WO2022025230A1 - Pump and fluid control device - Google Patents

Pump and fluid control device Download PDF

Info

Publication number
WO2022025230A1
WO2022025230A1 PCT/JP2021/028280 JP2021028280W WO2022025230A1 WO 2022025230 A1 WO2022025230 A1 WO 2022025230A1 JP 2021028280 W JP2021028280 W JP 2021028280W WO 2022025230 A1 WO2022025230 A1 WO 2022025230A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator element
pump
housing
housing member
support member
Prior art date
Application number
PCT/JP2021/028280
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 ▲桑▼島
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020130733A external-priority patent/JP2023126989A/en
Priority claimed from JP2020130735A external-priority patent/JP2023126991A/en
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2022025230A1 publication Critical patent/WO2022025230A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the present disclosure relates to pumps and fluid control devices.
  • This application claims priority under Japanese Patent Application No. 2020-130733 filed in Japan on July 31, 2020 and Japanese Patent Application No. 2020-130735 filed in Japan on July 31, 2020. Incorporate the content here.
  • a pump for transporting a fluid such as gas or liquid
  • a pump having a housing having a fluid inlet and a fluid discharge port and an actuator element arranged inside the housing is known.
  • a fluid control device combining this small pump and a container capable of temporarily storing the fluid sent from the small pump is used, for example, as a sphygmomanometer (see, for example, Patent Document 1).
  • the fluid introduced into the housing from the fluid inlet due to the bending motion of the actuator element flows along the surface of the actuator element and is discharged to the outside from the fluid discharge port.
  • the piezoelectric pump has a flexible plate having a suction hole on the lower surface side of the piezoelectric actuator and a lid plate having a discharge hole on the upper surface side of the piezoelectric actuator. It has become.
  • the piezoelectric pump also has a valve capable of exhausting gas from the cuff. This valve fills the cuff with compressed air and then rapidly exhausts the air from the cuff. As a result, the cuff shrinks rapidly, and the next blood pressure measurement can be started immediately.
  • the diaphragm has a structure in which two connecting portions elastically support the frame plate at two points. That is, the peripheral portion of the piezoelectric actuator is not substantially restrained. Therefore, the gap between the piezoelectric actuator and the fixed portion cannot be accurately controlled, which may reduce the pump performance.
  • the technology according to the present disclosure has been made in consideration of such circumstances, and an object of the present invention is to provide a pump and a fluid control device that can cope with miniaturization and realize high pump performance.
  • the pump has a first main surface and a second main surface facing each other, and has a first through hole penetrating between the first main surface and the second main surface.
  • a first plate having an actuator element, a facing portion including a first surface facing the second main surface of the actuator element via a space, and a connecting portion connected to the facing portion and having a second through hole.
  • a housing including the tubular first housing member that houses the actuator element and the facing portion of the first plate and is connected to the connection portion, and the actuator element and the first housing member. It has a support member that is connected and supports the actuator element inside the first housing member.
  • FIG. 1 is a cross-sectional view showing a fluid control device including the pump of the first embodiment of the present disclosure.
  • FIG. 2 is a sectional view taken along line II-II of FIG.
  • FIG. 2 is a sectional view taken along line III-III of FIG.
  • FIG. 2 is a sectional view taken along line IV-IV of FIG.
  • FIG. 2 is a sectional view taken along line VV of FIG.
  • It is a schematic cross-sectional view explaining the operating state of the actuator element shown in FIG. It is a graph which shows the relationship between the diameter of the 2nd opening, the pressure in a container, and the air flow rate of a pump in the fluid control apparatus of 1st Embodiment.
  • FIG. 1 It is a graph which shows the relationship between the diameter of the opening of a diaphragm, the pressure of a lower valve chamber, and the air flow rate in a conventional fluid control device. It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 1st Embodiment step by step. It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 1st Embodiment step by step. It is sectional drawing which shows the fluid control apparatus provided with the pump of 2nd Embodiment of this disclosure. It is sectional drawing which shows the fluid control apparatus provided with the pump of 3rd Embodiment of this disclosure. It is sectional drawing which shows the fluid control apparatus provided with the pump of 4th Embodiment of this disclosure. FIG.
  • FIG. 13 is a sectional view taken along line VI-VI of FIG.
  • FIG. 14 is a sectional view taken along line VII-VII of FIG.
  • FIG. 14 is a sectional view taken along line VIII-VIII of FIG.
  • FIG. 14 is a cross-sectional view taken along the line IX-IX of FIG. It is explanatory drawing explaining the operating state of the actuator element shown in FIG. It is sectional drawing which shows the fluid control apparatus provided with the pump of 5th Embodiment of this disclosure. It is sectional drawing which shows the fluid control apparatus provided with the pump of 6th Embodiment of this disclosure.
  • FIG. 20 is a partial cross-sectional view of FIG. It is sectional drawing which shows the fluid control apparatus which concerns on 7th Embodiment of this disclosure.
  • FIG. 22 is a sectional view taken along line XI-XI of FIG. It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 7th Embodiment step by step. It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 7th Embodiment step by step. It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 7th Embodiment step by step.
  • FIG. 1 is a perspective view of the fluid control device according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II of FIG. 3 is a sectional view taken along line III-III of FIG. 2
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 2
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a schematic cross-sectional view illustrating an operating state of the actuator element shown in FIG.
  • the fluid control device 1A includes a pump 11A and a container (tank) 2 for temporarily storing the fluid sent from the pump 11A.
  • the pump 11A includes a housing 20, an actuator element 30, a flow path plate (first plate) 40, and a support member 50 for supporting the actuator element 30.
  • the housing 20 is an exterior body of the pump 11A, and the actuator element 30 and the flow path plate 40 are housed therein.
  • the housing 20 has a square tubular first housing member 20A having a square outer cross section and an inner cross section and extending along the thickness direction t.
  • the housing 20 has a second housing member 20B which is formed so as to close one open end of the first housing member 20A and has a bottomed cylindrical body having a square outer cross section and an inner cross section, respectively. Further, the housing 20 is formed so as to close a part of the other open end of the first housing member 20A, and the outer cross section and the inner cross section are square bottomed tubular bodies, respectively, as a third housing member (position regulating member). ) Has 20C.
  • the first housing member 20A, the second housing member 20B, and the third housing member (position regulating member) 20C constituting these housings 20 may be integrally formed, for example.
  • the first opening portion (opening) 21 is formed in the third housing member (position regulating member) 20C constituting the housing 20. Further, the second housing member 20B constituting the housing 20 is formed with a second opening portion 22 penetrating the inner surface 20B1 facing the flow path plate 40 and the opposite surface 20B2. With such a configuration, when the fluid is stored in the container 2, the first opening portion 21 becomes a fluid introduction hole and the second opening portion 22 becomes a fluid discharge hole. Further, when the fluid stored in the container 2 is discharged to the outside, the first opening portion 21 becomes a fluid discharge hole and the second opening portion 22 becomes a fluid introduction hole.
  • a flow path plate 40 is arranged between the second housing member 20B and the first housing member 20A of the housing 20. As a result, the flow path plate 40 is fixed to the housing 20. Further, a support member 50 is arranged between the first housing member 20A and the third housing member 20C. That is, the support member 50 is sandwiched between the first housing member 20A and the third housing member 20C. As a result, the support member 50 is supported inside the first housing member 20A and is fixed to the housing 20.
  • the second housing member 20B is connected to the first housing member 20A via the flow path plate 40
  • the third housing member 20C is connected to the first housing member 20A via the support member 50. Is connected to.
  • the method of fixing the flow path plate 40 to the housing 20 is not limited to this.
  • the flow path plate 40 may be fixed to the inner wall of, for example, the first housing member 20A of the housing 20 by using an adhesive or the like.
  • the housing 20 has a square outer cross section and an inner cross section, respectively.
  • the shape of the housing 20 is not limited to this.
  • the housing 20 may have, for example, a square outer cross section and a circular inner cross section, a circular outer cross section and a circular inner cross section, or a circular outer cross section and a square inner cross section. May be.
  • an insulating material such as resin or ceramics can be used.
  • the actuator element 30 vibrates (bends) at a predetermined frequency.
  • the actuator element 30 may have a resonance frequency.
  • the resonance frequency of the actuator element 30 is, for example, in the range of 20 kHz or more.
  • the actuator element 30 has a through hole (first through hole) 31.
  • the through hole 31 communicates with the first opening portion 21 of the housing 20.
  • the actuator element 30 has a disk shape, and the through hole 31 is arranged in the center of the disk-shaped actuator element 30.
  • the shape of the actuator element 30 is not limited to a disk shape.
  • the actuator element 30 may be, for example, a square plate or a polygonal plate.
  • the shape of the actuator element 30 is preferably a disk shape from the viewpoint of suppressing the appearance of unnecessary resonance frequencies.
  • the actuator element 30 of this embodiment is composed of a vibration element 36.
  • a vibrating element 36 is a piezoelectric vibrator including a plate-shaped piezoelectric body 37 and electrodes 38a and 38b arranged on the upper and lower surfaces of the plate-shaped piezoelectric body 37.
  • the plate-shaped piezoelectric body 37 is composed of, for example, a joint of two piezoelectric bodies whose polarization directions are opposite to each other.
  • a PZT-based piezoelectric vibrating material using lead zirconate titanate-based ceramics can be used as the constituent material of the plate-shaped piezoelectric body 37.
  • the plate-shaped piezoelectric body 37 in the present embodiment two bulk type PZT-based piezoelectric vibrating materials in which the polarization directions are opposite to each other are joined.
  • an electrostraining oscillator may be used instead of the piezoelectric oscillator as the vibrating element.
  • the support member 50 that supports the actuator element 30 is in contact with the protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C whose surface opposite to the surface joined to the actuator element 30 constitutes the housing 20.
  • the through hole 31 is arranged at a position communicating with the first opening portion 21 of the third housing member 20C.
  • the protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C is arranged around the first opening portion 21, and is arranged from the third housing member (position regulating member) 20C to the inside of the housing 20. It is protruding toward. note that.
  • the protrusion (position regulating member) 26 is integrally formed with the third housing member (position regulating member) 20C as a configuration included in the third housing member (position regulating member) 20C.
  • the protrusion (position regulating portion) 26 may be formed of a member different from the third housing member (position regulating member) 20C.
  • the support member 50 is arranged so as to cover the entire region between the actuator element 30 and the first housing member 20A when the support member 50 is viewed in a plan view from the flow path plate 40. As a result, the fluid flows from the first opening portion 21 only through the through hole 31. The other paths are blocked by the support member 50. Therefore, the support member 50 not only supports the actuator element 30, but also plays a role of blocking the inflow path of the fluid, so that the structure can be simplified.
  • FIG. 6 shows a state in which the actuator element 30 is vibrating.
  • the position where the node (node) N generated when the actuator element 30 alone vibrates comes into contact with the protrusion (position regulating portion) 26 via the support member 50, or the node N is closer to the protrusion (position regulating portion) 26 than the protrusion (position regulating portion) 26. It is preferable that the position is slightly outside.
  • the actuator element 30 is in contact with the protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C via the support member 50, and is projected by the elastic force of the support member 50. It is configured to be pressed against the portion (position regulating portion) 26 so as not to be separated from each other.
  • the surface of the actuator element 30 on the side in contact with the protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C is the first main surface 32a, and the surface on the opposite side thereof is the first. 2 It may be referred to as a main surface 32b.
  • the first main surface 32a of the actuator element 30 is one surface of the plate-shaped piezoelectric body 37
  • the second main surface 32b is the other surface of the plate-shaped piezoelectric body 37.
  • the flow path plate 40 is arranged at a position facing the second main surface 32b of the actuator element 30 via the space E1.
  • the space E1 constitutes a part of the flow path of the fluid introduced into the housing 20, and the surface of the flow path plate 40 facing the space E1 is a first flow path surface (first surface) 41a.
  • the flow path plate 40 has a facing portion including a first flow path surface 41a facing the second main surface 32b of the actuator element 30.
  • the facing portion of the flow path plate 40 is housed inside the housing 20.
  • the recess 42 is formed in the first flow path surface 41a of the flow path plate 40.
  • the recess 42 is formed in an annular shape centered on the through hole 31 of the actuator element 30, for example.
  • the recess 42 forms in the space E1 an expansion portion E2 having an expanded cross-sectional area in a direction perpendicular to the direction in which the fluid flows.
  • the recess 42 may be a curved surface having an arcuate cross section. In this case, the flow of the fluid to the expansion portion E2 becomes smoother.
  • the outer region not facing the actuator element 30 is a connecting portion 40a, and a through hole (second through hole) 43 is formed in the connecting portion 40a.
  • the through hole 43 has a rectangular shape when the flow path plate 40 is viewed in a plan view (see FIG. 3), and the peripheral edge of the pump 11A on the center side overlaps with the peripheral edge of the actuator element 30 to form a pump.
  • the outer peripheral edge of 11A is located at a distance from the first housing member 20A.
  • the connecting portion 40a is connected to the facing portion including the first flow path surface 41a at the portion excluding the region where the through hole 43 is formed. That is, the connecting portion 40a is arranged around the facing portion. Further, the flow path plate 40 is connected to the first housing member 20A (and the second housing member 20B) by the connecting portion 40a except for the region where the through hole 43 is formed.
  • the flow path plate 40 may be a single plate-shaped member in which the connecting portion 40a is integrally formed.
  • the through hole 43 is a flow path through which the fluid flows. That is, the through hole 43 communicates with the space E1 facing the first flow path surface 41a and the space E3 facing the second flow path surface (second surface) 41b forming the opposite surface of the first flow path surface 41a.
  • a plurality of through holes 43 may be arranged concentrically with the actuator element 30 at equal intervals.
  • the material of the flow path plate 40 including the connecting portion 40a for example, resin, metal, or the like can be used.
  • the support member 50 includes a first wiring 51a and a second wiring 51b.
  • the first wiring 51a and the second wiring 51b extend in opposite directions to each other.
  • the support member 50 may be formed of a flexible resin sheet so as not to interfere with the vibration (bending motion) of the actuator element 30. Further, the flexible resin sheet may have an insulating property. Examples of the flexible resin sheet having an insulating property include a polyimide sheet.
  • the first wiring 51a and the second wiring 51b connect the electrodes 38a and 38b of the vibrating element 36 to a power supply (not shown).
  • the first wiring 51a and the electrode 38a are connected via a through hole 52 formed in the plate-shaped piezoelectric body 37.
  • the electrode 38b is formed so as to avoid the periphery of the through hole 52 so that the first wiring 51a and the electrode 38b do not come into contact with each other.
  • the second wiring 51b is connected to the electrode 38b.
  • the pump 11A of the present embodiment transports the fluid as follows.
  • a voltage is applied to the electrodes 38a and 38b of the vibrating element 36 via the first wiring 51a and the second wiring 51b.
  • the vibrating element 36 vibrates.
  • the vibration of the vibrating element 36 causes the actuator element 30 to vibrate (bend motion).
  • the fluid flows from the first opening portion 21 through the through hole 31 of the actuator element 30 and is introduced into the housing 20.
  • the fluid flows in the space E1 between the second main surface 32b of the actuator element 30 and the first flow path surface 41a of the flow path plate 40.
  • the fluid that has passed through the expansion portion E2 of the space E1 then flows from the through hole 43 of the flow path plate 40 to the space E3 between the second flow path surface 41b and the inner surface 20B1 of the second housing member 20B, and is second-opened. It is supplied to the container 2 through the hole 22.
  • the fluid in the expansion part E2 of the space E1 resonates with Helmholtz.
  • the frequency of the Helmholtz resonance with the vibrating element and the operating frequency it becomes possible to improve the suction capacity of the pump 11A.
  • the actuator element 30 stops vibrating after the container 2 is filled with the fluid, the fluid stored in the container 2 flows back into the pump 11A and is discharged from the through hole 31. At this time, the actuator element 30 receives a force in the direction of pushing the support member 50 toward the protrusion (position regulating portion) 26 by the pressure of the fluid, and the space (space) between the actuator element 30 and the flow path plate 40. Since E1 and the expansion part E2) do not change, the fluid can be rapidly exhausted.
  • a conventional fluid control device equipped with a valve
  • the valve is connected to the piezoelectric pump by joining the upper surface of the piezoelectric pump to the bottom surface of the valve, and the cuff is attached to the cuff connection port of the valve. By doing so, the cuff is connected to the valve.
  • the piezoelectric pump has a structure having a flexible plate having a suction hole on the lower surface side of the piezoelectric actuator and a lid plate having a discharge hole on the upper surface side of the piezoelectric actuator.
  • the valve has a first vent that communicates with the discharge hole of the piezoelectric pump, a second vent that communicates with the internal space of the cuff, a third vent that communicates with the outside, a first valve seat, and a third valve. It comprises a valve housing with a second valve seat protruding from the perimeter of the pores and a diaphragm fixed to the valve housing having an opening. The diaphragm forms a lower valve chamber that communicates with the first vent and an upper valve chamber that communicates with the second vent and the third vent.
  • FIG. 7 is a graph showing the relationship between the diameter of the opening of the diaphragm and the pressure in the lower valve chamber (solid line) and the relationship with the air flow rate (broken line) in the piezoelectric pump described in Patent Document 1.
  • the horizontal axis represents the diameter of the opening of the diaphragm ( ⁇ m)
  • the left vertical axis represents the pressure in the lower valve chamber (kPa)
  • the right vertical axis represents the flow rate during operation (ml / min).
  • the piezoelectric actuator has a disk shape (diameter: 12 mm). The distance between the piezoelectric actuator and the flexible plate was set to 10 ⁇ m.
  • the flow rate increases as the diameter of the opening of the diaphragm increases, while the pressure in the lower valve chamber decreases. That is, in the conventional fluid control device, when trying to send air to the cuff, the pressure in the lower valve chamber must be higher than the pressure in the upper valve chamber, and in order to avoid a decrease in the pressure in the lower valve chamber, It can be seen that the diameter of the opening of the diaphragm cannot be increased and the flow rate cannot be increased.
  • valve having a diaphragm forming a lower valve chamber communicating with the first vent and an upper valve chamber communicating with the second vent and the third vent is required. If the valve is removed by the conventional fluid control device, when the piezoelectric pump stops driving after the cuff is filled with compressed air, the air flows back into the piezoelectric pump and the piezoelectric actuator approaches the flexible plate. As a result, the suction hole may be blocked by the piezoelectric actuator, and exhaust may not be possible. Therefore, a valve provided with a ventilation hole for exhaust is required, the diameter of the opening of the diaphragm cannot be increased, and the flow rate cannot be increased.
  • FIG. 8 shows the relationship (solid line) between the diameter of the second opening portion 22 and the pressure in the container (tank) 2 and the relationship between the air flow rate of the pump 11A in the fluid control device 1A of the first embodiment (the relationship between them). It is a graph which shows (dashed line).
  • the horizontal axis is the diameter ( ⁇ m) of the second opening portion 22
  • the left vertical axis is the pressure (kPa) in the container (tank) of the pump
  • the right vertical axis is the flow rate of air during operation (ml). / Min).
  • the actuator element 30 has a disk shape (diameter: 12 mm).
  • the opening height of the space E1 (distance between the second main surface 32b of the actuator element 30 and the first flow path surface 41a of the flow path plate 40) was set to 10 ⁇ m.
  • the opening of the diaphragm of the conventional example corresponds to the second opening 22.
  • the diameter of the second opening is set to 200 ⁇ m or more, the pressure and the flow rate converge to constant values, and each becomes a high value.
  • the valve in the conventional fluid control device is not required by forming the through hole 31 in the actuator element 30. Therefore, the opening diameter of the second opening portion 22 can be widened to increase the flow rate.
  • the actuator element 30 of the pump 11A has a through hole 31, and the flow path plate 40 passes through the second main surface 32b of the actuator element 30 and the space E1. It has a facing portion including a first surface facing the facing portion, and a connecting portion connected to the facing portion and having a through hole 43. Further, it has a cylindrical first housing member 20A connected to the connection portion of the flow path plate 40, and the support member 50 supports the actuator element 30 inside the first housing member 20A.
  • the portion) 26 is in contact with the through hole 31, and the through hole 31 is arranged at a position facing the first opening portion 21 of the third housing member 20C.
  • the flow path is in the vicinity of the center of the actuator element 30 near the through hole 31 which is close to or separated from the flow path plate 40 and in the opposite phase to the vicinity of the center.
  • the vicinity of the peripheral edge of the actuator element 30 separated from or close to the plate 40 functions as a valve. That is, the vicinity of the center and the vicinity of the peripheral edge of the actuator element 30 form a valve structure that functions in conjunction with the resonance vibration of the actuator element 30. As a result, it has a valve opening / closing function that works reliably even at a high vibration speed of the audible band or higher (20 kHz or higher), so that a high pumping capacity can be exhibited.
  • the pump 11A having such a configuration even if the pressure in the pump 11A rises, the through hole 31 is not blocked by this pressure rise, so that the pump 11A pushes the pump 11A into the container (tank) 2.
  • the fluid can be stored and the fluid in the container (tank) 2 can be discharged. That is, since the fluid control device 1A of the present embodiment can eliminate the need for a valve, it is possible to reduce the size, cost, and performance.
  • the fluid control device 1A having such a configuration does not need to be provided with a valve, the opening diameter of the second opening portion 22 can be increased without limitation. As a result, it becomes possible to realize a fluid control device that generates a large flow rate at high pressure.
  • a disk-shaped vibrating element 36 having a through hole 31 in the center is formed on the elastic substrate forming material 335.
  • the vibrating element 36 can be formed, for example, as follows. First, the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order on the elastic substrate forming material 335 to form a piezoelectric vibration film. The first electrode, the plate-shaped piezoelectric body, and the second electrode can be formed into a film by using, for example, a sputtering method. Next, the piezoelectric vibrating membrane is formed into a disk shape having a through hole in the center by using an etching process.
  • the positive resist film pattern 339 can be formed, for example, as follows. First, a positive resist is applied on the vibrating element 36 and the elastic substrate forming material 335 to form a positive resist film. Next, with the photomask placed near the peripheral edge of the vibrating element 36, the positive resist film is irradiated with ultraviolet rays to develop a positive resist film that covers the portion other than the peripheral edge of the vibrating element 36. It is easily soluble in liquid. Then, the positive resist film that has been altered to be easily soluble is dissolved with a developing solution.
  • a support member forming film 350 is formed on the vibrating element 36 and the positive resist film pattern 339.
  • a spin coating method can be used as a method for forming the support member forming film 350.
  • a wiring pattern is formed on the support member forming film 350.
  • the wiring pattern forms a first wiring 51a connected to the first electrode of the vibrating element 36 and a second wiring 51b connected to the second electrode of the vibrating element 36.
  • the first wiring 51a is connected to the first electrode of the vibrating element 36 via the first through hole 52a.
  • the second wiring 51b is connected to the second electrode of the vibrating element 36 via the second through hole 52b.
  • the support member forming film 350 is cut into the shape of the support member 50, and the positive resist film pattern 339 is removed.
  • the positive resist film pattern can be removed, for example, by irradiating the positive resist film pattern with ultraviolet rays to easily change the positive resist film pattern into a developing solution and then dissolving the positive resist film pattern in the developing solution. ..
  • a gap 39 is formed between the peripheral edge of the vibrating element 36 and the support member forming film 350.
  • the temporary substrate 362 is bonded to the surface of the support member 50 on the side opposite to the vibrating element 36 side via the adhesive 361 to obtain a bonded body 370.
  • the material of the temporary substrate is not particularly limited, and for example, a glass substrate or a metal substrate can be used.
  • the joint body 370 is inverted so that the temporary substrate 362 is on the lower side, the elastic substrate forming material 335 is processed into the shape of the elastic substrate 35, and the support member 50 has a through hole. 31 is formed.
  • the adhesive 361 and the temporary substrate 362 of the bonded body 370 are removed.
  • the actuator element 30 with the support member 50 is obtained.
  • the obtained actuator element 30 with the support member 50 and the flow path plate 40 are fixed by the housing 20 to form the pump 11A.
  • the fluid control device 1A is obtained by joining the container 2 to the second opening portion 22 of the pump 11A.
  • FIG. 11 is a cross-sectional view of the fluid control device according to the second embodiment.
  • the pump 11B constituting the fluid control device 1B according to the second embodiment has an actuator element 60 formed inside the housing 20.
  • the actuator element 60 of the present embodiment is composed of an elastic substrate (substrate) 65 and a vibration element 66 arranged on the surface (lower surface) of the elastic substrate 65.
  • the elastic substrate 65 is preferably made of a material capable of bending vibration due to the vibration of the vibrating element 66 and hardly dampening the vibration energy of the vibrating element 66. Examples of the material of the elastic substrate 65 include silicon and iron. Phosphor bronze or the like can be used.
  • the vibrating element 66 is a piezoelectric vibrator including a thin-film piezoelectric body 67 and electrodes 68a and 68b arranged on the upper and lower surfaces of the thin-film piezoelectric body 67.
  • the vibration element 66 may be a piezoelectric vibrator laminated body in which two or more piezoelectric vibrators are laminated.
  • the surface (lower surface) of the vibrating element 66 is the first main surface 62a, and the surface (upper surface) of the elastic substrate 65 which is the opposite surface thereof is the second main surface 62b.
  • the actuator element 60 is formed with a through hole (first through hole) 61 that penetrates between the first main surface 62a and the second main surface 62b.
  • the through hole 61 is composed of a first opening region 65A formed in the vibrating element 66 and a second opening region 65B connected to the first opening region 65A and formed in the elastic substrate 65. ..
  • Such a through hole 61 is formed so that the opening diameter of the first opening region 65A formed in the vibrating element 66 is larger than the opening diameter of the second opening region 65B formed in the elastic substrate 65. ing. Further, the central axis of the first opening region 65A and the central axis of the second opening region 65B are formed so as to be on the same axis S.
  • the opening diameter may be a diameter, but the first opening region and the second opening region may be used.
  • the opening diameter may be the maximum diameter (maximum opening diameter).
  • the actuator element 60 is composed of the elastic substrate 65 and the vibration element 66 joined to each other as in the present embodiment, the vibration speed is higher than the audible band (20 kHz or more) as in the pump of the first embodiment. Since it has a valve opening / closing function that works reliably even in the above, a high pumping capacity can be exhibited.
  • the pump 11C capable of storing the fluid in the container (tank) 2 and discharging the fluid in the container (tank) 2 can be realized, and the valve can be eliminated, so that the size, cost, and performance can be improved. Can be planned. Further, since it is not necessary to provide a valve, the opening diameter of the second opening portion 22 can be increased without limitation, and it becomes possible to realize a fluid control device that generates a large flow rate at a high pressure.
  • the actuator element 60 By configuring the actuator element 60 from a vibrating element 66 and an elastic substrate 65 joined as in the present embodiment, even if a thin thin film piezoelectric body 67 is used as the vibrating element 66, the actuator element 60 can be used. Physical strength can be maintained. Further, by using the thin film piezoelectric body 67, it is possible to cope with high frequency vibration, and the actuator element 60 can be driven more efficiently.
  • the opening diameter of the first opening region 65A formed in the vibrating element 66 is made larger than the opening diameter of the second opening region 65B formed in the elastic substrate 65. Since the vibrating element 66 is securely fixed to the elastic substrate 65 as compared with the case where they are formed to have the same opening diameter, reliability can be improved.
  • the actuator element 60 when the fluid flows in the suction direction by making the opening diameter of the first opening region 65A on the suction side at the time of suction larger than the opening diameter of the second opening region 65B. In comparison, the fluid resistance when the fluid flows backward can be increased. This can improve the pump performance.
  • FIG. 12 is a cross-sectional view of the fluid control device according to the third embodiment.
  • the pump 11C constituting the fluid control device 1C according to the third embodiment has an actuator element 70 formed inside the housing 20.
  • the actuator element 70 of the present embodiment is composed of an elastic substrate (board) 75 and a vibration element 76 arranged on the surface (upper surface) of the elastic substrate 75.
  • the elastic substrate 65 is preferably made of a conductive material capable of bending vibration due to the vibration of the vibrating element 76 and hardly dampening the vibration energy of the vibrating element 76. Examples of the material of the elastic substrate 75 include iron. Phosphor bronze or the like can be used.
  • the vibrating element 76 is a piezoelectric vibrator including a thin-film piezoelectric body 77 and electrodes 78a and 78b arranged on the upper and lower surfaces of the thin-film piezoelectric body 77. In this embodiment, one electrode 78b of the vibrating element 76 is connected to the first wiring 51a via an elastic substrate 75 made of a conductive material.
  • one surface (lower surface) of the elastic substrate 75 is the first main surface 72a, and the surface (upper surface) of the vibrating element 76, which is the opposite surface, is the second main surface. It forms 72b. That is, the actuator element of the second embodiment has a configuration in which the formation positions of the elastic substrate and the vibration element are opposite to each other.
  • the actuator element 70 is formed with a through hole (first through hole) 71 that penetrates between the first main surface 72a and the second main surface 72b.
  • the through hole 71 is composed of a first opening region 75A formed in the vibrating element 76 and a second opening region 75B connected to the first opening region 75A and formed in the elastic substrate 75. ..
  • the opening diameter of the first opening region 75A and the opening diameter of the second opening region 75B formed on the elastic substrate 75 are formed to have the same size. Further, the central axis of the first opening region 75A and the central axis of the second opening region 75B are formed so as to be on the same axis S.
  • the actuator element 70 is configured by joining the elastic substrate 75 and the vibrating element 76, and even if the vibrating element 76 is positioned to face the first flow path surface 41a of the flow path plate 40, the first Similar to the pump of one embodiment, it has a valve opening / closing function that reliably works even at a high vibration speed in the audible band or higher (20 kHz or higher), so that a high pumping capacity can be exhibited.
  • the pump 11C capable of storing the fluid in the container (tank) 2 and discharging the fluid in the container (tank) 2 can be realized, and the valve can be eliminated, so that the size, cost, and performance can be improved. Can be planned.
  • the opening diameter of the second opening portion 22 can be increased without limitation, and it becomes possible to realize a fluid control device that generates a large flow rate at a high pressure.
  • FIG. 13 is a perspective view of the fluid control device according to the fourth embodiment.
  • FIG. 14 is a sectional view taken along line VI-VI of FIG. 15 is a sectional view taken along line VII-VII of FIG. 14,
  • FIG. 16 is a sectional view taken along line VIII-VIII of FIG. 14, and
  • FIG. 17 is a sectional view taken along line IX-IX of FIG.
  • FIG. 18 is an explanatory diagram illustrating the positional relationship between the node portion of the actuator element shown in FIG. 13 and the protrusion portion formed on the third housing member.
  • the fluid control device 2A includes a pump 111A and a container (tank) 102 for temporarily storing the fluid sent from the pump 111A.
  • the pump 111A includes a housing 120, an actuator element 130, a flow path plate (first plate) 140, and a support member 150 that supports the actuator element 130.
  • the housing 120 is an exterior body of the pump 111A, and the actuator element 130 and the flow path plate 140 are housed therein.
  • the housing 120 has a square tubular first housing member 120A having a square outer cross section and an inner cross section and extending along the thickness direction t.
  • the housing 120 has a second housing member 120B which is formed so as to close one open end of the first housing member 120A and has a bottomed cylindrical body having a square outer cross section and an inner cross section, respectively.
  • the second housing member 120B is connected to the first housing member 120A.
  • the housing 120 is formed so as to close a part of the other open end of the first housing member 120A, and is a bottomed cylindrical body having a square outer cross section and a circular inner cross section (position restriction). Member) has 120C.
  • the third housing member (position regulating member) 120C is connected to the first housing member 120A.
  • the first housing member 120A, the second housing member 120B, and the third housing member (position regulating member) 120C constituting these housings 120 may be integrally formed, for example.
  • the housing 120 is not limited to the above-mentioned shape, and may have an arbitrary tubular shape.
  • a first opening portion (first opening) 121 is formed in the third housing member (position regulating member) 120C constituting the housing 120. Further, the second housing member 120B constituting the housing 120 is formed with a second opening portion (second opening) 122 penetrating the inner surface 120B1 facing the flow path plate 140 and the opposite surface 120B2 thereof. There is.
  • the first opening portion 121 serves as a fluid introduction port
  • the second opening portion 22 serves as a fluid discharge port.
  • the first opening portion 121 serves as a fluid discharge port
  • the second opening portion 122 serves as a fluid introduction port.
  • a flow path plate 140 is arranged between the second housing member 120B and the first housing member 120A of the housing 120. As a result, the flow path plate 140 is fixed to the housing 120. Further, a support member 150 is arranged between the first housing member 120A and the third housing member 120C. That is, the support member 150 is sandwiched between the first housing member 120A and the third housing member 120C. As a result, the support member 150 is supported inside the first housing member 120A and is fixed to the housing 120.
  • the second housing member 120B is connected to the first housing member 120A via the flow path plate 140
  • the third housing member 120C is connected to the first housing member 120A via the support member 150. Is connected to.
  • the method of fixing the flow path plate 140 to the housing 120 is not limited to this.
  • the flow path plate 140 may be fixed to the inner wall of the housing 120, for example, the first housing member 120A by using an adhesive or the like.
  • the housing 120 has a square outer cross section and an inner cross section, respectively.
  • the shape of the housing 120 is not limited to this.
  • the housing 120 may have, for example, a square outer cross section and a circular inner cross section, a circular outer cross section and a circular inner cross section, or a circular outer cross section and a square inner cross section. May be.
  • an insulating material such as resin or ceramics can be used.
  • the actuator element 130 vibrates (bends) at a predetermined frequency.
  • the actuator element 130 may have a resonance frequency.
  • the resonance frequency of the actuator element 130 may be in the range of, for example, 20 kHz or more.
  • the actuator element 130 is formed with a through hole 131.
  • the through hole 131 communicates with the first opening portion 121 of the housing 120.
  • the actuator element 130 has a disk shape, and the through hole 131 is arranged in the center of the disk-shaped actuator element 130.
  • the shape of the actuator element 130 is not limited to a disk shape.
  • the actuator element 130 may be, for example, a square plate or a polygonal plate.
  • the shape of the actuator element 130 is preferably a disk shape from the viewpoint of suppressing the appearance of unnecessary resonance frequencies.
  • the actuator element 130 of this embodiment is composed of a vibration element 136.
  • a vibrating element 136 is a piezoelectric vibrator including a plate-shaped piezoelectric body 137 and electrodes 138a and 138b arranged on the upper and lower surfaces of the plate-shaped piezoelectric body 137.
  • the plate-shaped piezoelectric body 137 is composed of, for example, a joint of two piezoelectric bodies whose polarization directions are opposite to each other.
  • a PZT-based piezoelectric vibrating material using lead zirconate titanate-based ceramics can be used as the constituent material of the plate-shaped piezoelectric body 137.
  • the plate-shaped piezoelectric body 137 in the present embodiment two bulk type PZT-based piezoelectric vibrating materials in which the polarization directions are opposite to each other are joined.
  • an electrostraining oscillator may be used instead of the piezoelectric oscillator as the vibrating element.
  • the actuator element 130 is joined to the support member 150 by the joint portion 153.
  • the lower surface of the actuator element 130 is in contact with the protrusion (position regulating portion) 126 via the support member 150. That is, the support member 150 is in contact with the protrusion (position regulating portion) 126 on the opposite surface (lower surface) of the surface (upper surface) on which the joint portion 153 is formed.
  • the through hole 131 of the actuator element 130 is arranged at a position communicating with the first opening portion 121 of the third housing member 120C.
  • the protrusion (position regulating member) 126 is arranged around the first opening (first opening) 121 of the third housing member (position regulating member) 120C, and is arranged from the third housing member (position regulating member) 120C. , Projecting inward of the housing 120.
  • the protrusion (position regulating portion) 126 is connected to the third housing member (position regulating member) 120C.
  • the protrusion (position regulating member) 126 is integrally formed with the third housing member (position regulating member) 120C as a configuration included in the third housing member (position regulating member) 120C.
  • the protrusion (position regulating portion) 126 may be formed of a member different from the third housing member (position regulating member) 120C.
  • the protrusion (position regulating portion) 126 is formed inside the node N generated when the actuator element 130 is vibrated, that is, closer to the center of the actuator element 130. That is, the protrusion (position regulating portion) 126 is connected to the actuator element 130 at a position closer to the center of the actuator element 130 than the node N generated when the actuator element 130 vibrates. More specifically, the protrusion (position regulating portion) 126 is connected to the actuator element 130 via the support member 150, and the support member 150 is located closer to the center of the actuator element 130 than the node N. It is in contact with a surface opposite to the surface to be joined to the actuator element 130 of the above.
  • the protrusion (position regulating portion) 126 is in contact with the surface opposite to the surface of the support member 150 closer to the center of the actuator element 130 than the node N to be joined to the actuator element 130, the actuator element 130 At the peripheral edge of the node N and the node N, the support member 150 is not in contact with the surface opposite to the surface joined to the actuator element 130. That is, the protrusion (position regulating portion) 126 is separated from the support member 150 closer to the peripheral edge than the node N and the node N.
  • the vibrating element 136 when a voltage is applied to the electrodes 138a and 138b via the first wiring 151a and the second wiring 151b, the vibrating element 136 vibrates.
  • the vibration of the vibrating element 136 causes the actuator element 130 to vibrate (bend motion) at a predetermined frequency.
  • the node (node) N does not vibrate at all and the amplitude becomes 0 in the plane of the vibrating element 136.
  • the anti-node (antinode) AN where the amplitude becomes maximum and the displacement oscillates most occurs.
  • the anti-node AN at the time of vibration of the vibrating element 136 occurs at the center of the vibrating element 136, and the node (node) N occurs inside the peripheral edge of the vibrating element 136.
  • a vibrating element 136 having a vibrating element having a diameter of D12 mm which is formed by forming a PZT (lead zirconate titanate) film having a thickness of 10 ⁇ m on a Si single crystal film having a thickness of 260 ⁇ m, is vibrated (vibration resonance).
  • Gain 40 dB the runout width V1 of the anti-node AN is about 15 ⁇ m, and the runout width V2 of the peripheral portion is about 11 ⁇ m.
  • the vibration width V1 of the anti-node AN and the vibration width V2 of the peripheral portion at the time of vibration of the vibrating element 136 are arranged in a circular position where they are the same as each other.
  • the protrusions (position regulating portions) 126 are provided so as to overlap each other. At this position, when the diameter of the center of the cross section of the protrusion (position regulating portion) 126 is e and the diameter of the node N is c, the relationship is c> e, that is, the protrusion (position regulating portion) 126 is the node. It will be inside N. That is, the protrusion (position regulating portion) 126 contacts the actuator element 130 inside the node N via the support member 150.
  • the actuator element 130 is in contact with the protrusion (position regulating portion) 126 via the support member 150, and is pressed against the protrusion (position regulating portion) 126 by the elastic force of the support member 150. It is configured so that it does not separate from each other.
  • the joint portion 153 to which the actuator element 130 is joined to the support member 150 is formed closer to the center of the actuator element 130 than the above-mentioned node N. That is, the actuator element 130 is supported by the support member 150 inside the node N (see FIGS. 14 and 17).
  • the support member 150 is formed of a flexible resin sheet so as not to interfere with the vibration (bending motion) of the actuator element 130. Further, the flexible resin sheet may have an insulating property. Examples of the flexible resin sheet having an insulating property include a polyimide sheet.
  • the support member 150 is bent like a crank toward the third housing member (position regulating member) 120C on the peripheral side of the joint portion 153. With such a configuration, at the position of the node N of the actuator element 130, the support member 150 is formed with a separation portion 150a separated from the actuator element 130 in the thickness direction t.
  • the support member 150 is further bent in a crank shape on the peripheral edge side of the separation portion 150a to form a drawer portion 150b extending from between the first housing member 120A and the third housing member 120C to the outside of the housing 120. ing.
  • the drawer portion 150b of the support member 150 is formed so as to be at the same position in the thickness direction t with respect to the joint portion 153 of the support member 150. That is, the upper surface of the drawer portion 150b of the support member 150 and the upper surface of the joint portion 153 of the support member 150 are on the same surface in the plane spreading direction f perpendicular to the thickness direction t.
  • the support member 150 is arranged so as to cover the entire region between the actuator element 130 and the first housing member 120A when the support member 150 is viewed in a plan view from the flow path plate 140. As a result, the fluid flows only from the first opening portion 121 through the through hole 131. The other paths are blocked by the support member 150. Therefore, since the support member 150 not only supports the actuator element 130 but also plays a role of blocking the inflow path of the fluid, the structure can be simplified.
  • the support member 150 is formed with a power supply wiring 151 that supplies electric power to the actuator element 130.
  • the power supply wiring 151 includes a first wiring 151a and a second wiring 151b.
  • the first wiring 151a and the second wiring 151b extend in opposite directions along the surface spreading direction f. Therefore, since the support member 150 not only supports the actuator element 130 but also serves as an electric wiring, the structure can be simplified and the cost can be reduced.
  • the wirings 151a and 151b connect the electrodes 138a and 138b of the vibrating element 136 and the power supply (not shown).
  • the first wiring 151a and the electrode 138a are connected to each other via a through hole 152 formed in the plate-shaped piezoelectric body 137.
  • the electrode 138b is formed so as to avoid the periphery of the through hole 152 so that the first wiring 151a and the electrode 138b do not come into contact with each other.
  • the second wiring 151b is connected to the electrode 138b.
  • the electrical connection portion T1 between the first wiring 151a and the electrode 138a and the electrical connection portion T2 between the second wiring 151b and the electrode 138b are formed at positions inside the node N, respectively.
  • the surface of the actuator element 130 on the side connected to the protrusion (position regulating portion) 126 via the support member 150 is the first main surface 132a, and the surface on the opposite side is the second main surface. It may be referred to as 132b.
  • the first main surface 132a of the actuator element 130 is one surface of the plate-shaped piezoelectric body 137, and the second main surface 132b is the other surface of the plate-shaped piezoelectric body 137.
  • the flow path plate 140 is arranged at a position facing the second main surface 132b of the actuator element 130 via the space E1.
  • the space E1 constitutes a part of the flow path of the fluid introduced into the housing 120, and the surface of the flow path plate 140 facing the space E1 is the first flow path surface 141a.
  • the flow path plate 140 has a facing portion including a first flow path surface 141a facing the second main surface 132b of the actuator element 130.
  • the inner surface of the second housing member 120B extends so as to face the second flow path surface 141b (second surface) forming the opposite surface of the first flow path surface 141a of the flow path plate 140.
  • the recess 142 is formed in the first flow path surface 141a of the flow path plate 140.
  • the recess 142 is formed in an annular shape centered on the through hole 131 of the actuator element 130, for example.
  • the recess 142 forms an expansion portion E2 in the space E1 with an expanded cross-sectional area along the thickness direction t.
  • the recess 142 may be a curved surface having an arcuate cross section. In this case, the flow of the fluid to the expansion portion E2 becomes smoother.
  • the outer region of the flow path plate 140 that does not face the actuator element 130 is a connecting portion 140a, and a through hole 143 is formed in the connecting portion 140a.
  • the through hole 143 has a rectangular shape when the flow path plate 140 is viewed in a plan view, the peripheral edge on the center side of the pump 111A overlaps with the peripheral edge of the actuator element 130, and the outer peripheral edge of the pump 111A is formed. It is located at a distance from the first housing member 120A. That is, the connecting portion 140a is connected to the facing portion including the first flow path surface 141a at a portion excluding the region where the through hole 143 is formed. That is, the connecting portion 140a is arranged around the facing portion.
  • the flow path plate 140 is connected to the first housing member 120A (and the second housing member 120B) by the connecting portion 140a at a portion excluding the region where the through hole 143 is formed.
  • the flow path plate 140 may be a single plate-shaped member in which the connecting portion 140a is integrally formed.
  • the through hole 143 is a flow path through which the fluid flows. That is, the through hole 143 communicates with the space E1 facing the first flow path surface 141a and the space E3 facing the second flow path surface 141b forming the opposite surface of the first flow path surface 141a.
  • a plurality of through holes 143 may be arranged concentrically with the actuator element 130 at equal intervals.
  • the through hole 143 has a substantially rectangular shape in a plan view, but is not limited to this, and may have various shapes such as a circle, an ellipse, and a semicircle in a plan view. Can be formed.
  • the material of the flow path plate 140 including the connection portion 140a for example, resin, metal, or the like can be used as the material of the flow path plate 140 including the connection portion 140a.
  • the pump 111A of the present embodiment transports the fluid as follows.
  • a voltage is applied to the electrodes 138a and 338b of the vibrating element 136 via the first wiring 151a and the second wiring 151b.
  • the vibrating element 136 vibrates.
  • the actuator element 130 vibrates (flexing motion) due to the vibration of the vibrating element 136.
  • the fluid flows from the first opening portion 121 through the through hole 131 of the actuator element 130 and is introduced into the housing 120.
  • the fluid flows in the space E1 between the second main surface 132b of the actuator element 130 and the first flow path surface 141a of the flow path plate 140.
  • the fluid that has passed through the expansion portion E2 of the space E1 then flows from the through hole 143 of the flow path plate 140 through the space E3 between the second flow path surface 141b and the inner surface 120B1 of the second housing member 120B, and is second-opened. It is supplied to the container 102 through the hole 122.
  • the fluid in the expansion part E2 of the space E1 resonates with Helmholtz.
  • Helmholtz resonance By matching the frequency of this Helmholtz resonance with the vibrating element and the operating frequency, it becomes possible to improve the suction capacity of the pump 111A.
  • the actuator element 130 stops vibrating after the container 102 is filled with the fluid, the fluid stored in the container 102 flows back into the pump 111A and is discharged from the through hole 131. At this time, the actuator element 130 receives a force in the direction of pushing the support member 150 toward the protrusion (position regulating portion) 126 due to the pressure of the fluid, and the space between the actuator element 130 and the flow path plate 140 (space). Since E1 and the expansion part E2) do not change, the fluid can be rapidly exhausted.
  • the actuator element 130 of the pump 111A is connected to the protrusion (position regulating portion) 126. That is, in the present embodiment, the actuator element 130 is connected to the protrusion (position regulating portion) 126 via the support member 150, and the through hole 131 faces the first opening portion 121 of the third housing member 120C.
  • the flow path plate 140 is arranged at a position, and further, the flow path plate 140 is arranged at a position facing the second main surface 132b of the actuator element 130 via the space E1.
  • the protrusion (position regulating portion) 126 of the pump 111A is located inside the node N generated when the actuator element 130 vibrates, that is, at a position closer to the center of the actuator element 130.
  • the support member 150 is in contact with a surface opposite to the surface to be joined to the actuator element 130, and is connected to the actuator element 130.
  • the displacement amount near the center of the actuator element 130 and the displacement amount near the peripheral edge of the actuator element 130 are substantially the same. Can be displaced. Therefore, the accuracy of the gap between the actuator element 130 and the flow path plate 140 when the actuator element 130 vibrates (bending vibration) is improved, and high pump performance can be realized.
  • the protrusion (position regulating portion) 126 is separated from the support member 150 closer to the peripheral edge than the node N and the node N. Therefore, since it is suppressed that the displacement of the actuator element 130 on the peripheral side of the node N is restricted, the displacement amount near the center of the actuator element 130 and the displacement amount near the peripheral edge of the actuator element 130 are more reliably about the same magnitude. It can be a displacement.
  • FIG. 19 is a cross-sectional view of the fluid control device according to the fifth embodiment.
  • the pump 111B constituting the fluid control device 2B according to the fifth embodiment has an actuator element 160 formed inside the housing 120.
  • the actuator element 160 of this embodiment is composed of an elastic substrate (board) 165 and a vibration element 166 arranged on the surface (lower surface) of the elastic substrate 165.
  • the elastic substrate 165 is preferably made of a material capable of bending vibration due to the vibration of the vibrating element 166 and hardly dampening the vibration energy of the vibrating element 166. Examples of the material of the elastic substrate 165 include silicon and iron. Phosphor bronze or the like can be used.
  • the vibrating element 166 is a piezoelectric vibrator including a thin-film piezoelectric body 167 and electrodes 168a and 168b arranged on the upper and lower surfaces of the thin-film piezoelectric body 167.
  • the vibration element 166 may be a piezoelectric vibrator laminated body in which two or more piezoelectric vibrators are laminated.
  • the outer edge of the vibrating element 166 is formed to be inside the outer edge of the elastic substrate 165 in the plane spreading direction f perpendicular to the thickness direction t. That is, the outer edge of the vibrating element 166 is inside the outer edge of the elastic substrate 165 when viewed from the opposite direction (thickness direction t in FIG. 19) of the first main surface 132a and the second main surface 132b of the actuator element 130.
  • the elastic substrate 165 is formed so as to have a larger diameter than the vibrating element 166.
  • the surface (lower surface) of the vibrating element 166 connected to the protrusion (position regulating portion) 126 via the support member 150 is the first main surface 162a and the surface on the opposite side thereof.
  • the surface (upper surface) of a certain elastic substrate 165 forms the second main surface 162b.
  • the actuator element 160 is formed with a through hole 161 penetrating between the first main surface 162a and the second main surface 162b.
  • the through hole 161 is composed of a first opening region 165A formed in the vibrating element 166 and a second opening region 165B connected to the first opening region 165A and formed in the elastic substrate 165. ..
  • Such a through hole 161 is formed so that the opening diameter of the first opening region 165A formed in the vibrating element 166 is larger than the opening diameter of the second opening region 165B formed in the elastic substrate 165. ing.
  • the first flow path surface 171a facing the actuator element 160 is a flat surface, and the recess as in the fourth embodiment is not formed. Therefore, no expansion portion or the like is formed between the actuator element 160 and the first flow path surface 171a.
  • the joint portion 153 to which the actuator element 160 is joined to the support member 150 is formed closer to the center of the actuator element 160 than to the node N. That is, the actuator element 160 is supported by the support member 150 inside the node N.
  • the protrusion (position regulating portion) 126 is located inside the node N, that is, at a position closer to the center of the actuator element 130, opposite to the surface of the support member 150 to be joined to the actuator element 130. It is in contact with the surface and is connected to the actuator element 130.
  • the actuator element 160 is configured by joining the elastic substrate 165 and the vibration element 166 as in the present embodiment, the actuator element 130 vibrates (bending vibration) at the operating frequency as in the fourth embodiment. At that time, the displacement amount near the center of the actuator element 130 and the displacement amount near the peripheral edge of the actuator element 130 can be made substantially the same size, and therefore, the actuator element when the actuator element 130 vibrates (bending vibration). The accuracy of the gap between the 130 and the flow path plate 140 is improved, and high pump performance can be realized.
  • the actuator element 160 By configuring the actuator element 160 from a vibrating element 166 and an elastic substrate 165 joined as in the present embodiment, even if a thin thin film piezoelectric body 167 is used as the vibrating element 166, the actuator element 160 can be used. Physical strength can be maintained. Further, by using the thin-film piezoelectric body 167, it is possible to cope with high-frequency vibration and drive the actuator element 160 more efficiently.
  • the outer edge of the vibrating element 166 is inside the outer edge of the elastic substrate 165 when viewed from the opposite direction of the first main surface 132a and the second main surface 132b of the actuator element 130. Therefore, since the vibrating element 166 is securely fixed to the elastic substrate 165, reliability can be improved.
  • FIG. 20 is a cross-sectional view of the fluid control device according to the sixth embodiment.
  • 21 (A) is a sectional view taken along line AA of FIG. 20
  • FIG. 21 (B) is a sectional view taken along line BB of FIG. 20
  • FIG. 21 (C) is a sectional view taken along line CC of FIG. be.
  • the fluid control device 2C according to the sixth embodiment has a pump 111A, a container 102, and a valve 103 arranged between the pump 111A and the container 102. It is the same as the 4th embodiment except that the valve 103 is provided.
  • the valve 103 includes a cylindrical tube 181 that opens in the vertical direction, and a valve body 183 and a ball 186 that are arranged inside the cylindrical tube 181.
  • the cylindrical tube 181 has an outlet 182 connected to the outside.
  • the valve body 183 has a first flow path hole 184 that is closed in the vertical direction, and a second flow path hole 185 that has one end opened downward and the other end is connected to the outlet 182.
  • the ball 186 is located below the valve body 183.
  • the pump 111A drives the valve 103 having such a configuration and stores the fluid in the container 102
  • the ball 186 is pushed by the fluid sent from the pump 111A and moves upward to move upward to the second flow path hole.
  • the fluid is pumped to the container 102 through the first channel hole 184.
  • the fluid control device 2C of the present embodiment configured as described above, since the valve 103 for connecting the pump 111A and the container 102 is provided, the fluid stored in the container 102 is sent to the outside via the valve 103. Can be taken out.
  • FIG. 22 is a cross-sectional view of the fluid control device according to the seventh embodiment.
  • FIG. 23 is a sectional view taken along line XI-XI of FIG.
  • the same configurations as those of the first embodiment described above will be assigned the same number, and duplicate description will be omitted.
  • the flow path plate 240 constituting the pump 211A has a flow path board 244 and a first convex portion 245a in which the flow path board 244 is arranged on the surface of the flow path board 244 on the actuator element 230 side. It is different from the fluid control device of the first embodiment in that it is composed of the second convex portion 245b and the second convex portion 245b.
  • the expansion portion 202 is formed in the internal space E4 by the recessed portion 242 located between the first convex portion 245a and the second convex portion 245b.
  • the first convex portion 245a is provided at a position facing the through hole 231 of the actuator element 230.
  • the second convex portion 245b is provided at a position facing the peripheral edge portion of the actuator element 230.
  • the fluid control device 3A is the fluid of the first embodiment in that the surface of the actuator element 230 on the elastic substrate 235 side is the first main surface 232a and the surface on the vibration element 236 side is the second main surface 232b. It is different from the control device.
  • the support member 250 is connected to the elastic substrate 235.
  • the first wiring 251a is connected to the first electrode (not shown) of the vibrating element 236 via the first through hole 252a formed in the support member 250, the elastic substrate 235, and the vibrating element 236.
  • the second wiring 251b is connected to the second electrode (not shown) of the vibrating element 236 via the support member 250 and the second through hole 252b formed in the elastic substrate 235.
  • the support member 250 is provided with a resin film 253 on the surface opposite to the vibrating element 236 side.
  • a resin film 253 As the material of the resin film 253, for example, polyimide can be used.
  • An annular vibration adjusting plate 254 is arranged around the through hole 231 of the resin film 253.
  • the material of the vibration adjusting plate 254 for example, a metal such as nickel can be used.
  • the vibration adjusting plate 254 made of such a metal can be formed by electroplating via the seed layer 255.
  • the vibration adjusting plate 254 serves as a weight that applies a load to the actuator element 230, and can adjust the operating frequency of the actuator element 230.
  • the second member 224 of the housing 220 is formed of a hard member 260 and an elastic member 261.
  • a hard member 260 for example, silicon can be used.
  • a resin material can be used.
  • a metal member 262 is arranged between the resin film 253 and the third member 225.
  • the material of the metal member 262 for example, it is preferable to use a metal such as nickel that can be formed by electroplating.
  • the vibration adjusting plate 254 the operating frequency of the actuator element 230 can be made lower than the resonance frequency peculiar to the actuator element 230.
  • the resonance frequency peculiar to the actuator element 230 tends to be high, but the size of the actuator element 230 is increased by using the vibration adjusting plate 254 as in the present embodiment. Regardless, it is possible to adjust the operating frequency.
  • FIGS. 24 to 26 Manufacturing method 2 of fluid control device
  • a disk-shaped vibrating element 236 having a through hole 231 in the center is formed on the hard substrate 360.
  • the vibrating element 236 is, for example, a laminated body in which the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order from the hard substrate 360 side.
  • the method of forming the vibrating element 236 is the same as that of the fluid control device 1A according to the first embodiment.
  • an elastic substrate 235 is formed on the surface of the vibrating element 236 opposite to the hard substrate 360 side, and an elastic member 261 is formed on the surface of the hard substrate 360 at intervals around the vibrating element 236.
  • the elastic substrate 235 and the elastic member 261 can be formed, for example, as follows. First, an elastic film is formed on the vibrating element 236 and the hard substrate 360. Next, the elastic film around the vibrating element 236 is removed, and the elastic film is separated into the elastic substrate 235 and the elastic member 261.
  • the vicinity of the peripheral edge of the vibrating element 236 is covered with the positive resist film pattern 339.
  • the method for forming the positive resist film pattern 339 is the same as that for the fluid control device 1A according to the first embodiment.
  • a support member forming film 350 is formed on the elastic substrate 235, the elastic member 261 and the positive resist film pattern 339, and a wiring pattern is formed on the support member forming film 350. do.
  • the method for forming the support member forming film 350 is the same as that for the fluid control device 1A according to the first embodiment.
  • the wiring pattern forms a first wiring 251a connected to the first electrode of the vibrating element 236 and a second wiring 251b connected to the second electrode of the vibrating element 236.
  • the first wiring 251a is connected to the first electrode of the vibrating element 236 via the first through hole 252a.
  • the second wiring 251b is connected to the second electrode of the vibrating element 236 via the second through hole 252b.
  • a resin film 353 is formed on the support member forming film 350.
  • a film forming method for the resin film 353 for example, a spin coating method can be used. In this way, a laminated body 390 in which the vibrating element 236, the support member forming film 350, and the resin film 353 are laminated in this order is obtained on the hard substrate 360.
  • the seed layer 255 is formed on the resin film 353 of the laminated body 390, and the metal layer is formed on the seed layer 255 by electroplating.
  • the seed layer 255 is formed around a position facing the through hole 231 of the vibrating element 236 and a region facing the elastic member 261.
  • the metal layer formed around the position facing the through hole 231 of the vibrating element 236 is the vibration adjusting plate 254, and the metal layer formed in the region facing the elastic member 261 is the metal member 262.
  • through holes are provided in the elastic substrate 235, the support member forming film 350, and the resin film 353 along the vibrating element 236 through hole 231, and the elastic member 261 of the hard substrate 360 is provided with through holes.
  • a hard member 260 is formed by removing a portion other than the facing region. As a result, the vibrating element 236 of the laminated body 390 and the positive resist film pattern 339 are exposed.
  • the laminated body 390 is inverted so that the vibration adjusting plate 254 and the metal member 262 are on the lower side, and the positive resist film pattern 339 is removed.
  • the method for removing the positive resist film pattern is the same as that for the fluid control device 1A according to the first embodiment.
  • a flow path plate forming member 340 is prepared, and the flow path plate forming member 340 and the hard member 260 of the laminated body 390 are joined to form a joined body 392.
  • the flow path plate forming member 340 is composed of a flow path substrate 244 and a first convex portion 245a and a second convex portion 245b arranged on the surface of the flow path substrate 244.
  • the flow path plate forming member 340 and the laminated body 390 are joined so that the first convex portion 245a of the flow path plate forming member 340 and the through hole 231 of the actuator element 230 of the laminated body 390 face each other.
  • the joint body 392 is cut to obtain a structure 393 in which the actuator element 230 with the support member 250 and the flow path plate 240 are integrated.
  • the pump 211a is formed by joining the flow path plate 240 of the obtained structure 393 and the first member 223, and joining the metal member 262 of the structure 393 and the third member 225.
  • the fluid control device 3A is obtained by joining the container 270 to the second opening portion 222 of the pump 211a.
  • an actuator element having a first main surface and a second main surface facing each other and having a first through hole penetrating between the first main surface and the second main surface.
  • a first plate having a facing portion including a first surface facing the second main surface of the actuator element via a space, and a connecting portion connected to the facing portion and having a second through hole.
  • a housing including the tubular first housing member that houses the actuator element and the facing portion of the first plate and is connected to the connection portion, and the actuator element and the first housing member are connected to each other. It has a support member that supports the actuator element inside the first housing member.
  • the first through hole may be located at the center of the actuator element.
  • the actuator element may have a substrate constituting the second main surface and a vibration element constituting the first main surface and bonded to the substrate.
  • the first through hole may be composed of a first opening region included in the vibrating element and a second opening region connected to the first opening region and possessed by the substrate.
  • the opening diameter of the first opening region may be larger than the opening diameter of the second opening region.
  • the central axis of the first opening region and the central axis of the second opening region may be on the same axis.
  • the support member may be arranged so as to cover the entire region between the actuator element and the first housing member when the support member is viewed in a plan view from the first plate. ..
  • the second housing member is provided with an inner surface that is connected to the first housing member and has an inner surface that extends so as to face a second surface that forms an opposite surface of the first surface of the first plate.
  • the housing member may have an opening that penetrates between the inner surface and the opposite surface thereof.
  • the fluid control device may be a fluid control device having the above-mentioned pump and may include a container in which the fluid flows in and out through the opening.
  • a protrusion protruding from the housing toward the inside of the housing is provided, and the protrusion is located closer to the center of the actuator element than the node portion generated when the actuator element vibrates. , May be connected to the actuator element.
  • the protrusion may be separated from the actuator element at the node.
  • the actuator element may have a substrate constituting the second main surface and a vibration element constituting the first main surface and bonded to the substrate.
  • the outer edge of the vibrating element may be inside the outer edge of the substrate when viewed from the opposite direction of the first main surface and the second main surface.
  • the housing has a first opening, has a third housing member connected to the first housing member, and the protrusion is connected to the third housing member. You may.
  • the protrusion is connected to the actuator element via the support member, and is connected to the actuator element of the support member at a position closer to the center of the actuator element than the node portion. It may be in contact with the surface opposite to the surface to be joined.
  • the support member has a drawer portion extending to the outside of the first housing member, and the support member is separated from the actuator element at the node portion, and the support member and the support member are described.
  • the joint portion to which the actuator element is bonded and the drawer portion may be located on the same surface.
  • the support member may have a power supply wiring for supplying electric power to the actuator element.
  • the power feeding wiring may be electrically connected to the actuator element closer to the center of the actuator element than the node portion.
  • the housing has a second housing member that is connected to the first housing member and has an inner surface that extends so as to face a second surface that forms the opposite surface of the first surface of the first plate.
  • the second housing member may have a second opening penetrating between the inner surface and the opposite surface thereof.
  • a vibration adjusting plate for adjusting the operating frequency of the actuator element may be further provided on at least one of the first main surface and the second main surface of the actuator element.
  • the fluid control device may include a container in which the fluid flows in and out through the opening.
  • a valve may be formed between the pump and the container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A pump and fluid control device are provided which allow for miniaturization and which achieve high pump performance. This pump comprises: an actuator element having a first principal surface and a second principal surface opposite of each other and having a first through-hole passing between the first principal surface and the second principal surface; a first plate comprising an opposite part, which includes a first surface that is spaced away from and opposite of the second principal surface of the actuator element, and a connection part, which is connected to the opposite part and which has a second through-hole; a housing internally housing the actuator element and the opposite part of the first plate and including a cylindrical first housing member which is connected to the connection part; and a support member connecting the actuator element and the first housing member and supporting the actuator element inside of the first housing member.

Description

ポンプ及び流体制御装置Pump and fluid control device
 本開示は、ポンプ及び流体制御装置に関する。
 本願は、2020年7月31日に日本に出願された特願2020-130733号、および2020年7月31日に日本に出願された特願2020-130735号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to pumps and fluid control devices.
This application claims priority under Japanese Patent Application No. 2020-130733 filed in Japan on July 31, 2020 and Japanese Patent Application No. 2020-130735 filed in Japan on July 31, 2020. Incorporate the content here.
 気体や液体などの流体の輸送用の小型ポンプとして、流体導入口と流体吐出口とを有するハウジングと、そのハウジングの内部に配置されたアクチュエータ素子とを備えたポンプが知られている。また、この小型ポンプと、小型ポンプから送られた流体を一時的に貯留可能な容器とを組み合わせた流体制御装置は、例えば、血圧計として利用されている(例えば、特許文献1を参照)。 As a small pump for transporting a fluid such as gas or liquid, a pump having a housing having a fluid inlet and a fluid discharge port and an actuator element arranged inside the housing is known. Further, a fluid control device combining this small pump and a container capable of temporarily storing the fluid sent from the small pump is used, for example, as a sphygmomanometer (see, for example, Patent Document 1).
 上記の小型ポンプでは、アクチュエータ素子の屈曲運動によって、流体導入口からハウジングの内部に導入された流体は、アクチュエータ素子の表面に沿って流れて流体吐出口から外部に吐出される。 In the above-mentioned small pump, the fluid introduced into the housing from the fluid inlet due to the bending motion of the actuator element flows along the surface of the actuator element and is discharged to the outside from the fluid discharge port.
国際公開第2016/063710号International Publication No. 2016/063710
 特許文献1に開示される技術では、圧電ポンプが、圧電アクチュエータの下面側に吸入孔が設けられた可撓板を有し、圧電アクチュエータの上面側に吐出孔が設けられた蓋板を有する構造となっている。また、この圧電ポンプは、カフから気体を排気することができるバルブを有している。このバルブは、カフに圧縮空気を充填した後、カフから空気を急速排気する。これにより、カフが急速に萎むため、次回の血圧の測定を直ぐに開始できる状態としている。 In the technique disclosed in Patent Document 1, the piezoelectric pump has a flexible plate having a suction hole on the lower surface side of the piezoelectric actuator and a lid plate having a discharge hole on the upper surface side of the piezoelectric actuator. It has become. The piezoelectric pump also has a valve capable of exhausting gas from the cuff. This valve fills the cuff with compressed air and then rapidly exhausts the air from the cuff. As a result, the cuff shrinks rapidly, and the next blood pressure measurement can be started immediately.
 ここで、アクチュエータ素子を利用した小型ポンプは、さらなる小型化が望まれている。しかしながら、特許文献1に開示される技術において、圧電ポンプの吐出孔にバルブを介さずカフを直接接続して小型化(低背化)した場合、カフに圧縮空気を充填した後、圧電ポンプが駆動を停止すると、空気が圧電ポンプ内に逆流し、圧電アクチュエータが可撓板に接近する。その結果、圧電アクチュエータによって吸入孔が閉塞され、排気できなくなる虞があった。 Here, it is desired that the small pump using the actuator element be further miniaturized. However, in the technique disclosed in Patent Document 1, when the cuff is directly connected to the discharge hole of the piezoelectric pump without passing through a valve to reduce the size (reduction in height), the piezoelectric pump is filled with compressed air and then the piezoelectric pump is used. When the drive is stopped, air flows back into the piezoelectric pump and the piezoelectric actuator approaches the flexible plate. As a result, there is a risk that the suction hole will be blocked by the piezoelectric actuator and exhaust will not be possible.
 また、特許文献1に開示される技術では、振動板は二つの連結部で枠板に対して2点で弾性支持する構造となっている。即ち、圧電アクチュエータの周辺部が実質的に拘束されていない状態となっている。そのため、圧電アクチュエータと固定部との間のギャップが正確にコントロールできないため、ポンプ性能が低下する場合があった。 Further, in the technique disclosed in Patent Document 1, the diaphragm has a structure in which two connecting portions elastically support the frame plate at two points. That is, the peripheral portion of the piezoelectric actuator is not substantially restrained. Therefore, the gap between the piezoelectric actuator and the fixed portion cannot be accurately controlled, which may reduce the pump performance.
 本開示に係る技術は、このような事情を考慮してなされたもので、小型化に対応可能であり、高いポンプ性能を実現したポンプ及び流体制御装置を提供することを目的とする。 The technology according to the present disclosure has been made in consideration of such circumstances, and an object of the present invention is to provide a pump and a fluid control device that can cope with miniaturization and realize high pump performance.
 本開示の一態様では、ポンプは、互いに対向する第1主面と第2主面とを有し、該第1主面と該第2主面との間を貫通する第1貫通孔を有するアクチュエータ素子と、前記アクチュエータ素子の前記第2主面と空間を介して対向する第1面を含む対向部と、前記対向部と接続され、第2貫通孔を有する接続部とを有する第1板と、内部に前記アクチュエータ素子と前記第1板の前記対向部を収容し、前記接続部と接続される筒状の第1ハウジング部材を含むハウジングと、前記アクチュエータ素子と前記第1ハウジング部材とを接続し、前記アクチュエータ素子を前記第1ハウジング部材の内側で支持する支持部材と、を有している。 In one aspect of the present disclosure, the pump has a first main surface and a second main surface facing each other, and has a first through hole penetrating between the first main surface and the second main surface. A first plate having an actuator element, a facing portion including a first surface facing the second main surface of the actuator element via a space, and a connecting portion connected to the facing portion and having a second through hole. A housing including the tubular first housing member that houses the actuator element and the facing portion of the first plate and is connected to the connection portion, and the actuator element and the first housing member. It has a support member that is connected and supports the actuator element inside the first housing member.
 本開示に係る技術によれば、小型化に対応可能であり、高いポンプ性能を実現したポンプ及び流体制御装置を提供することができる。 According to the technology according to the present disclosure, it is possible to provide a pump and a fluid control device that can cope with miniaturization and realize high pump performance.
図1は、本開示の第1実施形態のポンプを備えた流体制御装置を示す断面図である。FIG. 1 is a cross-sectional view showing a fluid control device including the pump of the first embodiment of the present disclosure. 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 図2のIII-III線断面図である。FIG. 2 is a sectional view taken along line III-III of FIG. 図2のIV-IV線断面図である。FIG. 2 is a sectional view taken along line IV-IV of FIG. 図2のV-V線断面図である。FIG. 2 is a sectional view taken along line VV of FIG. 図1に示すアクチュエータ素子の作動状態を説明する模式断面図である。It is a schematic cross-sectional view explaining the operating state of the actuator element shown in FIG. 第1実施形態の流体制御装置において、第2開孔部の直径と、容器内の圧力との関係、およびポンプの空気流量との関係を示すグラフである。It is a graph which shows the relationship between the diameter of the 2nd opening, the pressure in a container, and the air flow rate of a pump in the fluid control apparatus of 1st Embodiment. 従来の流体制御装置において、ダイヤフラムの開口部の直径と、下バルブ室の圧力との関係、および空気流量との関係を示すグラフである。It is a graph which shows the relationship between the diameter of the opening of a diaphragm, the pressure of a lower valve chamber, and the air flow rate in a conventional fluid control device. 第1実施形態の流体制御装置の製造方法を段階的に示した断面図である。It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 1st Embodiment step by step. 第1実施形態の流体制御装置の製造方法を段階的に示した断面図である。It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 1st Embodiment step by step. 本開示の第2実施形態のポンプを備えた流体制御装置を示す断面図である。It is sectional drawing which shows the fluid control apparatus provided with the pump of 2nd Embodiment of this disclosure. 本開示の第3実施形態のポンプを備えた流体制御装置を示す断面図である。It is sectional drawing which shows the fluid control apparatus provided with the pump of 3rd Embodiment of this disclosure. 本開示の第4実施形態のポンプを備えた流体制御装置を示す断面図である。It is sectional drawing which shows the fluid control apparatus provided with the pump of 4th Embodiment of this disclosure. 図13のVI-VI線断面図である。FIG. 13 is a sectional view taken along line VI-VI of FIG. 図14のVII-VII線断面図である。FIG. 14 is a sectional view taken along line VII-VII of FIG. 図14のVIII-VIII線断面図である。FIG. 14 is a sectional view taken along line VIII-VIII of FIG. 図14のIX-IX線断面図である。FIG. 14 is a cross-sectional view taken along the line IX-IX of FIG. 図13に示すアクチュエータ素子の作動状態を説明する説明図である。It is explanatory drawing explaining the operating state of the actuator element shown in FIG. 本開示の第5実施形態のポンプを備えた流体制御装置を示す断面図である。It is sectional drawing which shows the fluid control apparatus provided with the pump of 5th Embodiment of this disclosure. 本開示の第6実施形態のポンプを備えた流体制御装置を示す断面図である。It is sectional drawing which shows the fluid control apparatus provided with the pump of 6th Embodiment of this disclosure. 図20の部分断面図である。FIG. 20 is a partial cross-sectional view of FIG. 本開示の第7実施形態に係る流体制御装置を示す断面図である。It is sectional drawing which shows the fluid control apparatus which concerns on 7th Embodiment of this disclosure. 図22のXI-XI線断面図である。FIG. 22 is a sectional view taken along line XI-XI of FIG. 第7実施形態の流体制御装置の製造方法を段階的に示した断面図である。It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 7th Embodiment step by step. 第7実施形態の流体制御装置の製造方法を段階的に示した断面図である。It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 7th Embodiment step by step. 第7実施形態の流体制御装置の製造方法を段階的に示した断面図である。It is sectional drawing which showed the manufacturing method of the fluid control apparatus of 7th Embodiment step by step.
 以下、本開示を適用した一実施形態であるポンプおよびこれを備えた流体制御装置について図面を参照して説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本開示を限定するものではない。また、以下の説明で用いる図面は、本開示の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, a pump and a fluid control device including the pump, which is an embodiment to which the present disclosure is applied, will be described with reference to the drawings. It should be noted that the embodiments shown below are specifically described in order to better understand the gist of the invention, and do not limit the present disclosure unless otherwise specified. In addition, the drawings used in the following description may be shown by enlarging the main parts for convenience in order to make the features of the present disclosure easy to understand, and the dimensional ratios of each component are the same as the actual ones. It is not always the case.
(第1実施形態)
 図1は、第1実施形態に係る流体制御装置の斜視図である。図2は、図1のII-II線断面図である。図3は、図2のIII-III線断面図であり、図4は、図2のIV-IV線断面図であり、図5は、図2のV-V線断面図である。図6は、図1に示すアクチュエータ素子の作動状態を説明する模式断面図である。
(First Embodiment)
FIG. 1 is a perspective view of the fluid control device according to the first embodiment. FIG. 2 is a sectional view taken along line II-II of FIG. 3 is a sectional view taken along line III-III of FIG. 2, FIG. 4 is a sectional view taken along line IV-IV of FIG. 2, and FIG. 5 is a sectional view taken along line VV of FIG. FIG. 6 is a schematic cross-sectional view illustrating an operating state of the actuator element shown in FIG.
 第1実施形態に係る流体制御装置1Aは、ポンプ11Aと、ポンプ11Aから送られた流体を一時的に貯留する容器(タンク)2とを備える。
 ポンプ11Aは、ハウジング20と、アクチュエータ素子30と、流路板(第1板)40と、アクチュエータ素子30を支持するための支持部材50と、を備えている。
The fluid control device 1A according to the first embodiment includes a pump 11A and a container (tank) 2 for temporarily storing the fluid sent from the pump 11A.
The pump 11A includes a housing 20, an actuator element 30, a flow path plate (first plate) 40, and a support member 50 for supporting the actuator element 30.
 ハウジング20は、ポンプ11Aの外装体であり、内部にアクチュエータ素子30および流路板40が収容される。
 ハウジング20は、外側断面と内側断面がそれぞれ角形であり、厚み方向tに沿って延びる角筒状の第1ハウジング部材20Aを有する。
The housing 20 is an exterior body of the pump 11A, and the actuator element 30 and the flow path plate 40 are housed therein.
The housing 20 has a square tubular first housing member 20A having a square outer cross section and an inner cross section and extending along the thickness direction t.
 また、ハウジング20は、第1ハウジング部材20Aの一方の開口端を塞ぐように形成され、外側断面と内側断面がそれぞれ角形の有底筒状体である第2ハウジング部材20Bを有する。
 更に、ハウジング20は、第1ハウジング部材20Aの他方の開口端の一部を塞ぐように形成され、外側断面と内側断面がそれぞれ角形の有底筒状体である第3ハウジング部材(位置規制部材)20Cを有する。
Further, the housing 20 has a second housing member 20B which is formed so as to close one open end of the first housing member 20A and has a bottomed cylindrical body having a square outer cross section and an inner cross section, respectively.
Further, the housing 20 is formed so as to close a part of the other open end of the first housing member 20A, and the outer cross section and the inner cross section are square bottomed tubular bodies, respectively, as a third housing member (position regulating member). ) Has 20C.
 これらハウジング20を構成する第1ハウジング部材20A、第2ハウジング部材20B、および第3ハウジング部材(位置規制部材)20Cは、例えば一体に形成されていればよい。 The first housing member 20A, the second housing member 20B, and the third housing member (position regulating member) 20C constituting these housings 20 may be integrally formed, for example.
 ハウジング20を構成する第3ハウジング部材(位置規制部材)20Cには、第1開孔部(開孔)21が形成されている。また、ハウジング20を構成する第2ハウジング部材20Bには、流路板40と対向する内面20B1と、その反対面20B2とを貫通する第2開孔部22が形成されている。こうした構成により、流体を容器2に貯留する場合において、第1開孔部21は流体導入孔となり、第2開孔部22は流体吐出孔となる。また、容器2に貯留された流体を外部に放出する場合においては、第1開孔部21は流体吐出孔となり、第2開孔部22は流体導入孔となる。 The first opening portion (opening) 21 is formed in the third housing member (position regulating member) 20C constituting the housing 20. Further, the second housing member 20B constituting the housing 20 is formed with a second opening portion 22 penetrating the inner surface 20B1 facing the flow path plate 40 and the opposite surface 20B2. With such a configuration, when the fluid is stored in the container 2, the first opening portion 21 becomes a fluid introduction hole and the second opening portion 22 becomes a fluid discharge hole. Further, when the fluid stored in the container 2 is discharged to the outside, the first opening portion 21 becomes a fluid discharge hole and the second opening portion 22 becomes a fluid introduction hole.
 ハウジング20の第2ハウジング部材20Bと第1ハウジング部材20Aの間には流路板40が配置されている。これにより流路板40はハウジング20に固定される。また、第1ハウジング部材20Aと第3ハウジング部材20Cの間には支持部材50が配置されている。すなわち、支持部材50は第1ハウジング部材20Aと第3ハウジング部材20Cとで挟持されている。これにより支持部材50は第1ハウジング部材20Aの内側で支持され、ハウジング20に固定されている。 A flow path plate 40 is arranged between the second housing member 20B and the first housing member 20A of the housing 20. As a result, the flow path plate 40 is fixed to the housing 20. Further, a support member 50 is arranged between the first housing member 20A and the third housing member 20C. That is, the support member 50 is sandwiched between the first housing member 20A and the third housing member 20C. As a result, the support member 50 is supported inside the first housing member 20A and is fixed to the housing 20.
 本実施形態では、ハウジング20は、第2ハウジング部材20Bが流路板40を介して第1ハウジング部材20Aと接続されており、第3ハウジング部材20Cが支持部材50を介して第1ハウジング部材20Aと接続されている。 In the present embodiment, in the housing 20, the second housing member 20B is connected to the first housing member 20A via the flow path plate 40, and the third housing member 20C is connected to the first housing member 20A via the support member 50. Is connected to.
 なお、流路板40をハウジング20に固定する方法は、これに限定されるものではない。例えば、流路板40をハウジング20の例えば第1ハウジング部材20Aの内壁に接着剤などを用いて固定してもよい。 The method of fixing the flow path plate 40 to the housing 20 is not limited to this. For example, the flow path plate 40 may be fixed to the inner wall of, for example, the first housing member 20A of the housing 20 by using an adhesive or the like.
 ハウジング20は外側断面と内側断面がそれぞれ角形とされている。ただし、ハウジング20の形状は、これに限定されるものではない。ハウジング20は、例えば、外側断面が角形で内側断面が円形とされていてもよいし、外側断面と内側断面がそれぞれ円形とされていてもよいし、外側断面が円形で内側断面が角形とされていてもよい。ハウジング20の構成材料としては、例えば、樹脂やセラミックスなどの絶縁材料を用いることできる。 The housing 20 has a square outer cross section and an inner cross section, respectively. However, the shape of the housing 20 is not limited to this. The housing 20 may have, for example, a square outer cross section and a circular inner cross section, a circular outer cross section and a circular inner cross section, or a circular outer cross section and a square inner cross section. May be. As the constituent material of the housing 20, for example, an insulating material such as resin or ceramics can be used.
 アクチュエータ素子30は所定の周波数で振動(屈曲運動)するものであることが好ましい。アクチュエータ素子30は共振周波数を有していてもよい。アクチュエータ素子30の共振周波数は、例えば、20kHz以上の範囲にある。 It is preferable that the actuator element 30 vibrates (bends) at a predetermined frequency. The actuator element 30 may have a resonance frequency. The resonance frequency of the actuator element 30 is, for example, in the range of 20 kHz or more.
 アクチュエータ素子30は、貫通孔(第1貫通孔)31を有する。貫通孔31は、ハウジング20の第1開孔部21に連通されている。本実施形態では、アクチュエータ素子30は円板状とされ、貫通孔31は円板状のアクチュエータ素子30の中央に配置されている。なお、アクチュエータ素子30の形状は円板状に限定されるものではない。アクチュエータ素子30は、例えば、角板状や多角形板状であってもよい。但し、アクチュエータ素子30の形状は、不要な共振周波数の出現を抑制する観点から円板状が好ましい。 The actuator element 30 has a through hole (first through hole) 31. The through hole 31 communicates with the first opening portion 21 of the housing 20. In the present embodiment, the actuator element 30 has a disk shape, and the through hole 31 is arranged in the center of the disk-shaped actuator element 30. The shape of the actuator element 30 is not limited to a disk shape. The actuator element 30 may be, for example, a square plate or a polygonal plate. However, the shape of the actuator element 30 is preferably a disk shape from the viewpoint of suppressing the appearance of unnecessary resonance frequencies.
 本実施形態のアクチュエータ素子30は、振動素子36から構成されている。こうした振動素子36は、板状圧電体37と、板状圧電体37の上下の表面に配置された電極38a、38bとを含む圧電振動子とされている。板状圧電体37は、例えば、分極方向を互いに逆向きにした2つの圧電体を接合したものから構成されている。板状圧電体37の構成材料としては、例えば、チタン酸ジルコン酸鉛系セラミックスを用いたPZT系圧電振動材を用いることができる。本実施形態での板状圧電体37は、分極方向を互いに逆向きにした2つのバルクタイプのPZT系圧電振動材を接合したものを用いている。
 なお、振動素子36は、振動素子として、圧電振動子の代わりに、電歪振動子を用いてもよい。
The actuator element 30 of this embodiment is composed of a vibration element 36. Such a vibrating element 36 is a piezoelectric vibrator including a plate-shaped piezoelectric body 37 and electrodes 38a and 38b arranged on the upper and lower surfaces of the plate-shaped piezoelectric body 37. The plate-shaped piezoelectric body 37 is composed of, for example, a joint of two piezoelectric bodies whose polarization directions are opposite to each other. As the constituent material of the plate-shaped piezoelectric body 37, for example, a PZT-based piezoelectric vibrating material using lead zirconate titanate-based ceramics can be used. As the plate-shaped piezoelectric body 37 in the present embodiment, two bulk type PZT-based piezoelectric vibrating materials in which the polarization directions are opposite to each other are joined.
As the vibrating element 36, an electrostraining oscillator may be used instead of the piezoelectric oscillator as the vibrating element.
 アクチュエータ素子30を支持する支持部材50は、アクチュエータ素子30と接合される面とは反対面がハウジング20を構成する第3ハウジング部材(位置規制部材)20Cの突起部(位置規制部)26に接し、かつ貫通孔31が第3ハウジング部材20Cの第1開孔部21に連通する位置に配置されている。 The support member 50 that supports the actuator element 30 is in contact with the protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C whose surface opposite to the surface joined to the actuator element 30 constitutes the housing 20. In addition, the through hole 31 is arranged at a position communicating with the first opening portion 21 of the third housing member 20C.
 第3ハウジング部材(位置規制部材)20Cの突起部(位置規制部)26は、第1開孔部21の周囲に配置され、第3ハウジング部材(位置規制部材)20Cから、ハウジング20の内側に向けて突出している。なお。本実施形態では、突起部(位置規制部)26は、第3ハウジング部材(位置規制部材)20Cが備える構成として、第3ハウジング部材(位置規制部材)20Cと一体的に形成されているが、突起部(位置規制部)26は、第3ハウジング部材(位置規制部材)20Cとは別部材で構成されていても構わない。 The protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C is arranged around the first opening portion 21, and is arranged from the third housing member (position regulating member) 20C to the inside of the housing 20. It is protruding toward. note that. In the present embodiment, the protrusion (position regulating member) 26 is integrally formed with the third housing member (position regulating member) 20C as a configuration included in the third housing member (position regulating member) 20C. The protrusion (position regulating portion) 26 may be formed of a member different from the third housing member (position regulating member) 20C.
 また、支持部材50は、流路板40から支持部材50を平面視した時に、アクチュエータ素子30と第1ハウジング部材20Aとの間の領域の全面を覆うように配されている。
 これにより、流体が第1開孔部21から貫通孔31を経てのみ流入する。そして、これ以外の経路は、支持部材50によって塞がれている。したがって、支持部材50がアクチュエータ素子30を支持するだけでなく、流体の流入経路を遮る役割も果たすため、構造の簡素化が図れる。
Further, the support member 50 is arranged so as to cover the entire region between the actuator element 30 and the first housing member 20A when the support member 50 is viewed in a plan view from the flow path plate 40.
As a result, the fluid flows from the first opening portion 21 only through the through hole 31. The other paths are blocked by the support member 50. Therefore, the support member 50 not only supports the actuator element 30, but also plays a role of blocking the inflow path of the fluid, so that the structure can be simplified.
 図6は、アクチュエータ素子30が振動している状態を示す。アクチュエータ素子30単体が振動するときに生じるノード(節)Nが、支持部材50を介して突起部(位置規制部)26と接する位置もしくは、ノードNが、突起部(位置規制部)26よりもわずかに外側となる位置であることが好ましい。 FIG. 6 shows a state in which the actuator element 30 is vibrating. The position where the node (node) N generated when the actuator element 30 alone vibrates comes into contact with the protrusion (position regulating portion) 26 via the support member 50, or the node N is closer to the protrusion (position regulating portion) 26 than the protrusion (position regulating portion) 26. It is preferable that the position is slightly outside.
 なお、本実施形態では、アクチュエータ素子30は、支持部材50を介して第3ハウジング部材(位置規制部材)20Cの突起部(位置規制部)26に接しており、支持部材50の弾性力によって突起部(位置規制部)26に押し付けられ、互いに離間しないように構成されている。 In the present embodiment, the actuator element 30 is in contact with the protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C via the support member 50, and is projected by the elastic force of the support member 50. It is configured to be pressed against the portion (position regulating portion) 26 so as not to be separated from each other.
 以下、本実施形態においては、第3ハウジング部材(位置規制部材)20Cの突起部(位置規制部)26と接する側のアクチュエータ素子30の表面を第1主面32a、その反対側の表面を第2主面32bと称することがある。
 なお、本実施形態においては、アクチュエータ素子30の第1主面32aは板状圧電体37の一方の表面、第2主面32bは板状圧電体37の他方の表面とされている。
Hereinafter, in the present embodiment, the surface of the actuator element 30 on the side in contact with the protrusion (position regulating portion) 26 of the third housing member (position regulating member) 20C is the first main surface 32a, and the surface on the opposite side thereof is the first. 2 It may be referred to as a main surface 32b.
In the present embodiment, the first main surface 32a of the actuator element 30 is one surface of the plate-shaped piezoelectric body 37, and the second main surface 32b is the other surface of the plate-shaped piezoelectric body 37.
 流路板40は、アクチュエータ素子30の第2主面32bと対向する位置に、空間E1を介して配置されている。空間E1は、ハウジング20の内部に導入された流体の流路の一部を構成し、流路板40のうち、空間E1に臨む面は、第1流路面(第1面)41aとされている。流路板40は、アクチュエータ素子30の第2主面32bと対向する第1流路面41aを含む対向部を有する。流路板40の対向部は、ハウジング20の内部に収容される。 The flow path plate 40 is arranged at a position facing the second main surface 32b of the actuator element 30 via the space E1. The space E1 constitutes a part of the flow path of the fluid introduced into the housing 20, and the surface of the flow path plate 40 facing the space E1 is a first flow path surface (first surface) 41a. There is. The flow path plate 40 has a facing portion including a first flow path surface 41a facing the second main surface 32b of the actuator element 30. The facing portion of the flow path plate 40 is housed inside the housing 20.
 流路板40のうち、第1流路面41aには、凹部42が形成されていることが好ましい。凹部42は、例えば、アクチュエータ素子30の貫通孔31を中心とした円環状に形成されている。この凹部42によって、空間E1には、流体が流れる方向に対して垂直な方向の断面積が拡張された拡張部E2が形成される。 It is preferable that the recess 42 is formed in the first flow path surface 41a of the flow path plate 40. The recess 42 is formed in an annular shape centered on the through hole 31 of the actuator element 30, for example. The recess 42 forms in the space E1 an expansion portion E2 having an expanded cross-sectional area in a direction perpendicular to the direction in which the fluid flows.
 このような構成により、ポンプ11Aのアクチュエータ素子30のサイズを小型化した場合であっても、20kHz以上において、低い周波数でヘルムホルツ共振を発生させやすい。このため、ポンプ11Aのサイズを小型化した場合でも、ポンプ11Aの吸込能力を高めることが可能になる。凹部42は、断面が円弧状に窪んだ湾曲面とされていてもよい。この場合、拡張部E2への流体の流れがより円滑になりやすくなる。 With such a configuration, even when the size of the actuator element 30 of the pump 11A is reduced, Helmholtz resonance is likely to occur at a low frequency at 20 kHz or higher. Therefore, even when the size of the pump 11A is reduced, the suction capacity of the pump 11A can be increased. The recess 42 may be a curved surface having an arcuate cross section. In this case, the flow of the fluid to the expansion portion E2 becomes smoother.
 流路板40は、アクチュエータ素子30に対向しない外側の領域が接続部40aとされ、この接続部40aに貫通孔(第2貫通孔)43が形成される。本実施形態では、貫通孔43は、流路板40を平面視した場合、矩形形状を呈しており(図3を参照)、ポンプ11Aの中心側の周縁がアクチュエータ素子30の周縁と重なり、ポンプ11Aの外側の周縁は第1ハウジング部材20Aと距離を置いて位置している。 In the flow path plate 40, the outer region not facing the actuator element 30 is a connecting portion 40a, and a through hole (second through hole) 43 is formed in the connecting portion 40a. In the present embodiment, the through hole 43 has a rectangular shape when the flow path plate 40 is viewed in a plan view (see FIG. 3), and the peripheral edge of the pump 11A on the center side overlaps with the peripheral edge of the actuator element 30 to form a pump. The outer peripheral edge of 11A is located at a distance from the first housing member 20A.
 即ち、接続部40aは、貫通孔43が形成された領域を除いた部分で第1流路面41aを含む対向部と接続されている。即ち、接続部40aは、対向部の周囲に配置されている。また、流路板40は、接続部40aによって、貫通孔43が形成された領域を除いた部分で第1ハウジング部材20A(および第2ハウジング部材20B)に接続されている。なお、流路板40は接続部40aが一体に形成された1個の板状の部材であればよい。 That is, the connecting portion 40a is connected to the facing portion including the first flow path surface 41a at the portion excluding the region where the through hole 43 is formed. That is, the connecting portion 40a is arranged around the facing portion. Further, the flow path plate 40 is connected to the first housing member 20A (and the second housing member 20B) by the connecting portion 40a except for the region where the through hole 43 is formed. The flow path plate 40 may be a single plate-shaped member in which the connecting portion 40a is integrally formed.
 貫通孔43は、流体が流れる流路となる。即ち、貫通孔43は、第1流路面41aに臨む空間E1と、第1流路面41aの反対面を成す第2流路面(第2面)41bに臨む空間E3と連通させる。 The through hole 43 is a flow path through which the fluid flows. That is, the through hole 43 communicates with the space E1 facing the first flow path surface 41a and the space E3 facing the second flow path surface (second surface) 41b forming the opposite surface of the first flow path surface 41a.
 貫通孔43は、アクチュエータ素子30と同心円状に等間隔で複数個配置されていてもよい。接続部40aを含む流路板40の材料としては、例えば、樹脂、金属などを用いることができる。 A plurality of through holes 43 may be arranged concentrically with the actuator element 30 at equal intervals. As the material of the flow path plate 40 including the connecting portion 40a, for example, resin, metal, or the like can be used.
 支持部材50は、第1配線51a、第2配線51bを備える。第1配線51aと第2配線51bとは、互いに反対方向に向かって延びている。支持部材50は、アクチュエータ素子30の振動(屈曲運動)を妨げないように、可撓性樹脂シートで形成されていてもよい。また、可撓性樹脂シートは絶縁性を有していてもよい。絶縁性を有する可撓性樹脂シートとしては、例えば、ポリイミドシートを挙げることができる。 The support member 50 includes a first wiring 51a and a second wiring 51b. The first wiring 51a and the second wiring 51b extend in opposite directions to each other. The support member 50 may be formed of a flexible resin sheet so as not to interfere with the vibration (bending motion) of the actuator element 30. Further, the flexible resin sheet may have an insulating property. Examples of the flexible resin sheet having an insulating property include a polyimide sheet.
 第1配線51a、第2配線51bは、振動素子36の電極38a、38bと電源(不図示)とを接続する。第1配線51aと電極38aは、板状圧電体37に形成されたスルーホール52を介して接続される。第1配線51aと電極38bとが接触しないように、電極38bは、スルーホール52の周囲を避けるように形成されている。第2配線51bは、電極38bに接続されている。 The first wiring 51a and the second wiring 51b connect the electrodes 38a and 38b of the vibrating element 36 to a power supply (not shown). The first wiring 51a and the electrode 38a are connected via a through hole 52 formed in the plate-shaped piezoelectric body 37. The electrode 38b is formed so as to avoid the periphery of the through hole 52 so that the first wiring 51a and the electrode 38b do not come into contact with each other. The second wiring 51b is connected to the electrode 38b.
 以上のような構成の本実施形態のポンプ11Aは、次のようにして流体を輸送する。
 第1配線51a、第2配線51bを介して、振動素子36の電極38a、38bに電圧を印加する。
 これにより、振動素子36が振動する。この振動素子36の振動によって、アクチュエータ素子30が振動(屈曲運動)する。
The pump 11A of the present embodiment having the above configuration transports the fluid as follows.
A voltage is applied to the electrodes 38a and 38b of the vibrating element 36 via the first wiring 51a and the second wiring 51b.
As a result, the vibrating element 36 vibrates. The vibration of the vibrating element 36 causes the actuator element 30 to vibrate (bend motion).
 アクチュエータ素子30が振動することによって、流体が第1開孔部21から、アクチュエータ素子30の貫通孔31を流れ、ハウジング20の内部に導入される。流体は、アクチュエータ素子30の第2主面32bと流路板40の第1流路面41aとの間の空間E1を流れる。空間E1の拡張部E2を通った流体は、次いで、流路板40の貫通孔43から、第2流路面41bと第2ハウジング部材20Bの内面20B1との間の空間E3を流れ、第2開孔部22を介して、容器2に供給される。 When the actuator element 30 vibrates, the fluid flows from the first opening portion 21 through the through hole 31 of the actuator element 30 and is introduced into the housing 20. The fluid flows in the space E1 between the second main surface 32b of the actuator element 30 and the first flow path surface 41a of the flow path plate 40. The fluid that has passed through the expansion portion E2 of the space E1 then flows from the through hole 43 of the flow path plate 40 to the space E3 between the second flow path surface 41b and the inner surface 20B1 of the second housing member 20B, and is second-opened. It is supplied to the container 2 through the hole 22.
 このような流体の流れによって、空間E1の拡張部E2の流体がヘルムホルツ共振する。このヘルムホルツ共振の周波数と振動素子と動作周波数とが整合することによって、ポンプ11Aの吸込能力を向上させることが可能になる。 Due to such a fluid flow, the fluid in the expansion part E2 of the space E1 resonates with Helmholtz. By matching the frequency of the Helmholtz resonance with the vibrating element and the operating frequency, it becomes possible to improve the suction capacity of the pump 11A.
 容器2に流体が充填された後、アクチュエータ素子30が振動を停止すると、容器2内に貯留された流体はポンプ11Aに逆流して貫通孔31から排出される。このとき、アクチュエータ素子30は、流体の圧力で支持部材50を突起部(位置規制部)26に向かって押す方向に力を受けることになり、アクチュエータ素子30と流路板40との間隔(空間E1および拡張部E2)は変化しないので流体を急速排気することができる。 When the actuator element 30 stops vibrating after the container 2 is filled with the fluid, the fluid stored in the container 2 flows back into the pump 11A and is discharged from the through hole 31. At this time, the actuator element 30 receives a force in the direction of pushing the support member 50 toward the protrusion (position regulating portion) 26 by the pressure of the fluid, and the space (space) between the actuator element 30 and the flow path plate 40. Since E1 and the expansion part E2) do not change, the fluid can be rapidly exhausted.
 ここで、本実施形態のポンプ11Aを備えた流体制御装置1Aにおいて、バルブの不要化による効果について詳細に説明する。 Here, in the fluid control device 1A provided with the pump 11A of the present embodiment, the effect of eliminating the need for a valve will be described in detail.
 まず、バルブを備える従来の流体制御装置の構成について説明する。従来の流体制御装置、例えば、特許文献1に記載の圧電ポンプは、圧電ポンプの上面がバルブの底面に接合されることにより、バルブが圧電ポンプに接続され、カフがバルブのカフ接続口に装着されることにより、バルブにカフが接続されている。圧電ポンプは、圧電アクチュエータの下面側に吸入孔が設けられた可撓板を有し、圧電アクチュエータの上面側に吐出孔が設けられた蓋板を有する構造となっている。 First, the configuration of a conventional fluid control device equipped with a valve will be described. In a conventional fluid control device, for example, the piezoelectric pump described in Patent Document 1, the valve is connected to the piezoelectric pump by joining the upper surface of the piezoelectric pump to the bottom surface of the valve, and the cuff is attached to the cuff connection port of the valve. By doing so, the cuff is connected to the valve. The piezoelectric pump has a structure having a flexible plate having a suction hole on the lower surface side of the piezoelectric actuator and a lid plate having a discharge hole on the upper surface side of the piezoelectric actuator.
 バルブは、圧電ポンプの吐出孔に連通する第1通気孔と、カフの内部空間に連通する第2通気孔と、外部に連通する第3通気孔と、第1の弁座と、第3通気孔の周囲から突出する第2の弁座とを有する弁筐体と、開口部を有する弁筐体に固定されているダイヤフラムと、を備えている。ダイヤフラムは、第1通気孔に連通する下バルブ室と、第2通気孔および第3通気孔に連通する上バルブ室とを形成している。 The valve has a first vent that communicates with the discharge hole of the piezoelectric pump, a second vent that communicates with the internal space of the cuff, a third vent that communicates with the outside, a first valve seat, and a third valve. It comprises a valve housing with a second valve seat protruding from the perimeter of the pores and a diaphragm fixed to the valve housing having an opening. The diaphragm forms a lower valve chamber that communicates with the first vent and an upper valve chamber that communicates with the second vent and the third vent.
 このような従来の流体制御装置では、圧電ポンプを駆動させると、第1通気孔を介して下バルブ室に空気が流入し、下バルブ室の圧力が上バルブ室の圧力より高くなり、ダイヤフラムが第2の弁座と接触して第3通気孔を閉塞し、第1の弁座から離間することでダイヤフラムの開口部を介してカフに空気が送出される。一方、圧電ポンプの駆動が停止すると、下バルブ室の圧力が上バルブ室の圧力より低くなり、ダイヤフラムが第2の弁座から離間して第3通気孔を開放し、第1の弁座に接触することでダイヤフラムの開口部を閉塞し、カフの空気が第3通気孔を介して急速に排気される。 In such a conventional fluid control device, when the piezoelectric pump is driven, air flows into the lower valve chamber through the first ventilation hole, the pressure in the lower valve chamber becomes higher than the pressure in the upper valve chamber, and the diaphragm is formed. By contacting with the second valve seat to close the third ventilation hole and separating from the first valve seat, air is sent to the cuff through the opening of the diaphragm. On the other hand, when the drive of the piezoelectric pump is stopped, the pressure in the lower valve chamber becomes lower than the pressure in the upper valve chamber, the diaphragm is separated from the second valve seat, the third vent is opened, and the pressure in the first valve seat is reached. Upon contact, the opening of the diaphragm is closed, and the air in the cuff is rapidly exhausted through the third ventilation hole.
 図7は、特許文献1に記載の圧電ポンプにおいて、ダイヤフラムの開口部の直径と、下バルブ室の圧力との関係(実線)、および空気流量との関係(破線)を示すグラフである。図7においては、横軸は、ダイヤフラムの開口部の直径(μm)、左縦軸は、下バルブ室の圧力(kPa)、右縦軸は動作時の流量(ml/min)を表す。なお、圧電アクチュエータは、円板状(直径:12mm)とした。圧電アクチュエータと可撓板との距離を10μmとした。 FIG. 7 is a graph showing the relationship between the diameter of the opening of the diaphragm and the pressure in the lower valve chamber (solid line) and the relationship with the air flow rate (broken line) in the piezoelectric pump described in Patent Document 1. In FIG. 7, the horizontal axis represents the diameter of the opening of the diaphragm (μm), the left vertical axis represents the pressure in the lower valve chamber (kPa), and the right vertical axis represents the flow rate during operation (ml / min). The piezoelectric actuator has a disk shape (diameter: 12 mm). The distance between the piezoelectric actuator and the flexible plate was set to 10 μm.
 図7のグラフから、従来の流体制御装置では、ダイヤフラムの開口部の直径が大きくなると流量は増加する一方、下バルブ室の圧力が低下している。即ち、従来の流体制御装置において、カフに空気を送出しようとすると、下バルブ室の圧力を上バルブ室の圧力よりも高くする必要があり、下バルブ室の圧力の低下を避けるためには、ダイヤフラムの開口部の直径を大きくすることができず、流量を増加することができないことがわかる。 From the graph of FIG. 7, in the conventional fluid control device, the flow rate increases as the diameter of the opening of the diaphragm increases, while the pressure in the lower valve chamber decreases. That is, in the conventional fluid control device, when trying to send air to the cuff, the pressure in the lower valve chamber must be higher than the pressure in the upper valve chamber, and in order to avoid a decrease in the pressure in the lower valve chamber, It can be seen that the diameter of the opening of the diaphragm cannot be increased and the flow rate cannot be increased.
 これは、第1通気孔に連通する下バルブ室と、第2通気孔および第3通気孔に連通する上バルブ室を形成するダイヤフラムを備えるバルブを必要とするためである。仮に、従来の流体制御装置でバルブを削除した場合、カフに圧縮空気を充填した後、圧電ポンプが駆動を停止すると、空気が圧電ポンプ内に逆流し、圧電アクチュエータが可撓板に接近する。その結果、圧電アクチュエータによって吸入孔が閉塞され、排気できなくなる虞がある。そのため、排気用の通気孔を備えるバルブは必要とされ、ダイヤフラムの開口部の直径も大きくできず、流量も増加することができない。 This is because a valve having a diaphragm forming a lower valve chamber communicating with the first vent and an upper valve chamber communicating with the second vent and the third vent is required. If the valve is removed by the conventional fluid control device, when the piezoelectric pump stops driving after the cuff is filled with compressed air, the air flows back into the piezoelectric pump and the piezoelectric actuator approaches the flexible plate. As a result, the suction hole may be blocked by the piezoelectric actuator, and exhaust may not be possible. Therefore, a valve provided with a ventilation hole for exhaust is required, the diameter of the opening of the diaphragm cannot be increased, and the flow rate cannot be increased.
 図8は、第1実施形態の流体制御装置1Aにおいて、第2開孔部22の直径と、容器(タンク)2内の圧力との関係(実線)、およびポンプ11Aの空気流量との関係(破線)を示すグラフである。図8において、横軸は、第2開孔部22の直径(μm)、左縦軸は、ポンプの容器(タンク)内の圧力(kPa)、右縦軸は動作時の空気の流量(ml/min)を表す。なお、アクチュエータ素子30は、円板状(直径:12mm)とした。空間E1の開孔高さ(アクチュエータ素子30の第2主面32bと流路板40の第1流路面41aとの距離)を10μmとした。なお、本実施形態では、従来例のダイヤフラムの開口部は、第2開孔部22に相当する。また、図8によると、第2開孔部の直径を200μm以上にすると圧力及び流量は一定値に収束し、それぞれ高い値となる。 FIG. 8 shows the relationship (solid line) between the diameter of the second opening portion 22 and the pressure in the container (tank) 2 and the relationship between the air flow rate of the pump 11A in the fluid control device 1A of the first embodiment (the relationship between them). It is a graph which shows (dashed line). In FIG. 8, the horizontal axis is the diameter (μm) of the second opening portion 22, the left vertical axis is the pressure (kPa) in the container (tank) of the pump, and the right vertical axis is the flow rate of air during operation (ml). / Min). The actuator element 30 has a disk shape (diameter: 12 mm). The opening height of the space E1 (distance between the second main surface 32b of the actuator element 30 and the first flow path surface 41a of the flow path plate 40) was set to 10 μm. In this embodiment, the opening of the diaphragm of the conventional example corresponds to the second opening 22. Further, according to FIG. 8, when the diameter of the second opening is set to 200 μm or more, the pressure and the flow rate converge to constant values, and each becomes a high value.
 図8のグラフから、本実施形態のポンプ11Aを備えた流体制御装置1Aでは、アクチュエータ素子30に貫通孔31を形成することによって、従来の流体制御装置におけるバルブは必要としない。したがって、第2開孔部22の開孔径を広げて流量を増加させることができる。 From the graph of FIG. 8, in the fluid control device 1A provided with the pump 11A of the present embodiment, the valve in the conventional fluid control device is not required by forming the through hole 31 in the actuator element 30. Therefore, the opening diameter of the second opening portion 22 can be widened to increase the flow rate.
 以上のように構成された本実施形態の流体制御装置1Aでは、ポンプ11Aのアクチュエータ素子30が貫通孔31を有し、流路板40がアクチュエータ素子30の第2主面32bと空間E1を介して対向する第1面を含む対向部と、対向部と接続され、貫通孔43を有する接続部とを有する。また、流路板40の接続部と接続される筒状の第1ハウジング部材20Aを有し、支持部材50がアクチュエータ素子30を第1ハウジング部材20Aの内側で支持している。 In the fluid control device 1A of the present embodiment configured as described above, the actuator element 30 of the pump 11A has a through hole 31, and the flow path plate 40 passes through the second main surface 32b of the actuator element 30 and the space E1. It has a facing portion including a first surface facing the facing portion, and a connecting portion connected to the facing portion and having a through hole 43. Further, it has a cylindrical first housing member 20A connected to the connection portion of the flow path plate 40, and the support member 50 supports the actuator element 30 inside the first housing member 20A.
 また、本実施形態の流体制御装置1Aでは、ポンプ11Aのアクチュエータ素子30を支持する支持部材50のアクチュエータ素子30と接合される面とは反対面と、第3ハウジング部材20Cの突起部(位置規制部)26とが接し、かつ貫通孔31が第3ハウジング部材20Cの第1開孔部21と対向する位置に配置されている。 Further, in the fluid control device 1A of the present embodiment, the surface of the support member 50 that supports the actuator element 30 of the pump 11A and the surface opposite to the surface joined to the actuator element 30 and the protrusion of the third housing member 20C (position restriction). The portion) 26 is in contact with the through hole 31, and the through hole 31 is arranged at a position facing the first opening portion 21 of the third housing member 20C.
 このような構成を有するポンプ11Aは、アクチュエータ素子30が振動する際、流路板40に近接または離間する貫通孔31近傍のアクチュエータ素子30の中心付近と、この中心付近とは逆位相で流路板40に離間または近接するアクチュエータ素子30の周縁付近が弁として機能する。即ち、アクチュエータ素子30の中心付近と周縁付近がアクチュエータ素子30の共振振動に連動して機能する弁構造をなしている。これにより、可聴帯域以上(20kHz以上)の高い振動速度においても確実に作用する弁開閉機能を有することから、高いポンプ能力を発揮することができる。 In the pump 11A having such a configuration, when the actuator element 30 vibrates, the flow path is in the vicinity of the center of the actuator element 30 near the through hole 31 which is close to or separated from the flow path plate 40 and in the opposite phase to the vicinity of the center. The vicinity of the peripheral edge of the actuator element 30 separated from or close to the plate 40 functions as a valve. That is, the vicinity of the center and the vicinity of the peripheral edge of the actuator element 30 form a valve structure that functions in conjunction with the resonance vibration of the actuator element 30. As a result, it has a valve opening / closing function that works reliably even at a high vibration speed of the audible band or higher (20 kHz or higher), so that a high pumping capacity can be exhibited.
 また、このような構成を有するポンプ11Aは、ポンプ11A内の圧力が上昇しても、この圧力上昇によって貫通孔31が塞がれることが無いため、ポンプ11Aにより容器(タンク)2内への流体の貯留及び容器(タンク)2内の流体の吐出が可能となる。即ち、本実施形態の流体制御装置1Aは、バルブを不要にできることから、小型化、低コスト化及び高性能化を図ることができる。 Further, in the pump 11A having such a configuration, even if the pressure in the pump 11A rises, the through hole 31 is not blocked by this pressure rise, so that the pump 11A pushes the pump 11A into the container (tank) 2. The fluid can be stored and the fluid in the container (tank) 2 can be discharged. That is, since the fluid control device 1A of the present embodiment can eliminate the need for a valve, it is possible to reduce the size, cost, and performance.
 さらに、このような構成を有する流体制御装置1Aは、バルブを設ける必要がないので第2開孔部22の開孔径は制限を受けることなく大きくすることができる。その結果、高圧で大きな流量を発生する流体制御装置を実現することが可能になる。 Further, since the fluid control device 1A having such a configuration does not need to be provided with a valve, the opening diameter of the second opening portion 22 can be increased without limitation. As a result, it becomes possible to realize a fluid control device that generates a large flow rate at high pressure.
(流体制御装置の製造方法1)
 次に、第1実施形態の流体制御装置1Aの製造方法の一例について説明する。
 図9、図10は、第1実施形態の流体制御装置1Aの製造方法を示す断面図である。
(Manufacturing method of fluid control device 1)
Next, an example of the manufacturing method of the fluid control device 1A of the first embodiment will be described.
9 and 10 are cross-sectional views showing a method of manufacturing the fluid control device 1A of the first embodiment.
 まず、図9(A)に示すように、弾性基板形成材335の上に、中央に貫通孔31を有する円盤状の振動素子36を形成する。振動素子36は、例えば、次にようにして形成することができる。最初に、弾性基板形成材335の上に、第1電極と、板状圧電体と、第2電極とをこの順に積層して、圧電振動膜を形成する。第1電極、板状圧電体及び第2電極は、例えば、スパッタリング法を用いて成膜することができる。次いで、圧電振動膜を、エッチング処理を用いて、中央に貫通孔を有する円盤状に成形する。 First, as shown in FIG. 9A, a disk-shaped vibrating element 36 having a through hole 31 in the center is formed on the elastic substrate forming material 335. The vibrating element 36 can be formed, for example, as follows. First, the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order on the elastic substrate forming material 335 to form a piezoelectric vibration film. The first electrode, the plate-shaped piezoelectric body, and the second electrode can be formed into a film by using, for example, a sputtering method. Next, the piezoelectric vibrating membrane is formed into a disk shape having a through hole in the center by using an etching process.
 次いで、図9(B)に示すように、振動素子36の周縁部近傍をポジ型レジスト膜パターン339で被覆する。ポジ型レジスト膜パターン339は、例えば、次のようにして形成することができる。最初に、振動素子36と弾性基板形成材335の上にポジ型レジストを塗布してポジ型レジスト膜を形成する。次いで、振動素子36の周縁部近傍にフォトマスクを配置した状態で、ポジ型レジスト膜に紫外線を照射して、振動素子36の周縁部近傍以外の部分を被覆しているポジ型レジスト膜を現像液に対して易溶解性に変質させる。そして、易溶解性に変質したポジ型レジスト膜を現像液で溶解する。 Next, as shown in FIG. 9B, the vicinity of the peripheral edge of the vibrating element 36 is covered with the positive resist film pattern 339. The positive resist film pattern 339 can be formed, for example, as follows. First, a positive resist is applied on the vibrating element 36 and the elastic substrate forming material 335 to form a positive resist film. Next, with the photomask placed near the peripheral edge of the vibrating element 36, the positive resist film is irradiated with ultraviolet rays to develop a positive resist film that covers the portion other than the peripheral edge of the vibrating element 36. It is easily soluble in liquid. Then, the positive resist film that has been altered to be easily soluble is dissolved with a developing solution.
 次いで、図9(C)に示すように、振動素子36とポジ型レジスト膜パターン339の上に、支持部材形成膜350を成膜する。支持部材形成膜350の成膜方法としては、例えば、スピンコート法を用いることができる。 Next, as shown in FIG. 9C, a support member forming film 350 is formed on the vibrating element 36 and the positive resist film pattern 339. As a method for forming the support member forming film 350, for example, a spin coating method can be used.
 次いで、図9(D)に示すように、支持部材形成膜350に配線パターンを形成する。配線パターンは、振動素子36の第1電極に接続する第1配線51aと、振動素子36の第2電極に接続する第2配線51bとを形成する。第1配線51aは、第1スルーホール52aを介して振動素子36の第1電極に接続する。第2配線51bは、第2スルーホール52bを介して、振動素子36の第2電極に接続する。 Next, as shown in FIG. 9D, a wiring pattern is formed on the support member forming film 350. The wiring pattern forms a first wiring 51a connected to the first electrode of the vibrating element 36 and a second wiring 51b connected to the second electrode of the vibrating element 36. The first wiring 51a is connected to the first electrode of the vibrating element 36 via the first through hole 52a. The second wiring 51b is connected to the second electrode of the vibrating element 36 via the second through hole 52b.
 次いで、図10(A)に示すように、支持部材形成膜350を支持部材50の形状に切断すると共に、ポジ型レジスト膜パターン339を除去する。ポジ型レジスト膜パターンは、例えば、ポジ型レジスト膜パターンに紫外線を照射して、ポジ型レジスト膜パターンを現像液に対して易溶解性に変質させた後、現像液で溶解することによって除去できる。ポジ型レジスト膜パターン339が除去されることによって、振動素子36の周縁部と支持部材形成膜350との間に空隙39が形成される。 Next, as shown in FIG. 10A, the support member forming film 350 is cut into the shape of the support member 50, and the positive resist film pattern 339 is removed. The positive resist film pattern can be removed, for example, by irradiating the positive resist film pattern with ultraviolet rays to easily change the positive resist film pattern into a developing solution and then dissolving the positive resist film pattern in the developing solution. .. By removing the positive resist film pattern 339, a gap 39 is formed between the peripheral edge of the vibrating element 36 and the support member forming film 350.
 次いで、図10(B)に示すように、支持部材50の振動素子36側とは反対側の表面に接着剤361を介して仮基板362を接合して接合体370を得る。仮基板の材料としては、特に制限はなく、例えば、ガラス基板、金属基板を用いることができる。 Next, as shown in FIG. 10B, the temporary substrate 362 is bonded to the surface of the support member 50 on the side opposite to the vibrating element 36 side via the adhesive 361 to obtain a bonded body 370. The material of the temporary substrate is not particularly limited, and for example, a glass substrate or a metal substrate can be used.
 次いで、図10(C)に示すように、仮基板362が下側となるように接合体370を反転させ、弾性基板形成材335を弾性基板35の形状に加工し、支持部材50に貫通孔31を形成する。 Next, as shown in FIG. 10C, the joint body 370 is inverted so that the temporary substrate 362 is on the lower side, the elastic substrate forming material 335 is processed into the shape of the elastic substrate 35, and the support member 50 has a through hole. 31 is formed.
 そして、図10(D)に示すように、接合体370の接着剤361と仮基板362とを除去する。こうして、支持部材50付きアクチュエータ素子30が得られる。得られた支持部材50付きアクチュエータ素子30と、流路板40とをハウジング20で固定してポンプ11Aを形成する。次いで、ポンプ11Aの第2開孔部22に容器2を接合することにより、流体制御装置1Aが得られる。 Then, as shown in FIG. 10 (D), the adhesive 361 and the temporary substrate 362 of the bonded body 370 are removed. In this way, the actuator element 30 with the support member 50 is obtained. The obtained actuator element 30 with the support member 50 and the flow path plate 40 are fixed by the housing 20 to form the pump 11A. Next, the fluid control device 1A is obtained by joining the container 2 to the second opening portion 22 of the pump 11A.
(第2実施形態)
 図11は、第2実施形態に係る流体制御装置の断面図である。
 なお、以下の説明では、上述した第1実施形態と同様の構成には同一の番号を付し、重複する説明を省略する。
 第2実施形態に係る流体制御装置1Bを構成するポンプ11Bは、ハウジング20の内部に形成されたアクチュエータ素子60を有する。
(Second Embodiment)
FIG. 11 is a cross-sectional view of the fluid control device according to the second embodiment.
In the following description, the same configurations as those of the first embodiment described above will be assigned the same number, and duplicate description will be omitted.
The pump 11B constituting the fluid control device 1B according to the second embodiment has an actuator element 60 formed inside the housing 20.
 本実施形態のアクチュエータ素子60は、弾性基板(基板)65と、この弾性基板65の表面(下側の表面)に配置された振動素子66とから構成されている。弾性基板65は、振動素子66の振動による屈曲振動が可能で、振動素子66の振動エネルギーを減衰させにくい材料から構成されていると好ましく、弾性基板65の材料としては、例えば、シリコン、鉄、リン青銅などを用いることができる。振動素子66は、薄膜状圧電体67と、この薄膜状圧電体67の上下の表面に配置された電極68a、68bとを含む圧電振動子とされている。なお、振動素子66は、圧電振動子を2個以上積層した圧電振動子積層体であってもよい。 The actuator element 60 of the present embodiment is composed of an elastic substrate (substrate) 65 and a vibration element 66 arranged on the surface (lower surface) of the elastic substrate 65. The elastic substrate 65 is preferably made of a material capable of bending vibration due to the vibration of the vibrating element 66 and hardly dampening the vibration energy of the vibrating element 66. Examples of the material of the elastic substrate 65 include silicon and iron. Phosphor bronze or the like can be used. The vibrating element 66 is a piezoelectric vibrator including a thin-film piezoelectric body 67 and electrodes 68a and 68b arranged on the upper and lower surfaces of the thin-film piezoelectric body 67. The vibration element 66 may be a piezoelectric vibrator laminated body in which two or more piezoelectric vibrators are laminated.
 このようなアクチュエータ素子60では、振動素子66の表面(下側の表面)が第1主面62a、その反対側の表面である弾性基板65の表面(上側の表面)が第2主面62bを成す。 In such an actuator element 60, the surface (lower surface) of the vibrating element 66 is the first main surface 62a, and the surface (upper surface) of the elastic substrate 65 which is the opposite surface thereof is the second main surface 62b. To make.
 アクチュエータ素子60には、第1主面62aと第2主面62bとの間を貫通する貫通孔(第1貫通孔)61が形成されている。この貫通孔61は、振動素子66に形成された第1開孔領域65Aと、この第1開孔領域65Aに連なり、弾性基板65に形成された第2開孔領域65Bとから構成されている。 The actuator element 60 is formed with a through hole (first through hole) 61 that penetrates between the first main surface 62a and the second main surface 62b. The through hole 61 is composed of a first opening region 65A formed in the vibrating element 66 and a second opening region 65B connected to the first opening region 65A and formed in the elastic substrate 65. ..
 このような貫通孔61は、振動素子66に形成された第1開孔領域65Aの開孔径が、弾性基板65に形成された第2開孔領域65Bの開孔径よりも大きくなるように形成されている。
 また、第1開孔領域65Aの中心軸と、第2開孔領域65Bの中心軸とは、同一軸S上にあるように形成されている。
Such a through hole 61 is formed so that the opening diameter of the first opening region 65A formed in the vibrating element 66 is larger than the opening diameter of the second opening region 65B formed in the elastic substrate 65. ing.
Further, the central axis of the first opening region 65A and the central axis of the second opening region 65B are formed so as to be on the same axis S.
 なお、本実施形態のように、第1開孔領域65Aおよび第2開孔領域65Bが、断面円形の孔である場合、開孔径は直径で良いが、第1開孔領域、第2開孔領域65Bが、断面矩形や断面多角形の孔である場合、開孔径としては、最大直径(開孔最大径)であればよい。 When the first opening region 65A and the second opening region 65B are holes having a circular cross section as in the present embodiment, the opening diameter may be a diameter, but the first opening region and the second opening region may be used. When the region 65B is a hole having a rectangular cross section or a polygonal cross section, the opening diameter may be the maximum diameter (maximum opening diameter).
 本実施形態のように、アクチュエータ素子60を弾性基板65と振動素子66とを接合したものから構成しても、第1実施形態のポンプと同様に、可聴帯域以上(20kHz以上)の高い振動速度においても確実に作用する弁開閉機能を有することから、高いポンプ能力を発揮することができる。 Even if the actuator element 60 is composed of the elastic substrate 65 and the vibration element 66 joined to each other as in the present embodiment, the vibration speed is higher than the audible band (20 kHz or more) as in the pump of the first embodiment. Since it has a valve opening / closing function that works reliably even in the above, a high pumping capacity can be exhibited.
 また、容器(タンク)2内への流体の貯留及び容器(タンク)2内の流体の吐出が可能なポンプ11Cを実現でき、バルブを不要にできることから、小型化、低コスト化及び高性能化を図ることができる。さらに、バルブを設ける必要がないので第2開孔部22の開孔径は制限を受けることなく大きくすることができ、高圧で大きな流量を発生する流体制御装置を実現することが可能になる。 In addition, the pump 11C capable of storing the fluid in the container (tank) 2 and discharging the fluid in the container (tank) 2 can be realized, and the valve can be eliminated, so that the size, cost, and performance can be improved. Can be planned. Further, since it is not necessary to provide a valve, the opening diameter of the second opening portion 22 can be increased without limitation, and it becomes possible to realize a fluid control device that generates a large flow rate at a high pressure.
 本実施形態のように、アクチュエータ素子60を振動素子66と弾性基板65とを接合したものから構成することによって、振動素子66として厚みの薄い薄膜状圧電体67を用いても、アクチュエータ素子60の物理的な強度を維持できる。また、薄膜状圧電体67を用いることにより、高周波振動に対応することができ、より効率的にアクチュエータ素子60を駆動させることができる。 By configuring the actuator element 60 from a vibrating element 66 and an elastic substrate 65 joined as in the present embodiment, even if a thin thin film piezoelectric body 67 is used as the vibrating element 66, the actuator element 60 can be used. Physical strength can be maintained. Further, by using the thin film piezoelectric body 67, it is possible to cope with high frequency vibration, and the actuator element 60 can be driven more efficiently.
 また、本実施形態のように、振動素子66に形成された第1開孔領域65Aの開孔径を、弾性基板65に形成された第2開孔領域65Bの開孔径よりも大きくすることにより、互いに同一開孔径に形成する場合と比較して、振動素子66が弾性基板65に確実に固着されることから、信頼性を向上することができる。 Further, as in the present embodiment, the opening diameter of the first opening region 65A formed in the vibrating element 66 is made larger than the opening diameter of the second opening region 65B formed in the elastic substrate 65. Since the vibrating element 66 is securely fixed to the elastic substrate 65 as compared with the case where they are formed to have the same opening diameter, reliability can be improved.
 また、アクチュエータ素子60において、吸入時の吸入側となる第1開孔領域65Aの開孔径を、第2開孔領域65Bの開孔径よりも大きくすることによって、流体が吸入方向に流れた場合に比べ、流体が逆流するときの流体抵抗を大きくすることができる。これによりポンプ性能を向上することができる。 Further, in the actuator element 60, when the fluid flows in the suction direction by making the opening diameter of the first opening region 65A on the suction side at the time of suction larger than the opening diameter of the second opening region 65B. In comparison, the fluid resistance when the fluid flows backward can be increased. This can improve the pump performance.
(第3実施形態)
 図12は、第3実施形態に係る流体制御装置の断面図である。
 なお、以下の説明では、上述した第1実施形態と同様の構成には同一の番号を付し、重複する説明を省略する。
 第3実施形態に係る流体制御装置1Cを構成するポンプ11Cは、ハウジング20の内部に形成されたアクチュエータ素子70を有する。
(Third Embodiment)
FIG. 12 is a cross-sectional view of the fluid control device according to the third embodiment.
In the following description, the same configurations as those of the first embodiment described above will be assigned the same number, and duplicate description will be omitted.
The pump 11C constituting the fluid control device 1C according to the third embodiment has an actuator element 70 formed inside the housing 20.
 本実施形態のアクチュエータ素子70は、弾性基板(基板)75と、この弾性基板75の表面(上側の表面)に配置された振動素子76とから構成されている。弾性基板65は、振動素子76の振動による屈曲振動が可能で、振動素子76の振動エネルギーを減衰させにくい導電性材料から構成されていると好ましく、弾性基板75の材料としては、例えば、鉄、リン青銅などを用いることができる。振動素子76は、薄膜状圧電体77と、この薄膜状圧電体77の上下の表面に配置された電極78a、78bとを含む圧電振動子とされている。なお、本実施形態では、振動素子76の一方の電極78bは、導電性材料から構成される弾性基板75を介して第1配線51aに接続されている。 The actuator element 70 of the present embodiment is composed of an elastic substrate (board) 75 and a vibration element 76 arranged on the surface (upper surface) of the elastic substrate 75. The elastic substrate 65 is preferably made of a conductive material capable of bending vibration due to the vibration of the vibrating element 76 and hardly dampening the vibration energy of the vibrating element 76. Examples of the material of the elastic substrate 75 include iron. Phosphor bronze or the like can be used. The vibrating element 76 is a piezoelectric vibrator including a thin-film piezoelectric body 77 and electrodes 78a and 78b arranged on the upper and lower surfaces of the thin-film piezoelectric body 77. In this embodiment, one electrode 78b of the vibrating element 76 is connected to the first wiring 51a via an elastic substrate 75 made of a conductive material.
 このようなアクチュエータ素子70では、弾性基板75の一方の表面(下側の表面)が第1主面72a、その反対側の表面である振動素子76の表面(上側の表面)が第2主面72bを成す。即ち、第2実施形態のアクチュエータ素子とは、弾性基板と振動素子との形成位置が逆になる構成となっている。 In such an actuator element 70, one surface (lower surface) of the elastic substrate 75 is the first main surface 72a, and the surface (upper surface) of the vibrating element 76, which is the opposite surface, is the second main surface. It forms 72b. That is, the actuator element of the second embodiment has a configuration in which the formation positions of the elastic substrate and the vibration element are opposite to each other.
 アクチュエータ素子70には、第1主面72aと第2主面72bとの間を貫通する貫通孔(第1貫通孔)71が形成されている。この貫通孔71は、振動素子76に形成された第1開孔領域75Aと、この第1開孔領域75Aに連なり、弾性基板75に形成された第2開孔領域75Bとから構成されている。 The actuator element 70 is formed with a through hole (first through hole) 71 that penetrates between the first main surface 72a and the second main surface 72b. The through hole 71 is composed of a first opening region 75A formed in the vibrating element 76 and a second opening region 75B connected to the first opening region 75A and formed in the elastic substrate 75. ..
 本実施形態では、第1開孔領域75Aの開孔径と、弾性基板75に形成された第2開孔領域75Bの開孔径とは同一の大きさに形成されている。また、第1開孔領域75Aの中心軸と、第2開孔領域75Bの中心軸とは、同一軸S上にあるように形成されている。 In the present embodiment, the opening diameter of the first opening region 75A and the opening diameter of the second opening region 75B formed on the elastic substrate 75 are formed to have the same size. Further, the central axis of the first opening region 75A and the central axis of the second opening region 75B are formed so as to be on the same axis S.
 本実施形態のように、アクチュエータ素子70を弾性基板75と振動素子76とを接合したものから構成し、振動素子76が流路板40の第1流路面41aに対向する位置にしても、第1実施形態のポンプと同様に、可聴帯域以上(20kHz以上)の高い振動速度においても確実に作用する弁開閉機能を有することから、高いポンプ能力を発揮することができる。また、容器(タンク)2内への流体の貯留及び容器(タンク)2内の流体の吐出が可能なポンプ11Cを実現でき、バルブを不要にできることから、小型化、低コスト化及び高性能化を図ることができる。さらに、バルブを設ける必要がないので第2開孔部22の開孔径は制限を受けることなく大きくすることができ、高圧で大きな流量を発生する流体制御装置を実現することが可能になる。 As in the present embodiment, the actuator element 70 is configured by joining the elastic substrate 75 and the vibrating element 76, and even if the vibrating element 76 is positioned to face the first flow path surface 41a of the flow path plate 40, the first Similar to the pump of one embodiment, it has a valve opening / closing function that reliably works even at a high vibration speed in the audible band or higher (20 kHz or higher), so that a high pumping capacity can be exhibited. In addition, the pump 11C capable of storing the fluid in the container (tank) 2 and discharging the fluid in the container (tank) 2 can be realized, and the valve can be eliminated, so that the size, cost, and performance can be improved. Can be planned. Further, since it is not necessary to provide a valve, the opening diameter of the second opening portion 22 can be increased without limitation, and it becomes possible to realize a fluid control device that generates a large flow rate at a high pressure.
(第4実施形態)
 図13は、第4実施形態に係る流体制御装置の斜視図である。図14は、図13のVI-VI線断面図である。図15は、図14のVII-VII線断面図であり、図16は、図14のVIII-VIII線断面図であり、図17は、図14のIX-IX線断面図である。図18は、図13に示すアクチュエータ素子のノード部と、第3ハウジング部材に形成された突起部との位置関係を説明する説明図である。
(Fourth Embodiment)
FIG. 13 is a perspective view of the fluid control device according to the fourth embodiment. FIG. 14 is a sectional view taken along line VI-VI of FIG. 15 is a sectional view taken along line VII-VII of FIG. 14, FIG. 16 is a sectional view taken along line VIII-VIII of FIG. 14, and FIG. 17 is a sectional view taken along line IX-IX of FIG. FIG. 18 is an explanatory diagram illustrating the positional relationship between the node portion of the actuator element shown in FIG. 13 and the protrusion portion formed on the third housing member.
 第4実施形態に係る流体制御装置2Aは、ポンプ111Aと、ポンプ111Aから送られた流体を一時的に貯留する容器(タンク)102とを備える。
 ポンプ111Aは、ハウジング120と、アクチュエータ素子130と、流路板(第1板)140と、アクチュエータ素子130を支持する支持部材150と、を備える。
The fluid control device 2A according to the fourth embodiment includes a pump 111A and a container (tank) 102 for temporarily storing the fluid sent from the pump 111A.
The pump 111A includes a housing 120, an actuator element 130, a flow path plate (first plate) 140, and a support member 150 that supports the actuator element 130.
 ハウジング120は、ポンプ111Aの外装体であり、内部にアクチュエータ素子130および流路板140が収容される。
 ハウジング120は、外側断面と内側断面がそれぞれ角形であり、厚み方向tに沿って延びる角筒状の第1ハウジング部材120Aを有する。
The housing 120 is an exterior body of the pump 111A, and the actuator element 130 and the flow path plate 140 are housed therein.
The housing 120 has a square tubular first housing member 120A having a square outer cross section and an inner cross section and extending along the thickness direction t.
 また、ハウジング120は、第1ハウジング部材120Aの一方の開口端を塞ぐように形成され、外側断面と内側断面がそれぞれ角形の有底筒状体である第2ハウジング部材120Bを有する。第2ハウジング部材120Bは、第1ハウジング部材120Aに接続されている。
 更に、ハウジング120は、第1ハウジング部材120Aの他方の開口端の一部を塞ぐように形成され、外側断面が角形で内側断面が円形の有底筒状体である第3ハウジング部材(位置規制部材)120Cを有する。第3ハウジング部材(位置規制部材)120Cは、第1ハウジング部材120Aに接続されている。
Further, the housing 120 has a second housing member 120B which is formed so as to close one open end of the first housing member 120A and has a bottomed cylindrical body having a square outer cross section and an inner cross section, respectively. The second housing member 120B is connected to the first housing member 120A.
Further, the housing 120 is formed so as to close a part of the other open end of the first housing member 120A, and is a bottomed cylindrical body having a square outer cross section and a circular inner cross section (position restriction). Member) has 120C. The third housing member (position regulating member) 120C is connected to the first housing member 120A.
 これらハウジング120を構成する第1ハウジング部材120A、第2ハウジング部材120B、および第3ハウジング部材(位置規制部材)120Cは、例えば一体に形成されていればよい。
 なお、ハウジング120は、上述した形状に限定されるものではなく、任意の筒形状にすることができる。
The first housing member 120A, the second housing member 120B, and the third housing member (position regulating member) 120C constituting these housings 120 may be integrally formed, for example.
The housing 120 is not limited to the above-mentioned shape, and may have an arbitrary tubular shape.
 ハウジング120を構成する第3ハウジング部材(位置規制部材)120Cには、第1開孔部(第1開孔)121が形成されている。また、ハウジング120を構成する第2ハウジング部材120Bには、流路板140と対向する内面120B1と、その反対面120B2とを貫通する第2開孔部(第2開孔)122が形成されている。流体を容器102に貯留する場合において、第1開孔部121は流体導入口となり、第2開孔部22は流体吐出口となる。また、容器102に貯留された流体を外部に放出する場合においては、第1開孔部121は流体吐出口となり、第2開孔部122は流体導入口となる。 A first opening portion (first opening) 121 is formed in the third housing member (position regulating member) 120C constituting the housing 120. Further, the second housing member 120B constituting the housing 120 is formed with a second opening portion (second opening) 122 penetrating the inner surface 120B1 facing the flow path plate 140 and the opposite surface 120B2 thereof. There is. When the fluid is stored in the container 102, the first opening portion 121 serves as a fluid introduction port, and the second opening portion 22 serves as a fluid discharge port. Further, when the fluid stored in the container 102 is discharged to the outside, the first opening portion 121 serves as a fluid discharge port, and the second opening portion 122 serves as a fluid introduction port.
 ハウジング120の第2ハウジング部材120Bと第1ハウジング部材120Aの間には流路板140が配置されている。これにより流路板140はハウジング120に固定される。また、第1ハウジング部材120Aと第3ハウジング部材120Cの間には支持部材150が配置されている。つまり、支持部材150は第1ハウジング部材120Aと第3ハウジング部材120Cとで挟持されている。これにより支持部材150は第1ハウジング部材120Aの内側で支持され、ハウジング120に固定される。 A flow path plate 140 is arranged between the second housing member 120B and the first housing member 120A of the housing 120. As a result, the flow path plate 140 is fixed to the housing 120. Further, a support member 150 is arranged between the first housing member 120A and the third housing member 120C. That is, the support member 150 is sandwiched between the first housing member 120A and the third housing member 120C. As a result, the support member 150 is supported inside the first housing member 120A and is fixed to the housing 120.
 本実施形態では、ハウジング120は、第2ハウジング部材120Bが流路板140を介して第1ハウジング部材120Aと接続されており、第3ハウジング部材120Cが支持部材150を介して第1ハウジング部材120Aと接続されている。 In the present embodiment, in the housing 120, the second housing member 120B is connected to the first housing member 120A via the flow path plate 140, and the third housing member 120C is connected to the first housing member 120A via the support member 150. Is connected to.
 なお、流路板140をハウジング120に固定する方法は、これに限定されるものではない。例えば、流路板140をハウジング120の例えば第1ハウジング部材120Aの内壁に接着剤などを用いて固定してもよい。 The method of fixing the flow path plate 140 to the housing 120 is not limited to this. For example, the flow path plate 140 may be fixed to the inner wall of the housing 120, for example, the first housing member 120A by using an adhesive or the like.
 ハウジング120は外側断面と内側断面がそれぞれ角形とされている。ただし、ハウジング120の形状は、これに限定されるものではない。ハウジング120は、例えば、外側断面が角形で内側断面が円形とされていてもよいし、外側断面と内側断面がそれぞれ円形とされていてもよいし、外側断面が円形で内側断面が角形とされていてもよい。ハウジング120の構成材料としては、例えば、樹脂やセラミックスなどの絶縁材料を用いることできる。 The housing 120 has a square outer cross section and an inner cross section, respectively. However, the shape of the housing 120 is not limited to this. The housing 120 may have, for example, a square outer cross section and a circular inner cross section, a circular outer cross section and a circular inner cross section, or a circular outer cross section and a square inner cross section. May be. As the constituent material of the housing 120, for example, an insulating material such as resin or ceramics can be used.
 アクチュエータ素子130は所定の周波数で振動(屈曲運動)するものであることが好ましい。アクチュエータ素子130は共振周波数を有していてもよい。アクチュエータ素子130の共振周波数は、例えば、20kHz以上の範囲にあってもよい。 It is preferable that the actuator element 130 vibrates (bends) at a predetermined frequency. The actuator element 130 may have a resonance frequency. The resonance frequency of the actuator element 130 may be in the range of, for example, 20 kHz or more.
 本実施形態では、アクチュエータ素子130には、貫通孔131が形成されている。貫通孔131は、ハウジング120の第1開孔部121に連通されている。本実施形態では、アクチュエータ素子130は円板状とされ、貫通孔131は円板状のアクチュエータ素子130の中央に配置されている。なお、アクチュエータ素子130の形状は円板状に限定されるものではない。アクチュエータ素子130は、例えば、角板状や多角形板状であってもよい。但し、アクチュエータ素子130の形状は、不要な共振周波数の出現を抑制する観点から円板状が好ましい。 In this embodiment, the actuator element 130 is formed with a through hole 131. The through hole 131 communicates with the first opening portion 121 of the housing 120. In the present embodiment, the actuator element 130 has a disk shape, and the through hole 131 is arranged in the center of the disk-shaped actuator element 130. The shape of the actuator element 130 is not limited to a disk shape. The actuator element 130 may be, for example, a square plate or a polygonal plate. However, the shape of the actuator element 130 is preferably a disk shape from the viewpoint of suppressing the appearance of unnecessary resonance frequencies.
 本実施形態のアクチュエータ素子130は、振動素子136から構成されている。こうした振動素子136は、板状圧電体137と、板状圧電体137の上下の表面に配置された電極138a、138bとを含む圧電振動子とされている。板状圧電体137は、例えば、分極方向を互いに逆向きにした2つの圧電体を接合したものから構成されている。板状圧電体137の構成材料としては、例えば、チタン酸ジルコン酸鉛系セラミックスを用いたPZT系圧電振動材を用いることができる。本実施形態での板状圧電体137は、分極方向を互いに逆向きにした2つのバルクタイプのPZT系圧電振動材を接合したものを用いている。
 なお、振動素子136は、振動素子として、圧電振動子の代わりに、電歪振動子を用いてもよい。
The actuator element 130 of this embodiment is composed of a vibration element 136. Such a vibrating element 136 is a piezoelectric vibrator including a plate-shaped piezoelectric body 137 and electrodes 138a and 138b arranged on the upper and lower surfaces of the plate-shaped piezoelectric body 137. The plate-shaped piezoelectric body 137 is composed of, for example, a joint of two piezoelectric bodies whose polarization directions are opposite to each other. As the constituent material of the plate-shaped piezoelectric body 137, for example, a PZT-based piezoelectric vibrating material using lead zirconate titanate-based ceramics can be used. As the plate-shaped piezoelectric body 137 in the present embodiment, two bulk type PZT-based piezoelectric vibrating materials in which the polarization directions are opposite to each other are joined.
As the vibrating element 136, an electrostraining oscillator may be used instead of the piezoelectric oscillator as the vibrating element.
 アクチュエータ素子130は、接合部153によって支持部材150に接合されている。
 アクチュエータ素子130の下面は、この支持部材150を介して、突起部(位置規制部)126に接している。即ち、支持部材150は、接合部153が形成される面(上面)の反対面(下面)で、突起部(位置規制部)126に接する。また、アクチュエータ素子130の貫通孔131は、第3ハウジング部材120Cの第1開孔部121に連通する位置に配置されている。
The actuator element 130 is joined to the support member 150 by the joint portion 153.
The lower surface of the actuator element 130 is in contact with the protrusion (position regulating portion) 126 via the support member 150. That is, the support member 150 is in contact with the protrusion (position regulating portion) 126 on the opposite surface (lower surface) of the surface (upper surface) on which the joint portion 153 is formed. Further, the through hole 131 of the actuator element 130 is arranged at a position communicating with the first opening portion 121 of the third housing member 120C.
 突起部(位置規制部)126は、第3ハウジング部材(位置規制部材)120Cの第1開孔部(第1開孔)121の周囲に配置され、第3ハウジング部材(位置規制部材)120Cから、ハウジング120の内側に向けて突出している。この突起部(位置規制部)126は、第3ハウジング部材(位置規制部材)120Cに接続されている。本実施形態では、突起部(位置規制部)126は、第3ハウジング部材(位置規制部材)120Cが備える構成として、第3ハウジング部材(位置規制部材)120Cと一体的に形成されている。なお、突起部(位置規制部)126は、第3ハウジング部材(位置規制部材)120Cとは別部材で構成されていても構わない。 The protrusion (position regulating member) 126 is arranged around the first opening (first opening) 121 of the third housing member (position regulating member) 120C, and is arranged from the third housing member (position regulating member) 120C. , Projecting inward of the housing 120. The protrusion (position regulating portion) 126 is connected to the third housing member (position regulating member) 120C. In the present embodiment, the protrusion (position regulating member) 126 is integrally formed with the third housing member (position regulating member) 120C as a configuration included in the third housing member (position regulating member) 120C. The protrusion (position regulating portion) 126 may be formed of a member different from the third housing member (position regulating member) 120C.
 突起部(位置規制部)126は、アクチュエータ素子130を振動させたときに生じるノードNよりも内側、即ちアクチュエータ素子130の中心寄りに形成されている。即ち、突起部(位置規制部)126は、アクチュエータ素子130が振動するときに生じるノードNよりもアクチュエータ素子130の中心寄りの位置において、アクチュエータ素子130に対して接続されている。より具体的には、突起部(位置規制部)126は、支持部材150を介してアクチュエータ素子130に対して接続されており、ノードNよりもアクチュエータ素子130の中心寄りの位置において、支持部材150のアクチュエータ素子130と接合される面とは反対面に接している。 The protrusion (position regulating portion) 126 is formed inside the node N generated when the actuator element 130 is vibrated, that is, closer to the center of the actuator element 130. That is, the protrusion (position regulating portion) 126 is connected to the actuator element 130 at a position closer to the center of the actuator element 130 than the node N generated when the actuator element 130 vibrates. More specifically, the protrusion (position regulating portion) 126 is connected to the actuator element 130 via the support member 150, and the support member 150 is located closer to the center of the actuator element 130 than the node N. It is in contact with a surface opposite to the surface to be joined to the actuator element 130 of the above.
 なお、突起部(位置規制部)126は、ノードNよりもアクチュエータ素子130の中心寄りの支持部材150のアクチュエータ素子130と接合される面とは反対面には接しているものの、アクチュエータ素子130のノードN及びノードNよりも周縁部においては、支持部材150のアクチュエータ素子130と接合される面とは反対面には接していない。即ち、突起部(位置規制部)126は、ノードN及びノードNよりも周縁寄りにおいて支持部材150とは離間している。 Although the protrusion (position regulating portion) 126 is in contact with the surface opposite to the surface of the support member 150 closer to the center of the actuator element 130 than the node N to be joined to the actuator element 130, the actuator element 130 At the peripheral edge of the node N and the node N, the support member 150 is not in contact with the surface opposite to the surface joined to the actuator element 130. That is, the protrusion (position regulating portion) 126 is separated from the support member 150 closer to the peripheral edge than the node N and the node N.
 本実施形態のアクチュエータ素子130は、第1配線151a、第2配線151bを介して電極138a、138bに電圧を印加すると、振動素子136が振動する。この振動素子136の振動によって、アクチュエータ素子130が所定の周波数で振動(屈曲運動)する。 In the actuator element 130 of the present embodiment, when a voltage is applied to the electrodes 138a and 138b via the first wiring 151a and the second wiring 151b, the vibrating element 136 vibrates. The vibration of the vibrating element 136 causes the actuator element 130 to vibrate (bend motion) at a predetermined frequency.
 図18(a)に示すように、振動素子136に接するものが無い状態で振動素子136を振動させると、振動素子136の面内で、全く振動せず振幅が0になるノード(節)Nと、振幅が最大になり変位が最も揺れ動くアンチノード(腹)ANとが生じる。本実施形態では、振動素子136の振動時のアンチノードANは、振動素子136の中心に生じ、ノード(節)Nは、振動素子136の周縁よりも内側に生じる。 As shown in FIG. 18A, when the vibrating element 136 is vibrated in a state where there is nothing in contact with the vibrating element 136, the node (node) N does not vibrate at all and the amplitude becomes 0 in the plane of the vibrating element 136. And the anti-node (antinode) AN where the amplitude becomes maximum and the displacement oscillates most occurs. In the present embodiment, the anti-node AN at the time of vibration of the vibrating element 136 occurs at the center of the vibrating element 136, and the node (node) N occurs inside the peripheral edge of the vibrating element 136.
 一例として、厚み260μmのSi単結晶膜上に、厚み10μmのPZT(チタン酸ジルコン酸鉛)膜を形成してなる、直径D12mmの振動素子を備えた振動素子136を振動させた場合(振動共振ゲイン40dB)、アンチノードANの振れ幅V1は15μm程度となり、周縁部の振れ幅V2は11μm程度となる。 As an example, when a vibrating element 136 having a vibrating element having a diameter of D12 mm, which is formed by forming a PZT (lead zirconate titanate) film having a thickness of 10 μm on a Si single crystal film having a thickness of 260 μm, is vibrated (vibration resonance). Gain 40 dB), the runout width V1 of the anti-node AN is about 15 μm, and the runout width V2 of the peripheral portion is about 11 μm.
 図18(b)に示すように、本実施形態では、振動素子136の振動時のアンチノードANの振れ幅V1と、周縁部の振れ幅V2とが、互いに同一になる円状の位置に、突起部(位置規制部)126が重なるように設けられる。この位置では、突起部(位置規制部)126の断面中心の直径をe、ノードNの直径をcとしたときに、c>eとなる関係、即ち、突起部(位置規制部)126がノードNの内側になる。即ち、突起部(位置規制部)126は、ノードNの内側でアクチュエータ素子130に支持部材150を介して接する。 As shown in FIG. 18B, in the present embodiment, the vibration width V1 of the anti-node AN and the vibration width V2 of the peripheral portion at the time of vibration of the vibrating element 136 are arranged in a circular position where they are the same as each other. The protrusions (position regulating portions) 126 are provided so as to overlap each other. At this position, when the diameter of the center of the cross section of the protrusion (position regulating portion) 126 is e and the diameter of the node N is c, the relationship is c> e, that is, the protrusion (position regulating portion) 126 is the node. It will be inside N. That is, the protrusion (position regulating portion) 126 contacts the actuator element 130 inside the node N via the support member 150.
 なお、本実施形態では、アクチュエータ素子130は、支持部材150を介して突起部(位置規制部)126に接しており、支持部材150の弾性力によって突起部(位置規制部)126に押し付けられることで、互いに離間しないように構成されている。 In the present embodiment, the actuator element 130 is in contact with the protrusion (position regulating portion) 126 via the support member 150, and is pressed against the protrusion (position regulating portion) 126 by the elastic force of the support member 150. It is configured so that it does not separate from each other.
 アクチュエータ素子130が支持部材150と接合される接合部153は、上述したノードNよりもアクチュエータ素子130の中心寄りに形成される。即ち、アクチュエータ素子130は、ノードNよりも内側において、支持部材150によって支持される(図14、17を参照)。 The joint portion 153 to which the actuator element 130 is joined to the support member 150 is formed closer to the center of the actuator element 130 than the above-mentioned node N. That is, the actuator element 130 is supported by the support member 150 inside the node N (see FIGS. 14 and 17).
 支持部材150は、アクチュエータ素子130の振動(屈曲運動)を妨げないように、可撓性樹脂シートで形成されている。また、可撓性樹脂シートは絶縁性を有していてもよい。
 絶縁性を有する可撓性樹脂シートとしては、例えば、ポリイミドシートを挙げることができる。
The support member 150 is formed of a flexible resin sheet so as not to interfere with the vibration (bending motion) of the actuator element 130. Further, the flexible resin sheet may have an insulating property.
Examples of the flexible resin sheet having an insulating property include a polyimide sheet.
 支持部材150は、接合部153よりも周縁側では、第3ハウジング部材(位置規制部材)120Cに向かってクランク状に屈曲している。こうした構成により、アクチュエータ素子130のノードNの位置においては、支持部材150は、アクチュエータ素子130に対して厚み方向tに離間した離間部150aが形成されている。 The support member 150 is bent like a crank toward the third housing member (position regulating member) 120C on the peripheral side of the joint portion 153. With such a configuration, at the position of the node N of the actuator element 130, the support member 150 is formed with a separation portion 150a separated from the actuator element 130 in the thickness direction t.
 また、支持部材150は、離間部150aよりも周縁側で更にクランク状に屈曲して、第1ハウジング部材120Aと第3ハウジング部材120Cの間から、ハウジング120の外部に延びる引出部150bが形成されている。 Further, the support member 150 is further bent in a crank shape on the peripheral edge side of the separation portion 150a to form a drawer portion 150b extending from between the first housing member 120A and the third housing member 120C to the outside of the housing 120. ing.
 この支持部材150の引出部150bは、支持部材150の接合部153に対して、厚み方向tにおいて同一の位置になるように形成される。即ち、支持部材150の引出部150bの上面と、支持部材150の接合部153の上面とは、厚み方向tに対して垂直な面広がり方向fにおいて、同一面にある。このように、支持部材150を蛇腹構造とすることで、アクチュエータ素子130の振動を妨げず、変位量を向上させ、ポンプ性能の向上を図ることができる。 The drawer portion 150b of the support member 150 is formed so as to be at the same position in the thickness direction t with respect to the joint portion 153 of the support member 150. That is, the upper surface of the drawer portion 150b of the support member 150 and the upper surface of the joint portion 153 of the support member 150 are on the same surface in the plane spreading direction f perpendicular to the thickness direction t. By forming the support member 150 in a bellows structure in this way, it is possible to improve the displacement amount and improve the pump performance without disturbing the vibration of the actuator element 130.
 また、支持部材150は、流路板140から支持部材150を平面視した時に、アクチュエータ素子130と第1ハウジング部材120Aとの間の領域の全面を覆うように配されている。
 これにより、流体が第1開孔部121から貫通孔131を経てのみ流入する。そして、これ以外の経路は、支持部材150によって塞がれている。したがって、支持部材150がアクチュエータ素子130を支持するだけでなく、流体の流入経路を遮る役割も果たすため、構造の簡素化を図ることができる。
Further, the support member 150 is arranged so as to cover the entire region between the actuator element 130 and the first housing member 120A when the support member 150 is viewed in a plan view from the flow path plate 140.
As a result, the fluid flows only from the first opening portion 121 through the through hole 131. The other paths are blocked by the support member 150. Therefore, since the support member 150 not only supports the actuator element 130 but also plays a role of blocking the inflow path of the fluid, the structure can be simplified.
 図17に示すように、支持部材150には、アクチュエータ素子130に電力を供給する給電配線151が形成されている。給電配線151は、第1配線151a、第2配線151bを備える。第1配線151aと第2配線151bとは、面広がり方向fに沿って、互いに反対方向に向かって延びている。したがって、支持部材150がアクチュエータ素子130を支持するだけでなく、電気配線としての役割も果たすため、構造の簡素化及び低コスト化を図ることができる。 As shown in FIG. 17, the support member 150 is formed with a power supply wiring 151 that supplies electric power to the actuator element 130. The power supply wiring 151 includes a first wiring 151a and a second wiring 151b. The first wiring 151a and the second wiring 151b extend in opposite directions along the surface spreading direction f. Therefore, since the support member 150 not only supports the actuator element 130 but also serves as an electric wiring, the structure can be simplified and the cost can be reduced.
 配線151a、151bは、振動素子136の電極138a、138bと電源(不図示)とを接続する。第1配線151aと電極138aとは、板状圧電体137に形成されたスルーホール152を介して接続される。第1配線151aと電極138bとが接触しないように、電極138bは、スルーホール152の周囲を避けるように形成されている。第2配線151bは、電極138bに接続されている。こうした第1配線151aと電極138aとの電気接続部T1、および第2配線151bと電極138bとの電気接続部T2は、それぞれノードNよりも内側になる位置に形成されている。 The wirings 151a and 151b connect the electrodes 138a and 138b of the vibrating element 136 and the power supply (not shown). The first wiring 151a and the electrode 138a are connected to each other via a through hole 152 formed in the plate-shaped piezoelectric body 137. The electrode 138b is formed so as to avoid the periphery of the through hole 152 so that the first wiring 151a and the electrode 138b do not come into contact with each other. The second wiring 151b is connected to the electrode 138b. The electrical connection portion T1 between the first wiring 151a and the electrode 138a and the electrical connection portion T2 between the second wiring 151b and the electrode 138b are formed at positions inside the node N, respectively.
 以下、本実施形態においては、支持部材150を介して突起部(位置規制部)126と接続される側のアクチュエータ素子130の表面を第1主面132a、その反対側の表面を第2主面132bと称することがある。
 なお、本実施形態では、アクチュエータ素子130の第1主面132aは板状圧電体137の一方の表面、第2主面132bは板状圧電体137の他方の表面とされている。
Hereinafter, in the present embodiment, the surface of the actuator element 130 on the side connected to the protrusion (position regulating portion) 126 via the support member 150 is the first main surface 132a, and the surface on the opposite side is the second main surface. It may be referred to as 132b.
In the present embodiment, the first main surface 132a of the actuator element 130 is one surface of the plate-shaped piezoelectric body 137, and the second main surface 132b is the other surface of the plate-shaped piezoelectric body 137.
 流路板140は、アクチュエータ素子130の第2主面132bと対向する位置に、空間E1を介して配置されている。空間E1は、ハウジング120の内部に導入された流体の流路の一部を構成し、流路板140のうち、空間E1に臨む面は、第1流路面141aとされている。流路板140は、アクチュエータ素子130の第2主面132bと対向する第1流路面141aを含む対向部を有する。なお、第2ハウジング部材120Bの内面は、流路板140の第1流路面141aの反対面を成す第2流路面141b(第2面)に対向するように広がる。 The flow path plate 140 is arranged at a position facing the second main surface 132b of the actuator element 130 via the space E1. The space E1 constitutes a part of the flow path of the fluid introduced into the housing 120, and the surface of the flow path plate 140 facing the space E1 is the first flow path surface 141a. The flow path plate 140 has a facing portion including a first flow path surface 141a facing the second main surface 132b of the actuator element 130. The inner surface of the second housing member 120B extends so as to face the second flow path surface 141b (second surface) forming the opposite surface of the first flow path surface 141a of the flow path plate 140.
 本実施形態では、流路板140のうち、第1流路面141aに凹部142が形成されている。
 凹部142は、例えば、アクチュエータ素子130の貫通孔131を中心とした円環状に形成されている。この凹部142によって、空間E1には、厚み方向tに沿った断面積が拡張された拡張部E2が形成される。これにより、ポンプ111Aのアクチュエータ素子130のサイズを小型化した場合であっても、20kHz以上において、低い周波数でヘルムホルツ共振を発生させやすい。
In the present embodiment, the recess 142 is formed in the first flow path surface 141a of the flow path plate 140.
The recess 142 is formed in an annular shape centered on the through hole 131 of the actuator element 130, for example. The recess 142 forms an expansion portion E2 in the space E1 with an expanded cross-sectional area along the thickness direction t. As a result, even when the size of the actuator element 130 of the pump 111A is reduced, Helmholtz resonance is likely to occur at a low frequency at 20 kHz or higher.
 このため、ポンプ111Aのサイズを小型化した場合でも、ポンプ111Aの吸込能力を高めることが可能になる。凹部142は、断面が円弧状に窪んだ湾曲面とされていてもよい。この場合、拡張部E2への流体の流れがより円滑になりやすくなる。 Therefore, even if the size of the pump 111A is reduced, the suction capacity of the pump 111A can be increased. The recess 142 may be a curved surface having an arcuate cross section. In this case, the flow of the fluid to the expansion portion E2 becomes smoother.
 流路板140は、アクチュエータ素子130に対向しない外側の領域が接続部140aとされ、この接続部140aに貫通孔143が形成される。本実施形態では、貫通孔143は、流路板140を平面視した場合、矩形形状を呈しており、ポンプ111Aの中心側の周縁がアクチュエータ素子130の周縁と重なり、ポンプ111Aの外側の周縁は第1ハウジング部材120Aと距離を置いて位置している。即ち、接続部140aは、貫通孔143が形成された領域を除いた部分で第1流路面141aを含む対向部と接続されている。即ち、接続部140aは、対向部の周囲に配置されている。 The outer region of the flow path plate 140 that does not face the actuator element 130 is a connecting portion 140a, and a through hole 143 is formed in the connecting portion 140a. In the present embodiment, the through hole 143 has a rectangular shape when the flow path plate 140 is viewed in a plan view, the peripheral edge on the center side of the pump 111A overlaps with the peripheral edge of the actuator element 130, and the outer peripheral edge of the pump 111A is formed. It is located at a distance from the first housing member 120A. That is, the connecting portion 140a is connected to the facing portion including the first flow path surface 141a at a portion excluding the region where the through hole 143 is formed. That is, the connecting portion 140a is arranged around the facing portion.
 また、流路板140は、接続部140aによって、貫通孔143が形成された領域を除いた部分で第1ハウジング部材120A(および第2ハウジング部材120B)に接続されている。
 なお、流路板140は接続部140aが一体に形成された1個の板状の部材であればよい。
Further, the flow path plate 140 is connected to the first housing member 120A (and the second housing member 120B) by the connecting portion 140a at a portion excluding the region where the through hole 143 is formed.
The flow path plate 140 may be a single plate-shaped member in which the connecting portion 140a is integrally formed.
 貫通孔143は、流体が流れる流路となる。即ち、貫通孔143は、第1流路面141aに臨む空間E1と、第1流路面141aの反対面を成す第2流路面141bに臨む空間E3と連通させる。 The through hole 143 is a flow path through which the fluid flows. That is, the through hole 143 communicates with the space E1 facing the first flow path surface 141a and the space E3 facing the second flow path surface 141b forming the opposite surface of the first flow path surface 141a.
 貫通孔143は、アクチュエータ素子130と同心円状に等間隔で複数個配置されていればよい。なお、貫通孔143は、本実施形態では平面視で略矩形状を成しているが、これに限定されるものではなく、例えば、平面視で円形、楕円形、半円形など、各種形状に形成することができる。また、接続部140aを含む流路板140の材料としては、例えば、樹脂、金属などを用いることができる。 A plurality of through holes 143 may be arranged concentrically with the actuator element 130 at equal intervals. In the present embodiment, the through hole 143 has a substantially rectangular shape in a plan view, but is not limited to this, and may have various shapes such as a circle, an ellipse, and a semicircle in a plan view. Can be formed. Further, as the material of the flow path plate 140 including the connection portion 140a, for example, resin, metal, or the like can be used.
 以上のような構成の本実施形態のポンプ111Aは、次のようにして流体を輸送する。
 第1配線151a、第2配線151bを介して、振動素子136の電極138a、338bに電圧を印加する。
 これにより、振動素子136が振動する。この振動素子136の振動によって、アクチュエータ素子130が振動(屈曲運動)する。
The pump 111A of the present embodiment having the above configuration transports the fluid as follows.
A voltage is applied to the electrodes 138a and 338b of the vibrating element 136 via the first wiring 151a and the second wiring 151b.
As a result, the vibrating element 136 vibrates. The actuator element 130 vibrates (flexing motion) due to the vibration of the vibrating element 136.
 アクチュエータ素子130が振動することによって、流体が第1開孔部121から、アクチュエータ素子130の貫通孔131を流れ、ハウジング120の内部に導入される。流体は、アクチュエータ素子130の第2主面132bと流路板140の第1流路面141aとの間の空間E1を流れる。空間E1の拡張部E2を通った流体は、次いで、流路板140の貫通孔143から、第2流路面141bと第2ハウジング部材120Bの内面120B1との間の空間E3を流れ、第2開孔部122を介して、容器102に供給される。 When the actuator element 130 vibrates, the fluid flows from the first opening portion 121 through the through hole 131 of the actuator element 130 and is introduced into the housing 120. The fluid flows in the space E1 between the second main surface 132b of the actuator element 130 and the first flow path surface 141a of the flow path plate 140. The fluid that has passed through the expansion portion E2 of the space E1 then flows from the through hole 143 of the flow path plate 140 through the space E3 between the second flow path surface 141b and the inner surface 120B1 of the second housing member 120B, and is second-opened. It is supplied to the container 102 through the hole 122.
 このような流体の流れによって、空間E1の拡張部E2の流体がヘルムホルツ共振する。このヘルムホルツ共振の周波数と振動素子と動作周波数とが整合することによって、ポンプ111Aの吸込能力を向上させることが可能になる。 Due to such a fluid flow, the fluid in the expansion part E2 of the space E1 resonates with Helmholtz. By matching the frequency of this Helmholtz resonance with the vibrating element and the operating frequency, it becomes possible to improve the suction capacity of the pump 111A.
 容器102に流体が充填された後、アクチュエータ素子130が振動を停止すると、容器102内に貯留された流体はポンプ111Aに逆流して貫通孔131から排出される。このとき、アクチュエータ素子130は、流体の圧力で支持部材150を突起部(位置規制部)126に向かって押す方向に力を受けることになり、アクチュエータ素子130と流路板140との間隔(空間E1および拡張部E2)は変化しないので流体を急速排気することができる。 When the actuator element 130 stops vibrating after the container 102 is filled with the fluid, the fluid stored in the container 102 flows back into the pump 111A and is discharged from the through hole 131. At this time, the actuator element 130 receives a force in the direction of pushing the support member 150 toward the protrusion (position regulating portion) 126 due to the pressure of the fluid, and the space between the actuator element 130 and the flow path plate 140 (space). Since E1 and the expansion part E2) do not change, the fluid can be rapidly exhausted.
 以上のように構成された本実施形態の流体制御装置2Aでは、ポンプ111Aのアクチュエータ素子130は、突起部(位置規制部)126に接続されている。即ち、本実施形態では、アクチュエータ素子130は、支持部材150を介して突起部(位置規制部)126と接続され、かつ貫通孔131が第3ハウジング部材120Cの第1開孔部121と対向する位置に配置され、更に流路板140は、アクチュエータ素子130の第2主面132bと対向する位置に、空間E1を介して配置されている。 In the fluid control device 2A of the present embodiment configured as described above, the actuator element 130 of the pump 111A is connected to the protrusion (position regulating portion) 126. That is, in the present embodiment, the actuator element 130 is connected to the protrusion (position regulating portion) 126 via the support member 150, and the through hole 131 faces the first opening portion 121 of the third housing member 120C. The flow path plate 140 is arranged at a position, and further, the flow path plate 140 is arranged at a position facing the second main surface 132b of the actuator element 130 via the space E1.
 また、本実施形態の流体制御装置2Aでは、ポンプ111Aの突起部(位置規制部)126は、アクチュエータ素子130が振動するときに生じるノードNよりも内側、即ちアクチュエータ素子130の中心寄りの位置において、支持部材150のアクチュエータ素子130と接合される面とは反対面に接し、アクチュエータ素子130に対して接続されている。 Further, in the fluid control device 2A of the present embodiment, the protrusion (position regulating portion) 126 of the pump 111A is located inside the node N generated when the actuator element 130 vibrates, that is, at a position closer to the center of the actuator element 130. , The support member 150 is in contact with a surface opposite to the surface to be joined to the actuator element 130, and is connected to the actuator element 130.
 このような構成を有するポンプ111Aは、アクチュエータ素子130が動作周波数にて振動(屈曲振動)する際に、アクチュエータ素子130の中心付近の変位量とアクチュエータ素子130の周縁付近の変位量をほぼ同じ大きさにすることができる。したがって、アクチュエータ素子130が振動(屈曲振動)する際のアクチュエータ素子130と流路板140とのギャップの精度が高まり、高いポンプ性能を実現できる。 In the pump 111A having such a configuration, when the actuator element 130 vibrates (bending vibration) at an operating frequency, the displacement amount near the center of the actuator element 130 and the displacement amount near the peripheral edge of the actuator element 130 are substantially the same. Can be displaced. Therefore, the accuracy of the gap between the actuator element 130 and the flow path plate 140 when the actuator element 130 vibrates (bending vibration) is improved, and high pump performance can be realized.
 また、本実施形態の流体制御装置2Aでは、突起部(位置規制部)126は、ノードN及びノードNよりも周縁寄りにおいて支持部材150とは離間している。したがって、アクチュエータ素子130のノードNより周縁側の変位が規制されることが抑制されるため、アクチュエータ素子130の中心付近の変位量とアクチュエータ素子130の周縁付近の変位量をより確実にほぼ同じ大きさにすることができる。 Further, in the fluid control device 2A of the present embodiment, the protrusion (position regulating portion) 126 is separated from the support member 150 closer to the peripheral edge than the node N and the node N. Therefore, since it is suppressed that the displacement of the actuator element 130 on the peripheral side of the node N is restricted, the displacement amount near the center of the actuator element 130 and the displacement amount near the peripheral edge of the actuator element 130 are more reliably about the same magnitude. It can be a displacement.
(第5実施形態)
 図19は、第5実施形態に係る流体制御装置の断面図である。
 なお、以下の説明では、上述した第4実施形態と同様の構成には同一の番号を付し、重複する説明を省略する。
 第5実施形態に係る流体制御装置2Bを構成するポンプ111Bは、ハウジング120の内部に形成されたアクチュエータ素子160を有する。
(Fifth Embodiment)
FIG. 19 is a cross-sectional view of the fluid control device according to the fifth embodiment.
In the following description, the same configurations as those of the fourth embodiment described above will be assigned the same number, and duplicate description will be omitted.
The pump 111B constituting the fluid control device 2B according to the fifth embodiment has an actuator element 160 formed inside the housing 120.
 本実施形態のアクチュエータ素子160は、弾性基板(基板)165と、この弾性基板165の表面(下側の表面)に配置された振動素子166とから構成されている。弾性基板165は、振動素子166の振動による屈曲振動が可能で、振動素子166の振動エネルギーを減衰させにくい材料から構成されていると好ましく、弾性基板165の材料としては、例えば、シリコン、鉄、リン青銅などを用いることができる。 The actuator element 160 of this embodiment is composed of an elastic substrate (board) 165 and a vibration element 166 arranged on the surface (lower surface) of the elastic substrate 165. The elastic substrate 165 is preferably made of a material capable of bending vibration due to the vibration of the vibrating element 166 and hardly dampening the vibration energy of the vibrating element 166. Examples of the material of the elastic substrate 165 include silicon and iron. Phosphor bronze or the like can be used.
 振動素子166は、薄膜状圧電体167と、この薄膜状圧電体167の上下の表面に配置された電極168a、168bとを含む圧電振動子とされている。なお、振動素子166は、圧電振動子を2個以上積層した圧電振動子積層体であってもよい。 The vibrating element 166 is a piezoelectric vibrator including a thin-film piezoelectric body 167 and electrodes 168a and 168b arranged on the upper and lower surfaces of the thin-film piezoelectric body 167. The vibration element 166 may be a piezoelectric vibrator laminated body in which two or more piezoelectric vibrators are laminated.
 本実施形態では、厚み方向tに対して垂直な面広がり方向fにおいて、振動素子166の外縁が、弾性基板165の外縁よりも内側になるように形成されている。即ち、アクチュエータ素子130の第1主面132aと第2主面132bの対向方向(図19の厚み方向t)から見て、振動素子166の外縁は弾性基板165の外縁よりも内側にある。具体的には、弾性基板165は、振動素子166よりも直径が大きくなるように形成されている。 In the present embodiment, the outer edge of the vibrating element 166 is formed to be inside the outer edge of the elastic substrate 165 in the plane spreading direction f perpendicular to the thickness direction t. That is, the outer edge of the vibrating element 166 is inside the outer edge of the elastic substrate 165 when viewed from the opposite direction (thickness direction t in FIG. 19) of the first main surface 132a and the second main surface 132b of the actuator element 130. Specifically, the elastic substrate 165 is formed so as to have a larger diameter than the vibrating element 166.
 このようなアクチュエータ素子160では、支持部材150を介して突起部(位置規制部)126と接続される振動素子166の表面(下側の表面)が第1主面162a、その反対側の表面である弾性基板165の表面(上側の表面)が第2主面162bを成す。 In such an actuator element 160, the surface (lower surface) of the vibrating element 166 connected to the protrusion (position regulating portion) 126 via the support member 150 is the first main surface 162a and the surface on the opposite side thereof. The surface (upper surface) of a certain elastic substrate 165 forms the second main surface 162b.
 アクチュエータ素子160には、第1主面162aと第2主面162bとの間を貫通する貫通孔161が形成されている。この貫通孔161は、振動素子166に形成された第1開孔領域165Aと、この第1開孔領域165Aに連なり、弾性基板165に形成された第2開孔領域165Bとから構成されている。このような貫通孔161は、振動素子166に形成された第1開孔領域165Aの開孔径が、弾性基板165に形成された第2開孔領域165Bの開孔径よりも大きくなるように形成されている。 The actuator element 160 is formed with a through hole 161 penetrating between the first main surface 162a and the second main surface 162b. The through hole 161 is composed of a first opening region 165A formed in the vibrating element 166 and a second opening region 165B connected to the first opening region 165A and formed in the elastic substrate 165. .. Such a through hole 161 is formed so that the opening diameter of the first opening region 165A formed in the vibrating element 166 is larger than the opening diameter of the second opening region 165B formed in the elastic substrate 165. ing.
 また、本実施形態の流路板170は、アクチュエータ素子160と対向する第1流路面171aが平坦面となっており、第4実施形態のような凹部は形成されていない。よって、アクチュエータ素子160と第1流路面171aとの間には、拡張部などは形成されない。 Further, in the flow path plate 170 of the present embodiment, the first flow path surface 171a facing the actuator element 160 is a flat surface, and the recess as in the fourth embodiment is not formed. Therefore, no expansion portion or the like is formed between the actuator element 160 and the first flow path surface 171a.
 本実施形態においても、アクチュエータ素子160が支持部材150と接合される接合部153は、ノードNよりもアクチュエータ素子160の中心寄りに形成される。即ち、アクチュエータ素子160は、ノードNよりも内側において、支持部材150によって支持される。また、本実施形態においても、突起部(位置規制部)126は、ノードNよりも内側、即ちアクチュエータ素子130の中心寄りの位置において、支持部材150のアクチュエータ素子130と接合される面とは反対面に接し、アクチュエータ素子130に対して接続されている。 Also in this embodiment, the joint portion 153 to which the actuator element 160 is joined to the support member 150 is formed closer to the center of the actuator element 160 than to the node N. That is, the actuator element 160 is supported by the support member 150 inside the node N. Further, also in the present embodiment, the protrusion (position regulating portion) 126 is located inside the node N, that is, at a position closer to the center of the actuator element 130, opposite to the surface of the support member 150 to be joined to the actuator element 130. It is in contact with the surface and is connected to the actuator element 130.
 本実施形態のように、アクチュエータ素子160を弾性基板165と振動素子166とを接合したものから構成しても、第4実施形態と同様に、アクチュエータ素子130が動作周波数にて振動(屈曲振動)する際に、アクチュエータ素子130の中心付近の変位量とアクチュエータ素子130の周縁付近の変位量をほぼ同じ大きさにすることができ、したがって、アクチュエータ素子130が振動(屈曲振動)する際のアクチュエータ素子130と流路板140とのギャップの精度が高まり、高いポンプ性能を実現できる。 Even if the actuator element 160 is configured by joining the elastic substrate 165 and the vibration element 166 as in the present embodiment, the actuator element 130 vibrates (bending vibration) at the operating frequency as in the fourth embodiment. At that time, the displacement amount near the center of the actuator element 130 and the displacement amount near the peripheral edge of the actuator element 130 can be made substantially the same size, and therefore, the actuator element when the actuator element 130 vibrates (bending vibration). The accuracy of the gap between the 130 and the flow path plate 140 is improved, and high pump performance can be realized.
 本実施形態のように、アクチュエータ素子160を振動素子166と弾性基板165とを接合したものから構成することによって、振動素子166として厚みの薄い薄膜状圧電体167を用いても、アクチュエータ素子160の物理的な強度を維持できる。また、薄膜状圧電体167を用いることにより、高周波振動に対応することができ、より効率的にアクチュエータ素子160を駆動させることができる。 By configuring the actuator element 160 from a vibrating element 166 and an elastic substrate 165 joined as in the present embodiment, even if a thin thin film piezoelectric body 167 is used as the vibrating element 166, the actuator element 160 can be used. Physical strength can be maintained. Further, by using the thin-film piezoelectric body 167, it is possible to cope with high-frequency vibration and drive the actuator element 160 more efficiently.
 また、本実施形態のように、アクチュエータ素子130の第1主面132aと第2主面132bの対向方向から見て、振動素子166の外縁は弾性基板165の外縁よりも内側にある。したがって、振動素子166が弾性基板165に確実に固着されることから、信頼性を向上することができる。 Further, as in the present embodiment, the outer edge of the vibrating element 166 is inside the outer edge of the elastic substrate 165 when viewed from the opposite direction of the first main surface 132a and the second main surface 132b of the actuator element 130. Therefore, since the vibrating element 166 is securely fixed to the elastic substrate 165, reliability can be improved.
(第6実施形態)
 図20は、第6実施形態に係る流体制御装置の断面図である。図21(A)は、図20のA-A線断面図であって、(B)は図20のB-B線断面図であり、(C)は図20のC-C線断面図である。
 なお、以下の説明では、上述した第4実施形態と同様の構成には同一の番号を付し、重複する説明を省略する。
 第6実施形態に係る流体制御装置2Cは、ポンプ111Aと、容器102と、ポンプ111Aおよび容器102の間に配されたバルブ103とを有する。バルブ103を備える以外は、第4実施形態と同様である。
(Sixth Embodiment)
FIG. 20 is a cross-sectional view of the fluid control device according to the sixth embodiment. 21 (A) is a sectional view taken along line AA of FIG. 20, FIG. 21 (B) is a sectional view taken along line BB of FIG. 20, and FIG. 21 (C) is a sectional view taken along line CC of FIG. be.
In the following description, the same configurations as those of the fourth embodiment described above will be assigned the same number, and duplicate description will be omitted.
The fluid control device 2C according to the sixth embodiment has a pump 111A, a container 102, and a valve 103 arranged between the pump 111A and the container 102. It is the same as the 4th embodiment except that the valve 103 is provided.
 バルブ103は、上下方向に向けて開口した円筒管181と、円筒管181の内部に配置されている弁体183とボール186と、を備える。円筒管181は、外部に接続される取出口182を有する。弁体183は、上下方向に閉口した第1流路孔184と、一方の端部が下方に向けて開口し、他方の端部が取出口182と接続される第2流路孔185とを有する。ボール186は、弁体183の下方に配置されている。 The valve 103 includes a cylindrical tube 181 that opens in the vertical direction, and a valve body 183 and a ball 186 that are arranged inside the cylindrical tube 181. The cylindrical tube 181 has an outlet 182 connected to the outside. The valve body 183 has a first flow path hole 184 that is closed in the vertical direction, and a second flow path hole 185 that has one end opened downward and the other end is connected to the outlet 182. Have. The ball 186 is located below the valve body 183.
 こうした構成のバルブ103は、ポンプ111Aが駆動して、流体を容器102に貯留する場合は、ボール186は、ポンプ111Aから送られた流体に押されて上方に移動して、第2流路孔185の下方の関口を閉じることによって、流体は、第1流路孔184を通って容器102に送られる。 When the pump 111A drives the valve 103 having such a configuration and stores the fluid in the container 102, the ball 186 is pushed by the fluid sent from the pump 111A and moves upward to move upward to the second flow path hole. By closing the lower barrier of 185, the fluid is pumped to the container 102 through the first channel hole 184.
 一方、ポンプ111Aが静止して、容器102に貯留された流体を外部に取り出す場合は、ボール186は下方に移動して、ポンプ111Aの第2開孔部122を閉口する。これによって、流体は、第1流路孔184を通って弁体183の下方に流れ、その弁体183の下方に流れた流体が、第2流路孔185を通って、取出口182を介して外部に取り出される。 On the other hand, when the pump 111A is stationary and the fluid stored in the container 102 is taken out to the outside, the ball 186 moves downward and closes the second opening 122 of the pump 111A. As a result, the fluid flows below the valve body 183 through the first flow path hole 184, and the fluid flowing below the valve body 183 passes through the second flow path hole 185 and passes through the outlet 182. Is taken out to the outside.
 以上のように構成された本実施形態の流体制御装置2Cによれば、ポンプ111Aと容器102とを接続するバルブ103を備えるので、容器102に貯留された流体を、バルブ103を介して外部に取り出すことができる。 According to the fluid control device 2C of the present embodiment configured as described above, since the valve 103 for connecting the pump 111A and the container 102 is provided, the fluid stored in the container 102 is sent to the outside via the valve 103. Can be taken out.
(第7実施形態)
 図22は、第7実施形態に係る流体制御装置の断面図である。図23は、図21のXI-XI線断面図である。
 なお、以下の説明では、上述した第1実施形態と同様の構成には同一の番号を付し、重複する説明を省略する。
 図22及び図23に示す流体制御装置3Aは、ポンプ211Aを構成する流路板240が、流路基板244と、流路基板244のアクチュエータ素子230側の表面に配置された第1凸部245aと第2凸部245bとから構成されている点が、第1実施形態の流体制御装置と異なっている。
(7th Embodiment)
FIG. 22 is a cross-sectional view of the fluid control device according to the seventh embodiment. FIG. 23 is a sectional view taken along line XI-XI of FIG.
In the following description, the same configurations as those of the first embodiment described above will be assigned the same number, and duplicate description will be omitted.
In the fluid control device 3A shown in FIGS. 22 and 23, the flow path plate 240 constituting the pump 211A has a flow path board 244 and a first convex portion 245a in which the flow path board 244 is arranged on the surface of the flow path board 244 on the actuator element 230 side. It is different from the fluid control device of the first embodiment in that it is composed of the second convex portion 245b and the second convex portion 245b.
 第1凸部245aと第2凸部245bとの間に位置する窪み部242によって、内部空間E4に拡張部202が形成される。第1凸部245aは、アクチュエータ素子230の貫通孔231に対向する位置に設けられている。第2凸部245bは、アクチュエータ素子230の周縁部に対向する位置に設けられている。 The expansion portion 202 is formed in the internal space E4 by the recessed portion 242 located between the first convex portion 245a and the second convex portion 245b. The first convex portion 245a is provided at a position facing the through hole 231 of the actuator element 230. The second convex portion 245b is provided at a position facing the peripheral edge portion of the actuator element 230.
 流体制御装置3Aは、アクチュエータ素子230が、弾性基板235側の表面が第1主面232aとされ、振動素子236側の表面が第2主面232bとされている点で第1実施形態の流体制御装置と異なっている。支持部材250は、弾性基板235に接続されている。 The fluid control device 3A is the fluid of the first embodiment in that the surface of the actuator element 230 on the elastic substrate 235 side is the first main surface 232a and the surface on the vibration element 236 side is the second main surface 232b. It is different from the control device. The support member 250 is connected to the elastic substrate 235.
 第1配線251aは、支持部材250と弾性基板235と振動素子236に形成された第1スルーホール252aを介して振動素子236の第1電極(不図示)と接続されている。第2配線251bは、支持部材250と弾性基板235に形成された第2スルーホール252bを介して振動素子236の第2電極(不図示)と接続されている。 The first wiring 251a is connected to the first electrode (not shown) of the vibrating element 236 via the first through hole 252a formed in the support member 250, the elastic substrate 235, and the vibrating element 236. The second wiring 251b is connected to the second electrode (not shown) of the vibrating element 236 via the support member 250 and the second through hole 252b formed in the elastic substrate 235.
 支持部材250は、振動素子236側とは反対側の表面に樹脂皮膜253が設けられている。樹脂皮膜253の材料としては、例えば、ポリイミドを用いることができる。樹脂皮膜253の貫通孔231の周囲には、円環状の振動調整板254が配置されている。 The support member 250 is provided with a resin film 253 on the surface opposite to the vibrating element 236 side. As the material of the resin film 253, for example, polyimide can be used. An annular vibration adjusting plate 254 is arranged around the through hole 231 of the resin film 253.
 振動調整板254の材料としては、例えば、ニッケルなどの金属を用いることができる。こうした金属から構成された振動調整板254は、シード層255を介して電気鋳造により形成することができる。振動調整板254は、アクチュエータ素子230に荷重を加える錘の役割を果たし、アクチュエータ素子230の動作周波数を調整することができる。 As the material of the vibration adjusting plate 254, for example, a metal such as nickel can be used. The vibration adjusting plate 254 made of such a metal can be formed by electroplating via the seed layer 255. The vibration adjusting plate 254 serves as a weight that applies a load to the actuator element 230, and can adjust the operating frequency of the actuator element 230.
 流体制御装置3Aは、ハウジング220の第2部材224が、硬質部材260と弾性部材261とから形成されている。硬質部材260の材料としては、例えば、シリコンを用いることができる。弾性部材261の材料としては、樹脂材料を用いることができる。また、樹脂皮膜253と第3部材225との間に金属部材262が配置されている。金属部材262の材料としては、例えば、ニッケルなど電気鋳造によって形成可能な金属を用いることが好ましい。 In the fluid control device 3A, the second member 224 of the housing 220 is formed of a hard member 260 and an elastic member 261. As the material of the hard member 260, for example, silicon can be used. As the material of the elastic member 261, a resin material can be used. Further, a metal member 262 is arranged between the resin film 253 and the third member 225. As the material of the metal member 262, for example, it is preferable to use a metal such as nickel that can be formed by electroplating.
 このような構成の流体制御装置3Aによれば、内部空間E4に拡張部202が形成されているので、第1実施形態に係る流体制御装置と同様の効果を得ることができる。また、振動調整板254を形成することによって、アクチュエータ素子230の動作周波数を、アクチュエータ素子230固有の共振周波数より低くすることができる。一般的に、アクチュエータ素子230の小型化に伴って、アクチュエータ素子230固有の共振周波数は高周波となる傾向があるが、本実施形態のように、振動調整板254を用いることによってアクチュエータ素子230のサイズに関わらず、動作周波数を調整することが可能になる。 According to the fluid control device 3A having such a configuration, since the expansion portion 202 is formed in the internal space E4, the same effect as that of the fluid control device according to the first embodiment can be obtained. Further, by forming the vibration adjusting plate 254, the operating frequency of the actuator element 230 can be made lower than the resonance frequency peculiar to the actuator element 230. Generally, with the miniaturization of the actuator element 230, the resonance frequency peculiar to the actuator element 230 tends to be high, but the size of the actuator element 230 is increased by using the vibration adjusting plate 254 as in the present embodiment. Regardless, it is possible to adjust the operating frequency.
(流体制御装置の製造方法2)
 次に、第7実施形態の流体制御装置3Aの製造方法の一例について説明する。
 流体制御装置3A、例えば、図24~図26に示す製造方法を用いて製造することができる。
 先ず、図24(A)に示すように、硬質基板360の上に、中央に貫通孔231を有する円盤状の振動素子236を形成する。振動素子236は、例えば、硬質基板360側から第1電極と、板状圧電体と、第2電極とがこの順で積層された積層体である。振動素子236の形成方法は、第1実施形態に係る流体制御装置1Aの場合と同じである。
(Manufacturing method 2 of fluid control device)
Next, an example of the manufacturing method of the fluid control device 3A according to the seventh embodiment will be described.
It can be manufactured by using the fluid control device 3A, for example, the manufacturing method shown in FIGS. 24 to 26.
First, as shown in FIG. 24A, a disk-shaped vibrating element 236 having a through hole 231 in the center is formed on the hard substrate 360. The vibrating element 236 is, for example, a laminated body in which the first electrode, the plate-shaped piezoelectric body, and the second electrode are laminated in this order from the hard substrate 360 side. The method of forming the vibrating element 236 is the same as that of the fluid control device 1A according to the first embodiment.
 図24(B)に示すように、振動素子236の硬質基板360側と反対側の表面に弾性基板235を形成し、振動素子236の周囲に間隔をあけて硬質基板360の表面に弾性部材261を形成する。弾性基板235及び弾性部材261は、例えば、次のようにして形成することができる。最初に、振動素子236と硬質基板360の上に弾性膜を形成する。次いで、振動素子236の周囲の弾性膜を除去して、弾性膜を弾性基板235と弾性部材261とに分離する。 As shown in FIG. 24B, an elastic substrate 235 is formed on the surface of the vibrating element 236 opposite to the hard substrate 360 side, and an elastic member 261 is formed on the surface of the hard substrate 360 at intervals around the vibrating element 236. To form. The elastic substrate 235 and the elastic member 261 can be formed, for example, as follows. First, an elastic film is formed on the vibrating element 236 and the hard substrate 360. Next, the elastic film around the vibrating element 236 is removed, and the elastic film is separated into the elastic substrate 235 and the elastic member 261.
 次いで、図24(C)に示すように、振動素子236の周縁部近傍をポジ型レジスト膜パターン339で被覆する。ポジ型レジスト膜パターン339の形成方法は、第1実施形態に係る流体制御装置1Aの場合と同じである。 Next, as shown in FIG. 24C, the vicinity of the peripheral edge of the vibrating element 236 is covered with the positive resist film pattern 339. The method for forming the positive resist film pattern 339 is the same as that for the fluid control device 1A according to the first embodiment.
 次に、図24(D)に示すように、弾性基板235と弾性部材261とポジ型レジスト膜パターン339の上に支持部材形成膜350を成膜し、支持部材形成膜350に配線パターンを形成する。支持部材形成膜350の形成方法は、第1実施形態に係る流体制御装置1Aの場合と同じである。 Next, as shown in FIG. 24D, a support member forming film 350 is formed on the elastic substrate 235, the elastic member 261 and the positive resist film pattern 339, and a wiring pattern is formed on the support member forming film 350. do. The method for forming the support member forming film 350 is the same as that for the fluid control device 1A according to the first embodiment.
 配線パターンは、振動素子236の第1電極に接続する第1配線251aと、振動素子236の第2電極に接続する第2配線251bとを形成する。第1配線251aは、第1スルーホール252aを介して振動素子236の第1電極に接続する。第2配線251bは、第2スルーホール252bを介して、振動素子236の第2電極に接続する。 The wiring pattern forms a first wiring 251a connected to the first electrode of the vibrating element 236 and a second wiring 251b connected to the second electrode of the vibrating element 236. The first wiring 251a is connected to the first electrode of the vibrating element 236 via the first through hole 252a. The second wiring 251b is connected to the second electrode of the vibrating element 236 via the second through hole 252b.
 次いで、図25(A)に示すように、支持部材形成膜350の上に樹脂膜353を成膜する。樹脂膜353の成膜方法としては、例えば、スピンコート法を用いることができる。こうして、硬質基板360の上に、振動素子236と支持部材形成膜350と樹脂膜353とがこの順で積層した積層体390が得られる。 Next, as shown in FIG. 25 (A), a resin film 353 is formed on the support member forming film 350. As a film forming method for the resin film 353, for example, a spin coating method can be used. In this way, a laminated body 390 in which the vibrating element 236, the support member forming film 350, and the resin film 353 are laminated in this order is obtained on the hard substrate 360.
 次いで、図25(B)に示すように、積層体390の樹脂膜353の上にシード層255を形成し、シード層255の上に電気鋳造により金属層を形成する。シード層255は、振動素子236の貫通孔231に対向する位置の周辺と、弾性部材261に対向する領域とに形成する。振動素子236の貫通孔231に対向する位置の周辺に形成された金属層は振動調整板254であり、弾性部材261に対向する領域に形成された金属層は、金属部材262である。 Next, as shown in FIG. 25 (B), the seed layer 255 is formed on the resin film 353 of the laminated body 390, and the metal layer is formed on the seed layer 255 by electroplating. The seed layer 255 is formed around a position facing the through hole 231 of the vibrating element 236 and a region facing the elastic member 261. The metal layer formed around the position facing the through hole 231 of the vibrating element 236 is the vibration adjusting plate 254, and the metal layer formed in the region facing the elastic member 261 is the metal member 262.
 次いで、図25(C)に示すように、振動素子236貫通孔231に沿って、弾性基板235と支持部材形成膜350と樹脂膜353に貫通孔を設けると共に、硬質基板360の弾性部材261に対向する領域以外の部分を除去して硬質部材260を形成する。これにより、積層体390の振動素子236とポジ型レジスト膜パターン339とを露出させる。 Next, as shown in FIG. 25C, through holes are provided in the elastic substrate 235, the support member forming film 350, and the resin film 353 along the vibrating element 236 through hole 231, and the elastic member 261 of the hard substrate 360 is provided with through holes. A hard member 260 is formed by removing a portion other than the facing region. As a result, the vibrating element 236 of the laminated body 390 and the positive resist film pattern 339 are exposed.
 次いで、図26(A)に示すように、振動調整板254と金属部材262とが下側となるように積層体390を反転させ、ポジ型レジスト膜パターン339を除去する。ポジ型レジスト膜パターンの除去方法は、第1実施形態に係る流体制御装置1Aの場合と同じである。 Next, as shown in FIG. 26 (A), the laminated body 390 is inverted so that the vibration adjusting plate 254 and the metal member 262 are on the lower side, and the positive resist film pattern 339 is removed. The method for removing the positive resist film pattern is the same as that for the fluid control device 1A according to the first embodiment.
 次いで、図26(B)に示すように、流路板形成部材340を用意し、流路板形成部材340と、積層体390の硬質部材260とを接合して接合体392を形成する。流路板形成部材340は流路基板244と、流路基板244の表面に配置された第1凸部245aと第2凸部245bとから構成されている。流路板形成部材340と積層体390は、流路板形成部材340の第1凸部245aと積層体390のアクチュエータ素子230の貫通孔231とが対向するように接合される。 Next, as shown in FIG. 26B, a flow path plate forming member 340 is prepared, and the flow path plate forming member 340 and the hard member 260 of the laminated body 390 are joined to form a joined body 392. The flow path plate forming member 340 is composed of a flow path substrate 244 and a first convex portion 245a and a second convex portion 245b arranged on the surface of the flow path substrate 244. The flow path plate forming member 340 and the laminated body 390 are joined so that the first convex portion 245a of the flow path plate forming member 340 and the through hole 231 of the actuator element 230 of the laminated body 390 face each other.
 次いで、図26(C)に示すように、接合体392を切断して、支持部材250付きアクチュエータ素子230と流路板240とが一体となった構造体393が得られる。得られた構造体393の流路板240と第1部材223とを接合し、構造体393の金属部材262と第3部材225とを接合することによって、ポンプ211aが形成される。次いで、ポンプ211aの第2開孔部222に容器270を接合することにより、流体制御装置3Aが得られる。 Next, as shown in FIG. 26C, the joint body 392 is cut to obtain a structure 393 in which the actuator element 230 with the support member 250 and the flow path plate 240 are integrated. The pump 211a is formed by joining the flow path plate 240 of the obtained structure 393 and the first member 223, and joining the metal member 262 of the structure 393 and the third member 225. Next, the fluid control device 3A is obtained by joining the container 270 to the second opening portion 222 of the pump 211a.
(構成例)
 一構成例として、ポンプでは、互いに対向する第1主面と第2主面とを有し、該第1主面と該第2主面との間を貫通する第1貫通孔を有するアクチュエータ素子と、前記アクチュエータ素子の前記第2主面と空間を介して対向する第1面を含む対向部と、前記対向部と接続され、第2貫通孔を有する接続部とを有する第1板と、内部に前記アクチュエータ素子と前記第1板の前記対向部を収容し、前記接続部と接続される筒状の第1ハウジング部材を含むハウジングと、前記アクチュエータ素子と前記第1ハウジング部材とを接続し、前記アクチュエータ素子を前記第1ハウジング部材の内側で支持する支持部材と、を有している。
(Configuration example)
As an example of configuration, in a pump, an actuator element having a first main surface and a second main surface facing each other and having a first through hole penetrating between the first main surface and the second main surface. A first plate having a facing portion including a first surface facing the second main surface of the actuator element via a space, and a connecting portion connected to the facing portion and having a second through hole. A housing including the tubular first housing member that houses the actuator element and the facing portion of the first plate and is connected to the connection portion, and the actuator element and the first housing member are connected to each other. It has a support member that supports the actuator element inside the first housing member.
 一構成例として、前記第1貫通孔は、前記アクチュエータ素子の中心に位置していてもよい。 As a configuration example, the first through hole may be located at the center of the actuator element.
 一構成例として、前記アクチュエータ素子は、前記第2主面を構成する基板と、前記第1主面を構成し、前記基板に接合される振動素子と、を有していてもよい。 As a configuration example, the actuator element may have a substrate constituting the second main surface and a vibration element constituting the first main surface and bonded to the substrate.
 一構成例として、前記第1貫通孔は、前記振動素子が有する第1開孔領域と、該第1開孔領域に連なり、前記基板が有する第2開孔領域とからなっていてもよい。 As a configuration example, the first through hole may be composed of a first opening region included in the vibrating element and a second opening region connected to the first opening region and possessed by the substrate.
 一構成例として、前記第1開孔領域の開孔径は、前記第2開孔領域の開孔径よりも大きくてもよい。 As a configuration example, the opening diameter of the first opening region may be larger than the opening diameter of the second opening region.
 一構成例として、前記第1開孔領域の中心軸と、前記第2開孔領域の中心軸とは、同一軸上にあってもよい。 As a configuration example, the central axis of the first opening region and the central axis of the second opening region may be on the same axis.
 一構成例として、前記支持部材は、前記第1板から前記支持部材を平面視した時に、前記アクチュエータ素子と前記第1ハウジング部材との間の領域の全面を覆うように配されていてもよい。 As a configuration example, the support member may be arranged so as to cover the entire region between the actuator element and the first housing member when the support member is viewed in a plan view from the first plate. ..
 一構成例として、前記第1ハウジング部材に接続され、前記第1板の前記第1面の反対面を成す第2面に対向するように広がる内面を有する第2ハウジング部材を備え、該第2ハウジング部材は、前記内面とその反対面との間を貫通する開孔を有していてもよい。 As a configuration example, the second housing member is provided with an inner surface that is connected to the first housing member and has an inner surface that extends so as to face a second surface that forms an opposite surface of the first surface of the first plate. The housing member may have an opening that penetrates between the inner surface and the opposite surface thereof.
 一構成例として、流体制御装置では、上記のポンプを有する流体制御装置であって、前記開孔を介して流体が流出入される容器を備えていてもよい。 As a configuration example, the fluid control device may be a fluid control device having the above-mentioned pump and may include a container in which the fluid flows in and out through the opening.
 一構成例として、前記ハウジングから、前記ハウジングの内側に向けて突出する突起部を備え、前記突起部は、前記アクチュエータ素子が振動するときに生じるノード部よりも前記アクチュエータ素子の中心寄りの位置において、前記アクチュエータ素子に対して接続されていてもよい。 As an example of the configuration, a protrusion protruding from the housing toward the inside of the housing is provided, and the protrusion is located closer to the center of the actuator element than the node portion generated when the actuator element vibrates. , May be connected to the actuator element.
 一構成例として、前記突起部は、前記ノード部において前記アクチュエータ素子に対して離間していてもよい。 As a configuration example, the protrusion may be separated from the actuator element at the node.
 一構成例として、前記アクチュエータ素子は、前記第2主面を構成する基板と、前記第1主面を構成し、前記基板に接合される振動素子と、を有していてもよい。 As a configuration example, the actuator element may have a substrate constituting the second main surface and a vibration element constituting the first main surface and bonded to the substrate.
 一構成例として、前記第1主面と前記第2主面の対向方向から見て、前記振動素子の外縁は前記基板の外縁よりも内側にあってもよい。 As a configuration example, the outer edge of the vibrating element may be inside the outer edge of the substrate when viewed from the opposite direction of the first main surface and the second main surface.
 一構成例として、前記ハウジングは、第1開孔を有し、前記第1ハウジング部材と接続される第3ハウジング部材を有し、前記突起部は、前記第3ハウジング部材に対して接続されていてもよい。 As a configuration example, the housing has a first opening, has a third housing member connected to the first housing member, and the protrusion is connected to the third housing member. You may.
 一構成例として、前記突起部は、前記支持部材を介して前記アクチュエータ素子に対して接続されており、前記ノード部よりも前記アクチュエータ素子の中心寄りの位置において、前記支持部材の前記アクチュエータ素子と接合される面とは反対面に接していてもよい。 As an example of configuration, the protrusion is connected to the actuator element via the support member, and is connected to the actuator element of the support member at a position closer to the center of the actuator element than the node portion. It may be in contact with the surface opposite to the surface to be joined.
 一構成例として、前記支持部材は、前記第1ハウジング部材の外側まで延びる引出部を有し、前記支持部材は、前記ノード部において前記アクチュエータ素子に対して離間しており、前記支持部材と前記アクチュエータ素子とが接合される接合部と前記引出部とは、同一面上に位置していてもよい。 As a configuration example, the support member has a drawer portion extending to the outside of the first housing member, and the support member is separated from the actuator element at the node portion, and the support member and the support member are described. The joint portion to which the actuator element is bonded and the drawer portion may be located on the same surface.
 一構成例として、前記支持部材は、前記アクチュエータ素子に電力を供給する給電配線を有していてもよい。 As a configuration example, the support member may have a power supply wiring for supplying electric power to the actuator element.
 一構成例として、前記給電配線は、前記ノード部よりも前記アクチュエータ素子の中心寄りで、前記アクチュエータ素子に対して電気的に接続されていてもよい。 As an example of the configuration, the power feeding wiring may be electrically connected to the actuator element closer to the center of the actuator element than the node portion.
 一構成例として、前記ハウジングは、前記第1ハウジング部材に接続され、前記第1板の前記第1面の反対面を成す第2面に対向するように広がる内面を有する第2ハウジング部材を有し、 該第2ハウジング部材は、前記内面とその反対面との間を貫通する第2開孔を有していてもよい。 As a configuration example, the housing has a second housing member that is connected to the first housing member and has an inner surface that extends so as to face a second surface that forms the opposite surface of the first surface of the first plate. However, the second housing member may have a second opening penetrating between the inner surface and the opposite surface thereof.
 一構成例として、前記アクチュエータ素子の前記第1主面と前記第2主面の少なくとも一方に、前記アクチュエータ素子の動作振動数を調整するための振動調整板をさらに備えていてもよい。 As a configuration example, a vibration adjusting plate for adjusting the operating frequency of the actuator element may be further provided on at least one of the first main surface and the second main surface of the actuator element.
 一構成例として、流体制御装置では、前記開孔を介して流体が流出入される容器を備えていてもよい。 As a configuration example, the fluid control device may include a container in which the fluid flows in and out through the opening.
 一構成例として、前記ポンプと前記容器との間には、バルブが形成されていてもよい。 As a configuration example, a valve may be formed between the pump and the container.
 以上、本開示に係る技術の一実施形態を説明したが、この実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiment of the technique according to the present disclosure has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention as well as the invention described in the claims and the equivalent scope thereof.
 1A,1B,1C,1D,2A、2B、2C,3A 流体制御装置
 2,102 容器(タンク)
 11A,11B,11C,11D,111A、111B、111C ポンプ
 20,120 ハウジング
 20A,120A 第1ハウジング部材
 20B,120B 第2ハウジング部材
 20C,120C 第3ハウジング部材
 21,121 第1開孔部(開孔,第1開口)
 22,122 第2開孔部(第2開孔)
 26,126 突起部(位置規制部)
 30,130 アクチュエータ素子
 31,131 貫通孔(第1貫通孔)
 32a,132a 第1主面
 32b,132b 第2主面
 36,136 振動素子
 37,137 板状圧電体
 38a、38b,138a、138b 電極
 40,140 流路板
 41a,141a 第1流路面
 41b,141b 第2流路面
 42,142 凹部
 43,143 貫通孔(第2貫通孔)
 50,150 支持部材
 51a,151a 第1配線(配線)
 51b,151b 第2配線(配線)
 103 バルブ
 E1 空間
 E2 拡張部
 N ノード(ノード部)
1A, 1B, 1C, 1D, 2A, 2B, 2C, 3A Fluid control device 2,102 Container (tank)
11A, 11B, 11C, 11D, 111A, 111B, 111C Pump 20,120 Housing 20A, 120A First housing member 20B, 120B Second housing member 20C, 120C Third housing member 21,121 First opening (opening) , 1st opening)
22,122 Second opening (second opening)
26,126 Projection part (position regulation part)
30,130 Actuator element 31,131 Through hole (first through hole)
32a, 132a 1st main surface 32b, 132b 2nd main surface 36,136 Vibration element 37,137 Plate-shaped piezoelectric body 38a, 38b, 138a, 138b Electrode 40,140 Flow plate 41a, 141a First flow surface 41b, 141b 2nd flow path surface 42,142 Recessed portion 43,143 Through hole (2nd through hole)
50, 150 Support members 51a, 151a First wiring (wiring)
51b, 151b 2nd wiring (wiring)
103 Valve E1 Space E2 Expansion part N node (node part)

Claims (21)

  1.  互いに対向する第1主面と第2主面とを有し、該第1主面と該第2主面との間を貫通する第1貫通孔を有するアクチュエータ素子と、
     前記アクチュエータ素子の前記第2主面と空間を介して対向する第1面を含む対向部と、前記対向部と接続され、第2貫通孔を有する接続部とを有する第1板と、
     内部に前記アクチュエータ素子と前記第1板の前記対向部を収容し、前記接続部と接続される筒状の第1ハウジング部材を含むハウジングと、
     前記アクチュエータ素子と前記第1ハウジング部材とを接続し、前記アクチュエータ素子を前記第1ハウジング部材の内側で支持する支持部材と、
     を有することを特徴とするポンプ。
    An actuator element having a first main surface and a second main surface facing each other and having a first through hole penetrating between the first main surface and the second main surface.
    A first plate having a facing portion including a first surface facing the second main surface of the actuator element via a space, and a connecting portion connected to the facing portion and having a second through hole.
    A housing including the tubular first housing member that houses the actuator element and the facing portion of the first plate and is connected to the connecting portion.
    A support member that connects the actuator element and the first housing member and supports the actuator element inside the first housing member.
    A pump characterized by having.
  2.  前記第1貫通孔は、前記アクチュエータ素子の中心に位置していることを特徴とする請求項1に記載のポンプ。 The pump according to claim 1, wherein the first through hole is located at the center of the actuator element.
  3.  前記アクチュエータ素子は、前記第2主面を構成する基板と、前記第1主面を構成し、前記基板に接合される振動素子と、を有することを特徴とする請求項1または2に記載のポンプ。 The invention according to claim 1 or 2, wherein the actuator element includes a substrate constituting the second main surface and a vibration element forming the first main surface and bonded to the substrate. pump.
  4.  前記第1貫通孔は、前記振動素子が有する第1開孔領域と、該第1開孔領域に連なり、前記基板が有する第2開孔領域とからなることを特徴とする請求項3に記載のポンプ。 The third aspect of the present invention is characterized in that the first through hole is connected to the first opening region of the vibrating element and the second opening region of the substrate. Pump.
  5.  前記第1開孔領域の開孔径は、前記第2開孔領域の開孔径よりも大きいことを特徴とする請求項4に記載のポンプ。 The pump according to claim 4, wherein the opening diameter of the first opening region is larger than the opening diameter of the second opening region.
  6.  前記第1開孔領域の中心軸と、前記第2開孔領域の中心軸とは、同一軸上にあることを特徴とする請求項4または5に記載のポンプ。 The pump according to claim 4 or 5, wherein the central axis of the first hole region and the central axis of the second hole region are on the same axis.
  7.  前記支持部材は、前記第1板から前記支持部材を平面視した時に、前記アクチュエータ素子と前記第1ハウジング部材との間の領域の全面を覆うように配されていることを特徴とする請求項1から6のいずれか一項に記載のポンプ。 The claim is characterized in that the support member is arranged so as to cover the entire region between the actuator element and the first housing member when the support member is viewed in a plan view from the first plate. The pump according to any one of 1 to 6.
  8.  前記第1ハウジング部材に接続され、前記第1板の前記第1面の反対面を成す第2面に対向するように広がる内面を有する第2ハウジング部材を備え、
     該第2ハウジング部材は、前記内面とその反対面との間を貫通する開孔を有することを特徴とする請求項1から7のいずれか一項に記載のポンプ。
    The second housing member is provided with an inner surface that is connected to the first housing member and has an inner surface that extends so as to face a second surface that is connected to the first plate and forms an opposite surface to the first surface of the first plate.
    The pump according to any one of claims 1 to 7, wherein the second housing member has an opening penetrating between the inner surface and the opposite surface thereof.
  9.  前記ハウジングから、前記ハウジングの内側に向けて突出する突起部を備え、前記突起部は、前記アクチュエータ素子が振動するときに生じるノード部よりも前記アクチュエータ素子の中心寄りの位置において、前記アクチュエータ素子に対して接続されていることを特徴とする請求項1に記載のポンプ。 A protrusion is provided from the housing toward the inside of the housing, and the protrusion is provided on the actuator element at a position closer to the center of the actuator element than a node portion generated when the actuator element vibrates. The pump according to claim 1, wherein the pump is connected to the pump.
  10.  前記突起部は、前記ノード部において前記アクチュエータ素子に対して離間していることを特徴とする請求項9に記載のポンプ。 The pump according to claim 9, wherein the protrusion is separated from the actuator element at the node.
  11.  前記アクチュエータ素子は、前記第2主面を構成する基板と、前記第1主面を構成し、前記基板に接合される振動素子と、を有することを特徴とする請求項9または10に記載のポンプ。 9. pump.
  12.  前記第1主面と前記第2主面の対向方向から見て、前記振動素子の外縁は前記基板の外縁よりも内側にあることを特徴とする請求項11に記載のポンプ。 The pump according to claim 11, wherein the outer edge of the vibrating element is inside the outer edge of the substrate when viewed from the opposite direction of the first main surface and the second main surface.
  13.  前記ハウジングは、第1開孔を有し、前記第1ハウジング部材と接続される第3ハウジング部材を有し、
     前記突起部は、前記第3ハウジング部材に対して接続されていることを特徴とする請求項9から12のいずれか一項に記載のポンプ。
    The housing has a first opening and has a third housing member connected to the first housing member.
    The pump according to any one of claims 9 to 12, wherein the protrusion is connected to the third housing member.
  14.  前記突起部は、前記支持部材を介して前記アクチュエータ素子に対して接続されており、前記ノード部よりも前記アクチュエータ素子の中心寄りの位置において、前記支持部材の前記アクチュエータ素子と接合される面とは反対面に接していることを特徴とする請求項9から13のいずれか一項に記載のポンプ。 The protrusion is connected to the actuator element via the support member, and is joined to the surface of the support member to be joined to the actuator element at a position closer to the center of the actuator element than the node portion. The pump according to any one of claims 9 to 13, wherein the pump is in contact with the opposite surface.
  15.  前記支持部材は、前記第1ハウジング部材の外側まで延びる引出部を有し、
     前記支持部材は、前記ノード部において前記アクチュエータ素子に対して離間しており、
     前記支持部材と前記アクチュエータ素子とが接合される接合部と前記引出部とは、同一面上に位置することを特徴とする請求項14に記載のポンプ。
    The support member has a drawer portion extending to the outside of the first housing member.
    The support member is separated from the actuator element at the node portion, and is separated from the actuator element.
    The pump according to claim 14, wherein the joint portion to which the support member and the actuator element are joined and the drawer portion are located on the same surface.
  16.  前記支持部材は、前記アクチュエータ素子に電力を供給する給電配線を有することを特徴とする請求項14または15に記載のポンプ。 The pump according to claim 14 or 15, wherein the support member has a power supply wiring for supplying electric power to the actuator element.
  17.  前記給電配線は、前記ノード部よりも前記アクチュエータ素子の中心寄りで、前記アクチュエータ素子に対して電気的に接続されることを特徴とする請求項16に記載のポンプ。 The pump according to claim 16, wherein the feeding wiring is closer to the center of the actuator element than the node portion and is electrically connected to the actuator element.
  18.  前記ハウジングは、前記第1ハウジング部材に接続され、前記第1板の前記第1面の反対面を成す第2面に対向するように広がる内面を有する第2ハウジング部材を有し、
     該第2ハウジング部材は、前記内面とその反対面との間を貫通する第2開孔を有することを特徴とする請求項14から17のいずれか一項に記載のポンプ。
    The housing has a second housing member that is connected to the first housing member and has an inner surface that extends opposite to a second surface that forms the opposite surface of the first surface of the first plate.
    The pump according to any one of claims 14 to 17, wherein the second housing member has a second opening penetrating between the inner surface and the opposite surface thereof.
  19.  前記アクチュエータ素子の前記第1主面と前記第2主面の少なくとも一方に、前記アクチュエータ素子の動作振動数を調整するための振動調整板をさらに備えたことを特徴とする請求項1から18のいずれか一項に記載のポンプ。 Claims 1 to 18, wherein a vibration adjusting plate for adjusting the operating frequency of the actuator element is further provided on at least one of the first main surface and the second main surface of the actuator element. The pump according to any one item.
  20.  請求項8に記載のポンプを有する流体制御装置であって、
     前記開孔を介して流体が流出入される容器を備えたことを特徴とする流体制御装置。
    The fluid control device having the pump according to claim 8.
    A fluid control device including a container through which fluid flows in and out through the opening.
  21.  前記ポンプと前記容器との間には、バルブが形成されていることを特徴とする請求項20に記載の流体制御装置。 The fluid control device according to claim 20, wherein a valve is formed between the pump and the container.
PCT/JP2021/028280 2020-07-31 2021-07-30 Pump and fluid control device WO2022025230A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020130733A JP2023126989A (en) 2020-07-31 2020-07-31 Pump and fluid control device
JP2020-130735 2020-07-31
JP2020130735A JP2023126991A (en) 2020-07-31 2020-07-31 Pump and fluid control device
JP2020-130733 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022025230A1 true WO2022025230A1 (en) 2022-02-03

Family

ID=80035796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028280 WO2022025230A1 (en) 2020-07-31 2021-07-30 Pump and fluid control device

Country Status (1)

Country Link
WO (1) WO2022025230A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140491A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Flow generating device
JPH04101082A (en) * 1990-08-14 1992-04-02 Honda Motor Co Ltd Piezoelectric plate for gas pump
JP2005307858A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Piezoelectric diaphragm pump
JP2015510072A (en) * 2012-02-10 2015-04-02 ケーシーアイ ライセンシング インコーポレイテッド System and method for monitoring the reduced pressure provided by a disk pump system
JP2019044770A (en) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 Gas transport device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140491A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Flow generating device
JPH04101082A (en) * 1990-08-14 1992-04-02 Honda Motor Co Ltd Piezoelectric plate for gas pump
JP2005307858A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Piezoelectric diaphragm pump
JP2015510072A (en) * 2012-02-10 2015-04-02 ケーシーアイ ライセンシング インコーポレイテッド System and method for monitoring the reduced pressure provided by a disk pump system
JP2019044770A (en) * 2017-08-31 2019-03-22 研能科技股▲ふん▼有限公司 Gas transport device

Similar Documents

Publication Publication Date Title
CN112204256B (en) Pump and method of operating the same
US10947965B2 (en) Blower
US11041580B2 (en) Valve and fluid control device
JP6725419B2 (en) Acoustic resonant fluid pump
US10280915B2 (en) Fluid control device
EP2090781B1 (en) Piezoelectric micro-blower
US9482217B2 (en) Fluid control device
KR20120032566A (en) Fluid pump
CN109477478B (en) Valve and gas control device
JP6904436B2 (en) Pump and fluid control
JP6319517B2 (en) pump
WO2022025230A1 (en) Pump and fluid control device
US20230235732A1 (en) Fluid control device
WO2022025233A1 (en) Pump, and fluid control device
JP2023126991A (en) Pump and fluid control device
JP2023126989A (en) Pump and fluid control device
JP2020041500A (en) pump
JP5500310B2 (en) Active valve, fluid control device
US20240044323A1 (en) Actuator, pump, method for manufacturing actuator
JP2024015457A (en) Fluid control device and electronic apparatus
JP2019190343A (en) pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP