WO2022025307A1 - 비접촉 무부하 동력전달장치 - Google Patents

비접촉 무부하 동력전달장치 Download PDF

Info

Publication number
WO2022025307A1
WO2022025307A1 PCT/KR2020/009947 KR2020009947W WO2022025307A1 WO 2022025307 A1 WO2022025307 A1 WO 2022025307A1 KR 2020009947 W KR2020009947 W KR 2020009947W WO 2022025307 A1 WO2022025307 A1 WO 2022025307A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
load
disk
contact
shaft
Prior art date
Application number
PCT/KR2020/009947
Other languages
English (en)
French (fr)
Inventor
정길용
Original Assignee
주식회사 태영팬가드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태영팬가드 filed Critical 주식회사 태영팬가드
Priority to US17/927,868 priority Critical patent/US20230243390A1/en
Priority to JP2022575763A priority patent/JP2023536782A/ja
Priority to CN202080101340.7A priority patent/CN115698533A/zh
Priority to EP20946983.2A priority patent/EP4191087A4/en
Publication of WO2022025307A1 publication Critical patent/WO2022025307A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/01Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/14Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Definitions

  • the present invention relates to a non-contact no-load power transmission device capable of transmitting power in a non-contact no-load state using a magnet-to-non-magnet structure.
  • This coupling is for transmitting driving force, and by connecting two different shafts, such as a power shaft connected to a motor or engine to transmit driving force, and a load side or driven shaft connected to a rotating object side such as a pump, two shafts are connected. This is to allow them to rotate at the same time.
  • the coupling through the mechanical connection prevents noise and vibration from occurring, or as the load shaft or driven shaft stops rotating due to, for example, foreign substances caught in the pump, an overload is applied to the electric motor of the power shaft.
  • a magnetic coupling using the magnetic force of a magnet is used.
  • the prior art as described above has a structure that uses the attractive and repulsive force of the magnets disposed on the power shaft disk and the magnets disposed on the load shaft disk.
  • the prior art as described above has a structure that uses the attractive and repulsive force of the magnets disposed on the power shaft disk and the magnets disposed on the load shaft disk.
  • a disk including a magnetic material and a corresponding load shaft or disposed on the power side to be operated by being connected to one side of the power shaft or the load shaft
  • An object of the present invention is to provide a magnetic coupling capable of minimizing heat generation due to slip or eddy current generation by magnetic force formed between disks of non-magnets and transmitting power.
  • Another object of the present invention is to provide a magnetic coupling capable of preventing damage to a power generating source such as a motor or an engine of the power shaft by controlling the amount of load on the load shaft to which the rotating object is coupled.
  • the technical task to be achieved by the present embodiment is not limited to the technical task as described above, and other technical tasks may exist.
  • a non-contact no-load power device is a power transmission device comprising a power shaft and a load shaft,
  • a non-contact, no-load power transmission device is provided, which is composed of the second disk unit 20 formed of a non-magnetic material that acts as a non-magnetic material and operates in a non-contact manner.
  • the positions of the first disk unit 10 and the second disk unit 20 are spaced apart or close to each other so that the number of rotations and the load applied to the coupling can be controlled.
  • the first disk unit 10 is in contact with the first disk 11 and the magnetic material 13 disposed radially on one side of the first disk 11 and coupled to one side of the magnetic material 13, ,
  • the magnetic force forming plate 12 and the magnetic material 13 for discharging the magnetic force generated from the magnetic body 13 to the outside are fastened to the first disk 11 to bind, and a magnetic force forming fastening member for discharging the magnetic force to the outside.
  • a plurality of the magnetic bodies 13 have N poles and S poles alternately arranged, and the magnetic body 13 rotates in the first disk 11 and an eddy current is generated according to the polarity change.
  • a heat dissipation hole 112 for dissipating heat generated by the heat dissipation hole 112 is further formed.
  • the magnetic force forming plate 12 in which the magnetic force forming fastening member 14 and one side of the magnetic force forming fastening member 14 are in contact is formed in a housing structure in which the magnetic body 13 is interleaved, and the magnetic force forming fastening member A portion of (14) is directed to the outside, so that the magnetic force generated from the magnetic body (13) can be concentrated in the direction of the second disk unit (20).
  • the second disk unit 20 includes a second disk 21 and a magnetic force reinforcing plate 22 coupled to one side of the second disk 21, and the second disk 21 and the magnetic force reinforcing plate Between (22), a corrosion prevention plate 23 is further provided to prevent corrosion of the second disk 21 and the magnetic reinforcement plate 22 due to heterogeneous corrosion corrosion or the like.
  • the magnetic force strengthening plate 22 emits heat generated by the eddy current and further has a heat dissipation hole 221 that allows the eddy current to occur, and the heat dissipation hole 221 has a point shape, a curved shape, and a width. It should be formed in various shapes such as a narrow fan shape and a deformed prince.
  • the first disk unit 10 and the second disk unit 20 are energized to be coupled to the first disk unit 10 and the second disk unit 20 by an eddy current generated by a magnetic force and a rotating magnetic field.
  • the center of the shaft or the load shaft is on the same horizontal axis line, or is shifted upward or downward, it can be driven even when the center of the power shaft or the load shaft maintains the torsion angle, and the first disk unit 10 and the second
  • a plurality of load shafts can be driven correspondingly to one power shaft.
  • the present invention transmits power in a non-contact, no-load state with magnetic force formed between a disk including a magnetic material disposed on the load shaft and a non-magnet disk disposed on the power shaft, thereby causing mechanical damage and noise. It is free from , vibration, and dust, and has the effect of providing stable output without periodic slipping compared to conventional magnetic couplings.
  • the present invention enables forward rotation and reverse rotation due to the magnetic coupling of the magnet-to-non-magnet structure, and the effect of maximizing energy efficiency by controlling the rotation speed and output amount through free spacing adjustment have.
  • FIG. 1 is a view for explaining the configuration of a non-contact no-load power transmission device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of FIG. 1 ;
  • FIG. 3 is a view for explaining various types of magnetic reinforcement plates, which are some of the components of FIG. 1 .
  • FIG. 4 is a view of the first disk of FIG. 1 .
  • FIG. 5 is a view for explaining the configuration of a magnetic reinforcement plate, which is a part of the component of FIG. 1 .
  • FIG. 6 is a view for explaining a process of adjusting the front/rear, up/down spacing of the non-contact no-load power transmission device according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a process of adjusting the upper/lower and left/right spacing between the first disk and the second disk according to FIG. 6 .
  • FIG 8 is a view for explaining a state in which the first axis of the first disk and the second axis of the second disk are out of horizontal according to an embodiment of the present invention.
  • FIG. 9 is an exemplary view for explaining a power transmission structure to which a plurality of load shafts are applied according to an embodiment of the present invention.
  • FIG. 10 is an exemplary view for explaining a power transmission method of a power transmission structure to which a plurality of load shafts are applied according to an embodiment of the present invention.
  • FIG. 11 is an exemplary diagram illustrating a non-contact magnetic power transmission structure to which a conventional magnet-to-magnet is applied.
  • FIG. 1 is a view for explaining the configuration of a non-contact no-load power transmission device according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of FIG. 1
  • FIG. 4 is a diagram for the first disk of FIG. 1
  • FIG. 5 is a diagram for explaining the configuration of a magnetic reinforcement plate, which is a part of FIG. 1 .
  • the non-contact no-load power transmission device of the present invention includes a first disk unit 10 coupled to any one of a power shaft or a load shaft and provided with a magnetic material on one side thereof, and the first disk unit ( 10) is coupled to a power shaft or a load shaft corresponding to and composed of a second disk unit 20 formed of a non-magnet, wherein the first disk unit 10 and the second disk unit 20 face each other and are spaced apart It operates in a non-contact manner.
  • the first disk unit 10 is in contact with the first disk 11 and the magnetic material 13 disposed radially on one side of the first disk 11 and coupled to one side of the magnetic material 13, ,
  • the magnetic force forming plate 12 and the magnetic material 13 for discharging the magnetic force generated from the magnetic body 13 to the outside are fastened to the first disk 11 to bind, and a magnetic force forming fastening member for discharging the magnetic force to the outside. It consists of (14).
  • a shaft coupling hole 111 is formed in the center to be able to fasten either the power shaft A or the load shaft B, and the shaft coupling hole 111 is the center of the shaft coupling hole 111.
  • a magnetic inlet hole 113 is further formed to form a space etched inside so that the magnetic material 13 can be radially arranged and coupled thereto.
  • a heat dissipation hole 112 for dissipating heat generated by an eddy current generated according to a rotating magnetic field in which the magnetic material 13 rotates and changes in polarity is further formed on the first disk 11 .
  • a plurality of the heat dissipation holes 112 are formed to penetrate from one surface of the first disk 11 to the other surface.
  • a conventional permanent magnet is applied to the magnetic body 13 fastened to and coupled to the first disk 11 formed as described above, but the present invention is not limited thereto, and anything that can generate a magnetic force such as a permanent magnet or an electromagnet can be used. do.
  • the magnetic body 13 is radially arranged around the shaft coupling hole 111 of the first disk 11 and coupled, and when the first disk unit 10 rotates, at a distance from the central axis.
  • the magnetic body 13 is not limited thereto, so that it can be formed in various shapes.
  • the magnetic force forming plate is in contact with one side of the magnetic body 13 , is introduced into the magnetic lead-in hole 113 of the first disk 11 , and releases the magnetic force generated from the magnetic body 13 to the outside.
  • (12) is formed to be the same as the shape of the magnetic body (13).
  • the magnetic force forming plate 12 is coupled to the inside of the first disk 11 and increases the magnetic permeability of the magnetic material 13 in the direction of the second disk unit 20 corresponding to the first disk unit 10 . make it possible
  • the magnetic force forming plate 12 as described above is preferably formed of a material capable of increasing the magnetic permeability, and in the present invention, it may be a silicon steel sheet, an amorphous magnetic material, aluminum, etc., but is not limited thereto, and the magnetic permeability can be increased Any material is possible.
  • a plurality of heat dissipation holes 121 are further provided in the magnetic force forming plate 12 to dissipate heat generated from the magnetic body 13 by an eddy current.
  • the magnetic force forming plate 12 and one side are supported by being in contact, and the magnetic force forming fastening member 14 for interpolating and binding the outer surface of the magnetic body 13 to be in contact with the inner surface is also the same as the magnetic force forming plate 12 . made of material.
  • the magnetic force forming fastening member 14 is fastened by force fitting between the inner surface of the magnetic inserting hole 113 of the first disk 11 and the magnetic body 13, and the magnetic body 13 is At the same time as binding, the magnetic force of the magnetic force forming plate 12 and the magnetic body 13 is released to the outside to improve the magnetic permeability.
  • a second disk that corresponds to the first disk unit 10 as described above, is disposed with one side spaced apart, and is fastened to a power shaft or a load shaft corresponding to a power shaft coupled to the first disk unit 10 or a load shaft.
  • the unit 20 is made of a non-magnetic material that allows for homogeneous rotation by the magnetic force generated from the magnetic material of the first disk unit 10 .
  • the non-magnetic material may be any metal or non-metal material capable of maintaining attractive force with the magnetic material or any material capable of maintaining attractive force with the magnetic material.
  • it refers to a material that is formed by containing metal powder or the like in a metal disk or synthetic resin, and is capable of maintaining attractive force with a magnetic material.
  • a shaft coupling hole 211 to which one of the power shaft A or the load shaft B can be fastened is formed in the center, and the coupling hole 211 is the center of the second disk unit 20 . It is composed of a disk-shaped second disk 21 in which a plurality of heat dissipation holes 212 are further formed.
  • the heat dissipation hole 212 is formed to be radially arranged around the shaft coupling hole 211 .
  • a magnetic force reinforcing plate 22 to cope with the eddy current generated by the first disk unit 10 or to increase the attractive force with the magnetic force generated from the magnetic material 13.
  • a corrosion prevention plate 23 is further provided between the magnetic reinforcement plate 22 and the second disk 21 to prevent corrosion from occurring due to corrosion of dissimilar metals.
  • the anti-corrosion plate 23 is preferably formed of a heat absorbing material such as ceramic paper for preventing corrosion between dissimilar metals and absorbing heat, but is not limited thereto. Anything that can prevent corrosion is possible.
  • the magnetic reinforcing plate 22 as described above is further formed with a heat dissipation hole 221 for discharging heat generated by the eddy current and generating the eddy current.
  • the heat dissipation hole 221 may have various types of holes such as a point shape, a curved shape, a narrow fan shape, and a deformed prince, and the like may be arranged in a radial shape.
  • FIG. 6 is a view for explaining a process of adjusting the front/rear and upper/lower intervals of the non-contact no-load power transmission device according to an embodiment of the present invention
  • FIG. 8 is a diagram illustrating a state in which the first axis of the first disk and the second axis of the second disk are out of horizontal according to an embodiment of the present invention
  • FIG. 9 is an exemplary view for explaining a power transmission structure to which a plurality of load shafts are applied according to an embodiment of the present invention.
  • FIG. 10 is an exemplary view for explaining a power transmission method of a power transmission structure to which a plurality of load shafts are applied according to an embodiment of the present invention.
  • the non-contact no-load power transmission device is provided between the first disk unit 10 and the second disk unit 20 in various directions, such as longitudinal, lateral, and vertical and horizontal directions.
  • the rotation speed and load amount can be adjusted in a no-load state by adjusting the distance between the disks and the spacing including the arrangement direction.
  • the no-load magnetic coupling allows an administrator to manually or automatically set the interval between the first disk unit 10 and the second disk unit 20 through a control means (not shown).
  • the position of the second disk unit 20 connected to the load shaft B is spaced apart or close to each other, so that the load force applied to the non-contact no-load power transmission device can be adjusted.
  • first shaft (A) and the second shaft (2) are the first shaft (A) and the second shaft (2) with respect to the power shaft (A) or the load shaft (B), and the two shafts are on the same horizontal axis line If there is, the gap between the first disk unit 10 and the second disk unit 20 can be narrowed or widened, and the first axis (A) and the second axis (B) are not on the same horizontal axis line, and are upper or Even when shifted downward, the gap between the first disk unit 10 and the second disk unit 20 can be narrowed or widened.
  • a magnetic material is provided on one side of the coupling, and a non-magnetic material for maintaining attractive force with the magnetic material is provided on the other side corresponding to the coupling. Even when a separation angle is generated, rotation is possible by magnetic force and eddy current generated by the rotation of magnetic force.
  • the non-contact no-load power transmission device transmits power to the load shaft, that is, the magnetic force formed between the disk unit disposed on the driven shaft and the disk unit disposed on the power side, and the rotation of the magnetic force, that is, the eddy current generated by the rotating magnetic field.
  • the load shaft that is, the magnetic force formed between the disk unit disposed on the driven shaft and the disk unit disposed on the power side
  • the rotation of the magnetic force that is, the eddy current generated by the rotating magnetic field.
  • a motor having various poles such as 2 poles, 4 poles, and 6 poles, is used depending on the number of poles of the built-in magnetic material. For example, 4 poles at the same frequency of 60 Hz In the case of a motor to which , the maximum rotation speed is maintained at 1800 rpm, in the case of a motor using 6 poles, the maximum rotation speed is maintained at 1200 rpm.
  • the rotation speed and the load amount can be simultaneously adjusted in a no-load state by adjusting various intervals between the first disk unit 10 and the second disk unit 20, and energy efficiency can be maximized.
  • the corrosion prevention plate 23 is further provided so that the corrosion of components can be promoted as well as the magnetic force is reduced due to the magnetic heat and resistance heat generated in the magnetic force formation process, which are problems of the existing magnetic coupling. It is possible to improve the durability of the product and extend the mechanical life expectancy by preventing
  • the non-contact no-load power transmission device of the present invention has better mechanical efficiency and energy efficiency with less installation and maintenance costs compared to expensive inverters and fluid couplings, and the first shaft (A) on the power side It is possible to overcome the limitations of the torsion angle such as alignment and balance that can be operated even if the second axis (B) on the overload side is not completely horizontal.
  • a plurality of load sides B may be disposed on one power shaft A to be driven.
  • one power shaft (A) is arranged to be movable, a plurality of load shafts (B) are arranged to face each other, and then the load shaft (B) that needs to be driven is moved adjacent to the corresponding load shaft ( B) is driven, or a plurality of load shafts B are disposed adjacent to each other (refer to FIG. 10) to drive the corresponding load shaft B by magnetic force and eddy current.
  • the power shaft (A) is a load disposed facing the power shaft (A) so as to be movable in all directions movable in a space capable of controlling the driving of the load side in the front, rear, left, right and up and down or the power shaft It is possible to control the drive of the axis (B).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

본 발명은 자석 대 비자석의 구조를 이용하여 비접촉 무부하 상태로 동력을 전달할 수 있는 비접촉 무부하 동력전달장치에 관한 것이다. 이를 위해, 동력축 또는 부하축 중 어느 하나에 결합되고 일측면에 자성체가 구비되는 제1디스크유니트(10)와 상기 제1디스크유니트(10)에 대응하는 동력축 또는 부하축에 결합되고 상기 자성체와 인력이 작용하는 비자성체로 형성되는 제2디스크유니트(20)로 구성되어 비접촉식으로 동작하는 것을 특징으로 하는 비접촉 무부하 동력전달장치를 제공하게 된다.

Description

비접촉 무부하 동력전달장치
본 발명은 자석 대 비자석의 구조를 이용하여 비접촉 무부하 상태로 동력을 전달할 수 있는 비접촉 무부하 동력전달장치에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 발명의 일 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
일반적으로 동력전달장치에는 다양한 형태의 장치들이 존재하게 된다. 그 중 대표적인 것이 기계적인 접촉을 통한 물리력의 전달 수단으로 기어를 이용한 동력전달, 풀리와 밸트를 이용한 전달 등이 있으며, 이와 같이 쌍으로 이루어진 동력전달장치를 커플러 또는 커플링 등으로 명칭하게 된다.
이러한 커플링은 구동력을 전달하기 위한 것으로, 모터 또는 엔진 등에 연결되어 구동력을 전달하는 동력축과 펌프 등과 같은 회전 대상체 측에 연결되는 부하측 또는 종동축과 같이 서로 다른 두 개의 축을 연결하여 두 개의 축이 동시에 회전할 수 있도록 하기 위한 것이다.
이와 같은 커플링은 기계적 연결을 통해 맞물려 회전함에 따라 마찰에 의한 소음, 분진, 진동, 에너지 효율 감소, 내구성 저하, 기계적 소손 등이 발생수 있다.
또한, 초기 동작시 부하축 또는 종동축에 고부하의 회전대상체가 위치할 경우, 동력축에 고부하가 동일하게 부여되기 때문에 모터 또는 엔진 등의 수명을 단축시키거나, 이상상황에 따른 급정지 또는 급회전방향 전환 등의 작업시 기계적인 충격이 동력축에 완충없이 전달되어 파손되는 경우가 빈번하게 일어나게 된다.
따라서, 기계적 연결을 통한 커플링이 소음과 진동이 발생하는 것을 방지하거나, 일예로 펌프에 이물질이 끼이는 등의 원인으로 부하축 또는 종동축이 회전을 정지함에 따라 동력축의 전동모터 등에 과부하가 걸리는 것을 방지할 수 있도록 자석의 자력을 이용한 마그네틱 커플링이 사용되고 있다.
이에 따라 다양한 형태의 커플링이 제안되고 있는데, 그 중 대표적인 것이 대한민국 공개특허 제10-2015-0017885호(자력을 이용한 비접촉 동력전달구조 이하'선행기술'이라 함, 2015년 02월 23일 공개)로서 분리된 주동축과 종동축 사이를 연결하면서 동력을 전달하기 위한 구조에 관한 것으로서, 구체적으로는 중앙에 형성되면서 N극,S극 중 어느 하나의 극성으로 이루어진 제1 자석 및 상기 제1 자석의 외곽에 형성되면서 다수개의 N극과 S극으로 분활된 제2 자석으로 이루어진 한 쌍의 자성체;가 구성됨에 따라, 자력을 이용하여 비접촉 상태에서 주동축의 동력을 종동축에 전달할 수 있는 자력을 이용한 비접촉 동력전달구조를 제공하게 된다.
그러나, 상기와 같은 선행기술은 동력축 디스크에 배치된 자석과 부하축 디스크에 배치된 자석의 인력과 척력을 이용하는 구조로 주기적 슬립현상이 일어나 일정한 동력 전달에 어려움이 있고, 주기적 슬립현상을 극복하기 위해서는 일체형 구조를 갖게 되는 단점이 있다.
또한 이외의 일반적인 마그네틱 커플링은 인력과 척력이 발생할 때에 와전류에 의한 자기열과 저항열이 발생하게 되고, 이렇게 발생된 고열은 자력 감소의 주 원인이 되며 에너지 효율을 저하 시킨다. 기존 일반 커플링의 경우, 유량 조절을 위한 밸브의 설치 및 조작으로 해결하였으나, 이 과정은 과부하를 발생시키는 주 원인이 되며 기계적 소손을 가져오고 에너지 효율을 감소시키는 문제점이 있다. 즉, 종래의 마그네틱 커플링은 모터 측의 동력을 종동축으로 효율적으로 전달하지 못하여 동력전달 효율이 다소 낮고, 모터의 동력전달 효율이 낮아 종동축의 정밀한 회전 제어가 곤란하다는 문제점이 있다.
본 발명은 전술한 문제점을 해결하기 위하여, 본 발명의 일 실시예에 따라 동력축 또는 부하축 중 일측에 연결되어 동작할 수 있도록 자성체를 포함하는 디스크와 이에 대응되는 부하축 또는 동력측에 배치된 비자석의 디스크 사이에 형성된 자력으로 슬립 또는 와전류발생에 따른 발열을 최소화 하고 동력을 전달할 수 있는 마그네틱 커플링을 제공하는 것에 목적이 있다.
또한, 본 발명은 회전대상체가 결합되는 부하축의 부하량을 제어할 수 있도록 하여 동력축의 모터 또는 엔진 등의 동력발생원의 파손을 방지할 수 있도록 하는 마그네틱 커플링을 제공하는데 또다른 목적이 있다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서 본 발명의 일 실시예에 따른 비접촉 무부하 동력장치는,동력축과 부하축으로 구성되는 동력전달장치에 있어서,
동력축 또는 부하축 중 어느 하나에 결합되고 일측면에 자성체가 구비되는 제1디스크유니트(10);와 상기 제1디스크유니트(10)에 대응하는 동력축 또는 부하축에 결합되고 상기 자성체와 인력이 작용하는 비자성체로 형성되는 제2디스크유니트(20)로 구성되어 비접촉식으로 동작하는 것을 특징으로 하는 비접촉 무부하 동력전달장치를 제공하게 된다.
이때, 상기 제1디스크유니트(10)와 제2디스크유니트(20)의 위치를 이격시키거나 근접하도록 하여 커플링에 가해지는 회전수 및 부하량을 제어할 수 있도록 한다.
또한, 상기 제1디스크유니트(10)는 제1디스크(11)와 상기 제1디스크(11)의 일측면에 방사형으로 배치되어 결합되는 자성체(13)와 상기 자성체(13)의 일측면에 접하며, 자성체(13)로부터 발생되는 자력을 외부로 배출되도록 하는 자력형성판(12) 및 자성체(13)를 제1디스크(11)에 체결하여 결속하며, 자력을 외부로 배출되도록 하는 자력형성체결부재(14)로 구성되고, 상기 자성체(13)는 다수 개가 N극과 S극이 교변적으로 배열되며, 상기 제1디스크(11)에는 자성체가(13)가 회전하며 극성변화에 따라 발생되는 와전류에 의해 발열되는 열기를 방출하기 위한 방열홀(112)이 더 형성된다.
또한, 상기 자력형성체결부재(14)와 상기 자력형성체결부재(14)의 일측면이 접촉되는 자력형성판(12)이 자성체(13)를 내삽하는 함체구조로 형성되도록 하고, 자력형성체결부재(14)의 일부분이 외부로 향하도록 하여, 자성체(13)로부터 발생되는 자력이 제2디스크유니트(20) 방향으로 집중될 수 있도록 한다.
또한, 상기 제2디스크유니트(20)는 제2디스크(21)와 상기 제2디스크(21)의 일측면에 결합되는 자력강화판(22)으로 구성되고, 상기 제2디스크(21)와 자력강화판(22)의 사이에는 이종금식부식 등에 의해 제2디스크(21)와 자력강화판(22)에 부식이 발생되는 것을 방지하기 위한 부식방지판(23)이 더 구비된다.
이때, 상기 자력강화판(22)은 와전류에 의해 발생되는 열기를 방출하고, 와전류가 발생할 수 있도록 하는 방열홀(221)이 더 형성되며, 상기 방열홀(221)은 점 형태, 곡선형태, 폭이 좁은 부채꼴 형태, 변형된 왕 자 등 다양한 형태로 형성되도록 한다.
여기서, 상기 제1디스크유니트(10)와 제2디스크유니트(20)는 자력 및 회전자계에 의해 발생되는 와전류에 의해, 제1디스크유니트(10)와 제2디스크유니트(20)에 결합하는 동력축 또는 부하축의 중심이 동일한 수평 축 선상에 있거나, 상부 또는 하부로 어긋난 경우, 동력축 또는 부하축의 중심이 비틀림각을 유지할 경우에도 구동될 수 있도록 하고, 상기 제1디스크유니트(10)와 제2디스크유니트(20)의 사이에 발생되는 자력 및 회전자계에 의해 발생되는 와전류에 의해, 1개의 동력축에 복수개의 부하축이 대응하여 구동할 수 있도록 한다.
또한, 상기 자성체와 비자성체간의 인력만이 발생되어 극성변화와 상관없이 구동이 가능하며, 자성체의 회전에 따라 변하는 극성변화 즉, 회전자계에 의해 와전류가 발생되고, 회전자계에 의해 비자성체가 회전함으로써 운전 중 급정지 또는 정회전 중 역회전시 물리적 충격 및 기계적 파손없이 가능하도록 하며, 비접촉식으로 두개의 디스크유니트사이의 이격공간으로 인한 쿠션 현상을 주어 동력축 및 부하축에 물리적 충격과 기계적 파손 없이 운전 중 부드러운 역회전이 가능하도록 할 수 있는 것을 특징으로 하는 비접촉 무부하 동력전달장치를 제공함으로써 본 발명의 목적을 보다 잘 달성할 수 있는 것이다.
전술한 본 발명의 과제 해결 수단에 의하면, 본 발명은 부하축에 배치된 자성체를 포함하는 디스크와 동력축에 배치된 비자석의 디스크 사이에 형성된 자력으로 비접촉 무부하 상태의 동력을 전달함으로써 기계적 소손, 소음, 진동, 분진으로부터 자유롭고, 기존의 마그네틱 커플링에 비해 주기적 슬립 현상없이 안정적인 출력을 제공할 수 있는 효과가 있다.
또한, 본 발명은 자석 대 비자석 구조의 마그네틱 커플링으로 인해 정 방향 회전과 역 방향 회전이 가능하고, 자유로운 간격 조절을 통해 회전 속도와 출력량을 제어할 수 있어 에너지 효율이 극대화될 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 비접촉 무부하 동력전달장치의 구성을 설명하는 도면이다.
도 2는 도 1의 분해 사시도이다.
도 3은 도 1의 일부 구성요소인 자력강화판의 다양한 형태를 설명하는 도면이다.
도 4는 도 1의 제1 디스크에 대한 도면이다.
도 5는 도 1의 일부 구성요소인 자력강화판의 구성을 설명하기 위한 도면이다.
도 6은 본 발명의 일실시예에 따른 비접촉 무부하 동력전달장치의 전/후, 상/하 간격 조절과정을 설명하는 도면이다.
도 7은 도 6에 의한 제1 디스크와 제2 디스크의 상/하, 좌/우 간격조절 과정을 설명하는 도면이다.
도 8은 본 발명의 일 실시예에 따른 제1 디스크의 제1 축과 제2 디스크의 제2 축이 수평에서 벗어난 상태를 설명하는 도면이다.
도 9는 본 발명의 일 실시예에 따른 복수개의 부하축을 적용한 동력전달구조를 설명하기 위한 예시도이다.
도 10은 본 발명의 일실시예에 따른 복수개의 부하축을 적용한 동력전달구조의 동력전달방법을 설명하기 위한 예시도이다.
도 11은 종래의 자석 대 자석을 적용한 비접촉식 마그네틱 동력전달구조를 도시한 예시도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하의 실시예는 본 발명의 이해를 돕기 위한 상세한 설명이며, 본 발명의 권리 범위를 제한하는 것이 아니다. 따라서 본 발명과 동일한 기능을 수행하는 동일 범위의 발명 역시 본 발명의 권리 범위에 속할 것이다.
이하 첨부된 도면을 참고하여 본 발명의 일 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 비접촉 무부하 동력전달장치의 구성을 설명하는 도면이고, 도 2는 도 1의 분해 사시도이고, 도 3은 도 1의 일부 구성요소인 자력강화판의 다양한 형태를 설명하는 도면이고, 도 4는 도 1의 제1 디스크에 대한 도면이며, 도 5는 도 1의 일부 구성요소인 자력강화판의 구성을 설명하기 위한 도면이다.
도 1 내지 도 2를 참조하면, 본 발명의 비접촉 무부하 동력전달장치는 동력축 또는 부하축 중 어느 하나에 결합되고 일측면에 자성체가 구비되는 제1디스크유니트(10)와 상기 제1디스크유니트(10)에 대응하는 동력축 또는 부하축에 결합되고 비자석으로 형성되는 제2디스크유니트(20)로 구성되며, 제1디스크유니트(10)와 제2디스크유니트(20)는 서로 마주보며 이격되어 비접촉식으로 동작하게 된다.
이때, 상기 제1디스크유니트(10)는 제1디스크(11)와 상기 제1디스크(11)의 일측면에 방사형으로 배치되어 결합되는 자성체(13)와 상기 자성체(13)의 일측면에 접하며, 자성체(13)로부터 발생되는 자력을 외부로 배출되도록 하는 자력형성판(12) 및 자성체(13)를 제1디스크(11)에 체결하여 결속하며, 자력을 외부로 배출되도록 하는 자력형성체결부재(14)로 구성된다.
여기서, 상기 제1디스크(11)는 중심부에 동력축(A) 또는 부하축(B) 중 어느 하나를 체결할 수 있도록 축결합홀(111)이 형성되고, 상기 축결합홀(111)을 중심으로 자성체(13)를 방사형으로 배치하여 결합할 수 있도록 내측으로 식각된 공간을 형성하는 자성체인입홀(113)이 더 형성된다.
또한, 상기 제1디스크(11) 상에는 자성체(13)가 회전하며 극성변화하는 회전자계에 따라 발생되는 와전류에 의해 발열되는 열기를 방출하기 위한 방열홀(112)이 더 형성된다.
이때, 상기 방열홀(112)은 제1디스크(11)의 일면에서 타측면으로 복수개가 관통되어 형성된다.
상기와 같이 형성된 제1디스크(11)에 체결되어 결합되는 자성체(13)는 통상적인 영구자석이 적용되나, 이를 한정하는 것은 아니며, 영구자석 및 전자석과 같이 자력이 발생될 수 있는 것이면 무엇이든 가능하다.
여기서, 상기 자성체(13)는 제1디스크(11)의 축결합홀(111)을 중심으로 방사형으로 배치되어 결합되고, 제1디스크유니트(10)가 회전할 때, 중심축으로부터의 이격거리에 대한 회전궤적 차이를 보상하기 위해, 일측단부가 타측단부보다 길게 형성되는 상협하광 또는 상광하협의 형상의 사각형 또는 그 단면이 부채꼴 또는 사다리꼴의 형상을 가지며 외측으로는 장호와 내측으로는 단호를 갖는 형상으로 형성되도록 하되, 이를 한정하는 것은 아니며, 다양한 형상으로 형성될 수 있도록 한다.
또한, 자성체(13)는 제1디스크(11)의 일측면에 축결합홀(111)을 중심으로 방사형으로 배치될 때, 다수개가 N극과 S극이 교번적으로 배열된다.
또한, 상기 자성체(13)의 일측면에 접하며, 제1디스크(11)의 자성체인입홀(113)의 내측에 인입되며, 자성체(13)로부터 발생되는 자력을 외부로 방출시켜 주기 위한 자력형성판(12)은 자성체(13)의 형상과 동일하게 형성되도록 한다.
여기서, 상기 자력형성판(12)은 제1디스크(11)의 내측에 결합되고, 제1디스크유니트(10)에 대응하는 제2디스크유니트(20)의 방향으로 자성체(13)의 투자율을 높일 수 있도록 한다.
상기와 같은 자력형성판(12)은 자성체의 투자율을 높일 수 있는 재질로 형성되는 것이 바람직하며, 본 발명에서는 규소강판, 아몰퍼스 자성체, 알루미늄 등이 될 수 있으나 이를 한정하는 것은 아니며, 투자율을 높일 수 있는 재질이면 무엇이든 가능하다.
상기 자력형성판(12)에는 복수개의 방열홀(121)이 더 구비되는데, 와전류에 의해 자성체(13)로부터 발생되는 열기를 방열하기 위한 것이다.
또한, 상기 자력형성판(12)과 일측면이 접하며 지지되고, 자성체(13)의 외측면을 내측면에 접하도록 내삽하여 결속하는 자력형성체결부재(14)도 자력형성판(12)과 동일한 재질로 형성된다.
보다 상세하게 설명하면, 상기 자력형성체결부재(14)는 제1디스크(11)의 자성체인입홀(113)의 내측면과 자성체(13)의 사이에 강제끼움으로 체결되며, 자성체(13)를 결속함과 동시에 자력형성판(12) 및 자성체(13)의 자력을 외부로 방출하여 투자율을 향상시킬 수 있도록 한다.
이는, 자력형성체결부재(14)와 상기 자력형성체결부재(14)의 일측면이 접촉되는 자력형성판(12)이 자성체(13)를 내삽하는 함체구조로 형성되도록 하고, 자력형성체결부재(14)의 일부분이 외부로 향하도록 하여, 자성체(13)로부터 발생되는 자력이 제2디스크유니트(20) 방향으로 집중될 수 있도록 하는 것이다.
상기와 같은 제1디스크유니트(10)와 대응하며 일측면이 이격되어 배치되고, 제1디스크유니트(10)에 결합되는 동력축 또는 부하축에 대응하는 동력축 또는 부하축에 체결되는 제2디스크유니트(20)는 제1디스크유니트(10)의 자성체에서 발생되는 자력에 의해 동종회전할 수 있도록 하는 비자성체로 구성된다.
여기서, 상기 비자성체라함은 자성체와의 인력을 유지할 수 있는 금속재질 또는 비금속재질이나 자성체와의 인력을 유지할 수 있는 것이면 무엇이든 가능하다.
보다 상세하게 설명하면, 금속재 디스크 또는 합성수지에 금속분말 등이 함유되어 형성되며, 자성체와 인력을 유지할 수 있는 것을 말하는 것이다.
상기와 같은 제2디스크유니트(20)는 중심에 동력축(A) 또는 부하축(B) 중 하나가 체결될 수 있는 축결합홀(211)이 형성되고, 상기 체결홀(211)을 중심으로 복수개의 방열홀(212)이 더 형성되는 원판형상의 제2디스크(21)로 구성된다.
이때, 상기 방열홀(212)은 축결합홀(211)을 중심으로 방사형으로 배치되어 형성된다.
또한, 상기 제2디스크(21)의 일측면에는 제1디스크유니트(10)에서 발생되는 와전류에 대응하거나 자성체(13)로부터 발생되는 자력과의 인력을 증가시킬 수 있도록 하는 자력강화판(22)이 구비되고, 상기 자력강화판(22)과 제2디스크(21)의 사이에는 이종금속부식 등에 의해 부식이 발생하는 것을 방지하기 위한 부식방지판(23)이 더 구비된다.
여기서, 상기 부식방지판(23)은 이종금속간의 부식을 방지하고, 열을 흡수하기 위한 세라믹 페이퍼와 같은 흡열재로 형성되는 것이 바람직하나, 이를 한정하는 것은 아니며, 이종금속간 와전류에 의해 발생되는 부식을 방지할 수 있는 것이면 무엇이든 가능하다.
상기와 같은 자력강화판(22)은 와전류에 의해 발생되는 열기를 방출하고, 와전류를 발생할 수 있도록 하는 방열홀(221)이 더 형성된다.
이때, 상기 방열홀(221)은 도 3에 도시된 바와 같이, 점 형태, 곡선 형태, 폭이 좁은 부채꼴 형태, 변형된 왕 자 등 다양한 형태의 홀이 방사상 형태로 배열될 수 있다.
이와 같이, 와전류에 의해 발발한 열을 외부로 방출함으로써 자기열과 저항열에 의해 자성체(13) 자력 감소을 방지할 수 있고 동력 측에서 발생한 회전동력이 부하축으로 원활하게 전달되도록 할 수 있다.
도 6은 본 발명의 일실시예에 따른 비접촉 무부하 동력전달장치의 전/후, 상/하 간격 조절과정을 설명하는 도면이고, 도 7은 도 6에 의한 제1 디스크와 제2 디스크의 상/하, 좌/우 간격조절 과정을 설명하는 도면이고, 도 8은 본 발명의 일 실시예에 따른 제1 디스크의 제1 축과 제2 디스크의 제2 축이 수평에서 벗어난 상태를 설명하는 도면이며, 도 9는 본 발명의 일 실시예에 따른 복수개의 부하축을 적용한 동력전달구조를 설명하기 위한 예시도이다.
또한, 도 10은 본 발명의 일실시예에 따른 복수개의 부하축을 적용한 동력전달구조의 동력전달방법을 설명하기 위한 예시도이다.
도 6 내지 도 10을 참조하여 상세하게 설명하면, 본 발명에 따른 비접촉 무부하 동력전달장치는 제1디스크유니트(10)와 제2디스크유니트(20) 간에 종방향, 횡방향 및 상하좌우 등 다양한 방향 등으로 디스크 간의 거리와 배치 방향을 포함한 간격 조절을 통해 무부하 상태로 회전 속도와 부하량 조절을 수행할 수 있다. 이를 위해 무부하 마그네틱 커플링은 제어 수단(미도시)을 통해 관리자가 제1디스크유니트(10)와 제2디스크유니트(20) 간의 간격을 수동 또는 자동으로 설정하도록 할 수 있다.
보다 상세하게 설명하면, 부하축(B)에 연결되는 제2디스크유니트(20)의 위치를 이격시키거나, 근접하도록 하여, 비접촉 무부하 동력전달장치에 가해지는 부하력을 조절할 수 있도록 하는 것이다.
예를 들어, 제1디스크유니트(10)와 제2디스크유니트(20)의 근접면의 이격거리를 조정하여 자성체 자력을 감쇠시키거나 증가시켜 동력축(A)의 구동력을 조절하거나, 부하축(B)의 부하량을 조절할 수 있도록 하는 것이다.
도 6 및 도 7에 도시된 바와 같이, 동력축(A) 또는 부하축(B)에 대하여 제1 축(A)과 제2 축(2)으로 가정하고, 두개의 축이 동일한 수평 축 선상에 있을 경우에 제1디스크유니트(10)와 제2디스크유니트(20) 간의 간격을 좁히거나 넓힐 수 있고, 제1 축(A)과 제2축(B)이 동일한 수평축 선 상에 있지 않고 상부 또는 하부로 어긋난 경우에도 제1디스크유니트(10)와 제2디스크유니트(20) 간의 간격을 좁히거나 넓힐 수 있다.
한편, 도 8에 도시된 바와 같이, 제1축(A)과 제2축(B)이 완전히 수평 축 선상에서 벗어난 경우에도 얼라이먼트 및 밸런스 등이 어느방향이던 비틀림각의 한계를 극복할 수 있도록 한다. 이는 기존의 마그네틱 커플링의 경우 일측에 자성체를 구비하고, 이에 대응되는 타측에도 또다른 자성체를 구비하여, 복수개의 자성체가 회전과 함께 극성이 변경될 경우, 인력과 척력이 번갈아가며 발생하게 되어, 두개의 축이 동일한 축상에서 이탈될 경우 두면이 인력에 의해 결합되거나 척력에 의해 이탈되어 동작이 불가능한 점을 극복할 수 있다.
이를 위해, 본 발명에서는 커플링 중 일측에는 자성체를 구비하고, 이에 대응하는 타측에는 자성체와의 인력을 유지할 수 있도록 하는 비자성체가 구비되어 두 축간에 동일선상에 위치하지 않거나, 두축간에 소정의 이격각도가 발생되어도 자력 및 자력의 회전에 의해 발생되는 와전류에 의해 회동이 가능하도록 하는 것이다.
이는 기존의 마그네틱 커플링의 경우, 운전 중 급정지 또는 정회전 중 역회전을 제어할 때, 마주보는 자성체의 극성이 바뀌며 인력과 척력이 동시에 발생되어 불가능하지만, 본 발명의 비접촉 무부하 동력전달장치는 비접촉 무부하 상태에서 단지 인력만이 발생되어 극성변화와 상관없이 구동이 가능하며, 자성체의 회전에 따라 변하는 극성변화 즉, 회전자계에 의해 와전류가 발생되고, 회전자계에 의해 비자성체가 회전함으로써 운전 중 급정지 또는 정회전 중 역회전시 물리적 충격 및 기계적 파손없이 가능하도록 하는 것이다.
또한, 비접촉식으로 두개의 디스크유니트사이의 이격공간으로 인한 쿠션 현상을 주어 동력축 및 부하축에 물리적 충격과 기계적 파손 없이 운전 중 부드러운 역회전이 가능하도록 할 수 있는 것이다.
이와 같이, 비접촉 무부하 동력전달장치는 부하축 즉, 종동축에 배치된 디스크유니트와 동력측에 배치된 디스크유니트 사이에 형성된 자력 및 자력의 회전 즉, 회전자계에 의해 발생되는 와전류로 동력을 전달하는데, 자석 대 비자석 구조로 인해 완전한 비접촉 무부하 상태로 동력을 전달할 수 있어 기존의 마그네틱 커플링(도 11 참조)에 비해 기계적 소손, 소음, 진동, 분진으로부터 자유로우며 에너지 효율을 증대 시킨다.
또한, 동력축과 부하축의 이격거리를 조절함으로써, 부하축의 회전수 및 부하량을 조절하게 됨으로써, 기존 모터 및 엔진을 이용한 구동체계에서 동일한 토크를 갖는 모터나 엔진의 회전수에 변화를 주기 위해서는 최대 회전수 별로 모터나 엔진을 교체해야 하는 불편함이 있었는데 이와 같은 불편함을 용이하게 극복할 수 있는 것이다.
보다 상세하게 설명하면, 기존에는 동일한 토크를 갖는 모터라고 하더라도, 내장되는 자성체의 극수에 따라 2극, 4극, 6극 등 다양한 극수의 모터가 이용되는데, 예를 들어 동일한 주파수인 60Hz에서 4극을 적용하는 모터의 경우 최대 회전수가 1800rpm을 유지하는데 비해, 6극을 이용하는 모터의 경우 최대 회전수가 1200rpm을 유지하게 된다.
이로 인해, 부하축의 회전수를 제어하기 위해서는 동력축의 모터를 교체해야 하는 불편함이 있었고, 동일한 모터를 적용한다 하더라도 별도의 감속기와 같은 변속기가 더 필요한 문제점이 있었다.
또한, 본 발명은 제1디스크유니트(10)와 제2디스크유니트(20) 간의 다양한 간격 조절을 통해 무부하 상태로 회전 속도와 부하량 조절을 동시에 할 수 있고, 에너지 효율을 극대화시킬 수 있다.
또한, 기존의 마그네틱 커플링의 문제점인 자력형성 과정에서 발생하는 자기열과 저항열로 인해 자력이 감소될 뿐만 아니라 구성품의 부식이 촉진될 수 있는 것을, 부식방지판(23)을 더 구비하여, 부식을 방지함으로써 제품의 내구성을 향상시키고 기계적 기대수명을 더 연장할 수 있는 것이다.
이와 같이, 본 발명의 비접촉 무부하 동력전달장치는 고가의 인버터 및 유체 커플링 등에 비해 보다 적은 설치 비용 및 유지보수 비용으로 더 나은 기계적 효율과 에너지 효율을 갖으며, 동력측의 제1축(A)과 부하측의 제2축(B)이 완전 수평에서 벗어나도 운전이 가능한 얼라이먼트 및 밸런스 등 비틀림각의 한계를 극복할 수 있다.
또한, 도 9에서와 같이 동력축(A)을 이동가능하도록 하여, 일개의 동력축(A)에 복수개의 부하측(B)을 배치하여 구동시킬 수도 있다.
보다 상세하게 설명하면, 일개의 동력축(A)을 이동가능하도록 배치하고, 복수개의 부하축(B)을 마주보도록 배치한 후, 구동이 필요한 부하측(B)에 인접하게 이동시켜 해당 부하축(B)을 구동시키거나, 복수개의 부하축(B)에 인접하게 배치하여(도 10 참조) 자력 및 와전류에 의해 해당 부하축(B)을 구동시키게 된다.
이때, 상기 동력축(A)은 전후좌우 및 상하 또는 동력축에서 부하측의 구동을 제어할 수 있는 공간상에 이동가능한 모든 방향으로 이동가능하도록 하여 동력축(A)에 대응하게 마주보며 배치되는 부하축(B)의 구동을 제어할 수 있는 것이다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
10 : 제1디스크유니트
11 : 제1디스크
12 : 자력형성판
13 : 자성체
14 : 자력형성체결부재
20 : 제2디스크유니트
21 : 제2디스크
22 : 자력강화판
23 : 부식방지판

Claims (12)

  1. 동력축과 부하축으로 구성되는 동력전달장치에 있어서,
    동력축 또는 부하축 중 어느 하나에 결합되고 일측면에 자성체가 구비되는 제1디스크유니트(10);와
    상기 제1디스크유니트(10)에 대응하는 동력축 또는 부하축에 결합되고 상기 자성체와 인력이 작용하는 비자성체로 형성되는 제2디스크유니트(20)로 구성되어 비접촉 무부하 방식으로 동작하는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  2. 제 1항에 있어서,
    상기 제1디스크유니트(10)와 제2디스크유니트(20)의 위치를 이격시키거나 근접하도록 하여 커플링에 가해지는 회전수 및 부하량을 제어할 수 있도록 하는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  3. 제 1항에 있어서,
    상기 제1디스크유니트(10)는 제1디스크(11)와 상기 제1디스크(11)의 일측면에 방사형으로 배치되어 결합되는 자성체(13)와 상기 자성체(13)의 일측면에 접하며, 자성체(13)로부터 발생되는 자력을 외부로 배출되도록 하는 자력형성판(12) 및 자성체(13)를 제1디스크(11)에 체결하여 결속하며, 자력을 외부로 배출되도록 하는 자력형성체결부재(14)로 구성되는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  4. 제 3항에 있어서,
    상기 자성체(13)는 다수 개가 N극과 S극이 교변적으로 배열되는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  5. 제 3항에 있어서,
    상기 제1디스크(11)에는 자성체가(13)가 회전하며 극성변화에 따라 발생되는 와전류에 의해 발열되는 열기를 방출하기 위한 방열홀(112)이 더 형성되는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  6. 제 3항에 있어서,
    상기 자력형성체결부재(14)와 상기 자력형성체결부재(14)의 일측면이 접촉되는 자력형성판(12)이 자성체(13)를 내삽하는 함체구조로 형성되도록 하고, 자력형성체결부재(14)의 일부분이 외부로 향하도록 하여, 자성체(13)로부터 발생되는 자력이 제2디스크유니트(20) 방향으로 집중될 수 있도록 하는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  7. 제 1항에 있어서,
    상기 제2디스크유니트(20)는 제2디스크(21)와 상기 제2디스크(21)의 일측면에 결합되는 자력강화판(22)으로 구성되는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  8. 제 7항에 있어서,
    상기 제2디스크(21)와 자력강화판(22)의 사이에는 이종금속부식 등에 의해 제2디스크(21)와 자력강화판(22)에 부식이 발생되는 것을 방지하기 위한 부식방지판(23)이 더 구비되는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  9. 제 7항에 있어서,
    상기 자력강화판(22)은 와전류에 의해 발생되는 열기를 방출하고, 와전류가 발생할 수 있도록 하는 방열홀(221)이 더 형성되며, 상기 방열홀(221)은 점 형태, 곡선형태, 폭이 좁은 부채꼴 형태, 변형된 왕 자 형태 등 다양한 형태로 형성되는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  10. 제 1항 내지 제9항 중 어느 한 항에 있어서,
    상기 제1디스크유니트(10)와 제2디스크유니트(20)는 자력 및 회전자계에 의해 발생되는 와전류에 의해, 제1디스크유니트(10)와 제2디스크유니트(20)에 결합하는 동력축 또는 부하축의 중심이 동일한 수평 축 선상에 있거나, 상부 또는 하부 등 어느 방향으로든 어긋난 경우, 동력축 또는 부하축의 중심이 비틀림각을 유지할 경우에도 구동될 수 있는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  11. 제 1항에 있어서,
    상기 제1디스크유니트(10)와 제2디스크유니트(20)의 사이에 발생되는 자력 및 회전자계에 의해 발생되는 와전류에 의해, 1개의 동력축에 복수개의 부하축이 대응하여 구동할 수 있는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
  12. 제 1항에 있어서,
    상기 자성체와 비자성체간의 인력만이 발생되어 극성변화와 상관없이 구동이 가능하며, 자성체의 회전에 따라 변하는 극성변화 즉, 회전자계에 의해 와전류가 발생되고, 회전자계에 의해 비자성체가 회전함으로써 운전 중 급정지 또는 정회전 중 역회전시 물리적 충격 및 기계적 파손없이 가능하도록 하며, 비접촉식으로 두개의 디스크유니트사이의 이격공간으로 인한 쿠션 현상을 주어 동력축 및 부하축에 물리적 충격과 기계적 파손 없이 운전 중 부드러운 역회전이 가능하도록 할 수 있는 것을 특징으로 하는 비접촉 무부하 동력전달장치.
PCT/KR2020/009947 2020-07-27 2020-07-28 비접촉 무부하 동력전달장치 WO2022025307A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/927,868 US20230243390A1 (en) 2020-07-27 2020-07-28 Non-contact no-load power transmission device
JP2022575763A JP2023536782A (ja) 2020-07-27 2020-07-28 非接触無負荷動力伝達装置
CN202080101340.7A CN115698533A (zh) 2020-07-27 2020-07-28 非接触无负荷动力传递装置
EP20946983.2A EP4191087A4 (en) 2020-07-27 2020-07-28 ZERO-LOAD, CONTACTLESS POWER TRANSMISSION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200092754A KR102229129B1 (ko) 2020-07-27 2020-07-27 비접촉 무부하 동력전달장치
KR10-2020-0092754 2020-07-27

Publications (1)

Publication Number Publication Date
WO2022025307A1 true WO2022025307A1 (ko) 2022-02-03

Family

ID=75232098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009947 WO2022025307A1 (ko) 2020-07-27 2020-07-28 비접촉 무부하 동력전달장치

Country Status (6)

Country Link
US (1) US20230243390A1 (ko)
EP (1) EP4191087A4 (ko)
JP (1) JP2023536782A (ko)
KR (1) KR102229129B1 (ko)
CN (1) CN115698533A (ko)
WO (1) WO2022025307A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282813B1 (ko) * 2010-10-21 2013-07-05 (주)가온솔루션 무부하 마그네틱 커플링
KR20130006110U (ko) * 2012-12-21 2013-10-22 두리마이텍 주식회사 디스크 커플링
KR20150017885A (ko) 2013-08-08 2015-02-23 주식회사 해피모터스 자력을 이용한 비접촉 동력전달구조
JP2015081647A (ja) * 2013-10-23 2015-04-27 株式会社 エマージー 非接触式動力伝達装置
KR101783687B1 (ko) * 2016-01-15 2017-10-10 주식회사 피에스텍 자기결합을 이용한 가변속 동력전달장치
KR20190141306A (ko) * 2018-06-14 2019-12-24 (주)창운엠앤씨 디스크형 마그네틱 커플링

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB293277A (en) * 1928-02-01 1928-07-05 Paolo Forster Improvements in electro magnetic friction clutches
FR1465308A (fr) * 1966-01-25 1967-01-06 Bendix Corp Embrayage électromagnétique
US3444970A (en) * 1967-05-05 1969-05-20 Warner Electric Brake & Clutch Magnetic friction coupling with partly laminated flux circuit
DE2517718A1 (de) * 1975-04-22 1976-11-04 Lenze Kg Maschf Hans Vorrichtung zur montage und befestigung des ringfoermigen reibbelages im magnetkoerper einer elektromagnet- kupplung oder -bremse
US4951797A (en) * 1988-10-25 1990-08-28 Dana Corporation Electromagnetic coupling disc
JP2603255Y2 (ja) * 1991-07-11 2000-03-06 神鋼電機株式会社 渦電流カップリング装置
JP2001221257A (ja) * 2000-02-03 2001-08-17 Toyo Clutch Kk 自動車空調用圧縮機の電磁クラッチ
US6634476B2 (en) * 2000-10-20 2003-10-21 Usui Kokusai Sangyo Kaisha, Limited Magnet type fan clutch apparatus
JP2002174263A (ja) * 2000-12-07 2002-06-21 Honda Motor Co Ltd 電磁クラッチの配線構造
DE10324487B4 (de) * 2003-05-30 2009-04-09 Kendrion Binder Magnete Gmbh Elektromagnetisch öffnende Polreibungskupplung oder Polreibungsbremse
JP4980122B2 (ja) * 2007-04-16 2012-07-18 新日本製鐵株式会社 被駆動装置の回転速度の制御方法
DE102009016716A1 (de) * 2009-04-09 2010-10-21 Gkn Sinter Metals Holding Gmbh Magnetkupplung
KR101299704B1 (ko) * 2009-07-22 2013-08-28 세메스 주식회사 기판 처리 장치
JP5231498B2 (ja) * 2009-10-19 2013-07-10 株式会社キトー トルク伝達装置
JP5418170B2 (ja) * 2009-11-20 2014-02-19 アイシン精機株式会社 電磁クラッチ
KR102095825B1 (ko) * 2013-08-16 2020-04-01 주식회사 케이피일렉트릭 변압기용 권선 코일 및 단자
JP2017227268A (ja) * 2016-06-22 2017-12-28 株式会社デンソー 電磁クラッチ、および電磁クラッチの製造方法
JP2019039447A (ja) * 2017-08-22 2019-03-14 トヨタ自動車株式会社 電磁ブレーキ
KR101827223B1 (ko) * 2017-10-13 2018-03-22 이창우 마그네틱 커플링
JP6931783B2 (ja) * 2018-03-29 2021-09-08 株式会社豊田自動織機 遠心圧縮機及びメカニカルシール
KR101979367B1 (ko) * 2019-01-29 2019-05-15 (주)한텍솔루션 에어 갭의 조절이 가능한 마그네틱 커플링

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282813B1 (ko) * 2010-10-21 2013-07-05 (주)가온솔루션 무부하 마그네틱 커플링
KR20130006110U (ko) * 2012-12-21 2013-10-22 두리마이텍 주식회사 디스크 커플링
KR20150017885A (ko) 2013-08-08 2015-02-23 주식회사 해피모터스 자력을 이용한 비접촉 동력전달구조
JP2015081647A (ja) * 2013-10-23 2015-04-27 株式会社 エマージー 非接触式動力伝達装置
KR101783687B1 (ko) * 2016-01-15 2017-10-10 주식회사 피에스텍 자기결합을 이용한 가변속 동력전달장치
KR20190141306A (ko) * 2018-06-14 2019-12-24 (주)창운엠앤씨 디스크형 마그네틱 커플링

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191087A4

Also Published As

Publication number Publication date
EP4191087A4 (en) 2024-01-17
US20230243390A1 (en) 2023-08-03
KR102229129B1 (ko) 2021-03-18
JP2023536782A (ja) 2023-08-30
EP4191087A1 (en) 2023-06-07
CN115698533A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US4808869A (en) Integral magnetic torque limiting coupling/motor
US5477093A (en) Permanent magnet coupling and transmission
EP1893884B1 (en) Rotational electromagnetic coupling device
WO2011102608A2 (ko) 차량 압축기용 더블 클러치
KR101289750B1 (ko) 압축기용 전자클러치
WO2022025307A1 (ko) 비접촉 무부하 동력전달장치
WO2022139323A1 (ko) 다중 출력구조를 갖는 가변속 동력전달 클러치 시스템
EP3303881A1 (en) Torque converter for vehicle including vibration reduction apparatus using pendulum
JP2000184692A (ja) 回転力発生装置
CN206922631U (zh) 磁力齿轮盘、磁力齿轮组件及泵送系统
CN212297336U (zh) 一种双输入轴电磁并列型双离合器
CN210490708U (zh) 电磁离合器
AU2011255229B2 (en) Improved apparatus for transferring torque magnetically
CN112134437A (zh) 一种永磁涡流联轴器
KR102276581B1 (ko) 비접촉 동력전달구조를 갖는 가변시스템 펌프
UA146124U (uk) Магнітна муфта
WO2018062651A1 (ko) 자력에 의한 전동기 회전력 증강장치
WO2017099399A1 (ko) 고속 전동기
CN212231321U (zh) 一种永磁涡流联轴器
CN111853085A (zh) 一种双输入轴电磁并列型双离合器
SU1434167A1 (ru) Предохранительна фрикционна муфта
WO2017057890A1 (ko) 스플릿 터보차저
WO2017030401A1 (ko) 스플릿 슈퍼차저
JPH04131526A (ja) 回転機械用クラッチ
TW200704882A (en) Magnet-driven multi-axis fan and power transmission system thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575763

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217071153

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2020946983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020946983

Country of ref document: EP

Effective date: 20230227