WO2022025655A1 - Microwave plasma nozzle for deposition of powder aerosol for coating and coating apparatus using powder aerosol for coating using same - Google Patents

Microwave plasma nozzle for deposition of powder aerosol for coating and coating apparatus using powder aerosol for coating using same Download PDF

Info

Publication number
WO2022025655A1
WO2022025655A1 PCT/KR2021/009853 KR2021009853W WO2022025655A1 WO 2022025655 A1 WO2022025655 A1 WO 2022025655A1 KR 2021009853 W KR2021009853 W KR 2021009853W WO 2022025655 A1 WO2022025655 A1 WO 2022025655A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
powder aerosol
discharge tube
powder
nozzle
Prior art date
Application number
PCT/KR2021/009853
Other languages
French (fr)
Korean (ko)
Inventor
장수욱
박현재
장현우
조창현
김지훈
이기용
강인제
Original Assignee
한국핵융합에너지연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국핵융합에너지연구원 filed Critical 한국핵융합에너지연구원
Priority to JP2023501544A priority Critical patent/JP7503345B2/en
Publication of WO2022025655A1 publication Critical patent/WO2022025655A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides

Definitions

  • the present invention relates to a microwave plasma nozzle for powder aerosol deposition for coating, and a coating device using the powder aerosol for coating using the same, and more particularly, to a powder aerosol for coating in which the coating efficiency of powder onto a substrate to be deposited can be improved. It relates to a microwave plasma nozzle for deposition and a coating apparatus using the same for coating powder aerosol.
  • the process of applying ceramic coating to the existing semiconductor device components to improve plasma and corrosion resistance includes anodizing and thermal spray coating.
  • APS Atmospheric Plasma Spray
  • Plasma thermal spray coating is a method in which spherical ceramic powder with a particle size of 30-50 ⁇ m is supplied to the center of the plasma jet, melted, and sprayed on the surface of the product for lamination.
  • This plasma spray coating method has the advantages of large area and easy film thickening, but in the case of powder that does not pass through the center of the plasma jet during powder spraying, only the surface of the powder is melted to form a coating layer, so the microstructure and reproducibility are insufficient, The disadvantage is that it is difficult to control.
  • SPS Suspension Plasma Spray
  • aerosol deposition which has been actively developed recently, is a technology that forms an ultra-high-density ceramic layer by loading ceramic powder in a transport gas at room temperature and spraying it on the base material in a vacuum state in an aerosol state. .
  • the kinetic energy of the particles colliding with the surface of the base material and the ceramic powder is converted into plastic deformation without external energy, and strong adhesion and attractive force between the particles is induced. Since the spray coating is made, it is possible to prevent deterioration of the powder, it is possible to control the composition ratio, and there are advantages of high reproducibility.
  • the room temperature spray coating technology has the disadvantages that the coating proceeds only with the kinetic energy of the powder, so the coating speed is very slow compared to the plasma spray coating, and it is difficult to make a thick film.
  • the problem to be solved by the present invention is that the coating efficiency of the powder on the substrate to be deposited is improved, the thickness of the film is possible, and the discharge tube in which plasma is generated is firmly fixed in the vacuum chamber, and the vacuum environment of the vacuum chamber is improved. It is possible to connect the nozzle to be maintained, and furthermore, to provide a microwave plasma nozzle for powder aerosol deposition for coating and a coating device by powder aerosol for coating so that microwaves can be used as a plasma generating means.
  • the annular seal that maintains the airtightness around the discharge part of the discharge tube is easily cooled, and heat loss of the annular seal due to the high temperature of the plasma is prevented, so that it can operate for a long time.
  • the nozzle for depositing powder aerosol for coating includes an inlet into which a carrier gas and a powder aerosol for coating are injected, and a discharge part through which the powder aerosol for coating is discharged, the discharge part having a substrate to be deposited therein.
  • a discharge tube connected to the vacuum chamber to discharge the powder aerosol for coating into the vacuum chamber; and plasma generating means for generating plasma between the inlet part and the discharge part.
  • the plasma generating means microwave generating means; a waveguide through which microwaves are input from the microwave generating means and through which the discharge tube vertically passes; and an ignition unit supplying electrons for ignition of plasma in the discharge tube, wherein the discharge tube may be a quartz tube or a ceramic tube.
  • the discharge tube includes a flange portion formed in an annular shape around the discharge portion, the microwave plasma nozzle for powder aerosol deposition for the coating is an annular seal; a first flange; and a plurality of flange fixing bolts, wherein the annular seal is interposed between the flange portion and an outer surface of the vacuum chamber facing the flange portion to cover the circumference of the flange portion, and the first flange is the annular seal Covering the flange portion and the annular seal on the opposite side of the opposite side to the outer surface of the vacuum chamber, the flange fixing bolt may be coupled to the first flange through the outer surface of the vacuum chamber from the inside of the vacuum chamber.
  • the annular seal may be disposed proximate to the edge of the flange portion and spaced apart from the plasma.
  • the vacuum chamber further comprises a second flange coupled through the flange fixing bolt between the first flange and the outer surface of the vacuum chamber to receive the annular seal, the second flange is the circumferential direction of the annular seal and a first cooling water channel for circulating the cooling fluid along
  • the cooling jacket may further include a cooling jacket disposed coaxially with the discharge tube to accommodate the discharge tube, and including a second cooling water channel surrounding the discharge tube and through which a cooling fluid circulates.
  • the cooling fluid circulating in the second cooling water channel may be oil having a permittivity to transmit electromagnetic waves.
  • it may further include a shielding jacket for accommodating the discharge tube and the cooling jacket.
  • it may further include a terminal nozzle installed on the inner surface of the vacuum chamber to be disposed coaxially with the discharge tube to discharge the powder aerosol for coating transmitted through the discharge tube toward the deposition target substrate.
  • the inside of the terminal nozzle through which the powder aerosol for coating passes may decrease in diameter toward the end of the terminal nozzle.
  • the inner diameter of the discharge tube may be 10 ⁇ 15mm or less, the inner diameter of the end of the terminal nozzle may be 5mm ⁇ 10mm.
  • the ignition portion has a truncated cone-shaped inner surface, and forms an annular pointed portion in the truncated portion, and the pointed portion is adjacent to an area through which the discharge tube of the waveguide is passed and surrounds the discharge tube.
  • An annular conductive ring to be installed; It may include a power applying member conductively connected to the annular conductive ring and to which power for ignition of plasma is applied in the discharge tube.
  • a coating apparatus by a powder aerosol for coating includes a vacuum chamber accommodating a substrate to be deposited therein;
  • the nozzle according to any one of claims 1 to 12, which is mounted in the vacuum chamber to face the vapor-deposited substrate and discharges a powder aerosol for coating toward the vapor-deposited substrate; And characterized in that it comprises an aerosol supply for supplying a powder aerosol for coating to the inlet of the nozzle.
  • the aerosol supply unit containing the powder for coating, the powder chamber of a higher pressure than the vacuum chamber; a carrier gas supply unit supplying a carrier gas to the powder chamber; and an aerosol transport channel connected between the powder chamber and the nozzle to supply the powder aerosol for coating from the powder chamber to the nozzle.
  • the carrier gas may be argon or nitrogen.
  • the microwave plasma nozzle for powder aerosol deposition for coating according to the present invention Using the microwave plasma nozzle for powder aerosol deposition for coating according to the present invention, and a coating device by powder aerosol for coating using this nozzle, the powder aerosol for coating accelerated toward the substrate to be deposited is accelerated by obtaining plasma energy. Since it is discharged, the coating efficiency of the powder onto the substrate to be deposited can be improved.
  • the discharge part of the discharge tube is firmly fixed to the vacuum chamber, and the nozzle can be connected so that the vacuum environment of the vacuum chamber is maintained.
  • annular seal maintaining the airtightness around the discharge part of the discharge tube can be easily cooled, heat loss of the annular seal due to the high temperature of the plasma is prevented, thereby enabling long-term operation.
  • FIG. 1 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view of the conductive ring of the ignition unit shown in FIG. 1 .
  • FIG 3 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention.
  • FIG. 5 is an external perspective view of FIG. 4 ;
  • FIG. 6 is a view for explaining the configuration of a coating device by a powder aerosol for coating according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • FIG. 1 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention.
  • the microwave plasma nozzle for powder aerosol deposition for coating may include a discharge tube 110 and a plasma generating means 120 .
  • the discharge tube 110 may include an inlet part 111 and a discharge part 112 .
  • a carrier gas and powder aerosol for coating may be injected into the inlet part 111 , and powder aerosol for coating injected into the inlet part 111 may be discharged through the discharge part 112 .
  • the discharge unit 112 is connected to the vacuum chamber 200 so that the discharge unit 112 discharges the powder aerosol for coating into the vacuum chamber 200 in which the vapor-deposited substrate 10 is accommodated.
  • the discharge tube 110 may be a quartz tube or a ceramic tube.
  • the inner diameter of the discharge tube 110 may be set to 10mm ⁇ 15mm or less. If it is less than 10 mm, the diameter of the discharge tube 110 is significantly reduced, so there is a problem in maintaining the strength of the discharge tube 110, and if it exceeds 15 mm, the plasma generated by the plasma generating means 120 in the discharge tube 110 is hollow. It may be generated by plasma, and in this case, there is a problem in that the powder aerosol for coating that passes through the discharge tube 110 passes through without contacting the plasma. Accordingly, the inner diameter of the discharge tube 110 is set not to exceed 15 mm in order to generate plasma filled in the discharge tube 110 .
  • the plasma generating means 120 generates plasma between the inlet 111 and the outlet 112 of the discharge tube 110 . That is, plasma is generated between the inlet part 111 and the discharge part 112 so that the powder aerosol for coating that proceeds from the inlet part 111 to the discharge part 112 passes through the plasma.
  • the plasma may be plasma by microwave plasma discharge.
  • the plasma generating means 120 may include a microwave generating means (not shown), a waveguide 122 and an ignition unit 123 .
  • the microwave generating means may include a magnetron, a power supply, a circulator, a directional coupler, and a stub tuner.
  • the magnetron may be a magnetron that oscillates an electromagnetic wave in a band of 10 MHz to 10 GHz, and preferably may be configured to oscillate an electromagnetic wave at 2.45 GHz.
  • the power supply unit may be configured to supply power to the magnetron by being composed of a radio voltage multiplier and a pulse and direct current (DC) device.
  • the circulator may be configured to output electromagnetic waves oscillated from the magnetron and to protect the magnetron by dissipating electromagnetic wave energy reflected by impedance mismatch.
  • the directional coupler may output the electromagnetic wave transmitted through the circulator.
  • the stub tuner may be configured such that the electric field induced by the electromagnetic wave exhibits the strongest phenomenon in the discharge tube 110 by inducing impedance matching by adjusting the intensity of the incident wave and the reflected wave with respect to the radio wave input from the directional coupler.
  • the waveguide 122 receives electromagnetic waves from the microwave generating means, and the discharge tube 110 vertically passes through it.
  • the ignition unit 123 supplies electrons for ignition of plasma in the discharge tube 110 .
  • the ignition unit 123 may include an annular conductive ring 1231 and a power applying member 1232 .
  • FIG. 2 is an enlarged perspective view of the conductive ring of the ignition unit shown in FIG. 1 . 1 and 2 , the annular conductive ring 1231 may have a truncated cone-shaped inner surface, and an annular pointed portion 1231a may be formed in the truncated portion.
  • the annular conductive ring 1231 may be installed such that the pointed portion 1231a is adjacent to the region through which the discharge tube 110 of the waveguide 122 passes, and the pointed portion 1231a surrounds the discharge tube 110 .
  • the annular conductive ring 1231 is in linear contact with the discharge tube 110 when the annular pointed part 1231a wraps around the discharge tube 110, which is the annular conductive ring 1231 is in contact with the discharge tube 110. Since the area is minimized and the power for supplying electrons is concentrated on the sharp part 1231a, electrons are always supplied adjacent to the region through which the discharge tube 110 of the waveguide 122 is penetrated, and stable electron supply can be achieved. .
  • the power applying member 1232 is conductively connected to the annular conductive ring 1231 , and power for ignition of plasma in the discharge tube 110 may be applied from an external power supply means.
  • the power applying member 1232 may include a power output terminal 1232a and a power input unit 1232b opposite to the power output terminal 1232a, so that the power output terminal 1232a penetrates one side of the conductive ring 1231 . It may be installed on one side of the conductive ring 1231 .
  • the power input unit 1232b may be electrically connected to an external power supply means to receive power from the power supply means.
  • the microwave plasma nozzle for powder aerosol deposition for coating is an annular seal 130 and a first flange 141 and a plurality of flange fixing bolts as shown in FIG. 1 .
  • 190 may be included, and the discharge tube 110 may include a flange portion 113 formed in an annular shape around the discharge portion 112 .
  • 2 is a cross-sectional view showing an embodiment in which a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention is fixed to a vacuum chamber.
  • the annular seal 130 may be formed of an O-ring made of a rubber material having heat resistance.
  • the annular seal 130 may be interposed between the flange part 113 and the outer surface of the vacuum chamber 200 facing the flange part 113 so as to cover the circumference of the flange part 113 .
  • the annular seal 130 may be disposed to be as close to the edge of the flange portion 113 as possible.
  • the annular seal 130 may be in close contact with the flange portion 113 to cover the edge of the flange portion 113 to seal the circumference of the discharge portion 112 .
  • the annular seal 130 may be spaced away from the plasma, thereby preventing thermal damage due to the high temperature of the plasma.
  • the first flange 141 may face the outer surface of the vacuum chamber 200 by covering the flange portion 113 and the annular seal 130 from the opposite side of the annular seal 130 .
  • the flange fixing bolt 190 may be coupled to the first flange 141 through the outer surface of the vacuum chamber 200 from the inside of the vacuum chamber 200 . At this time, the flange fixing bolt 190 is tightened to the first flange 141 and pulls the first flange 141 in the direction of the vacuum chamber 200 to firmly attach the first flange 141 to the outer surface of the vacuum chamber 200 . can be fixed
  • the outer surface of the vacuum chamber 200 to which the discharge tube 110 is fixed will be described as a 'nozzle mounting surface 210'.
  • FIG 3 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention.
  • the microwave plasma nozzle for powder aerosol deposition for coating may further include a second flange 142 .
  • the second flange 142 is coupled through a flange fixing bolt 190 between the nozzle mounting surface 210 and the first flange 141 to accommodate the annular seal 130 . That is, the flange fixing bolt 190 is screwed to the nozzle mounting surface 210, the second flange 142 and the first flange 141 so that the second flange 142 is the nozzle mounting surface 210 and the first flange. It may be fixed between the 141 , and the annular seal 130 and the flange portion 113 of the discharge tube 110 may be accommodated between the first flange 141 and the second flange 142 .
  • the second flange 142 may include a fluid passage hole 1421 formed in the center.
  • the fluid passage hole 1421 may be disposed coaxially with the discharge tube 110 to face the discharge tube 110 in fluid communication with the interior of the discharge tube 110 , and a nozzle mounting surface to which the second flange 142 is fixed.
  • a through hole 211 capable of fluid communication with the fluid passage hole 1421 may be formed in the 210 .
  • a flange accommodating groove 1411 is formed on the surface of the first flange 141 in close contact with the second flange 142 to accommodate the flange portion 113 of the discharge tube 110 in the flange accommodating groove 1411 .
  • an annular seal accommodating groove 1422 is formed around the fluid passage hole 1421 of the second flange 142 to accommodate the annular seal 130 in the annular seal accommodating groove 1422 .
  • the annular seal 130 may cover the edge of the flange portion 113 to be in close contact with the flange portion 113 .
  • the second flange 142 may include a first cooling water channel 1423 .
  • the first cooling water channel 1423 may be formed along the circumferential direction of the annular seal 130 accommodated in the interior of the second flange 142 , and the cooling fluid may be injected and circulated.
  • the first cooling water channel 1423 is formed to be located inside the annular seal accommodating groove 1422 in which the annular seal 130 is accommodated, and the annular seal 130 is accommodated in the annular seal accommodating groove 1422 . may be in contact with the cooling fluid.
  • the cooling fluid may be injected into the first cooling water channel 1423 by connecting the cooling fluid supply means to the first flange 141 .
  • the cooling fluid supply means includes a cooling fluid storage tank storing a cooling fluid, a first cooling water channel 1423, an injection pipe and a recovery pipe connected to the storage tank in fluid communication, and a cooling fluid. It may include a pump that does.
  • FIG. 4 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention
  • FIG. 5 is an external perspective view of FIG. 4 .
  • the microwave plasma nozzle for powder aerosol deposition for coating may further include a cooling jacket 150 as shown in FIG. 4 .
  • the cooling jacket 150 may be disposed coaxially with the discharge tube 110 to accommodate the discharge tube 110 , surround the discharge tube 110 , and include a second cooling water channel 151 through which a cooling fluid circulates.
  • the second cooling water channel 151 may be formed along the longitudinal direction of the discharge tube 110 .
  • the cooling jacket 150 may accommodate the discharge tube 110 and vertically penetrate the waveguide 122 together with the discharge tube 110 .
  • the cooling jacket 150 may be a quartz tube or a ceramic tube so that the cooling jacket 150 does not block the inflow of electromagnetic waves into the discharge tube 110 , and the cooling fluid circulated along the second cooling water channel 151 is It may be an oil having a permittivity capable of transmitting electromagnetic waves.
  • a third flange 143 disposed coaxially with the cooling jacket 150 in a direction opposite to the first flange 141 for injection and circulation of the cooling fluid into the second cooling water channel 151 may be further included.
  • the first flange 141 and the third flange 143 have central holes 1412 and 1431 having a diameter equal to or greater than the diameter of the second cooling water passage 151 for injection and discharge of cooling fluid and the central hole 1412;
  • the fluid inlets 1413 and 1432 penetrating through the 1431 may be formed.
  • the inlet 111 of the discharge tube 110 may be accommodated in the central hole 1432 of the third flange 143 , and the inlet 111 of the discharge tube 110 is located at the rear of the third flange 143 .
  • the adapter 160 having an aerosol injection hole 161 for injecting the powder aerosol for coating into the inlet 111 of the discharge tube 110 in fluid communication can be coupled thereto.
  • a cooling fluid supply means may be connected to the first flange 141 and the third flange 143 to inject the cooling fluid into the second cooling channel 151 . Since the cooling fluid supply means is the same as or similar to the cooling fluid supply means connected to the second flange 142 , a detailed description thereof will be omitted.
  • the cooling jacket 150 is a quartz tube or a ceramic tube and accommodates the discharge tube 110 , the annular conductive ring 1231 of the ignition unit 123 of the plasma generating means 120 is a pointed portion 1231a). may be provided to surround the cooling jacket 150 .
  • the coating powder of the powder aerosol for coating discharged toward the deposition target substrate 10 must be attached to the deposition target substrate 10 with a strong adhesive force. It should be strongly discharged to the , and for this purpose, the smaller the diameter of the tip of the nozzle through which the powder aerosol for coating is discharged, the better.
  • the microwave plasma nozzle for powder aerosol deposition for coating may further include a terminal nozzle 170 as shown in FIG. 4 .
  • the terminal nozzle 170 is installed on the inner surface of the vacuum chamber 200, that is, the inner surface of the nozzle mounting surface 210 to be disposed coaxially with the discharge tube 110 to avoid the powder aerosol for coating transmitted through the discharge tube 110. It is discharged toward the vapor deposition substrate 10 .
  • the terminal nozzle 170 has an inner diameter of the distal end at which the powder aerosol for coating is discharged is smaller than the diameter of the discharge tube 110 .
  • the inside of the terminal nozzle 170 is provided in a form that the diameter decreases toward the end of the terminal nozzle 170, the inner diameter of the end of the terminal nozzle 170 may be set to 5mm ⁇ 10mm. In this way, if the inner diameter of the end of the terminal nozzle 170 is formed smaller than the inner diameter of the discharge tube 110, the flow rate of the powder aerosol for coating increases toward the end of the terminal nozzle 170, and at the end of the terminal nozzle 170 Powder aerosol for coating may be strongly discharged toward the deposition target substrate (10).
  • the microwave plasma nozzle for powder aerosol deposition for coating may further include a shielding jacket 180 as shown in FIG. 4 .
  • the shielding jacket 180 accommodates the discharge tube 110 and the cooling jacket 150 .
  • the shielding jacket 180 may include a first shielding tube 181 and a second shielding tube 182 .
  • the first shielding tube 181 is connected between the waveguide 122 and the first flange 141 and is positioned between the waveguide 122 and the first flange 141 , and a part of the cooling jacket 150 and the discharge tube 110 . length can be covered.
  • the second shielding pipe 182 is connected between the waveguide 122 and the third flange 143 on the opposite side of the first shielding pipe 181 and is located between the waveguide 122 and the third flange 143 , the cooling jacket. 150 and some other lengths of the discharge tube 110 may be shielded.
  • the shielding jacket 180 may be made of a metal material
  • the vacuum chamber 200 , the first flange 141 , the second flange 142 , the third flange 143 , and the adapter 160 may all be made of a metal material.
  • the discharge tube 110 and the cooling jacket 150 may be shielded from the outside by being surrounded by a metal material.
  • a coating apparatus by powder aerosol for coating to which microwave plasma energy is applied can be configured.
  • FIG. 6 is a view for explaining the configuration of a coating device by a powder aerosol for coating according to an embodiment of the present invention.
  • the coating apparatus by powder aerosol for coating may include a vacuum chamber 200 , an aerosol nozzle 100 , and an aerosol supply unit 300 .
  • the vacuum chamber 200 has a vacuum inside, provides a space for the coating powder aerosol to be deposited on the vapor-deposited substrate 10, and accommodates the vapor-deposited substrate 10 therein.
  • the aerosol nozzle 100 discharges a powder aerosol for coating toward the vapor-deposited substrate 10 in the vacuum chamber 200 .
  • the powder included in the powder aerosol for coating may be a ceramic powder.
  • the aerosol nozzle 100 is a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention.
  • the aerosol supply unit 300 supplies a powder aerosol for coating to the inlet 111 of the aerosol nozzle 100 .
  • the aerosol supply unit 300 may include a powder chamber 310 , a carrier gas supply unit 320 , and an aerosol transport channel 330 .
  • the powder chamber 310 contains the powder for coating, and may have a higher pressure than the vacuum chamber 200 .
  • the carrier gas supply unit 320 supplies the carrier gas to the powder chamber 310 .
  • the carrier gas supply unit 320 is installed on the gas tank 321 storing the carrier gas, the gas supply pipe 322 connected from the gas tank 321 to the powder chamber 310 and the gas supply pipe 322 . and may include a mass flow controller 323 to control the supply of carrier gas.
  • the carrier gas may be argon or nitrogen.
  • the aerosol transport channel 330 allows the powder aerosol for coating to be supplied from the powder chamber 310 to the aerosol nozzle 100 .
  • the aerosol transport channel 330 may be a hollow pipe having one end connected to the powder chamber 310 and the other end connected to the aerosol nozzle 100 .
  • the carrier gas is supplied to the powder chamber 310 through the aerosol supply unit 300 .
  • the carrier gas flows into the powder chamber 310 , the carrier gas and the coating powder are mixed to form an aerosol of the coating powder, and the powder chamber 310 has a higher pressure than the vacuum chamber 200 , so the pressure After the aerosol of the powder for coating flows into the aerosol transport channel 330 by the difference, it is supplied to the aerosol nozzle 100 along the aerosol transport channel 330 .
  • the powder aerosol for coating flows into the inlet 111 of the discharge tube 110 , and proceeds from the inlet 111 to the discharge portion 112 along the longitudinal direction of the discharge tube 110 . At this time, plasma is generated in the discharge tube 110 through the plasma generating means 120 .
  • An electromagnetic wave is input to the waveguide 122 through a micro generating means for plasma generation, and the electromagnetic wave input to the waveguide 122 passes through the waveguide 122, made of a quartz tube, a discharge tube 110 and a cooling jacket It passes through 150 and is supplied to the inside of the discharge tube 110 .
  • the power applying member 1232 of the ignition unit 123 power is applied to the conductive ring 1231 through the power output terminal 1232a of the power applying member 1232 , and the applied power is cooled
  • the electrons are transferred to the inside of the discharge tube 110 to ignite the plasma in the electromagnetic wave in the discharge tube 110 .
  • microwave plasma discharge is started in the discharge tube 110 to generate plasma in the discharge tube 110 .
  • the plasma generated in the discharge tube 110 is generated as plasma filled in the discharge tube 110 because the discharge tube 110 has an inner diameter of 10 mm to 15 mm or less, and for coating proceeding toward the discharge part 112 of the discharge tube 110 As the powder aerosol passes through the plasma, the energy of the plasma is imparted to the powder aerosol for coating.
  • the powder aerosol for coating obtained by plasma energy passes through the discharge part 112 of the aerosol nozzle 100 and then through the end of the terminal nozzle 170 located in the vacuum chamber 200 vacuum chamber 200 and the powder chamber ( 310 is strongly discharged to the surface of the vapor-deposited substrate 10 by the pressure difference.
  • the powder aerosol for coating collides with the substrate 10 to be deposited, and as the collision energy is converted into plastic deformation of the powder for coating, for example, ceramic, strong adhesion and attractive force between particles is induced, and the ceramic powder is As it collapses into nano-sized fine particles, it is attached to the surface of the vapor-deposited substrate 10 with a strong adhesive force.
  • the annular seal 130 and the discharge tube 110 of the aerosol nozzle 100 are cooled. That is, the cooling fluid is injected and circulated into the first cooling water passage 1423 inside the second flange 142 of the aerosol nozzle 100 and the second cooling water passage 151 inside the cooling jacket 150 to form the annular seal 130 ) and the discharge tube 110 may be cooled.
  • the microwave plasma nozzle for powder aerosol deposition for coating is a discharge tube ( The discharge part 112 of 110) is not only firmly fixed to the vacuum chamber 200, but also the connection of the nozzle is possible so that the vacuum environment of the vacuum chamber 200 is maintained, and further, this advantage is the plasma generating means 120 As a result, there is an advantage of making microwaves available.
  • annular seal 130 that maintains the airtightness around the discharge part 112 of the discharge tube 110 can be easily cooled, heat loss of the annular seal 130 due to the high temperature of the plasma can be prevented. have.
  • the discharge tube 110 of the nozzle is surrounded by a metal material and shielded from the external space, leakage of electromagnetic waves flowing into the discharge tube 110 is prevented, and the electronic shielding with the external space is made. It has the advantage of being able to drive stably for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A nozzle for deposition of powder aerosol for coating is disclosed. The nozzle for deposition of powder aerosol for coating comprises: an entrance part through which carrier gas and the powder aerosol for coating are injected, and a discharge part through which the powder aerosol for coating is discharged, wherein the discharge part comprises: a discharge pipe that is connected so that the powder aerosol for coating is discharged into a vacuum chamber in which a substrate to be deposited is accommodated; and a plasma generation means for generating plasma between the entrance part and the discharge part.

Description

코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐 및 이를 이용하는 코팅용 분체 에어로졸에 의한 코팅 장치Microwave plasma nozzle for powder aerosol deposition for coating and coating device by powder aerosol for coating using the same
본 발명은 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐 및 이를 이용하는 코팅용 분체 에어로졸에 의한 코팅 장치에 관한 것으로, 더욱 상세하게는 분체의 피증착 기판으로의 코팅 효율이 개선될 수 있는 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐 및 이를 이용하는 코팅용 분체 에어로졸에 의한 코팅 장치에 관한 것이다.The present invention relates to a microwave plasma nozzle for powder aerosol deposition for coating, and a coating device using the powder aerosol for coating using the same, and more particularly, to a powder aerosol for coating in which the coating efficiency of powder onto a substrate to be deposited can be improved. It relates to a microwave plasma nozzle for deposition and a coating apparatus using the same for coating powder aerosol.
기존 반도체 장치 부품에 내플라즈마성, 내식성 향상을 위한 세라믹 코팅을 하는 공정에는 아노다이징(Anodizing)과 용사 코팅이 있다.The process of applying ceramic coating to the existing semiconductor device components to improve plasma and corrosion resistance includes anodizing and thermal spray coating.
아노다이징을 이용하는 경우 세라믹 코팅막의 밀도, 경도 및 부식성이 떨어지며, 유독성 산을 사용하므로 환경 훼손적인 문제도 있다.When anodizing is used, the density, hardness, and corrosiveness of the ceramic coating film are lowered, and there is also a problem of environmental damage because toxic acid is used.
이러한 문제들로 인하여 반도체 장치 부품의 내식성 코팅기술로 플라즈마 용사코팅(Atmospheric Plasma Spray : APS) 방식이 이용된다.Due to these problems, an Atmospheric Plasma Spray (APS) method is used as a corrosion-resistant coating technology for semiconductor device components.
플라즈마 용사코팅 방식은 30~50㎛ 입도의 구형 세라믹 분말을 플라즈마 제트 중심으로 공급하여 분말을 용융시켜 제품의 표면에 분사하여 적층하는 방식이다.Plasma thermal spray coating is a method in which spherical ceramic powder with a particle size of 30-50 μm is supplied to the center of the plasma jet, melted, and sprayed on the surface of the product for lamination.
이러한 플라즈마 용사코팅 방식은 대면적 및 후막화가 용이한 장점을 가지고 있으나, 분말 분사시 플라즈마 제트의 중심을 통과하지 못한 분말의 경우 분말의 표면만 용융되어 코팅층을 이루게 되어서 미세구조와 재현성이 부족하고, 제어가 어려운 단점이 있다.This plasma spray coating method has the advantages of large area and easy film thickening, but in the case of powder that does not pass through the center of the plasma jet during powder spraying, only the surface of the powder is melted to form a coating layer, so the microstructure and reproducibility are insufficient, The disadvantage is that it is difficult to control.
또한, 고온의 플라즈마에 의한 박막의 미세균열, 기공 등의 문제로 경도, 밀도, 내전압 특성이 저하되는 단점이 있다.In addition, there is a disadvantage in that hardness, density, and withstand voltage characteristics are lowered due to problems such as microcracks and pores of the thin film due to high-temperature plasma.
이러한 플라즈마 용사코팅 방식의 단점을 보완하기 위하여 수 ㎛ 크기의 미립자를 용매에 분산하여 플라즈마 제트에 공급하는 서스펜션 플라즈마 용사(Suspension Plasma Spray : SPS) 기술을 개발하고 있으나, 이 역시 플라즈마 제트에 분말을 공급하는 과정에서 용매 증발로 인한 열원이 소실되고, 미용융 입자가 발생하여 코팅막 제어가 힘들고, 고온의 플라즈마에 의한 열충격으로 코팅막 특성이 저하되는 단점이 있다.In order to compensate for the shortcomings of the plasma spray coating method, Suspension Plasma Spray (SPS) technology is being developed, which disperses particles of several μm in size in a solvent and supplies them to the plasma jet, but this also supplies powder to the plasma jet. In the process, there are disadvantages in that the heat source is lost due to solvent evaporation, unmelted particles are generated, making it difficult to control the coating film, and the coating film properties are deteriorated due to thermal shock caused by high-temperature plasma.
이러한 단점들을 극복하고자 최근에 활발히 개발되고 있는 상온분사코팅기술(Aerosol Deposition : AD)은 상온에서 세라믹 분말을 운송 가스에 실어 에어로졸 상태로 진공상태인 모재에 분사, 초고밀도 세라믹층을 형성하는 기술이다.In order to overcome these shortcomings, aerosol deposition (AD), which has been actively developed recently, is a technology that forms an ultra-high-density ceramic layer by loading ceramic powder in a transport gas at room temperature and spraying it on the base material in a vacuum state in an aerosol state. .
상온분사코팅기술은 외부의 에너지 없이 모재 표면과 세라믹 분말이 충돌하는 입자의 운동에너지가 소성변형으로 변환되면서 입자간 강한 부착력 및 인력이 유도되어 미세크렉, 기공 없는 치밀한 박막 형성이 가능하고, 상온에서 분사 코팅이 이루어져 분말의 변질을 방지할 수 있고, 조성비 조절이 가능하며, 재현성이 높은 이점이 있다.In the room temperature spray coating technology, the kinetic energy of the particles colliding with the surface of the base material and the ceramic powder is converted into plastic deformation without external energy, and strong adhesion and attractive force between the particles is induced. Since the spray coating is made, it is possible to prevent deterioration of the powder, it is possible to control the composition ratio, and there are advantages of high reproducibility.
그러나 상온분사코팅기술은 분말의 운동에너지로만 코팅이 진행되어 플라즈마 용사 코팅에 비해 코팅 속도가 매우 느리고, 후막화가 어려운 단점을 갖는다.However, the room temperature spray coating technology has the disadvantages that the coating proceeds only with the kinetic energy of the powder, so the coating speed is very slow compared to the plasma spray coating, and it is difficult to make a thick film.
따라서 본 발명이 해결하고자 하는 과제는 분체의 피증착 기판으로의 코팅 효율이 개선되고, 후막화가 가능하며, 내부에 플라즈마가 발생되는 방전관이 진공 챔버에 견고히 고정될 뿐만 아니라, 진공 챔버의 진공 환경이 유지되게 노즐의 연결이 가능해지며, 나아가, 플라즈마 발생수단으로서 마이크로파를 이용 가능하도록 한 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐 및 코팅용 분체 에어로졸에 의한 코팅 장치를 제공하는데 있다.Therefore, the problem to be solved by the present invention is that the coating efficiency of the powder on the substrate to be deposited is improved, the thickness of the film is possible, and the discharge tube in which plasma is generated is firmly fixed in the vacuum chamber, and the vacuum environment of the vacuum chamber is improved. It is possible to connect the nozzle to be maintained, and furthermore, to provide a microwave plasma nozzle for powder aerosol deposition for coating and a coating device by powder aerosol for coating so that microwaves can be used as a plasma generating means.
또한, 방전관의 토출부의 둘레의 기밀을 유지시키는 환형 씰이 용이하게 냉각되고, 플라즈마의 고온에 의한 환형 씰의 열손실이 방지되어 장시간 동작이 가능한 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐 및 코팅용 분체 에어로졸에 의한 코팅 장치를 제공하는데 있다.In addition, the annular seal that maintains the airtightness around the discharge part of the discharge tube is easily cooled, and heat loss of the annular seal due to the high temperature of the plasma is prevented, so that it can operate for a long time. To provide a coating device by a powder aerosol.
또한, 코팅용 분체 에어로졸에 의한 코팅 장치를 장시간 안정적으로 운전할 수 있도록 하는 것에 목적이 있다.In addition, it is an object to make it possible to stably operate a coating device by a powder aerosol for coating for a long time.
본 발명의 일 실시예에 따른 코팅용 분말 에어로졸 증착용 노즐은 캐리어 가스 및 코팅용 분체 에어로졸이 주입되는 입구부 및 상기 코팅용 분체 에어로졸이 토출되는 토출부를 포함하고, 상기 토출부는 피증착 기판이 수용된 진공 챔버 내로 상기 코팅용 분체 에어로졸이 토출되도록 상기 진공 챔버에 연결되는 방전관; 및 상기 입구부 및 상기 토출부 사이에 플라즈마를 발생시키는 플라즈마 발생수단을 포함하는 것을 특징으로 한다.The nozzle for depositing powder aerosol for coating according to an embodiment of the present invention includes an inlet into which a carrier gas and a powder aerosol for coating are injected, and a discharge part through which the powder aerosol for coating is discharged, the discharge part having a substrate to be deposited therein. a discharge tube connected to the vacuum chamber to discharge the powder aerosol for coating into the vacuum chamber; and plasma generating means for generating plasma between the inlet part and the discharge part.
일 실시예에서, 상기 플라즈마 발생수단은, 마이크로파 발생수단; 상기 마이크로파 발생수단으로부터 마이크로파가 입력되며, 상기 방전관이 수직으로 관통하는 도파관; 및 상기 방전관 내에 플라즈마의 점화를 위한 전자를 공급하는 점화부를 포함하고, 상기 방전관은 석영관 또는 세라믹관일 수 있다.In one embodiment, the plasma generating means, microwave generating means; a waveguide through which microwaves are input from the microwave generating means and through which the discharge tube vertically passes; and an ignition unit supplying electrons for ignition of plasma in the discharge tube, wherein the discharge tube may be a quartz tube or a ceramic tube.
일 실시예에서, 상기 방전관은 상기 토출부 둘레에 환형으로 형성되는 플랜지부를 포함하고, 상기 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 환형 씰; 제1 플랜지; 및 복수의 플랜지고정볼트를 더 포함하고, 상기 환형 씰은 상기 플랜지부 둘레를 덮도록 상기 플랜지부 및 상기 플랜지부에 마주하는 상기 진공 챔버의 외면 사이에 개재되고, 상기 제1 플랜지는 상기 환형 씰의 반대측에서 상기 플랜지부 및 상기 환형 씰을 덮어서 상기 진공 챔버의 외면에 대향되고, 상기 플랜지고정볼트는 상기 진공 챔버의 내측으로부터 상기 진공 챔버의 외면을 관통하여 상기 제1 플랜지에 결합될 수 있다.In one embodiment, the discharge tube includes a flange portion formed in an annular shape around the discharge portion, the microwave plasma nozzle for powder aerosol deposition for the coating is an annular seal; a first flange; and a plurality of flange fixing bolts, wherein the annular seal is interposed between the flange portion and an outer surface of the vacuum chamber facing the flange portion to cover the circumference of the flange portion, and the first flange is the annular seal Covering the flange portion and the annular seal on the opposite side of the opposite side to the outer surface of the vacuum chamber, the flange fixing bolt may be coupled to the first flange through the outer surface of the vacuum chamber from the inside of the vacuum chamber.
일 실시예에서, 상기 환형 씰은 상기 플랜지부의 가장자리에 근접하게 배치되어 플라즈마로부터 멀게 이격될 수 있다.In an embodiment, the annular seal may be disposed proximate to the edge of the flange portion and spaced apart from the plasma.
일 실시예에서, 상기 진공 챔버의 외면 및 상기 제1 플랜지 사이에 상기 플랜지고정볼트를 통해 결합되어 상기 환형 씰을 수용하는 제2 플랜지를 더 포함하고, 상기 제2 플랜지는 상기 환형 씰의 원주방향을 따라 냉각유체를 순환시키는 제1 냉각수로를 포함하고, 상기 환형 씰은 상기 제1 냉각수로를 따라 순환되는 냉각유체에 의해 간접 냉각될 수 있다.In one embodiment, the vacuum chamber further comprises a second flange coupled through the flange fixing bolt between the first flange and the outer surface of the vacuum chamber to receive the annular seal, the second flange is the circumferential direction of the annular seal and a first cooling water channel for circulating the cooling fluid along
일 실시예에서, 상기 방전관과 동축으로 배치되어 상기 방전관을 수용하고, 상기 방전관을 둘러싸며 냉각유체가 순환하는 제2 냉각수로를 포함하는 냉각자켓을 더 포함할 수 있다.In an embodiment, the cooling jacket may further include a cooling jacket disposed coaxially with the discharge tube to accommodate the discharge tube, and including a second cooling water channel surrounding the discharge tube and through which a cooling fluid circulates.
일 실시예에서, 상기 제2 냉각수로를 순환하는 냉각유체는 상기 전자파의 투과 가능한 유전율을 갖는 오일일 수 있다.In an embodiment, the cooling fluid circulating in the second cooling water channel may be oil having a permittivity to transmit electromagnetic waves.
일 실시예에서, 상기 방전관 및 상기 냉각자켓을 수용하는 차폐자켓을 더 포함할 수 있다.In one embodiment, it may further include a shielding jacket for accommodating the discharge tube and the cooling jacket.
일 실시예에서, 상기 방전관과 동축상에 배치되게 상기 진공 챔버 내면에 설치되어 상기 방전관을 통해 전송되는 코팅용 분체 에어로졸을 상기 피증착 기판을 향해 토출하는 종단노즐을 더 포함할 수 있다.In one embodiment, it may further include a terminal nozzle installed on the inner surface of the vacuum chamber to be disposed coaxially with the discharge tube to discharge the powder aerosol for coating transmitted through the discharge tube toward the deposition target substrate.
일 실시예에서, 상기 코팅용 분체 에어로졸이 통과하는 상기 종단노즐의 내부는 상기 종단노즐의 말단으로 갈수록 직경이 감소할 수 있다.In one embodiment, the inside of the terminal nozzle through which the powder aerosol for coating passes may decrease in diameter toward the end of the terminal nozzle.
일 실시예에서, 상기 방전관의 내경은 10~15mm 이하이고, 상기 종단노즐의 말단의 내경은 5mm~10mm일 수 있다.In one embodiment, the inner diameter of the discharge tube may be 10 ~ 15mm or less, the inner diameter of the end of the terminal nozzle may be 5mm ~ 10mm.
일 실시예에서, 상기 점화부는, 절두된 원추 형상의 내면을 갖고, 상기 절두된 부분에 환형의 첨예부를 형성하고, 상기 첨예부가 상기 도파관의 방전관이 관통된 영역에 인접하여 상기 방전관 둘레를 감싸도록 설치되는 환형의 전도성 링; 상기 환형의 전도성 링에 전도 가능하게 연결되고, 상기 방전관 내에 플라즈마의 점화를 위한 전원이 인가되는 전력인가부재를 포함할 수 있다.In one embodiment, the ignition portion has a truncated cone-shaped inner surface, and forms an annular pointed portion in the truncated portion, and the pointed portion is adjacent to an area through which the discharge tube of the waveguide is passed and surrounds the discharge tube. An annular conductive ring to be installed; It may include a power applying member conductively connected to the annular conductive ring and to which power for ignition of plasma is applied in the discharge tube.
본 발명의 일 실시예에 따른 코팅용 분체 에어로졸에 의한 코팅 장치는 내부에 피증착 기판을 수용하는 진공 챔버; 상기 피증착 기재에 마주하도록 상기 진공 챔버에 장착되어 상기 피증착 기재를 향해 코팅용 분체 에어로졸을 토출하는 제1항 내지 제12항 중 어느 한 항의 노즐; 및 상기 노즐의 입구부로 코팅용 분체 에어로졸을 공급하는 에어로졸 공급부를 포함하는 것을 특징으로 한다.A coating apparatus by a powder aerosol for coating according to an embodiment of the present invention includes a vacuum chamber accommodating a substrate to be deposited therein; The nozzle according to any one of claims 1 to 12, which is mounted in the vacuum chamber to face the vapor-deposited substrate and discharges a powder aerosol for coating toward the vapor-deposited substrate; And characterized in that it comprises an aerosol supply for supplying a powder aerosol for coating to the inlet of the nozzle.
일 실시예에서, 상기 에어로졸 공급부는, 코팅용 분체를 담고 있고, 상기 진공 챔버보다 높은 압력의 분체 챔버; 상기 분체 챔버로 캐리어 가스를 공급하는 캐리어 가스 공급부; 및 상기 분체 챔버 및 상기 노즐 사이에 연결되어 상기 분체 챔버로부터 코팅용 분체 에어로졸이 상기 노즐로 공급되도록 하는 에어로졸 이송 채널을 포함할 수 있다.In one embodiment, the aerosol supply unit, containing the powder for coating, the powder chamber of a higher pressure than the vacuum chamber; a carrier gas supply unit supplying a carrier gas to the powder chamber; and an aerosol transport channel connected between the powder chamber and the nozzle to supply the powder aerosol for coating from the powder chamber to the nozzle.
일 실시예에서, 상기 캐리어 가스는 아르곤 또는 질소일 수 있다.In one embodiment, the carrier gas may be argon or nitrogen.
본 발명에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐, 이 노즐을 이용하는 코팅용 분체 에어로졸에 의한 코팅 장치를 이용하면, 피증착 기판을 향해 가속되는 코팅용 분체 에어로졸이 플라즈마의 에너지를 얻어서 가속되어 토출되므로 분체의 피증착 기판으로의 코팅 효율이 개선될 수 있다.Using the microwave plasma nozzle for powder aerosol deposition for coating according to the present invention, and a coating device by powder aerosol for coating using this nozzle, the powder aerosol for coating accelerated toward the substrate to be deposited is accelerated by obtaining plasma energy. Since it is discharged, the coating efficiency of the powder onto the substrate to be deposited can be improved.
또한, 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 방전관의 토출부가 진공 챔버에 견고히 고정될 뿐만 아니라, 진공 챔버의 진공 환경이 유지되게 노즐의 연결이 가능해지며, 나아가, 이러한 이점은 플라즈마 발생수단으로서 마이크로파를 이용 가능하게 하는 이점이 있다.In addition, in the microwave plasma nozzle for powder aerosol deposition for coating, the discharge part of the discharge tube is firmly fixed to the vacuum chamber, and the nozzle can be connected so that the vacuum environment of the vacuum chamber is maintained. There are advantages to making microwaves available.
또한, 방전관의 토출부 둘레의 기밀을 유지시키는 환형 씰이 용이하게 냉각될 수 있으므로 플라즈마의 고온에 의한 환형 씰의 열손실이 방지되어 장시간 동작이 가능해질 수 있는 이점이 있다.In addition, since the annular seal maintaining the airtightness around the discharge part of the discharge tube can be easily cooled, heat loss of the annular seal due to the high temperature of the plasma is prevented, thereby enabling long-term operation.
또한, 노즐의 방전관은 차폐자켓으로 둘러 싸여서 외부 공간과 차폐되므로 방전관으로 유입되는 전자파의 누출이 방지되며, 외부 공간과 전자적 차폐가 이루어지므로 코팅용 분체 에어로졸에 의한 코팅 장치를 장시간 안정적으로 운전할 수 있는 이점이 있다.In addition, since the discharge tube of the nozzle is surrounded by a shielding jacket and shielded from the external space, leakage of electromagnetic waves flowing into the discharge tube is prevented. There is an advantage.
도 1은 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐의 구성을 나타내는 단면도이다.1 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention.
도 2는 도 1에 도시된 점화부의 전도성 링을 확대 도시하는 사시도이다.FIG. 2 is an enlarged perspective view of the conductive ring of the ignition unit shown in FIG. 1 .
도 3은 본 발명의 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐의 구성을 나타내는 단면도이다.3 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐의 구성을 나타내는 단면도이다.4 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention.
도 5는 도 4의 외관 사시도이다.5 is an external perspective view of FIG. 4 ;
도 6은 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸에 의한 코팅 장치의 구성을 설명하기 위한 도면이다.6 is a view for explaining the configuration of a coating device by a powder aerosol for coating according to an embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐 및 이를 이용하는 코팅용 분체 에어로졸에 의한 코팅 장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, with reference to the accompanying drawings, a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention and a coating device by powder aerosol for coating using the same will be described in detail. Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements. In the accompanying drawings, the dimensions of the structures are enlarged than the actual size for clarity of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as "comprise" or "have" are intended to designate that a feature, number, step, operation, component, part, or a combination thereof described in the specification exists, but one or more other features It is to be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
도 1은 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐의 구성을 나타내는 단면도이다.1 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 방전관(110) 및 플라즈마 발생수단(120)을 포함할 수 있다.Referring to FIG. 1 , the microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention may include a discharge tube 110 and a plasma generating means 120 .
방전관(110)은 입구부(111) 및 토출부(112)를 포함할 수 있다. 입구부(111)로는 캐리어 가스 및 코팅용 분체 에어로졸이 주입될 수 있고, 토출부(112)로는 입구부(111)로 주입되는 코팅용 분체 에어로졸이 토출될 수 있다. 이러한 방전관(110)은 토출부(112)가 피증착 기판(10)이 수용된 진공 챔버(200) 내로 코팅용 분체 에어로졸이 토출되도록 토출부(112)가 상기 진공 챔버(200)에 연결된다. 방전관(110)은 석영관 또는 세라믹관일 수 있다.The discharge tube 110 may include an inlet part 111 and a discharge part 112 . A carrier gas and powder aerosol for coating may be injected into the inlet part 111 , and powder aerosol for coating injected into the inlet part 111 may be discharged through the discharge part 112 . In the discharge tube 110 , the discharge unit 112 is connected to the vacuum chamber 200 so that the discharge unit 112 discharges the powder aerosol for coating into the vacuum chamber 200 in which the vapor-deposited substrate 10 is accommodated. The discharge tube 110 may be a quartz tube or a ceramic tube.
이러한 방전관(110)은 직경이 작을수록 방전관(110)을 통과하는 코팅용 분체 에어로졸의 유속이 빨라질 수 있다. 이를 위해, 방전관(110)의 내경은 10mm ~ 15mm 이하로 설정될 수 있다. 10mm 미만인 경우 방전관(110)의 직경이 현저히 감소하게 되어 방전관(110)의 강도 유지에 문제가 있고, 15mm를 초과하는 경우 방전관(110) 내에 플라즈마 발생수단(120)에 의해 발생되는 플라즈마가 속이 빈 플라즈마로 생성될 수 있고, 이러한 경우 방전관(110)을 통과하는 코팅용 분체 에어로졸이 플라즈마와 접촉하지 못하고 통과되는 문제가 있다. 따라서, 방전관(110) 내에 꽉 찬 플라즈마의 생성을 위해 방전관(110)의 내경은 15mm를 초과하지 않도록 설정된다. As the diameter of the discharge tube 110 decreases, the flow rate of the powder aerosol for coating passing through the discharge tube 110 may increase. To this end, the inner diameter of the discharge tube 110 may be set to 10mm ~ 15mm or less. If it is less than 10 mm, the diameter of the discharge tube 110 is significantly reduced, so there is a problem in maintaining the strength of the discharge tube 110, and if it exceeds 15 mm, the plasma generated by the plasma generating means 120 in the discharge tube 110 is hollow. It may be generated by plasma, and in this case, there is a problem in that the powder aerosol for coating that passes through the discharge tube 110 passes through without contacting the plasma. Accordingly, the inner diameter of the discharge tube 110 is set not to exceed 15 mm in order to generate plasma filled in the discharge tube 110 .
플라즈마 발생수단(120)은 방전관(110)의 입구부(111) 및 토출부(112) 사이에 플라즈마를 발생시킨다. 즉, 입구부(111)로부터 토출부(112)로 진행되는 코팅용 분체 에어로졸이 플라즈마를 지나도록 입구부(111) 및 토출부(112) 사이에 플라즈마를 발생시킨다.The plasma generating means 120 generates plasma between the inlet 111 and the outlet 112 of the discharge tube 110 . That is, plasma is generated between the inlet part 111 and the discharge part 112 so that the powder aerosol for coating that proceeds from the inlet part 111 to the discharge part 112 passes through the plasma.
상기 플라즈마는 마이크로웨이브 플라즈마 방전에 의한 플라즈마일 수 있다. 이를 위해, 플라즈마 발생수단(120)은 마이크로파 발생수단(미도시), 도파관(122) 및 점화부(123)를 포함할 수 있다.The plasma may be plasma by microwave plasma discharge. To this end, the plasma generating means 120 may include a microwave generating means (not shown), a waveguide 122 and an ignition unit 123 .
구체적으로 도시하지는 않았지만, 마이크로파 발생수단은 마그네트론, 전원공급부, 순환기, 방향성 결합기 및 스터브 튜너를 포함할 수 있다. 기 마그네트론은 10 MHz ∼ 10 GHz 대역의 전자파를 발진하는 마그네트론이 사용될 수 있고, 바람직하게는 2.45 GHz 전자파를 발진하도록 구성될 수 있다. 상기 전원공급부는 전파전압배율기와 펄스 및 직류(DC)장치로 구성되어 마그네트론으로 전력을 공급하도록 구성될 수 있다. 상기 순환기는 마그네트론에서 발진된 전자파를 출력함과 더불어 임피던스 부정합으로 반사되는 전자파 에너지를 소멸시켜 마그네트론을 보호하도록 구성될 수 있다. 상기 방향성 결합기는 순환기를 통해 전송된 전자파를 출력할 수 있다. 상기 스터브 튜너는 방향성 결합기로부터 입력되는 전파자에 대해 입사파와 반사파의 세기를 조절하여 임피던스 정합을 유도함으로써 전자파로 유도된 전기장이 방전관(110) 내에서 가장 강한 현상을 나타내도록 구성될 수 있다.Although not specifically shown, the microwave generating means may include a magnetron, a power supply, a circulator, a directional coupler, and a stub tuner. The magnetron may be a magnetron that oscillates an electromagnetic wave in a band of 10 MHz to 10 GHz, and preferably may be configured to oscillate an electromagnetic wave at 2.45 GHz. The power supply unit may be configured to supply power to the magnetron by being composed of a radio voltage multiplier and a pulse and direct current (DC) device. The circulator may be configured to output electromagnetic waves oscillated from the magnetron and to protect the magnetron by dissipating electromagnetic wave energy reflected by impedance mismatch. The directional coupler may output the electromagnetic wave transmitted through the circulator. The stub tuner may be configured such that the electric field induced by the electromagnetic wave exhibits the strongest phenomenon in the discharge tube 110 by inducing impedance matching by adjusting the intensity of the incident wave and the reflected wave with respect to the radio wave input from the directional coupler.
도파관(122)은 마이크로파 발생수단으로부터 전자파가 입력되며, 방전관(110)이 수직으로 관통한다.The waveguide 122 receives electromagnetic waves from the microwave generating means, and the discharge tube 110 vertically passes through it.
점화부(123)는 방전관(110) 내에 플라즈마의 점화를 위한 전자를 공급한다. 일 예로, 점화부(123)는 환형의 전도성 링(1231) 및 전력인가부재(1232)를 포함할 수 있다.The ignition unit 123 supplies electrons for ignition of plasma in the discharge tube 110 . For example, the ignition unit 123 may include an annular conductive ring 1231 and a power applying member 1232 .
도 2는 도 1에 도시된 점화부의 전도성 링을 확대 도시하는 사시도이다. 도 1 및 도 2를 참조하면, 환형의 전도성 링(1231)은 절두된 원추 형상의 내면을 갖고, 절두된 부분에 환형의 첨예부(1231a)를 형성할 수 있다. 이러한 환형의 전도성 링(1231)은 첨예부(1231a)가 도파관(122)의 방전관(110)이 관통된 영역에 인접하여 첨예부(1231a)가 방전관(110) 둘레를 감싸도록 설치될 수 있다.FIG. 2 is an enlarged perspective view of the conductive ring of the ignition unit shown in FIG. 1 . 1 and 2 , the annular conductive ring 1231 may have a truncated cone-shaped inner surface, and an annular pointed portion 1231a may be formed in the truncated portion. The annular conductive ring 1231 may be installed such that the pointed portion 1231a is adjacent to the region through which the discharge tube 110 of the waveguide 122 passes, and the pointed portion 1231a surrounds the discharge tube 110 .
이러한 환형의 전도성 링(1231)은 환형의 첨예부(1231a)가 방전관(110) 둘레를 감싸면 방전관(110) 둘레에 선형으로 접하게 되고, 이는 환형의 전도성 링(1231)이 방전관(110)에 접하는 면적이 최소화되고 전자의 공급을 위한 전력이 첨예부(1231a)에 집중되므로 항시 도파관(122)의 방전관(110)이 관통된 영역에 인접하게 전자를 공급하며, 안정적인 전자의 공급이 가능해질 수 있다. The annular conductive ring 1231 is in linear contact with the discharge tube 110 when the annular pointed part 1231a wraps around the discharge tube 110, which is the annular conductive ring 1231 is in contact with the discharge tube 110. Since the area is minimized and the power for supplying electrons is concentrated on the sharp part 1231a, electrons are always supplied adjacent to the region through which the discharge tube 110 of the waveguide 122 is penetrated, and stable electron supply can be achieved. .
전력인가부재(1232)는 환형의 전도성 링(1231)에 전도 가능하게 연결되고, 외부의 전원공급수단으로부터 방전관(110) 내에 플라즈마의 점화를 위한 전원이 인가될 수 있다.The power applying member 1232 is conductively connected to the annular conductive ring 1231 , and power for ignition of plasma in the discharge tube 110 may be applied from an external power supply means.
일 예로, 전력인가부재(1232)는 전력출력단(1232a) 및 전력출력단(1232a) 반대편의 전원입력부(1232b)를 포함할 수 있고, 전력출력단(1232a)이 전도성 링(1231)의 일측을 관통하도록 전도성 링(1231) 일측에 설치될 수 있다. 상기 전원입력부(1232b)는 외부의 전원공급수단과 전기적으로 연결되어 상기 전원공급수단으로부터 전원이 인가될 수 있다.As an example, the power applying member 1232 may include a power output terminal 1232a and a power input unit 1232b opposite to the power output terminal 1232a, so that the power output terminal 1232a penetrates one side of the conductive ring 1231 . It may be installed on one side of the conductive ring 1231 . The power input unit 1232b may be electrically connected to an external power supply means to receive power from the power supply means.
이러한 점화부(123)는 상기 전력인가부재(1232)에 전원이 인가되면 상기 전력출력단(1232a)으로부터 전도성 링(1231)의 첨예부(1231a) 방향으로 전력이 인가되고, 전도성 링(1231)의 첨예부(1231a)로 인가되는 전력이 방전관(110)의 내부로 전달되어 방전관(110)의 내부에 유입된 전자파에 플라즈마 방전을 위한 전자가 입력되어 플라즈마 방전이 개시되고, 이에 따라, 방전관(110) 내에 플라즈마가 발생될 수 있다.When power is applied to the power applying member 1232 to the ignition unit 123, power is applied from the power output terminal 1232a in the direction of the pointed portion 1231a of the conductive ring 1231, and the conductive ring 1231 The electric power applied to the sharp part 1231a is transferred to the inside of the discharge tube 110 , and electrons for plasma discharge are input to the electromagnetic waves flowing into the inside of the discharge tube 110 to initiate plasma discharge, and accordingly, the discharge tube 110 ) in which plasma can be generated.
한편, 상기 방전관(110)은 진공 챔버(200)로 연결될 때 진공 챔버(200) 내의 진공 유지 및 코팅용 분체 에어로졸의 누출 방지를 위해 견고한 기밀이 유지되어야 한다.On the other hand, when the discharge tube 110 is connected to the vacuum chamber 200, a strong airtightness must be maintained in order to maintain a vacuum in the vacuum chamber 200 and to prevent leakage of a powder aerosol for coating.
이를 위해, 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 도 1에 도시된 바와 같이 환형 씰(seal)(130) 및 제1 플랜지(141) 및 복수의 플랜지고정볼트(190)를 포함할 수 있고, 방전관(110)은 토출부(112) 둘레에 환형으로 형성되는 플랜지부(113)를 포함할 수 있다. 도 2는 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐이 진공 챔버에 고정되는 일 실시예를 나타내는 단면도이다.To this end, the microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention is an annular seal 130 and a first flange 141 and a plurality of flange fixing bolts as shown in FIG. 1 . 190 may be included, and the discharge tube 110 may include a flange portion 113 formed in an annular shape around the discharge portion 112 . 2 is a cross-sectional view showing an embodiment in which a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention is fixed to a vacuum chamber.
환형 씰(130)은 내열성을 갖는 고무재질의 오링(O-ring)로 구성될 수 있다. 환형 씰(130)은 상기 플랜지부(113) 둘레를 덮도록 플랜지부(113) 및 플랜지부(113)에 마주하는 진공 챔버(200)의 외면 사이에 개재될 수 있다. 이때, 환형 씰(130)은 최대한 플랜지부(113)의 가장자리에 근접하도록 배치될 수 있다. 예를 들어, 환형 씰(130)은 플랜지부(113)의 가장자리를 덮도록 플랜지부(113)에 밀착되어 토출부(112) 둘레를 밀봉할 수 있다. 이러한 경우, 환형 씰(130)은 플라즈마로부터 멀게 이격될 수 있고, 이에 의해, 플라즈마의 높은 온도로 인한 열손상이 방지될 수 있다.The annular seal 130 may be formed of an O-ring made of a rubber material having heat resistance. The annular seal 130 may be interposed between the flange part 113 and the outer surface of the vacuum chamber 200 facing the flange part 113 so as to cover the circumference of the flange part 113 . At this time, the annular seal 130 may be disposed to be as close to the edge of the flange portion 113 as possible. For example, the annular seal 130 may be in close contact with the flange portion 113 to cover the edge of the flange portion 113 to seal the circumference of the discharge portion 112 . In this case, the annular seal 130 may be spaced away from the plasma, thereby preventing thermal damage due to the high temperature of the plasma.
제1 플랜지(141)는 환형 씰(130)의 반대측에서 플랜지부(113) 및 환형 씰(130)을 덮어서 진공 챔버(200)의 외면에 대향될 수 있다.The first flange 141 may face the outer surface of the vacuum chamber 200 by covering the flange portion 113 and the annular seal 130 from the opposite side of the annular seal 130 .
플랜지고정볼트(190)는 진공 챔버(200)의 내측으로부터 진공 챔버(200)의 외면을 관통하여 제1 플랜지(141)에 결합될 수 있다. 이때, 플랜지고정볼트(190)는 제1 플랜지(141)에 조여지면서 제1 플랜지(141)를 진공 챔버(200) 방향으로 당기게 되어 제1 플랜지(141)를 진공 챔버(200)의 외면에 견고히 고정시킬 수 있다.The flange fixing bolt 190 may be coupled to the first flange 141 through the outer surface of the vacuum chamber 200 from the inside of the vacuum chamber 200 . At this time, the flange fixing bolt 190 is tightened to the first flange 141 and pulls the first flange 141 in the direction of the vacuum chamber 200 to firmly attach the first flange 141 to the outer surface of the vacuum chamber 200 . can be fixed
이하에서는 설명의 편의를 위해, 상기 방전관(110)이 고정되는 진공 챔버(200)의 외면을 '노즐장착면(210)'으로 명명하여 설명하기로 한다.Hereinafter, for convenience of description, the outer surface of the vacuum chamber 200 to which the discharge tube 110 is fixed will be described as a 'nozzle mounting surface 210'.
도 3은 본 발명의 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐의 구성을 나타내는 단면도이다.3 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 제2 플랜지(142)를 더 포함할 수 있다.Referring to FIG. 3 , the microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention may further include a second flange 142 .
제2 플랜지(142)는 노즐장착면(210) 및 제1 플랜지(141) 사이에 플랜지고정볼트(190)를 통해 결합되어 환형 씰(130)을 수용할 수 있다. 즉, 플랜지고정볼트(190)가 노즐장착면(210), 제2 플랜지(142) 및 제1 플랜지(141)에 나사 결합되어 제2 플랜지(142)가 노즐장착면(210) 및 제1 플랜지(141) 사이에 고정될 수 있고, 제1 플랜지(141) 및 제2 플랜지(142) 사이에는 환형 씰(130) 및 방전관(110)의 플랜지부(113)가 수용될 수 있다.The second flange 142 is coupled through a flange fixing bolt 190 between the nozzle mounting surface 210 and the first flange 141 to accommodate the annular seal 130 . That is, the flange fixing bolt 190 is screwed to the nozzle mounting surface 210, the second flange 142 and the first flange 141 so that the second flange 142 is the nozzle mounting surface 210 and the first flange. It may be fixed between the 141 , and the annular seal 130 and the flange portion 113 of the discharge tube 110 may be accommodated between the first flange 141 and the second flange 142 .
또한, 제2 플랜지(142)는 중심부에 형성되는 유체통과홀(1421)을 포함할 수 있다. 상기 유체통과홀(1421)은 방전관(110)과 동축으로 배치되어 방전관(110)의 내부와 유체 소통 가능하게 방전관(110)과 마주할 수 있고, 제2 플랜지(142)가 고정되는 노즐장착면(210)에는 상기 유체통과홀(1421)과 유체 소통 가능한 관통홀(211)이 형성될 수 있다.In addition, the second flange 142 may include a fluid passage hole 1421 formed in the center. The fluid passage hole 1421 may be disposed coaxially with the discharge tube 110 to face the discharge tube 110 in fluid communication with the interior of the discharge tube 110 , and a nozzle mounting surface to which the second flange 142 is fixed. A through hole 211 capable of fluid communication with the fluid passage hole 1421 may be formed in the 210 .
일 예로, 제1 플랜지(141)의 제2 플랜지(142)와 밀착되는 면에는 플랜지수용홈(1411)이 형성되어 방전관(110)의 플랜지부(113)를 상기 플랜지수용홈(1411) 내에 수용할 수 있고, 제2 플랜지(142)의 유체통과홀(1421) 둘레에 환형 씰 수용홈(1422)이 형성되어 환형 씰(130)을 환형 씰 수용홈(1422) 내에 수용할 수 있다. 이때, 환형 씰(130)은 플랜지부(113)의 가장자리를 덮어 플랜지부(113)에 밀착될 수 있다.For example, a flange accommodating groove 1411 is formed on the surface of the first flange 141 in close contact with the second flange 142 to accommodate the flange portion 113 of the discharge tube 110 in the flange accommodating groove 1411 . And, an annular seal accommodating groove 1422 is formed around the fluid passage hole 1421 of the second flange 142 to accommodate the annular seal 130 in the annular seal accommodating groove 1422 . At this time, the annular seal 130 may cover the edge of the flange portion 113 to be in close contact with the flange portion 113 .
한편, 환형 씰(130)의 플라즈마의 높은 온도로 인한 열손상을 더욱 효율적으로 방지하기 위해, 상기 제2 플랜지(142)는 제1 냉각수로(1423)를 포함할 수 있다. 제1 냉각수로(1423)는 제2 플랜지(142)의 내부에 수용되는 환형 씰(130)의 원주방향을 따라 형성될 수 있고, 냉각유체가 주입 및 순환될 수 있다. 예를 들어, 제1 냉각수로(1423)는 환형 씰(130)이 수용되는 상기 환형 씰 수용홈(1422)보다 안쪽에 위치하도록 형성되어 환형 씰 수용홈(1422)에 수용되는 환형 씰(130)에 냉각유체가 접촉될 수 있다. 냉각유체의 주입은 제1 플랜지(141)에 냉각유체 공급수단이 연결되어 제1 냉각수로(1423)로 주입될 수 있다. 도시하지는 않았지만, 예를 들어, 냉각유체 공급수단은 냉각유체를 저장하고 있는 냉각유체 저장조, 제1 냉각수로(1423) 및 상기 저장조에 유체 소통 가능하게 연결되는 주입관 및 회수관, 냉각유체를 펌핑하는 펌프를 포함할 수 있다.Meanwhile, in order to more effectively prevent thermal damage due to the high temperature of the plasma of the annular seal 130 , the second flange 142 may include a first cooling water channel 1423 . The first cooling water channel 1423 may be formed along the circumferential direction of the annular seal 130 accommodated in the interior of the second flange 142 , and the cooling fluid may be injected and circulated. For example, the first cooling water channel 1423 is formed to be located inside the annular seal accommodating groove 1422 in which the annular seal 130 is accommodated, and the annular seal 130 is accommodated in the annular seal accommodating groove 1422 . may be in contact with the cooling fluid. The cooling fluid may be injected into the first cooling water channel 1423 by connecting the cooling fluid supply means to the first flange 141 . Although not shown, for example, the cooling fluid supply means includes a cooling fluid storage tank storing a cooling fluid, a first cooling water channel 1423, an injection pipe and a recovery pipe connected to the storage tank in fluid communication, and a cooling fluid. It may include a pump that does.
도 4는 본 발명의 또 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐의 구성을 나타내는 단면도이고, 도 5는 도 4의 외관 사시도이다.4 is a cross-sectional view showing the configuration of a microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention, and FIG. 5 is an external perspective view of FIG. 4 .
한편, 앞서 언급한 바와 같이 방전관(110) 내에서 발생되는 플라즈마는 방전관(110) 내에 꽉 찬 플라즈마로 발생되므로 플라즈마의 열이 분산되지 않고 방전관(110) 내에 집중되므로 방전관(110)을 냉각시킬 필요가 있다. 이를 위해, 본 발명의 또 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 도 4에 도시된 바와 같이 냉각자켓(150)을 더 포함할 수 있다.On the other hand, as mentioned above, since the plasma generated in the discharge tube 110 is generated as a full plasma in the discharge tube 110 , the heat of the plasma is not dispersed but is concentrated in the discharge tube 110 , so it is necessary to cool the discharge tube 110 . there is To this end, the microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention may further include a cooling jacket 150 as shown in FIG. 4 .
상기 냉각자켓(150)은 방전관(110)과 동축으로 배치되어 방전관(110)을 수용하고, 방전관(110)을 둘러싸며, 냉각유체가 순환하는 제2 냉각수로(151)를 포함할 수 있다. 제2 냉각수로(151)는 방전관(110)의 길이방향을 따라 형성될 수 있다. The cooling jacket 150 may be disposed coaxially with the discharge tube 110 to accommodate the discharge tube 110 , surround the discharge tube 110 , and include a second cooling water channel 151 through which a cooling fluid circulates. The second cooling water channel 151 may be formed along the longitudinal direction of the discharge tube 110 .
이러한 냉각자켓(150)은 방전관(110)을 수용하여 방전관(110)과 함께 도파관(122)을 수직으로 관통할 수 있다. 이때, 냉각자켓(150)은 방전관(110) 내부로의 전자파 유입을 차단하지 않도록, 냉각자켓(150)은 석영관 또는 세라믹관일 수 있고, 제2 냉각수로(151)를 따라 순환되는 냉각유체는 전자파의 투과 가능한 유전율을 갖는 오일일 수 있다.The cooling jacket 150 may accommodate the discharge tube 110 and vertically penetrate the waveguide 122 together with the discharge tube 110 . At this time, the cooling jacket 150 may be a quartz tube or a ceramic tube so that the cooling jacket 150 does not block the inflow of electromagnetic waves into the discharge tube 110 , and the cooling fluid circulated along the second cooling water channel 151 is It may be an oil having a permittivity capable of transmitting electromagnetic waves.
또한, 상기 제2 냉각수로(151)로의 냉각유체 주입 및 순환을 위해 제1 플랜지(141)의 반대편 방향에서 냉각자켓(150)과 동축으로 배치되는 제3 플랜지(143)를 더 포함할 수 있고, 제1 플랜지(141) 및 제3 플랜지(143)에는 냉각유체의 주입 및 배출을 위해 제2 냉각수로(151)의 직경 이상의 직경을 갖는 중앙홀(1412, 1431) 및 상기 중앙홀(1412, 1431)에 관통되는 유체출입구(1413, 1432)가 형성될 수 있다.In addition, a third flange 143 disposed coaxially with the cooling jacket 150 in a direction opposite to the first flange 141 for injection and circulation of the cooling fluid into the second cooling water channel 151 may be further included. , The first flange 141 and the third flange 143 have central holes 1412 and 1431 having a diameter equal to or greater than the diameter of the second cooling water passage 151 for injection and discharge of cooling fluid and the central hole 1412; The fluid inlets 1413 and 1432 penetrating through the 1431 may be formed.
이러한 경우, 방전관(110)의 입구부(111)는 제3 플랜지(143)의 중앙홀(1432) 내에 수용될 수 있고, 제3 플랜지(143)의 후방에는 방전관(110)의 입구부(111)에 유체 소통 가능하게 마주하고 상기 코팅용 분체 에어로졸을 방전관(110)의 입구부(111)로 주입하기 위한 에어로졸 주입홀(161)을 갖는 어댑터(160)가 결합될 수 있다. In this case, the inlet 111 of the discharge tube 110 may be accommodated in the central hole 1432 of the third flange 143 , and the inlet 111 of the discharge tube 110 is located at the rear of the third flange 143 . ) and the adapter 160 having an aerosol injection hole 161 for injecting the powder aerosol for coating into the inlet 111 of the discharge tube 110 in fluid communication can be coupled thereto.
도시하지는 않았지만, 상기 제2 냉각수로(151)에 냉각유체를 주입하기 위해 제1 플랜지(141) 및 제3 플랜지(143)에는 냉각유체 공급수단이 연결될 수 있다. 냉각유체 공급수단은 상기 제2 플랜지(142)에 연결되는 냉각유체 공급수단과 동일 또는 유사하므로 구체적인 설명은 생략하기로 한다.Although not shown, a cooling fluid supply means may be connected to the first flange 141 and the third flange 143 to inject the cooling fluid into the second cooling channel 151 . Since the cooling fluid supply means is the same as or similar to the cooling fluid supply means connected to the second flange 142 , a detailed description thereof will be omitted.
여기서, 상기 냉각자켓(150)은 석영관 또는 세라믹관이고 방전관(110)을 수용하고 있으므로 상기 플라즈마 발생수단(120)의 점화부(123)의 환형의 전도성 링(1231)은 첨예부(1231a)가 냉각자켓(150) 둘레를 감싸도록 구비될 수 있다.Here, since the cooling jacket 150 is a quartz tube or a ceramic tube and accommodates the discharge tube 110 , the annular conductive ring 1231 of the ignition unit 123 of the plasma generating means 120 is a pointed portion 1231a). may be provided to surround the cooling jacket 150 .
한편, 피증착 기판(10)을 향해 토출되는 코팅용 분체 에어로졸의 코팅용 분체는 피증착 기판(10)에 강한 부착력으로 부착되어야 하는데, 이를 위해서는 토출되는 코팅용 분체 에어로졸이 피증착 기판(10)에 강하게 토출되어야 하며, 이를 위해서는 코팅용 분체 에어로졸이 토출되는 노즐의 말단의 직경이 작을수록 좋다.On the other hand, the coating powder of the powder aerosol for coating discharged toward the deposition target substrate 10 must be attached to the deposition target substrate 10 with a strong adhesive force. It should be strongly discharged to the , and for this purpose, the smaller the diameter of the tip of the nozzle through which the powder aerosol for coating is discharged, the better.
이를 달성하기 위해, 본 발명의 또 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 도 4에 도시된 바와 같이 종단노즐(170)을 더 포함할 수 있다.To achieve this, the microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention may further include a terminal nozzle 170 as shown in FIG. 4 .
종단노즐(170)은 방전관(110)과 동축상에 배치되게 진공 챔버(200) 내면, 즉 상기 노즐장착면(210)의 내면에 설치되어 방전관(110)을 통해 전송되는 코팅용 분체 에어로졸을 피증착 기판(10)을 향해 토출한다.The terminal nozzle 170 is installed on the inner surface of the vacuum chamber 200, that is, the inner surface of the nozzle mounting surface 210 to be disposed coaxially with the discharge tube 110 to avoid the powder aerosol for coating transmitted through the discharge tube 110. It is discharged toward the vapor deposition substrate 10 .
상기 종단노즐(170)은 코팅용 분체 에어로졸이 토출되는 말단의 내경이 방전관(110)의 직경보다 작은 것이 바람직하다. 이를 위해, 종단노즐(170)의 내부는 종단노즐(170)의 말단으로 갈수록 직경이 감소하는 형태로 구비되고, 종단노즐(170)의 말단의 내경은 5mm~10mm로 설정될 수 있다. 이와 같이, 종단노즐(170)의 말단의 내경을 방전관(110)의 내경보다 작게 형성하면 종단노즐(170)의 말단을 향해 갈수록 코팅용 분체 에어로졸의 유속이 증가하여 종단노즐(170)의 말단에서 코팅용 분체 에어로졸이 피증착 기판(10)을 향해 강하게 토출될 수 있다.It is preferable that the terminal nozzle 170 has an inner diameter of the distal end at which the powder aerosol for coating is discharged is smaller than the diameter of the discharge tube 110 . To this end, the inside of the terminal nozzle 170 is provided in a form that the diameter decreases toward the end of the terminal nozzle 170, the inner diameter of the end of the terminal nozzle 170 may be set to 5mm ~ 10mm. In this way, if the inner diameter of the end of the terminal nozzle 170 is formed smaller than the inner diameter of the discharge tube 110, the flow rate of the powder aerosol for coating increases toward the end of the terminal nozzle 170, and at the end of the terminal nozzle 170 Powder aerosol for coating may be strongly discharged toward the deposition target substrate (10).
한편, 본 발명의 또 다른 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 도 4에 도시된 바와 같이 차폐자켓(180)을 더 포함할 수 있다.Meanwhile, the microwave plasma nozzle for powder aerosol deposition for coating according to another embodiment of the present invention may further include a shielding jacket 180 as shown in FIG. 4 .
차폐자켓(180)은 방전관(110) 및 냉각자켓(150)을 수용한다. 일 예로, 차폐자켓(180)은 제1 차폐관(181) 및 제2 차폐관(182)을 포함할 수 있다.The shielding jacket 180 accommodates the discharge tube 110 and the cooling jacket 150 . For example, the shielding jacket 180 may include a first shielding tube 181 and a second shielding tube 182 .
제1 차폐관(181)은 도파관(122) 및 제1 플랜지(141) 사이에 연결되어 도파관(122) 및 제1 플랜지(141) 사이에 위치하는 냉각자켓(150) 및 방전관(110)의 일부 길이를 차폐할 수 있다.The first shielding tube 181 is connected between the waveguide 122 and the first flange 141 and is positioned between the waveguide 122 and the first flange 141 , and a part of the cooling jacket 150 and the discharge tube 110 . length can be covered.
제2 차폐관(182)은 제1 차폐관(181)의 반대편에서 도파관(122) 및 제3 플랜지(143) 사이에 연결되어 도파관(122) 및 제3 플랜지(143) 사이에 위치하는 냉각자켓(150) 및 방전관(110)의 다른 일부 길이를 차폐할 수 있다.The second shielding pipe 182 is connected between the waveguide 122 and the third flange 143 on the opposite side of the first shielding pipe 181 and is located between the waveguide 122 and the third flange 143 , the cooling jacket. 150 and some other lengths of the discharge tube 110 may be shielded.
여기서, 차폐자켓(180)은 금속 재질일 수 있고, 진공 챔버(200), 제1 플랜지(141), 제2 플랜지(142), 제3 플랜지(143), 어댑터(160) 모두 금속 재질일 수 있다. 이에 따라, 방전관(110) 및 냉각자켓(150)은 금속 소재로 둘러싸여서 외부와 차폐될 수 있다.Here, the shielding jacket 180 may be made of a metal material, and the vacuum chamber 200 , the first flange 141 , the second flange 142 , the third flange 143 , and the adapter 160 may all be made of a metal material. have. Accordingly, the discharge tube 110 and the cooling jacket 150 may be shielded from the outside by being surrounded by a metal material.
이러한 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐을 이용하여 마이크로웨이브 플라즈마 에너지가 부여되는 코팅용 분체 에어로졸에 의한 코팅 장치를 구성할 수 있다.Using a microwave plasma nozzle for depositing powder aerosol for coating according to an embodiment of the present invention, a coating apparatus by powder aerosol for coating to which microwave plasma energy is applied can be configured.
도 6은 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸에 의한 코팅 장치의 구성을 설명하기 위한 도면이다.6 is a view for explaining the configuration of a coating device by a powder aerosol for coating according to an embodiment of the present invention.
도 6을 참조하면, 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸에 의한 코팅 장치는 진공 챔버(200), 에어로졸 노즐(100), 에어로졸 공급부(300)를 포함할 수 있다.Referring to FIG. 6 , the coating apparatus by powder aerosol for coating according to an embodiment of the present invention may include a vacuum chamber 200 , an aerosol nozzle 100 , and an aerosol supply unit 300 .
진공 챔버(200)는 내부가 진공이며, 코팅용 분체 에어로졸이 피증착 기판(10)에 증착되기 위한 공간을 제공하며, 피증착 기판(10)을 내부에 수용한다.The vacuum chamber 200 has a vacuum inside, provides a space for the coating powder aerosol to be deposited on the vapor-deposited substrate 10, and accommodates the vapor-deposited substrate 10 therein.
에어로졸 노즐(100)은 진공 챔버(200) 내의 피증착 기판(10)을 향해 코팅용 분체 에어로졸을 토출한다. 여기서, 상기 코팅용 분체 에어로졸에 포함되는 분체는 세라믹 분체일 수 있다. 에어로졸 노즐(100)은 상기 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐이다.The aerosol nozzle 100 discharges a powder aerosol for coating toward the vapor-deposited substrate 10 in the vacuum chamber 200 . Here, the powder included in the powder aerosol for coating may be a ceramic powder. The aerosol nozzle 100 is a microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention.
에어로졸 공급부(300)는 에어로졸 노즐(100)의 입구부(111)로 코팅용 분체 에어로졸을 공급한다. 에어로졸 공급부(300)는 분체 챔버(310), 캐리어 가스 공급부(320), 에어로졸 이송 채널(330)을 포함할 수 있다.The aerosol supply unit 300 supplies a powder aerosol for coating to the inlet 111 of the aerosol nozzle 100 . The aerosol supply unit 300 may include a powder chamber 310 , a carrier gas supply unit 320 , and an aerosol transport channel 330 .
분체 챔버(310)는 코팅용 분체를 담고 있고, 진공 챔버(200)보다 높은 압력을 가질 수 있다. The powder chamber 310 contains the powder for coating, and may have a higher pressure than the vacuum chamber 200 .
캐리어 가스 공급부(320)는 분체 챔버(310)로 캐리어 가스를 공급한다. 일 예로, 캐리어 가스 공급부(320)는 캐리어 가스를 저장하고 있는 가스탱크(321), 가스탱크(321)로부터 분체 챔버(310)에 연결되는 가스공급관(322) 및 가스공급관(322) 상에 설치되어 캐리어 가스의 공급을 제어하는 질량 유량 제어기(323)를 포함할 수 있다. 상기 캐리어 가스는 아르곤 또는 질소일 수 있다.The carrier gas supply unit 320 supplies the carrier gas to the powder chamber 310 . For example, the carrier gas supply unit 320 is installed on the gas tank 321 storing the carrier gas, the gas supply pipe 322 connected from the gas tank 321 to the powder chamber 310 and the gas supply pipe 322 . and may include a mass flow controller 323 to control the supply of carrier gas. The carrier gas may be argon or nitrogen.
에어로졸 이송 채널(330)은 분체 챔버(310)로부터 코팅용 분체 에어로졸이 에어로졸 노즐(100)로 공급되도록 한다. 일 예로, 에어로졸 이송 채널(330)은 일단이 분체 챔버(310)에 연결되고 타단이 에어로졸 노즐(100)에 연결되는 중공의 배관일 수 있다.The aerosol transport channel 330 allows the powder aerosol for coating to be supplied from the powder chamber 310 to the aerosol nozzle 100 . For example, the aerosol transport channel 330 may be a hollow pipe having one end connected to the powder chamber 310 and the other end connected to the aerosol nozzle 100 .
이하에서는 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸에 의한 코팅 장치를 이용하여 피증착 기판에 분체를 토출 및 피증착 기판을 코팅하는 과정을 설명한다.Hereinafter, a process of discharging powder to a vapor-deposited substrate and coating the vapor-deposited substrate using a coating apparatus by a powder aerosol for coating according to an embodiment of the present invention will be described.
먼저, 에어로졸 공급부(300)를 통해 분체 챔버(310)로 캐리어 가스가 공급된다.First, the carrier gas is supplied to the powder chamber 310 through the aerosol supply unit 300 .
이어서, 캐리어 가스가 분체 챔버(310) 내로 유입되면 캐리어 가스와 코팅용 분체는 혼합되어 코팅용 분체의 에어로졸이 형성되고, 분체 챔버(310)는 진공 챔버(200)보다 높은 압력을 가지므로 그 압력 차이에 의해 코팅용 분체의 에어로졸이 에어로졸 이송 채널(330)로 유입된 후, 에어로졸 이송 채널(330)을 따라 에어로졸 노즐(100)로 공급된다.Subsequently, when the carrier gas flows into the powder chamber 310 , the carrier gas and the coating powder are mixed to form an aerosol of the coating powder, and the powder chamber 310 has a higher pressure than the vacuum chamber 200 , so the pressure After the aerosol of the powder for coating flows into the aerosol transport channel 330 by the difference, it is supplied to the aerosol nozzle 100 along the aerosol transport channel 330 .
에어로졸 노즐(100)에서 코팅용 분체 에어로졸은 방전관(110)의 입구부(111)로 유입되고, 방전관(110)의 길이방향을 따라 입구부(111)로부터 토출부(112)를 향해 진행된다. 이때, 플라즈마 발생수단(120)을 통해 방전관(110) 내에 플라즈마를 발생시킨다.In the aerosol nozzle 100 , the powder aerosol for coating flows into the inlet 111 of the discharge tube 110 , and proceeds from the inlet 111 to the discharge portion 112 along the longitudinal direction of the discharge tube 110 . At this time, plasma is generated in the discharge tube 110 through the plasma generating means 120 .
플라즈마의 발생을 위해 마이크로 발생수단을 통해 도파관(122)으로 전자파를 입력하고, 도파관(122)으로 입력된 전자파는 도파관(122)을 관통하고 있는, 석영관으로 이루어진, 방전관(110) 및 냉각자켓(150)을 투과하여 방전관(110) 내부에 공급된다. 이때, 점화부(123)의 전력인가부재(1232)에 전원을 인가하면, 전력인가부재(1232)의 전력출력단(1232a)을 통해 전도성 링(1231)에 전력이 인가되고, 인가된 전력은 냉각자켓(150) 및 방전관(110) 둘레를 감싸고 있는 전도성 링(1231)의 첨예부(1231a)로 인가된 후 방전관(110)의 내부로 전달되어 방전관(110) 내의 전자파에 플라즈마의 점화를 위한 전자가 입력된다. 이에 따라, 방전관(110) 내에 마이크로파 플라즈마 방전이 개시되어 방전관(110) 내에 플라즈마가 발생된다.An electromagnetic wave is input to the waveguide 122 through a micro generating means for plasma generation, and the electromagnetic wave input to the waveguide 122 passes through the waveguide 122, made of a quartz tube, a discharge tube 110 and a cooling jacket It passes through 150 and is supplied to the inside of the discharge tube 110 . At this time, when power is applied to the power applying member 1232 of the ignition unit 123 , power is applied to the conductive ring 1231 through the power output terminal 1232a of the power applying member 1232 , and the applied power is cooled After being applied to the sharp part 1231a of the conductive ring 1231 surrounding the jacket 150 and the discharge tube 110 , the electrons are transferred to the inside of the discharge tube 110 to ignite the plasma in the electromagnetic wave in the discharge tube 110 . is input Accordingly, microwave plasma discharge is started in the discharge tube 110 to generate plasma in the discharge tube 110 .
방전관(110) 내에 발생되는 플라즈마는 방전관(110)이 10mm ~ 15mm 이하의 내경을 가져서 방전관(110) 내에 꽉 찬 플라즈마로 발생되며, 방전관(110)의 토출부(112)를 향해 진행되는 코팅용 분체 에어로졸은 플라즈마를 통과하면서 코팅용 분체 에어로졸에는 플라즈마의 에너지가 부여된다.The plasma generated in the discharge tube 110 is generated as plasma filled in the discharge tube 110 because the discharge tube 110 has an inner diameter of 10 mm to 15 mm or less, and for coating proceeding toward the discharge part 112 of the discharge tube 110 As the powder aerosol passes through the plasma, the energy of the plasma is imparted to the powder aerosol for coating.
플라즈마의 에너지를 얻은 코팅용 분체 에어로졸은 에어로졸 노즐(100)의 토출부(112)를 지난 후 진공 챔버(200) 내에 위치하는 종단노즐(170)의 말단을 통해 진공 챔버(200) 및 분체 챔버(310)의 압력 차이에 의해 피증착 기판(10)의 표면으로 강하게 토출된다.The powder aerosol for coating obtained by plasma energy passes through the discharge part 112 of the aerosol nozzle 100 and then through the end of the terminal nozzle 170 located in the vacuum chamber 200 vacuum chamber 200 and the powder chamber ( 310 is strongly discharged to the surface of the vapor-deposited substrate 10 by the pressure difference.
강한 토출에 의해 코팅용 분체 에어로졸은 피증착 기판(10)에 충돌되고, 충돌에너지가 코팅용 분체, 예를 들어, 세라믹의 소성 변형으로 변환되면서 입자간의 강한 부착력 및 인력이 유도되고, 세라믹 분체는 나노 크기의 미세입자로 붕괴되면서 피증착 기판(10)의 표면에 강한 부착력으로 부착된다.By strong discharge, the powder aerosol for coating collides with the substrate 10 to be deposited, and as the collision energy is converted into plastic deformation of the powder for coating, for example, ceramic, strong adhesion and attractive force between particles is induced, and the ceramic powder is As it collapses into nano-sized fine particles, it is attached to the surface of the vapor-deposited substrate 10 with a strong adhesive force.
이러한 코팅용 분체 에어로졸의 토출 과정 중에 에어로졸 노즐(100)의 환형 씰(130) 및 방전관(110)은 냉각된다. 즉, 에어로졸 노즐(100)의 제2 플랜지(142) 내부의 제1 냉각수로(1423) 및 냉각자켓(150) 내부의 제2 냉각수로(151)에 냉각유체가 주입 및 순환되어 환형 씰(130) 및 방전관(110)이 냉각될 수 있다.During the discharge process of the powder aerosol for coating, the annular seal 130 and the discharge tube 110 of the aerosol nozzle 100 are cooled. That is, the cooling fluid is injected and circulated into the first cooling water passage 1423 inside the second flange 142 of the aerosol nozzle 100 and the second cooling water passage 151 inside the cooling jacket 150 to form the annular seal 130 ) and the discharge tube 110 may be cooled.
이상에서 설명된 본 발명의 일 실시예에 따른 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐, 이를 이용하는 코팅용 분체 에어로졸에 의한 코팅 장치를 이용하면, 피증착 기판(10)을 향해 가속되는 코팅용 분체, 예를 들어, 세라믹 분체 에어로졸이 플라즈마의 에너지를 얻어서 가속되어 토출되므로 분체의 피증착 기판(10)으로의 코팅 효율이 개선될 수 있다.Using the microwave plasma nozzle for powder aerosol deposition for coating according to an embodiment of the present invention described above, and a coating device by powder aerosol for coating using the same, powder for coating accelerated toward the substrate 10 to be deposited , for example, since the ceramic powder aerosol obtains energy of plasma and is accelerated and discharged, the coating efficiency of the powder onto the substrate 10 to be deposited can be improved.
또한, 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 제1 플랜지(141), 제2 플랜지(142), 방전관(110)의 플랜지부(113) 및 환형 씰(130) 간의 결합 구조에 의해 방전관(110)의 토출부(112)가 진공 챔버(200)에 견고히 고정될 뿐만 아니라, 진공 챔버(200)의 진공 환경이 유지되게 노즐의 연결이 가능해지며, 나아가, 이러한 이점은 플라즈마 발생수단(120)으로서 마이크로파를 이용 가능하게 하는 이점이 있다.In addition, the microwave plasma nozzle for powder aerosol deposition for coating is a discharge tube ( The discharge part 112 of 110) is not only firmly fixed to the vacuum chamber 200, but also the connection of the nozzle is possible so that the vacuum environment of the vacuum chamber 200 is maintained, and further, this advantage is the plasma generating means 120 As a result, there is an advantage of making microwaves available.
또한, 방전관(110)의 토출부(112) 둘레의 기밀을 유지시키는 환형 씰(130)이 용이하게 냉각될 수 있으므로 플라즈마의 고온에 의한 환형 씰(130)의 열손실이 방지될 수 있는 이점이 있다.In addition, since the annular seal 130 that maintains the airtightness around the discharge part 112 of the discharge tube 110 can be easily cooled, heat loss of the annular seal 130 due to the high temperature of the plasma can be prevented. have.
또한, 노즐의 방전관(110)은 금속 소재로 둘러 싸여서 외부 공간과 차폐되므로 방전관(110)으로 유입되는 전자파의 누출이 방지되며, 외부 공간과 전자적 차폐가 이루어지므로 코팅용 분체 에어로졸에 의한 코팅 장치를 장시간 안정적으로 운전할 수 있는 이점이 있다.In addition, since the discharge tube 110 of the nozzle is surrounded by a metal material and shielded from the external space, leakage of electromagnetic waves flowing into the discharge tube 110 is prevented, and the electronic shielding with the external space is made. It has the advantage of being able to drive stably for a long time.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention is not to be limited to the embodiments presented herein but should be construed in the widest scope consistent with the principles and novel features presented herein.

Claims (15)

  1. 캐리어 가스 및 코팅용 분체 에어로졸이 주입되는 입(111) 및 상기 코팅용 분체 에어로졸이 토출되는 토출부(112)를 포함하고, 상기 토출부(112)는 피증착 기판(10)이 수용된 진공 챔버(200) 내로 상기 코팅용 분체 에어로졸이 토출되도록 상기 진공 챔버(200)에 연결되는 방전관(110); 및It includes a mouth 111 into which a carrier gas and a powder aerosol for coating are injected and a discharge part 112 through which the powder aerosol for coating is discharged, wherein the discharge part 112 is a vacuum chamber in which the substrate 10 to be deposited is accommodated ( 200) a discharge tube 110 connected to the vacuum chamber 200 so that the powder aerosol for coating is discharged into the; and
    상기 입구부(111) 및 상기 토출부(112) 사이에 플라즈마를 발생시키는 플라즈마 발생수단(120)을 포함하는 것을 특징으로 하는,Plasma generating means (120) for generating plasma between the inlet part (111) and the discharge part (112) characterized in that it comprises,
    코팅용 분말 에어로졸 증착용 노즐.Nozzles for powder aerosol deposition for coatings.
  2. 제1항에 있어서,The method of claim 1,
    상기 플라즈마 발생수단(120)은,The plasma generating means 120 is,
    마이크로파 발생수단;microwave generating means;
    상기 마이크로파 발생수단으로부터 마이크로파가 입력되며, 상기 방전관이 수직으로 관통하는 도파관(122); 및a waveguide 122 through which the microwave is input from the microwave generating means and through which the discharge tube vertically passes; and
    상기 방전관 내에 플라즈마의 점화를 위한 전자를 공급하는 점화부(123)를 포함하고,and an ignition unit 123 for supplying electrons for ignition of plasma in the discharge tube,
    상기 에어로졸 토출관은 석영관 또는 세라믹관인 것을 특징으로 하는,The aerosol discharge tube is characterized in that the quartz tube or ceramic tube,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  3. 제1항에 있어서,The method of claim 1,
    상기 방전관(110)은 상기 토출부(112) 둘레에 환형으로 형성되는 플랜지부(113)를 포함하고,The discharge tube 110 includes a flange portion 113 formed in an annular shape around the discharge portion 112,
    상기 코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐은 환형 씰(seal)(130); 제1 플랜지(141); 및 복수의 플랜지고정볼트(190)를 더 포함하고,The microwave plasma nozzle for powder aerosol deposition for the coating is an annular seal (seal) 130; a first flange 141; and a plurality of flange fixing bolts 190,
    상기 환형 씰(130)은 상기 플랜지부(113) 둘레를 덮도록 상기 플랜지부(113) 및 상기 플랜지부(113)에 마주하는 상기 진공 챔버(200)의 외면 사이에 개재되고,The annular seal 130 is interposed between the flange portion 113 and the outer surface of the vacuum chamber 200 facing the flange portion 113 to cover the circumference of the flange portion 113,
    상기 제1 플랜지(141)는 상기 환형 씰(130)의 반대측에서 상기 플랜지부(113) 및 상기 환형 씰(130)을 덮어서 상기 진공 챔버(200)의 외면에 대향되고,The first flange 141 is opposite to the outer surface of the vacuum chamber 200 by covering the flange portion 113 and the annular seal 130 on the opposite side of the annular seal 130,
    상기 플랜지고정볼트(190)는 상기 진공 챔버(200)의 내측으로부터 상기 진공 챔버(200)의 외면을 관통하여 상기 제1 플랜지(141)에 결합되는 것을 특징으로 하는,The flange fixing bolt 190 is coupled to the first flange 141 through the outer surface of the vacuum chamber 200 from the inside of the vacuum chamber 200,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 환형 씰(130)은 상기 플랜지부(113)의 가장자리에 근접하게 배치되어 플라즈마로부터 멀게 이격되는 것을 특징으로 하는,The annular seal 130 is disposed close to the edge of the flange portion 113, characterized in that it is spaced apart from the plasma,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 진공 챔버(200)의 외면 및 상기 제1 플랜지(141) 사이에 상기 플랜지고정볼트(190)를 통해 결합되어 상기 환형 씰(130)을 수용하는 제2 플랜지(142)를 더 포함하고,Further comprising a second flange 142 coupled through the flange fixing bolt 190 between the outer surface of the vacuum chamber 200 and the first flange 141 to accommodate the annular seal 130,
    상기 제2 플랜지(142)는 상기 환형 씰(130)의 원주방향을 따라 냉각유체를 순환시키는 제1 냉각수로(1423)를 포함하고,The second flange 142 includes a first cooling water channel 1423 for circulating a cooling fluid along the circumferential direction of the annular seal 130,
    상기 환형 씰(130)은 상기 제1 냉각수로(1423)를 따라 순환되는 냉각유체에 의해 간접 냉각되는 것을 특징으로 하는,The annular seal 130 is characterized in that it is indirectly cooled by a cooling fluid circulated along the first cooling water channel 1423,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  6. 제1항 또는 제5항에 있어서,6. The method of claim 1 or 5,
    상기 방전관(110)과 동축으로 배치되어 상기 방전관(110)을 수용하고, 상기 방전관(110)을 둘러싸며 냉각유체가 순환하는 제2 냉각수로(151)를 포함하는 냉각자켓(150)을 더 포함하는 것을 특징으로 하는,It further includes a cooling jacket 150 disposed coaxially with the discharge tube 110 to accommodate the discharge tube 110 and including a second cooling water channel 151 in which a cooling fluid circulates around the discharge tube 110 . characterized in that
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 제2 냉각수로(151)를 순환하는 냉각유체는 상기 전자파의 투과 가능한 유전율을 갖는 오일인 것을 특징으로 하는,The cooling fluid circulating in the second cooling water channel 151 is characterized in that the oil having a permittivity to transmit electromagnetic waves,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  8. 제5항에 있어서,6. The method of claim 5,
    상기 방전관(110) 및 상기 냉각자켓(150)을 수용하는 차폐자켓(180)을 더 포함하는 것을 특징으로 하는,Characterized in that it further comprises a shielding jacket (180) for accommodating the discharge tube (110) and the cooling jacket (150),
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  9. 제1항에 있어서,According to claim 1,
    상기 방전관(110)과 동축상에 배치되게 상기 진공 챔버(200) 내면에 설치되어 상기 방전관(110)을 통해 전송되는 코팅용 분체 에어로졸을 상기 피증착 기판(10)을 향해 토출하는 종단노즐(170)을 더 포함하는 것을 특징으로 하는,A terminal nozzle 170 installed on the inner surface of the vacuum chamber 200 so as to be coaxial with the discharge tube 110 and discharging the powder aerosol for coating transmitted through the discharge tube 110 toward the deposition target substrate 10 . ) characterized in that it further comprises,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 코팅용 분체 에어로졸이 통과하는 상기 종단노즐(170)의 내부는 상기 종단노즐(170)의 말단으로 갈수록 직경이 감소하는 것을 특징으로 하는,The inside of the terminal nozzle 170 through which the powder aerosol for coating passes is characterized in that the diameter decreases toward the end of the terminal nozzle 170,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 방전관(110)의 내경은 10mm~15mm 이하이고,The inner diameter of the discharge tube 110 is 10mm ~ 15mm or less,
    상기 종단노즐(170)의 말단의 내경은 5mm~10mm인 것을 특징으로 하는,The inner diameter of the end of the terminal nozzle 170 is characterized in that 5mm ~ 10mm,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzles for powder aerosol deposition for coatings.
  12. 제2항에 있어서,3. The method of claim 2,
    상기 점화부는,The ignition unit,
    절두된 원추 형상의 내면을 갖고, 상기 절두된 부분에 환형의 첨예부(1231a)를 형성하고, 상기 첨예부(1231a)가 상기 도파관(122)의 방전관(110)이 관통된 영역에 인접하여 상기 방전관(110) 둘레를 감싸도록 설치되는 환형의 전도성 링(1231);It has a truncated cone-shaped inner surface, an annular sharp portion 1231a is formed in the truncated portion, and the sharp portion 1231a is adjacent to the region through which the discharge tube 110 of the waveguide 122 passes. Annular conductive ring 1231 installed to surround the discharge tube 110;
    상기 환형의 전도성 링(1231)에 전도 가능하게 연결되고, 상기 방전관(110) 내에 플라즈마의 점화를 위한 전원이 인가되는 전력인가부재(1232)를 포함하는 것을 특징으로 하는,It characterized in that it includes a power applying member 1232 that is conductively connected to the annular conductive ring 1231 and to which power for ignition of plasma is applied in the discharge tube 110 ,
    코팅용 분체 에어로졸 증착용 마이크로웨이브 플라즈마 노즐.Microwave plasma nozzle for powder aerosol deposition for coating.
  13. 내부에 피증착 기판(10)을 수용하는 진공 챔버(200);a vacuum chamber 200 for accommodating the vapor-deposited substrate 10 therein;
    상기 피증착 기판(10)에 마주하도록 상기 진공 챔버(200)에 장착되어 상기 피증착 기판(10)을 향해 코팅용 분체 에어로졸을 토출하는 제1항 내지 제11항 중 어느 한 항의 노즐(100); 및The nozzle 100 according to any one of claims 1 to 11, which is mounted in the vacuum chamber 200 to face the vapor-deposited substrate 10 and discharges a powder aerosol for coating toward the vapor-deposited substrate 10. ; and
    상기 노즐(100)의 입구부(111)로 코팅용 분체 에어로졸을 공급하는 에어로졸 공급부(300)를 포함하는 것을 특징으로 하는,Characterized in that it comprises an aerosol supply part 300 for supplying a powder aerosol for coating to the inlet part 111 of the nozzle 100,
    코팅용 분체 에어로졸에 의한 코팅 장치.Coating device by powder aerosol for coating.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 에어로졸 공급부(300)는,The aerosol supply unit 300,
    코팅용 분체를 담고 있고, 상기 진공 챔버(200)보다 높은 압력의 분체 챔버(310);It contains the powder for coating, the powder chamber 310 of a higher pressure than the vacuum chamber 200;
    상기 분체 챔버(310)로 캐리어 가스를 공급하는 캐리어 가스 공급부(320); 및a carrier gas supply unit 320 for supplying a carrier gas to the powder chamber 310; and
    상기 분체 챔버(310) 및 상기 노즐(100) 사이에 연결되어 상기 분체 챔버(310)로부터 코팅용 분체 에어로졸이 상기 노즐(100)로 공급되도록 하는 에어로졸 이송 채널(330)을 포함하는 것을 특징으로 하는,An aerosol transport channel 330 connected between the powder chamber 310 and the nozzle 100 to supply a powder aerosol for coating from the powder chamber 310 to the nozzle 100, characterized in that it comprises an aerosol transport channel 330 ,
    코팅용 분체 에어로졸에 의한 코팅 장치.Coating device by powder aerosol for coating.
  15. 제14항에 있어서,15. The method of claim 14,
    상기 캐리어 가스는 아르곤 또는 질소임을 특징으로 하는,The carrier gas is characterized in that argon or nitrogen,
    코팅용 분체 에어로졸에 의한 코팅 장치.Coating device by powder aerosol for coating.
PCT/KR2021/009853 2020-07-30 2021-07-29 Microwave plasma nozzle for deposition of powder aerosol for coating and coating apparatus using powder aerosol for coating using same WO2022025655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023501544A JP7503345B2 (en) 2020-07-30 2021-07-29 Microwave plasma nozzle for deposition of powder aerosol for coating, and coating device using the same with powder aerosol for coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200095332A KR102382221B1 (en) 2020-07-30 2020-07-30 Microwave plasma nozzle for coating powder aerosol deposition and coating apparatus by coating powder aerosol deposition using the same
KR10-2020-0095332 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022025655A1 true WO2022025655A1 (en) 2022-02-03

Family

ID=80035783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009853 WO2022025655A1 (en) 2020-07-30 2021-07-29 Microwave plasma nozzle for deposition of powder aerosol for coating and coating apparatus using powder aerosol for coating using same

Country Status (3)

Country Link
JP (1) JP7503345B2 (en)
KR (1) KR102382221B1 (en)
WO (1) WO2022025655A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193784A (en) * 2005-01-13 2006-07-27 Fujitsu Ltd Apparatus for forming film by aerosol deposition
JP2007146281A (en) * 2005-10-24 2007-06-14 Nippon Steel Corp Cold spray device
KR20080050356A (en) * 2005-09-30 2008-06-05 후지필름 가부시키가이샤 Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
JP2019210548A (en) * 2018-05-31 2019-12-12 シチズン時計株式会社 Method for manufacturing white zirconia film and white zirconia film
KR20200007949A (en) * 2017-07-05 2020-01-22 플라즈마 기켄 고교 가부시키가이샤 Cold Spray Gun and Cold Spray Apparatus With Them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921091B2 (en) 2005-09-30 2012-04-18 富士フイルム株式会社 Composite structure manufacturing method, impurity removal treatment apparatus, film forming apparatus, and composite structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193784A (en) * 2005-01-13 2006-07-27 Fujitsu Ltd Apparatus for forming film by aerosol deposition
KR20080050356A (en) * 2005-09-30 2008-06-05 후지필름 가부시키가이샤 Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
JP2007146281A (en) * 2005-10-24 2007-06-14 Nippon Steel Corp Cold spray device
KR20200007949A (en) * 2017-07-05 2020-01-22 플라즈마 기켄 고교 가부시키가이샤 Cold Spray Gun and Cold Spray Apparatus With Them
JP2019210548A (en) * 2018-05-31 2019-12-12 シチズン時計株式会社 Method for manufacturing white zirconia film and white zirconia film

Also Published As

Publication number Publication date
JP2023536051A (en) 2023-08-23
KR20220015165A (en) 2022-02-08
JP7503345B2 (en) 2024-06-20
KR102382221B1 (en) 2022-04-04

Similar Documents

Publication Publication Date Title
EP0703302B1 (en) A method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method
KR100639843B1 (en) Plasma source for hdp-cvd chamber
US5973289A (en) Microwave-driven plasma spraying apparatus and method for spraying
US6847516B2 (en) Electrostatic chuck for preventing an arc
WO2015088069A1 (en) Plasma generating device
US4902870A (en) Apparatus and method for transfer arc cleaning of a substrate in an RF plasma system
US6410880B1 (en) Induction plasma torch liquid waste injector
US20040060656A1 (en) Method and apparatus for an improved bellows shield in a plasma processing system
US20080223523A1 (en) Substrate processing apparatus and electrode structure
WO2022025655A1 (en) Microwave plasma nozzle for deposition of powder aerosol for coating and coating apparatus using powder aerosol for coating using same
JPH07507968A (en) high temperature plasma gun assembly
KR100491214B1 (en) High power microwave plasma applicator
WO2012091390A2 (en) Dry coating apparatus
JP4213482B2 (en) Plasma processing equipment
US20120168082A1 (en) Plasma generating apparatus
WO2019093657A1 (en) Mount, heater comprising the mount, and deposition apparatus comprising the heater
US5095189A (en) Method for reducing plasma constriction by intermediate injection of hydrogen in RF plasma gun
WO2023042977A1 (en) Plasma powder deposition apparatus and deposition method using same
WO2021172686A1 (en) Low-voltage plasma ionizer
WO2016108568A1 (en) Plasma processing apparatus
JP3305185B2 (en) Plasma spraying equipment
CN208970478U (en) Ion source and apparatus for processing plasma
US7665416B2 (en) Apparatus for generating excited and/or ionized particles in a plasma and a method for generating ionized particles
CN220545182U (en) Plasma cavity assembly and plasma equipment
CN220528267U (en) Plasma generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849777

Country of ref document: EP

Kind code of ref document: A1