WO2022025493A1 - 중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물 - Google Patents

중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물 Download PDF

Info

Publication number
WO2022025493A1
WO2022025493A1 PCT/KR2021/009117 KR2021009117W WO2022025493A1 WO 2022025493 A1 WO2022025493 A1 WO 2022025493A1 KR 2021009117 W KR2021009117 W KR 2021009117W WO 2022025493 A1 WO2022025493 A1 WO 2022025493A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesenchymal stem
stem cells
pharmaceutical composition
myofibrosis
cells
Prior art date
Application number
PCT/KR2021/009117
Other languages
English (en)
French (fr)
Inventor
장종욱
전홍배
박상언
최아리
Original Assignee
이엔셀 주식회사
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이엔셀 주식회사, 사회복지법인 삼성생명공익재단 filed Critical 이엔셀 주식회사
Publication of WO2022025493A1 publication Critical patent/WO2022025493A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system

Definitions

  • the present invention relates to a pharmaceutical composition for the treatment or prevention of muscle disease containing mesenchymal stem cells.
  • Myopathy is a kind of muscle disease that collectively refers to diseases that cause physical disability due to loss of motor function due to gradual muscle strength loss, weakening of respiratory muscle, and weakening of heart function.
  • Amyotrophic lateral sclerosis (ALS) is typical as myopathy caused by motor nerve cell destruction, and Duchenne muscular dystrophy (DMD) and Becher muscular dystrophy are representative of congenital muscular dystrophy. ), and of these, Duchenne muscular atrophy is the most common.
  • myopathy may occur due to pathological and physical causes.
  • Myofibrillation one of the typical symptoms of myopathy, is a phenomenon in which extracellular matrix (ECM) is abnormally accumulated in muscle tissue, and is particularly found in the late-stage muscle tissue of patients with myopathy such as Duchenne muscular atrophy. Myofibrillation impairs the normal muscle regeneration process and reduces muscle function. It is known that profibrotic factors such as TFG- ⁇ , connective tissue growth factor (CTGF), and osteopontin show high expression rates in myofibrillated tissues. As a result, it causes abnormal accumulation of ECM proteins such as collagen and fibronectin in the muscle.
  • ECM extracellular matrix
  • Stem cells can be differentiated into various cells, and various studies are being conducted on the applicability of cell therapy using the characteristics of these stem cells.
  • Embryonic stem cells with pluripotency have attracted attention as a cell therapy because of their ability to differentiate into various cells, but there are difficulties in practical application due to safety and ethical issues.
  • MSCs mesenchymal stem cells
  • the mesenchymal stem cells can regenerate various tissues such as muscle and cartilage through differentiation, and various proteins secreted by the mesenchymal stem cells themselves have therapeutic effects.
  • mesenchymal stem cells are called “Drug store” or “Drug Factory”.
  • ALS amyotrophic lateral sclerosis
  • Patent Document 1 US Patent Publication No. 2011-0223205 (2011. 9. 15.) 'Treatment of amyotrophic lateral sclerosis using umbilical derived cells'
  • Non-Patent Document 1 MAHDY, M. 'Skeletal muscle fibrosis: an overview' Cell and Tissue Research, 2018. 11. 12. 375, Pages 575-588.
  • the present inventors completed the present invention by confirming that the symptoms of myofibrosis can be alleviated when human mesenchymal stem cells are administered to a myopathy model or in an in vitro model as a result of conducting multifaceted studies on the above problem.
  • Another object of the present invention is to provide a pharmaceutical composition for treating or preventing myofibrosis comprising a culture solution of mesenchymal stem cells co-cultured with fibrous myotube cells.
  • the present invention provides a pharmaceutical composition for the treatment or prevention of myofibrosis.
  • a pharmaceutical composition for the treatment or prevention of myofibrosis comprising mesenchymal stem cells.
  • the mesenchymal stem cells secrete MMP-1 protein.
  • the mesenchymal stem cells may be derived from the umbilical cord.
  • the myofibrosis may be myofibrosis caused by Duchenne muscular dystrophy (DMD).
  • DMD Duchenne muscular dystrophy
  • a pharmaceutical composition for treating or preventing myofibrosis comprising a mesenchymal stem cell culture medium co-cultured with fibrous myotube cells.
  • the myofibrosis may be myofibrosis caused by Duchenne muscular dystrophy (DMD).
  • DMD Duchenne muscular dystrophy
  • the pharmaceutical composition containing the mesenchymal stem cells of the present invention has an effect of inhibiting fibrosis of muscle cells due to oxidative stress, it can be usefully used for the prevention or treatment of muscle diseases including myofibrosis. Since the therapeutic effect of the pharmaceutical composition is not due to the transplantation of mesenchymal stem cells, the desired therapeutic effect can be obtained even with the administration of a small number of mesenchymal stem cells.
  • the culture medium of the co-cultured mesenchymal stem cells is effective for myofibrosis caused by various muscle diseases. It can be usefully used for prevention or treatment.
  • 1 is a result of analyzing the effect of mesenchymal stem cells intravenously administered to a myopathy model.
  • FIG. 3 is a schematic view of a method for co-culturing differentiated myotube cells and mesenchymal stem cells.
  • FIG. 5 shows the results of analysis of proteins with increased or decreased secretion in mesenchymal stem cells co-cultured with myofibrillation-induced myotube cells.
  • FIG. 7 and 8 show the results of reversing the myofibrosis symptoms relieved by co-culture with mesenchymal stem cells when oxidative stress was applied to differentiated myotube cells by treatment with an MMP-1 inhibitor.
  • Muscular diseases such as Duchenne muscular dystrophy (DMD) and Becher muscular dystrophy eventually lead to death due to loss of motor function due to muscle fibrosis, weakening of respiratory muscle, and weakening of heart function.
  • DMD Duchenne muscular dystrophy
  • Becher muscular dystrophy eventually lead to death due to loss of motor function due to muscle fibrosis, weakening of respiratory muscle, and weakening of heart function.
  • mesenchymal stem cells (1X10 6 cells) are transplanted into the muscle area of the ALS animal model, the survival period is extended by about 10% (15 days), and there is no change in the disease onset period, so mesenchymal stem cell transplantation
  • mesenchymal stem cells 1X10 6 cells
  • the present invention relates to a method for treating or preventing myofibrosis using a culture solution of mesenchymal stem cells co-cultured with fibrotic myotube cells, and a pharmaceutical for treating or preventing myofibrosis comprising a culture solution of the co-cultured mesenchymal stem cells to the composition.
  • the present invention relates to a method for treating or preventing myofibrosis using MMP-1 and to a pharmaceutical composition for treating or preventing myofibrosis comprising MMP-1.
  • ECM extracellular matrix
  • Myofibrillation impairs the normal muscle regeneration process and reduces muscle function. It is known that profibrotic factors such as TFG- ⁇ , connective tissue growth factor (CTGF), and osteopontin show high expression rates in myofibrillated tissues. As a result, it causes abnormal accumulation of ECM proteins such as collagen and fibronectin in the muscle.
  • CGF connective tissue growth factor
  • the mesenchymal stem cells are administered through an intravenous injection rather than directly into the muscle, and the administered mesenchymal stem cells go to the fibrous site by the homing effect and fibrous muscle tissue. how to restore it.
  • the 'mesenchymal stem cells' of the present invention are undifferentiated stem cells capable of self-renewal and differentiation into various tissue cells, and are bone marrow-derived mesenchymal stem cells (BM).
  • BM bone marrow-derived mesenchymal stem cells
  • -MSC bone marrow-derived mesenchymal stem cells
  • mesenchymal stem cells which can be obtained from various tissues including the umbilical cord, fat, umbilical cord blood, etc., are attracting attention as a source of new cell therapy agents.
  • mesenchymal stem cells refer to mesenchymal-derived progenitor cells before differentiation into cells of specific organs such as bone, cartilage, fat, tendon, nerve tissue, fibroblasts, and muscle cells.
  • the mesenchymal stem cells are contained in the composition in an undifferentiated state.
  • the mesenchymal stem cells of the present invention are attached to the bottom when cultured according to the standards set by the International Society for Cellular Therapy (ISCT) and grow, and can be differentiated into osteoblasts, adipocytes or chondrocytes in vitro. and expresses CD73, CD90, CD105, CD166 and CD44 as cell surface markers, but not CD34, CD45, CD19, CD11b, CD14 and HLA-DR.
  • ISCT International Society for Cellular Therapy
  • the mesenchymal stem cells of the present invention are umbilical cord, umbilical cord blood, placenta, adipose tissue, bone marrow, umbilical cord, skin, peripheral It may be derived from peripheral blood or the like.
  • stem cell transplantation requires a certain number of cells (at least 1X10 9 cells), and mass culture of stem cells is essential for this.
  • mass culture of stem cells is essential for this.
  • aging of the stem cells inevitably occurs as the culture period increases, which is highly likely to cause problems such as reduction of stem cell capacity such as proliferative capacity or differentiation capacity and treatment efficacy and contamination.
  • the fibrous muscle tissue is not newly created by transplantation of mesenchymal stem cells and engraftment of the transplanted stem cells, but damaged by the paracrine action of the mesenchymal stem cells administered by intravenous injection, that is, fibrosis. Since it plays a role in reviving old muscle tissue, a therapeutic effect can be expected even with a small number of cells compared to the amount of mesenchymal stem cells (1X10 9 cells) normally used for stem cell transplantation.
  • the umbilical cord-derived stem cells used in the present invention can be obtained from various mammals. Specifically, it can be obtained from humans, pigs, horses, cattle, mice, rats, rabbits, goats, sheep, etc., preferably from humans, but the origin is not limited.
  • myoD and myogenin genes which are marker genes of myoblasts
  • the expression of the myoD and myogenin genes was confirmed through real-time PCR to determine whether the mesenchymal stem cells co-cultured with fibrous myotube cells were actually differentiated into myoblasts.
  • mesenchymal stem cells rarely express MyoD and myogenin genes (Table 1), a specific substance that returns fibrotic myotube cells to a non-fibrotic state is found in undifferentiated mesenchymal stem cells, not differentiated myocytes. secretion can be seen.
  • a culture medium containing specific substances secreted by mesenchymal stem cells co-cultured with fibrotic myotube cells will also eliminate fibrosis of fibrotic myotube cells.
  • MMP-1 treatment restores fibrotic myotube cells to original myotube cells (FIG. 6), and as fibrosis of myotube cells is observed again by simultaneous treatment with MMP-1 and TIMP-1 or GM6001 ( 7), it was confirmed that the factor secreted by mesenchymal stem cells to recover myofibrosis is MMP-1.
  • the term “pharmaceutically effective amount” refers to an amount sufficient to achieve the therapeutic efficacy or activity of the above-described mesenchymal stem cells.
  • the pharmaceutical composition of the present invention may be administered parenterally, intramuscular (intrmuscular, IM) or intravenous (intravenous, IV) administration, preferably intravenous administration.
  • intramuscular intramuscular
  • IV intravenous
  • a suitable dosage of the pharmaceutical composition of the present invention may be variously prescribed in consideration of various factors such as administration mode, age, weight, sex, pathological condition, food, administration time, administration route, reaction sensitivity, and the like of the patient.
  • the mesenchymal stem cells included in the pharmaceutical composition of the present invention have therapeutic effects by homing effect and peripheral secretion, the number of mesenchymal stem cells is the number of cells commonly used for cell therapy (1X10 9 cells) Fewer stem cells can be used.
  • Example 1 Analysis of myofibrosis inhibitory ability of mesenchymal stem cells in myopathy animal model (mdx mice)
  • Umbilical cord-derived mesenchymal stem cells were isolated using the method of Peng et al. (Brain Research Bulletin, 84 (2011) 235-243). Specifically, the umbilical cord was washed several times with PBS (Phosphate Buffered Saline) and then cut into 3 to 4 cm lengths, and then finely pulverized using scissors after removing the blood vessels and amniotic membrane. The pulverized tissue was treated with collagenase (Collagenase type IV) at a temperature of 37 o C for 60 minutes to separate cells. After the enzyme reaction was stopped by treatment with fetal bovine serum (FBS), the enzyme reaction solution was centrifuged at 1,000 g for 10 minutes at room temperature to obtain cells.
  • PBS Phosphate Buffered Saline
  • Each of the obtained mesenchymal stem cells was subcultured by adding a-modified Minimum Essential Media (aMEM) medium containing 10% FBS and 0.5% gentamicin (10 mg/ml).
  • aMEM Minimum Essential Media
  • Mesenchymal stem cells (5X10 4 cells/100 ⁇ l saline) isolated from human umbilical cord were injected intravenously into mdx mice (C57BL/10ScSn-Dmdmdx/J, The Jackson Laboratory), an animal model of muscle disease (mdx+MSC), After sacrificing the animal a week later, the spleen muscle (Gasrocnemius muscle) was isolated.
  • mdx mice C57BL/10ScSn-Dmdmdx/J, The Jackson Laboratory
  • mdx+MSC animal model of muscle disease
  • the spleen muscle (Gasrocnemius muscle) was isolated.
  • 100 ⁇ l of saline 100 ⁇ l was injected intravenously into mdx mice, and 100 ⁇ l of saline was administered to the untreated group (mdx) using the C57B strain, which is the same stain as the mdx mice.
  • collagen and fibronectin which is a component of EMC, is generally increased during myofibrosis
  • the expression levels of collagen and fibronectin were analyzed to analyze the degree of myofibrosis.
  • fibronectin protein and nucleus were co-coated with paraffin block slides of splenic muscle tissue isolated from each experimental group through immunochemical staining using anti-fibronectin antibody and Hoechst 33342 (Invitrogen, Carlsbad, CA) staining. dyed.
  • FIG. 1A collagen deposition
  • fibronectin expression were increased in splenic muscle tissue of myopathy animal model (mdx mice), but collagen deposition and fibronectin expression were increased due to intravenous administration of mesenchymal stem cells (mdx+MSC). It was confirmed that this was reduced to the Control level (FIG. 1B).
  • mesenchymal stem cells can suppress myofibrillation in an animal model of myopathy.
  • Example 2 Analysis of the role of mesenchymal stem cells in myofibrillation cell model
  • H 2 O 2 2mM Sigma, St. Louis, MO
  • fibronectin an ECM protein known to increase the expression level during myofibrillation, was increased upon induction of myofibrillation, but co-cultured with mesenchymal stem cells.
  • the expression level of MHC which is known to be reduced during myofibrosis, was reduced by induction of myofibrillation, but it was confirmed that the expression level was increased again by co-culture with mesenchymal stem cells. (Fig. 4B, 4C).
  • H 2 O 2 was treated for 24 hours to induce myofibrosis through oxidative stress. They were co-cultured for 24 hours.
  • the expression of myogenic precursor markers MyoD1 and myogenin mRNA was analyzed using real-time PCR.
  • a sample of normally differentiated myotube cells was analyzed simultaneously as a positive control and monocultured mesenchymal stem cells as a negative control.
  • Relative mRNA expression (% of myotube) MyoD1 Myogenin myotube cells 1.00 ⁇ 0.07 1.00 ⁇ 0.07 Co-cultured mesenchymal stem cells 0 0 mesenchymal stem cells 0 0
  • Example 3 Analysis of proteins secreted by mesenchymal stem cells when co-cultured with mesenchymal stem cells in myotube cells induced by oxidative stress
  • Antibody array (Raybio Biotin label-based Human antibody array 507, #AAH-BLG-1) to analyze proteins secreted from mesenchymal stem cells when myotube cells and mesenchymal stem cells induced by oxidative stress were co-cultured. -2, Raybiotech Life, Peachtree Corners, GA) was used. All slides were scanned using a Genepix 4100A scanner and analyzed using Genepix 7.0.
  • MMP-1 matrix metalloproteinase-1
  • INHBA activin A
  • IGFBP7 Insulin-like growth factor binding protein-related protein-1
  • PDGFA platelet derived growth factor subunit A
  • THBS1 thrombospondin 1
  • Proteins with decreased secretion under the same conditions include CD14, TDGF1 (Cripto growth factor), CRIM1 (cysteine-rich motor neuron 1), CD27, S1PR1 (Endothelial Differentiation Gene-1), GDNF (glial cell-derived neurotrophic factor), GLO1 (glyoxalase I), IL6ST (Interleukin-6 receptor subunit beta), GREM1 (GREMLIN (C-term), IL27RA (IL27 receptor subunit alpha), BMP3 (bone morphologic protein 3), SPARC (secreted protein acidic and rich in cysteine) , ADIPOQ (adiponectin), CCL5 (chemokine (CC motif) ligand 5) and TIMP1 (metalloproteinase inhibitor 1) were identified.
  • Myoblasts were differentiated into myoblasts and then treated with H 2 O 2 for 24 hours to induce myofibrosis through oxidative stress. myoblast) and then treated with H 2 O 2 for 24 hours to induce myofibrillation through oxidative stress. concentration for 24 hours.
  • the expression level of fibronectin was increased by oxidative stress, and the expression level was decreased by co-culture with mesenchymal stem cells. increased.
  • the expression level of MHC is decreased by oxidative stress, and the expression level is increased by co-culture with mesenchymal stem cells, but the MMP-1 inhibitors TIMP-1 and GM6001 treatment The amount of fibronectin expression was decreased again by (Fig. 7B).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 중간엽 줄기세포를 포함하는 근섬유증 치료 또는 예방용 약학적 조성물을 제공한다. 또한 본 발명은 섬유화된 근관세포와 공동배양된 중간엽 줄기세포의 배양액을 포함하는 근섬유증 치료 또는 예방용 약학적 조성물을 제공한다. 본 발명에 따른 약학적 조성물은 투여된 중간엽 줄기세포가 근육세포로 분화 및 이식되어 병변이 있는 근육세포를 교체하는 것이 아니라, 중간엽 줄기세포의 homing effect 및 주변분비작용(paracrine)에 의해 중간엽 줄기세포에서 분비하는 특정물질에 의해 효과적으로 근섬유화를 치료 또는 예방할 수 있다.

Description

중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물
본 출원은 2020년 7월 28일자 한국 특허 출원 제10-2020-0093991호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물에 관한 것이다.
근육병(myopathy)이란 점진적인 근력감소로 인한 운동기능 상실, 호흡 근력의 약화, 심장 기능의 약화 등으로 인해 신체의 장애를 가져오는 질병을 통칭하는 근육질환의 일종이다. 운동신경세포 파괴에 의한 근육병으로는 근위축 축색경화증(Amyotrophic lateral sclerosis; ALS)이 대표적이며, 선천성 근이영양증(congenital muscular dystrophy)으로는 뒤센 근위축증(Duchenne muscular dystrophy; DMD), 베커형 근위축증(Becher muscular dystrophy)이 존재하고, 이 중 뒤센 근위축증이 가장 많이 발견된다. 이외에도 병리학적, 물리적 원인 등으로 근육병이 발생될 수 있다.
근육병의 원인에 대해서는 완전히 알려져 있지는 않지만, 디스트로핀(dystrophin) 유전자, 디스트로핀 연관 글리코단백질(dystrophin associated glycoprotein) 유전자, 메로신(merosin) 유전자 등의 돌연변이에 의해 정상적인 단백질이 생성되지 않는 것이 원인 중 하나로 알려져 있다.
근육병의 대표적인 증상 중 하나인 근섬유화는 근육조직에 세포외기질(extracellular matrix; ECM)이 비정상적으로 축적되는 현상으로, 특히 뒤센 근위축증 등의 근육병 환자의 병기 말기의 근 조직에서 발견된다. 근섬유화는 정상적인 근육 재생 과정을 저해하여 근육의 기능을 떨어뜨린다. 근섬유화 조직에서는 TFG-β, CTGF(connective tissue growth factor), osteopontin 등의 전섬유인자(profibrotic factor)가 높은 발현율을 보인다는 것이 알려져 있다. 그 결과 근육 내에서는 콜라겐, fibronectin 등의 ECM 단백질의 비정상적인 축적을 가져온다.
줄기세포는 다양한 세포로 분화할 수 있고, 이러한 줄기세포의 특성을 이용한 세포치료법의 활용가능성에 관한 연구가 다양하게 진행되고 있다. 다분화능이 있는 배아줄기세포는 다양한 세포로 분화할 수 있는 능력때문에 세포치료제로 주목받았지만, 안전성 및 윤리적 문제로 실제 활용되기에는 어려움이 있었다.
이러한 안전성 및 윤리적인 문제를 회피하기 위하여 많은 연구자들은 배아줄기세포의 대안으로 성체줄기세포 특히 골수, 탯줄, 혈액, 지방 등에서 유래한 중간엽 줄기세포(mesenchymal stem cell; MSC)에 관심을 갖게 되었다.
중간엽 줄기세포는 분화를 통해 근육, 연골 등 다양한 조직을 재생할 수 있을 뿐 아니라, 중간엽 줄기세포 자체가 분비하는 다양한 단백질들이 치료효과를 가진다.
구체적으로는, 중간엽 줄기세포가 분비하는 다양한 단백질들의 주변 분비작용(paracrine)을 통해 병변 부위에서 염증 억제 및/또는 면역 조절 등 개체의 항상성 회복을 유도하는 작용이 알려져 있다. 이러한 주변분비 작용 때문에 중간엽 줄기세포를 “Drug store” 혹은 “Drug Factory”라 칭하고 있다.
종래 근육병의 일종인 근위축축상경화증(amyotrophic lateral sclerosis; ALS) 마우스 모델에 탯줄 유래의 중간엽 줄기세포 이식하였을 때 생존기간이 약 10% 정도(15일) 연장된 결과를 보이기는 하지만, 질환 발병 시기 등에 변화가 없어, 중간엽 줄기세포 이식으로 ALS 질환을 치료할 수 있는지 여부는 아직 명확하지 않다.
근육병과 관련된 치료제 시장은 지속적으로 증가하고 있으며, 관련 연구들도 증가하고 있으나, 근본적인 치료제는 아직 개발되지 않은 상황이다. 따라서, 근육병 특히 근섬유증을 치료 또는 예방할 수 있는 약학적 조성물의 개발이 더욱 필요한 실정이다.
선행기술문헌
(특허문헌 1) 미국 공개특허 제2011-0223205호 (2011. 9. 15.) 'Treatment of amyotrophic lateral sclerosis using umbilical derived cells'
(비특허문헌 1) MAHDY, M. 'Skeletal muscle fibrosis: an overview ' Cell and Tissue Research, 2018. 11. 12. 375, Pages 575-588.
이에 본 발명자들은 상기 문제를 다각적으로 연구를 수행한 결과, 인간 중간엽 줄기세포를 근육병 모델에 투여하였을 때, 또는 체외 모델에서 근섬유증 증상이 완화될 수 있다는 것을 확인하여 본 발명을 완성하였다.
본 발명의 목적은 중간엽 줄기세포를 포함하는 근섬유증을 치료 또는 예방할 수 있는 약학적 조성물을 제공하는 데 있다.
본 발명의 다른 목적은 섬유화된 근관세포와 공배양한 중간엽 줄기세포의 배양액을 포함하는 근섬유증을 치료 또는 예방할 수 있는 약학적 조성물을 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 근섬유증의 치료 또는 예방용 약학적 조성물을 제공한다.
본 발명의 일 구현예에 따라, 중간엽 줄기세포를 포함하는 근섬유증의 치료 또는 예방용 약학적 조성물을 제공한다.
상기 중간엽 줄기세포는 MMP-1 단백질을 분비한다.
상기 중간엽 줄기세포는 탯줄 유래일 수 있다.
상기 근섬유증은 뒤센 근이영양증(DMD)에 의한 근섬유증일 수 있다.
본 발명의 일 구현예에 따라, 섬유화된 근관세포와 공동배양한 중간엽 줄기세포 배양액을 포함하는 근섬유증 치료 또는 예방용 약학적 조성물을 제공한다.
상기 근섬유증은 뒤센 근이영양증(DMD)에 의한 근섬유증일 수 있다.
본 발명의 중간엽 줄기세포를 포함하는 약학적 조성물은 산화 스트레스로 인한 근육세포의 섬유화를 저해하는 효과가 있으므로 근섬유증을 포함하는 근육질환의 예방 또는 치료에 유용하게 이용될 수 있다. 상기 약학적 조성물의 치료효과는 중간엽 줄기세포의 이식에 의한 것이 아니므로, 적은 수의 중간엽 줄기세포의 투여로도 목적하는 치료효과를 얻을 수 있다.
본 발명의 섬유화된 근관세포와 공동배양한 중간엽 줄기세포는 산화 스트레스로 인한 근육세포의 섬유화를 저해하는 효과가 있으므로, 상기 공동배양한 중간엽 줄기세포의 배양액은 다양한 근육질환에 의한 근섬유증의 예방 또는 치료에 유용하게 이용될 수 있다.
도 1은 근육병 모델에 정맥투여한 중간엽 줄기세포의 효과를 분석한 결과이다.
도 2는 근아세포(myoblast; C2C12 세포)에서 근관세포(myotube)로 분화시킨 결과이다.
도 3은 분화된 근관세포와 중간엽 줄기세포의 공동배양 방법을 도식화한 것이다.
도 4는 분화된 근관세포에 산화 스트레스를 주었을 때 발생한 근섬유화 증상이 중간엽 줄기세포의 공동배양에 의해 완화된 결과이다.
도 5는 근섬유화가 유도된 근관세포와 공동배양한 중간엽 줄기세포에서 분비가 증가하거나 감소한 단백질을 분석한 결과이다.
도 6은 분화된 근관세포에 산화 스트레스를 주었을 때 발생한 근섬유화 증상이 MMP-1 처리에 의해 완화된 결과이다.
도 7 및 도 8은 분화된 근관세포에 산화 스트레스를 주었을 때 중간엽 줄기세포와의 공동배양에 의해 완화된 근섬유화 증상이 MMP-1 저해제 처리에 의해 다시 역전된 결과이다.
이하, 본 발명을 보다 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
뒤센 근위축증(Duchenne muscular dystrophy; DMD), 베커형 근위축증(Becher muscular dystrophy) 등의 근육병은 종국에는 근섬유화에 의해 운동기능 상실, 호흡 근력의 약화, 심장 기능의 약화로 환자를 사망에 이르게 한다.
하지만, 이러한 근육병들의 원인 및 치료방법들에 대해서는 완전히 알려져 있지 않기 때문에, 근육병과 관련된 치료제 시장이 지속적으로 증가하고 있음에도 불구하고, 근본적인 치료제는 아직 개발되지 않은 상황이다.
일부 연구자들은 중간엽 줄기세포의 이식을 통해 ALS 등을 치료하려는 시도가 있었으나, 근육병의 특징상 병변이 신체 내 어느 일부에 제한되어 있지 않으므로, 투여해야 하는 중간엽 줄기세포의 수 등에 제한이 있다는 문제가 있다.
또한 ALS 동물모델의 근육 부위에 중간엽 줄기세포(1X106 cells)를 이식하더라도 생존기간이 약 10% 정도(15일) 연장된 결과를 보일 뿐, 질환 발병 시기 등에 변화가 없어 중간엽 줄기세포 이식에 의해 ALS 질환을 치료할 수 있는지 여부는 불명확할 뿐 아니라, 중간엽 줄기세포가 근섬유증을 치료할 수 있는지 여부 역시 불명확하다.
추가적으로 하지현수 근위축증 모델의 근육 조직에 중간엽 줄기세포를 직접 투여하였을 때 (1X106 cells) 근육 세포를 증식시키고, 근섬유 크기 및 근 수축력을 증가시킨 결과가 보고되긴 했지만, 근섬유화를 억제한다는 보고는 없었다.
이에 본 발명에서는 중간엽 줄기세포를 이용한 근섬유증을 치료 또는 예방하는 방법 및 중간엽 줄기세포를 포함하는 근섬유증 치료 또는 예방용 약학적 조성물에 관한 것이다.
추가적으로, 본 발명은 섬유화된 근관세포와 공동배양한 중간엽 줄기세포의 배양액을 이용한 근섬유증 치료 또는 예방하는 방법 및 상기 공동배양한 중간엽 줄기세포의 배양액을 포함하는 근섬유증 치료 또는 예방용 약학적 조성물에 관한 것이다.
추가적으로, 본 발명은 MMP-1을 이용한 근섬유증을 치료 또는 예방하는 방법 및 MMP-1을 포함하는 근섬유증 치료 또는 예방용 약학적 조성물에 관한 것이다.
근육병의 대표적인 증상 중 하나인 근섬유화는 근육조직에 세포외기질(extracellular matrix; ECM)이 비정상적으로 축적되는 현상으로, 특히 뒤센 근위축증 등의 근육병 환자의 병기 말기의 근 조직에서 발견된다.
근섬유화는 정상적인 근육 재생 과정을 저해하여 근육의 기능을 떨어뜨린다. 근섬유화 조직에서는 TFG-β, CTGF(connective tissue growth factor), osteopontin 등의 전섬유인자(profibrotic factor)가 높은 발현율을 보인다는 것이 알려져 있다. 그 결과 근육 내에서는 콜라겐, fibronectin 등의 ECM 단백질의 비정상적인 축적을 가져온다.
본 발명은 근섬유증을 치료 또는 예방하기 위해 중간엽 줄기세포 자체를 이식하여 중간엽 줄기세포에서 새롭게 근육세포를 분화시키려는 방법이 아니라, 중간엽 줄기세포에서 분비하는 특정 물질, 구체적으로는 MMP-1을 통해 섬유화된 근육세포를 회복시키는 방법에 관한 것이다.
또한 본 발명은 근섬유증을 치료 또는 예방하기 위해 중간엽 줄기세포를 근육에 직접 투여하지 않고 정맥주사를 통해 투여하고, 투여된 중간엽 줄기세포는 homing effect에 의해 섬유화된 부위로 찾아가 섬유화된 근육조직을 회복시키는 방법에 관한 것이다.
줄기세포는 다양한 세포로 분화할 수 있고, 이러한 줄기세포의 특성을 이용한 세포치료법의 활용가능성에 관한 연구가 다양하게 진행되고 있다. 다분화능이 있는 배아줄기세포는 다양한 세포로 분화할 수 있는 능력때문에 세포치료제로 주목받았지만, 안전성 및 윤리적 문제로 실제 활용되기에는 어려움이 있었다.
본 발명의 '중간엽 줄기세포'는 자가증식(self-renewal)할 수 있으며 다양한 조직세포로 분화할 수 있는 미분화 상태의 줄기세포로서 골수유래 중간엽 줄기세포(bone marrow-derived mesenchymal stem cells, BM-MSC)가 대표적 예이다. 하지만, 골수 유래 중간엽 줄기세포를 채취하기 위해서는 고통이 수반되므로, 최근에는 탯줄, 지방, 제대혈 등을 포함한 다양한 조직 등으로부터 얻을 수 있는 중간엽 줄기세포가 새로운 세포치료제의 공급원으로 관심을 끌고 있다.
본 발명에서 중간엽 줄기세포는 뼈, 연골, 지방, 힘줄, 신경 조직, 섬유아세포 및 근육 세포 등 구체적인 장기의 세포로 분화되기 전의 중간엽 유래의 전구 세포를 말한다. 본 발명에서 중간엽 줄기세포는 분화되지 않은 상태로 조성물 중에 함유된다.
구체적으로 본 발명의 중간엽 줄기세포는 국제 줄기세포 위원회(International Society for Cellular Therapy, ISCT)에서 정한 기준과 같이 배양시 바닥에 부착되어 자라고, 시험관 내에서 조골세포, 지방세포 또는 연골세포로 분화할 수 있어야 하고, 세포 표면 마커로서 CD73, CD90, CD105, CD166 및 CD44을 발현하고, CD34, CD45, CD19, CD11b, CD14 및 HLA-DR은 발현하지 않는다.
본 발명의 중간엽 줄기세포는 탯줄(umbilical cord), 제대혈(umbilical cord blood), 태반(placenta), 지방 조직(adipose tissue), 골수(bone marrow), 제대(cord), 피부(skin), 말초혈액(peripheral blood) 등에서 유래할 수 있다.
일반적으로 통상적인 줄기세포 이식에는 일정 수준 이상의 세포 수(최소 1X109 cells)가 필요하고, 이를 위해서는 줄기세포의 대량 배양이 필수적이다. 하지만, 줄기세포의 배양 과정에서, 배양 기간이 길어질수록 필연적으로 줄기세포의 노화가 발생되고, 이는 증식능 또는 분화능과 같은 줄기세포능과 치료 효능의 감소 및 오염 등의 문제 발생의 가능성이 높다.
하지만, 본 발명에서는 섬유화된 근조직을 중간엽 줄기세포의 이식 및 이식된 줄기세포의 생착에 의해 근조직이 새롭게 생성되는 것이 아니라, 정맥 주사로 투여된 중간엽 줄기세포의 paracrine 작용에 의해 손상된, 즉 섬유화된 근조직을 되살리는 역할을 하므로, 통상 줄기세포 이식 시 사용되는 중간엽 줄기세포의 양(1X109 세포)에 비해 적은 세포 수로도 치료 효과를 기대할 수 있다.
본 발명에서 이용하는 탯줄 유래 줄기세포는 다양한 포유동물로부터 수득할 수 있다. 구체적으로는 인간, 돼지, 말, 소, 마우스, 랫트, 토끼, 염소, 양 등에서 수득할 수 있고, 바람직하게는 인간에게서 수득할 수 있지만 유래를 제한하지 않는다.
본 발명의 탯줄 유래 중간엽 줄기세포를 근육병 동물모델인 mdx mice에 정맥주사하였을 때(5X104 cells), 근섬유화의 마커인 콜라겐 침착 및 fibronectin의 근육 내 발현이 억제되었다(도 1).
C2C12 근아세포를 근관세포로 분화시킨 후 산화 스트레스(H2O2 처리)를 주어 근섬유화를 유도하였을 때, 중간엽 줄기세포와의 공동배양에 의해 ECM 단백질인 fibronectin 및 콜라겐의 발현이 감소하고, 근원섬유(myofibril)의 마커인 myosin heavy chain(MHC)의 발현이 증대된 현상을 나타내고, 이는 중간엽 줄기세포에서 분비하는 특정 물질이 근섬유화를 원래대로 되돌릴 수 있다는 것을 나타내는 것이다(도 4).
또한, 섬유화된 근관세포와 공배양된 중간엽 줄기세포가 실제 근원세포로 분화했는지를 알기 위해 근원세포의 마커 유전자인 MyoD 및 myogenin 유전자의 발현을 real-time PCR을 통해 확인한 결과, 상기 공배양된 중간엽 줄기세포는 MyoD 및 myogenin 유전자를 거의 발현하지 않으므로(표 1), 섬유화된 근관세포를 섬유화되지 않은 상태로 되돌리는 특정물질은 분화된 근세포 계열의 세포가 아니라 분화되지 않은 중간엽 줄기세포에서 분비하는 것을 알 수 있다.
이러한 결과들을 종합해보면, 섬유화된 근관세포와 공동배양된 중간엽 줄기세포가 분비하는 특정물질이 포함된 배양액 역시 섬유화된 근관세포의 섬유화를 제거할 것이다.
이 때 섬유화된 근관세포와 중간엽 줄기세포를 공동배양하였을 때, 배양액에서 중간엽 줄기세포에서 분비가 증가되는 단백질로는 MMP-1(matrix metalloproteinase-1), INHBA(inhibin, beta A), IGFBP7(insulin like growth factor binding protein 7), PDGFA(platelet derived growth factor subunit A) 및 THBS1(thrombospondin 1)이 확인되었고, 그 중 MMP-1의 분비가 가장 증가하였다. 또한, MMP-1의 생체 내 저해제인 TIMP-1의 분비는 감소하였다(도 5).
MMP-1은 Matrix Metalloprotease type 1으로서, 자연적으로 존재하는 MMP-1 저해제로 TIMP-1(tissue inhibitor of metalloproteinase 1)이 동시에 존재하여 조직 내 항상성을 유지하게 된다.
종래 인간 탯줄 유래의 중간엽 줄기세포의 2차원 배양 및 3차원 배양시 모두 TIMP-1 단백질이 분비되고, 3차원 배양시에는 TIMP-1 및 이와 정반대의 작용을 하는 MMP-1의 분비가 동시에 분비된다는 것이 보고된 바 있다. 따라서, 중간엽 줄기세포의 2차원 배양에서는 MMP-1 효소의 저해제인 TIMP-1의 분비만 관찰되었고, 3차원 배양에서는 MMP-1효소 및 이의 저해제인 TIMP-1의 분비가 동시에 관찰되었을 뿐, 아직까지는 중간엽 줄기세포와 섬유화된 근관세포를 공동배양하였을 때 MMP-1이 분비되는 지 여부는 확인된 바 없다.
또한, 본 발명에서는 MMP-1 처리는 섬유화된 근관세포를 본래의 근관세포로 회복시키고(도 6), MMP-1 및 TIMP-1 또는 GM6001 동시처리에 의해 다시 근관 세포의 섬유화가 관찰됨에 따라(도 7), 근섬유증을 회복하기 위해 중간엽 줄기세포에서 분비하는 인자는 MMP-1이라는 것을 확인할 수 있었다.
본 발명의 약학적 조성물에 의해 치료되는 근섬유증은 유전적, 병리학적 또는 물리적 원인으로 인한 근육 조직의 손상으로부터 유래한 근육질환으로, 뒤센 근위축증(Duchenne's muscular dystrophy; DMD), 베커형 근위축증(Becher muscular dystrophy) 중에서 선택된 질환에 의한 것일 수 있지만, 이에 제한되지 않는다.
본 명세서에서 용어 “약제학적 유효량”은 상술한 중간엽 줄기세포의 치료 효능 또는 활성을 달성하는 데 충분한 양을 의미한다.
본 발명의 조성물이 약제학적 조성물로 제조되는 경우, 본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 포함되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로오스, 폴리비닐필롤리돈, 셀룰로스, 물, 베틸 셀룰로스, 메틸 히드록시 벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네럴 오일, 식염수, PBS(phosphate buffered saline) 또는 배지 등을 포함한, 이에 한정되는 것은 아니다.
본 발명의 약제학적 조성물은 상기 성분들 이외에 현탁제, 보존제, 완충제 등을 추가로 포함할 수 있다. 약제학적으로 허용되는 적합한 담체 및 제제는 Remington's Pharmaceutical Sciences (19th, Ed. 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물은 비경구 투여할 수 있고, 근육 내(intrmuscular, IM) 또는 정맥 내(intravenous, IV) 투여이고, 바람직하게는 정맥 내 투여이다.
본 발명의 약제학적 조성물의 적합한 투여량은 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 반응 감응성 등과 같은 다양한 요인들을 감안하여 다양하게 처방될 수 있다. 또한, 본 발명의 약제학적 조성물에 포함된 중간엽 줄기세포는 homing effect 및 주변 분비작용에 의해 치료효과를 가지므로, 중간엽 줄기세포수는 세포치료에 통상적으로 사용되는 세포 수(1X109 cells)보다 적은 수의 줄기세포를 사용할 수 있다.
실시예 1: 근육병 동물모델(mdx mice)에서 중간엽 줄기세포의 근섬유화 억제능 분석
1-1. 중간엽 줄기세포의 분리
인간 탯줄은 삼성의료원의 IRB(Institutional Review Board of Samsung Medical Center) 승인 후 산모의 동의를 받아 채취하였다.
탯줄 유래 중간엽 줄기세포는 Peng 등의 방법(Brain Research Bulletin, 84(2011) 235-243)을 이용하여 분리하였다. 구체적으로는 PBS(Phosphate Buffered Saline)로 탯줄을 수 차례 세척한 후 3~4cm 길이로 자르고, 혈관 및 양막을 제거한 후 가위를 이용하여 잘게 분쇄하였다. 분쇄된 조직은 37oC의 온도에서 콜라게나제(Collagenase type IV)를 60분 동안 처리하여 세포를 분리하였다. 우태아혈청(FBS)을 처리하여 효소 반응을 멈춘 후, 효소 반응액을 1,000g에서 10분 동안 상온에서 원심분리하여 세포를 수득하였다.
수득된 각각의 중간엽 줄기세포는 10% FBS 및 0.5% 젠타마이신(gentamicin)(10 mg/ml)이 포함된 aMEM(a-modified Minimum Essential Media) 배지를 첨가하여 계대배양하였다.
1-2. 근육병 동물모델에 중간엽 줄기세포의 투여
근육병 동물모델인 mdx mice(C57BL/10ScSn-Dmdmdx/J, The Jackson Laboratory)에 인간 탯줄에서 분리한 중간엽 줄기세표(5X104 cells/100㎕ 식염수)를 정맥주사로 주입하고(mdx+MSC), 일주일 후 동물을 희생한 후 비장근(Gasrocnemius muscle)을 분리하였다. Control 군(Control)은 mdx mice와 동일한 stain인 C57B strain의 쥐를 사용하여 식염수 100㎕를, 무처리군(mdx)은 mdx mice에 식염수 100㎕를 정맥주사하였다.
근섬유화시 콜라겐 및 EMC 구성 단백질인 fibronectin의 발현 증가가 일반적이므로, 근섬유화의 정도를 분석하기 위해 콜라겐 및 fibronectin의 발현양을 분석하였다.
조직 내 콜라겐 발현 양을 분석하기 위해 분리된 각각의 실험군에서 분리된 비장근 조직을 4% 파라포름알데하이드에 고정한 후 제작한 파라핀 블록 슬라이드에 Picro-Sirius red staining kit(abcam, Cambridge, UK)를 이용하여 Sirius red 염색을 하였다. 염색이 끝난 슬라이드는 광학현미경 또는 Scanscope 현미경을 이용하여 이미지를 스캔한 후 Image J(NIH) 소프트웨어를 이용하여 콜라겐 발현 양을 분석하였다.
Fibronectin의 조직 내 발현을 분석하기 위해 각각의 실험군에서 분리된 비장근 조직의 파라핀 블록 슬라이드에 항-fibronectin 항체를 이용한 면역화학염색법 및 Hoechst 33342(Invitrogen, Carlsbad, CA) 염색을 통해 fibronectin 단백질과 핵을 공염색하였다.
Control 군에 비해 근육병 동물모델(mdx mice)의 비장근 조직에서 콜라겐 침착(도 1A) 및 fibronectin의 발현이 증가되어 있으나, 중간엽 줄기세포의 정맥 투여(mdx+MSC)로 인해 콜라겐 침착 및 fibronectin의 발현이 Control 수준으로 감소되는 것을 확인하였다(도 1B).
따라서, 중간엽 줄기세포의 투여는 근육병 동물모델의 근섬유화를 억제할 수 있다는 것을 확인하였다.
실시예 2: 근섬유화 세포모델에서 중간엽 줄기세포의 역할 분석
2-1. 근섬유화 세포모델 확립
C2C12 근아세포(myoblast)를 10% FBS(Gibco BRL)를 포함하는 DMEM high glucose medium(Biowest, S.A.S, Nuaille, France)에서 배양하여 culture-dish의 80~90% confluency를 보일 때, 5% horse serum(Gibco BRL)를 포함하는 DMEM high glucose medium의 분화배지로 교체하였다. 분화 배지 교체 후 1~2일마다 분화배지를 교체해주었으며, 분화 5일째 근관세포(myotube)로 분화되는 것을 확인하였다(도 2).
분화된 근관세포(myotube)에는 H2O2 2mM(sigma, St. Louis, MO)을 처리하여 산화 스트레스를 유도하였으며, 그 후 중간엽 줄기세포를 도 3과 같이 공동배양하였다.
2-2. 근섬유화가 유도된 근관세포(myotube)와 중간엽 줄기세포의 공동배양
근아세포(myoblast)를 근관세포(myotube)로 분화시킨 후 H2O2를 24시간 동안 처리하여 산화 스트레스를 통한 근섬유화를 유도하였으며, 근섬유화가 유도된 세포에 중간엽 줄기세포를 도 3과 같이 24시간 동안 공동배양하였다.
근관세포에 vehicle(PBS) 처리 군(Control), 산화 스트레스 처리군(H2O2) 및 중간엽 줄기세포 공동배양군(H2O2+MSC)으로 각각 나누어 sirius red staining을 통해 콜라겐 침착 정도를 확인하였고(도 4A), ECM 단백질인 fibronectin 및 근섬유화시 발현이 감소된다고 알려진 MHC(myosin heavy chain) 단백질 양을 분석하였다(도 4B, 4C)
그 결과 근관세포에 H2O2 산화스트레스를 처리하여 근섬유화를 유도하는 경우 콜라겐 축적이 늘어남을 확인할 수 있었고, 늘어난 콜라겐 축적은 중간엽 줄기세포와의 공동배양으로 인해 콜라겐 축적이 감소됨을 확인할 수 있었다(도 4A).
추가적으로 각각의 실험군에서의 근섬유화와 관련된 담백질의 발현양을 분석한 결과, 근섬유화시 발현양이 증가된다고 알려진 ECM 단백질인 fibronectin은 근섬유화 유도시 발현이 증가되었으나, 중간엽 줄기세포와의 공동배양에 의해 발현양이 감소되었고, 근섬유화시 발현양이 감소된다고 알려진 MHC는 근섬유화 유도에 의해 발현양이 감소되었으나, 중간엽 줄기세포와의 공동배양에 의해 발현양이 다시 증가되는 것을 확인할 수 있었다(도 4B, 4C).
따라서, 산화 스트레스에 의한 근섬유화 모델에서 중간엽 줄기세포와의 공동배양은 근섬유화를 완화시키고, 근관세포의 손상도 회복시킬 수 있음을 확인하였다. 또한, 이러한 결과로 상기 공동배양에 의한 배양액 자체도 근섬유화를 완화시키고, 근관세포의 손상도 회복시킬 수 있을 것이다.
2-3. 근섬유화가 유도된 근관세포(myotube)와 중간엽 줄기세포의 공동배양시 줄기세포의 근원세포로의 분화정도 분석
근아세포(myoblast)를 근관세포(myotube)로 분화시킨 후 H2O2를 24시간 동안 처리하여 산화 스트레스를 통한 근섬유화를 유도하였으며, 근섬유화가 유도된 세포에 중간엽 줄기세포를 도 3과 같이 24시간 동안 공동배양하였다. 이때 공동배양된 중간엽 줄기세포(Co-cultured MSC)가 근관세포로 분화하였는지 확인하기 위해 근원세포(myogenic precursor) 마커인 MyoD1 및 myogenin mRNA의 발현을 real-time PCR법을 이용하여 분석하였다. 이때 정상적으로 분화된 근관세포 샘플을 양성 대조군으로, 단독배양된 중간엽 줄기세포를 음성 대조군으로 동시에 분석하였다.
Relative mRNA expression
(% of myotube)
MyoD1 Myogenin
근관세포 1.00 ± 0.07 1.00 ± 0.07
공동배양된 중간엽 줄기세포 0 0
중간엽 줄기세포 0 0
표 1에 나타난 바와 같이 근관세포 샘플에서는 MyoD1 및 Myogenin 유전자 모두 높은 수준으로 발현되었으나, 근관세포와 공동배양된 중간엽 줄기세포 및 중간엽 줄기세포에서는 두 유전자 모두 거의 발현되지 않았다. 따라서, 근관세포와 공동배양된 중간엽 줄기세포는 근원세포로 분화하지 않는 것을 확인할 수 있었다.
실시예 3. 산화 스트레스에 의해 섬유화가 유도된 근관세포에 중간엽 줄기세포와 공동배양시 중간엽 줄기세포에서 분비하는 단백질 분석
3-1. antibody array
산화 스트레스로 섬유화를 유도한 근관세포와 중간엽 줄기세포를 공동배양하였을 때 중간엽 줄기세포에서 분비되는 단백질들을 분석하기 위해 Antibody array(Raybio Biotin label-based Human antibody array 507, #AAH-BLG-1-2, Raybiotech Life, Peachtree Corners, GA)를 이용하여 진행하였다. 모든 슬라이드는 Genepix 4100A 스캐너를 이용하여 스캔하였고 Genepix 7.0을 이용하여 분석하였다.
3-2. 각 실험군에서의 분비 단백질 분석
산화 스트레스에 의해 섬유화가 유도된 근관세포에 중간엽 줄기세포를 공동 배양하였을 때, 중간엽 줄기세포에서 분비되는 단백질 중 근섬유화를 억제하는 특징적인 단백질을 분석하고자 antibody array를 진행하였다. 분석 시료는 근관세포의 산화 스트레스 처리를 통한 섬유화 유도군(H2O2), 섬유화 유도 후 중간엽 줄기세포 공동배양군(H2O2+MSC) 및 중간엽 줄기세포 단독 배양군(MSC)의 배양 배지를 동일한 비율로 농축하였으며 농축된 배지를 이용하여 분석하였다. 구체적으로는 여러 종류의 항체가 부착된 슬라이드에 농축 배지를 넣어 반응시킨 후 슬라이드를 스캔하였으며(도 5A), 스캔 값을 정량화하여 Heatmap을 작성하였다(도 5B).
중간엽 줄기세포의 공동배양으로 인해 분비되는 단백질의 변화를 보다 정확하게 반영하고자, 도 5B에서는 산화 스트레스로 근섬유화를 유도한 근관세포에 중간엽 줄기세포를 공동배양한 군(H2O2+MSC)의 정량값에서, 산화 스트레스를 처리한 군(H2O2)의 정량값을 빼 주었으며, 줄기세포만 배양한 군(MSC)에서 분비된 단백질의 정량값과 비교하여 공동 배양 시 증가 또는 감소한 단백질을 정리하였다.
그 결과 산화 스트레스로 근섬유화를 유도한 근관세포와 중간엽 줄기세포의 공동배양시 중간엽 줄기세포에서 분비가 증가되는 단백질은 MMP-1(matrix metalloproteinase-1), INHBA(activin A), IGFBP7(Insulin-like growth factor binding protein-related protein-1), PDGFA(platelet derived growth factor subunit A) 및 THBS1(thrombospondin 1)이고 그 중 MMP-1의 분비가 가장 증가하였고, 그 뒤로 INHBA, IGFBP7의 분비가 증가하였다.
동일 조건에서 분비가 감소한 단백질로는 CD14, TDGF1(Cripto growth factor), CRIM1(cysteine-rich Motor neuron 1), CD27, S1PR1(Endothelial Differentiation Gene-1), GDNF(glial cell-derived neurotrophic factor), GLO1(glyoxalase I), IL6ST(Interleukin-6 receptor subunit beta), GREM1(GREMLIN (C-term), IL27RA(IL27 receptor subunit alpha), BMP3(bone morphologic protein 3), SPARC(secreted protein acidic and rich in cysteine), ADIPOQ(adiponectin), CCL5(chemokine (C-C motif) ligand 5) 및 TIMP1(metalloproteinase inhibitor 1)이 확인되었다.
특이적으로, 산화 스트레스로 근섬유화를 유도한 근관세포와 중간엽 줄기세포의 공동배양시 중간엽 줄기세포에서 MMP-1 단백질의 분비는 약 10배 증가하지만, MMP-1의 생체 내 저해제인 TIMP-1의 분비는 약 20% 수준으로 감소하는 것을 확인할 수 있었다.
실시예 4. 근섬유화 모델에서의 MMP-1의 영향 분석
4-1. 근섬유화 모델에 MMP-1 처리
근아세포(myoblast)를 근관세포(myoblast)로 분화시킨 후 H2O2를 24시간 동안 처리하여 산화 스트레스를 통한 근섬유화를 유도하였으며, 근섬유화가 유도된 세포에 근아세포(myoblast)를 근관세포(myoblast)로 분화시킨 후 H2O2를 24시간 동안 처리하여 산화 스트레스를 통한 근섬유화를 유도하였으며, 근섬유화가 유도된 세포에 MMP-1 재조합 단백질(R&D Systems, Mineapolis, MN)을 5ng/㎖의 농도로 24시간 동안 처리하였다.
근관세포에 vehicle(PBS) 처리 군(Control), 산화 스트레스 처리군(H2O2) 및 MMP-1 처리군(H2O2+MMP-1)으로 각각 나누어 sirius red staining을 통해 콜라겐 침착 정도를 확인하였고(도 6A), 이를 근거로 섬유화된 구역을 계산하였다(도 6B).
그 결과 산화 스트레스에 의해 증가된 콜라겐 침착은 MMP-1 처리에 의해 콜라겐 축적이 감소됨을 확인할 수 있었다(도 6A). 또한, 이를 근거로 섬유화된 구역을 계산한 결과 도 6B에 나타난 바와 같이 산화 스트레스에 의해 증가된 섬유화된 영역은 MMP-1 처리에 의해 control 군의 수준으로 섬유화 영역이 회복된 것을 감소된 것을 확인할 수 있다.
4-2. 근섬유화 모델에 중간엽 줄기세포와의 공동 배양 및 MMP-1 저해제 처리
근섬유화를 막는 효과가 중간엽 줄기세포에서 분비하는 MMP-1에 의존적인지 확인하기 위해 MMP-1 저해제인 TIMP-1 또는 GM600을 중간엽 줄기세포 공동배양시 함께 처리하였다.
구체적으로는 근아세포(myoblast)를 근관세포(myoblast)로 분화시킨 후(Control) H2O2 2mM을 24시간 동안 처리하여 산화 스트레스를 통한 근섬유화를 유도하였으며(H2O2), 근섬유화가 유도된 세포에 중간엽 줄기세포를 24시간 동안 공동배양하고(H2O2+MSC), 동시에 MMP-1 저해제인 TIMP-1 100ng/㎖ (H2O2+MSC+TIMP-1) 또는 GM6001 50μM (H2O2+MSC+GM6001)을 처리하였다.
그 결과 광학 현미경 관찰시 산화 스트레스로 인해 손상된 근관세포가 중간엽 줄기세포와의 공동 배양으로 세포 모양이 다시 일정해짐을 확인할 수 있으나. MMP-1 저해제인 TIMP-1 및 GM6001 처리에 의해 다시 근관세포의 손상을 확인할 수 있었다(도 7A).
각각의 실험군에서 fibronectin은 산화 스트레스에 의해 발현 양이 증가되고, 중간엽 줄기세포와의 공동 배양에 의해 발현 양이 감소되지만, MMP-1 저해제인 TIMP-1 및 GM6001 처리에 의해 fibronectin의 발현 양은 다시 증가하였다. 하지만, MHC는 fibronectin의 발현 양상과는 정반대로 산화 스트레스에 의해 발현 양이 감소되고, 중간엽 줄기세포와의 공동 배양에 의해 발현 양이 증가되지만, MMP-1 저해제인 TIMP-1 및 GM6001 처리에 의해 fibronectin의 발현 양은 다시 감소하였다(도 7B).
또한, 각각의 실험군에서의 콜라겐 침착을 Sirius Red staining으로 분석한 결과 산화 스트레스에 의해 증가된 콜라겐 침착은 중간엽 줄기세포와의 공동배양에 의해 감소하였다. 또한, fibronectin의 발현 양상과 마찬가지로 MMP-1 저해제인 Timp-1 및 GM6001 처리에 의해 중간엽 줄기세포와의 공동배양에 의해 감소된 콜라겐 침착은 다시 증가하는 양상을 확인하였다(도 8).
위 결과를 종합하면, 산화 스트레스로 섬유화가 유도된 근관세포에 중간엽 줄기세포를 공동 배양할 때 MMP-1 저해제를 함께 처리하여 중간엽 줄기세포에서 분비되는 MMP-1을 무력화시켰을 때 중간엽 줄기세포의 긍정적인 효과가 감소하였으므로, 중간엽 줄기세포의 근섬유화를 억제하는 효과는 중간엽 줄기세포에서 MMP-1 단백질의 분비와 연관이 있다는 것을 확인할 수 있다.

Claims (16)

  1. 중간엽 줄기세포를 포함하는 근섬유증 치료 또는 예방용 약학적 조성물.
  2. 제1항에 있어서,
    상기 중간엽 줄기세포의 유래는 골수의 기질, 지방 조직, 탯줄, 연골, 태반, 또는 제대혈인 근섬유증 치료 또는 예방용 약학적 조성물.
  3. 제2항에 있어서,
    상기 중간엽 줄기세포의 유래는 탯줄인, 근섬유증 치료 또는 예방용 약학적 조성물.
  4. 제3항에 있어서,
    상기 근섬유증은 뒤센 근이영양증(Duchenne's muscular dystrophy; DMD), 베커형 근위축증(Becher muscular dystrophy) 중에서 선택된 질환에 의한 것인, 근섬유증 치료 또는 예방용 약학적 조성물.
  5. 제4항에 있어서,
    상기 근섬유증은 뒤셴 근이영양증(Duchenne's muscular dystrophy; DMD)에 의한 것인, 근섬유증 치료 또는 예방용 약학적 조성물.
  6. 제1항에 있어서,
    상기 중간엽 줄기세포는 MMP-1, INHBA, IGFBP7, PDGFA 및 THBS1 중 선택되는 하나 이상의 단백질을 과분비하는, 근섬유증 치료 또는 예방용 약학적 조성물.
  7. 제6항에 있어서,
    상기 중간엽 줄기세포는 MMP-1 단백질을 과분비하는, 근섬유증 치료 또는 예방용 약학적 조성물
  8. 제1항에 있어서,
    상기 약학적 조성물은, 근섬유 내 콜라겐, fibronectin 중 어느 하나 이상의 발현을 억제하는, 근섬유증 치료 또는 예방용 약학적 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 약학적 조성물은, 약학적으로 허용되는 염 또는 부형제를 추가로 포함하는, 근섬유증 치료 또는 예방용 약학적 조성물.
  10. 섬유화된 근관세포와 공동배양한 중간엽 줄기세포의 배양액을 포함하는 근섬유증 치료 또는 예방용 약학적 조성물.
  11. 제10항에 있어서,
    상기 중간엽 줄기세포의 유래는 골수의 기질, 지방 조직, 탯줄, 연골, 태반, 또는 제대혈인, 근섬유증 치료 또는 예방용 약학적 조성물.
  12. 제11항에 있어서,
    상기 중간엽 줄기세포의 유래는 탯줄인, 근섬유증 치료 또는 예방용 약학적 조성물.
  13. 제12항에 있어서,
    상기 근섬유증은 뒤센 근이영양증(Duchenne's muscular dystrophy; DMD), 베커형 근위축증(Becher muscular dystrophy) 중에서 선택된 질환에 의한 것인, 근섬유증 치료 또는 예방용 약학적 조성물.
  14. 제13항에 있어서,
    상기 근섬유증은 뒤셴근이영양증(Duchenne's muscular dystrophy; DMD)에 의한 것인, 근섬유증 치료 또는 예방용 약학적 조성물.
  15. 제10항에 있어서,
    상기 약학적 조성물은, 근섬유 내 콜라겐, fibronectin 중 어느 하나 이상의 발현을 억제하는, 근섬유증 치료 또는 예방용 약학적 조성물.
  16. 제10항 내지 제15항 중 어느 한 항에 있어서,
    상기 약학적 조성물은, 약학적으로 허용되는 염 또는 부형제를 추가로 포함하는, 근섬유증 치료 또는 예방용 약학적 조성물.
PCT/KR2021/009117 2020-07-28 2021-07-15 중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물 WO2022025493A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200093991A KR20220014196A (ko) 2020-07-28 2020-07-28 중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물
KR10-2020-0093991 2020-07-28

Publications (1)

Publication Number Publication Date
WO2022025493A1 true WO2022025493A1 (ko) 2022-02-03

Family

ID=80035702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009117 WO2022025493A1 (ko) 2020-07-28 2021-07-15 중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물

Country Status (2)

Country Link
KR (1) KR20220014196A (ko)
WO (1) WO2022025493A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113087A (ko) * 2006-05-24 2007-11-28 코아스템(주) 중간엽 줄기세포를 포함하는 운동신경원질환 치료용 조성물및 치료방법
US20100247495A1 (en) * 2009-03-30 2010-09-30 Tom Ichim Treatment of Muscular Dystrophy
KR20140070794A (ko) * 2012-11-27 2014-06-11 차의과학대학교 산학협력단 탯줄 유래 줄기세포를 포함하는 근위축 질환 개선 또는 치료용 조성물
KR20160137864A (ko) * 2015-05-22 2016-12-01 차의과학대학교 산학협력단 포유류 탯줄 유래 줄기세포 배양액을 유효성분으로 포함하는 근위축증의 예방 또는 치료용 약제학적 조성물
KR20170098046A (ko) * 2016-02-19 2017-08-29 사회복지법인 삼성생명공익재단 중간엽 줄기세포 또는 xcl1을 포함하는 근육질환의 예방 또는 치료용 약학적 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070113087A (ko) * 2006-05-24 2007-11-28 코아스템(주) 중간엽 줄기세포를 포함하는 운동신경원질환 치료용 조성물및 치료방법
US20100247495A1 (en) * 2009-03-30 2010-09-30 Tom Ichim Treatment of Muscular Dystrophy
KR20140070794A (ko) * 2012-11-27 2014-06-11 차의과학대학교 산학협력단 탯줄 유래 줄기세포를 포함하는 근위축 질환 개선 또는 치료용 조성물
KR20160137864A (ko) * 2015-05-22 2016-12-01 차의과학대학교 산학협력단 포유류 탯줄 유래 줄기세포 배양액을 유효성분으로 포함하는 근위축증의 예방 또는 치료용 약제학적 조성물
KR20170098046A (ko) * 2016-02-19 2017-08-29 사회복지법인 삼성생명공익재단 중간엽 줄기세포 또는 xcl1을 포함하는 근육질환의 예방 또는 치료용 약학적 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI ALEE, PARK SANG EON, JEONG JANG BIN, CHOI SUK-JOO, OH SOO-YOUNG, RYU GYU HA, LEE JEEHUN, JEON HONG BAE, CHANG JONG WOOK: "Anti-Fibrotic Effect of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells on Skeletal Muscle Cells, Mediated by Secretion of MMP-1", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 21, no. 17, pages 6269, XP055891522, DOI: 10.3390/ijms21176269 *

Also Published As

Publication number Publication date
KR20220014196A (ko) 2022-02-04

Similar Documents

Publication Publication Date Title
EP2968315B1 (en) Compositions for the mobilization, homing, expansion and differentiation of stem cells and methods of using the same
WO2014181954A1 (ko) 줄기세포의 재생능 향상을 위한 배지 조성물 및 이를 이용한 줄기세포의 배양방법
EP3957718A1 (en) Method for resisting aging and enhancing stem characteristics of human mesenchymal stem cells
WO2019035668A9 (ko) 중간엽 줄기세포를 포함하는 갑상선 안질환을 치료하기 위한 조성물
WO2022169049A1 (ko) 중간엽 줄기세포 유래의 엑소좀 수득방법
KR20150028052A (ko) 세포 크기에 따른 간엽줄기세포 배양방법
WO2019004792A9 (ko) 인간 유래 심장 줄기세포 미세구의 제조 방법 및 용도
WO2012074265A2 (ko) 줄기세포의 안정성 증진용 조성물
WO2013085303A1 (ko) 개과동물 양막-유래 다분화능 줄기세포
WO2013165120A1 (ko) 신경능선줄기세포의 배양방법 및 그 용도
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
WO2017146468A1 (ko) 줄기세포의 효능 개선을 위한 조성물 및 방법
WO2021071289A2 (ko) 줄기세포능을 증대시키기 위한 조성물 및 이의 용도
KR101162415B1 (ko) 제대혈 유래 간엽줄기세포로부터 신경세포 및 유모세포를 분화시키는 방법
WO2022025493A1 (ko) 중간엽 줄기세포를 포함하는 근육질환 치료 또는 예방용 약학적 조성물
WO2019103528A2 (ko) 무혈청 배지 조성물
WO2016006782A1 (ko) 줄기세포의 보관 안정성 증진용 조성물
WO2015186906A1 (ko) 건 또는 인대 손상 치유를 위한 자가 및 동종의 지방유래 중간엽줄기세포 조성물 및 이의 제조방법
WO2011126177A1 (ko) 인간 줄기세포의 활성을 증가시키는 방법
KR102307115B1 (ko) 시프로플록사신에 의한 줄기세포의 연골전구세포로의 유도 및 연골세포로의 분화
CN113015537A (zh) 用于增殖产生胰岛素的胰岛细胞的组合物和方法及其治疗用途
WO2022103129A1 (ko) 노화가 감소되고 줄기세포능이 보존된 초기 중간엽 줄기세포, 및 그 배양방법
WO2017039251A1 (ko) 향상된 산후 부착형 세포 및 그의 용도
WO2019190175A2 (ko) 편도 유래 중간엽 줄기세포로부터 운동신경세포의 분화방법
WO2015080376A1 (ko) 태반의 융모막 또는 와튼제대교질 유래 간엽줄기세포로부터 신경세포 및 유모세포를 분화시키는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851311

Country of ref document: EP

Kind code of ref document: A1