 할 수 있다.
광고 절차는 근처의 개시 디바이스와 블루투스 연결을 확립하기 위해 사용된다.
또는, 광고 절차는 광고 채널에서 리스닝을 수행하고 있는 스캐닝 디바이스들에게 사용자 데이터의 주기적인 브로드캐스트를 제공하기 위해 사용될 수 있다.
광고 절차에서 모든 광고(또는 광고 이벤트)는 광고 물리 채널을 통해 브로드캐스트된다.
광고 디바이스들은 광고 디바이스로부터 추가적인 사용자 데이터를 얻기 위해 리스닝을 수행하고 있는 리스닝 디바이스들로부터 스캔 요청을 수신할 수 있다. 광고 디바이스는 스캔 요청을 수신한 광고 물리 채널과 동일한 광고 물리 채널을 통해, 스캔 요청을 전송한 디바이스로 스캔 요청에 대한 응답을 전송한다.
광고 패킷들의 일 부분으로서 보내지는 브로드캐스트 사용자 데이터는 동적인 데이터인 반면에, 스캔 응답 데이터는 일반적으로 정적인 데이터이다.
광고 디바이스는 광고 (브로드캐스트) 물리 채널 상에서 개시 디바이스로부터 연결 요청을 수신할 수 있다. 만약, 광고 디바이스가 연결 가능한 광고 이벤트를 사용하였고, 개시 디바이스가 디바이스 필터링 절차에 의해 필터링 되지 않았다면, 광고 디바이스는 광고를 멈추고 연결 모드(connected mode)로 진입한다. 광고 디바이스는 연결 모드 이후에 다시 광고를 시작할 수 있다.
스캐닝 절차(Scanning Procedure)
스캐닝을 수행하는 디바이스 즉, 스캐닝 디바이스는 광고 물리 채널을 사용하는 광고 디바이스들로부터 사용자 데이터의 비지향성 브로드캐스트를 청취하기 위해 스캐닝 절차를 수행한다.
스캐닝 디바이스는 광고 디바이스로부터 추가적인 데이터를 요청 하기 위해, 광고 물리 채널을 통해 스캔 요청을 광고 디바이스로 전송한다. 광고 디바이스는 광고 물리 채널을 통해 스캐닝 디바이스에서 요청한 추가적인 데이터를 포함하여 상기 스캔 요청에 대한 응답인 스캔 응답을 전송한다.
상기 스캐닝 절차는 BLE 피코넷에서 다른 BLE 디바이스와 연결되는 동안 사용될 수 있다.
만약, 스캐닝 디바이스가 브로드캐스트되는 광고 이벤트를 수신하고, 연결 요청을 개시할 수 있는 개시자 모드(initiator mode)에 있는 경우, 스캐닝 디바이스는 광고 물리 채널을 통해 광고 디바이스로 연결 요청을 전송함으로써 광고 디바이스와 블루투스 연결을 시작할 수 있다.
스캐닝 디바이스가 광고 디바이스로 연결 요청을 전송하는 경우, 스캐닝 디바이스는 추가적인 브로드캐스트를 위한 개시자 모드 스캐닝을 중지하고, 연결 모드로 진입한다.
디스커버링 절차(Discovering Procedure)
블루투스 통신이 가능한 디바이스(이하, '블루투스 디바이스'라 한다.)들은 근처에 존재하는 디바이스들을 발견하기 위해 또는 주어진 영역 내에서 다른 디바이스들에 의해 발견되기 위해 광고 절차와 스캐닝 절차를 수행한다.
디스커버링 절차는 비대칭적으로 수행된다. 주위의 다른 디바이스를 찾으려고 하는 블루투스 디바이스를 디스커버링 디바이스(discovering device)라 하며, 스캔 가능한 광고 이벤트를 광고하는 디바이스들을 찾기 위해 리스닝한다. 다른 디바이스로부터 발견되어 이용 가능한 블루투스 디바이스를 디스커버러블 디바이스(discoverable device)라 하며, 적극적으로 광고 (브로드캐스트) 물리 채널을 통해 다른 디바이스가 스캔 가능하도록 광고 이벤트를 브로드캐스트한다.
디스커버링 디바이스와 디스커버러블 디바이스 모두 피코넷에서 다른 블루투스 디바이스들과 이미 연결되어 있을 수 있다.
연결 절차(Connecting Procedure)
연결 절차는 비대칭적이며, 연결 절차는 특정 블루투스 디바이스가 광고 절차를 수행하는 동안 다른 블루투스 디바이스는 스캐닝 절차를 수행할 것을 요구한다.
즉, 광고 절차가 목적이 될 수 있으며, 그 결과 단지 하나의 디바이스만 광고에 응답할 것이다. 광고 디바이스로부터 접속 가능한 광고 이벤트를 수신한 이후, 광고 (브로트캐스트) 물리 채널을 통해 광고 디바이스로 연결 요청을 전송함으로써 연결을 개시할 수 있다.
다음으로, BLE 기술에서의 동작 상태 즉, 광고 상태(Advertising State), 스캐닝 상태(Scanning State), 개시 상태(Initiating State), 연결 상태(connection state)에 대해 간략히 살펴보기로 한다.
광고 상태(Advertising State)
링크 계층(LL)은 호스트 (스택)의 지시에 의해, 광고 상태로 들어간다. 링크 계층이 광고 상태에 있을 경우, 링크 계층은 광고 이벤트들에서 광고 PDU(Packet Data Circuit)들을 전송한다.
각각의 광고 이벤트는 적어도 하나의 광고 PDU들로 구성되며, 광고 PDU들은 사용되는 광고 채널 인덱스들을 통해 전송된다. 광고 이벤트는 광고 PDU가 사용되는 광고 채널 인덱스들을 통해 각각 전송되었을 경우, 종료되거나 광고 디바이스가 다른 기능 수행을 위해 공간을 확보할 필요가 있을 경우 좀 더 일찍 광고 이벤트를 종료할 수 있다.
스캐닝 상태(Scanning State)
링크 계층은 호스트 (스택)의 지시에 의해 스캐닝 상태로 들어간다. 스캐닝 상태에서, 링크 계층은 광고 채널 인덱스들을 리스닝한다.
스캐닝 상태에는 수동적 스캐닝(passive scanning), 적극적 스캐닝(active scanning)의 두 타입이 있으며, 각 스캐닝 타입은 호스트에 의해 결정된다.
스캐닝을 수행하기 위한 별도의 시간이나 광고 채널 인덱스가 정의되지는 않는다.
스캐닝 상태 동안, 링크 계층은 스캔윈도우(scanWindow) 구간(duration) 동안 광고 채널 인덱스를 리스닝한다. 스캔인터벌(scanInterval)은 두 개의 연속적인 스캔 윈도우의 시작점 사이의 간격(인터벌)으로서 정의된다.
링크 계층은 스케쥴링의 충돌이 없는 경우, 호스트에 의해 지시되는 바와 같이 스캔윈도우의 모든 스캔인터벌 완성을 위해 리스닝해야한다. 각 스캔윈도우에서, 링크 계층은 다른 광고 채널 인덱스를 스캔해야한다. 링크 계층은 사용 가능한 모든 광고 채널 인덱스들을 사용한다.
수동적인 스캐닝일 때, 링크 계층은 단지 패킷들만 수신하고, 어떤 패킷들도 전송하지 못한다.
능동적인 스캐닝일 때, 링크 계층은 광고 디바이스로 광고 PDU들과 광고 디바이스 관련 추가적인 정보를 요청할 수 있는 광고 PDU 타입에 의존하기 위해 리스닝을 수행한다.
개시 상태(Initiating State)
링크 계층은 호스트 (스택)의 지시에 의해 개시 상태로 들어간다.
링크 계층이 개시 상태에 있을 때, 링크 계층은 광고 채널 인덱스들에 대한 리스닝을 수행한다.
개시 상태 동안, 링크 계층은 스캔윈도우 구간 동안 광고 채널 인덱스를 리스닝한다.
연결 상태(connection state)
링크 계층은 연결 요청을 수행하는 디바이스 즉, 개시 디바이스가 CONNECT_REQ PDU를 광고 디바이스로 전송할 때 또는 광고 디바이스가 개시 디바이스로부터 CONNECT_REQ PDU를 수신할 때 연결 상태로 들어간다.
연결 상태로 들어간 이후, 연결이 생성되는 것으로 고려된다. 다만, 연결이 연결 상태로 들어간 시점에서 확립되도록 고려될 필요는 없다. 새로 생성된 연결과 기 확립된 연결 간의 유일한 차이는 링크 계층 연결 감독 타임아웃(supervision timeout) 값뿐이다.
두 디바이스가 연결되어 있을 때, 두 디바이스들은 다른 역할로 활동한다.
마스터 역할을 수행하는 링크 계층은 마스터로 불리며, 슬레이브 역할을 수행하는 링크 계층은 슬레이브로 불린다. 마스터는 연결 이벤트의 타이밍을 조절하고, 연결 이벤트는 마스터와 슬레이브 간 동기화되는 시점을 말한다.
이하에서, 블루투스 인터페이스에서 정의되는 패킷에 대해 간략히 살펴보기로 한다. BLE 디바이스들은 하기에서 정의되는 패킷들을 사용한다.
패킷 포맷(Packet Format)
링크 계층(Link Layer)은 광고 채널 패킷과 데이터 채널 패킷 둘 다를 위해 사용되는 단지 하나의 패킷 포맷만을 가진다.
각 패킷은 프리앰블(Preamble), 접속 주소(Access Address), PDU 및 CRC 4개의 필드로 구성된다.
하나의 패킷이 광고 채널에서 송신될 때, PDU는 광고 채널 PDU가 될 것이며, 하나의 패킷이 데이터 채널에서 전송될 때, PDU는 데이터 채널 PDU가 될 것이다.
광고 채널 PDU(Advertising Channel PDU)
광고 채널 PDU(Packet Data Circuit)는 16비트 헤더와 다양한 크기의 페이로드를 가진다.
헤더에 포함되는 광고 채널 PDU의 PDU 타입 필드는 하기 표 3에서 정의된 바와 같은 PDU 타입을 나타낸다.
PDU Type Packet Name
0000 ADV_IND
0001 ADV_DIRECT_IND
0010 ADV_NONCONN_IND
0011 SCAN_REQ
0100 SCAN_RSP
0101 CONNECT_REQ
0110 ADV_SCAN_IND
0111-1111 Reserved
광고 PDU(Advertising PDU)
아래 광고 채널 PDU 타입들은 광고 PDU로 불리고 구체적인 이벤트에서 사용된다.
ADV_IND: 연결 가능한 비지향성 광고 이벤트
ADV_DIRECT_IND: 연결 가능한 지향성 광고 이벤트
ADV_NONCONN_IND: 연결 가능하지 않은 비지향성 광고 이벤트
ADV_SCAN_IND: 스캔 가능한 비지향성 광고 이벤트
상기 PDU들은 광고 상태에서 링크 계층(Link Layer)에서 전송되고, 스캐닝 상태 또는 개시 상태(Initiating State)에서 링크 계층에 의해 수신된다.
스캐닝 PDU(Scanning PDU)
아래 광고 채널 PDU 타입은 스캐닝 PDU로 불리며, 하기에서 설명되는 상태에서 사용된다.
SCAN_REQ: 스캐닝 상태에서 링크 계층에 의해 전송되며, 광고 상태에서 링크 계층에 의해 수신된다.
SCAN_RSP: 광고 상태에서 링크 계층에 의해 전송되며, 스캐닝 상태에서 링크 계층에 의해 수신된다.
개시 PDU(Initiating PDU)
아래 광고 채널 PDU 타입은 개시 PDU로 불린다.
CONNECT_REQ: 개시 상태에서 링크 계층에 의해 전송되며, 광고 상태에서 링크 계층에 의해 수신된다.
데이터 채널 PDU(Data Channel PDU)
데이터 채널 PDU는 16 비트 헤더, 다양한 크기의 페이로드를 가지고, 메시지 무결점 체크(Message Integrity Check:MIC) 필드를 포함할 수 있다.
앞에서 살펴본, BLE 기술에서의 절차, 상태, 패킷 포맷 등은 본 명세서에서 제안하는 방법들을 수행하기 위해 적용될 수 있다.
다시 도 4a를 참조하면, 부하(455)는 배터리일 수 있다. 배터리는 전력 픽업 회로(210)으로부터 출력되는 전력을 이용하여 에너지를 저장할 수 있다. 한편, 모바일 기기(450)에 배터리가 반드시 포함되어야 하는 것은 아니다. 예를 들어, 배터리는 탈부착이 가능한 형태의 외부 구성으로 제공될 수 있다. 다른 예를 들어, 무선 전력 수신 장치(200)에는 전자 기기의 다양한 동작을 구동하는 구동 수단이 배터리 대신 포함될 수도 있다.
모바일 기기(450)는 무선전력 수신장치(200)을 포함하는 것을 도시되어 있고, 베이스 스테이션(400)은 무선전력 전송장치(100)를 포함하는 것으로 도시되어 있으나, 넓은 의미에서는 무선전력 수신장치(200)는 모바일 기기(450)와 동일시될 수 있고 무선전력 전송장치(100)는 베이스 스테이션(400)와 동일시 될 수도 있다.
통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)이 IB 통신 모듈 이외에 OB 통신 모듈 또는 근거리 통신 모듈로서 블루투스 또는 블루투스 LE을 포함하는 경우, 통신/컨트롤 회로(120)을 포함하는 무선전력 전송장치(100)와 통신/컨트롤 회로(220)을 포함하는 무선전력 수신장치(200)은 도 4c와 같은 단순화된 블록도로 표현될 수 있다.
도 4c는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4c를 참조하면, 무선전력 전송장치(100)는 전력 변환 회로(110)과 통신/컨트롤 회로(120)을 포함한다. 통신/컨트롤 회로(120)은 인밴드 통신 모듈(121) 및 BLE 통신 모듈(122)를 포함한다.
한편 무선전력 수신장치(200)는 전력 픽업 회로(210)과 통신/컨트롤 회로(220)을 포함한다. 통신/컨트롤 회로(220)은 인밴드 통신 모듈(221) 및 BLE 통신 모듈(222)를 포함한다.
일 측면에서, BLE 통신 모듈들(122, 222)은 도 4b에 따른 아키텍처 및 동작을 수행한다. 예를 들어, BLE 통신 모듈들(122, 222)은 무선전력 전송장치(100)와 무선전력 수신장치(200) 사이의 접속을 수립하고, 무선전력 전송에 필요한 제어 정보와 패킷들을 교환하는데 사용될 수도 있다.
다른 측면에서, 통신/컨트롤 회로(120)은 무선충전을 위한 프로파일을 동작시키도록 구성될 수 있다. 여기서, 무선충전을 위한 프로파일은 BLE 전송을 사용하는 GATT일 수 있다.
도 4d는 다른 예에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4d를 참조하면, 통신/컨트롤 회로들(120, 220)은 각각 인밴드 통신 모듈들(121, 221)만을 포함하고, BLE 통신 모듈들(122, 222)은 통신/컨트롤 회로들(120, 220)과 분리되어 구비되는 형태도 가능하다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 본 명세서의 일 실시예에 따른 무선전력 전송장치로부터 수신기로의 파워 전송은 크게 선택 단계(selection phase, 510), 핑 단계(ping phase, 520), 식별 및 구성 단계(identification and configuration phase, 530), 협상 단계(negotiation phase, 540), 보정 단계(calibration phase, 550), 전력 전송 단계(power transfer phase, 560) 단계 및 재협상 단계(renegotiation phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S502, S504, S508, S510 및 S512를 포함함-일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 무선전력 전송장치는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 무선전력 전송장치가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 선택 단계(510)에서 무선전력 전송장치는 매우 짧은 구간(duration)에 해당하는 전력 신호(또는 펄스)인 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
선택 단계(510)에서 물체가 감지되는 경우, 무선전력 전송장치는 무선전력 공진 회로(예를 들어 전력전송 코일 및/또는 공진 캐패시터)의 품질 인자를 측정할 수 있다. 본 명세서의 일 실시예에서는 선택단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 놓였는지 판단하기 위하여 품질 인자를 측정할 수 있다. 무선전력 전송장치에 구비되는 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬저항 성분이 감소될 수 있고, 이로 인해 품질 인자 값이 감소하게 된다. 측정된 품질 인자 값을 이용하여 이물질의 존재 여부를 판단하기 위해, 무선전력 전송장치는 충전 영역에 이물질이 배치되지 않은 상태에서 미리 측정된 기준 품질 인자 값을 무선전력 수신장치로부터 수신할 수 있다. 협상 단계(540)에서 수신된 기준 품질 인자 값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다. 그러나 기준 품질 인자 값이 낮은 무선전력 수신장치의 경우-일 예로, 무선전력 수신장치의 타입, 용도 및 특성 등에 따라 특정 무선전력 수신장치는 낮은 기준 품질 인자 값을 가질 수 있음-, 이물질이 존재하는 경우에 측정되는 품질 인자 값과 기준 품질 인자 값 사이의 큰 차이가 없어 이물질 존재 여부를 판단하기 어려운 문제가 발생할 수 있다. 따라서 다른 판단 요소를 더 고려하거나, 다른 방법을 이용하여 이물질 존재 여부를 판단해야 한다.
본 명세서의 또 다른 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 배치되었는지 판단하기 위하여 특정 주파수 영역 내(ex 동작 주파수 영역) 품질 인자 값을 측정할 수 있다. 무선전력 전송장치의 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 무선전력 전송장치의 코일의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크(peak) 주파수가 이동될 수 있다.
핑 단계(520)에서 무선전력 전송장치는 물체가 감지되면, 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 무선전력 전송장치는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 무선전력 전송장치는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 무선전력 전송장치는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
무선전력 전송장치는 식별 및 구성 단계(530)에서 수시된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다. 확인 결과, 협상이 필요하면, 무선전력 전송장치는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다. 반면, 확인 결과, 협상이 필요하지 않은 경우, 무선전력 전송장치는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 무선전력 전송장치는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 또는 기준 피크 주파수 값이 포함된 FOD 상태 패킷을 수신할 수 있다. 또는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수 있다. 이때, 무선전력 전송장치는 기준 품질 인자 값에 기반하여 FO 검출을 위한 품질 계수 임계치를 결정할 수 있다. 무선전력 전송장치는 기준 피크 주파수 값에 기반하여 FO 검출을 위한 피크 주파수 임계치를 결정할 수 있다.
무선전력 전송장치는 결정된 FO 검출을 위한 품질 계수 임계치 및 현재 측정된 품질 인자 값(핑 단계 이전에 측정된 품질인자 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
무선전력 전송장치는 결정된 FO 검출을 위한 피크 주파수 임계치 및 현재 측정된 피크 주파수 값(핑 단계 이전에 측정된 피크 주파수 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
FO가 검출된 경우, 무선전력 전송장치는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 무선전력 전송장치는 FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)에서 수신단에 수신된 전력의 세기를 결정하고, 송신단에서 전송한 전력의 세기를 결정하기 위해 수신단과 송신단에서의 전력 손실을 측정할 수 있다. 즉, 무선전력 전송장치는 보정 단계(550)에서 송신단의 송신 파워와 수신단의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 무선전력 전송장치는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 무선전력 전송장치는 무선전력 전송장치 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 무선전력 전송장치는 전력 전송 단계(560)로 회귀할 수 있다.
본 실시예에서는 보정 단계(550과 전력 전송 단계(560)를 별개의 단계로 구분하였지만, 보정 단계(550)는 전력 전송 단계(560)에 통합될 수 있다. 이 경우 보정 단계(550)에서의 동작들은 전력 전송 단계(560)에서 수행될 수 있다.
상기한 파워 전송 계약은 무선전력 전송장치와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 무선전력 전송장치 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 6에서 전력 전송 단계(560)에서, 무선전력 전송장치(100) 및 무선전력 수신장치(200)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 무선전력 전송장치 및 무선전력 수신장치는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 무선전력 수신장치의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
더 상세히 설명하면, 무선전력 수신장치는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual control point)를 결정한다. 무선전력 수신장치는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(control error value)을 산출하고, 이를 컨트롤 에러 패킷으로서 무선전력 전송장치로 전송할 수 있다.
그리고 무선전력 전송장치는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 무선전력 수신장치는 무선전력 전송장치의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 무선전력 수신장치가 컨트롤 에러 패킷을 무선전력 전송장치로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 무선전력 전송장치가 복수의 무선전력 수신장치를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 무선전력 수신장치와의 통신에 의해 컨트롤되므로 추가적인 무선전력 수신장치들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 명세서의 공진 모드에서는 무선전력 전송장치는 기본 전력을 공통적으로 전달하고, 무선전력 수신장치가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 6에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 6의 방법으로 수행할 수도 있다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다. 쉐어드 모드는 무선전력 전송장치와 무선전력 수신장치간에 1대다 통신 및 충전을 수행하는 모드를 지칭할 수 있다. 쉐어드 모드는 자기 유도 방식 또는 공진 방식으로 구현될 수 있다.
도 7을 참조하면, 무선 전력 전송 장치(700)는 코일 어셈블리를 덮는 커버(720), 전력 송신기(740)로 전력을 공급하는 전력 어답터(730), 무선 전력을 송신하는 전력 송신기(740) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(750) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(750)는 옵셔널하게 포함되거나, 무선 전력 전송 장치(700)의 다른 사용자 인터페이스(750)로서 포함될 수도 있다.
전력 송신기(740)는 코일 어셈블리(760), 임피던스 매칭 회로(770), 인버터(780), 통신 회로(790) 또는 컨트롤 회로(710) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(760)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(770)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기(740)에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 캐패시터, 인덕터 및 이들의 연결을 스위칭하는 스위칭 소자를 포함할 수 있다. 임피던스의 매칭은 코일 어셈블리(760)를 통해 전송되는 무선전력의 반사파를 검출하고, 검출된 반사파에 기초하여 스위칭 소자를 스위칭하여 캐패시터나 인덕터의 연결 상태를 조정하거나 캐패시터의 캐패시턴스를 조정하거나 인덕터의 인덕턴스를 조정함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(770)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(770)가 생략된 무선전력 전송장치(700)의 실시예도 포함한다.
인버터(780)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(780)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 회로(790)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기(740)는 통신 회로(790)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다.
또한, 전력 송신기(740)는 통신 회로(790)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 회로(710)은 전력 송신기(740)의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 회로(710)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 회로(790) 및 컨트롤 회로(710)은 별개의 회로/소자/칩셋으로 구비되거나, 하나의 회로/소자/칩셋으로 구비될 수도 있다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다.
도 8에서, 무선전력 수신 장치(800)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(820), 무선 전력을 수신하는 전력 수신기(830), 로드 회로(load circuit, 840) 또는 코일 어셈블리를 받치며 커버하는 베이스(850) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(820)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(82)로서 포함될 수도 있다.
전력 수신기(830)는 전력 컨버터(860), 임피던스 매칭 회로(870), 코일 어셈블리(880), 통신 회로(890) 또는 컨트롤 회로(810) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(860)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(860)는 정류기(rectifier)를 포함할 수 있다. 정류기는 수신된 무선 전력을 정류하여 교류에서 직류로 변환할 수 있다. 정류기는 다이오드나 트랜지스터를 이용하여 교류를 직류로 변환하고, 캐패시터와 저항을 이용하여 이를 평활할 수 있다. 정류기로는 브릿지 회로 등으로 구현되는 전파 정류기, 반파 정류기, 전압 체배기 등이 이용될 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(870)는 전력 컨버터(860) 및 로드 회로(840)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다. 임피던스 매칭 회로(870)는 캐패시터, 인덕터 및 이들의 조합을 스위칭하는 스위칭 소자로 구성될 수 있다. 임피던스의 정합은 수신되는 무선 전력의 전압값이나 전류값, 전력값, 주파수값 등에 기초하여 임피던스 매칭 회로(870)를 구성하는 회로의 스위칭 소자를 제어함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(870)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(870)가 생략된 무선전력 수신장치(200)의 실시예도 포함한다.
코일 어셈블리(880)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 회로(890)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다.
이를 위해 전력 수신기(830)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 회로(810)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 회로(810)은 전력 수신기(830)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 회로(810)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 회로(890) 및 컨트롤 회로(810)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다. 이는 쉐어드 모드(shared mode)에서의 통신 프레임 구조일 수 있다.
도 9를 참조하면, 쉐어드 모드에서는, 서로 다른 형태의 프레임이 함께 사용될 수 있다. 예를 들어, 상기 쉐어드 모드에서는, (A)와 같은 복수의 슬롯을 가지는 슬롯 프레임(slotted frame) 및 (B)와 같은 특정 형태가 없는 자유 형식 프레임(free format frame)을 사용할 수 있다. 보다 구체적으로, 슬롯 프레임은 무선 전력 수신장치(200)로부터, 무선 전력 전송장치(100)에게 짧은 데이터 패킷들의 전송을 위한 프레임이고, 자유 형식 프레임은 복수의 슬롯들을 구비하지 않아, 긴 데이터 패킷들의 전송이 가능한 프레임일 수 있다.
한편, 슬롯 프레임 및 자유 형식 프레임은, 당업자에 의하여 다양한 명칭으로 변경될 수 있다. 예를 들어, 슬롯 프레임은, 채널 프레임으로, 자유 형식 프레임은, 메시지 프레임 등으로 변경되어 명명될 수 있다.
보다 구체적으로, 슬롯 프레임은, 슬롯의 시작을 나타내는 싱크 패턴, 측정 슬롯, 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서, 동일한 시간 간격을 갖는 추가적인 싱크 패턴을 포함할 수 있다.
여기에서, 상기 추가적인 싱크 패턴은, 앞서 설명한 프레임의 시작을 나타내는 싱크 패턴과 다른 싱크 패턴이다. 보다 구체적으로, 상기 추가적인 싱크 패턴은, 프레임의 시작을 나타내지 않고, 인접한 슬롯들(즉, 싱크 패턴의 양 옆에 위치한 연속하는 두 개의 슬롯들)과 관련된 정보를 나타낼 수 있다.
상기 9개의 슬롯들 중 연속하는 두 개의 슬롯들 사이에는, 각각 싱크 패턴이 위치할 수 있다. 이 경우, 상기 싱크 패턴은, 상기 연속하는 두 개의 슬롯들과 관련된 정보를 제공할 수 있다.
또한, 상기 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서 제공되는 싱크 패턴들은, 각각 동일한 시간 간격을 가질 수 있다. 예를 들어, 상기 9개의 슬롯들은 50ms의 시간 간격을 가질 수 있다. 또한, 상기 9개의 싱크 패턴들도 50ms의 시간 길이를 가질 수 있다.
한편, (B)와 같은 자유 형식 프레임은, 프레임의 시작을 나타내는 싱크 패턴 및 측정 슬롯 이외에, 구체적인 형태을 가지지 않을 수 있다. 즉, 상기 자유 형식 프레임은, 상기 슬롯 프레임과 다른 역할을 수행하기 위한 것으로, 예를 들어, 상기 무선 전력 전송장치와 무선 전력 수신장치 간에 긴 데이터 패킷들(예를 들어, 추가 소유자 정보 패킷들)의 통신을 수행하거나, 복수의 코일로 구성된 무선 전력 전송장치에 있어서, 복수의 코일 중 어느 하나의 코일을 선택하는 역할을 위하여 사용될 수 있다.
이하에서는, 각 프레임에 포함된 싱크 패턴(sync pattern)에 대하여 도면과 함께 보다 구체적으로 살펴본다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 10을 참조하면, 싱크 패턴은 프리앰블(preamble), 시작 비트(start bit), 응답 필드(Resonse field), 타입 필드(type field), 정보 필드(info field) 및 패리티 비트(parity bit)로 구성될 수 있다. 도 10에서는 시작 비트가 ZERO로 도시되어 있다.
보다 구체적으로, 프리앰블은 연속되는 비트들로 이루어져 있으며, 모두 0으로 설정될 수 있다. 즉, 프리앰블은 싱크 패턴의 시간 길이를 맞추기 위한 비트들일 수 있다.
프리앰블을 구성하는 비트들의 개수는 싱크 패턴의 길이가 50ms에 가장 가깝도록, 그러나, 50ms를 초과하지 않는 범위 내에서, 동작 주파수에 종속될 수 있다. 예를 들어, 동작 주파수가 100kHz인 경우, 싱크 패턴은 2개의 프리앰블 비트들로 구성되고, 동작 주파수가 105kHz인 경우, 싱크 패턴은, 3개의 프리앰블 비트들로 구성될 수 있다.
시작 비트는 프리앰블 다음에 따라오는 비트로 제로(ZERO)를 의미할 수 있다. 상기 제로(ZERO)는 싱크 패턴의 종류를 나타내는 비트일 수 있다. 여기에서, 싱크 패턴의 종류는, 프레임과 관련된 정보를 포함하는 프레임 싱크(frame sync)와 슬롯의 정보를 포함하는 슬롯 싱크(slot sync)를 포함할 수 있다. 즉, 상기 싱크 패턴은, 연속하는 프레임들 사이에 위치하며, 프레임의 시작을 나타내는 프레임 싱크이거나, 프레임을 구성하는 복수의 슬롯 중 연속하는 슬롯들 사이에 위치하며, 상기 연속하는 슬롯과 관련된 정보를 포함하는 슬롯 싱크일 수 있다.
예를 들어, 상기 제로가 0인 경우, 해당 슬롯이 슬롯과 슬롯 사이에 위치한, 슬롯 싱크임을 의미하고, 1인 경우, 해당 싱크 패턴이 프레임과 프레임 사이에 위치한 프레임 싱크임을 의미할 수 있다.
패리티 비트는 싱크 패턴의 마지막 비트로, 싱크 패턴의 데이터 필드들(즉, 응답 필드, 타입 필드, 정보 필드)를 구성하는 비트들의 개수 정보를 나타낼 수 있다. 예를 들어, 기 패리티 비트는 싱크 패턴의 데이터 필드들을 구성하는 비트의 개수가 짝수인 경우, 1, 그 밖의 경우(즉, 홀수인 경우), 0이 될 수 있다.
응답(Response) 필드는 싱크 패턴 이전의 슬롯 내에서, 무선 전력 수신장치와의 통신에 대한, 무선 전력 전송장치의 응답 정보를 포함할 수 있다. 예를 들어, 응답 필드는 무선 전력 수신장치와 통신의 수행이 감지되지 않은 경우, '00'을 가질 수 있다. 또한, 상기 응답 필드는 무선 전력 수신장치와의 통신에 통신 에러(communication error)가 감지된 경우, '01'을 가질 수 있다. 통신 에러는, 두 개 또는 그 이상의 무선 전력 수신장치가 하나의 슬롯에 접근을 시도하여, 두 개 또는 그 이상의 무선 전력 수신장치 간의 충돌이 발생한 경우일 수 있다.
또한, 응답 필드는, 무선 전력 수신장치로부터 데이터 패킷을 정확하게 수신하였는지 여부를 나타내는 정보를 포함할 수 있다. 보다 구체적으로, 응답필드는, 무선 전력 전송장치가 데이터 패킷을 거부(deni)한 경우, "10"(10-not acknowledge, NAK), 무선 전력 전송장치가 상기 데이터 패킷을 확인(confirm)한 경우, "11"(11-acknowledge, ACK)이 될 수 있다.
타입 필드는 싱크 패턴의 종류를 나타낼 수 있다. 보다 구체적으로, 타입 필드는 싱크 패턴이 프레임의 첫번째 싱크 패턴인 경우(즉, 프레임의 첫번째 싱크 패턴으로, 측정 슬롯 이전에 위치한 경우), 프레임 싱크임을 나타내는 '1'을 가질 수 있다.
또한, 타입 필드는 슬롯 프레임에서, 싱크 패턴이 프렘임의 첫번째 싱크 패턴이 아닌 경우, 슬롯 싱크임을 나타내는 '0'을 가질 수 있다.
또한, 정보 필드는 타입 필드가 나타내는 싱크 패턴의 종류에 따라 그 값의 의미가 결정될 수 있다. 예를 들어, 타입 필드가 1인 경우(즉, 프레임 싱크를 나타내는 경우), 정보 필드의 의미는 프레임의 종류를 나타낼 수 있다. 즉, 정보 필드는 현재 프레임이 슬롯 프레임(slotted frame)인지 또는 자유 형식 프레임(free-format frame)인지 나타낼 수 있다. 예를 들어, 정보 필드가 '00'인 경우, 슬롯 프레임을, 정보 필드가 '01'인 경우, 자유 형식 프레임을 나타낼 수 있다.
이와 달리, 타입 필드가 0인 경우(즉, 슬롯 싱크인 경우), 정보 필드는 싱크 패턴의 뒤에 위치한 다음 슬롯(next slot)의 상태를 나타낼 수 있다. 보다 구체적으로, 정보 필드는 다음 슬롯이 특정(specific) 무선 전력 수신장치에 할당된(allocated) 슬롯인 경우, '00', 특정 무선 전력 수신장치가 일시적으로 사용하기 위하여, 잠겨 있는 슬롯인 경우, '01', 또는 임의의 무선 전력 수신장치가 자유롭게 사용 가능한 슬롯인 경우, '10'을 가질 수 있다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 11을 참조하면, 쉐어드 모드로 동작하는 무선 전력 수신장치는, 선택 상태(Selection Phase) (1100), 도입 상태(Introduction Phase)(1110), 설정 상태(Configuration Phase) (1120), 교섭 상태(Negotiation Phase)(1130) 및 전력 전송 상태(Power Transfer Phase) (1140) 중 어느 하나의 상태로 동작할 수 있다.
우선, 일 실시예에 따른 무선 전력 전송장치는 무선 전력 수신장치를 감지하기 위하여, 무선 전력 신호를 전송할 수 있다. 즉, 무선 전력 신호를 이용하여, 무선 전력 수신장치를 감지하는 과정을 아날로그 핑(Analog ping)이라 할 수 있다.
한편, 무선 전력 신호를 수신한 무선 전력 수신장치는 선택 상태(1100)에 진입할 수 있다. 선택 상태(1100)에 진입한 무선 전력 수신장치는 앞서 설명한 바와 같이, 상기 무선 전력 신호 상에 FSK 신호의 존재를 감지할 수 있다.
즉, 무선 전력 수신장치는 FSK 신호의 존재 여부에 따라 익스클루시브 모드 또는 쉐어드 모드 중 어느 하나의 방식으로 통신을 수행할 수 있다.
보다 구체적으로, 무선 전력 수신장치는 무선 전력 신호에 FSK 신호가 포함되어 있으면, 쉐어드 모드로 동작하고, 그렇지 않은 경우, 익스클루시브 모드로 동작할 수 있다.
무선 전력 수신장치가 쉐어드 모드로 동작하는 경우, 상기 무선 전력 수신장치는 도입 상태(1110)에 진입할 수 있다. 도입 상태(1110)에서, 무선 전력 수신장치는, 설정 상태, 교섭 상태 및 전력 전송 상태에서, 제어 정보 패킷(CI, Control Information packet)을 전송하기 위하여, 무선 전력 전송장치에게 제어 정보 패킷을 전송할 수 있다. 제어 정보 패킷은, 헤더(Header) 및 제어와 관련된 정보를 가질 수 있다. 예를 들어, 제어 정보 패킷은, 헤더가 0X53일 수 있다.
도입 상태(1110)에서, 무선전력 수신장치는 제어정보(control information: CI) 패킷을 전송하기 위해 자유슬롯(free slot)을 요청하는 시도를 다음의 구성, 협상, 전력 전송 단계에 걸쳐 수행한다. 이때 무선전력 수신장치는 자유슬롯을 선택하고 최초 CI 패킷을 전송한다. 만약 무선전력 전송장치가 해당 CI 패킷에 ACK으로 응답하면, 무선전력 전송장치는 구성 단계로 진입한다. 만약 무선전력 전송장치가 NAK으로 응답하면, 다른 무선전력 수신장치가 구성 및 협상 단계를 통해 진행되고 있는 것이다. 이 경우, 무선전력 수신장치는 자유슬롯의 요구를 재시도한다.
만약 무선전력 수신장치가 CI 패킷에 대한 응답으로 ACK을 수신하면, 무선전력 수신장치는 최초 프레임 싱크까지 나머지 슬롯 싱크들을 카운팅함으로써 프레임 내의 개인 슬롯(private slot)의 위치를 결정한다. 모든 후속 슬롯 기반 프레임들에서, 무선전력 수신장치는 해당 슬롯을 통해 CI 패킷을 전송한다.
만약 무선전력 전송장치가 무선전력 수신장치에게 구성 단계로 진행함을 허락하면, 무선전력 전송장치는 무선전력 수신장치의 배타적 사용을 위한 잠금 슬롯(locked slot) 시리즈를 제공한다. 이는 무선전력 수신장치가 충돌없이 구성 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 2개의 식별 데이터 패킷들(IDHI와 IDLO)와 같은 데이터 패킷의 시퀀스들을 잠금 슬롯을 사용하여 전송한다. 본 단계를 완료하면, 무선전력 수신장치는 협상 단계로 진입한다. 협상 단계에서, 무선전력 전송장치가 무선전력 수신장치에게 배타적 사용을 위한 잠금 슬롯을 계속 제공한다. 이는 이는 무선전력 수신장치가 충돌없이 협상 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 해당 잠금 슬롯을 사용하여 하나 또는 그 이상의 협상 데이터 패킷들을 전송하며, 이는 사적 데이터 패킷들과 섞일 수도 있다. 결국 해당 시퀀스는 특정 요청 (specific request (SRQ)) 패킷과 함께 종료된다. 해당 시퀀스를 완료하면, 무선전력 수신장치는 전력 전송 단계로 진입하고, 무선전력 전송장치는 잠금 슬롯의 제공을 중단한다.
전력 전송 상태에서, 무선전력 수신장치는 할당된 슬롯을 사용하여 CI 패킷의 전송을 수행하며, 전력을 수신한다. 무선전력 수신장치는 레귤레이터 회로를 포함할 수 있다. 레귤레이터 회로는 통신/제어 회로에 포함될 수 있다. 무선전력 수신장치는 레귤레이터 회로를 통해 무선전력 수신장치의 반사 임피턴스를 자가-조절(self-regulate)할 수 있다. 다시 말해, 무선전력 수신장치는 외부 부하에 의해 요구되는 양의 파워를 전송하기 위해 반사되는 임피던스를 조정할 수 있다. 이는 과도한 전력의 수신과 과열을 방지할 수 있다.
쉐어드 모드에서, 무선전력 전송장치는 수신되는 CI 패킷에 대한 응답으로서 전력을 조정하는 것을 수행하지 않을 수 있기 때문에(동작 모드에 따라), 이 경우에는 과전압 상태를 막기 위한 제어가 필요할 수 있다.
도 5 및 도 11 등에서 설명한 바와 같이, 무선전력 전송장치와 무선전력 수신장치는 핑 단계(Ping Phase), 구성 단계(Configuration Phase)를 거쳐 협상 단계(Negotiation Phase)로 진입하거나, 핑 단계, 구성 단계, 협상 단계를 거쳐 전력 전송 단계(Power Transfer Phase)에 진입하였다가 재협상 단계(Re-negotiation Phase)로 진입할 수 있다.
도 12는 일 실시예에 따른 핑 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 12를 참조하면, 핑 단계에서, 무선전력 전송장치(1010)는 아날로그 핑을 전송하여 작동 공간(operating volume) 내에 물체가 존재하는지 여부를 확인한다(S1101). 무선전력 전송장치(1010)는 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 작동 공간 내에 물체가 존재하는지를 감지할 수 있다.
아날로그 핑에 의해 작동 공간 내에 물체가 존재하는 것으로 판단되면, 무선전력 전송장치(1010)는 작동 공간(operating volume) 내에 이물질이 존재하는지 여부를 확인하기 위해 전력 전송 전 이물질 검출(FOD)을 수행할 수 있다(S1102). 무선전력 전송장치(1010)는 NFC 카드 및/또는 RFID 태그를 보호하기 위한 동작을 수행할 수도 있다.
이후, 무선전력 전송장치(1010)는 디지털 핑을 전송하여 무선전력 수신장치(1020)를 식별한다(S1103). 무선전력 수신장치(1020)는 디지털 핑을 수신하여 무선전력 전송장치(1010)를 인지하게 된다.
디지털 핑을 수신한 무선전력 수신장치(1020)는 신호 세기 패킷(SIG, Signal Strength data packet)을 무선전력 전송장치(1010)로 전송한다(S1104).
무선전력 수신장치(1020)로부터 SIG를 수신한 무선전력 전송장치(1010)는 무선전력 수신장치(1020)가 작동 공간(operating volume) 내에 위치하였음을 식별할 수 있다.
도 13은 일 실시예에 따른 구성 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
구성 단계(또는 식별 및 구성 단계)에서, 무선전력 수신장치(1020)는 자신의 식별 정보를 무선전력 전송장치(1010)로 전송하고, 무선전력 수신장치(1020)와 무선전력 전송장치(1010)는 기본 전력 전송 계약(baseline Power Transfer Contract)을 수립할 수 있다.
도 13을 참조하면, 구성 단계에서, 무선전력 수신장치(1020)는, 자신을 식별시키기 위해 ID(identification data packet)을 무선전력 전송장치(1010)로 전송할 수 있다(S1201). 또한, 무선전력 수신장치(1020)는 XID(Extended Identification data packet)을 무선전력 전송장치(1010)로 전송할 수 있다(S1202). 또한, 무선전력 수신장치(1020)는 전력 전송 계약 등을 위해 PCH(Power Control Hold-off data packet)을 무선전력 전송장치(1010)로 전송할 수 있다(S1203). 또한, 무선전력 수신장치(1020)는 구성 패킷(CFG, Configuration data packet)을 무선전력 전송장치로 전송할 수 있다(S1204).
EPP를 위한 확장된 프로토콜(Extended Protocol)에 따르는 경우, 무선전력 전송장치(1010)는 CFG에 대한 응답으로 ACK를 전송할 수 있다(S1205).
도 14는 일 실시예에 따른 무선전력 수신장치의 구성 패킷(CFG)의 메시지 필드를 도시한 도면이다.
일 실시예에 따른 구성 패킷(CFG)은 0x51의 헤더값을 가질 수 있고, 도 14를 참조하면, 5 바이트의 메시지 필드를 포함할 수 있다.
도 14를 참조하면, 구성 패킷(CFG)의 메시지 필드에는 1 비트의 인증(AI) 플래그와 1 비트의 아웃밴드(OB) 플래그가 포함될 수 있다.
인증 플래그(AI)는 무선전력 수신장치(1020)가 인증 기능을 지원하는지 여부를 지시한다. 예를 들어, 인증 플래그(AI)의 값이 '1'이면 무선전력 수신장치(1020)가 인증 기능을 지원하거나 인증 개시자(Authentication Initiator)로 동작할 수 있음을 지시하고, 인증 플래그(AI)의 값이 '0'이면 무선전력 수신장치(1020)가 인증 기능을 지원하지 않거나 인증 개시자로 동작할 수 없음을 지시할 수 있다.
아웃밴드(OB) 플래그는 무선전력 수신장치(1020)가 아웃밴드 통신을 지원하는지 여부를 지시한다. 예를 들어, 아웃밴드(OB) 플래그의 값이 '1'이면 무선전력 수신장치(1020)가 아웃밴드 통신을 지시하고, 아웃밴드(OB) 플래그의 값이 '0'이면 무선전력 수신장치(1020)가 아웃밴드 통신을 지원하지 않음을 지시할 수 있다.
구성 단계에서 무선전력 전송장치(1010)는 무선전력 수신장치(1020)의 구성 패킷(CFG)을 수신하여, 무선전력 수신장치(1020)의 인증기능 지원여부 및 아웃밴드 통신 지원여부를 확인할 수 있다.
도 15는 일 실시예에 따른 협상 단계 또는 재협상 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
협상 단계 또는 재협상 단계에서, 무선전력 수신장치와 무선전력 전송장치 사이의 무선전력의 수신/전송과 관련한 전력 전송 계약(Power Transfer Contract)을 확장 또는 변경하거나, 전력 전송 계약의 요소 중 적어도 일부를 조정하는 전력 전송 계약의 갱신이 이루어지거나, 아웃밴드 통신을 수립하기 위한 정보의 교환이 이루어질 수 있다.
도 15를 참조하면, 협상 단계에서, 무선전력 수신장치(1020)는 GRQ(General Request data packet)을 이용해 무선전력 전송장치(1010)의 ID(Identification data packet) 및 CAP(Capabilities data packet)을 수신할 수 있다.
일반요청패킷(GRQ)은 0x07의 헤더값을 가질 수 있고, 1바이트의 메시지 필드를 포함할 수 있다. 일반요청패킷(GRQ)의 메시지 필드에는 무선전력 수신장치(1020)가 GRQ 패킷을 이용해 무선전력 전송장치(1010)에게 요청하는 데이터 패킷의 헤더값이 포함될 수 있다. 예를 들어, 무선전력 수신장치(1020)가 GRQ 패킷을 이용해 무선전력 전송장치(1010)의 ID 패킷을 요청하는 경우, 무선전력 수신장치(1020)는 일반요청패킷(GRQ)의 메시지 필드에 무선전력 전송장치(1010)의 ID 패킷의 헤더값(0x30)이 포함된 일반요청패킷(GRQ/id)을 전송한다.
도 15를 참조하면, 협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)의 ID 패킷을 요청하는 GRQ 패킷(GRQ/id)을 무선전력 전송장치(1010)로 전송할 수 있다(S1301).
GRQ/id를 수신한 무선전력 전송장치(1010)는 ID 패킷을 무선전력 수신장치(1020)로 전송할 수 있다(S1302). 무선전력 전송장치(1010)의 ID 패킷에는 Manufacturer Code에 대한 정보가 포함된다. Manufacturer Code에 대한 정보가 포함된 ID 패킷은 무선전력 전송장치(1010)의 제조자(manufacturer)를 식별할 수 있도록 한다.
도 15를 참조하면, 협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)의 성능 패킷(CAP)을 요청하는 GRQ 패킷(GRQ/cap)을 무선전력 전송장치(1010)로 전송할 수 있다(S1303). GRQ/cap의 메시지 필드에는 성능패킷(CAP)의 헤더값(0x31)이 포함될 수 있다.
GRQ/cap를 수신한 무선전력 전송장치(1010)는 성능 패킷(CAP)을 무선전력 수신장치(1020)로 전송할 수 있다(S1304).
도 16은 일 실시예에 따른 무선전력 전송장치의 성능 패킷(CAP)의 메시지 필드를 도시한 도면이다.
일 실시예에 따른 성능 패킷(CAP)은 0x31의 헤더값을 가질 수 있고, 도 16을 참조하면, 3 바이트의 메시지 필드를 포함할 수 있다.
도 16을 참조하면, 성능 패킷(CAP)의 메시지 필드에는 1 비트의 인증(AR) 플래그와 1 비트의 아웃밴드(OB) 플래그가 포함될 수 있다.
인증 플래그(AR)는 무선전력 전송장치(1010)가 인증 기능을 지원하는지 여부를 지시한다. 예를 들어, 인증 플래그(AR)의 값이 '1'이면 무선전력 전송장치(1010)가 인증 기능을 지원하거나 인증 응답자(Authentication Responder)로 동작할 수 있음을 지시하고, 인증 플래그(AR)의 값이 '0'이면 무선전력 전송장치(1010)가 인증 기능을 지원하지 않거나 인증 응답자로 동작할 수 없음을 지시할 수 있다.
아웃밴드(OB) 플래그는 무선전력 전송장치(1010)가 아웃밴드 통신을 지원하는지 여부를 지시한다. 예를 들어, 아웃밴드(OB) 플래그의 값이 '1'이면 무선전력 전송장치(1010)가 아웃밴드 통신을 지시하고, 아웃밴드(OB) 플래그의 값이 '0'이면 무선전력 전송장치(1010)가 아웃밴드 통신을 지원하지 않음을 지시할 수 있다.
협상 단계에서 무선전력 수신장치(1020)는 무선전력 전송장치(1010)의 성능 패킷(CAP)을 수신하여, 무선전력 전송장치(1010)의 인증기능 지원여부 및 아웃밴드 통신 지원여부를 확인할 수 있다.
또한, 도 15를 참조하면, 무선전력 수신장치(1020)는 협상 단계 또는 재협상 단계에서 적어도 하나의 특정 요청 패킷(SRQ, Specific Request data packet)을 이용해 전력 전송 단계에서 제공받을 전력과 관련한 전력 전송 계약(Power Transfer Contract)의 요소들을 갱신할 수 있고, 협상 단계 또는 재협상 단계를 종료할 수 있다(S1305).
무선전력 전송장치(1010)는 특정 요청 패킷(SRQ)의 종류에 따라 특정 요청 패킷(SRQ)에 대한 응답으로 ACK만을 전송하거나, ACK 또는 NAK만을 전송하거나, ACK 또는 ND만을 전송할 수 있다(S1306).
상술한 핑 단계, 구성 단계, 협상/재협상 단계에서 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 교환되는 데이터 패킷 또는 메시지는 인밴드 통신을 통해 전송/수신될 수 있다.
전력 전송 단계에서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 전력 전송 계약에 기초하여 무선전력을 전송/수신할 수 있다. 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다.
전력 전송 단계에서, 무선전력 전송장치(1010) 및/또는 무선전력 수신장치(1020)는 전력 전송 계약의 갱신 등을 위해 협상 단계로 재진입할 수도 있다.
핑 단계, 구성 단계 및 협상 단계에 대한 기타 자세한 내용은 도 5 및 도 11 등에서 설명하였으므로, 이에 대한 추가적인 설명은 생략한다.
한편, 무선전력 수신장치(1020)는 협상 단계 또는 재협상 단계에서, 전력 전송 단계에서 사용될 통신 모드를 결정할 수 있다.
도 17은 일 실시예에 따른 협상 단계 또는 재협상 단계에서 사용될 통신 모드를 결정하기 위한 프로토콜을 개략적으로 도시한 흐름도이고, 도 18은 일 실시예에 따른 특정 요청 패킷(SRQ)의 메시지 필드를 도시한 도면이다.
도 17을 참조하면, 무선전력 전송장치(1010)는 인밴드 통신모듈(1011)과 아웃밴드 통신모듈(1012)을 포함할 수 있다. 인밴드 통신모듈(1011)은 인밴드 통신을 통한 메시지 변조, 메시지 전송, 메시지 복조 등을 수행할 수 있고, 아웃밴드 통신모듈(1012)은 아웃밴드 통신을 통한 메시지 변조, 메시지 전송, 메시지 복조 등을 수행할 수 있다. 인밴드 통신모듈(1011)과 아웃밴드 통신모듈(1012)은 서로 물리적으로 분리될 수도 있으나, 물리적으로 하나의 프로세서에서 의해 구현될 수도 있다.
무선전력 수신장치(1020) 역시 인밴드 통신모듈(1021)과 아웃밴드 통신모듈(1022)을 포함할 수 있다. 인밴드 통신모듈(1021)은 인밴드 통신을 통한 메시지 변조, 메시지 전송, 메시지 복조 등을 수행할 수 있고, 아웃밴드 통신모듈(1022)은 아웃밴드 통신을 통한 메시지 변조, 메시지 전송, 메시지 복조 등을 수행할 수 있다. 인밴드 통신모듈(1021)과 아웃밴드 통신모듈(1022)은 서로 물리적으로 분리될 수도 있으나, 물리적으로 하나의 프로세서에서 의해 구현될 수도 있다.
이하에서는, 설명의 편의를 위해, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 모두 아웃밴드 통신을 지원하고, 아웃밴드 통신으로 BLE 통신을 사용하는 것을 전제로 설명한다.
협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1020)는 전력 전송 단계에서 사용할 통신 모드에 대한 정보를 포함하는 특정 요청 패킷(SRQ/com)을 무선전력 전송장치(1010)로 전송할 수 있다(S1401).
S1401에서 전송되는 특정 요청 패킷(SRQ/com)은 도 15를 참조하여 설명한 협상 단계 또는 재협상 단계의 S1305에서 전송되는 특정 요청 패킷(SRQ)의 일종일 수 있다
도 18을 참조하면, 특정 요청 패킷(SRQ)의 메시지 필드는 요청 필드(Request)를 포함하는 바이트(B0)와 파라미터 필드(Parameter)를 포함하는 바이트(B1)를 포함할 수 있다.
현재의 Qi 규격에 따르면, SRQ 패킷의 요청 필드(Request)의 값으로, 0x00, 0x01, 0x02, 0x03, 0x04 및 0x05는 각각 SRQ/en, SRQ/gp, SRQ/rpr, SRQ/fsk, SRQ/rp, SRQ/rep로 이미 사용되고 있으므로, 전력 전송 단계에서 사용할 통신 모드에 대한 정보를 포함하는 특정 요청 패킷(SRQ/com)의 Request 값은 0x00, 0x01, 0x02, 0x03, 0x04 및 0x05이 아닌 다른 값으로 사용될 수 있다. 예를 들어, SRQ/ADT의 Request 값은 0x06, 0x07 또는 0x08 등이 사용될 수 있다.
SRQ/com의 파라미터 필드(Parameter)는 전력 전송 단계에서 사용 가능한 통신 모드의 종류가 각각 다른 값으로 표현될 수 있다.
예를 들어, 전력 전송 단계에서 사용 가능한 통신 모드는, 인밴드 모드, 혼용 모드, 아웃밴드 모드 등을 포함할 수 있다.
인밴드 모드는, 전력 전송 단계에서 인밴드 통신만을 이용해 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 통신하는 통신 모드를 의미할 수 있다.
혼용 모드는, 전력 전송 단계에서 인밴드 통신과 아웃밴드 통신을 함께 사용하여 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 통신하는 통신 모드를 의미할 수 있다.
아웃밴드 모드는, 전력 전송 단계에서 아웃밴드 통신만을 이용해 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 통신하는 통신 모드를 의미할 수 있다.
예를 들어, SRQ/com의 파라미터 필드(Parameter)의 값이 0x00이 경우에는 인밴드 모드, 0x01인 경우에는 혼용 모드, 0x02인 경우에는 아웃밴드 모드를 지시할 수 있다. 실시예에 따라 각 통신 모드를 지시하는 값은 달라질 수 있다.
다른 예로서, 전력 전송 단계에서 사용 가능한 통신 모드는, 인밴드 모드, 제1 혼용 모드, 제2 혼용 모드, 아웃밴드 모드 등을 포함할 수 있다.
예를 들어, SRQ/com의 파라미터 필드(Parameter)의 값이 0x00이 경우에는 인밴드 모드, 0x01인 경우에는 제1 혼용 모드, 0x02인 경우에는 제2 혼용 모드, 0x03인 경우에는 아웃밴드 모드를 지시할 수 있다. 실시예에 따라 각 통신 모드를 지시하는 값은 달라질 수 있다.
인밴드 모드와 아웃밴드 모드는 전술한 바와 동일하다.
제1 혼용 모드는, 전력 전송 단계에서, 인밴드 통신을 메인 통신으로 사용하고, 아웃밴드 통신을 보조 통신으로 사용하는 통신 모드를 의미할 수 있다.
제1 혼용 모드는, 전력 전송 단계에서, 대용량의 메시지(또는 대용량의 데이터 패킷) 및/또는 무선전력의 제어와 무관한 데이터 패킷은 아웃밴드 통신을 통해 전송/수신되고, 무선전력을 제어하기 위한 데이터 패킷은 인밴드 통신을 통해 전송/수신되는 모드일 수 있다.
예를 들어, 대용량의 메시지는 인밴드 통신을 통해 전송/수신되는 경우 일정 시간 이상이 소요되는 메시지이거나, 무선전력 전송장치(1010)의 인증(또는 무선전력 수신장치(1020)의 인증)을 위한 인증 메시지나 펌웨어 업데이트를 위한 데이터 등이 될 수 있다.
예를 들어, 무선전력을 제어하기 위한 데이터 패킷은, 제어오류패킷(CE, control error data packet), 수신전력패킷(RP, Received Power data packet), 충전상태패킷(CHS, Charge Status data packet), 전력전송중단패킷(EPT, End Power transfer data packet) 등이 될 수 있다.
제어오류패킷(CE)은 실제 동작점(actual operating point)과 목표 동작점(target operating point)의 차이에 대한 정보를 포함하는 패킷이며, 수신전력패킷(RP)은 수신 전력값에 대한 정보를 포함하는 패킷이다. 전력 전송 단계에서, CE와 RP는, 무선전력의 제어를 위해, 요구되는 인터벌에 맞추어 주기적으로 전송/수신되어야 하는 데이터 패킷이다.
제1 혼용 모드에서, 메인 통신 채널인 인밴드 통신이 악화되는 등 (예를 들어, 무선 전력의 파워가 올라감에 따라 인밴드 통신을 통한 데이터의 인코딩 및/또는 디코딩 품질이 낮아지는 경우 등), 인밴드 통신을 통한 데이터 교환이 정상적이지 않은 상태에서는, 인밴드 통신을 통해 교환될 데이터 또는 메시지가 보조 통신 채널인 아웃밴드 통신을 통해 교환될 수 있다.
제2 혼용 모드는, 전력 전송 단계에서, 아웃밴드 통신을 메인 통신으로 사용하고, 인밴드 통신을 보조 통신으로 사용하는 통신 모드를 의미할 수 있다.
제2 혼용 모드는, 전력 전송 단계에서, 인증 메시지나 펌웨어 업데이트를 위한 데이터 등과 같은 대용량의 메시지는 물론, 무선전력을 제어하기 위한 데이터 패킷, 무선전력의 제어와 무관한 데이터 패킷 등이 아웃밴드 통신을 통해 전송/수신되는 모드일 수 있다.
제2 혼용 모드에서 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 교차 접속(cross-connection)을 감지하는 용도로 인밴드 통신을 이용할 수 있다.
아웃밴드 통신은 인밴드 통신에 비해 통신 가능 거리가 길어, 무선전력을 전송/수신하는 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 아웃밴드 통신이 연결되지 않고, 무선전력 전송장치(1010)가 다른 기기와 아웃밴드 통신이 연결되거나, 무선전력 수신장치(1020)가 다른 기기와 아웃밴드 통신이 연결되는 교차 접속이 일어날 수 있다.
이를 방지하기 위해, 매우 근접한 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에서 수행되는 인밴드 통신을 통해 교차 접속 여부를 확인하는 데이터 또는 신호를 전송/수신하여 교차 접속을 감지할 수 있다.
또는, 제2 혼용 모드에서 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 아웃밴드 통신이 악화되는 등, 아웃밴드 통신을 통해 데이터 교환이 정상적이지 않은 상태에서는, 아웃밴드 통신을 통해 교환될 데이터 또는 메시지를 보조 통신 채널인 인밴드 통신을 통해 교환할 수 있다.
무선전력 수신장치(1020)는 전력 전송 단계에서 사용할 통신 모드에 따라 SRQ/com의 파라미터 필드(Parameter)의 값을 결정하여, 인밴드 통신을 통해 SRQ/com을 무선전력 전송장치(1010)로 전송한다.
다시 도 17을 참조하면, 무선전력 전송장치(1010)는 SRQ/com에 대해 ACK로 응답할 수 있다. 무선전력 전송장치(1010)는 SRQ/com에 대해 ACK로만 응답하도록 강제될 수 있다.
무선전력 수신장치(1020)는 인밴드 통신을 통해 BLE 장치 주소를 포함하는 데이터 패킷을 전송할 수 있다(S1403). 설명의 편의를 위해 무선전력 수신장치(1020)가 자신의 BLE 장치 주소를 포함하는 데이터 패킷을 BLE 연결 요청 메시지라고 칭한다.
무선전력 수신장치(1020)는 SRQ/com을 통해 전력 전송 단계에서 혼용 모드(또는 제1 혼용 모드, 제2 혼용 모드) 또는 아웃밴드 모드를 이용해 통신하기로 한 경우에 한해, BLE 연결 요청 메시지를 전송할 수 있다. 즉, 무선전력 수신장치(1020)는 SRQ/com을 통해 전력 전송 단계에서 인밴드 모드를 이용해 통신하기로 한 경우에는 BLE 연결 요청 메시지를 전송하지 않을 수 있다.
b7 b6 b5 b4 b3 b2 b1
B0 BLE device Address_B0
B1 BLE device Address_B1
B2 BLE device Address_B2
B3 BLE device Address_B3
B4 BLE device Address_B4
B5 BLE device Address_B5
[표 4]를 참조하면, BLE 연결 요청 메시지는, 예를 들어, 6바이트의, 무선전력 수신장치(1020)의 블루투스 장치 주소(Bluetooth Device Address)에 대한 정보가 포함될 수 있다. 무선전력 수신장치(1020)는 사용자의 프라이버시 보호를 위해 블루투스 장치 주소로 Random Static Device address를 사용할 수 있다.
무선전력 수신장치(1020)로부터 BLE 연결 요청 메시지를 수신한 무선전력 전송장치(1010)는, BLE 연결 요청 메시지의 정상적인 수신여부를 알리기 위해 ACK 또는 NAK으로 응답할 수 있다. 또는 무선전력 전송장치(1010)는 BLE 연결 요청 메시지를 처리할 수 없을 경우에는 ND를 응답할 수 있다.
BLE 연결 요청 메시지를 정상적으로 수신한 무선전력 전송장치(1010)는 인밴드 통신을 통해 자신의 BLE 장치 주소를 포함하는 데이터 패킷을 전송할 수 있다(S1404). 설명의 편의를 위해 무선전력 전송장치(1010)가 자신의 BLE 장치 주소를 포함하는 데이터 패킷을 BLE 연결 응답 메시지라고 칭한다.
BLE 연결 응답 메시지는, 예를 들어, 6바이트의, 무선전력 전송장치(1010)의 블루투스 장치 주소(Bluetooth Device Address)에 대한 정보가 포함될 수 있다(표 4 참조).
무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 수신한 상대방의 블루투스 장치 주소를 기반으로 BLE 연결을 수립할 수 있다(S1405).
무선전력 수신장치(1020)가 전송한 SRQ/com에서 지정한 통신 모드에 따라, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 전력 전송 단계에서 인밴드 통신 및/또는 아웃밴드 통신을 사용한다.
무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 통신 모드로 인밴드 모드를 사용하는 경우, 인밴드 통신은 무선전력의 전력 시그널을 변조하는 방식의 통신 방식이므로, 무선 전력의 전송/수신의 종료와 통신 종료 시점이 동일하다.
또한, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 통신 모드로 아웃밴드 모드를 사용하는 경우, 아웃밴드 통신으로 무선 전력의 전송/수신의 종료와 관련된 메시지를 교환하므로, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 무선 충전의 종료와 통신 종료 시점을 확인할 수 있다.
그러나, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 통신 모드로 혼용 모드(제1 혼용 모드 또는 제2 혼용 모드를 포함)를 사용하는 경우, 아웃밴드 통신이 인밴드 통신에 비해 통신 가능 거리가 길기 때문에, 무선전력 수신장치(1020)가 무선전력 전송장치(1010)로부터 이탈되어 무선 충전이 중단된 상태에서도 아웃밴드 통신이 연결된 상태가 충분히 발생할 수 있다.
이 경우, 무선전력 전송장치(1010)와 아웃밴드 통신이 연결된 무선전력 수신장치(1020)가 무선전력 전송장치(1010)로부터 이탈된 상태에서 새로운 무선전력 수신장치가 무선전력 전송장치(1010) 상에 놓여지고, 무선전력 전송장치(1010)가 새로운 무선전력 수신장치로 무선전력을 제공하는 경우, 아웃밴드 통신이 연결된 기기와 인밴드 통신이 연결된 기기가 상이한 교차 접속(cross connection)이 발생하게 된다.
특히, 무선전력 수신장치(1020)의 이탈과 새로운 무선전력 수신장치가 무선전력 전송장치(1010)에 놓여짐이 매우 짧은 시간 내에 이루어지는 핫 스왑(Hot swap)이 발생하는 경우, 새로운 무선전력 수신장치에 대한 정상적인 무선충전이 이루어지지 않거나, 새로운 무선전력 수신장치로 과도한 무선전력이 제공될 수도 있다.
예를 들어, 무선전력 수신장치(1020)와 무선전력 전송장치(1010) 사이에 고전력의 전력 전송 계약이 수립되어 고전력의 전력 전송이 이루어지는 중에, 핫 스왑이 발생하면, 새로운 무선전력 수신장치로 고전력의 전력 전송이 이루어져 새로운 무선전력 수신장치에 데미지가 가해질 수 있다.
따라서, 무선충전이 종료되거나 인밴드 통신 연결이 종료되면, 아웃밴드 통신 역시 종료되도록 하는 프로토콜이 필요하다.
또한, 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 무선전력 전송/수신을 위한 프로토콜이 진행하는 중에, 프로토콜이 재시작되면, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 핑 단계부터 새롭게 프로토콜을 시작하게 된다.
인밴드 통신과 아웃밴드 통신이 혼용되는 통신모드를 사용하는 중에 인밴드 통신을 이용한 프로토콜이 재시작된 경우, 자칫 인밴드 통신과 아웃밴드 통신으로 각각 상충되는 데이터가 전송/수신될 수 있다.
따라서, 원활한 프로토콜의 재시작을 위해, 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 아웃밴드 연결 역시 종료되어야 하고, 협상 단계에서 다시 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 아웃밴드 연결이 수립되어야 한다.
이하에서는, 협상 단계와 전력 전송 단계에서 아웃밴드 통신의 연결을 종료하는 프로토콜에 대해 설명한다.
아웃밴드 통신의 연결은 협상 단계 또는 전력 전송 단계에서 이루어진다. 따라서, 아웃밴드 통신의 연결을 종료하는 프로토콜은 협상 단계 또는 전력 전송 단계에서 수행될 수 있다.
먼저, 협상 단계에서 아웃밴드 통신의 연결을 종료하는 프로토콜에 대해 설명한다.
도 19는 협상 단계에서 이물질이 검출된 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 19를 참조하면, 협상 단계에서 아웃밴드 통신(예를 들어, BLE)의 연결이 수립될 수 있다(S1405). 도 17을 참조하여 설명한 바와 같이, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 협상 단계에서 서로의 블루투스 장치 주소를 기반으로 BLE 연결을 수립할 수 있다
협상 단계에서, 무선전력 수신장치(1020)는 FOD 상태 패킷(FOD Status data packet)을 무선전력 전송장치(1010)로 전송한다(S1501). FOD 상태 패킷은 기준 품질 계수(Reference Quality Factor, Qt(ref))에 대한 정보를 포함하는 패킷과, 기준 공명 주파수(Reference Resonance Frequency, f' t (ref))에 대한 정보를 포함하는 패킷을 포함할 수 있다.
무선전력 전송장치(1010)는 수신한 FOD 상태 패킷으로부터 기준 품질 계수와 기준 공명 주파수를 확인하고, 기준 품질 계수와 기준 공명 주파수를 기초로 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질(FO)이 존재하는지 여부를 확인한다.
무선전력 전송장치(1010)는 이물질이 없을 것으로 예상되는 경우에는 FOD 상태 패킷에 대해 ACK으로 응답하지만, 이물질이 존재할 가능성이 있는 경우에는 FOD 상태 패킷에 대해 NAK으로 응답한다.
FOD 상태 패킷에 대한 응답으로 NAK을 수신한 무선전력 수신장치(1020)는, 협상 단계를 중단(abort)하고, 전력 전송 단계를 기본 전력 프로파일(baseline power profile: BPP)에 따른 무선전력을 수신하는 기본 프로토콜(baseline protocol)의 전력 전송 단계로 전환할 수 있다.
기본 프로토콜에서는, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 인밴드 통신만을 이용해 통신하고, 아웃밴드 통신은 사용하지 않는다. 따라서, 아웃밴드 통신의 연결을 종료할 필요가 있다.
또는, 무선전력 전송장치(1010)는 FOD 상태 패킷에 대한 응답으로 NAK을 전송하고, 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
또는, 무선전력 전송장치(1010)는 FOD 상태 패킷에 대한 응답으로 NAK을 전송하였으나, 무선전력 수신장치(1020)가 기본 프로토콜의 전력 전송 단계로 전환하지 않은 경우에 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010) 및 무선전력 수신장치(1020) 중 적어도 하나는, 무선 전력의 전력 시그널이 제거되는 것에 기초하여, FOD 상태 패킷에 대한 응답으로 NAK을 전송/수신하는 것에 기초하여, 협상 단계가 중단(abort)되는 것에 기초하여, 또는 기본 프로토콜의 전력 전송 단계로 전환되는 것에 기초하여, 아웃밴드 통신의 연결을 종료할 수 있다.
이를 위해, 무선전력 전송장치(1010) 및 무선전력 수신장치(1020) 중 적어도 하나는, 아웃밴드 통신의 연결 종료를 알리는 메시지(LL_Terminate_IND)를 아웃밴드 통신을 이용해 상대 장치로 전송하고(S1601), LL_Terminate_IND를 수신한 무선전력 전송장치(1010) 또는 무선전력 수신장치(1020)는 아웃밴드 통신을 이용해 상대 장치로 ACK를 전송하여(S1602), 무선전력 전송장치(1010)와 무선전력 수신장치(1020)의 아웃밴드 통신모듈(1012, 1022)이 각각 대기(Standby) 모드로 전환되도록 한다(S1603).
상술한 바와 같이, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 협상 단계에서 이물질이 검출됨에 따라, 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 협상 단계에서 무선전력 전송장치(1010)가 응답 패턴 또는 데이터 패킷을 전송한 이후, 협상 타임 아웃(tnegotiate) 이내에 무선전력 수신장치(1020)로부터 후속 데이터 패킷을 수신하지 못하면, 무선전력 전송장치(1010)는 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 협상 단계에서 무선전력 수신장치(1020)는 무선전력 전송장치(1010)의 응답이 요구되는 패킷(simple-query data packet or a data-request data packet)을 전송한 이후, 응답 타임 아웃(tresponsetimeout) 이내에 무선전력 전송장치(1010)로부터 응답 패턴 또는 데이터 패킷을 수신하지 못하면, 협상 단계를 중단하고 기본 프로토콜의 전력 전송 단계를 진행한다. 이 경우, 기본 프로토콜에서는 아웃밴드 통신을 사용하지 않으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 도 20은 협상 단계에서 부적절한 데이터 패킷(illegal data packet)을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 20을 참조하면, 협상 단계에서 무선전력 전송장치(1010)가 부적절한 데이터 패킷(illegal data packet)을 수신한 경우(S1503), 무선전력 전송장치(1010)는 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 도 21은 협상 단계에서 전력전송중단패킷을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 21을 참조하면, 협상 단계에서 무선전력 수신장치(1020)는 전력전송중단패킷(End Power transfer data packet, EPT)을 무선전력 전송장치(1010)로 전송할 수 있다(S1504). 무선전력 수신장치(1020)로부터 EPT를 수신한 무선전력 전송장치(1010)는 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 협상 단계에서, 무선전력 전송장치(1010)가 CE, RP 또는 RP8을 수신하는 경우, 협상 단계가 중단되고, 기본 프로토콜의 전력 전송 단계가 진행될 수 있다. 또한, 협상 단계에서, 무선전력 수신장치(1020)가 협상 단계의 종료를 요청하기 위해 전송한 SRQ/en에 대해 무선전력 전송장치(1010)가 ATN 또는 ND로 응답한 경우, 협상 단계가 중단되고, 기본 프로토콜의 전력 전송 단계가 진행될 수 있다.
이와 같이, 협상 단계가 진행되는 중에 협상 단계가 중단되고 기본 프로토콜의 전력 전송 단계가 진행되는 경우, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 협상 단계에서, 예를 들어, 사용자에 의한 무선전력 수신장치(1020)의 이동 등에 의해, 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 인밴드 통신이 종료되거나, 인밴드 통신 및/또는 무선 충전의 진행이 불가능한 경우에도 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
상술한 바와 같이, 협상 단계에서, 협상 단계가 중단되고 기본 프로토콜의 전력 전송 단계로 전환되거나, 무선 전력의 전력 시그널이 제거되는 경우에, 무선전력 전송장치(1010) 및 무선전력 수신장치(1020) 중 적어도 하나는 아웃밴드 통신의 연결이 종료되도록 할 수 있다.
따라서, 기본 프로토콜의 전력 전송 단계에서는 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 인밴드 통신만으로 통신이 이루어지도록 할 수 있다. 또한, 협상 단계에서 무선 전력의 전력 시그널이 제거되는 경우, 아웃밴드 통신의 연결을 종료시켜, 무선 충전을 위한 프로토콜이 재시작됨에 따라 협상 단계에서 다시 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 아웃밴드 연결이 수립되도록 할 수 있다.
이하에서는, 전력 전송 단계에서 아웃밴드 통신의 연결을 종료하는 프로토콜에 대해 설명한다.
도 22는 전력 전송 단계에서 전력전송중단패킷을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 22를 참조하면, 협상 단계에서 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 아웃밴드 통신(예를 들어, BLE)의 연결이 수립되고(S1405), 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 전력 전송 단계에 진입할 수 있다(S1510).
그러나 실시예에 따라 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 전력 전송 단계에 진입한 이후에 아웃밴드 통신의 연결이 수립될 수도 있다.
전력 전송 단계에서 무선전력 수신장치(1020)는 전력전송중단패킷(EPT)을 무선전력 전송장치(1010)로 전송할 수 있다(S1511). 무선전력 수신장치(1020)로부터 EPT를 수신한 무선전력 전송장치(1010)는 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 도 23은 전력 전송 단계에서 부적절한 데이터 패킷(illegal data packet)을 수신한 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 23을 참조하면, 전력 전송 단계에서 무선전력 전송장치(1010)가 부적절한 데이터 패킷(illegal data packet)을 수신한 경우(S1512), 무선전력 전송장치(1010)는 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 무선전력 수신장치(1020)는 전력 전송 단계의 시작으로부터 수신 전력 간격(treceived) 내에 첫번째 RP 또는 RP8을 전송하여야 한다. 또한, 무선전력 수신장치(1020)는 전력 전송 단계에서 수신 전력 간격(treceived)으로 RP 또는 RP8을 연속적으로 전송하여야 한다. 보다 구체적으로 연속하는 RP 또는 RP8의 시작 사이의 간격은 수신 전력 간격(treceived) 이내가 되어야 한다.
무선전력 전송장치(1010)가 마지막으로 수신된 RP 또는 RP8의 시작 시점으로부터 수신 전력 간격(treceived) 이내에 후속 RP 또는 RP8를 수신하지 못한 경우, 무선전력 전송장치(1010)는 마지막으로 수신된 RP 또는 RP8의 시작으로부터 수신 전력 타임 아웃(tpower)이 경과한 시점에서 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 무선전력 수신장치(1020)는 전력 전송 단계의 시작으로부터 컨트롤 에러 간격(tinterval) 내에 첫번째 CE를 전송하여야 한다. 또한, 무선전력 수신장치(1020)는 전력 전송 단계에서 컨트롤 에러 간격(tinterval)으로 CE를 연속적으로 전송하여야 한다. 보다 구체적으로 연속하는 CE의 시작 사이의 간격은 컨트롤 에러 간격(tinterval) 이내가 되어야 한다.
무선전력 전송장치(1010)가 마지막으로 수신된 CE의 시작 시점으로부터 컨트롤 에러 간격(tinterval) 이내에 후속 CE를 수신하지 못한 경우, 무선전력 전송장치(1010)는 마지막으로 수신된 CE의 시작으로부터 컨트롤 에러 타임 아웃(ttimeout)이 경과한 시점에서 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 도 24는 전력 전송 단계에서 전력 감소를 위해 NAK 응답이 전송된 경우에 아웃밴드 통신의 연결을 종료하는 프로토콜을 개략적으로 도시한 흐름도이다.
도 24를 참조하면, 전력 전송 단계에서 무선전력 수신장치(1020)는 무선전력 전송장치(1010)로 모드 값이 0인 RP를 전송할 수 있다(S1513). 무선전력 수신장치(1020)가 전력 소비(power consumption)를 줄여야 하는 경우, 무선전력 전송장치(1010)는 RP/0에 대해 NAK으로 응답할 수 있다(S1514).
RP/0에 대한 응답으로 NAK을 수신한 무선전력 수신장치(1020)는 NAK을 수신한 이후, NAK 윈도우(tnak) 이내에 전력 소비를 줄이고, 적절한 전력 레벨을 결정하기 위해 NEGO 패킷을 전송하여 재협상 단계로의 진입을 요청할 수 있다.
그러나, 무선전력 수신장치(1020)가 NAK 윈도우(tnak) 이내에 전력 소비를 충분하게 줄이지 않는 경우, 무선전력 전송장치(1010)는 무선 전력의 전력 시그널을 제거할 수 있다. 이 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 전력 전송 단계에서, 무선전력 전송장치(1010)가 이물질을 검출한 경우, 무선전력 전송장치(1010)는 무선 전력의 전력 시그널을 제거하거나, 기본 프로토콜의 전력 전송 단계가 진행되도록 할 수 있다.
무선 전력의 전력 시그널이 제거되는 경우, 무선 전력 전송을 위한 프로토콜이 종료되었으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다. 기본 프로토콜의 전력 전송 단계가 진행되는 경우, 기본 프로토콜에서는 아웃밴드 통신을 사용하지 않으므로, 아웃밴드 통신의 연결을 종료할 필요가 있다.
따라서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
상술한 바와 같이, 전력 전송 단계에서, 기본 프로토콜의 전력 전송 단계로 전환되거나, 무선 전력의 전력 시그널이 제거되는 경우에, 무선전력 전송장치(1010) 및 무선전력 수신장치(1020) 중 적어도 하나는 아웃밴드 통신의 연결이 종료되도록 할 수 있다.
따라서, 기본 프로토콜의 전력 전송 단계에서는 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 인밴드 통신만으로 통신이 이루어지도록 할 수 있다. 또한, 전력 전송 단계에서 무선 전력의 전력 시그널이 제거되는 경우, 아웃밴드 통신의 연결을 종료시켜, 무선 충전을 위한 프로토콜이 재시작됨에 따라 협상 단계에서 다시 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 아웃밴드 연결이 수립되도록 할 수 있다.
한편, 확장된 전력 프로파일(Extended Power Profile; EPP)에서 지원하는 전력(예를 들어, 5~15W) 보다 높은 전력(예를 들어, 15 W 이상)을 지원하는 모바일 랩탑 전력 프로파일(Mobile Laptop Power Profile; MLP))의 전력 전송 단계가 수행될 수 있다. EPP의 전력 전송 단계에서는 아웃밴드 통신이 선택적으로 사용되는 반면, MLP의 전력 전송 단계에서는 아웃밴드 통신이 필수적으로 사용될 수 있다.
EPP의 전력 전송 단계에서는 아웃밴드 통신이 선택적으로 사용되므로, MLP의 전력 전송 단계가 EPP의 전력 전송 단계로 전환되는 경우, MLP의 전력 전송 단계에서 수립되어 있던 아웃밴드 통신의 연결이 종료될 수 있다.
따라서, MLP의 전력 전송 단계가 EPP의 전력 전송 단계로 전환되는 경우, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
한편, 전력 전송 단계 또는 협상 단계에서, 무선전력 전송장치(1010)는 무선전력을 전송하는 1차 코일(primary coil(s))의 전압 및/또는 전류가, 비정상적으로 감소하거나 미리 설정된 임계값 이하로 낮아지거나, 감소율이 미리 설정된 임계율을 초과하는 경우, 비정상적인 상황으로 간주하고, 무선전력 수신장치(1020)와의 아웃밴드 통신의 연결이 종료되도록 할 수 있다.
전력 전송 단계 또는 협상 단계에서, 무선전력 수신장치(1020)는 무선전력을 수신하는 2차 코일의 전압 및/또는 전류가, 비정상적으로 감소하거나 미리 설정된 임계값 이하로 낮아지거나, 감소율이 미리 설정된 임계율을 초과하는 경우, 비정상적인 상황으로 간주하고, 무선전력 전송장치(1010)와의 아웃밴드 통신의 연결이 종료되도록 할 수 있다.
무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 도 19를 참조하여 설명한, S1601 내지 S1603 단계를 통해 아웃밴드 통신의 연결을 종료할 수 있다.
이하에서는, 복수의 무선전력 수신장치에 무선전력을 제공하는 무선전력 전송장치와 무선전력 수신장치들 사이의 아웃밴드 통신의 연결 종료 방법에 대해 설명한다.
도 25는 일 실시예에 따른 무선전력 전송장치와 무선전력 수신장치들 사이의 아웃밴드 통신의 연결 종료 방법을 설명하기 위한 도면이다.
도 25를 참조하면, 무선전력 전송장치(1010)는 복수의 1차 코일(1111, 1112, 1113)을 포함한다. 각각의 1차 코일들(1111, 1112, 1113)을 각 무선전력 수신장치들(PRx_1, PRx_2, PRx_3)에 각각 무선전력을 제공할 수 있다.
또한, 무선전력 전송장치(1010)는 각 무선전력 수신장치들(PRx_1, PRx_2, PRx_3)과 개별적으로 아웃밴드 통신을 수행할 수 있는 아웃밴드 통신모듈(1012)을 포함한다.
제2 무선전력 수신장치(PRx_2)는 1차 코일(1112)로부터 무선 전력을 제공받으며, 무선전력 전송장치(1010)와 인밴드 통신 채널(IB_2) 및 아웃밴드 통신 채널(OOB_2)을 수립한 상태이다.
제3 무선전력 수신장치(PRx_3)는 1차 코일(1113)로부터 무선 전력을 제공받으며, 무선전력 전송장치(1010)와 인밴드 통신 채널(IB_3) 및 아웃밴드 통신 채널(OOB_3)을 수립한 상태이다.
제1 무선전력 수신장치(PRx_1)는 무선전력 전송장치(1010)와 인밴드 통신 채널 및 아웃밴드 통신 채널(OOB_1)을 수립하고, 1차 코일(1111)로부터 무선 전력을 제공받는 중에, 무선전력 전송장치(1010)로부터 이탈된 상태이다.
제1 무선전력 수신장치(PRx_1)가 무선전력 전송장치(1010)로부터 이탈됨에 따라 무선전력 전송장치(1010)와의 인밴드 통신은 종료된다. 다만, 아웃밴드 통신 채널(OOB_1)은 인밴드 통신에 비해 통신 가능한 거리가 길기 때문에, 제1 무선전력 수신장치(PRx_1)가 무선전력 전송장치(1010)로부터 이탈되더라도 아웃밴드 통신 채널(OOB_1)이 유지될 수 있다.
다만, 도 19 내지 도 24 등을 참조하여 전술한 바와 같이, 제1 무선전력 수신장치(PRx_1)가 무선전력 전송장치(1010)로부터 이탈됨에 따라, 제1 무선전력 수신장치(PRx_1)로부터 수신되어야 하는 패킷(예를 들어, CE, RP 등)에 대한 타임 아웃이 경과하고, 무선전력 전송장치(1010)는 제1 무선전력 수신장치(PRx_1)로 제공하는 무선 전력의 전력 시그널을 제거하게 된다.
그리고 무선전력 전송장치(1010) 및/또는 제1 무선전력 수신장치(PRx_1)는 아웃밴드 통신의 연결을 종료하는 프로토콜을 수행하여 아웃밴드 통신 채널(OOB_1)의 연결이 종료되게 된다.
이하에서는, 아웃밴드 통신의 종료와 관련된 타이밍에 대해 설명한다.
도 26은 일 실시예에 따른 제1 아웃밴드 타이밍과 제2 아웃밴드 타이밍을 설명하기 위한 도면이다.
도 26을 참조하면, 무선전력 전송장치(1010)는 tA 시점에서 무선전력의 전력 시그널을 제거한다.
무선전력 전송장치(1010)와 무선전력 수신장치(1020) 중 적어도 하나는 무선전력의 전력 시그널이 제거된 시점으로부터 제1 아웃밴드 타이밍(toobterminate) 내에 아웃밴드 통신의 연결을 종료할 수 있다.
아웃밴드 통신의 연결 종료는, 아웃밴드 통신모듈의 전원이 OFF 된 상태, 아웃밴드 통신의 연결이 끊어진 상태 또는 아웃밴드 통신의 프로토콜이 초기화 됨을 의미할 수 있다.
또는, 아웃밴드 통신의 연결 종료는, 1) 아웃밴드 통신의 연결 종료를 알리는 메시지(LL_Terminate_IND)를 아웃밴드 통신을 이용해 상대 장치로 전송한 상태(S1601), 2) LL_Terminate_IND에 대한 ACK를 수신한 상태(S1602), 또는 3) 무선전력 전송장치(1010)와 무선전력 수신장치(1020)의 아웃밴드 통신모듈(1012, 1022)이 각각 대기(Standby) 모드로 전환된 상태(S1603) 중 어느 하나를 의미할 수 있다.
제1 아웃밴드 타이밍(toobterminate)은 아웃밴드 통신의 연결 종료가 무선충전을 위한 프로토콜을 재시작에 의한 디지털 핑이 수행되기 이전에 완료되도록 설정될 수 있다.
제1 아웃밴드 타이밍(toobterminate)을 설정하여, 무선전력의 전력 시그널이 제거된 시점으로부터 일정 시간 이내에 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 아웃밴드 통신의 연결이 종료되도록 강제할 수 있다.
또한, 아웃밴드 통신의 연결 종료가 무선충전을 위한 프로토콜을 재시작에 의한 디지털 핑이 수행되기 이전에 완료되도록 하여, 무선충전을 위한 프로토콜이 재시작되는 시점에 아웃밴드 통신을 통해 무선충전과 관련된 데이터가 전송/수신되는 것을 방지하고, 새로운 무선충전을 위한 프로토콜이 안정적으로 진행되도록 할 수 있다.
또한, 무선전력 전송장치(1010)는 아웃밴드 통신의 연결이 종료된 시점으로부터 제2 아웃밴드 타이밍(toobreset) 내에 무선충전을 위한 프로토콜을 재시작하여 디지털 핑을 수행할 수 있다. 제2 아웃밴드 타이밍(toobreset) 내에 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 상호 간에 아웃밴드 통신을 연결하기 위해 사용되었던 정보를 버릴 수 있다.
기존의 아웃밴드 통신을 연결하기 위해 사용되었던 정보를 버릴 수 있는 타이밍(제2 아웃밴드 타이밍)을 설정하여, 새로 시작되는 무선충전을 위한 프로토콜에서 안정적으로 아웃밴드 통신의 연결 절차가 수행되도록 할 수 있다.
도 27은 다른 실시예에 따른 제1 아웃밴드 타이밍과 제2 아웃밴드 타이밍을 설명하기 위한 도면이다.
도 26을 참조하여 설명한 실시예와 비교하여, 도 27의 실시예는 제2 아웃밴드 타이밍의 시점이 상이하다.
도 27을 참조하면, 무선전력 전송장치(1010)는 무선전력의 전력 시그널을 제거한 시점(tA)으로부터 제2 아웃밴드 타이밍(toobreset) 내에 무선충전을 위한 프로토콜을 재시작하여 디지털 핑을 수행할 수 있다. 제2 아웃밴드 타이밍(toobreset) 내에 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 상호 간에 아웃밴드 통신을 연결하기 위해 사용되었던 정보를 버릴 수 있다.
도 28은 또 다른 실시예에 따른 제1 아웃밴드 타이밍, 제2 아웃밴드 타이밍 및 제3 아웃밴드 타이밍을 설명하기 위한 도면이다.
도 26 및 도 27을 참조하여 설명한 실시예와 비교하여 제1 아웃밴드 타이밍(toobterminate)은 동일하므로, 이에 대한 추가적인 설명은 생략한다.
무선전력 전송장치(1010)는 무선전력의 전력 시그널을 제거하는 원인이 되는 타임 아웃(예를 들어, 컨트롤 에러 타임 아웃 등)으로부터 제2 아웃밴드 타이밍(tnopower) 내에 무선충전을 위한 프로토콜을 재시작하여 디지털 핑을 수행할 수 있다.
무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 아웃밴드 통신의 연결이 종료된 시점으로부터 제3 아웃밴드 타이밍(treset) 내에 상호 간의 아웃밴드 통신을 연결하기 위해 사용되었던 정보를 버릴 수 있다.
이 때, 제1 아웃밴드 타이밍(toobterminate)과 제3 아웃밴드 타이밍(treset)의 합은 제2 아웃밴드 타이밍(tnopower)을 초과하지 않을 수 있다. 이는 새로운 무선충전을 위한 프로토콜의 디지털 핑이 수행되지 이전에, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 아웃밴드 통신을 연결하기 위해 사용되었던 정보를 버리도록 하기 위함이다.
도 29는 또 다른 실시예에 따른 제1 아웃밴드 타이밍, 제2 아웃밴드 타이밍 및 제3 아웃밴드 타이밍을 설명하기 위한 도면이다.
도 28을 참조하여 설명한 실시예와 비교하여, 도 29의 실시예는 제3 아웃밴드 타이밍의 시점이 상이하다
도 29를 참조하면, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 무선전력의 전력 시그널이 제거된 시점(tA)으로부터 제3 아웃밴드 타이밍(treset) 내에 상호 간의 아웃밴드 통신을 연결하기 위해 사용되었던 정보를 버릴 수 있다.
이 때, 제1 아웃밴드 타이밍(toobterminate)과 제3 아웃밴드 타이밍(treset)의 합은 제2 아웃밴드 타이밍(tnopower)을 초과하지 않을 수 있다. 이는 새로운 무선충전을 위한 프로토콜의 디지털 핑이 수행되지 이전에, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)가 아웃밴드 통신을 연결하기 위해 사용되었던 정보를 버리도록 하기 위함이다.
상술한 도 12 내지 도 29에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 도 12 내지 도 29에 따른 메시지 또는 데이터 패킷의 수신/전송 등은 통신/컨트롤 유닛(120, 710 또는 790)의 동작에 포함된다.
상술한 도 12 내지 도 29에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 도 12 내지 도 29에 따른 메시지 또는 데이터 패킷의 수신/전송 등은 통신/컨트롤 유닛(220, 810 또는 890)의 동작에 포함될 수 있다.
상술한 본 명세서의 실시예에 따른 무선 전력 송신 방법 및 장치, 또는 수신 장치 및 방법은 모든 구성요소 또는 단계가 필수적인 것은 아니므로, 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법은 상술한 구성요소 또는 단계의 일부 또는 전부를 포함하여 수행될 수 있다. 또 상술한 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법의 실시예들은 서로 조합되어 수행될 수도 있다. 또 상술한 각 구성요소 또는 단계들은 반드시 설명한 순서대로 수행되어야 하는 것은 아니며, 나중에 설명된 단계가 먼저 설명된 단계에 앞서 수행되는 것도 가능하다.
이상의 설명은 본 명세서의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 명세서에 따른 기술이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 명세서의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 명세서의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 명세서에 개시된 실시 예들은 본 명세서의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 명세서의 기술 사상의 범위가 한정되는 것은 아니다. 본 명세서의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 명세서의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 무선전력 전송장치로부터 무선전력을 수신하는 무선전력 수신장치에 있어서,
    상기 무선전력 전송장치로부터 상기 무선전력을 수신하는 전력 픽업 회로; 및
    상기 무선전력의 전력 시그널을 이용하는 인밴드(in-band) 통신과 상기 인밴드 통신과 다른 무선 통신인 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 전송장치와 통신하며 상기 무선전력의 수신을 제어하는 통신/컨트롤 회로;를 포함하고,
    상기 통신/컨트롤 회로는,
    상기 무선전력 전송장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 무선전력 전송장치로부터 상기 전력 시그널이 제거되는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 수신장치.
  2. 제1항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널이 제거된 때로부터 제1 시간 이내에 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 수신장치.
  3. 제1항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널이 제거된 때로부터 제1 시간 이내에,
    상기 아웃밴드 통신을 이용해 상기 무선전력 전송장치로 상기 아웃밴드 통신의 연결 종료를 알리는 메시지를 전송하는, 무선전력 수신장치.
  4. 제1항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널이 제거된 때로부터 제1 시간 이내에,
    상기 아웃밴드 통신을 이용해 상기 무선전력 전송장치로 상기 아웃밴드 통신의 연결 종료를 알리는 메시지를 전송하고, 상기 무선전력 전송장치로부터 상기 메시지에 대한 응답을 수신하는, 무선전력 수신장치.
  5. 제1항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널이 제거된 때로부터 제1 시간 이내에,
    상기 아웃밴드 통신을 이용해 상기 무선전력 전송장치로 상기 아웃밴드 통신의 연결 종료를 알리는 메시지를 전송하고, 상기 무선전력 전송장치로부터 상기 메시지에 대한 응답을 수신하고, 상기 아웃밴드 통신의 연결을 위한 대기 모드로 전환되는, 무선전력 수신장치.
  6. 제1항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 무선전력 전송장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 무선전력이 기본 전력 프로파일(baseline power profile: BPP)로 전환되는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 수신장치.
  7. 제1항에 있어서,
    상기 전력 픽업 회로는 상기 무선전력 전송장치의 1차 코일과 자기 커플링에 의해 상기 무선전력을 수신하는 2차 코일을 포함하고,
    상기 통신/컨트롤 회로는,
    상기 무선전력 전송장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 2차 코일의 전압 및 전류 중 적어도 하나가 감소하는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 수신장치.
  8. 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 있어서,
    상기 무선전력 수신장치로 상기 무선전력을 전송하는 전력 변환 회로; 및
    상기 무선전력의 전력 시그널을 이용하는 인밴드(in-band) 통신과 상기 인밴드 통신과 다른 무선 통신인 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 수신장치와 통신하며 상기 무선전력의 전송을 제어하는 통신/컨트롤 회로;를 포함하고,
    상기 통신/컨트롤 회로는,
    상기 무선전력 수신장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 전력 시그널을 제거하는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 전송장치.
  9. 제8항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널을 제거한 때로부터 제1 시간 이내에 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 전송장치.
  10. 제8항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널을 제거한 때로부터 제1 시간 이내에,
    상기 아웃밴드 통신을 이용해 상기 무선전력 수신장치로 상기 아웃밴드 통신의 연결 종료를 알리는 메시지를 전송하는, 무선전력 전송장치.
  11. 제8항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널을 제거한 때로부터 제1 시간 이내에,
    상기 아웃밴드 통신을 이용해 상기 무선전력 수신장치로 상기 아웃밴드 통신의 연결 종료를 알리는 메시지를 전송하고, 상기 무선전력 수신장치로부터 상기 메시지에 대한 응답을 수신하는, 무선전력 전송장치.
  12. 제8항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널을 제거한 때로부터 제1 시간 이내에,
    상기 아웃밴드 통신을 이용해 상기 무선전력 수신장치로 상기 아웃밴드 통신의 연결 종료를 알리는 메시지를 전송하고, 상기 무선전력 수신장치로부터 상기 메시지에 대한 응답을 수신하고, 상기 아웃밴드 통신의 연결을 위한 대기 모드로 전환되는, 무선전력 전송장치.
  13. 제9항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 시그널을 제거한 때로부터 제2 시간 이내에 디지털 핑을 수행하는, 무선전력 전송장치.
  14. 제9항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 아웃밴드 통신의 연결을 종료한 때로부터 제2 시간 이내에 디지털 핑을 수행하는, 무선전력 전송장치.
  15. 제8항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 무선전력 수신장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 무선전력이 기본 전력 프로파일(baseline power profile: BPP)로 전환되는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 전송장치.
  16. 제8항에 있어서,
    상기 전력 변환 회로는 상기 무선전력을 전송하는 1차 코일을 포함하고,
    상기 통신/컨트롤 회로는,
    상기 무선전력 전송장치와 상기 아웃밴드 통신의 연결이 수립된 상태에서 상기 1차 코일의 전압 및 전류 중 적어도 하나가 감소하는 것에 기초하여, 상기 아웃밴드 통신의 연결을 종료하는, 무선전력 전송장치.
PCT/KR2021/010010 2020-07-30 2021-07-30 무선전력 수신장치 및 무선전력 전송장치 WO2022025721A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/018,679 US20230299615A1 (en) 2020-07-30 2021-07-30 Wireless power receiving device and wireless power transmitting device
KR1020237003133A KR20230043856A (ko) 2020-07-30 2021-07-30 무선전력 수신장치 및 무선전력 전송장치
EP21849372.4A EP4191829A1 (en) 2020-07-30 2021-07-30 Wireless power receiving device and wireless power transmitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0095393 2020-07-30
KR20200095393 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022025721A1 true WO2022025721A1 (ko) 2022-02-03

Family

ID=80035900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010010 WO2022025721A1 (ko) 2020-07-30 2021-07-30 무선전력 수신장치 및 무선전력 전송장치

Country Status (4)

Country Link
US (1) US20230299615A1 (ko)
EP (1) EP4191829A1 (ko)
KR (1) KR20230043856A (ko)
WO (1) WO2022025721A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373537A1 (en) * 2016-06-28 2017-12-28 Apple Inc. Wireless Charging Systems with In-Band Communications
KR20190082891A (ko) * 2016-11-15 2019-07-10 엘지전자 주식회사 무선 전력 전달 방법 및 이를 위한 장치
KR20200063974A (ko) * 2018-11-28 2020-06-05 캐논 가부시끼가이샤 수전 장치, 수전 장치의 제어 방법 및 기억매체
KR20200078742A (ko) * 2018-12-21 2020-07-02 전자부품연구원 무선 충전 장치, 무선 충전 시스템 및 그 동작방법
WO2020142201A1 (en) * 2019-01-02 2020-07-09 Ge Hybrid Technologies, Llc Wireless power transmission using multiple transmitters and receivers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373537A1 (en) * 2016-06-28 2017-12-28 Apple Inc. Wireless Charging Systems with In-Band Communications
KR20190082891A (ko) * 2016-11-15 2019-07-10 엘지전자 주식회사 무선 전력 전달 방법 및 이를 위한 장치
KR20200063974A (ko) * 2018-11-28 2020-06-05 캐논 가부시끼가이샤 수전 장치, 수전 장치의 제어 방법 및 기억매체
KR20200078742A (ko) * 2018-12-21 2020-07-02 전자부품연구원 무선 충전 장치, 무선 충전 시스템 및 그 동작방법
WO2020142201A1 (en) * 2019-01-02 2020-07-09 Ge Hybrid Technologies, Llc Wireless power transmission using multiple transmitters and receivers

Also Published As

Publication number Publication date
US20230299615A1 (en) 2023-09-21
EP4191829A1 (en) 2023-06-07
KR20230043856A (ko) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2020017859A1 (ko) 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법
WO2020222528A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법
WO2020149492A1 (ko) 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법
WO2019194524A1 (ko) 무선전력 전송 시스템에서 전력 전송을 제어하는 장치 및 방법
WO2020036357A1 (ko) 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
WO2020213958A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2020130265A1 (ko) 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020004940A1 (ko) 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법
WO2020222415A1 (ko) 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템
WO2020190109A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2020185051A1 (ko) 저전력 및 중전력 호환 무선충전 수신 장치 및 방법
WO2021153815A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2020246685A1 (ko) 무선전력 전송 시스템에서 접속 제어 방법 및 장치
WO2020153586A1 (ko) 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법
WO2021230703A1 (ko) 무선전력 수신장치 및 무선전력 수신장치에 의한 통신 방법
WO2022005264A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 무선전력 전송장치와 무선전력 수신장치 사이의 통신 방법
WO2021215793A1 (ko) 무선전력 수신장치 및 무선전력 전송장치
WO2020218800A1 (ko) 펌웨어를 업데이트하는 무선충전 장치, 방법 및 시스템
WO2021006475A1 (ko) 무선전력 전송장치
WO2020204303A1 (ko) 무선전력 전송 시스템에서 근거리 통신 방법 및 장치
WO2020171316A1 (ko) 무선전력 전송 시스템에서 충전 상태 정보를 제공하는 장치 및 방법
WO2022015021A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 무선전력 수신장치와 무선전력 전송장치 사이의 통신 방법
WO2021246803A1 (ko) 무선전력 수신장치, 무선전력 전송장치, 무선전력 수신방법 및 무선전력 전송방법
WO2022005258A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 무선전력 전송장치와 무선전력 수신장치 사이의 통신 방법
WO2021235909A1 (ko) 무선전력 전송장치, 무선전력 전송장치에 의한 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신장치에 의한 무선전력 수신방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021849372

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849372

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE