WO2022025233A1 - Pump, and fluid control device - Google Patents

Pump, and fluid control device Download PDF

Info

Publication number
WO2022025233A1
WO2022025233A1 PCT/JP2021/028284 JP2021028284W WO2022025233A1 WO 2022025233 A1 WO2022025233 A1 WO 2022025233A1 JP 2021028284 W JP2021028284 W JP 2021028284W WO 2022025233 A1 WO2022025233 A1 WO 2022025233A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator element
main surface
pump
control device
housing
Prior art date
Application number
PCT/JP2021/028284
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 ▲桑▼島
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2022025233A1 publication Critical patent/WO2022025233A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the present disclosure relates to pumps and fluid control devices.
  • the present application claims priority based on Japanese Patent Application No. 2020-130734 filed in Japan on July 31, 2020, the contents of which are incorporated herein by reference.
  • a pump for transporting a fluid such as gas or liquid
  • a pump having a housing having a fluid inlet and a fluid discharge port and an actuator element arranged inside the housing is known.
  • a fluid control device that combines this small pump and a container capable of temporarily storing the fluid sent from the small pump is known.
  • This fluid control device is used, for example, as a sphygmomanometer (Patent Document 1).
  • the fluid introduced into the housing from the fluid inlet due to the vibration (bending motion) of the actuator element flows along the surface of the actuator element and is discharged to the outside from the fluid discharge port.
  • the actuator element used in the above-mentioned small pump those having a resonance frequency of the human audible band or higher (20 kHz or higher) are widely used in consideration of the generation of sound during use.
  • the small pump using the actuator element be further miniaturized. Therefore, further miniaturization of the actuator element and the housing of the pump is being studied. However, according to the study of the inventor of the present disclosure, it has been found that when the actuator element or the housing is made smaller, the displacement of the actuator element becomes smaller and the characteristics such as the suction capacity of the pump may be deteriorated.
  • an object of the present invention is to provide a pump and a fluid control device having a configuration in which the suction capacity does not easily decrease even if the size is reduced.
  • the pump comprises an actuator element having a first and second main surfaces facing each other, and at least one of the first and second main surfaces of the actuator element.
  • the actuator element vibrates in a direction perpendicular to the first main surface and the second main surface, and the internal space comprises the first main surface and the second main surface.
  • FIG. 1 is a perspective view of the fluid control device according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II of FIG.
  • FIG. 3 is a sectional view taken along line III-III of FIG.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a schematic cross-sectional view illustrating an operating state of the actuator element shown in FIG.
  • FIG. 7A is a graph showing the frequency response characteristics of the generated air pressure of the pump when the size of the expansion portion is changed in the fluid control device of the first embodiment
  • FIG. 7B is a graph showing FIG. 7A. It is a graph which expanded the range of the frequency in 22kHz to 26kHz.
  • FIG. 8 is a diagram showing a manufacturing process of the fluid control device according to the first embodiment.
  • FIG. 9 is a diagram showing a manufacturing process of the fluid control device according to the first embodiment.
  • FIG. 10 is a cross-sectional view showing a first modification of the fluid control device according to the first embodiment.
  • FIG. 11 is a sectional view taken along line XI-XI of FIG.
  • FIG. 12 is a cross-sectional view showing a second modification of the fluid control device according to the first embodiment.
  • FIG. 13 is a cross-sectional view showing a third modification of the fluid control device according to the first embodiment.
  • FIG. 14 is a sectional view taken along line XIV-XIV of FIG. FIG.
  • FIG. 15 is a cross-sectional view showing a fourth modification of the fluid control device according to the first embodiment.
  • FIG. 16 is a cross-sectional view showing a fifth modification of the fluid control device according to the first embodiment.
  • FIG. 17 is a sectional view taken along line XVII-XVII of FIG.
  • FIG. 18 is a diagram showing a manufacturing process of the fluid control device according to the fifth modification.
  • FIG. 19 is a diagram showing a manufacturing process of the fluid control device according to the fifth modification.
  • FIG. 20 is a diagram showing a manufacturing process of the fluid control device according to the fifth modification.
  • FIG. 21 is a perspective view of the pump according to the second embodiment.
  • FIG. 22 is a cross-sectional view taken along the line XXII-XXII of FIG. FIG.
  • FIG. 23 is a perspective view of a support member of the actuator element used in the pump according to the second embodiment.
  • FIG. 24 is a cross-sectional view showing a first modification of the pump according to the second embodiment.
  • FIG. 25 is a cross-sectional view showing a second modification of the pump according to the second embodiment.
  • FIG. 26 is a cross-sectional view showing a third modification of the pump according to the second embodiment.
  • FIG. 27 is a cross-sectional view of the fluid control device according to the third embodiment. 28 (A) is a sectional view taken along line AA of FIG. 27, (B) is a sectional view taken along line BB of FIG. 27, and (C) is a sectional view taken along line CC of FIG. 27. be.
  • FIG. 1 is a perspective view of the fluid control device according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II of FIG. 3 is a sectional view taken along line III-III of FIG. 2
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 2
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a schematic cross-sectional view illustrating an operating state of the actuator element shown in FIG.
  • the fluid control device 101a includes a pump 11a and a container 70 for temporarily storing the fluid sent from the pump 11a.
  • the pump 11a includes a housing 20, an actuator element 30, a flow path plate 40 (first plate), and a support member 50 that supports the actuator element 30.
  • the housing 20 has a first opening portion 21 and a second opening portion 22.
  • the first opening portion 21 is connected to the outside, and the second opening portion 22 is connected to the container 70.
  • the first opening portion 21 serves as a fluid introduction port
  • the second opening portion 22 serves as a fluid discharge port.
  • the first opening portion 21 serves as a fluid discharge port
  • the second opening portion 22 serves as a fluid introduction port.
  • the housing 20 has a first member 23 which is a bottomed square cylinder having a second opening portion 22, a second member 24 which is a square cylinder, and a bottomed square cylinder having a first opening portion 21.
  • the third member 25 is a state body.
  • the third member 25 is arranged in an annular shape around the first opening portion 21 and has a protrusion 26 protruding inward.
  • the protrusion 26 is integrally formed with the third member 25 as a configuration included in the third member 25, but the protrusion 26 is formed of a member different from the third member 25. It doesn't matter if it is done.
  • a flow path plate 40 is arranged between the first member 23 and the second member 24 of the housing 20. As a result, the flow path plate 40 is fixed to the housing 20. Further, a support member 50 is arranged between the second member 24 and the third member 25. That is, the support member 50 is sandwiched between the second member 24 and the third member 25. As a result, the support member 50 is fixed to the housing 20.
  • the method of fixing the flow path plate 40 and the support member 50 to the housing 20 is not limited to this.
  • the flow path plate 40 may be fixed to the inner wall of the housing 20 with an adhesive.
  • the housing 20 has a square outer cross section and an inner cross section, respectively.
  • the shape of the housing 20 is not limited to this.
  • the housing 20 may have, for example, a square outer cross section and a circular inner cross section, a circular outer cross section and a circular inner cross section, or a circular outer cross section and a square inner cross section. May be.
  • an insulating material such as resin or ceramics can be used.
  • the actuator element 30 has a first main surface 32a and a second main surface 32b facing each other.
  • the actuator element 30 preferably vibrates (bends) at a predetermined frequency in a direction perpendicular to the first main surface 32a and the second main surface 32b.
  • the actuator element 30 preferably has a resonance frequency (natural frequency).
  • the resonance frequency (natural frequency) of the actuator element 30 is preferably 20 kHz or higher, for example.
  • the actuator element 30 has a through hole 31.
  • the through hole 31 communicates with the first opening portion 21 of the housing 20.
  • the actuator element 30 has a disk shape, and the through hole 31 is arranged in the center of the disk-shaped actuator element 30.
  • the shape of the actuator element 30 is not limited to this.
  • the actuator element 30 may have a square plate shape, for example.
  • the shape of the actuator element 30 is preferably a disk shape from the viewpoint of suppressing the appearance of unnecessary resonance frequencies.
  • the actuator element 30 may be configured to include an elastic substrate (board) 35 and a vibration element 36 arranged on the surface (lower surface) of the elastic substrate 35.
  • the elastic substrate 35 is preferably made of a material that can be flexed by the vibration of the vibrating element 36 and does not easily attenuate the vibration energy of the vibrating element 36. Examples of the material of the elastic substrate 35 include silicon and iron. Phosphor bronze, resin, etc. can be used. As an example of the resin, a polyimide resin can be mentioned.
  • the vibrating element 36 includes a plate-shaped piezoelectric body 37, a first electrode 38a arranged on the surface of the plate-shaped piezoelectric body 37 on the elastic substrate 35 side, and a second electrode 38a arranged on the surface opposite to the elastic substrate 35 side. It is a piezoelectric vibrator including an electrode 38b.
  • a piezoelectric vibrator for example, as the material of the plate-shaped piezoelectric body 37, a PZT-based piezoelectric vibrator using lead zirconate titanate-based ceramics can be used.
  • As the material of the first electrode 38a and the second electrode 38b for example, platinum can be used.
  • the piezoelectric vibrator may be a bulk type or a thin film type.
  • Two or more vibrating elements 36 may be laminated on the surface of the elastic substrate 35.
  • the vibrating element 36 may be arranged on both upper and lower surfaces of the elastic substrate 35.
  • an electrostraining oscillator may be used instead of the piezoelectric oscillator.
  • the actuator element 30 does not have to include the elastic substrate 35, and may be, for example, a piezoelectric vibrator laminated body in which two piezoelectric vibrators having their polarization directions opposite to each other are laminated.
  • the first main surface 32a (the surface on the vibration element 36 side) is connected to the protrusion 26 of the housing 20 via the support member 50, and the through hole 31 is the first opening portion 21 of the housing 20. It is arranged so that it can vibrate at a position where it communicates with.
  • the actuator element 30 and the support member 50 are connected around the through hole 31 of the actuator element 30, and a gap 39 between the actuator element 30 and the support member 50 is formed at the peripheral edge of the actuator element 30.
  • the actuator element 30 and the protrusion 26 are connected at a position where the node (node) portion N generated when the actuator element 30 vibrates is slightly outside the protrusion 26 (FIG. 6).
  • the protrusion 26 and the actuator element 30 are connected at a position closer to the center of the actuator element 30 than the node portion N generated when the actuator element 30 vibrates.
  • the support member 50 is omitted.
  • the surface of the actuator element 30 on the side of the first opening 21 of the housing 20 may be referred to as a first main surface 32a, and the surface on the opposite side thereof may be referred to as a second main surface 32b.
  • the first main surface 32a of the actuator element 30 is the surface on the vibration element 36 side
  • the second main surface 32b is the surface on the elastic substrate 35 side, but the present invention is limited to this. It's not a thing.
  • the surface on the elastic substrate 35 side may be the first main surface 32a
  • the surface on the vibrating element 36 side may be the second main surface 32b.
  • the flow path plate 40 is arranged at a position facing the second main surface 32b of the actuator element 30 via the internal space 1.
  • the internal space 1 is a space facing the second main surface 32b of the actuator element 30, and extends from the center to the outside along the second main surface 32b of the actuator element 30, and the first opening portion 21 And through the through hole 31, it becomes a flow path of the fluid introduced into the inside of the housing 20. That is, the internal space 1 is a flow path through which the fluid flows due to the vibration of the actuator element 30.
  • the flow path plate 40 has a recess 42 (recess) on the surface 41 on the actuator element 30 side.
  • the recessed portion 42 is formed in an annular shape (doughnut shape) centered on the through hole 31 of the actuator element 30.
  • the internal space 1 is located in a region inside the outer peripheral end portion of the actuator element 30 in a direction perpendicular to the second main surface 32b of the actuator element 30 and at the outer peripheral end portion of the actuator element 30.
  • the expansion portion 2 whose cross-sectional area is expanded in the direction along the above is formed.
  • the fluid introduced inside the housing 20 flows in a direction across the expansion portion 2. That is, the expansion portion 2 sets the opening height h2 of the expansion portion (distance between the second main surface 32b of the actuator element 30 and the recessed portion 42 of the flow path plate 40) to the opening height h1 of the internal space 1 (actuator element).
  • the recessed portion 42 may be a curved surface having an arcuate cross section. In this case, the flow of the fluid to the expansion portion 2 becomes smoother. It is preferable that the inner radius of the recessed portion 42 is larger than the radius of the through hole 31 and the outer radius of the recessed portion 42 is equal to or less than the radius of the protrusion 26. In the present embodiment, the outer radius of the recess 42 coincides with the radius of the protrusion 26. That is, the outer edge of the recess 42 faces the protrusion 26.
  • the flow path plate 40 has a through hole 43 in an outer region that does not face the actuator element 30.
  • the through hole 43 is a flow path through which the fluid flows.
  • a plurality of through holes 43 may be arranged concentrically with the actuator element 30 at equal intervals.
  • a resin, a metal, a metalloid, or the like can be used as the material of the flow path plate 40.
  • the support member 50 supports the actuator element in a vibrable manner.
  • the support member 50 includes a first wiring 51a and a second wiring 51b.
  • the first wiring 51a and the second wiring 51b extend in opposite directions to each other.
  • the length of the support member 50 in the width direction is the same as the length of the housing 20, and the second actuator element 30 has a second length.
  • the entire main surface 32b is fixed to the support member 50.
  • the support member 50 may be formed of a flexible resin sheet so as not to interfere with the vibration (bending motion) of the actuator element 30. Further, the flexible resin sheet may have an insulating property.
  • the flexible resin sheet having an insulating property for example, a polyimide sheet can be used.
  • the first wiring 51a connects the first electrode 38a of the vibrating element 36 and the power supply (not shown) via the first through hole 52a penetrating the support member 50, the second electrode 38b, and the plate-shaped piezoelectric body 37. ..
  • the periphery of the first through hole 52a of the second electrode 38b is cut so that the first wiring 51a and the second electrode 38b do not come into contact with each other.
  • the second wiring 51b connects the second electrode 38b of the vibrating element 36 and the power supply (not shown) via the second through hole 52b penetrating the support member 50.
  • the pump 11a having the above configuration transports the fluid as follows.
  • a voltage having an operating frequency is applied to the first electrode 38a and the second electrode 38b of the vibrating element 36 via the first wiring 51a and the second wiring 51b.
  • the vibrating element 36 vibrates.
  • the actuator element 30 including the elastic substrate 35 vibrates (flexing motion).
  • the actuator element 30 vibrates, the fluid flows from the first opening portion 21 through the through hole 31 of the actuator element 30 and is introduced into the inside of the housing 20.
  • the fluid flows in the internal space 1 between the actuator element 30 and the flow path plate 40 along the second main surface 32b of the actuator element 30.
  • the fluid that has passed through the expansion portion 2 of the internal space 1 then flows through the through hole 43 of the flow path plate 40 and is supplied to the container 70 via the second opening portion 22.
  • This fluid flow causes the fluid that crosses the extension 2 of the interior space 1 to resonate with Helmholtz.
  • Helmholtz By matching the frequency of the Helmholtz resonance with the vibrating element 36 and the operating frequency, the suction capacity of the pump 11a is improved.
  • FIG. 7A is a graph showing the frequency response characteristic of the generated air pressure of the pump when the size of the expansion unit 2 is changed in the fluid control device 101a of the first embodiment.
  • the horizontal axis represents frequency (Frequency (kHz))
  • the vertical axis represents the air suction pressure (Air pressure (kPa)) of the pump.
  • the suction pressure is a value calculated by simulation.
  • the actuator element 30 has a disk shape (diameter: 6 mm).
  • the resonance frequency (natural frequency) of the actuator element 30 was set to 21 kHz.
  • the opening height h1 of the internal space 1 (distance between the second main surface 32b of the actuator element 30 and the flow path plate 40) is 58.5 ⁇ m, and the opening height h2 of the expansion portion 2 (second main surface of the actuator element 30).
  • the distance between 32b and the recessed portion 42 of the flow path plate 40) is 225 ⁇ m (166.5 ⁇ m), 200 ⁇ m (141.5 ⁇ m), 175 ⁇ m (116.5 ⁇ m), 150 ⁇ m (91.5 ⁇ m), 125 ⁇ m (66.5 ⁇ m). , 100 ⁇ m (41.5 ⁇ m) and 58.5 ⁇ m (0 ⁇ m).
  • the numerical value in parentheses is the difference (h2-h1) between the opening height h2 of the expansion portion 2 and the opening height h1 of the internal space 1.
  • the frequency of Helmholtz resonance fluctuates by changing the opening height h2 of the expansion portion 2 (that is, the cross-sectional area in the direction perpendicular to the direction in which the fluid flows). From this result, even when the size of the pump 11a is reduced, the operating frequency of the actuator element and the specifications (applied voltage) of the power supply can be changed by changing the size of the expansion unit 2 and using the Helmholtz resonance. It can be seen that the suction capacity of the pump 11a can be increased without this.
  • the operating frequency of the actuator element 30 is preferably set between the resonance frequency (natural frequency) of the actuator element 30 and the resonance frequency of Helmholtz resonance.
  • FIG. 7 (b) is a graph in which the frequency in FIG. 7 (a) is expanded in the range of 22 kHz to 26 kHz.
  • FIG. 7B for example, when the operating frequency of the actuator element 30 is set to the vicinity of 23 kHz, the air suction pressure of the pump changes by changing the size of the expansion unit 2.
  • FIGS. 8 to 9 are views showing a method of manufacturing the fluid control device 101a of the first embodiment.
  • a disk-shaped vibrating element 36 having a through hole 31 in the center is formed on the elastic substrate forming material 135.
  • the vibrating element 36 can be formed, for example, as follows. First, the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order on the elastic substrate forming material 135 to form a piezoelectric vibration film. The first electrode, the plate-shaped piezoelectric body, and the second electrode can be formed into a film by using, for example, a sputtering method. Next, the piezoelectric vibrating membrane is formed into a disk shape having a through hole in the center by using an etching process.
  • the positive resist film pattern 139 can be formed, for example, as follows. First, a positive resist is applied on the vibrating element 36 and the elastic substrate forming material 135 to form a positive resist film. Next, with the photomask placed near the peripheral edge of the vibrating element 36, the positive resist film is irradiated with ultraviolet rays to develop a positive resist film that covers the portion other than the peripheral edge of the vibrating element 36. It is easily soluble in liquid. Then, the positive resist film that has been altered to be easily soluble is dissolved with a developing solution.
  • a support member forming film 150 is formed on the vibrating element 36 and the positive resist film pattern 139.
  • a film forming method for the support member forming film 150 for example, a spin coating method can be used.
  • a wiring pattern is formed on the support member forming film 150.
  • the wiring pattern forms a first wiring 51a connected to the first electrode of the vibrating element 36 and a second wiring 51b connected to the second electrode of the vibrating element 36.
  • the first wiring 51a is connected to the first electrode of the vibrating element 36 via the first through hole 52a.
  • the second wiring 51b is connected to the second electrode of the vibrating element 36 via the second through hole 52b.
  • the support member forming film 150 is cut into the shape of the support member 50, and the positive resist film pattern 139 is removed.
  • the positive resist film pattern can be removed, for example, by irradiating the positive resist film pattern with ultraviolet rays to easily change the positive resist film pattern into a developing solution and then dissolving the positive resist film pattern in the developing solution. ..
  • a gap 39 is formed between the peripheral edge of the vibrating element 36 and the support member forming film 150.
  • the temporary substrate 162 is bonded to the surface of the support member 50 on the side opposite to the vibrating element 36 side via the adhesive 161 to obtain a bonded body 170.
  • the material of the temporary substrate is not particularly limited, and a glass substrate or a metal substrate can be used.
  • the joint body 170 is inverted so that the temporary substrate 162 is on the lower side, the elastic substrate forming material 135 is processed into the shape of the elastic substrate 35, and the support member 50 has a through hole. 31 is formed.
  • the adhesive 161 of the bonded body 170 and the temporary substrate 162 are removed.
  • the actuator element 30 with the support member 50 is obtained.
  • the obtained actuator element 30 with the support member 50 and the flow path plate 40 are fixed by the housing 20 to form the pump 11a.
  • the fluid control device 101a is obtained by joining the container 70 to the second opening portion 22 of the pump 11a.
  • the first main surface 32a is connected to the protrusion 26 of the housing 20 via the support member 50, and the through hole is formed.
  • 31 is arranged at a position facing the first opening portion 21 of the housing 20
  • the flow path plate 40 is arranged at a position facing the second main surface 32b of the actuator element 30 via the internal space 1.
  • the flow path plate 40 is provided with a recess 42 on the surface 41 on the actuator element 30 side, and the internal space 1 is in a direction perpendicular to the second main surface 32b of the actuator element 30, that is, a fluid flows.
  • the pump 11a having such a configuration can lower the Helmholtz resonance frequency in the audible band or higher (20 kHz or higher) even when the size of the housing 20 or the actuator element 30 of the pump 11a is reduced. Therefore, even when the size of the pump 11a is reduced, the suction capacity of the pump 11a can be increased by using the Helmholtz resonance without changing the operating frequency of the actuator element or the specifications of the power supply.
  • the recess forming the expansion portion 2 of the internal space 1 is formed by the recess portion 42 provided in the flow path plate 40.
  • the recess may be provided on the second main surface 32b of the actuator element 30, or may be provided on both the flow path plate 40 and the second main surface 32b of the actuator element 30.
  • a protrusion may be provided in a region other than the region forming the expansion portion 2, so that the region forming the expansion portion 2 may be relatively recessed.
  • the recess may be provided in a region corresponding to the expansion portion 2 from the outside of the through hole 31 of the actuator element 30 to the outer peripheral end portion of the actuator element 30, or the actuator element of the flow path plate 40 facing this range may be provided. It may be provided in the region of the surface 41 on the 30 side.
  • FIG. 10 is a cross-sectional view showing a first modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG.
  • FIG. 11 is a sectional view taken along line XI-XI of FIG.
  • the fluid control device 101b shown in FIGS. 10 and 11 differs from the fluid control device 101a in that a recess 33 is provided on the second main surface 32b (the surface of the elastic substrate 35) of the actuator element 30. According to the fluid control device 101b, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained.
  • FIG. 12 is a cross-sectional view showing a second modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG.
  • the fluid control device 101c shown in FIG. 12 differs from the fluid control device 101a in that a recess 42 is provided in the flow path plate 40 and a recess 33 is provided in the second main surface 32b of the actuator element 30. ..
  • the depth of the recessed portion provided in each of the flow path plate 40 and the actuator element 30 can be made shallow. Therefore, according to the fluid control device 101c, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained.
  • FIG. 13 is a cross-sectional view showing a third modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG.
  • FIG. 14 is a sectional view taken along line XIV-XIV of FIG.
  • the fluid control device 101d shown in FIGS. 13 and 14 is a fluid in that the first protrusion 34a and the second protrusion 34b are provided on the second main surface 32b (the surface of the elastic substrate 35) of the actuator element 30. It is different from the control device 101a.
  • the first protrusion 34a is provided around the through hole 31 of the actuator element 30.
  • the second protrusion 34b is provided around the outer peripheral end of the actuator element 30.
  • the region of the second main surface 32b where the first protrusion 34a and the second protrusion 34b are not provided is relatively a recess. Therefore, according to the fluid control device 101d, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained.
  • FIG. 15 is a cross-sectional view showing a fourth modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG.
  • the connection position between the protrusion 26 of the housing 20 and the actuator element 30 connected via the support member 50 is outside the node portion N when the actuator element 30 vibrates at a natural frequency. It is different from the fluid control device 101a in that the recessed portion 42 provided in the flow path plate 40 has a circular shape.
  • the vibration of the actuator element 30 is greater at the inner portion than at the position where it is connected to the protrusion 26 than at the outer portion.
  • the recessed portion 42 of the flow path plate 40 is concave, including the portion facing the through hole 31 of the actuator element 30. Therefore, according to the fluid control device 101e, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained.
  • the recessed portion 42 of the flow path plate 40 in the portion facing the through hole 31 of the actuator element 30 may be lower than the surface of the outer peripheral edge of the actuator element 30. It does not have to be flat with the rest of 42.
  • the recessed portion 42 of the flow path plate 40 has an annular shape (doughnut shape) centered on the portion facing the through hole 31 of the actuator element 30, and is slightly deeper in the center than the outer portion of the annular shape. It may have a shallow shape.
  • the actuator element 30 When the connection position between the protrusion 26 of the housing 20 connected via the support member 50 and the actuator element 30 is the position inside the node portion N when the actuator element 30 vibrates at a natural frequency, the actuator element The vibration of 30 can be substantially the same in the portion inside and the portion outside the position where the protrusion 26 is connected. Therefore, in this case, the recessed portion 42 of the flow path plate 40 is an annular shape (doughnut shape) centered on the portion of the actuator element 30 facing the through hole 31, and has a central height and an outer peripheral edge of the actuator element. It can have the same shape as the height.
  • connection position between the protrusion 26 of the housing 20 connected via the support member 50 and the actuator element 30 is the position outside the node portion N when the actuator element 30 vibrates at a natural frequency.
  • it may be the position of the node portion N.
  • FIG. 16 is a cross-sectional view showing a fifth modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG.
  • FIG. 17 is a sectional view taken along line XVII-XVII of FIG.
  • the flow path plate 40 has a flow path substrate 44 and a first convex portion 45a and a second convex portion arranged on the surface of the flow path substrate 44 on the actuator element 30 side. It differs from the fluid control device 101a in that it is composed of 45b.
  • the expansion portion 2 is formed in the internal space 1 by the recessed portion 42 located between the first convex portion 45a and the second convex portion 45b.
  • the first convex portion 45a is provided at a position where the first protrusion 34a faces the through hole 31 of the actuator element 30.
  • the second convex portion 45b is provided at a position facing the peripheral edge portion of the actuator element 30.
  • the fluid control device 101f differs from the fluid control device 101a in that the surface of the actuator element 30 on the elastic substrate 35 side is the first main surface 32a and the surface on the vibration element 36 side is the second main surface 32b. do.
  • the support member 50 is connected to the elastic substrate 35.
  • the first wiring 51a is connected to the first electrode (not shown) of the vibrating element 36 via the support member 50, the elastic substrate 35, and the first through hole 52a formed in the vibrating element 36.
  • the second wiring 51b is connected to the second electrode (not shown) of the vibrating element 36 via the support member 50 and the second through hole 52b formed in the elastic substrate 35.
  • the support member 50 is provided with a resin film 53 on the surface opposite to the vibration element 36 side.
  • a resin film 53 for example, polyimide can be used.
  • An annular vibration adjusting plate 54 is arranged around the through hole 31 of the resin film 53.
  • a metal such as nickel can be used.
  • the metallic vibration adjusting plate 54 can be formed by electroplating via the seed layer 55.
  • the vibration adjusting plate 54 serves as a weight that applies a load to the actuator element 30, and adjusts the operating frequency of the actuator element 30.
  • the second member 24 of the housing 20 is formed of a hard member 60 and an elastic member 61.
  • the material of the hard member 60 for example, silicon can be used.
  • a resin material can be used.
  • a metal member 62 is arranged between the resin film 53 and the third member 25.
  • a metal that can be formed by electroplating such as nickel can be used.
  • the vibration adjusting plate 54 since the expansion portion 2 is formed in the internal space 1, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained. Further, by using the vibration adjusting plate 54, the operating frequency of the actuator element 30 can be made lower than the resonance frequency peculiar to the actuator element 30. Generally, with the miniaturization of the actuator element 30, the resonance frequency peculiar to the actuator element 30 tends to be high, but the operating frequency is adjusted by using the vibration adjusting plate 54 regardless of the size of the actuator element 30. It becomes possible.
  • the fluid control device 101f of the fifth modification can be manufactured, for example, by using the manufacturing methods shown in FIGS. 18 to 20.
  • a disk-shaped vibrating element 36 having a through hole 31 in the center is formed on the hard substrate 160.
  • the vibrating element 36 is, for example, a laminated body in which the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order from the hard substrate 160 side.
  • the method of forming the vibrating element 36 is the same as that of the fluid control device 101a according to the first embodiment.
  • an elastic substrate 35 is formed on the surface of the vibrating element 36 opposite to the hard substrate 160 side, and is elastic on the surface of the hard substrate 160 at intervals around the vibrating element 36.
  • the member 61 is formed.
  • the elastic substrate 35 and the elastic member 61 can be formed, for example, as follows. First, an elastic film is formed on the vibrating element 36 and the hard substrate 160. Next, the elastic film around the vibrating element 36 is removed, and the elastic film is separated into the elastic substrate 35 and the elastic member 61.
  • the vicinity of the peripheral edge of the vibrating element 36 is covered with the positive resist film pattern 139.
  • the method for forming the positive resist film pattern 139 is the same as that for the fluid control device 101a according to the first embodiment.
  • a support member forming film 150 is formed on the elastic substrate 35, the elastic member 61, and the positive resist film pattern 139, and a wiring pattern is formed on the support member forming film 150. do.
  • the method for forming the support member forming film 150 is the same as that for the fluid control device 101a according to the first embodiment.
  • the wiring pattern forms a first wiring 51a connected to the first electrode of the vibrating element 36 and a second wiring 51b connected to the second electrode of the vibrating element 36.
  • the first wiring 51a is connected to the first electrode of the vibrating element 36 via the first through hole 52a.
  • the second wiring 51b is connected to the second electrode of the vibrating element 36 via the second through hole 52b.
  • a resin film 153 is formed on the support member forming film 150.
  • a film forming method for the resin film 153 for example, a spin coating method can be used. In this way, a laminated body 190 in which the vibrating element 36, the support member forming film 150, and the resin film 153 are laminated in this order is obtained on the hard substrate 160.
  • a seed layer 55 is formed on the resin film 153 of the laminated body 190, and a metal layer is formed on the seed layer 55 by electroplating.
  • the seed layer 55 is formed around a position facing the through hole 31 of the vibrating element 36 and a region facing the elastic member 61.
  • the metal layer formed around the position facing the through hole 31 of the vibrating element 36 is the vibration adjusting plate 54, and the metal layer formed in the region facing the elastic member 61 is the metal member 62.
  • through holes are provided in the elastic substrate 35, the support member forming film 150, and the resin film 153 along the vibrating element 36 through hole 31, and the elastic member 61 of the hard substrate 160 is provided with through holes.
  • the hard member 60 is formed by removing the portions other than the facing regions. As a result, the vibrating element 36 of the laminated body 190 and the positive resist film pattern 139 are exposed.
  • the laminated body 190 is inverted so that the vibration adjusting plate 54 and the metal member 62 are on the lower side, and the positive resist film pattern 139 is removed.
  • the method for removing the positive resist film pattern is the same as that for the fluid control device 101a according to the first embodiment.
  • a flow path plate forming member 140 is prepared, and the flow path plate forming member 140 and the hard member 60 of the laminated body 190 are joined to form a joined body 192.
  • the flow path plate forming member 140 is composed of a flow path substrate 44, a first convex portion 45a and a second convex portion 45b arranged on the surface of the flow path substrate 44.
  • the flow path plate forming member 140 and the laminated body 190 are joined so that the first convex portion 45a of the flow path plate forming member 140 and the through hole 31 of the actuator element 30 of the laminated body 190 face each other.
  • the joint body 192 is cut to obtain a structure 193 in which the actuator element 30 with the support member 50 and the flow path plate 40 are integrated.
  • the pump 11a is formed by joining the flow path plate 40 of the obtained structure 193 and the first member 23, and joining the metal member 62 and the third member 25 of the structure 193.
  • the fluid control device 101a is obtained by joining the container 70 to the second opening portion 22 of the pump 11a.
  • the first main surface 32a of the actuator element 30 is connected to the protrusion 26 of the housing 20 via the support member 50.
  • the configuration of the pump is not limited to this.
  • the actuator element 30 may be supported by a support member so as not to come into contact with the housing 20.
  • FIG. 21 is a perspective view of the pump according to the second embodiment.
  • FIG. 22 is a sectional view taken along line XXII-XXII of FIG.
  • FIG. 23 is a perspective view of an actuator element and a support member thereof used in the fluid control device according to the second embodiment.
  • the pump 12a includes a housing 20', an actuator element 30', and a support member 50'that supports the actuator element 30'.
  • the housing 20' has a first opening portion 21 and a second opening portion 22.
  • the first opening portion 21 is a fluid introduction port
  • the second opening portion 22 is a fluid discharge port.
  • the housing 20' consists of a fourth member 27 which is a bottomed square cylinder having a second opening portion 22 and a fifth member 28 which is a bottomed square cylinder having a first opening portion 21. Has been done.
  • a support member 50' is arranged between the fourth member 27 and the fifth member 28 of the housing 20'. That is, the support member 50'is sandwiched between the fourth member 27 and the fifth member 28. As a result, the support member 50'is fixed to the housing 20.
  • the method of fixing the support member 50'to the housing 20' is not limited to this.
  • the fourth member 27 can have the same configuration as the first member 23 of the fluid control device 101a of the first embodiment.
  • the fifth member 28 can have the same configuration as the third member 25 of the fluid control device 101a of the first embodiment, except that the recessed portion 29 is provided around the first opening portion 21. ..
  • the recessed portion 29 is formed in an annular shape (doughnut shape) centered on the first opening portion 21.
  • the recessed portion 29 may be a curved surface having an arcuate cross section.
  • the actuator element 30' can have the same configuration as the actuator element 30 of the fluid control device 101a of the first embodiment except that it does not have a through hole 31.
  • the actuator element 30' is arranged via the internal space 1 at a position where the elastic substrate 35 faces the first opening portion 21 of the housing 20'.
  • the surface of the actuator element 30'on the side facing the first opening portion 21 of the housing 20 is referred to as a first main surface 32a
  • the surface on the opposite side thereof is referred to as a second main surface 32b.
  • the first main surface 32a of the actuator element 30' is the surface on the elastic substrate 35 side
  • the second main surface 32b is the surface on the vibration element 36 side, but the present invention is limited to this. It's not something.
  • the surface on the vibrating element 36 side may be the first main surface 32a
  • the surface on the elastic substrate 35 side may be the second main surface 32b.
  • the internal space 1 is a space facing the first main surface 32a of the actuator element 30', and extends from the center to the outside along the first main surface 32a of the actuator element 30', and is formed in the housing 20'. It becomes the flow path of the fluid introduced inside. That is, the internal space 1 is a flow path through which the fluid flows due to the vibration of the actuator element 30'.
  • the recessed portion 29 provided in the fifth member 28 forms an expanded portion 2 in the internal space 1 in which the cross-sectional area in the direction perpendicular to the direction in which the fluid flows is expanded.
  • the support member 50' is in a strip shape whose length in the width direction (direction perpendicular to the direction in which the first wiring 51a and the second wiring 51b extend) is smaller than the diameter of the actuator element 30. Has the same configuration as the support member 50 of the fluid control device 101a of the first embodiment.
  • the pump 12a having the above configuration transports the fluid as follows.
  • a voltage is applied to the first electrode 38a and the second electrode 38b of the vibrating element 36 via the first wiring 51a and the second wiring 51b.
  • the vibrating element 36 vibrates.
  • the actuator element 30'including the elastic substrate 35 vibrates.
  • the fluid is introduced into the housing 20'from the first opening portion 21.
  • the fluid flows in the internal space 1 between the actuator element 30'and the fifth member 28 along the first main surface 32a of the actuator element 30'.
  • the fluid that has passed through the expansion portion 2 of the internal space 1 is then discharged from the second opening portion 22.
  • This fluid flow causes the fluid that crosses the extension 2 of the interior space 1 to resonate with Helmholtz. By matching the frequency of this Helmholtz resonance with the vibrating element and the operating frequency, the suction capacity of the pump 12a is improved.
  • the actuator element 30' is arranged via the internal space 1 at a position where the first main surface 32a faces the first opening portion 21 of the housing 20'. ing. Further, a recess 29 is provided on the surface of the fifth member 28 of the housing 20'on the actuator element 30' side, and the internal space 1 has an expanded cross-sectional area in a direction perpendicular to the direction in which the fluid flows. Includes expansion unit 2.
  • the pump 12a having such a configuration tends to generate Helmholtz resonance at a low frequency at 20 kHz or higher even when the size of the housing 20'or the actuator element 30' of the pump 12a is reduced. Therefore, even when the size of the pump 12a is reduced, the suction capacity of the pump 12a can be increased.
  • the recess forming the expansion portion 2 of the internal space 1 is formed by the recess 29 provided in the fifth member 28 of the housing 20'.
  • the recess may be provided on the first main surface 32a of the actuator element 30', or may be provided on both the fifth member 28 of the housing 20' and the first main surface 32a of the actuator element 30'.
  • a protrusion may be provided in a region other than the region forming the expanded portion 2, so that the region forming the expanded portion 2 becomes a relatively recessed portion.
  • the recess may be provided in a region corresponding to the expansion portion 2 from the outside of the through hole 31 of the actuator element 30 to the outer peripheral end portion of the actuator element 30', or the actuator of the fifth member 28 facing this range may be provided. It may be provided in the area of the surface on the element 30 side. By forming the recess at this position, Helmholtz resonance is more likely to occur at a low resonance frequency at 20 kHz or higher.
  • the inner radius of the recessed portion 29 is larger than the radius of the first opening portion 21, and the outer radius of the recessed portion 29 is preferably equal to or less than the radius of the node portion generated when the actuator element 30 vibrates at the natural frequency. ..
  • the outer radius of the recessed portion 29 coincides with the radius of the node portion. That is, the outer edge of the recessed portion 29 faces the node portion generated when the actuator element 30 vibrates at the natural frequency.
  • FIG. 24 is a cross-sectional view showing a first modification of the pump according to the second embodiment, and is a cross-sectional view of the pump cut in the same direction as in FIG. 22.
  • the pump 12b shown in FIG. 24 differs from the pump 12a in that a recess 33 is provided on the first main surface 32a (the surface of the elastic substrate 35) of the actuator element 30'. According to the pump 12b, the same effect as that of the pump 12a according to the second embodiment can be obtained.
  • FIG. 25 is a cross-sectional view showing a second modification of the pump according to the second embodiment, and is a cross-sectional view of the pump cut in the same direction as in FIG. 22.
  • the pump 12c shown in FIG. 25 differs from the pump 12a in that a recess 29 is provided in the fifth member 28 of the housing 20'and a recess 33 is provided in the first main surface 32a of the actuator element 30. ..
  • the depth of the recessed portion provided in each of the fifth member 28 of the housing 20'and the actuator element 30' can be made shallow. ..
  • the pump 12c it is possible to suppress a decrease in the strength of the fifth member 28 of the housing 20'and the actuator element 30' due to the provision of the recessed portion, as well as the same effect as that of the pump 12a according to the second embodiment. can.
  • FIG. 26 is a cross-sectional view showing another modification of the pump according to the first embodiment, and is a cross-sectional view of the pump cut in the same direction as in FIG. 22.
  • the pump 12d shown in FIG. 26 differs from the pump 12a in that the first protrusion 34a and the second protrusion 34b are provided on the first main surface 32a (the surface of the elastic substrate 35) of the actuator element 30'. ..
  • the first protrusion 34a is provided around the through hole 31 of the actuator element 30'.
  • the second protrusion 34b is provided around the outer peripheral end of the actuator element 30'.
  • the region of the first main surface 32a where the first protrusion 34a and the second protrusion 34b are not provided is relatively a recess. Therefore, according to the pump 12d, the same effect as that of the pump 12a according to the second embodiment can be obtained.
  • FIG. 27 is a cross-sectional view of the fluid control device according to the third embodiment.
  • 28A is a sectional view taken along line AA of FIG. 27
  • FIG. 28B is a sectional view taken along line BB of FIG. 27
  • FIG. 28C is a sectional view taken along line CC of FIG. 27. be.
  • the fluid control device 103 connects the pump 12a, the container 70 for temporarily storing the fluid sent from the pump 12a, and the pump 12a and the container 70.
  • the valve 80 is provided.
  • the pump 12a of the fluid control device 103 has the same configuration as the pump 12a according to the second embodiment.
  • the valve 80 includes a tubular tube 81 that opens in the vertical direction, has a circular outer cross section, and has a quadrangular inner cross section, and a valve 83 and a ball 86 arranged inside the tubular tube 81.
  • the tube 81 has an outlet 82 connected to the outside.
  • the valve 83 has a first flow path hole 84 that opens in the vertical direction, and a second flow path hole 85 that has one end opened downward and the other end connects to the outlet 82.
  • the ball 86 is located below the valve 83.
  • the ball 86 When the pump 12a is driven to store the fluid in the container 70, the ball 86 is pushed upward by the fluid sent from the pump 12a and moves upward to close the opening below the second flow path hole 85. .. As a result, the fluid is sent to the container 70 through the first flow path hole 84. On the other hand, when the pump 12a is stationary and the fluid stored in the container 70 is taken out to the outside, the ball 86 moves downward and closes the second opening portion 22 of the pump 12a. As a result, the fluid flows below the valve 83 through the first flow path hole 84, and the fluid flowing below the valve 83 passes through the second flow path hole 85 and goes out through the outlet 82. Taken out to.
  • the fluid control device 103 of the present embodiment configured as described above includes the valve 80 for connecting the pump 12a and the container 70, the fluid stored in the container 70 can be taken out to the outside through the valve 80. can.
  • the pumps 11a to 11d and 12a to 12d are spaces facing the first main surface 32a or the second main surface 32b of the actuator elements 30 and 30', and are the spaces of the actuator elements 30 and 30'.
  • the internal space 1 has an internal space 1 through which a fluid flows along the first main surface 32a or the second main surface 32b, and the internal space 1 is a direction perpendicular to the second main surface 32b of the actuator element 30, that is, a direction in which the fluid flows.
  • the pumps 11a to 11d and 12a to 12d of the present embodiment have high suction capacity even when the maximum diameter of the actuator elements 30 and 30'is in the range of 5 mm or more and 10 mm or less, for example.
  • the pump has an actuator element having a first main surface and a second main surface facing each other, and at least one of the first main surface and the second main surface of the actuator element.
  • the actuator element has an internal space facing the surface, and the actuator element vibrates in a direction perpendicular to the first main surface and the second main surface.
  • the internal space includes an expansion portion having an expanded cross-sectional area in a direction perpendicular to the first main surface and the second main surface.
  • the actuator element may include a substrate and a vibration element arranged on at least one surface of the substrate.
  • the pump according to the above (1) or (2) may further include a support member that oscillateably supports the actuator element.
  • the actuator element is formed on at least one of the first main surface and the second main surface of the actuator element.
  • a vibration adjusting plate for adjusting the operating frequency of the above may be further provided.
  • a housing having at least one opening and a housing arranged around the opening are provided.
  • the actuator element has a through hole penetrating between the first main surface and the second main surface, further comprising a protrusion protruding inward and a first plate.
  • the first main surface is connected to the protrusion and the through hole is arranged at a position facing the opening of the housing, and the internal space is a space facing the second main surface of the actuator element.
  • the first plate is arranged at a position facing the second main surface of the actuator element via the internal space, and the expansion portion is the second main surface of the actuator element and the first surface. It may be formed by recesses provided in at least one of the surfaces of the actuator element of one plate facing the second main surface.
  • the protrusion of the actuator element is located closer to the center of the actuator element than the node portion generated when the actuator element vibrates. It may be connected to the first main surface.
  • the outer edge of the recess may face the protrusion.
  • the recess may include a curved surface having an arcuate cross section.
  • the pump according to any one of (1) to (4) is further provided with a housing having at least one opening, and the first main surface of the actuator element is provided.
  • the housing is arranged at a position facing the opening portion via the internal space, the internal space is a space facing the first main surface of the actuator element, and the expansion portion is the actuator. It may be formed by recesses provided in at least one of the first main surface of the element and the surface of the actuator element of the housing facing the first main surface.
  • the outer edge of the recess may face the node portion generated when the actuator element vibrates.
  • the recess may include a curved surface having an arcuate cross section.
  • the fluid control device may include the pump according to any one of (1) to (11) above and a container connected to the pump.
  • the pump and the container may be connected via a valve.
  • the pumps 11a to 11d and 12a to 12d are used as pumps for the fluid control devices 101a to 101d and 103 connected to the container 70.
  • the uses of the pumps 11a to 11d and 12a to 12d are not limited to these.
  • the pumps 11a to 11d and 12a to 12d can be used for various purposes, for example, as an air transport pump for supplying air to an air-based device such as a sphygmomanometer or an air jack.
  • the pump according to the present embodiment can also be used as a substitute for a blower such as a cooling fan.

Abstract

This pump is provided with an actuator element having a first main surface and a second main surface that oppose one another, and an interior space which faces at least one main surface among the first main surface and the second main surface of the actuator element, wherein: the actuator element vibrates in a direction perpendicular to the first main surface and the second main surface; and the interior space includes an expanded portion in which the cross-sectional area in a direction perpendicular to the first main surface and the second main surface is expanded.

Description

ポンプ及び流体制御装置Pump and fluid control device
 本開示は、ポンプ及び流体制御装置に関する。
 本願は、2020年7月31日に、日本に出願された特願2020-130734号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to pumps and fluid control devices.
The present application claims priority based on Japanese Patent Application No. 2020-130734 filed in Japan on July 31, 2020, the contents of which are incorporated herein by reference.
 気体や液体などの流体の輸送用の小型ポンプとして、流体導入口と流体吐出口とを有するハウジングと、そのハウジングの内部に配置されたアクチュエータ素子とを備えたポンプが知られている。また、この小型ポンプと、小型ポンプから送られた流体を一時的に貯留可能な容器とを組み合わせた流体制御装置が知られている。この流体制御装置は、例えば、血圧計として利用されている(特許文献1)。 As a small pump for transporting a fluid such as gas or liquid, a pump having a housing having a fluid inlet and a fluid discharge port and an actuator element arranged inside the housing is known. Further, a fluid control device that combines this small pump and a container capable of temporarily storing the fluid sent from the small pump is known. This fluid control device is used, for example, as a sphygmomanometer (Patent Document 1).
 上記の小型ポンプでは、アクチュエータ素子の振動(屈曲運動)によって、流体導入口からハウジングの内部に導入された流体は、アクチュエータ素子の表面に沿って流れて流体吐出口から外部に吐出される。上記の小型ポンプで使用されるアクチュエータ素子では、使用時の音の発生を考慮して、共振周波数が人の可聴帯域以上(20kHz以上)のものが広く利用されている。 In the above small pump, the fluid introduced into the housing from the fluid inlet due to the vibration (bending motion) of the actuator element flows along the surface of the actuator element and is discharged to the outside from the fluid discharge port. In the actuator element used in the above-mentioned small pump, those having a resonance frequency of the human audible band or higher (20 kHz or higher) are widely used in consideration of the generation of sound during use.
国際公開第2016/063710号International Publication No. 2016/063710
 アクチュエータ素子を利用した小型ポンプは、さらなる小型化が望まれている。このため、アクチュエータ素子やポンプのハウジングのさらなる小型化が検討されている。しかしながら、本開示の発明者の検討によると、アクチュエータ素子やハウジングを小型にすると、アクチュエータ素子の変位が小さくなり、ポンプの吸込能力などの特性が低下することがあることが判明した。 It is desired that the small pump using the actuator element be further miniaturized. Therefore, further miniaturization of the actuator element and the housing of the pump is being studied. However, according to the study of the inventor of the present disclosure, it has been found that when the actuator element or the housing is made smaller, the displacement of the actuator element becomes smaller and the characteristics such as the suction capacity of the pump may be deteriorated.
 本開示に係る技術は、このような事情を考慮してなされたもので、小型化しても吸込能力が低下しにくい構成のポンプ及び流体制御装置を提供することにある。 The technique according to the present disclosure is made in consideration of such circumstances, and an object of the present invention is to provide a pump and a fluid control device having a configuration in which the suction capacity does not easily decrease even if the size is reduced.
 本開示の一態様では、ポンプは、互いに対向する第1主面と第2主面とを有するアクチュエータ素子と、前記アクチュエータ素子の前記第1主面と前記第2主面の少なくとも一方の主面に面する内部空間と、を備え、前記アクチュエータ素子は、前記第1主面及び前記第2主面に対して垂直な方向に振動し、前記内部空間は、前記第1主面及び前記第2主面に対して垂直な方向の断面積が拡張された拡張部を含む。 In one aspect of the present disclosure, the pump comprises an actuator element having a first and second main surfaces facing each other, and at least one of the first and second main surfaces of the actuator element. The actuator element vibrates in a direction perpendicular to the first main surface and the second main surface, and the internal space comprises the first main surface and the second main surface. Includes an extension with an expanded cross section in the direction perpendicular to the main surface.
 本開示に係る技術によれば、小型化しても吸込能力が低下しにくい構成のポンプ及び流体制御装置を提供することができる。 According to the technique according to the present disclosure, it is possible to provide a pump and a fluid control device having a configuration in which the suction capacity does not easily decrease even if the size is reduced.
図1は、第1実施形態に係る流体制御装置の斜視図である。FIG. 1 is a perspective view of the fluid control device according to the first embodiment. 図2は、図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 図3は、図2のIII-III線断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 図4は、図2のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 図5は、図2のV-V線断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 図6は、図1に示すアクチュエータ素子の作動状態を説明する模式断面図である。FIG. 6 is a schematic cross-sectional view illustrating an operating state of the actuator element shown in FIG. 図7の(a)は、第1実施形態の流体制御装置において、拡張部のサイズを変えたときの、ポンプの発生空気圧の周波数応答特性を示すグラフであり、(b)は、(a)における周波数が22kHz~26kHzの範囲を拡大したグラフである。FIG. 7A is a graph showing the frequency response characteristics of the generated air pressure of the pump when the size of the expansion portion is changed in the fluid control device of the first embodiment, and FIG. 7B is a graph showing FIG. 7A. It is a graph which expanded the range of the frequency in 22kHz to 26kHz. 図8は、第1実施形態に係る流体制御装置の製造工程を示す図である。FIG. 8 is a diagram showing a manufacturing process of the fluid control device according to the first embodiment. 図9は、第1実施形態に係る流体制御装置の製造工程を示す図である。FIG. 9 is a diagram showing a manufacturing process of the fluid control device according to the first embodiment. 図10は、第1実施形態に係る流体制御装置の第1変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a first modification of the fluid control device according to the first embodiment. 図11は、図10のXI-XI線断面図である。FIG. 11 is a sectional view taken along line XI-XI of FIG. 図12は、第1実施形態に係る流体制御装置の第2変形例を示す断面図である。FIG. 12 is a cross-sectional view showing a second modification of the fluid control device according to the first embodiment. 図13は、第1実施形態に係る流体制御装置の第3変形例を示す断面図である。FIG. 13 is a cross-sectional view showing a third modification of the fluid control device according to the first embodiment. 図14は、図13のXIV-XIV線断面図である。FIG. 14 is a sectional view taken along line XIV-XIV of FIG. 図15は、第1実施形態に係る流体制御装置の第4変形例を示す断面図である。FIG. 15 is a cross-sectional view showing a fourth modification of the fluid control device according to the first embodiment. 図16は、第1実施形態に係る流体制御装置の第5変形例を示す断面図である。FIG. 16 is a cross-sectional view showing a fifth modification of the fluid control device according to the first embodiment. 図17は、図16のXVII-XVII線断面図である。FIG. 17 is a sectional view taken along line XVII-XVII of FIG. 図18は、第5変形例に係る流体制御装置の製造工程を示す図である。FIG. 18 is a diagram showing a manufacturing process of the fluid control device according to the fifth modification. 図19は、第5変形例に係る流体制御装置の製造工程を示す図である。FIG. 19 is a diagram showing a manufacturing process of the fluid control device according to the fifth modification. 図20は、第5変形例に係る流体制御装置の製造工程を示す図である。FIG. 20 is a diagram showing a manufacturing process of the fluid control device according to the fifth modification. 図21は、第2実施形態に係るポンプの斜視図である。FIG. 21 is a perspective view of the pump according to the second embodiment. 図22は、図21のXXII-XXII線断面図である。FIG. 22 is a cross-sectional view taken along the line XXII-XXII of FIG. 図23は、第2実施形態に係るポンプで用いられるアクチュエータ素子の支持部材の斜視図である。FIG. 23 is a perspective view of a support member of the actuator element used in the pump according to the second embodiment. 図24は、第2実施形態に係るポンプの第1変形例を示す断面図である。FIG. 24 is a cross-sectional view showing a first modification of the pump according to the second embodiment. 図25は、第2実施形態に係るポンプの第2変形例を示す断面図である。FIG. 25 is a cross-sectional view showing a second modification of the pump according to the second embodiment. 図26は、第2実施形態に係るポンプの第3変形例を示す断面図である。FIG. 26 is a cross-sectional view showing a third modification of the pump according to the second embodiment. 図27は、第3実施形態に係る流体制御装置の断面図である。FIG. 27 is a cross-sectional view of the fluid control device according to the third embodiment. 図28の(A)は図27のA-A線断面図であって、(B)は図27のB-B線断面図であり、(C)は図27のC-C線断面図である。28 (A) is a sectional view taken along line AA of FIG. 27, (B) is a sectional view taken along line BB of FIG. 27, and (C) is a sectional view taken along line CC of FIG. 27. be.
 以下、本開示に係る技術の実施形態について図面を用いて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である構成部分については、図面中に同一の符号を付して、重複した説明を省略又は簡略にする場合がある。また、以下の説明で用いる図面は、特徴を分かりやすくするため便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本開示はそれらに限定されるものではなく、本開示の効果を奏する範囲で適宜変更して実施することが可能である。一つの実施形態で示した構成を他の実施形態に適用することもできる。 Hereinafter, embodiments of the technology according to the present disclosure will be described with reference to the drawings. In each of the following embodiments, components that are the same or equal to each other may be designated by the same reference numerals in the drawings to omit or simplify duplicate explanations. Further, in the drawings used in the following description, the featured portion may be enlarged for convenience in order to make the feature easy to understand, and the dimensional ratio of each component may not be the same as the actual one. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present disclosure is not limited thereto, and can be appropriately modified and carried out within the range in which the effects of the present disclosure are exhibited. .. The configuration shown in one embodiment can also be applied to other embodiments.
[第1実施形態]
 図1は、第1実施形態に係る流体制御装置の斜視図である。図2は、図1のII-II線断面図である。図3は、図2のIII-III線断面図であり、図4は、図2のIV-IV線断面図であり、図5は、図2のV-V線断面図である。図6は、図1に示すアクチュエータ素子の作動状態を説明する模式断面図である。
[First Embodiment]
FIG. 1 is a perspective view of the fluid control device according to the first embodiment. FIG. 2 is a sectional view taken along line II-II of FIG. 3 is a sectional view taken along line III-III of FIG. 2, FIG. 4 is a sectional view taken along line IV-IV of FIG. 2, and FIG. 5 is a sectional view taken along line VV of FIG. FIG. 6 is a schematic cross-sectional view illustrating an operating state of the actuator element shown in FIG.
 第1実施形態に係る流体制御装置101aは、図1~図5に示すように、ポンプ11aと、ポンプ11aから送られた流体を一時的に貯留する容器70とを備える。ポンプ11aは、ハウジング20と、アクチュエータ素子30と、流路板40(第1板)と、アクチュエータ素子30を支持する支持部材50と、を備える。 As shown in FIGS. 1 to 5, the fluid control device 101a according to the first embodiment includes a pump 11a and a container 70 for temporarily storing the fluid sent from the pump 11a. The pump 11a includes a housing 20, an actuator element 30, a flow path plate 40 (first plate), and a support member 50 that supports the actuator element 30.
 ハウジング20は、第1開孔部21と第2開孔部22とを有する。第1開孔部21は外部と接続され、第2開孔部22は容器70と接続されている。流体を容器70に貯留する場合において、第1開孔部21は流体導入口となり、第2開孔部22は流体吐出口となる。容器70に貯留された流体を外部に放出する場合において、第1開孔部21は流体吐出口となり、第2開孔部22は流体導入口となる。ハウジング20は、第2開孔部22を有する有底角筒状体である第1部材23と、角筒状体である第2部材24と、第1開孔部21を有する有底角筒状体である第3部材25とから構成されている。第3部材25は、第1開孔部21の周囲に円環状に配置され、内側に突出した突起部26を有する。なお、本実施形態では、突起部26は、第3部材25が備える構成として、第3部材25と一体的に形成されているが、突起部26は、第3部材25とは別部材で構成されていても構わない。 The housing 20 has a first opening portion 21 and a second opening portion 22. The first opening portion 21 is connected to the outside, and the second opening portion 22 is connected to the container 70. When the fluid is stored in the container 70, the first opening portion 21 serves as a fluid introduction port, and the second opening portion 22 serves as a fluid discharge port. When the fluid stored in the container 70 is discharged to the outside, the first opening portion 21 serves as a fluid discharge port, and the second opening portion 22 serves as a fluid introduction port. The housing 20 has a first member 23 which is a bottomed square cylinder having a second opening portion 22, a second member 24 which is a square cylinder, and a bottomed square cylinder having a first opening portion 21. It is composed of a third member 25 which is a state body. The third member 25 is arranged in an annular shape around the first opening portion 21 and has a protrusion 26 protruding inward. In the present embodiment, the protrusion 26 is integrally formed with the third member 25 as a configuration included in the third member 25, but the protrusion 26 is formed of a member different from the third member 25. It doesn't matter if it is done.
 ハウジング20の第1部材23と第2部材24の間には流路板40が配置されている。これにより流路板40はハウジング20に固定される。また、第2部材24と第3部材25の間には支持部材50が配置されている。つまり、支持部材50は第2部材24と第3部材25とで挟持されている。これにより支持部材50はハウジング20に固定される。ただし、流路板40及び支持部材50をハウジング20に固定する方法は、これに限定されるものではない。例えば、流路板40をハウジング20の内壁に接着剤を用いて固定してもよい。 A flow path plate 40 is arranged between the first member 23 and the second member 24 of the housing 20. As a result, the flow path plate 40 is fixed to the housing 20. Further, a support member 50 is arranged between the second member 24 and the third member 25. That is, the support member 50 is sandwiched between the second member 24 and the third member 25. As a result, the support member 50 is fixed to the housing 20. However, the method of fixing the flow path plate 40 and the support member 50 to the housing 20 is not limited to this. For example, the flow path plate 40 may be fixed to the inner wall of the housing 20 with an adhesive.
 ハウジング20は外側断面と内側断面がそれぞれ角形とされている。ただし、ハウジング20の形状は、これに限定されるものではない。ハウジング20は、例えば、外側断面が角形で内側断面が円形とされていてもよいし、外側断面と内側断面がそれぞれ円形とされていてもよいし、外側断面が円形で内側断面が角形とされていてもよい。ハウジング20の材料としては、例えば、樹脂やセラミックスなどの絶縁材料を用いることができる。 The housing 20 has a square outer cross section and an inner cross section, respectively. However, the shape of the housing 20 is not limited to this. The housing 20 may have, for example, a square outer cross section and a circular inner cross section, a circular outer cross section and a circular inner cross section, or a circular outer cross section and a square inner cross section. May be. As the material of the housing 20, for example, an insulating material such as resin or ceramics can be used.
 アクチュエータ素子30は、互いに対向する第1主面32aと第2主面32bとを有する。アクチュエータ素子30は、第1主面32a及び第2主面32bに対して垂直な方向に所定の周波数で振動(屈曲運動)するものであることが好ましい。アクチュエータ素子30は共振周波数(固有振動数)を有することが好ましい。アクチュエータ素子30の共振周波数(固有振動数)は、例えば、20kHz以上であることが好ましい。 The actuator element 30 has a first main surface 32a and a second main surface 32b facing each other. The actuator element 30 preferably vibrates (bends) at a predetermined frequency in a direction perpendicular to the first main surface 32a and the second main surface 32b. The actuator element 30 preferably has a resonance frequency (natural frequency). The resonance frequency (natural frequency) of the actuator element 30 is preferably 20 kHz or higher, for example.
 アクチュエータ素子30は、貫通孔31を有する。貫通孔31は、ハウジング20の第1開孔部21に連通されている。アクチュエータ素子30は円板状とされ、貫通孔31は円板状のアクチュエータ素子30の中央に配置されている。ただし、アクチュエータ素子30の形状はこれに限定されるものではない。アクチュエータ素子30は、例えば、角板状であってもよい。ただし、アクチュエータ素子30の形状は、不要な共振周波数の出現を抑制する観点から円板状が好ましい。 The actuator element 30 has a through hole 31. The through hole 31 communicates with the first opening portion 21 of the housing 20. The actuator element 30 has a disk shape, and the through hole 31 is arranged in the center of the disk-shaped actuator element 30. However, the shape of the actuator element 30 is not limited to this. The actuator element 30 may have a square plate shape, for example. However, the shape of the actuator element 30 is preferably a disk shape from the viewpoint of suppressing the appearance of unnecessary resonance frequencies.
 アクチュエータ素子30は、弾性基板(基板)35と、弾性基板35の表面(下側の表面)に配置された振動素子36とを含む構成であってもよい。弾性基板35は、振動素子36の振動による屈曲運動が可能で、振動素子36の振動エネルギーを減衰させにくい材料から構成されていると好ましく、弾性基板35の材料としては、例えば、シリコン、鉄、リン青銅、樹脂などを用いることができる。樹脂の例としては、ポリイミド樹脂を挙げることができる。振動素子36は、板状圧電体37と、板状圧電体37の弾性基板35側の表面に配置された第1電極38aと、弾性基板35側とは反対側の表面に配置された第2電極38bとを含む圧電振動子とされている。圧電振動子としては、例えば、板状圧電体37の材料としては、チタン酸ジルコン酸鉛系セラミックスを用いたPZT系圧電振動子を利用することができる。第1電極38a、第2電極38bの材料としては、例えば、白金を用いることができる。圧電振動子は、バルクタイプであってもよいし、薄膜タイプであってもよい。振動素子36は、弾性基板35の表面に2個以上積層してもよい。振動素子36は、弾性基板35の上下の両側表面に配置してもよい。また、圧電振動子の代わりに、電歪振動子を用いてもよい。さらに、アクチュエータ素子30は、弾性基板35を含まなくてもよく、例えば、分極方向を互いに逆向きとした圧電振動子を2個積層した圧電振動子積層体であってもよい。 The actuator element 30 may be configured to include an elastic substrate (board) 35 and a vibration element 36 arranged on the surface (lower surface) of the elastic substrate 35. The elastic substrate 35 is preferably made of a material that can be flexed by the vibration of the vibrating element 36 and does not easily attenuate the vibration energy of the vibrating element 36. Examples of the material of the elastic substrate 35 include silicon and iron. Phosphor bronze, resin, etc. can be used. As an example of the resin, a polyimide resin can be mentioned. The vibrating element 36 includes a plate-shaped piezoelectric body 37, a first electrode 38a arranged on the surface of the plate-shaped piezoelectric body 37 on the elastic substrate 35 side, and a second electrode 38a arranged on the surface opposite to the elastic substrate 35 side. It is a piezoelectric vibrator including an electrode 38b. As the piezoelectric vibrator, for example, as the material of the plate-shaped piezoelectric body 37, a PZT-based piezoelectric vibrator using lead zirconate titanate-based ceramics can be used. As the material of the first electrode 38a and the second electrode 38b, for example, platinum can be used. The piezoelectric vibrator may be a bulk type or a thin film type. Two or more vibrating elements 36 may be laminated on the surface of the elastic substrate 35. The vibrating element 36 may be arranged on both upper and lower surfaces of the elastic substrate 35. Further, an electrostraining oscillator may be used instead of the piezoelectric oscillator. Further, the actuator element 30 does not have to include the elastic substrate 35, and may be, for example, a piezoelectric vibrator laminated body in which two piezoelectric vibrators having their polarization directions opposite to each other are laminated.
 アクチュエータ素子30は、第1主面32a(振動素子36側の表面)が支持部材50を介して、ハウジング20の突起部26に接続し、かつ貫通孔31がハウジング20の第1開孔部21と連通する位置に振動可能に配置されている。アクチュエータ素子30と支持部材50は、アクチュエータ素子30の貫通孔31の周囲で接続し、アクチュエータ素子30の周縁部では、アクチュエータ素子30と支持部材50の空隙39が形成されている。本実施形態では、アクチュエータ素子30が振動するときに生じるノード(節)部Nが、突起部26よりもわずかに外側となる位置において、アクチュエータ素子30と突起部26とが接続されている(図6を参照)。すなわち、突起部26とアクチュエータ素子30は、アクチュエータ素子30が振動するときに生じるノード部Nよりもアクチュエータ素子30の中心寄りの位置において接続されている。なお、図6では、支持部材50を省略している。以下、本実施形態において、ハウジング20の第1開孔部21側のアクチュエータ素子30の表面を第1主面32aと呼び、その反対側の表面を第2主面32bと呼ぶことがある。なお、本実施形態では、アクチュエータ素子30の第1主面32aは、振動素子36側の表面で、第2主面32bは、弾性基板35側の表面とされているが、これに限定されるものではない。弾性基板35側の表面を第1主面32aとし、振動素子36側の表面を第2主面32bとしてもよい。 In the actuator element 30, the first main surface 32a (the surface on the vibration element 36 side) is connected to the protrusion 26 of the housing 20 via the support member 50, and the through hole 31 is the first opening portion 21 of the housing 20. It is arranged so that it can vibrate at a position where it communicates with. The actuator element 30 and the support member 50 are connected around the through hole 31 of the actuator element 30, and a gap 39 between the actuator element 30 and the support member 50 is formed at the peripheral edge of the actuator element 30. In the present embodiment, the actuator element 30 and the protrusion 26 are connected at a position where the node (node) portion N generated when the actuator element 30 vibrates is slightly outside the protrusion 26 (FIG. 6). That is, the protrusion 26 and the actuator element 30 are connected at a position closer to the center of the actuator element 30 than the node portion N generated when the actuator element 30 vibrates. In FIG. 6, the support member 50 is omitted. Hereinafter, in the present embodiment, the surface of the actuator element 30 on the side of the first opening 21 of the housing 20 may be referred to as a first main surface 32a, and the surface on the opposite side thereof may be referred to as a second main surface 32b. In the present embodiment, the first main surface 32a of the actuator element 30 is the surface on the vibration element 36 side, and the second main surface 32b is the surface on the elastic substrate 35 side, but the present invention is limited to this. It's not a thing. The surface on the elastic substrate 35 side may be the first main surface 32a, and the surface on the vibrating element 36 side may be the second main surface 32b.
 流路板40は、アクチュエータ素子30の第2主面32bと対向する位置に、内部空間1を介して配置されている。内部空間1は、アクチュエータ素子30の第2主面32bに面する空間であって、アクチュエータ素子30の第2主面32bに沿って中心から外側に向かって広がっており、第1開孔部21と貫通孔31を通ってハウジング20の内部に導入された流体の流路となる。すなわち、内部空間1は、アクチュエータ素子30が振動することによって、流体が流れる流路である。流路板40は、アクチュエータ素子30側の表面41に窪み部42(凹部)を有する。窪み部42は、アクチュエータ素子30の貫通孔31を中心とした円環状(ドーナツ状)に形成されている。この窪み部42によって、内部空間1は、アクチュエータ素子30の外周端部よりも内側の領域に、アクチュエータ素子30の第2主面32bに対して垂直な方向で、かつアクチュエータ素子30の外周端部に沿った方向に断面積が拡張された拡張部2が形成される。ハウジング20の内部に導入された流体は、拡張部2を横切る方向に流れる。すなわち、拡張部2は、拡張部の開口高さh2(アクチュエータ素子30の第2主面32bと流路板40の窪み部42との距離)を、内部空間1の開口高さh1(アクチュエータ素子30の第2主面32bと流路板40との距離)よりも高くすることによって、流体が流れる方向に対して垂直な方向に断面積が拡張されている。窪み部42は、断面が円弧状に窪んだ湾曲面とされていてもよい。この場合、拡張部2への流体の流れがより円滑になりやすくなる。窪み部42の内半径は貫通孔31の半径よりも大きく、窪み部42の外半径は突起部26の半径以下であると好ましい。本実施形態では、窪み部42の外半径は突起部26の半径と一致している。すなわち、窪み部42の外縁は、突起部26に対向している。 The flow path plate 40 is arranged at a position facing the second main surface 32b of the actuator element 30 via the internal space 1. The internal space 1 is a space facing the second main surface 32b of the actuator element 30, and extends from the center to the outside along the second main surface 32b of the actuator element 30, and the first opening portion 21 And through the through hole 31, it becomes a flow path of the fluid introduced into the inside of the housing 20. That is, the internal space 1 is a flow path through which the fluid flows due to the vibration of the actuator element 30. The flow path plate 40 has a recess 42 (recess) on the surface 41 on the actuator element 30 side. The recessed portion 42 is formed in an annular shape (doughnut shape) centered on the through hole 31 of the actuator element 30. Due to the recessed portion 42, the internal space 1 is located in a region inside the outer peripheral end portion of the actuator element 30 in a direction perpendicular to the second main surface 32b of the actuator element 30 and at the outer peripheral end portion of the actuator element 30. The expansion portion 2 whose cross-sectional area is expanded in the direction along the above is formed. The fluid introduced inside the housing 20 flows in a direction across the expansion portion 2. That is, the expansion portion 2 sets the opening height h2 of the expansion portion (distance between the second main surface 32b of the actuator element 30 and the recessed portion 42 of the flow path plate 40) to the opening height h1 of the internal space 1 (actuator element). By making it higher than the distance between the second main surface 32b of 30 and the flow path plate 40), the cross-sectional area is expanded in the direction perpendicular to the direction in which the fluid flows. The recessed portion 42 may be a curved surface having an arcuate cross section. In this case, the flow of the fluid to the expansion portion 2 becomes smoother. It is preferable that the inner radius of the recessed portion 42 is larger than the radius of the through hole 31 and the outer radius of the recessed portion 42 is equal to or less than the radius of the protrusion 26. In the present embodiment, the outer radius of the recess 42 coincides with the radius of the protrusion 26. That is, the outer edge of the recess 42 faces the protrusion 26.
 流路板40は、アクチュエータ素子30に対向しない外側の領域に貫通孔43を有する。貫通孔43は、流体が流れる流路となる。貫通孔43は、アクチュエータ素子30と同心円状に等間隔で複数個配置されていてもよい。流路板40の材料としては、例えば、樹脂、金属、半金属などを用いることができる。 The flow path plate 40 has a through hole 43 in an outer region that does not face the actuator element 30. The through hole 43 is a flow path through which the fluid flows. A plurality of through holes 43 may be arranged concentrically with the actuator element 30 at equal intervals. As the material of the flow path plate 40, for example, a resin, a metal, a metalloid, or the like can be used.
 支持部材50は、アクチュエータ素子を振動可能に支持する。支持部材50は、第1配線51a、第2配線51bを備える。第1配線51aと第2配線51bとは、互いに反対方向に向かって延びている。支持部材50の幅方向(第1配線51aと第2配線51bとが延びる方向に対して垂直となる方向)の長さは、ハウジング20の長さと同じとされていて、アクチュエータ素子30の第2主面32b全体が支持部材50に固定されている。支持部材50は、アクチュエータ素子30の振動(屈曲運動)を妨げないように、可撓性樹脂シートで形成されていてもよい。また、可撓性樹脂シートは絶縁性を有していてもよい。絶縁性を有する可撓性樹脂シートとしては、例えば、ポリイミドシートを用いることができる。 The support member 50 supports the actuator element in a vibrable manner. The support member 50 includes a first wiring 51a and a second wiring 51b. The first wiring 51a and the second wiring 51b extend in opposite directions to each other. The length of the support member 50 in the width direction (direction perpendicular to the direction in which the first wiring 51a and the second wiring 51b extend) is the same as the length of the housing 20, and the second actuator element 30 has a second length. The entire main surface 32b is fixed to the support member 50. The support member 50 may be formed of a flexible resin sheet so as not to interfere with the vibration (bending motion) of the actuator element 30. Further, the flexible resin sheet may have an insulating property. As the flexible resin sheet having an insulating property, for example, a polyimide sheet can be used.
 第1配線51aは、支持部材50と第2電極38bと板状圧電体37とを貫通する第1スルーホール52aを介して振動素子36の第1電極38aと電源(不図示)とを接続する。第1配線51aと第2電極38bとが接触しないように、第2電極38bは、第1スルーホール52aの周囲が削られている。第2配線51bは、支持部材50を貫通する第2スルーホール52bを介して振動素子36の第2電極38bと電源(不図示)とを接続する。 The first wiring 51a connects the first electrode 38a of the vibrating element 36 and the power supply (not shown) via the first through hole 52a penetrating the support member 50, the second electrode 38b, and the plate-shaped piezoelectric body 37. .. The periphery of the first through hole 52a of the second electrode 38b is cut so that the first wiring 51a and the second electrode 38b do not come into contact with each other. The second wiring 51b connects the second electrode 38b of the vibrating element 36 and the power supply (not shown) via the second through hole 52b penetrating the support member 50.
 以上のような構成とされたポンプ11aは、次のようにして流体を輸送する。
 第1配線51a、第2配線51bを介して、振動素子36の第1電極38aと第2電極38bに動作周波数の電圧を印加する。これにより、振動素子36が振動する。この振動素子36が振動すると、弾性基板35を含むアクチュエータ素子30が振動(屈曲運動)する。アクチュエータ素子30が振動することによって、流体が第1開孔部21から、アクチュエータ素子30の貫通孔31を流れ、ハウジング20の内部に導入される。流体は、アクチュエータ素子30と流路板40との間の内部空間1を、アクチュエータ素子30の第2主面32bに沿って流れる。内部空間1の拡張部2を通った流体は、次いで、流路板40の貫通孔43を流れ、第2開孔部22を介して、容器70に供給される。この流体の流れによって、内部空間1の拡張部2を横切る流体がヘルムホルツ共振する。このヘルムホルツ共振の周波数と振動素子36と動作周波数とが整合することによって、ポンプ11aの吸込能力が向上する。
The pump 11a having the above configuration transports the fluid as follows.
A voltage having an operating frequency is applied to the first electrode 38a and the second electrode 38b of the vibrating element 36 via the first wiring 51a and the second wiring 51b. As a result, the vibrating element 36 vibrates. When the vibrating element 36 vibrates, the actuator element 30 including the elastic substrate 35 vibrates (flexing motion). When the actuator element 30 vibrates, the fluid flows from the first opening portion 21 through the through hole 31 of the actuator element 30 and is introduced into the inside of the housing 20. The fluid flows in the internal space 1 between the actuator element 30 and the flow path plate 40 along the second main surface 32b of the actuator element 30. The fluid that has passed through the expansion portion 2 of the internal space 1 then flows through the through hole 43 of the flow path plate 40 and is supplied to the container 70 via the second opening portion 22. This fluid flow causes the fluid that crosses the extension 2 of the interior space 1 to resonate with Helmholtz. By matching the frequency of the Helmholtz resonance with the vibrating element 36 and the operating frequency, the suction capacity of the pump 11a is improved.
 図7(a)は、第1実施形態の流体制御装置101aにおいて、拡張部2のサイズを変えたときの、ポンプの発生空気圧の周波数応答特性を示すグラフである。図7(a)において、横軸は、周波数(Frequency(kHz))を表し、縦軸は、ポンプの空気の吸込圧力(Air pressure(kPa))を表す。なお、吸込圧力は、シミュレーションによって算出した値である。
 シミュレーションに際して、アクチュエータ素子30は、円板状(直径:6mm)とした。また、アクチュエータ素子30の共振周波数(固有振動数)は21kHzとした。内部空間1の開口高さh1(アクチュエータ素子30の第2主面32bと流路板40との距離)を58.5μmとし、拡張部2の開口高さh2(アクチュエータ素子30の第2主面32bと流路板40の窪み部42との距離)は、225μm(166.5μm)、200μm(141.5μm)、175μm(116.5μm)、150μm(91.5μm)、125μm(66.5μm)、100μm(41.5μm)、58.5μm(0μm)とした。なお、括弧内の数値は、拡張部2の開口高さh2と内部空間1の開口高さh1との差(h2-h1)である。
FIG. 7A is a graph showing the frequency response characteristic of the generated air pressure of the pump when the size of the expansion unit 2 is changed in the fluid control device 101a of the first embodiment. In FIG. 7A, the horizontal axis represents frequency (Frequency (kHz)), and the vertical axis represents the air suction pressure (Air pressure (kPa)) of the pump. The suction pressure is a value calculated by simulation.
In the simulation, the actuator element 30 has a disk shape (diameter: 6 mm). The resonance frequency (natural frequency) of the actuator element 30 was set to 21 kHz. The opening height h1 of the internal space 1 (distance between the second main surface 32b of the actuator element 30 and the flow path plate 40) is 58.5 μm, and the opening height h2 of the expansion portion 2 (second main surface of the actuator element 30). The distance between 32b and the recessed portion 42 of the flow path plate 40) is 225 μm (166.5 μm), 200 μm (141.5 μm), 175 μm (116.5 μm), 150 μm (91.5 μm), 125 μm (66.5 μm). , 100 μm (41.5 μm) and 58.5 μm (0 μm). The numerical value in parentheses is the difference (h2-h1) between the opening height h2 of the expansion portion 2 and the opening height h1 of the internal space 1.
 図7(a)のグラフから、拡張部2の開口高さh2(即ち、流体が流れる方向に対して垂直な方向の断面積)を変えることによって、ヘルムホルツ共振の周波数が変動することがわかる。この結果から、ポンプ11aのサイズを小型化した場合であっても、拡張部2のサイズを変えて、ヘルムホルツ共振を利用することでアクチュエータ素子の動作周波数や電源の仕様(印加電圧)を変更せずにポンプ11aの吸込能力を高くすることができることがわかる。ここで、アクチュエータ素子30の動作周波数は、アクチュエータ素子30の共振周波数(固有振動数)とヘルムホルツ共振の共振周波数との間に設定することが好ましい。図7(b)は、図7(a)における周波数が22kHz~26kHzの範囲を拡大したグラフである。図7(b)に示すように、例えばアクチュエータ素子30の動作周波数を23kHz近傍に設定すると、拡張部2のサイズを変えることによって、ポンプの空気の吸込圧力が変化する。 From the graph of FIG. 7A, it can be seen that the frequency of Helmholtz resonance fluctuates by changing the opening height h2 of the expansion portion 2 (that is, the cross-sectional area in the direction perpendicular to the direction in which the fluid flows). From this result, even when the size of the pump 11a is reduced, the operating frequency of the actuator element and the specifications (applied voltage) of the power supply can be changed by changing the size of the expansion unit 2 and using the Helmholtz resonance. It can be seen that the suction capacity of the pump 11a can be increased without this. Here, the operating frequency of the actuator element 30 is preferably set between the resonance frequency (natural frequency) of the actuator element 30 and the resonance frequency of Helmholtz resonance. FIG. 7 (b) is a graph in which the frequency in FIG. 7 (a) is expanded in the range of 22 kHz to 26 kHz. As shown in FIG. 7B, for example, when the operating frequency of the actuator element 30 is set to the vicinity of 23 kHz, the air suction pressure of the pump changes by changing the size of the expansion unit 2.
 次に、第1実施形態の流体制御装置101aの製造方法について説明する。
 図8~図9は、第1実施形態の流体制御装置101aの製造方法を示す図である。
Next, a method of manufacturing the fluid control device 101a of the first embodiment will be described.
8 to 9 are views showing a method of manufacturing the fluid control device 101a of the first embodiment.
 先ず、図8(A)に示すように、弾性基板形成材135の上に、中央に貫通孔31を有する円盤状の振動素子36を形成する。振動素子36は、例えば、次にようにして形成することができる。最初に、弾性基板形成材135の上に、第1電極と、板状圧電体と、第2電極とをこの順に積層して、圧電振動膜を形成する。第1電極、板状圧電体及び第2電極は、例えば、スパッタリング法を用いて成膜することができる。次いで、圧電振動膜を、エッチング処理を用いて、中央に貫通孔を有する円盤状に成形する。 First, as shown in FIG. 8A, a disk-shaped vibrating element 36 having a through hole 31 in the center is formed on the elastic substrate forming material 135. The vibrating element 36 can be formed, for example, as follows. First, the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order on the elastic substrate forming material 135 to form a piezoelectric vibration film. The first electrode, the plate-shaped piezoelectric body, and the second electrode can be formed into a film by using, for example, a sputtering method. Next, the piezoelectric vibrating membrane is formed into a disk shape having a through hole in the center by using an etching process.
 次いで、図8(B)に示すように、振動素子36の周縁部近傍をポジ型レジスト膜パターン139で被覆する。ポジ型レジスト膜パターン139は、例えば、次のようにして形成することができる。最初に、振動素子36と弾性基板形成材135の上にポジ型レジストを塗布してポジ型レジスト膜を形成する。次いで、振動素子36の周縁部近傍にフォトマスクを配置した状態で、ポジ型レジスト膜に紫外線を照射して、振動素子36の周縁部近傍以外の部分を被覆しているポジ型レジスト膜を現像液に対して易溶解性に変質させる。そして、易溶解性に変質したポジ型レジスト膜を現像液で溶解する。 Next, as shown in FIG. 8B, the vicinity of the peripheral edge of the vibrating element 36 is covered with the positive resist film pattern 139. The positive resist film pattern 139 can be formed, for example, as follows. First, a positive resist is applied on the vibrating element 36 and the elastic substrate forming material 135 to form a positive resist film. Next, with the photomask placed near the peripheral edge of the vibrating element 36, the positive resist film is irradiated with ultraviolet rays to develop a positive resist film that covers the portion other than the peripheral edge of the vibrating element 36. It is easily soluble in liquid. Then, the positive resist film that has been altered to be easily soluble is dissolved with a developing solution.
 次いで、図8(C)に示すように、振動素子36とポジ型レジスト膜パターン139の上に、支持部材形成膜150を成膜する。支持部材形成膜150の成膜方法としては、例えば、スピンコート法を用いることができる。 Next, as shown in FIG. 8C, a support member forming film 150 is formed on the vibrating element 36 and the positive resist film pattern 139. As a film forming method for the support member forming film 150, for example, a spin coating method can be used.
 次いで、図8(D)に示すように、支持部材形成膜150に配線パターンを形成する。配線パターンは、振動素子36の第1電極に接続する第1配線51aと、振動素子36の第2電極に接続する第2配線51bとを形成する。第1配線51aは、第1スルーホール52aを介して振動素子36の第1電極に接続する。第2配線51bは、第2スルーホール52bを介して、振動素子36の第2電極に接続する。 Next, as shown in FIG. 8D, a wiring pattern is formed on the support member forming film 150. The wiring pattern forms a first wiring 51a connected to the first electrode of the vibrating element 36 and a second wiring 51b connected to the second electrode of the vibrating element 36. The first wiring 51a is connected to the first electrode of the vibrating element 36 via the first through hole 52a. The second wiring 51b is connected to the second electrode of the vibrating element 36 via the second through hole 52b.
 次いで、図9(E)に示すように、支持部材形成膜150を支持部材50の形状に切断すると共に、ポジ型レジスト膜パターン139を除去する。ポジ型レジスト膜パターンは、例えば、ポジ型レジスト膜パターンに紫外線を照射して、ポジ型レジスト膜パターンを現像液に対して易溶解性に変質させた後、現像液で溶解することによって除去できる。ポジ型レジスト膜パターン139が除去されることによって、振動素子36の周縁部と支持部材形成膜150との間に空隙39が形成される。 Next, as shown in FIG. 9E, the support member forming film 150 is cut into the shape of the support member 50, and the positive resist film pattern 139 is removed. The positive resist film pattern can be removed, for example, by irradiating the positive resist film pattern with ultraviolet rays to easily change the positive resist film pattern into a developing solution and then dissolving the positive resist film pattern in the developing solution. .. By removing the positive resist film pattern 139, a gap 39 is formed between the peripheral edge of the vibrating element 36 and the support member forming film 150.
 次いで、図9(F)に示すように、支持部材50の振動素子36側とは反対側の表面に接着剤161を介して仮基板162を接合して接合体170を得る。仮基板の材料としては、特に制限はなく、ガラス基板、金属基板を用いることができる。 Next, as shown in FIG. 9F, the temporary substrate 162 is bonded to the surface of the support member 50 on the side opposite to the vibrating element 36 side via the adhesive 161 to obtain a bonded body 170. The material of the temporary substrate is not particularly limited, and a glass substrate or a metal substrate can be used.
 次いで、図9(G)に示すように、仮基板162が下側となるように接合体170を反転させ、弾性基板形成材135を弾性基板35の形状に加工し、支持部材50に貫通孔31を形成する。 Next, as shown in FIG. 9 (G), the joint body 170 is inverted so that the temporary substrate 162 is on the lower side, the elastic substrate forming material 135 is processed into the shape of the elastic substrate 35, and the support member 50 has a through hole. 31 is formed.
 そして、図9(H)に示すように、接合体170の接着剤161と仮基板162とを除去する。こうして、支持部材50付きアクチュエータ素子30が得られる。得られた支持部材50付きアクチュエータ素子30と、流路板40とをハウジング20で固定してポンプ11aを形成する。次いで、ポンプ11aの第2開孔部22に容器70を接合することにより、流体制御装置101aが得られる。 Then, as shown in FIG. 9 (H), the adhesive 161 of the bonded body 170 and the temporary substrate 162 are removed. In this way, the actuator element 30 with the support member 50 is obtained. The obtained actuator element 30 with the support member 50 and the flow path plate 40 are fixed by the housing 20 to form the pump 11a. Next, the fluid control device 101a is obtained by joining the container 70 to the second opening portion 22 of the pump 11a.
 以上のように構成された本実施形態の流体制御装置101aでは、ポンプ11aのアクチュエータ素子30は、第1主面32aが支持部材50を介してハウジング20の突起部26に接続し、かつ貫通孔31がハウジング20の第1開孔部21と対向する位置に配置され、流路板40は、アクチュエータ素子30の第2主面32bと対向する位置に、内部空間1を介して配置されている。また、流路板40は、アクチュエータ素子30側の表面41に窪み部42が設けられていて、内部空間1は、アクチュエータ素子30の第2主面32bに対して垂直な方向、すなわち流体が流れる方向に対して垂直な方向に断面積が拡張された拡張部2を含む。このような構成を有するポンプ11aは、ポンプ11aのハウジング20やアクチュエータ素子30のサイズを小型化した場合であっても、可聴帯域以上(20kHz以上)において、ヘルムホルツ共振周波数を低くできる。このため、ポンプ11aのサイズを小型化した場合でも、ヘルムホルツ共振を利用することでアクチュエータ素子の動作周波数や電源の仕様を変更せずにポンプ11aの吸込能力を高くすることができる。 In the fluid control device 101a of the present embodiment configured as described above, in the actuator element 30 of the pump 11a, the first main surface 32a is connected to the protrusion 26 of the housing 20 via the support member 50, and the through hole is formed. 31 is arranged at a position facing the first opening portion 21 of the housing 20, and the flow path plate 40 is arranged at a position facing the second main surface 32b of the actuator element 30 via the internal space 1. .. Further, the flow path plate 40 is provided with a recess 42 on the surface 41 on the actuator element 30 side, and the internal space 1 is in a direction perpendicular to the second main surface 32b of the actuator element 30, that is, a fluid flows. Includes an expansion portion 2 whose cross-sectional area is expanded in a direction perpendicular to the direction. The pump 11a having such a configuration can lower the Helmholtz resonance frequency in the audible band or higher (20 kHz or higher) even when the size of the housing 20 or the actuator element 30 of the pump 11a is reduced. Therefore, even when the size of the pump 11a is reduced, the suction capacity of the pump 11a can be increased by using the Helmholtz resonance without changing the operating frequency of the actuator element or the specifications of the power supply.
 流体制御装置101aでは、内部空間1の拡張部2を形成する凹部が、流路板40に設けられた窪み部42によって形成されている。ただし、凹部の位置は、これに限定されるものではない。凹部は、アクチュエータ素子30の第2主面32bに設けてもよいし、流路板40とアクチュエータ素子30の第2主面32bの両方に設けてもよい。また、窪み部42の代わりに、拡張部2を形成する領域以外の領域に突起部を設けることよって、拡張部2を形成する領域が相対的に凹部となるようにしてもよい。凹部は、アクチュエータ素子30の貫通孔31の外側からアクチュエータ素子30の外周端部までの拡張部2に対応する範囲の領域に設けてもよいし、この範囲に対向する流路板40のアクチュエータ素子30側の表面41の領域に設けてもよい。凹部をこの位置に形成することによって、ヘルムホルツ共振を20kHz以上において、低い共振周波数でより発生させやすくなる。 In the fluid control device 101a, the recess forming the expansion portion 2 of the internal space 1 is formed by the recess portion 42 provided in the flow path plate 40. However, the position of the recess is not limited to this. The recess may be provided on the second main surface 32b of the actuator element 30, or may be provided on both the flow path plate 40 and the second main surface 32b of the actuator element 30. Further, instead of the recessed portion 42, a protrusion may be provided in a region other than the region forming the expansion portion 2, so that the region forming the expansion portion 2 may be relatively recessed. The recess may be provided in a region corresponding to the expansion portion 2 from the outside of the through hole 31 of the actuator element 30 to the outer peripheral end portion of the actuator element 30, or the actuator element of the flow path plate 40 facing this range may be provided. It may be provided in the region of the surface 41 on the 30 side. By forming the recess at this position, Helmholtz resonance is more likely to occur at a low resonance frequency at 20 kHz or higher.
 図10は、第1実施形態に係る流体制御装置の第1変形例を示す断面図であり、流体制御装置を図2と同じ方向で切断した断面図である。図11は、図10のXI-XI線断面図である。
 図10及び図11に示す流体制御装置101bは、アクチュエータ素子30の第2主面32b(弾性基板35の表面)に窪み部33が設けられている点で、流体制御装置101aと相違する。流体制御装置101bによれば、第1実施形態に係る流体制御装置101aと同様の効果を得ることができる。
FIG. 10 is a cross-sectional view showing a first modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG. FIG. 11 is a sectional view taken along line XI-XI of FIG.
The fluid control device 101b shown in FIGS. 10 and 11 differs from the fluid control device 101a in that a recess 33 is provided on the second main surface 32b (the surface of the elastic substrate 35) of the actuator element 30. According to the fluid control device 101b, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained.
 図12は、第1実施形態に係る流体制御装置の第2変形例を示す断面図であり、流体制御装置を図2と同じ方向で切断した断面図である。
 図12に示す流体制御装置101cは、流路板40に窪み部42が設けられ、アクチュエータ素子30の第2主面32bに窪み部33が設けられている点で、流体制御装置101aと相違する。流路板40とアクチュエータ素子30の両方に窪み部を設けることによって、流路板40とアクチュエータ素子30のそれぞれに設ける窪み部の深さを浅くすることができる。このため、流体制御装置101cによれば、第1実施形態に係る流体制御装置101aと同様の効果を得ることができる。
FIG. 12 is a cross-sectional view showing a second modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG.
The fluid control device 101c shown in FIG. 12 differs from the fluid control device 101a in that a recess 42 is provided in the flow path plate 40 and a recess 33 is provided in the second main surface 32b of the actuator element 30. .. By providing the recessed portion in both the flow path plate 40 and the actuator element 30, the depth of the recessed portion provided in each of the flow path plate 40 and the actuator element 30 can be made shallow. Therefore, according to the fluid control device 101c, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained.
 図13は、第1実施形態に係る流体制御装置の第3変形例を示す断面図であり、流体制御装置を図2と同じ方向で切断した断面図である。図14は、図13のXIV-XIV線断面図である。
 図13及び図14に示す流体制御装置101dは、アクチュエータ素子30の第2主面32b(弾性基板35の表面)に第1突起部34aと第2突起部34bが設けられている点で、流体制御装置101aと相違する。第1突起部34aは、アクチュエータ素子30の貫通孔31の周囲に設けられている。第2突起部34bは、アクチュエータ素子30の外周端部の周囲に設けられている。第1突起部34aと第2突起部34bとが設けられていない第2主面32bの領域は、相対的に凹部となる。このため、流体制御装置101dによれば、第1実施形態に係る流体制御装置101aと同様の効果を得ることができる。
FIG. 13 is a cross-sectional view showing a third modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG. FIG. 14 is a sectional view taken along line XIV-XIV of FIG.
The fluid control device 101d shown in FIGS. 13 and 14 is a fluid in that the first protrusion 34a and the second protrusion 34b are provided on the second main surface 32b (the surface of the elastic substrate 35) of the actuator element 30. It is different from the control device 101a. The first protrusion 34a is provided around the through hole 31 of the actuator element 30. The second protrusion 34b is provided around the outer peripheral end of the actuator element 30. The region of the second main surface 32b where the first protrusion 34a and the second protrusion 34b are not provided is relatively a recess. Therefore, according to the fluid control device 101d, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained.
 図15は、第1実施形態に係る流体制御装置の第4変形例を示す断面図であり、流体制御装置を図2と同じ方向で切断した断面図である。
 図15に示す流体制御装置101eは、支持部材50を介して接続するハウジング20の突起部26とアクチュエータ素子30の接続位置が、アクチュエータ素子30が固有振動数で振動するときのノード部Nの外側の位置とされ、流路板40に設けられている窪み部42が円形状とされている点で、流体制御装置101aと相違する。突起部26がノード部Nの外側に位置する場合、アクチュエータ素子30の振動は、突起部26と接続する位置より内側の部分の方が外側の部分よりも大きくなる。よって、流体制御装置101eでは、流路板40の窪み部42は、アクチュエータ素子30の貫通孔31と対向する部分も含めて凹状とされている。このため、流体制御装置101eによれば、第1実施形態に係る流体制御装置101aと同様の効果を得ることができる。なお、流体制御装置101eにおいて、アクチュエータ素子30の貫通孔31に対向する部分の流路板40の窪み部42は、アクチュエータ素子30の外周縁の表面に対して低くなっていればよく、窪み部42のその他の部分と平面とする必要はない。言い換えれば、流路板40の窪み部42は、アクチュエータ素子30の貫通孔31に対向する部分を中央とした円環状(ドーナツ状)であって、円環状の外側部分よりも、中央がやや深さが浅い形状であってもよい。
FIG. 15 is a cross-sectional view showing a fourth modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG.
In the fluid control device 101e shown in FIG. 15, the connection position between the protrusion 26 of the housing 20 and the actuator element 30 connected via the support member 50 is outside the node portion N when the actuator element 30 vibrates at a natural frequency. It is different from the fluid control device 101a in that the recessed portion 42 provided in the flow path plate 40 has a circular shape. When the protrusion 26 is located outside the node portion N, the vibration of the actuator element 30 is greater at the inner portion than at the position where it is connected to the protrusion 26 than at the outer portion. Therefore, in the fluid control device 101e, the recessed portion 42 of the flow path plate 40 is concave, including the portion facing the through hole 31 of the actuator element 30. Therefore, according to the fluid control device 101e, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained. In the fluid control device 101e, the recessed portion 42 of the flow path plate 40 in the portion facing the through hole 31 of the actuator element 30 may be lower than the surface of the outer peripheral edge of the actuator element 30. It does not have to be flat with the rest of 42. In other words, the recessed portion 42 of the flow path plate 40 has an annular shape (doughnut shape) centered on the portion facing the through hole 31 of the actuator element 30, and is slightly deeper in the center than the outer portion of the annular shape. It may have a shallow shape.
 支持部材50を介して接続するハウジング20の突起部26とアクチュエータ素子30の接続位置が、アクチュエータ素子30が固有振動数で振動するときのノード部Nの内側の位置とされている場合、アクチュエータ素子30の振動は、突起部26と接続する位置より内側の部分と外側の部分とでほぼ同じとすることができる。したがって、この場合、流路板40の窪み部42は、アクチュエータ素子30の貫通孔31に対向する部分の中央とした円環状(ドーナツ状)であって、中央の高さとアクチュエータ素子の外周縁の高さとが同じ形状とすることができる。 When the connection position between the protrusion 26 of the housing 20 connected via the support member 50 and the actuator element 30 is the position inside the node portion N when the actuator element 30 vibrates at a natural frequency, the actuator element The vibration of 30 can be substantially the same in the portion inside and the portion outside the position where the protrusion 26 is connected. Therefore, in this case, the recessed portion 42 of the flow path plate 40 is an annular shape (doughnut shape) centered on the portion of the actuator element 30 facing the through hole 31, and has a central height and an outer peripheral edge of the actuator element. It can have the same shape as the height.
 なお、本変形例では、支持部材50を介して接続するハウジング20の突起部26とアクチュエータ素子30の接続位置が、アクチュエータ素子30が固有振動数で振動するときのノード部Nの外側の位置とされているが、ノード部Nの位置であってもよい。 In this modification, the connection position between the protrusion 26 of the housing 20 connected via the support member 50 and the actuator element 30 is the position outside the node portion N when the actuator element 30 vibrates at a natural frequency. However, it may be the position of the node portion N.
 図16は、第1実施形態に係る流体制御装置の第5変形例を示す断面図であり、流体制御装置を図2と同じ方向で切断した断面図である。図17は、図16のXVII-XVII線断面図である。
 図16及び図17に示す流体制御装置101fは、流路板40が、流路基板44と、流路基板44のアクチュエータ素子30側の表面に配置された第1凸部45aと第2凸部45bとから構成されている点で流体制御装置101aと相違する。第1凸部45aと第2凸部45bとの間に位置する窪み部42によって、内部空間1に拡張部2が形成される。第1凸部45aは、第1突起部34aは、アクチュエータ素子30の貫通孔31に対向する位置に設けられている。第2凸部45bは、アクチュエータ素子30の周縁部に対向する位置に設けられている。
FIG. 16 is a cross-sectional view showing a fifth modification of the fluid control device according to the first embodiment, and is a cross-sectional view of the fluid control device cut in the same direction as in FIG. FIG. 17 is a sectional view taken along line XVII-XVII of FIG.
In the fluid control device 101f shown in FIGS. 16 and 17, the flow path plate 40 has a flow path substrate 44 and a first convex portion 45a and a second convex portion arranged on the surface of the flow path substrate 44 on the actuator element 30 side. It differs from the fluid control device 101a in that it is composed of 45b. The expansion portion 2 is formed in the internal space 1 by the recessed portion 42 located between the first convex portion 45a and the second convex portion 45b. The first convex portion 45a is provided at a position where the first protrusion 34a faces the through hole 31 of the actuator element 30. The second convex portion 45b is provided at a position facing the peripheral edge portion of the actuator element 30.
 流体制御装置101fは、アクチュエータ素子30が、弾性基板35側の表面が第1主面32aとされ、振動素子36側の表面が第2主面32bとされている点で流体制御装置101aと相違する。支持部材50は、弾性基板35に接続されている。第1配線51aは、支持部材50と弾性基板35と振動素子36に形成された第1スルーホール52aを介して振動素子36の第1電極(不図示)と接続されている。第2配線51bは、支持部材50と弾性基板35に形成された第2スルーホール52bを介して振動素子36の第2電極(不図示)と接続されている。 The fluid control device 101f differs from the fluid control device 101a in that the surface of the actuator element 30 on the elastic substrate 35 side is the first main surface 32a and the surface on the vibration element 36 side is the second main surface 32b. do. The support member 50 is connected to the elastic substrate 35. The first wiring 51a is connected to the first electrode (not shown) of the vibrating element 36 via the support member 50, the elastic substrate 35, and the first through hole 52a formed in the vibrating element 36. The second wiring 51b is connected to the second electrode (not shown) of the vibrating element 36 via the support member 50 and the second through hole 52b formed in the elastic substrate 35.
 支持部材50は、振動素子36側とは反対側の表面に樹脂皮膜53が設けられている。樹脂皮膜53の材料としては、例えば、ポリイミドを用いることができる。樹脂皮膜53の貫通孔31の周囲には、円環状の振動調整板54が配置されている。振動調整板54の材料としては、例えば、ニッケルなどの金属を用いることができる。金属性の振動調整板54は、シード層55を介して電気鋳造により形成することができる。振動調整板54は、アクチュエータ素子30に荷重を加える錘となって、アクチュエータ素子30の動作周波数を調整する。 The support member 50 is provided with a resin film 53 on the surface opposite to the vibration element 36 side. As the material of the resin film 53, for example, polyimide can be used. An annular vibration adjusting plate 54 is arranged around the through hole 31 of the resin film 53. As the material of the vibration adjusting plate 54, for example, a metal such as nickel can be used. The metallic vibration adjusting plate 54 can be formed by electroplating via the seed layer 55. The vibration adjusting plate 54 serves as a weight that applies a load to the actuator element 30, and adjusts the operating frequency of the actuator element 30.
 流体制御装置101fは、ハウジング20の第2部材24が、硬質部材60と弾性部材61とから形成されている。硬質部材60の材料としては、例えば、シリコンを用いることができる。弾性部材61の材料としては、樹脂材料を用いることができる。また、樹脂皮膜53と第3部材25との間に金属部材62が配置されている。金属部材62の材料としては、例えば、ニッケルなど電気鋳造によって形成可能な金属を用いることができる。 In the fluid control device 101f, the second member 24 of the housing 20 is formed of a hard member 60 and an elastic member 61. As the material of the hard member 60, for example, silicon can be used. As the material of the elastic member 61, a resin material can be used. Further, a metal member 62 is arranged between the resin film 53 and the third member 25. As the material of the metal member 62, for example, a metal that can be formed by electroplating such as nickel can be used.
 流体制御装置101fによれば、内部空間1に拡張部2が形成されているので、第1実施形態に係る流体制御装置101aと同様の効果を得ることができる。また、振動調整板54を用いることによって、アクチュエータ素子30の動作周波数をアクチュエータ素子30固有の共振周波数より低くすることができる。一般に、アクチュエータ素子30の小型化に伴って、アクチュエータ素子30固有の共振周波数は高周波となる傾向があるが、振動調整板54を用いることによってアクチュエータ素子30のサイズに関わらず、動作周波数を調整することが可能となる。 According to the fluid control device 101f, since the expansion portion 2 is formed in the internal space 1, the same effect as that of the fluid control device 101a according to the first embodiment can be obtained. Further, by using the vibration adjusting plate 54, the operating frequency of the actuator element 30 can be made lower than the resonance frequency peculiar to the actuator element 30. Generally, with the miniaturization of the actuator element 30, the resonance frequency peculiar to the actuator element 30 tends to be high, but the operating frequency is adjusted by using the vibration adjusting plate 54 regardless of the size of the actuator element 30. It becomes possible.
 第5変形例の流体制御装置101fは、例えば、図18~図20に示す製造方法を用いて製造することができる。
 先ず、図18(A)に示すように、硬質基板160の上に、中央に貫通孔31を有する円盤状の振動素子36を形成する。振動素子36は、例えば、硬質基板160側から第1電極と、板状圧電体と、第2電極とがこの順で積層された積層体である。振動素子36の形成方法は、第1実施形態に係る流体制御装置101aの場合と同じである。
The fluid control device 101f of the fifth modification can be manufactured, for example, by using the manufacturing methods shown in FIGS. 18 to 20.
First, as shown in FIG. 18A, a disk-shaped vibrating element 36 having a through hole 31 in the center is formed on the hard substrate 160. The vibrating element 36 is, for example, a laminated body in which the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order from the hard substrate 160 side. The method of forming the vibrating element 36 is the same as that of the fluid control device 101a according to the first embodiment.
 次いで、図18(B)に示すように、振動素子36の硬質基板160側と反対側の表面に弾性基板35を形成し、振動素子36の周囲に間隔をあけて硬質基板160の表面に弾性部材61を形成する。弾性基板35及び弾性部材61は、例えば、次のようにして形成することができる。最初に、振動素子36と硬質基板160の上に弾性膜を形成する。次いで、振動素子36の周囲の弾性膜を除去して、弾性膜を弾性基板35と弾性部材61とに分離する。 Next, as shown in FIG. 18B, an elastic substrate 35 is formed on the surface of the vibrating element 36 opposite to the hard substrate 160 side, and is elastic on the surface of the hard substrate 160 at intervals around the vibrating element 36. The member 61 is formed. The elastic substrate 35 and the elastic member 61 can be formed, for example, as follows. First, an elastic film is formed on the vibrating element 36 and the hard substrate 160. Next, the elastic film around the vibrating element 36 is removed, and the elastic film is separated into the elastic substrate 35 and the elastic member 61.
 次いで、図18(C)に示すように、振動素子36の周縁部近傍をポジ型レジスト膜パターン139で被覆する。ポジ型レジスト膜パターン139の形成方法は、第1実施形態に係る流体制御装置101aの場合と同じである。 Next, as shown in FIG. 18C, the vicinity of the peripheral edge of the vibrating element 36 is covered with the positive resist film pattern 139. The method for forming the positive resist film pattern 139 is the same as that for the fluid control device 101a according to the first embodiment.
 次に、図18(D)に示すように、弾性基板35と弾性部材61とポジ型レジスト膜パターン139の上に支持部材形成膜150を成膜し、支持部材形成膜150に配線パターンを形成する。支持部材形成膜150の形成方法は、第1実施形態に係る流体制御装置101aの場合と同じである。配線パターンは、振動素子36の第1電極に接続する第1配線51aと、振動素子36の第2電極に接続する第2配線51bとを形成する。第1配線51aは、第1スルーホール52aを介して振動素子36の第1電極に接続する。第2配線51bは、第2スルーホール52bを介して、振動素子36の第2電極に接続する。 Next, as shown in FIG. 18D, a support member forming film 150 is formed on the elastic substrate 35, the elastic member 61, and the positive resist film pattern 139, and a wiring pattern is formed on the support member forming film 150. do. The method for forming the support member forming film 150 is the same as that for the fluid control device 101a according to the first embodiment. The wiring pattern forms a first wiring 51a connected to the first electrode of the vibrating element 36 and a second wiring 51b connected to the second electrode of the vibrating element 36. The first wiring 51a is connected to the first electrode of the vibrating element 36 via the first through hole 52a. The second wiring 51b is connected to the second electrode of the vibrating element 36 via the second through hole 52b.
 次いで、図19(E)に示すように、支持部材形成膜150の上に樹脂膜153を成膜する。樹脂膜153の成膜方法としては、例えば、スピンコート法を用いることができる。こうして、硬質基板160の上に、振動素子36と支持部材形成膜150と樹脂膜153とがこの順で積層した積層体190が得られる。 Next, as shown in FIG. 19E, a resin film 153 is formed on the support member forming film 150. As a film forming method for the resin film 153, for example, a spin coating method can be used. In this way, a laminated body 190 in which the vibrating element 36, the support member forming film 150, and the resin film 153 are laminated in this order is obtained on the hard substrate 160.
 次いで、図19(F)に示すように、積層体190の樹脂膜153の上にシード層55を形成し、シード層55の上に電気鋳造により金属層を形成する。シード層55は、振動素子36の貫通孔31に対向する位置の周辺と、弾性部材61に対向する領域とに形成する。振動素子36の貫通孔31に対向する位置の周辺に形成された金属層は振動調整板54であり、弾性部材61に対向する領域に形成された金属層は、金属部材62である。 Next, as shown in FIG. 19F, a seed layer 55 is formed on the resin film 153 of the laminated body 190, and a metal layer is formed on the seed layer 55 by electroplating. The seed layer 55 is formed around a position facing the through hole 31 of the vibrating element 36 and a region facing the elastic member 61. The metal layer formed around the position facing the through hole 31 of the vibrating element 36 is the vibration adjusting plate 54, and the metal layer formed in the region facing the elastic member 61 is the metal member 62.
 次いで、図19(G)に示すように、振動素子36貫通孔31に沿って、弾性基板35と支持部材形成膜150と樹脂膜153に貫通孔を設けると共に、硬質基板160の弾性部材61に対向する領域以外の部分を除去して硬質部材60を形成する。これにより、積層体190の振動素子36とポジ型レジスト膜パターン139とを露出させる。 Next, as shown in FIG. 19 (G), through holes are provided in the elastic substrate 35, the support member forming film 150, and the resin film 153 along the vibrating element 36 through hole 31, and the elastic member 61 of the hard substrate 160 is provided with through holes. The hard member 60 is formed by removing the portions other than the facing regions. As a result, the vibrating element 36 of the laminated body 190 and the positive resist film pattern 139 are exposed.
 次いで、図20(H)に示すように、振動調整板54と金属部材62とが下側となるように積層体190を反転させ、ポジ型レジスト膜パターン139を除去する。ポジ型レジスト膜パターンの除去方法は、第1実施形態に係る流体制御装置101aの場合と同じである。 Next, as shown in FIG. 20 (H), the laminated body 190 is inverted so that the vibration adjusting plate 54 and the metal member 62 are on the lower side, and the positive resist film pattern 139 is removed. The method for removing the positive resist film pattern is the same as that for the fluid control device 101a according to the first embodiment.
 次いで、図20(I)に示すように、流路板形成部材140を用意し、流路板形成部材140と、積層体190の硬質部材60とを接合して接合体192を形成する。流路板形成部材140は流路基板44と、流路基板44の表面に配置された第1凸部45aと第2凸部45bとから構成されている。流路板形成部材140と積層体190は、流路板形成部材140の第1凸部45aと積層体190のアクチュエータ素子30の貫通孔31とが対向するように接合される。 Next, as shown in FIG. 20 (I), a flow path plate forming member 140 is prepared, and the flow path plate forming member 140 and the hard member 60 of the laminated body 190 are joined to form a joined body 192. The flow path plate forming member 140 is composed of a flow path substrate 44, a first convex portion 45a and a second convex portion 45b arranged on the surface of the flow path substrate 44. The flow path plate forming member 140 and the laminated body 190 are joined so that the first convex portion 45a of the flow path plate forming member 140 and the through hole 31 of the actuator element 30 of the laminated body 190 face each other.
 次いで、図20(J)に示すように、接合体192を切断して、支持部材50付きアクチュエータ素子30と流路板40とが一体となった構造体193が得られる。得られた構造体193の流路板40と第1部材23とを接合し、構造体193の金属部材62と第3部材25とを接合することによって、ポンプ11aが形成される。次いで、ポンプ11aの第2開孔部22に容器70を接合することにより、流体制御装置101aが得られる。 Next, as shown in FIG. 20 (J), the joint body 192 is cut to obtain a structure 193 in which the actuator element 30 with the support member 50 and the flow path plate 40 are integrated. The pump 11a is formed by joining the flow path plate 40 of the obtained structure 193 and the first member 23, and joining the metal member 62 and the third member 25 of the structure 193. Next, the fluid control device 101a is obtained by joining the container 70 to the second opening portion 22 of the pump 11a.
 第1実施形態およびその変形例に係る流体制御装置101a~101eのポンプ11a~11eでは、アクチュエータ素子30の第1主面32aが支持部材50を介してハウジング20の突起部26に接続しているが、ポンプの構成はこれに限定されるものではない。例えば、アクチュエータ素子30がハウジング20と接触しないように支持部材によって支持されていてもよい。 In the pumps 11a to 11e of the fluid control devices 101a to 101e according to the first embodiment and its modification, the first main surface 32a of the actuator element 30 is connected to the protrusion 26 of the housing 20 via the support member 50. However, the configuration of the pump is not limited to this. For example, the actuator element 30 may be supported by a support member so as not to come into contact with the housing 20.
[第2実施形態]
 図21は、第2実施形態に係るポンプの斜視図である。図22は、図15のXXII-XXII線断面図である。図23は、第2実施形態に係る流体制御装置で用いられるアクチュエータ素子とその支持部材の斜視図である。
[Second Embodiment]
FIG. 21 is a perspective view of the pump according to the second embodiment. FIG. 22 is a sectional view taken along line XXII-XXII of FIG. FIG. 23 is a perspective view of an actuator element and a support member thereof used in the fluid control device according to the second embodiment.
 第2実施形態に係るポンプ12aは、図21~図23に示すように、ハウジング20’と、アクチュエータ素子30’と、アクチュエータ素子30’を支持する支持部材50’と、を備える。 As shown in FIGS. 21 to 23, the pump 12a according to the second embodiment includes a housing 20', an actuator element 30', and a support member 50'that supports the actuator element 30'.
 ハウジング20’は、第1開孔部21と第2開孔部22とを有する。第1開孔部21は流体導入口であり、第2開孔部22は流体吐出口である。ハウジング20’は、第2開孔部22を有する有底角筒状体である第4部材27と、第1開孔部21を有する有底角筒状体である第5部材28とから構成されている。 The housing 20'has a first opening portion 21 and a second opening portion 22. The first opening portion 21 is a fluid introduction port, and the second opening portion 22 is a fluid discharge port. The housing 20'consists of a fourth member 27 which is a bottomed square cylinder having a second opening portion 22 and a fifth member 28 which is a bottomed square cylinder having a first opening portion 21. Has been done.
 ハウジング20’の第4部材27と第5部材28の間には支持部材50’が配置されている。つまり、支持部材50’は第4部材27と第5部材28とで挟持されている。これにより支持部材50’はハウジング20に固定される。支持部材50’をハウジング20’に固定する方法は、これに限定されるものではない。 A support member 50'is arranged between the fourth member 27 and the fifth member 28 of the housing 20'. That is, the support member 50'is sandwiched between the fourth member 27 and the fifth member 28. As a result, the support member 50'is fixed to the housing 20. The method of fixing the support member 50'to the housing 20' is not limited to this.
 第4部材27は、第1実施形態の流体制御装置101aの第1部材23と同様の構成とすることができる。第5部材28は、第1開孔部21の周囲に窪み部29が設けられていること以外は、第1実施形態の流体制御装置101aの第3部材25と同様の構成とすることができる。窪み部29は、第1開孔部21を中心とした円環状(ドーナツ状)に形成されている。窪み部29は、断面が円弧状に窪んだ湾曲面とされていてもよい。 The fourth member 27 can have the same configuration as the first member 23 of the fluid control device 101a of the first embodiment. The fifth member 28 can have the same configuration as the third member 25 of the fluid control device 101a of the first embodiment, except that the recessed portion 29 is provided around the first opening portion 21. .. The recessed portion 29 is formed in an annular shape (doughnut shape) centered on the first opening portion 21. The recessed portion 29 may be a curved surface having an arcuate cross section.
 アクチュエータ素子30’は、貫通孔31を有しないこと以外は、第1実施形態の流体制御装置101aのアクチュエータ素子30と同様の構成とすることができる。 The actuator element 30'can have the same configuration as the actuator element 30 of the fluid control device 101a of the first embodiment except that it does not have a through hole 31.
 アクチュエータ素子30’は、弾性基板35がハウジング20’の第1開孔部21と対向する位置に内部空間1を介して配置されている。以下、本実施形態において、ハウジング20の第1開孔部21に対向する側のアクチュエータ素子30’の表面を第1主面32aと呼び、その反対側の表面を第2主面32bと呼ぶことがある。なお、本実施形態では、アクチュエータ素子30’の第1主面32aは、弾性基板35側の表面で、第2主面32bは、振動素子36側の表面とされているが、これに限定されるものではない。振動素子36側の表面を第1主面32aとし、弾性基板35側の表面を第2主面32bとしてもよい。 The actuator element 30'is arranged via the internal space 1 at a position where the elastic substrate 35 faces the first opening portion 21 of the housing 20'. Hereinafter, in the present embodiment, the surface of the actuator element 30'on the side facing the first opening portion 21 of the housing 20 is referred to as a first main surface 32a, and the surface on the opposite side thereof is referred to as a second main surface 32b. There is. In the present embodiment, the first main surface 32a of the actuator element 30'is the surface on the elastic substrate 35 side, and the second main surface 32b is the surface on the vibration element 36 side, but the present invention is limited to this. It's not something. The surface on the vibrating element 36 side may be the first main surface 32a, and the surface on the elastic substrate 35 side may be the second main surface 32b.
 内部空間1は、アクチュエータ素子30’の第1主面32aに面する空間であって、アクチュエータ素子30’の第1主面32aに沿って中心から外側に向かって広がっており、ハウジング20’の内部に導入された流体の流路となる。すなわち、内部空間1は、アクチュエータ素子30’が振動することによって、流体が流れる流路である。第5部材28に設けられている窪み部29によって、内部空間1に、流体が流れる方向に対して垂直な方向の断面積が拡張された拡張部2が形成される。 The internal space 1 is a space facing the first main surface 32a of the actuator element 30', and extends from the center to the outside along the first main surface 32a of the actuator element 30', and is formed in the housing 20'. It becomes the flow path of the fluid introduced inside. That is, the internal space 1 is a flow path through which the fluid flows due to the vibration of the actuator element 30'. The recessed portion 29 provided in the fifth member 28 forms an expanded portion 2 in the internal space 1 in which the cross-sectional area in the direction perpendicular to the direction in which the fluid flows is expanded.
 支持部材50’は、幅方向(第1配線51aと第2配線51bとが延びる方向に対して垂直となる方向)の長さが、アクチュエータ素子30の直径よりも小さい帯状とされていること以外は、第1実施形態の流体制御装置101aの支持部材50と同様の構成とされている。 The support member 50'is in a strip shape whose length in the width direction (direction perpendicular to the direction in which the first wiring 51a and the second wiring 51b extend) is smaller than the diameter of the actuator element 30. Has the same configuration as the support member 50 of the fluid control device 101a of the first embodiment.
 以上のような構成とされたポンプ12aは、次のようにして流体を輸送する。
 第1配線51aと第2配線51bを介して、振動素子36の第1電極38aと第2電極38bに電圧を印加する。これにより、振動素子36が振動する。この振動素子36が振動すると、弾性基板35を含むアクチュエータ素子30’が振動する。アクチュエータ素子30’が振動することによって、流体が第1開孔部21から、ハウジング20’の内部に導入される。流体は、アクチュエータ素子30’と第5部材28との間の内部空間1を、アクチュエータ素子30’の第1主面32aに沿って流れる。内部空間1の拡張部2を通った流体は、次いで、第2開孔部22から吐出される。この流体の流れによって、内部空間1の拡張部2を横切る流体がヘルムホルツ共振する。このヘルムホルツ共振の周波数と振動素子と動作周波数とが整合することによって、ポンプ12aの吸込能力が向上する。
The pump 12a having the above configuration transports the fluid as follows.
A voltage is applied to the first electrode 38a and the second electrode 38b of the vibrating element 36 via the first wiring 51a and the second wiring 51b. As a result, the vibrating element 36 vibrates. When the vibrating element 36 vibrates, the actuator element 30'including the elastic substrate 35 vibrates. When the actuator element 30'vibrates, the fluid is introduced into the housing 20'from the first opening portion 21. The fluid flows in the internal space 1 between the actuator element 30'and the fifth member 28 along the first main surface 32a of the actuator element 30'. The fluid that has passed through the expansion portion 2 of the internal space 1 is then discharged from the second opening portion 22. This fluid flow causes the fluid that crosses the extension 2 of the interior space 1 to resonate with Helmholtz. By matching the frequency of this Helmholtz resonance with the vibrating element and the operating frequency, the suction capacity of the pump 12a is improved.
 以上のように構成された本実施形態のポンプ12aでは、アクチュエータ素子30’は、第1主面32aがハウジング20’の第1開孔部21と対向する位置に内部空間1を介して配置されている。また、ハウジング20’の第5部材28のアクチュエータ素子30’側の表面に窪み部29が設けられていて、内部空間1は、流体が流れる方向に対して垂直な方向の断面積が拡張された拡張部2を含む。このような構成を有するポンプ12aは、ポンプ12aのハウジング20’やアクチュエータ素子30’のサイズを小型化した場合であっても、20kHz以上において、低い周波数でヘルムホルツ共振を発生させやすい。このため、ポンプ12aのサイズを小型化した場合でも、ポンプ12aの吸込能力を高くすることができる。 In the pump 12a of the present embodiment configured as described above, the actuator element 30'is arranged via the internal space 1 at a position where the first main surface 32a faces the first opening portion 21 of the housing 20'. ing. Further, a recess 29 is provided on the surface of the fifth member 28 of the housing 20'on the actuator element 30' side, and the internal space 1 has an expanded cross-sectional area in a direction perpendicular to the direction in which the fluid flows. Includes expansion unit 2. The pump 12a having such a configuration tends to generate Helmholtz resonance at a low frequency at 20 kHz or higher even when the size of the housing 20'or the actuator element 30' of the pump 12a is reduced. Therefore, even when the size of the pump 12a is reduced, the suction capacity of the pump 12a can be increased.
 ポンプ12aでは、内部空間1の拡張部2を形成する凹部が、ハウジング20’の第5部材28に設けられた窪み部29によって形成されている。ただし、凹部の位置は、これに限定されるものではない。凹部は、アクチュエータ素子30’の第1主面32aに設けてもよいし、ハウジング20’の第5部材28とアクチュエータ素子30’の第1主面32aの両方に設けてもよい。また、窪み部29の代わりに、拡張部2を形成する領域以外の領域に突起部を設けることよって、拡張部2を形成する領域が相対的に凹部となるようにしてもよい。凹部は、アクチュエータ素子30の貫通孔31の外側からアクチュエータ素子30’の外周端部までの拡張部2に対応する範囲の領域に設けてもよいし、この範囲に対向する第5部材28のアクチュエータ素子30側の表面の領域に設けてもよい。凹部をこの位置に形成することによって、ヘルムホルツ共振を20kHz以上において、低い共振周波数でより発生させやすくなる。なお、窪み部29の内半径は第1開孔部21の半径よりも大きく、窪み部29の外半径はアクチュエータ素子30が固有振動数で振動するときに生じるノード部の半径以下であると好ましい。本実施形態では、窪み部29の外半径はノード部の半径と一致している。すなわち、窪み部29の外縁は、アクチュエータ素子30が固有振動数で振動するときに生じるノード部と対向している。 In the pump 12a, the recess forming the expansion portion 2 of the internal space 1 is formed by the recess 29 provided in the fifth member 28 of the housing 20'. However, the position of the recess is not limited to this. The recess may be provided on the first main surface 32a of the actuator element 30', or may be provided on both the fifth member 28 of the housing 20' and the first main surface 32a of the actuator element 30'. Further, instead of the recessed portion 29, a protrusion may be provided in a region other than the region forming the expanded portion 2, so that the region forming the expanded portion 2 becomes a relatively recessed portion. The recess may be provided in a region corresponding to the expansion portion 2 from the outside of the through hole 31 of the actuator element 30 to the outer peripheral end portion of the actuator element 30', or the actuator of the fifth member 28 facing this range may be provided. It may be provided in the area of the surface on the element 30 side. By forming the recess at this position, Helmholtz resonance is more likely to occur at a low resonance frequency at 20 kHz or higher. The inner radius of the recessed portion 29 is larger than the radius of the first opening portion 21, and the outer radius of the recessed portion 29 is preferably equal to or less than the radius of the node portion generated when the actuator element 30 vibrates at the natural frequency. .. In the present embodiment, the outer radius of the recessed portion 29 coincides with the radius of the node portion. That is, the outer edge of the recessed portion 29 faces the node portion generated when the actuator element 30 vibrates at the natural frequency.
 図24は、第2実施形態に係るポンプの第1変形例を示す断面図であり、ポンプを図22と同じ方向で切断した断面図である。
 図24に示すポンプ12bは、アクチュエータ素子30’の第1主面32a(弾性基板35の表面)に窪み部33が設けられている点で、ポンプ12aと相違する。ポンプ12bによれば、第2実施形態に係るポンプ12aと同様の効果を得ることができる。
FIG. 24 is a cross-sectional view showing a first modification of the pump according to the second embodiment, and is a cross-sectional view of the pump cut in the same direction as in FIG. 22.
The pump 12b shown in FIG. 24 differs from the pump 12a in that a recess 33 is provided on the first main surface 32a (the surface of the elastic substrate 35) of the actuator element 30'. According to the pump 12b, the same effect as that of the pump 12a according to the second embodiment can be obtained.
 図25は、第2実施形態に係るポンプの第2変形例を示す断面図であり、ポンプを図22と同じ方向で切断した断面図である。
 図25に示すポンプ12cは、ハウジング20’の第5部材28に窪み部29が設けられ、アクチュエータ素子30の第1主面32aに窪み部33が設けられている点で、ポンプ12aと相違する。ハウジング20’の第5部材28とアクチュエータ素子30の両方に窪み部を設けることによって、ハウジング20’の第5部材28とアクチュエータ素子30’のそれぞれに設ける窪み部の深さを浅くすることができる。このため、ポンプ12cによれば、第2実施形態に係るポンプ12aと同様の効果と共に、窪み部を設けることによるハウジング20’の第5部材28とアクチュエータ素子30’の強度の低下を抑えることができる。
FIG. 25 is a cross-sectional view showing a second modification of the pump according to the second embodiment, and is a cross-sectional view of the pump cut in the same direction as in FIG. 22.
The pump 12c shown in FIG. 25 differs from the pump 12a in that a recess 29 is provided in the fifth member 28 of the housing 20'and a recess 33 is provided in the first main surface 32a of the actuator element 30. .. By providing the recessed portion in both the fifth member 28 of the housing 20'and the actuator element 30, the depth of the recessed portion provided in each of the fifth member 28 of the housing 20'and the actuator element 30'can be made shallow. .. Therefore, according to the pump 12c, it is possible to suppress a decrease in the strength of the fifth member 28 of the housing 20'and the actuator element 30' due to the provision of the recessed portion, as well as the same effect as that of the pump 12a according to the second embodiment. can.
 図26は、第1実施形態に係るポンプの別の変形例を示す断面図であり、ポンプを図22と同じ方向で切断した断面図である。
 図26に示すポンプ12dは、アクチュエータ素子30’の第1主面32a(弾性基板35の表面)に第1突起部34aと第2突起部34bが設けられている点で、ポンプ12aと相違する。第1突起部34aは、アクチュエータ素子30’の貫通孔31の周囲に設けられている。第2突起部34bは、アクチュエータ素子30’の外周端部の周囲に設けられている。第1突起部34aと第2突起部34bとが設けられていない第1主面32aの領域は、相対的に凹部となる。このため、ポンプ12dによれば、第2実施形態に係るポンプ12aと同様の効果を得ることができる。
FIG. 26 is a cross-sectional view showing another modification of the pump according to the first embodiment, and is a cross-sectional view of the pump cut in the same direction as in FIG. 22.
The pump 12d shown in FIG. 26 differs from the pump 12a in that the first protrusion 34a and the second protrusion 34b are provided on the first main surface 32a (the surface of the elastic substrate 35) of the actuator element 30'. .. The first protrusion 34a is provided around the through hole 31 of the actuator element 30'. The second protrusion 34b is provided around the outer peripheral end of the actuator element 30'. The region of the first main surface 32a where the first protrusion 34a and the second protrusion 34b are not provided is relatively a recess. Therefore, according to the pump 12d, the same effect as that of the pump 12a according to the second embodiment can be obtained.
[第3実施形態]
 図27は、第3実施形態に係る流体制御装置の断面図である。図28の(a)は図27のA-A線断面図であって、(b)は図27のB-B線断面図であり、(c)は図27のC-C線断面図である。
[Third Embodiment]
FIG. 27 is a cross-sectional view of the fluid control device according to the third embodiment. 28A is a sectional view taken along line AA of FIG. 27, FIG. 28B is a sectional view taken along line BB of FIG. 27, and FIG. 28C is a sectional view taken along line CC of FIG. 27. be.
 第3実施形態に係る流体制御装置103は、図27~図28に示すように、ポンプ12aと、ポンプ12aから送られた流体を一時的に貯留する容器70と、ポンプ12aと容器70を接続するバルブ80と、を備える。流体制御装置103のポンプ12aは、第2実施形態に係るポンプ12aと同じ構成である。 As shown in FIGS. 27 to 28, the fluid control device 103 according to the third embodiment connects the pump 12a, the container 70 for temporarily storing the fluid sent from the pump 12a, and the pump 12a and the container 70. The valve 80 is provided. The pump 12a of the fluid control device 103 has the same configuration as the pump 12a according to the second embodiment.
 バルブ80は、上下方向に向けて開口し、外側断面が円形で、内側断面が四角形の筒管81と、筒管81の内部に配置されている弁83とボール86と、を備える。筒管81は、外部に接続する取出口82を有する。弁83は、上下方向に開口した第1流路孔84と、一方の端部が下方に向けて開口し、他方の端部が取出口82と接続する第2流路孔85とを有する。ボール86は、弁83の下方に配置されている。 The valve 80 includes a tubular tube 81 that opens in the vertical direction, has a circular outer cross section, and has a quadrangular inner cross section, and a valve 83 and a ball 86 arranged inside the tubular tube 81. The tube 81 has an outlet 82 connected to the outside. The valve 83 has a first flow path hole 84 that opens in the vertical direction, and a second flow path hole 85 that has one end opened downward and the other end connects to the outlet 82. The ball 86 is located below the valve 83.
 ポンプ12aが駆動して、流体を容器70に貯留する場合は、ボール86は、ポンプ12aから送られた流体に押されて上方に移動して、第2流路孔85の下方の開口を閉じる。これによって、流体は、第1流路孔84を通って容器70に送られる。一方、ポンプ12aが静止して、容器70に貯留された流体を外部に取り出す場合は、ボール86は下方に移動して、ポンプ12aの第2開孔部22を閉じる。これによって、流体は、第1流路孔84を通って弁83の下方に流れ、その弁83の下方に流れた流体が、第2流路孔85を通って、取出口82を介して外部に取り出される。 When the pump 12a is driven to store the fluid in the container 70, the ball 86 is pushed upward by the fluid sent from the pump 12a and moves upward to close the opening below the second flow path hole 85. .. As a result, the fluid is sent to the container 70 through the first flow path hole 84. On the other hand, when the pump 12a is stationary and the fluid stored in the container 70 is taken out to the outside, the ball 86 moves downward and closes the second opening portion 22 of the pump 12a. As a result, the fluid flows below the valve 83 through the first flow path hole 84, and the fluid flowing below the valve 83 passes through the second flow path hole 85 and goes out through the outlet 82. Taken out to.
 以上のように構成された本実施形態の流体制御装置103では、ポンプ12aと容器70を接続するバルブ80を備えるので、容器70に貯留された流体を、バルブ80を介して外部に取り出すことができる。 Since the fluid control device 103 of the present embodiment configured as described above includes the valve 80 for connecting the pump 12a and the container 70, the fluid stored in the container 70 can be taken out to the outside through the valve 80. can.
 以上の本実施形態において、ポンプ11a~11d、12a~12dは、アクチュエータ素子30、30’の第1主面32a又は第2主面32bに面する空間であって、アクチュエータ素子30、30’の第1主面32a又は第2主面32bに沿って流体が流れる内部空間1を有し、内部空間1は、アクチュエータ素子30の第2主面32bに対して垂直な方向、すなわち流体が流れる方向に対して垂直な方向の断面積が拡張された拡張部2を含む。この拡張部の断面積を調整することによって、ハウジング20、20’やアクチュエータ素子30、30’のサイズを小型化した場合であっても、20kHz以上において、低い周波数でヘルムホルツ共振を発生させやすくなる。このため、ポンプ11a~11d、12a~12dのサイズを小型化した場合でも、ポンプ11a~11d、12a~12dの吸込能力を高くすることができる。本実施形態のポンプ11a~11d、12a~12dは、例えば、アクチュエータ素子30、30’の最大径が5mm以上10mm以下の範囲内としても高い吸込能力を有する。 In the above embodiment, the pumps 11a to 11d and 12a to 12d are spaces facing the first main surface 32a or the second main surface 32b of the actuator elements 30 and 30', and are the spaces of the actuator elements 30 and 30'. The internal space 1 has an internal space 1 through which a fluid flows along the first main surface 32a or the second main surface 32b, and the internal space 1 is a direction perpendicular to the second main surface 32b of the actuator element 30, that is, a direction in which the fluid flows. Includes an extension 2 with an expanded cross section in the direction perpendicular to. By adjusting the cross-sectional area of this extended portion, Helmholtz resonance is likely to occur at a low frequency at 20 kHz or higher even when the sizes of the housings 20 and 20'and the actuator elements 30 and 30' are reduced. .. Therefore, even when the sizes of the pumps 11a to 11d and 12a to 12d are reduced, the suction capacity of the pumps 11a to 11d and 12a to 12d can be increased. The pumps 11a to 11d and 12a to 12d of the present embodiment have high suction capacity even when the maximum diameter of the actuator elements 30 and 30'is in the range of 5 mm or more and 10 mm or less, for example.
[構成例]
 本開示の構成例を、次に述べる。
(1) 一構成例として、ポンプは、互いに対向する第1主面と第2主面とを有するアクチュエータ素子と、前記アクチュエータ素子の前記第1主面と前記第2主面の少なくとも一方の主面に面する内部空間と、を備え、前記アクチュエータ素子は、前記第1主面及び前記第2主面に対して垂直な方向に振動し、
前記内部空間は、前記第1主面及び前記第2主面に対して垂直な方向の断面積が拡張された拡張部を含む。
[Configuration example]
A configuration example of the present disclosure will be described below.
(1) As a configuration example, the pump has an actuator element having a first main surface and a second main surface facing each other, and at least one of the first main surface and the second main surface of the actuator element. The actuator element has an internal space facing the surface, and the actuator element vibrates in a direction perpendicular to the first main surface and the second main surface.
The internal space includes an expansion portion having an expanded cross-sectional area in a direction perpendicular to the first main surface and the second main surface.
(2) 一構成例として、上記(1)に記載のポンプでは、前記アクチュエータ素子は、基板と、前記基板の少なくとも一方の表面に配置された振動素子とを含んでいてもよい。 (2) As a configuration example, in the pump described in (1) above, the actuator element may include a substrate and a vibration element arranged on at least one surface of the substrate.
(3) 一構成例として、上記(1)又は(2)に記載のポンプでは、前記アクチュエータ素子を振動可能に支持する支持部材をさらに備えていてもよい。 (3) As a configuration example, the pump according to the above (1) or (2) may further include a support member that oscillateably supports the actuator element.
(4) 一構成例として、上記(1)~(3)のいずれか一つに記載のポンプでは、前記アクチュエータ素子の前記第1主面と前記第2主面の少なくとも一方に、前記アクチュエータ素子の動作周波数を調整するための振動調整板をさらに備えていてもよい。 (4) As an example of the configuration, in the pump according to any one of (1) to (3) above, the actuator element is formed on at least one of the first main surface and the second main surface of the actuator element. A vibration adjusting plate for adjusting the operating frequency of the above may be further provided.
(5) 一構成例として、上記(1)~(4)のいずれか一つに記載のポンプでは、少なくとも一つの開孔部を有するハウジングと、前記開孔部の周囲に配置され、前記ハウジングの内側に向けて突出する突起部と、第1板と、をさらに備え、前記アクチュエータ素子は、前記第1主面と前記第2主面との間を貫通する貫通孔とを有し、前記第1主面が前記突起部と接続し、かつ前記貫通孔が前記ハウジングの前記開孔部と対向する位置に配置され、前記内部空間は、前記アクチュエータ素子の前記第2主面に面する空間であり、前記第1板は、前記アクチュエータ素子の前記第2主面と対向する位置に、前記内部空間を介して配置され、前記拡張部は、前記アクチュエータ素子の前記第2主面及び前記第1板の前記アクチュエータ素子の前記第2主面と対向する表面の少なくとも一方に備えられた凹部によって形成されていてもよい。 (5) As an example of the configuration, in the pump according to any one of (1) to (4) above, a housing having at least one opening and a housing arranged around the opening are provided. The actuator element has a through hole penetrating between the first main surface and the second main surface, further comprising a protrusion protruding inward and a first plate. The first main surface is connected to the protrusion and the through hole is arranged at a position facing the opening of the housing, and the internal space is a space facing the second main surface of the actuator element. The first plate is arranged at a position facing the second main surface of the actuator element via the internal space, and the expansion portion is the second main surface of the actuator element and the first surface. It may be formed by recesses provided in at least one of the surfaces of the actuator element of one plate facing the second main surface.
(6) 一構成例として、上記(5)に記載のポンプでは、前記突起部は、前記アクチュエータ素子が振動するときに生じるノード部よりも前記アクチュエータ素子の中心寄りの位置において、前記アクチュエータ素子の前記第1主面と接続されていてもよい。 (6) As an example of the configuration, in the pump described in (5) above, the protrusion of the actuator element is located closer to the center of the actuator element than the node portion generated when the actuator element vibrates. It may be connected to the first main surface.
(7) 一構成例として、上記(5)又は(6)に記載のポンプでは、前記凹部の外縁は、前記突起部と対向してもよい。 (7) As an example of the configuration, in the pump according to (5) or (6) above, the outer edge of the recess may face the protrusion.
(8) 一構成例として、上記(5)~(7)のいずれか一つに記載のポンプでは、前記凹部は、断面が円弧状に窪んだ湾曲面を含んでいてもよい。 (8) As an example of the configuration, in the pump according to any one of (5) to (7) above, the recess may include a curved surface having an arcuate cross section.
(9) 一構成例として、上記(1)~(4)のいずれか一つに記載のポンプでは、少なくとも一つの開孔部を有するハウジングをさらに備え、前記アクチュエータ素子の前記第1主面が前記ハウジングの前記開孔部と対向する位置に、前記内部空間を介して配置され、前記内部空間は、前記アクチュエータ素子の前記第1主面に面する空間であり、前記拡張部は、前記アクチュエータ素子の前記第1主面及び前記ハウジングの前記アクチュエータ素子の前記第1主面と対向する表面の少なくとも一方に備えられた凹部によって形成されていてもよい。 (9) As an example of the configuration, the pump according to any one of (1) to (4) is further provided with a housing having at least one opening, and the first main surface of the actuator element is provided. The housing is arranged at a position facing the opening portion via the internal space, the internal space is a space facing the first main surface of the actuator element, and the expansion portion is the actuator. It may be formed by recesses provided in at least one of the first main surface of the element and the surface of the actuator element of the housing facing the first main surface.
(10) 一構成例として、上記(9)に記載のポンプでは、前記凹部の外縁は、前記アクチュエータ素子が振動するときに生じるノード部と対向していてもよい。 (10) As an example of the configuration, in the pump described in (9) above, the outer edge of the recess may face the node portion generated when the actuator element vibrates.
(11) 一構成例として、上記(9)又は(10)に記載のポンプでは、前記凹部は、断面が円弧状に窪んだ湾曲面を含んでいてもよい。 (11) As an example of the configuration, in the pump according to (9) or (10) above, the recess may include a curved surface having an arcuate cross section.
(12) 一構成例として、流体制御装置では、上記(1)~(11)のいずれか一つに記載のポンプと、前記ポンプに接続する容器と、を備えていてもよい。 (12) As a configuration example, the fluid control device may include the pump according to any one of (1) to (11) above and a container connected to the pump.
(13) 一構成例として、上記(12)に記載の流体制御装置では、前記ポンプと前記容器とがバルブを介して接続していてもよい。 (13) As an example of the configuration, in the fluid control device described in (12) above, the pump and the container may be connected via a valve.
 なお、上記の本実施形態において、ポンプ11a~11d、12a~12dは、容器70と接続した流体制御装置101a~101d、103のポンプとして利用されている。ただし、ポンプ11a~11d、12a~12dは、用途はこれに限定されるものではない。ポンプ11a~11d、12a~12dは、例えば、血圧計、エアジャッキなどの空気を利用した装置に空気を供給する空気の搬送用ポンプとして、種々の用途に利用することができる。また、本実施形態に係るポンプは、冷却用ファンなどの送風機の代替品としても利用することができる。 In the above embodiment, the pumps 11a to 11d and 12a to 12d are used as pumps for the fluid control devices 101a to 101d and 103 connected to the container 70. However, the uses of the pumps 11a to 11d and 12a to 12d are not limited to these. The pumps 11a to 11d and 12a to 12d can be used for various purposes, for example, as an air transport pump for supplying air to an air-based device such as a sphygmomanometer or an air jack. Further, the pump according to the present embodiment can also be used as a substitute for a blower such as a cooling fan.
 1 内部空間
 2 拡張部
 11a、11b、11c、11d、11e、11f、12a、12b、12c、12d ポンプ
 20、20’ ハウジング
 21 第1開孔部
 22 第2開孔部
 23 第1部材
 24 第2部材
 25 第3部材
 26 突起部
 27 第4部材
 28 第5部材
 29 窪み部
 30、30’ アクチュエータ素子
 31 貫通孔
 32a 第1主面
 32b 第2主面
 33 窪み部
 34a 第1突起部
 34b 第2突起部
 35 弾性基板
 36 振動素子
 37 板状圧電体
 38a 第1電極
 38b 第2電極
 39 空隙
 40 流路板
 41 表面
 42 窪み部
 43 貫通孔
 50、50’ 支持部材
 51a 第1配線
 51b 第2配線
 52a 第1スルーホール
 52b 第2スルーホール
 53 樹脂皮膜
 54 振動調整板
 55 シード層
 60 硬質部材
 61 弾性部材
 62 金属部材
 70 容器
 80 バルブ
 81 筒管
 82 取出口
 83 弁
 84 第1流路孔
 85 第2流路孔
 86 ボール
 101a、101b、101c、101d、101e、101f、103 流体制御装置
 135 弾性基板形成材
 139 ポジ型レジスト膜パターン
 140 流路板形成部材
 150 支持部材形成膜
 153 樹脂膜
 160 硬質基板
 161 接着剤
 162 仮基板
 170 接合体
 190 積層体
 192 接合体
 193 構造体
1 Internal space 2 Expansion part 11a, 11b, 11c, 11d, 11e, 11f, 12a, 12b, 12c, 12d Pump 20, 20'Housing 21 First opening part 22 Second opening part 23 First member 24 Second Member 25 3rd member 26 Protrusion 27 4th member 28 5th member 29 Recess 30, 30'Actuator element 31 Through hole 32a 1st main surface 32b 2nd main surface 33 Recess 34a 1st protrusion 34b 2nd projection Part 35 Elastic substrate 36 Vibrating element 37 Plate-shaped piezoelectric body 38a First electrode 38b Second electrode 39 Void 40 Flow board 41 Surface 42 Recessed part 43 Through hole 50, 50'Support member 51a First wiring 51b Second wiring 52a First 1 through hole 52b 2nd through hole 53 resin film 54 vibration adjustment plate 55 seed layer 60 hard member 61 elastic member 62 metal member 70 container 80 valve 81 cylinder tube 82 outlet 83 valve 84 first flow path hole 85 second flow path Holes 86 Balls 101a, 101b, 101c, 101d, 101e, 101f, 103 Fluid control device 135 Elastic substrate forming material 139 Positive resist film pattern 140 Flow path plate forming member 150 Support member forming film 153 Resin film 160 Hard substrate 161 Adhesive 162 Temporary substrate 170 Joined body 190 Laminated body 192 Joined body 193 Structure

Claims (13)

  1.  互いに対向する第1主面と第2主面とを有するアクチュエータ素子と、
     前記アクチュエータ素子の前記第1主面と前記第2主面の少なくとも一方の主面に面する内部空間と、を備え、
     前記アクチュエータ素子は、前記第1主面及び前記第2主面に対して垂直な方向に振動し、
     前記内部空間は、前記第1主面及び前記第2主面に対して垂直な方向の断面積が拡張された拡張部を含むことを特徴とする、ポンプ。
    An actuator element having a first main surface and a second main surface facing each other,
    An internal space facing at least one main surface of the first main surface and the second main surface of the actuator element is provided.
    The actuator element vibrates in a direction perpendicular to the first main surface and the second main surface, and the actuator element vibrates.
    The internal space is characterized by including an expansion portion having an expanded cross-sectional area in a direction perpendicular to the first main surface and the second main surface.
  2.  前記アクチュエータ素子は、基板と、前記基板の少なくとも一方の表面に配置された振動素子とを含む、請求項1に記載のポンプ。 The pump according to claim 1, wherein the actuator element includes a substrate and a vibration element arranged on at least one surface of the substrate.
  3.  前記アクチュエータ素子を振動可能に支持する支持部材をさらに備える、請求項1又は2に記載のポンプ。 The pump according to claim 1 or 2, further comprising a support member that oscillateably supports the actuator element.
  4.  前記アクチュエータ素子の前記第1主面と前記第2主面の少なくとも一方に、前記アクチュエータ素子の動作周波数を調整するための振動調整板をさらに備える、請求項1~3のいずれか一項に記載のポンプ。 The invention according to any one of claims 1 to 3, further comprising a vibration adjusting plate for adjusting the operating frequency of the actuator element on at least one of the first main surface and the second main surface of the actuator element. Pump.
  5.  少なくとも一つの開孔部を有するハウジングと、
     前記開孔部の周囲に配置され、前記ハウジングの内側に向けて突出する突起部と、
     第1板と、をさらに備え、
     前記アクチュエータ素子は、前記第1主面と前記第2主面との間を貫通する貫通孔とを有し、前記第1主面が前記突起部と接続し、かつ前記貫通孔が前記ハウジングの前記開孔部と対向する位置に配置され、
     前記内部空間は、前記アクチュエータ素子の前記第2主面に面する空間であり、
     前記第1板は、前記アクチュエータ素子の前記第2主面と対向する位置に、前記内部空間を介して配置され、
     前記拡張部は、前記アクチュエータ素子の前記第2主面及び前記第1板の前記アクチュエータ素子の前記第2主面と対向する表面の少なくとも一方に備えられた凹部によって形成されている、請求項1~4のいずれか一項に記載のポンプ。
    A housing with at least one perforation and
    A protrusion arranged around the opening and projecting inward of the housing,
    With the first board,
    The actuator element has a through hole penetrating between the first main surface and the second main surface, the first main surface is connected to the protrusion, and the through hole is the housing. Arranged at a position facing the opening,
    The internal space is a space facing the second main surface of the actuator element.
    The first plate is arranged at a position facing the second main surface of the actuator element via the internal space.
    The expansion portion is formed by recesses provided on at least one of the second main surface of the actuator element and the surface of the first plate facing the second main surface of the actuator element. The pump according to any one of 4 to 4.
  6.  前記突起部は、前記アクチュエータ素子が振動するときに生じるノード部よりも前記アクチュエータ素子の中心寄りの位置において、前記アクチュエータ素子の前記第1主面と接続されている、請求項5に記載のポンプ。 The pump according to claim 5, wherein the protrusion is connected to the first main surface of the actuator element at a position closer to the center of the actuator element than a node portion generated when the actuator element vibrates. ..
  7.  前記凹部の外縁は、前記突起部と対向している、請求項5又は6に記載のポンプ。 The pump according to claim 5 or 6, wherein the outer edge of the recess faces the protrusion.
  8.  前記凹部は、断面が円弧状に窪んだ湾曲面を含む、請求項5~7のいずれか一項に記載のポンプ。 The pump according to any one of claims 5 to 7, wherein the recess includes a curved surface having an arcuate cross section.
  9.  少なくとも一つの開孔部を有するハウジングをさらに備え、
     前記アクチュエータ素子の前記第1主面が前記ハウジングの前記開孔部と対向する位置に、前記内部空間を介して配置され、
     前記内部空間は、前記アクチュエータ素子の前記第1主面に面する空間であり、
     前記拡張部は、前記アクチュエータ素子の前記第1主面及び前記ハウジングの前記アクチュエータ素子の前記第1主面と対向する表面の少なくとも一方に備えられた凹部によって形成されている、請求項1~4のいずれか一項に記載のポンプ。
    Further comprising a housing with at least one perforation,
    The first main surface of the actuator element is arranged at a position facing the opening of the housing via the internal space.
    The internal space is a space facing the first main surface of the actuator element.
    Claims 1 to 4 are formed by a recess provided in at least one of the first main surface of the actuator element and the surface of the housing facing the first main surface of the actuator element. The pump according to any one of the above.
  10.  前記凹部の外縁は、前記アクチュエータ素子が振動するときに生じるノード部と対向している、請求項9に記載のポンプ。 The pump according to claim 9, wherein the outer edge of the recess faces the node portion generated when the actuator element vibrates.
  11.  前記凹部は、断面が円弧状に窪んだ湾曲面を含む、請求項9又は10に記載のポンプ。 The pump according to claim 9 or 10, wherein the recess includes a curved surface having an arcuate cross section.
  12.  請求項1~11のいずれか一項に記載のポンプと、前記ポンプに接続する容器と、を備える流体制御装置。 A fluid control device including the pump according to any one of claims 1 to 11 and a container connected to the pump.
  13.  前記ポンプと前記容器とがバルブを介して接続している請求項12に記載の流体制御装置。 The fluid control device according to claim 12, wherein the pump and the container are connected via a valve.
PCT/JP2021/028284 2020-07-31 2021-07-30 Pump, and fluid control device WO2022025233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130734 2020-07-31
JP2020130734A JP2023126990A (en) 2020-07-31 2020-07-31 Pump and fluid control device

Publications (1)

Publication Number Publication Date
WO2022025233A1 true WO2022025233A1 (en) 2022-02-03

Family

ID=80035798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028284 WO2022025233A1 (en) 2020-07-31 2021-07-30 Pump, and fluid control device

Country Status (2)

Country Link
JP (1) JP2023126990A (en)
WO (1) WO2022025233A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148005A1 (en) * 2008-06-05 2009-12-10 株式会社村田製作所 Piezoelectric microblower
JP2013057247A (en) * 2011-09-06 2013-03-28 Murata Mfg Co Ltd Fluid control device
WO2015125843A1 (en) * 2014-02-21 2015-08-27 株式会社村田製作所 Fluid control device and pump
WO2016175185A1 (en) * 2015-04-27 2016-11-03 株式会社村田製作所 Pump
JP2019044770A (en) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 Gas transport device
WO2019124060A1 (en) * 2017-12-22 2019-06-27 株式会社村田製作所 Pump
WO2020111064A1 (en) * 2018-11-27 2020-06-04 株式会社村田製作所 Pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148005A1 (en) * 2008-06-05 2009-12-10 株式会社村田製作所 Piezoelectric microblower
JP2013057247A (en) * 2011-09-06 2013-03-28 Murata Mfg Co Ltd Fluid control device
WO2015125843A1 (en) * 2014-02-21 2015-08-27 株式会社村田製作所 Fluid control device and pump
WO2016175185A1 (en) * 2015-04-27 2016-11-03 株式会社村田製作所 Pump
JP2019044770A (en) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 Gas transport device
WO2019124060A1 (en) * 2017-12-22 2019-06-27 株式会社村田製作所 Pump
WO2020111064A1 (en) * 2018-11-27 2020-06-04 株式会社村田製作所 Pump

Also Published As

Publication number Publication date
JP2023126990A (en) 2023-09-13

Similar Documents

Publication Publication Date Title
EP2090781B1 (en) Piezoelectric micro-blower
JP5110159B2 (en) Piezoelectric micro blower
US10947965B2 (en) Blower
KR101333542B1 (en) Fluid pump
US10890171B2 (en) Fluid control device and pump
CN112204256B (en) Pump and method of operating the same
US11041580B2 (en) Valve and fluid control device
JP5177331B1 (en) Pump device
US20090232684A1 (en) Piezoelectric micro-blower
US20130071273A1 (en) Disc pump and valve structure
JP2012528980A (en) Fluid disc pump
JPWO2016009870A1 (en) Fluid control device
WO2022025233A1 (en) Pump, and fluid control device
WO2022025230A1 (en) Pump and fluid control device
JP2023126991A (en) Pump and fluid control device
CN115484533A (en) MEMS piezoelectric speaker
WO2019111982A1 (en) Pump
JP2020041500A (en) pump
JP2023126989A (en) Pump and fluid control device
WO2022123983A1 (en) Fluid control device and electronic equipment
WO2019111922A1 (en) Pump
JP2012077677A (en) Piezoelectric micro blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP