WO2022025115A1 - 電磁波加熱装置 - Google Patents

電磁波加熱装置 Download PDF

Info

Publication number
WO2022025115A1
WO2022025115A1 PCT/JP2021/027904 JP2021027904W WO2022025115A1 WO 2022025115 A1 WO2022025115 A1 WO 2022025115A1 JP 2021027904 W JP2021027904 W JP 2021027904W WO 2022025115 A1 WO2022025115 A1 WO 2022025115A1
Authority
WO
WIPO (PCT)
Prior art keywords
heated
electromagnetic wave
heating device
information
oscillator
Prior art date
Application number
PCT/JP2021/027904
Other languages
English (en)
French (fr)
Inventor
創士 渡部
誠士 神原
Original Assignee
ゼネラルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020128953A external-priority patent/JP7296634B2/ja
Priority claimed from JP2021017282A external-priority patent/JP2022120407A/ja
Priority claimed from JP2021091069A external-priority patent/JP7245549B2/ja
Application filed by ゼネラルソリューションズ株式会社 filed Critical ゼネラルソリューションズ株式会社
Publication of WO2022025115A1 publication Critical patent/WO2022025115A1/ja
Priority to US18/103,421 priority Critical patent/US20230284351A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6458Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using humidity or vapor sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/76Prevention of microwave leakage, e.g. door sealings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00216Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using infrared [IR] radiation or microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/046Microwave drying of wood, ink, food, ceramic, sintering of ceramic, clothes, hair

Definitions

  • the present invention relates to an electromagnetic wave heating device or the like used for heating an object to be heated.
  • a dielectric heating type electromagnetic wave heating device has been used for various purposes such as heating food.
  • the electromagnetic wave heating device irradiates the dielectric contained in the object to be heated with electromagnetic waves. Then, the action of the electric field due to the electromagnetic wave causes the molecular level dipole in the dielectric to vibrate, and the dielectric loss accompanying the vibration causes heat generation to heat the object to be heated.
  • the object to be heated contains a conductor component or an ionic substance, it is heated by the conduction (joule) loss caused by the electric current, and when the magnetic component is contained, it is heated by the magnetic loss. The thing is heated.
  • Patent Document 1 describes a dielectric heating unit that dielectrically heats a fixing member that heats and melts a toner image and fixes it on a recording medium.
  • the dielectric heating unit includes at least a pair of rod-shaped electrodes that form a high-frequency electric field around the dielectric of the fixing member so as to face the outer peripheral surface and / or the inner peripheral surface of the fixing member.
  • the rod-shaped electrodes are arranged so as to have different polarities from the adjacent rod-shaped electrodes, and high-frequency power is supplied from the power source.
  • Patent Document 1 describes the experimental results using a high frequency of 40 MHz.
  • the wavelength of the high frequency is about 7.5 m.
  • the conventional technique described in Patent Document 1 does not cause resonance due to high frequency in each rod-shaped electrode, and the electric field in the length direction is substantially uniform for each rod-shaped electrode.
  • the stronger the electric field the easier it is for electromagnetic waves to be absorbed by the object to be heated, and the object to be heated can be heated efficiently.
  • a substantially uniform electric field is formed in each rod-shaped electrode, it is necessary to increase the power input to the rod-shaped electrode in order to form a strong electric field region at a level where electromagnetic waves are easily absorbed by the object to be heated. There is.
  • the present invention has been made in view of such circumstances, and for an electromagnetic wave heating device that heats an object to be heated by using electromagnetic waves, low power consumption is provided in a strong electric field region where electromagnetic waves are easily absorbed by the object to be heated.
  • the purpose is to configure it so that it can be formed with.
  • the first invention is an electromagnetic wave heating device, which is an antenna that outputs an electromagnetic wave and a conductor that emits an electromagnetic wave output from the oscillator, and has a frequency band transmitted from the antenna.
  • a radiating antenna having a resonance structure in which resonance occurs in a conductor due to electromagnetic waves is provided, and a strong electric field region for heating an object to be heated is formed along the radiating antenna by the electromagnetic waves supplied from the electromagnetic wave to the radiating antenna. It is configured in.
  • the radiation antenna in the radiation antenna, three or more conductor lines each having a resonance structure are arranged with a gap in a predetermined direction, and at least three or more conductor lines are arranged.
  • An input unit for supplying electromagnetic waves to a part is further provided, and in the radiation antenna, resonance occurs due to electromagnetic waves in each of three or more conductor lines during the input period when the electromagnetic waves are input to the input unit, and three or more conductor lines A strong electric field region is formed along the region where the conductor lines of the above are arranged.
  • the third invention is arranged in the second invention on the side opposite to the side where the object to be heated is arranged with respect to the three or more conductor lines, and faces at least a part of the three or more conductor lines. It also has a ground electrode.
  • the distance between adjacent conductor lines in a predetermined direction is 5 times or less the line width of the conductor lines.
  • the object to be heated is conveyed in a predetermined transport direction, and three or more conductor lines are arranged in the transport direction.
  • each conductor line in any one of the second to fifth inventions, extends diagonally with respect to the arrangement direction of the conductor lines.
  • the arrangement region of three or more conductor lines is a band-shaped region in a plan view, and in the three or more conductor lines, the arrangement region.
  • a conductor line having a standing wave abdomen formed by electromagnetic waves on one end side in the width direction and a conductor line having a standing wave abdomen formed on the other end side are alternately arranged.
  • any one of the second to seventh inventions in the radiation antenna, four or more conductor lines are arranged with a gap in a predetermined direction, and in the four or more conductor lines, the conductor lines are arranged. Two or more rows of strong electric fields are formed in which the strong electric field portions of the conductor line, which is the abdomen of the stationary wave due to the electromagnetic wave, are arranged in the arrangement direction of the conductor lines.
  • a ninth aspect of the invention is that in any one of the second to eighth aspects, the radiation antenna corresponds to a first comb tooth electrode each having a plurality of tooth portions corresponding to a conductor line, and each corresponds to a conductor line.
  • a second comb tooth electrode having a plurality of tooth portions is provided, and the first comb tooth electrode and the second comb tooth electrode are arranged so that the respective tooth portions mesh with each other with a gap.
  • a tenth aspect of the present invention further comprises a housing provided so as to surround three or more conductor lines in any one of the second to ninth inventions, and the object to be heated is an opening formed in the housing. It can be taken in and out of the housing through a portion or a gap formed by the housing.
  • a covering member which is composed of a dielectric and covers the side where the object to be heated is arranged with respect to three or more conductor lines. There is.
  • the object to be heated is transported in a predetermined transport direction, and the input point of the electromagnetic wave from the oscillator is on the downstream side in the transport direction in the radiation antenna. positioned.
  • the heated object in any one of the first to twelfth inventions, is conveyed in a predetermined transport direction, and the input point of the electromagnetic wave from the oscillator passes through the heated object in the radiation antenna. It is located outside the area.
  • the internal space in which the radiation antenna is arranged is shielded from the outside, and the introduction portion and the extraction portion of the conveyed object including the heated object are formed.
  • a shielding portion is further provided in which the conveyed object is conveyed from the introduction portion to the lead-out portion so that the object to be heated passes through the facing region of the radiating antenna, and the shielding portion has the internal space to the outside.
  • a gap for communication a continuous gap is formed in which a lateral gap extending in the transport direction of the transported object is connected to each of the introduction portion and the lead-out portion on the side of the facing region.
  • the continuous gap has an introduction portion on the upstream side in the transport direction, a lead-out portion on the downstream side in the transport direction, and a lateral gap on one side in the direction orthogonal to the transport direction. It is composed of gaps on at least three sides.
  • the shielding portion is opposite to the first compartment portion by forming a continuous gap between the first compartment portion that partitions the internal space from one side and the first compartment portion. It has a second compartment that partitions the internal space from the side, and the first compartment is supported by the second compartment on the other side in the direction orthogonal to the transport direction.
  • the seventeenth invention further comprises, in the fourteenth or fifteenth invention, a blower for supplying air to the object to be heated carried in the internal space, and the shielding portion is a first compartment for partitioning the internal space from one side. It has a second compartment that forms a continuous gap with the first compartment and partitions the internal space from the side opposite to the first compartment, and the blower is attached to the first compartment. ..
  • the internal space in which the radiating antenna is arranged is shielded from the outside, and the introduction portion and the extraction portion of the conveyed object including the heated object are formed.
  • the conveyed object is conveyed from the introduction portion to the lead-out portion and the shielding portion attached to the shielding portion so that the object to be heated passes through the facing region of the radiating antenna, and is conveyed in the internal space. It is further equipped with a blower that supplies air to the object to be heated.
  • a blower passage through which air flowing from the blower to the object to be heated flows is formed in the shielding portion, and the blower passage is a blower from an electromagnetic wave radiated from a radiant antenna.
  • a shield member is provided which shields the air from the air and allows air to pass from the blower toward the object to be heated.
  • the blowing direction of the blower faces the downstream side in the transport direction.
  • the twenty-first invention further includes, in any one of the seventeenth to nineteenth inventions, a waste heat utilization unit that heats the air supplied to the object to be heated by the blower by utilizing the waste heat of the oscillator. ..
  • the 22nd invention is a signal extraction unit provided in a transmission line extending from an oscillator to a radiation antenna and extracting reflected wave information representing a waveform of the reflected wave returning from the radiation antenna in any one of the first to 21st inventions.
  • phase difference information generation that generates phase difference information representing the phase difference between the incident wave and the reflected wave by arithmetic processing using the incident wave information representing the waveform of the incident wave transmitted from the oscillator to the radiation antenna and the reflected wave information.
  • Adjustment of the oscillation frequency that reduces the difference between the resonance frequency of the radiation antenna and the oscillation frequency of the oscillator based on the reference information in the state where the phase of the incident wave and the phase of the reflected wave are equal to each other and the phase difference information.
  • It further includes a control unit that detects a direction and repeatedly performs a control process for controlling the oscillation frequency based on the detected adjustment direction.
  • the control unit detects the deviation direction of the oscillation frequency with respect to the resonance frequency by using the reference information and the phase difference information, and performs averaging processing on the detection result. Detects the adjustment direction of the oscillation frequency.
  • the object to be heated is conveyed so as to pass through the strong electric field region, and the control unit is a sample of the detection result used for the averaging process based on the transfer rate of the object to be heated. Adjust the number.
  • a twenty-fifth invention in any one of the 22nd to the 24th inventions, further comprises an orthogonal demodulation unit that outputs a quadrature-modulated electromagnetic wave to a radiation antenna and quadrature demodulates the reflected wave information, and further comprises an incident wave.
  • Phase difference information is generated by arithmetic processing using the first I component information and the first Q component information constituting the information, and the second I component information and the second Q component information constituting the reflected wave information.
  • the signal extraction unit extracts incident wave information from the transmission line, and the orthogonal demodulation unit is incident on one orthogonal demodulator and the signal extraction unit to the orthogonal demodulator. It is equipped with a changeover switch that switches between the first period in which wave information is input and the second period in which reflected wave information is input. The switching of the second period is performed.
  • the signal extraction unit extracts incident wave information from the transmission line and transmits the incident wave information from the signal extraction unit to the phase difference information generation unit.
  • the line is provided with a delay line or a delay element that corrects the phase shift between the incident wave information and the reflected wave information.
  • the control unit is configured to generate phase difference information by using the incident wave information of the phase at the output timing of the electromagnetic wave of the oscillator. , Before the arithmetic processing, the incident wave information is corrected for the phase shift from the reflected wave information.
  • the control unit estimates the amount of electromagnetic wave energy absorbed by the object to be heated based on the phase difference information, and based on the estimation result. Controls the output of the oscillator.
  • the reference information is in a threshold range having a predetermined width
  • the control unit controls the heated object with respect to the heating target state of the heated object.
  • the degree of heating progress is estimated, and the width of the threshold range is adjusted based on the estimation result.
  • a plurality of objects to be heated are conveyed at intervals so as to sequentially pass through the strong electric field region, and the control unit is one subject. While performing frequency control in which the control process is repeated during the period when the heated object passes through the strong electric field region, the control history information of the frequency control is recorded, and after the recording, during the period when the heated object passing through the strong electric field region is heated. Frequency control is performed using the control history information.
  • a plurality of objects to be heated are conveyed at intervals so as to sequentially pass through a strong electric field region, and the objects to be heated are printed by a printing apparatus.
  • the ink is printed in, and the control unit uses information on the print pattern of the object to be heated for adjusting the control parameters of the control process.
  • a radiation antenna having a resonance structure in which resonance is generated by electromagnetic waves in the frequency band transmitted from the oscillator is used. Therefore, when an electromagnetic wave is supplied from the oscillator to the radiating antenna, resonance occurs in the radiating antenna due to the electromagnetic wave.
  • the strong electric field region formed along the radiating antenna has a relatively high electric field strength. According to the present invention, it is possible to form a strong electric field region at a level at which electromagnetic waves are easily absorbed by an object to be heated with low power consumption, as compared with the case where resonance does not occur.
  • FIG. 1 is a perspective view of the electromagnetic wave heating device and the processing system according to the first embodiment as viewed from diagonally above.
  • FIG. 2 is a side view of the electromagnetic wave heating device and the processing system according to the first embodiment.
  • FIG. 3 is a top view of the electromagnetic wave heating device according to the first embodiment.
  • FIG. 4 is a top view of the electromagnetic wave heating device according to the first modification of the first embodiment.
  • FIG. 5 is a top view of the electromagnetic wave heating device according to the second modification of the first embodiment.
  • 6A is a top view of the electromagnetic wave heating device according to the third modification of the first embodiment, and
  • FIG. 6B is a cross-sectional view taken along the line AA of FIG. 6A. .. FIG.
  • FIG. 7 is a top view of the electromagnetic wave heating device according to the fourth modification of the first embodiment.
  • FIG. 8 is a perspective view of the electromagnetic wave heating device according to the fifth modification of the first embodiment as viewed from diagonally above.
  • FIG. 9 is an enlarged top view of the electromagnetic wave heating device according to the sixth modification of the first embodiment.
  • FIG. 10 is a perspective view of the electromagnetic wave heating device according to the modified example 7 of the first embodiment as viewed from diagonally above.
  • FIG. 11 is a side view of the electromagnetic wave heating device according to the modified example 8 of the first embodiment.
  • FIG. 12 is a perspective view of the electromagnetic wave heating device according to the modified example 9 of the first embodiment as viewed from diagonally above.
  • FIG. 13 is a top view of the electromagnetic wave heating device according to the modified example 10 of the first embodiment.
  • FIG. 14 is a top view of the electromagnetic wave heating device according to the modified example 11 of the first embodiment.
  • FIG. 15 is a top view of the electromagnetic wave heating device according to the modified example 12 of the first embodiment.
  • FIG. 16 is a top view of the electromagnetic wave heating device according to the modified example 13 of the first embodiment.
  • FIG. 17 is a top view of the electromagnetic wave heating device according to the modified example 14 of the first embodiment.
  • FIG. 18 is a perspective view of the electromagnetic wave heating device and the processing system according to the modified example 15 of the first embodiment as viewed from diagonally above.
  • FIG. 19A is a cross-sectional view of the electric field forming portion of the electromagnetic wave heating device according to another modification of the first embodiment cut in the first direction
  • FIG. 19B is another form of the electric field forming portion.
  • FIG. 19 (c) is a cross-sectional view of an electric field forming portion of yet another form.
  • FIG. 20 is a perspective view of the electromagnetic wave heating device according to the second embodiment, in which the cover is removed, as viewed from diagonally above.
  • FIG. 21 is a perspective view of the electromagnetic wave heating device according to the second embodiment as viewed from diagonally above. 22 is a cross-sectional view taken along the line AA of FIG. 21.
  • FIG. 23 is a cross-sectional view taken along the line BB of FIG. 21 and shows a state in which the base material is conveyed.
  • FIG. 24A is a cross-sectional view of the electromagnetic wave heating device according to the second embodiment, and FIG.
  • FIG. 23B is a cross-sectional view of the electromagnetic wave heating device according to the first modification of the second embodiment.
  • 25 (a) is a cross-sectional view of the electromagnetic wave heating device according to the second modification of the second embodiment
  • FIG. 25 (b) is a cross-sectional view of the electromagnetic wave heating device according to the third modification of the second embodiment.
  • FIG. 25 (c) is a cross-sectional view of the electromagnetic wave heating device according to the modified example 4 of the second embodiment.
  • 26 (a) is a cross-sectional view of the electromagnetic wave heating device according to the modified example 5 of the second embodiment
  • FIG. 26 (b) is a cross-sectional view of the electromagnetic wave heating device according to the modified example 6 of the second embodiment.
  • FIG. 26 (c) is a cross-sectional view of the electromagnetic wave heating device according to the modified example 7 of the second embodiment.
  • FIG. 27 is a perspective view of the electromagnetic wave heating device according to the modified example 8 of the second embodiment as viewed from diagonally below.
  • FIG. 28 is a schematic configuration diagram of the electromagnetic wave heating device according to the modified example 9 of the second embodiment as viewed from the side.
  • 29 (a) is a cross-sectional view taken along the line CC of FIG. 25 (b), and
  • FIG. 29 (b) is a cross-sectional view of a variation of the plan shape of the choke structure 55 different from that of FIG. 29 (a).
  • FIG. 29 (c) is a cross-sectional view of yet another variation.
  • FIG. 30A is a schematic configuration diagram of the electromagnetic wave heating device according to the third embodiment as viewed from the side
  • FIG. 30B is a plan view of the substrate of the electromagnetic wave heating device.
  • FIG. 31 is a perspective view of the electromagnetic wave heating device according to the fourth embodiment, in which the cover is removed, as viewed from diagonally above.
  • FIG. 32 is a perspective view of the electromagnetic wave heating device according to the fourth embodiment as viewed from diagonally above.
  • 33 is a cross-sectional view taken along the line AA of FIG. 32.
  • FIG. 34 is a cross-sectional view taken along the line BB of FIG. 32, showing a state in which the base material is conveyed.
  • FIG. 35 is a cross-sectional view of the electromagnetic wave heating device according to the fourth embodiment.
  • FIG. 36 is a schematic circuit diagram of the electromagnetic wave heating device according to the fourth embodiment.
  • FIG. 37 is a flowchart of processing performed by the control unit of the electromagnetic wave heating device according to the fourth embodiment.
  • FIG. 38 is a chart showing a graph and the like showing the relationship of the phase difference voltage with respect to the resonance frequency.
  • 39 (a) to 39 (f) are diagrams for explaining how the oscillation frequency is made to follow the resonance frequency.
  • FIG. 40 is a chart for explaining the averaging process according to the first modification of the fourth embodiment.
  • FIG. 41 is a schematic circuit diagram of the electromagnetic wave heating device according to the third modification of the fourth embodiment.
  • FIG. 42 is a flowchart of processing performed by the control unit of the electromagnetic wave heating device according to the third modification of the fourth embodiment.
  • FIG. 43 is a chart (Smith chart) for explaining how the oscillation frequency is made to follow the resonance frequency.
  • FIG. 44 is a schematic circuit diagram of the electromagnetic wave heating device according to the fourth modification of the fourth embodiment.
  • FIG. 45 is a schematic circuit diagram of the electromagnetic wave heating device according to the fifth modification of the fourth embodiment.
  • FIG. 46 is a schematic circuit diagram of the electromagnetic wave heating device according to the modified example 9 of the fourth embodiment.
  • This embodiment is an electromagnetic wave heating device 10 that heats an object to be heated 20 by using an electromagnetic wave such as a high frequency wave.
  • the electromagnetic wave heating device 10 is a dielectric heating type heating device.
  • the electromagnetic wave used in the electromagnetic wave heating device 10 is a high frequency of 50 MHz or more (for example, a high frequency of 800 MHz or more (microwave or the like)).
  • the object to be heated 20 heated by the electromagnetic wave heating device 10 contains a substance (liquid, solid, etc.) that absorbs high frequencies.
  • the object to be heated 20 is a thin object having a thin thickness, and exhibits a sheet shape or a film shape.
  • the object to be heated 20 is, for example, an adhesive.
  • the object to be heated 20 is applied or arranged on the surface of a sheet-like long base material (transported object) 11.
  • the object to be heated 20 is conveyed together with the base material 11 in a predetermined direction (direction of the arrow shown in FIG. 1) and passes through a strong electric field region due to high frequency. At that time, the object to be heated 20 is heated by absorbing high frequencies.
  • the object to be heated 20 does not have to be in the form of a sheet or a film, and may have a certain thickness. Further, the object to be heated 20 (for example, an adhesive) may be applied or placed on a sheet body (for example, an envelope) placed on the surface of the base material 11, and in this case, the object to be heated 20 may be the sheet body and the base. It is conveyed together with the material 11.
  • an adhesive for example, an adhesive
  • a sheet body for example, an envelope placed on the surface of the base material 11
  • the object to be heated 20 may be the sheet body and the base. It is conveyed together with the material 11.
  • the electromagnetic wave heating device 10 is an upstream device (for example, an adhesive coating device; not shown) for applying or arranging the object to be heated 20 on the surface of the base material 11, and at least the electromagnetic wave heating device 10 from the inlet of the upstream device.
  • a transport type processing system is configured.
  • the transport mechanism 12 transports the base material 11 and the object to be heated 20 using a plurality of pairs of rollers 13 (see FIG. 2).
  • the transport direction of the object to be heated 20 is referred to as a "first direction”
  • the direction orthogonal to the first direction is referred to as a "second direction” (see FIG. 1 and the like).
  • the side on which the object to be heated 20 is arranged is referred to as "front side”
  • the opposite side thereof is referred to as "back side” (see FIG. 2).
  • the electromagnetic wave heating device 10 includes an oscillator 21 that oscillates a high frequency, a radiant antenna 22 that radiates a high frequency for heating the object to be heated 20, and a substrate 23 provided with a radiant antenna 22 on one side.
  • the radiation antenna 22 is a conductor that radiates a high frequency output from the oscillator 21, and has a resonance structure in which resonance occurs in the conductor due to a high frequency in the frequency band transmitted from the oscillator 21.
  • the electromagnetic wave heating device 10 is configured such that a strong electric field region (high frequency heating region) for heating the object to be heated 20 is formed along the radiant antenna 22 by the high frequency supplied from the oscillator 21 to the radiant antenna 22. Has been done.
  • the substrate 23 is formed in a flat plate shape to support the radiation antenna 22. Further, the substrate 23 has a dielectric layer 24 exposed on the surface of the substrate 23 and a ground electrode layer 25 laminated on the back surface of the dielectric layer 24.
  • the substrate 23 is provided with an input unit 30 for inputting a high frequency from the oscillator 21.
  • the input unit 30 is, for example, a coaxial connector.
  • the radiation antenna 22 is connected to the input unit 30. In the radiation antenna 22, the high frequency input point (feeding point) X from the oscillator 21 is located outside the passing region of the object to be heated 20 conveyed by the conveying mechanism 12.
  • the radiation antenna 22 includes a first comb tooth electrode 31 to which a high frequency input input to the input unit 30 is supplied, and a second comb tooth electrode 32 electrically connected to the ground electrode layer 25. It is equipped with.
  • the first comb tooth electrode 31 is an electrode on the high pressure side and has a plurality of tooth portions 31a.
  • the second comb tooth electrode 32 is an electrode on the ground side and has a plurality of tooth portions 32a.
  • the first comb tooth electrode 31 and the second comb tooth electrode 32 are arranged so that their respective tooth portions 31a and 32a mesh with each other with a gap in the same plane.
  • the radiation antenna 22 is composed of an interdigital circuit.
  • each tooth portion 31a of the first comb tooth electrode 31 and each tooth portion 32a of the second comb tooth electrode 32 correspond to the conductor line according to the present invention.
  • the tooth portions 31a and 32a are linear conductor lines.
  • a large number of tooth portions 31a and 32a are arranged with a gap in a predetermined direction (first direction).
  • the region in which a large number of tooth portions 31a and 32a are arranged (hereinafter referred to as "arrangement region") is a band-shaped region in a plan view.
  • a high frequency from the input unit 30 is supplied to the first comb tooth electrode 31 which is a part of a large number of conductor lines.
  • a strong electric field region for heating the object to be heated 20 is formed along a large number of tooth portions 31a and 32a during an input period in which a high frequency is input to the input portion 30.
  • each comb tooth electrode 31 and 32 has a large number (five or more) tooth portions 31a and 32a, and the total number of the tooth portions 31a and 32a is 10 or more. May be good.
  • the high frequency is directly supplied to every other conductor line constituting the radiation antenna 22, but the high frequency may be directly supplied to all the conductor lines. However, high frequencies may be directly supplied to every other conductor line in a large number of conductor lines (see Modification 10 and the like of the first embodiment described later).
  • the first comb tooth electrode 31 is supported on the surface of the dielectric layer 24.
  • the first comb tooth electrode 31 includes a base line 31b extending from the input portion 30 side and a large number of tooth portions 31a having roots connected to the base line 31b.
  • the base line 31b is connected to a conductor line extending in the second direction from the input unit 30, and extends straight in the first direction from the input point X located at the bent point.
  • a large number of tooth portions 31a project from the base line 31b so as to be parallel to each other.
  • a large number of tooth portions 31a are arranged at equal intervals in the first direction.
  • Each tooth portion 31a extends in a second direction along the surface of the dielectric layer 24 and is orthogonal to the base line 31b.
  • the second comb tooth electrode 31 is also supported on the surface of the dielectric layer 24.
  • the second comb tooth electrode 31 includes a base line 32b and a large number of tooth portions 32a whose roots are connected to the base line 32b.
  • the base line 32b extends parallel to the base line 31b of the first comb tooth electrode 31.
  • a part of the base line 32b is laminated on the surface of the dielectric layer 24 and bent at the outer peripheral position of the substrate 23.
  • the remaining portion of the base line 32b extends from the bent portion to the back side along the side surface of the substrate 23 and is connected to the ground electrode layer 25.
  • a large number of tooth portions 32a project from the base line 32b toward the first comb tooth electrode 31 so as to be parallel to each other.
  • a large number of tooth portions 32a are arranged at equal intervals in the first direction.
  • Each tooth portion 32a extends in a second direction along the surface of the dielectric layer 24 and is orthogonal to the base line 32b.
  • the radiation antenna 22 is configured so that resonance due to high frequency occurs simultaneously in the conductor lines 31a and 32a during the above-mentioned input period.
  • the length L1 of the tooth portion 31a and the length L2 of the tooth portion 32a are designed using Equation 1 when the wavelength (electrical length) of the transmitted high frequency is ⁇ (n is). Natural number).
  • the total length of the adjacent tooth portions 31a and the tooth portions 32a is represented by 2 m ⁇ ⁇ / 4 (m is a natural number).
  • the tooth portions 31a of the first comb tooth electrode 31 and the tooth portions 32a of the second comb tooth electrode 32 all have the same length and all have the same line width, but the lengths or thicknesses are different from each other. You may let me.
  • the respective tooth portions 31a and 32a have a resonance structure.
  • the radiation antenna 22 is configured so that a relatively strong electric field coupling occurs between the conductor lines 31a and 32a adjacent to each other in the first direction during the above-mentioned input period.
  • a large number of tooth portions 31a and 32a are arranged at equal intervals in the first direction, and the distance (gap dimension) G between the tooth portions 31a and 32a adjacent to each other in the first direction is the tooth portion. It is 5 times or less the line width of 31a and 32a. This distance G may be 3 times or less of the line width of the tooth portions 31a and 32a, or may be 1 time or less.
  • the dielectric layer 24 is made of a dielectric such as ceramic.
  • the thickness of the dielectric layer 24 is, for example, uniform over the entire surface.
  • the dielectric layer 24 separates the first comb tooth electrode 31 and the second comb tooth electrode 32 from the ground electrode layer 25.
  • the ground electrode layer 25 is composed of a conductor (for example, a metal plate) and has a ground potential.
  • the ground electrode layer 25 is arranged on the back side of a large number of tooth portions 31a and 32a, and faces the tooth portions 31a and 32a in the arrangement region via the dielectric layer 24.
  • high frequencies are radiated only to the front sides of the large number of tooth portions 31a and 32a during the above input period, and a strong electric field region is formed in the vicinity of the front side of the large number of tooth portions 31a and 32a.
  • the ground electrode layer 25 may have a planar dimension facing a part of a large number of tooth portions 31a and 32a.
  • the high frequency output from the oscillator 21 is supplied to each tooth portion 31a of the first comb tooth electrode 31.
  • the length of each tooth portion 31a is ⁇ / 4. Therefore, resonance occurs due to high frequency in each tooth portion 31a of the first comb tooth electrode 31, and the tip of each tooth portion 31a becomes the abdomen of the standing wave due to high frequency.
  • a strong electric field region is formed on the front side of a large number of tooth portions 31a and 32a so as to include a transport path for the base material 11 and the object to be heated 20.
  • the dielectric component, the conductive component, and the like are heated by high frequencies.
  • the object to be heated 20 undergoes a temperature rise, and desired physical / chemical changes (polymerization, annealing, drying, curing, etc.) occur.
  • a large number of tooth portions 31a, 32a are arranged with a gap in a predetermined direction, and the distance G between the tooth portions 31a, 32a adjacent to each other in the first direction is the tooth portions 31a, It is 5 times or less the line width of 32a. Therefore, a relatively strong electric field coupling occurs between the adjacent tooth portions 31a and 32a. Further, in the adjacent tooth portions 31a and 32a, the tip which is the abdomen of the standing wave and the base which is the node of the standing wave are close to each other. Therefore, the electric field strength in the gap between the adjacent tooth portions 31a and 32a is relatively high. In the arrangement region of a large number of tooth portions 31a and 32a, the area of the strong electric field region becomes large, and a strong electric field region parallel to the object to be heated 20 and having a thin thickness is formed.
  • the object to be heated 20 is in the form of a sheet or a film and has a large surface area for its volume, the amount of heat dissipated during high-frequency heating is large, and it is not easy to raise the temperature of the object to be heated 20.
  • a strong electric field region parallel to the object to be heated 20 and having a thin thickness is formed in the arrangement region of a large number of tooth portions 31a and 32a.
  • a strong electric field region parallel to the object to be heated 20 and having a thin thickness is formed.
  • many electric lines of force are parallel to the sheet-shaped or film-shaped object 20 to be heated, so that high-frequency energy can be concentrated on the object 20 to be heated, and the object 20 to be heated can be concentrated. It is possible to efficiently raise the temperature and cause a physical / chemical reaction.
  • the electric field strength is relatively high even in the gap between the adjacent tooth portions 31a and 32a, the object to be heated 20 can be continuously heated, and the surface area is large for the volume. The large object to be heated 20 can be effectively heated.
  • the tooth portion 31a in which the abdomen of the standing wave due to the high frequency is formed on one end side in the width direction in the arrangement region (belt-shaped region) of a large number of tooth portions 31a and 32a, and the tooth portion 31a on the other end side.
  • the tooth portions 32a on which the abdomen of the standing wave is formed are alternately arranged.
  • two rows of strong electric field rows in which the strong electric field portions of the tooth portions 31a and 32a, which are the abdomen of the standing wave, are lined up in the first direction are formed. Therefore, a strong electric field acts on the object to be heated 20 from both sides in the width direction, and the degree of heating of the object to be heated 20 in a plan view can be made uniform.
  • the high frequency input point X in the radiation antenna 22 is located outside the passing region of the object to be heated 20.
  • the high frequency input point X does not overlap with the passing region.
  • the electric field is concentrated in the vicinity of the input portion, and the object to be heated 20 may be locally heated.
  • such local heating does not occur, and the degree of heating of the object to be heated 20 in a plan view can be made uniform.
  • each tooth portion 31a extends diagonally with respect to the base line 31b extending in the first direction.
  • each tooth portion 32a extends diagonally with respect to the base line 32b extending in the first direction.
  • Each tooth portion 31a of the first comb tooth electrode 31 and each tooth portion 32a of the second comb tooth electrode 32 are parallel to each other.
  • the lengths of the tooth portions 31a and 32a are designed to be ⁇ / 4 when the wavelength (electrical length) of the transmitted high frequency is ⁇ , as in the first embodiment. Resonance due to high frequency occurs in each tooth portion 31a and 32a, and the tip becomes a high frequency abdomen.
  • the width of the object to be heated 20 is narrower than that of the object 20 to be heated in FIG. 1, the width of the object to be heated 20 is shorter than the lengths of the tooth portions 31a and 32a, and a strong electric field is applied. It becomes narrower than the width of the area.
  • the object to be heated 20 is separated inward from the tips of the tooth portions 31a and 32a, and the electric field at the tips of the tooth portions 31a and 32a is less likely to act on the object to be heated 20. As a result, high-frequency energy that is not absorbed by the object to be heated 20 increases.
  • the heated object 20 is formed by tilting the tooth portions 31a and 32a.
  • the width of the strong electric field region can be adjusted according to the width of. Therefore, high frequency energy can be effectively used for heating the object to be heated 20.
  • each tooth portion 31a and 32a is slanted with respect to the first direction as in this modification, and each tooth as in the first embodiment. Either of the configurations in which the stretching directions of the portions 31a and 32a are orthogonal to the first direction may be adopted.
  • the length L1 of the tooth portion 31a of the first comb tooth electrode 31 is longer than the length L2 of the tooth portion 32a of the second comb tooth electrode 32.
  • the length L1 of the tooth portion 31a of the first comb tooth electrode 31 is designed by using the formula 2
  • the length L2 of the tooth portion 32a of the second comb tooth electrode 32 is designed by using the formula 3 (n). Both 1 and n 2 are natural numbers, and the relationship of n 1 > n 2 is established).
  • each tooth portion 31a of the first comb tooth electrode 31 two locations, a position ⁇ / 4 away from the root and a tip, are the abdomen of the standing wave.
  • each tooth portion 32a of the second comb tooth electrode 32 one point at the tip becomes the abdomen of the standing wave. Therefore, in the radiation antenna 22, three rows of strong electric field rows are formed.
  • the length L2 of the tooth portion 32a of the second comb tooth electrode 32 may be longer than the length L1 of the tooth portion 31a of the first comb tooth electrode 31.
  • the dielectric layer 24 is replaced with air having a low dielectric constant, so that the dielectric loss in the substrate 23 can be reduced and the heating efficiency of the object to be heated 20 is improved.
  • ⁇ Modification 5 of Embodiment 1> As shown in FIG. 8, a coating covering the side (front side) on which the object to be heated 20 is arranged with respect to a large number of tooth portions 31a, 32a of the first comb tooth electrode 31 and the second comb tooth electrode 32. A member 26 is provided.
  • the covering member 26 is made of a plate-shaped dielectric. As a result, it is possible to prevent foreign matter from entering the gap between the first comb tooth electrode 31 and the second comb tooth electrode 32.
  • the housing 28 is provided so as to surround the first comb tooth electrode 31 and the second comb tooth electrode 32.
  • the housing 28 is formed in a box shape with an open bottom, and is provided so as to cover the surface of the substrate 23.
  • the housing 28 is provided so that a gap 28a is formed between the base material 11 and the substrate 23 at a position where the base material 11 and the object to be heated 20 pass.
  • An opening (for example, a horizontally long slit) may be formed in the housing 28 so that the base material 11 and the object to be heated 20 can pass through the opening.
  • ⁇ Modification 7 of Embodiment 1> As shown in FIG. 10, a plurality of support plates 24 constituting the dielectric layer are provided on the ground electrode layer 25 of the substrate 23. Each support plate 24 is formed, for example, in the shape of a disk. Each support plate 24 supports the first comb tooth electrode 31. According to this modification, the dielectric loss in the substrate 23 can be reduced.
  • the conductor connected to the base line 31b has a wide portion 49 whose position overlapping with each support plate 24 swells according to the shape of the support plate 24.
  • the wide portion 49 is circular.
  • the ground electrode from the surface of the wide portion 49 with the support plate 24 and the wide portion 49 overlapped on the surface of the ground electrode layer 25. Screw towards layer 25.
  • the description of the second comb tooth electrode 32 is omitted. Similar to the first comb tooth electrode 31, the second comb tooth electrode 32 may be supported by a plurality of support plates 24, or a wide portion 49 may be provided.
  • the input unit 30 is provided on the back side of the substrate 23. Specifically, the input portion 30 is arranged on the back side of the end portion side portion to which a large number of tooth portions 31a are not connected in the substrate line 31b, and is connected to the end portion side portion thereof. Further, the connection point of the input portion 30 on the board line 31b is supported by the support plate 24.
  • the input unit 30 is not covered with the base material 11, and access to the input unit 30 is easy. Further, since the input unit 30 does not protrude from the front side of the substrate 23, the input unit 30 does not interfere with the base material 11, and the wide base material 11 can be used.
  • ⁇ Modification 9 of Embodiment 1> As shown in FIG. 12, on the surface of the substrate 23, a large number of ground pins 29 are provided along the base line 31b on the outside of the base line 31b of the first comb tooth electrode 31. Each ground pin 29 is in contact with the ground electrode layer 25. According to this modification, leakage of high frequency in the width direction of the array region can be suppressed. A large number of ground pins 29 may be provided on the outside of the base line 32b of the second comb tooth electrode 32.
  • the present modification is the electromagnetic wave heating device 10 constituting the transport type processing system as in the first embodiment.
  • the description will be focused on the points different from those of the first embodiment.
  • the radiation antenna 22 is a closed circuit provided with a first comb tooth electrode 31 and a second comb tooth electrode 32 that meshes with the first comb tooth electrode 31 with a gap. Is.
  • the radiation antenna 22 connects the first comb tooth electrode 31 and the second comb tooth electrode 32 on one end side of the arrangement region in the first direction.
  • a connecting line 57 and a second connecting line 58 connecting the first comb tooth electrode 31 and the second comb tooth electrode 32 on the other end side are provided.
  • the input unit 30 is provided on the back side of the dielectric layer 24 that supports the first connection line 57, and is connected to the first connection line 57.
  • high frequency is directly supplied to both the first comb tooth electrode 31 and the second comb tooth electrode 32 from the input portion X to which the input unit 30 is connected.
  • the input unit 30 may be provided at two locations. In this case, the other input unit 30 is connected to, for example, the second connection line 58.
  • the first comb tooth electrode 31 has a plurality of tooth portions 31a.
  • the second comb tooth electrode 32 also has a plurality of tooth portions 32a.
  • the first comb tooth electrode 31 and the second comb tooth electrode 32 are arranged so that their respective tooth portions 31a and 32a mesh with each other with a gap in the same plane.
  • the first comb tooth electrode 31 and the second comb tooth electrode 32 are different from the first comb tooth electrode 31 and the second comb tooth electrode 32 of the first embodiment in that both the comb tooth electrodes 31 and 32 are high pressure side electrodes. However, it can have the same shape and dimensions as the first comb tooth electrode 31 and the second comb tooth electrode 32 of the first embodiment or the first modification.
  • Each tooth portion 31a of the first comb tooth electrode 31 and each tooth portion 32a of the second comb tooth electrode 32 correspond to the conductor line according to the present invention.
  • a large number of tooth portions 31a and 32a are arranged at equal intervals in the first direction.
  • the distance G between the tooth portions 31a and 32a adjacent to each other in the first direction is 5 times or less the line width of the tooth portions 31a and 32a, and a relatively strong electric field coupling occurs between the adjacent conductor lines 31a and 32a. Therefore, a strong electric field region is formed along a large number of tooth portions 31a and 32a.
  • the distance G between the tooth portions 31a and 32a adjacent to each other in the first direction may be 3 times or less or 1 time or less the line width of the tooth portions 31a and 32a. Further, for this modification, the configuration of the above-mentioned modifications 2 to 9 may be adopted.
  • the present modification is the electromagnetic wave heating device 10 constituting the transport type processing system as in the first embodiment.
  • the description will be focused on the points different from those of the first embodiment.
  • the radiation antenna 22 is configured by a meander circuit (munder wiring pattern) as shown in FIG. Specifically, the radiation antenna 22 meanders a plurality of times in a predetermined band-shaped region by alternately providing a straight line 44 extending in the second direction and a folded portion 47 continuous at the end of the straight line 44.
  • the circuit is configured.
  • the radiating antenna 22 has a large number of straight lines 44 formed to have the same length as each other. Each straight line 44 corresponds to a conductor line according to the present invention.
  • a large number of straight lines 44 are arranged at equal intervals in the first direction.
  • the length of the straight line 44 is designed to be ⁇ ⁇ (2n-1) / 4 (n is a natural number).
  • the number of straight lines 44 may be 3 or more.
  • the base line 48 extending from the input unit 30 is connected to the straight line 44 at the end in the first direction among the large number of straight lines 44.
  • the input unit 30 may be provided at two locations.
  • each straight line 44 during the high frequency input period.
  • the distance G of the straight lines 44 adjacent to each other in the first direction is 5 times or less the line width of the straight lines 44, and a relatively strong electric field coupling occurs between the adjacent straight lines 44. Therefore, a strong electric field region is formed along a large number of straight lines 44.
  • the distance G between the straight lines 44 adjacent to each other in the first direction may be 3 times or less or 1 times or less the line width of the straight line 44.
  • ⁇ Modification 12 of Embodiment 1> The present modification is the electromagnetic wave heating device 10 constituting the transport type processing system as in the first embodiment.
  • the description will be focused on the points different from those of the first embodiment.
  • the radiation antenna 22 includes a large number of spiral lines 63 formed to have the same length as each other, as shown in FIG.
  • Each spiral line 63 corresponds to a conductor line according to the present invention.
  • a large number of spiral lines 63 are arranged at equal intervals in the first direction.
  • the length of the spiral line 63 is designed to be ⁇ ⁇ (2n-1) / 4 (n is a natural number).
  • the number of spiral lines 63 may be 3 or more.
  • the conductor portion including the spiral line 63 is hatched.
  • the radiation antenna 22 includes a large number of spiral lines 63, as well as a first base line 61 and a second base line 62 arranged in parallel at intervals from each other.
  • the spiral line 63 whose root is connected to the first base line 61 and the spiral line 63 whose root is connected to the second base line 62 are alternately arranged.
  • the board 23 is provided with a first input unit 30a at one end in the first direction and a second input unit 30b at the other end.
  • the high frequency output from the oscillator 21 is input to the input units 30a and 30b.
  • the input units 30a and 30b are connected to the first base line 61 and the second base line 62, respectively.
  • the distance G between the spiral lines 63 adjacent to each other in the first direction is 5 times or less the line width of each spiral line 63, and a relatively strong electric field coupling occurs between the adjacent spiral lines 63. Therefore, a strong electric field region is formed along a large number of spiral lines 63.
  • the distance G between the spiral lines 63 adjacent to each other in the first direction may be 3 times or less or 1 times or less the line width of the spiral lines 63.
  • the present modification is the electromagnetic wave heating device 10 constituting the transport type processing system as in the first embodiment.
  • the description will be focused on the points different from those of the first embodiment.
  • the radiation antenna 22 includes one base line 85 and a large number of branch lines 86 whose roots are connected to the base line 85, as shown in FIG.
  • Each branch type line 86 is branched into two hands in the middle, and the tip side from the branch portion is formed in a spiral shape.
  • Each branch line 86 has the same shape and dimensions as each other.
  • Each branch type line 86 corresponds to the conductor line according to the present invention.
  • a large number of branched lines 86 are arranged at equal intervals in the first direction on one side of the base line 85 in the second direction, and a plurality of branched lines 86 are arranged on the other side of the base line 85 at equal intervals. They are arranged at equal intervals in the direction.
  • the branch type line 86 is designed so that the length from the root to each tip after branching is ⁇ ⁇ (2n-1) / 4 (n is a natural number).
  • the number of branch type lines 86 on one side of the base line 85 may be 3 or more. Further, in FIG. 16, the conductor portion including the base line 85 and the branch type line 86 is hatched.
  • input units 30a and 30b are connected to both sides of the base line 85 in the first direction, respectively.
  • the high frequency output from the oscillator 21 is input to the input units 30a and 30b.
  • the distance G of the branched lines 86 adjacent to each other in the first direction is 5 times or less the line width of the branched lines 86, and a relatively strong electric field coupling occurs between the adjacent branched lines 86. Therefore, a strong electric field region is formed along a large number of branched lines 86.
  • the distance G of the branched lines 86 adjacent to each other in the first direction may be 3 times or less or 1 times or less the line width of the branched lines 86.
  • ⁇ Modification 14 of Embodiment 1> The present modification is the electromagnetic wave heating device 10 constituting the transport type processing system as in the first embodiment.
  • the description will be focused on the points different from those of the first embodiment.
  • the electromagnetic wave heating device 10 includes a plurality of radiant antennas 22 to which an input unit 30 is connected, as shown in FIG.
  • the plurality of radiating antennas 22 are arranged at intervals in the first direction.
  • each radiation antenna 22 has three or more straight lines 38 arranged with a gap in the second direction.
  • the length of the straight line 38 is designed to be ⁇ ⁇ (2n-1) / 4 (n is a natural number).
  • the number of straight lines 38 in each radiation antenna 22 may be 3 or more.
  • the distance G of the straight lines 38 adjacent to each other in the second direction is set to 5 times or less the line width of the straight line 38, but may be 3 times or less or 1 time or less.
  • the radiation antenna 22 is the above-mentioned meander circuit, but other circuits may be adopted.
  • the high frequency input point (feeding point) X from the oscillator 21 is located on the downstream side in the transport direction of the object to be heated 20.
  • the high frequency input point X is a connection point of the input unit 30 in the radiation antenna 22 when the input unit 30 is directly connected to the radiation antenna 22, and the input unit 30 is connected to the radiation antenna 22 via a conductor line. If so, it is the connection point of the conductor line in the radiation antenna 22.
  • the object to be heated 20 contains water
  • the amount of water contained in the object 20 to be heated increases toward the upstream side in the transport direction. Therefore, when the high frequency input point X is on the upstream side in the transport direction (in the case of FIG. 1 or the like), there is a possibility that the high frequency absorbed by the object to be heated 20 on the upstream side of the radiation antenna 22 becomes too large. In this case, the high frequency supplied to the downstream side of the radiation antenna 22 is reduced, and uniform heating in the transport direction is difficult.
  • the high frequency input point X is on the downstream side where the water content of the object to be heated 20 is reduced. Therefore, it is possible to prevent the high frequency absorbed by the object to be heated 20 from becoming too large on the downstream side of the radiating antenna 22. According to this modification, uniform heating in the transport direction can be realized.
  • the cross-sectional shape of the conductor line 36 according to the present invention is substantially rectangular, as shown in FIG. 19 (a).
  • the conductor line 36 may be provided with a curved surface portion 37.
  • the conductor line 36 shown in FIG. 19A is the tooth portions 31a and 32a of the first embodiment, the tooth portions 31a and 32a of the modified example 10, the straight line 44 of the modified example 11, and the spiral line of the modified example 12. 63, it corresponds to the branch type line 86 of the modified example 13, and the straight line 38 of the modified example 14. This point is the same in FIGS.
  • the cross-sectional shape of the conductor line 36 is substantially rectangular, if the high frequency power is increased, a discharge may occur between the conductor lines 36 and the base material 11 may be damaged.
  • the curved surface portion 37 is provided on the conductor line 36, it is possible to suppress the generation of electric discharge between the conductor lines 36.
  • the curved surface portion 37 is provided on the back side (board 23 side) of the conductor line 36 in FIG. 19A, the curved surface portion 37 may be provided on the front side of the conductor line 36.
  • the cross-sectional shape of the conductor line 36 may be a cross-sectional shape having no corners (for example, a circular shape or an elliptical shape).
  • the ground electrode layer 25 is exposed on the back side of the arrangement region of a large number of tooth portions 31a and 32a, but as shown in FIG. 19B, the ground electrode layer is exposed.
  • a dielectric plate 39 may be provided on the front side of the 25. As a result, a part of the high frequency energy is absorbed by the dielectric plate 39, so that it is possible to suppress the generation of electric discharge between the conductor lines 36.
  • each conductor line 36 is exposed, but as shown in FIG. 19 (c), the conductor line 36 may be covered with a dielectric 43 such as resin or ceramic. In this case as well, it is possible to suppress the generation of electric discharge between the conductor lines 36.
  • the heated object 20 is heated only on the front side of the radiating antenna 22, but the heated object 20 is also heated on the back side of the radiating antenna 22 without providing the substrate 23. May be good.
  • the electromagnetic wave heating device 10 is not intended to heat the liquid or solid object to be heated 20 on the base material 11, but is simply a device intended to heat the base material 11 itself. May be good. Further, the electromagnetic wave heating device 10 may heat the object to be heated 20 without transporting the object to be heated 20.
  • This embodiment is an electromagnetic wave heating device 10 that heats an object to be heated 20 by using an electromagnetic wave such as a high frequency wave.
  • the electromagnetic wave heating device 10 is a dielectric heating type heating device.
  • the electromagnetic wave used in the electromagnetic wave heating device 10 is a high frequency of 50 MHz or more (for example, a high frequency of 800 MHz or more (microwave or the like)).
  • the object to be heated 20 heated by the electromagnetic wave heating device 10 contains a substance (liquid, solid, etc.) that absorbs high frequencies.
  • the object to be heated 20 is a thin object having a thin thickness, and exhibits a sheet shape or a film shape.
  • the object to be heated 20 is, for example, an adhesive.
  • the object to be heated 20 is applied or arranged on the surface of a sheet-like long base material (transported object) 11.
  • the object to be heated 20 is conveyed together with the base material 11 in a predetermined direction (direction of the arrow shown in FIG. 20) and passes through a strong electric field region due to high frequency. At that time, the object to be heated 20 is heated by absorbing high frequencies.
  • the object to be heated 20 does not have to be in the form of a sheet or a film, and may have a certain thickness. Further, the object to be heated 20 (for example, an adhesive) may be applied or placed on a sheet body (for example, an envelope) placed on the surface of the base material 11, and in this case, the object to be heated 20 may be the sheet body and the base. It is conveyed together with the material 11.
  • an adhesive for example, an adhesive
  • a sheet body for example, an envelope placed on the surface of the base material 11
  • the object to be heated 20 may be the sheet body and the base. It is conveyed together with the material 11.
  • the electromagnetic wave heating device 10 is an upstream device (for example, an adhesive coating device; not shown) for applying or arranging the object to be heated 20 on the surface of the base material 11, and at least the electromagnetic wave heating device 10 from the inlet of the upstream device.
  • a transport type processing system is configured.
  • the transport mechanism 12 transports the base material 11 and the object to be heated 20 using a plurality of pairs of rollers 13 (see FIG. 23).
  • the transport direction of the base material 11 is referred to as a “first direction”, and the direction orthogonal to the first direction is referred to as a “second direction” (see FIG. 20 and the like).
  • the cover 50 side is referred to as "front side” and the substrate 23 side is referred to as "back side” (see FIG. 22 and the like).
  • Japanese Unexamined Patent Publication No. 57-118281 describes a fixing device provided with a casing surrounding the dielectric heating device and a resonance chamber at the entrance and discharge of the recording material of the casing.
  • a part of the electromagnetic wave emitted from the dielectric heating device is irradiated to other than the recording material, and is repeatedly reflected and scattered in the fixing device to reach the discharge port and the entrance / exit. Leakage of radio waves can be prevented by providing a resonance chamber at the outlet.
  • the electromagnetic wave heating device by providing an introduction part and a lead-out part for the shielding part that shields the internal space in which the radiation antenna is arranged from the outside, the conveyed object containing the heated object (for example, an adhesive) can be obtained. It becomes possible to continuously pass through the internal space of the shielding portion.
  • the continuous treatment makes it possible to heat a large number of objects to be heated in a short time.
  • the apparatus described in Japanese Patent Application Laid-Open No. 57-118281 allows the entire transported object from the introduction section to the out-licensing section to pass through the internal space of the shielding section. Therefore, it is necessary to secure the size of the shielding portion even when the object to be heated is smaller than the conveyed object.
  • This embodiment was made in view of such circumstances, and an object of the present invention is to make the shielding portion compact for an electromagnetic wave heating device that heats an object to be heated by using electromagnetic waves.
  • the electromagnetic wave heating device 10 is provided with an oscillator 21 that oscillates a high frequency, a radiant antenna 22 that radiates a high frequency for heating the object to be heated 20, and a radiant antenna 22 on one side. It is provided with a substrate 23.
  • the radiation antenna 22 is a conductor that radiates a high frequency output from the oscillator 21, and has a resonance structure in which resonance occurs in the conductor due to a high frequency in the frequency band transmitted from the oscillator 21.
  • the electromagnetic wave heating device 10 is configured such that a strong electric field region (high frequency heating region) for heating the object to be heated 20 is formed along the radiant antenna 22 by the high frequency supplied from the oscillator 21 to the radiant antenna 22. Has been done.
  • the electromagnetic wave heating device 10 further includes a cover 50 that covers the radiation antenna 22 side of the substrate 23.
  • the substrate 23 and the cover 50 are made of metal.
  • the substrate 23 corresponds to a grounded ground electrode.
  • the substrate 23 and the cover 50 correspond to a shielding portion 60 that shields the internal space 40 (see FIG. 22) in which the radiation antenna 22 is arranged from the outside.
  • the cover 50 corresponds to a first section that partitions the internal space 40 of the shield 60 from one side (upper side).
  • the substrate 23 corresponds to a second compartment that partitions the internal space 40 from the side (lower side) opposite to the first compartment.
  • a continuous gap 70 continuous in the circumferential direction is formed between the substrate 23 and the cover 50 at the outer peripheral portion of the shielding portion 60 in a plan view.
  • the radiation antenna 22 is composed of an interdigital circuit.
  • the radiation antenna 22 includes a first comb tooth electrode 31 and a second comb tooth electrode 32 that meshes with the first comb tooth electrode 31 with a gap.
  • the first comb tooth electrode 31 is formed in a comb shape by a plurality of tooth portions 31a.
  • the second comb tooth electrode 32 is formed in a comb shape by a plurality of tooth portions 32a.
  • the first comb tooth electrode 31 includes a straight base line 31b and a plurality of tooth portions 31a whose roots are connected to the base line 31b.
  • the plurality of tooth portions 31a are provided in parallel with each other.
  • Each tooth portion 31a extends diagonally from the base line 31b.
  • the plurality of tooth portions 31a are arranged at equal intervals in the first direction.
  • the second comb tooth electrode 32 includes a straight base line 32b and a plurality of tooth portions 32a whose roots are connected to the base line 32b.
  • the base line 32b is parallel to the base line 31b of the first comb tooth electrode 31.
  • the plurality of tooth portions 32a are provided in parallel with each other.
  • the tooth portion 32a of the second comb tooth electrode 32 is parallel to the tooth portion 31a of the first comb tooth electrode 31.
  • Each tooth portion 32a extends diagonally from the base line 32b.
  • the plurality of tooth portions 32a are arranged at equal intervals in the first direction.
  • a plurality of tooth portions 31a and 32a are arranged in the same plane with a gap in a predetermined direction (first direction).
  • the region in which the plurality of tooth portions 31a and 32a are arranged (hereinafter, referred to as “arrangement region”) is a band-shaped region in a plan view.
  • the total number of tooth portions (conductor lines) 31a and 32a arranged in the first direction may be 3 or more, and may be 10 or more as in the present embodiment.
  • the radiation antenna 22 has a first connection that connects the first comb tooth electrode 31 and the second comb tooth electrode 32 on one end side of the arrangement region in the first direction.
  • a line 57 and a second connection line 58 connecting the first comb tooth electrode 31 and the second comb tooth electrode 32 on the other end side of the arrangement region are provided.
  • the radiation antenna 22 is a closed circuit.
  • An input unit 30 to which a high frequency from the oscillator 21 is input is connected to the first connection line 57.
  • the input unit 30 is, for example, a coaxial connector, and is connected to the oscillator 21 via a coaxial line.
  • the input unit 30 is provided on the back side of the substrate 23.
  • a strong electric field region for heating the object to be heated 20 is formed in the facing region (the region above the arrangement region) of the radiation antenna 22.
  • the strong electric field region is formed in the vicinity of the front side of the radiation antenna 22 in the facing region, and is a parallel and thin region.
  • the radiation antenna 22 is configured so that high-frequency resonance occurs in the high-frequency frequency band oscillated by the oscillator 21 during the above-mentioned input period.
  • resonance due to high frequency occurs simultaneously at the tooth portions 31a and 32a.
  • the length L1 of the tooth portion 31a and the length L2 of the tooth portion 32a are designed using the equations 4 and 5 when the wavelength (electrical length) of the transmitted high frequency is ⁇ (n 1 , n 2 is a natural number).
  • the total length of the adjacent tooth portions 31a and the tooth portions 32a is represented by 2 m ⁇ ⁇ / 4 (m is a natural number).
  • the lengths L1 and L2 of the tooth portions 31a and 32a are both ⁇ / 4.
  • the radiation antenna 22 is configured so that a relatively strong electric field coupling occurs between the tooth portions 31a and 32a adjacent to each other in the first direction during the above-mentioned input period.
  • a plurality of tooth portions 31a and 32a are arranged at equal intervals in the first direction, and the distance (gap size) between the tooth portions 31a and 32a adjacent to each other in the first direction is the tooth portion 31a.
  • 32a is less than 5 times the line width. This distance may be 3 times or less of the line width of the tooth portions 31a and 32a, or may be 1 time or less.
  • the tooth portions 31a of the first comb tooth electrode 31 and the tooth portions 32a of the second comb tooth electrode 32 all have the same line width, but the line widths may be different from each other.
  • the substrate 23 is configured by using, for example, a metal plate material.
  • the planar shape of the substrate 23 is substantially rectangular.
  • the longitudinal direction of the substrate 23 coincides with the first direction.
  • a recess 17 having a substantially rectangular planar shape is formed on the front side of the substrate 23.
  • the longitudinal direction of the recess 17 also coincides with the first direction.
  • a radiation antenna 22 is housed in the recess 17.
  • the radiation antenna 22 is supported in a floating state by a dielectric (not shown) provided on the bottom surface.
  • the radiation antenna 22 is electrically isolated from the metal portion of the substrate 23.
  • the region of the surface of the substrate 23 other than the recess 17 is a flat region 27 surrounding the radiation antenna 22.
  • the height position of the flat region 27 is, for example, the same as or slightly above or slightly below the upper surface of the radiation antenna 22.
  • the substrate 23 is composed of a frame-shaped front side metal plate 23a and a rectangular back side metal plate 23b stacked on the back surface of the front side metal plate 23a, but the substrate 23 has one side. It may be composed of one metal plate having a recess 17 formed therein. Further, the surface of the flat region 27 and / or the upper surface of the radiating antenna 22 may be coated with a coating that absorbs high frequencies (for example, a dielectric coating) in order to suppress the generation of electric discharge due to a strong electric field.
  • a coating that absorbs high frequencies for example, a dielectric coating
  • the cover 50 is a metal housing. As shown in FIGS. 21 and 22, the cover 50 includes a main body 51 that covers the radiation antenna 22 from the front side, an outer peripheral portion 52 integrated into the main body 51 so as to surround the entire circumference of the main body 51, and a main body. It is provided with a duct portion 53 connected to the upper surface of the portion 51. At the outer end of the duct portion 53, a blower 35 that supplies air to the object to be heated 20 that is conveyed in the internal space 40 is attached.
  • the main body 51 has a substantially rectangular shape in a plan view, and has, for example, a flat dimension similar to that of the recess 17.
  • the main body 51 is located directly above the recess 17.
  • the main body 51 is formed in a box shape with the lower side open.
  • the internal space of the main body 51 and the internal space of the duct 53 are connected to each other, and are a blower passage 45 through which air flows from the blower 35 to the object to be heated 20.
  • the outer peripheral portion 52 is a portion outside the main body portion 51 and exhibits a substantially rectangular frame shape in a plan view.
  • the outer peripheral portion 52 faces the flat region 27 of the substrate 23 via the continuous gap 70 in the circumferential direction.
  • the outer peripheral portion 52 is provided with a shield structure 55 that prevents leakage of high frequencies through the continuous gap 70 over the entire circumference.
  • the shield structure 55 is composed of, for example, a choke structure 55.
  • the structure and shape of the choke structure are not particularly limited, but a short-circuit type ⁇ / 4 resonance choke can be adopted.
  • the choke structure 55 is composed of a spiral (or ring-shaped) cavity in a cross-sectional view, and is open at a position closer to the radiation antenna 22.
  • the dimensions of the choke structure 55 are, for example, that the peripheral length in cross-sectional view is " ⁇ / 2 ⁇ a (a is a natural number)" and the depth is " ⁇ / 4 ⁇ b (b is a natural number)".
  • is the high frequency electrical length in the choke structure 55.
  • the duct portion 53 is arranged on the upstream side (introduction portion 71 side) in the transport direction (first direction) of the base material 11.
  • the duct portion 53 is inclined diagonally downward toward the downstream side in the first direction.
  • the blowing direction of the blower 35 faces the downstream side in the first direction.
  • a plurality of wind direction adjusting plates 68 are provided inside the main body 51.
  • Each wind direction adjusting plate 68 is, for example, a louver, and directs the wind direction to the downstream side in the first direction.
  • the air blown from the blower 35 flows toward the downstream side in the first direction, is mainly discharged to the outside from the lead-out portion 72 of the continuous gap 70, and a part of the air is discharged to the outside from the side gaps 73 and 74. Is discharged from.
  • the wind direction adjusting plate 68 may be omitted.
  • a metal shield member 46 is formed with a through hole 46a that shields the blower 35 from the high frequency radiated from the radiation antenna 22 and allows air to pass from the blower 35 toward the object to be heated 20. It is provided.
  • the shield member 46 is formed in a plate shape.
  • the shield member 46 is attached to the main body 51 so as to partition the air passage 45 into the upstream side and the downstream side (so as to partition the upper and lower sides).
  • a plurality of through holes 46a are formed in the shield member 46. Each through hole 46a is formed in such a size that the high frequency radiated from the radiating antenna 22 cannot pass through.
  • the shielding portion 60 is a housing for accommodating the radiation antenna 22 in the internal space 40, and is composed of a substrate 23 and a cover 50.
  • the shielding portion 60 is configured so that the internal space 40 becomes a shielding space while allowing the base material 11 to pass by providing the introduction portion 71, the lead-out portion 72, and the like.
  • the base material 11 is conveyed from the introduction portion 71 toward the lead-out portion 72 so that the object to be heated 20 passes through the facing region of the radiation antenna 22.
  • the shielding portion 60 is formed with a continuous continuous gap 70 extending over the entire circumference of the side portion of the shielding portion 60 as a gap for communicating the internal space 40 to the outside.
  • the cover 50 is supported by a support member (not shown) so as to float with respect to the substrate 23.
  • the continuous gap 70 is formed by the upper surface of the flat region 27 of the substrate 23 and the lower surface of the outer peripheral portion 52 of the cover 50 in a cross-sectional view.
  • the gap dimension (distance between the flat region 27 and the outer peripheral portion 52) of the continuous gap 70 in the cross-sectional view is constant over, for example, the entire circumference of the shielding portion 60.
  • the lower limit of the gap size of the continuous gap 70 may be a size that allows the base material (transported object) 11 to pass through.
  • the upper limit of the gap dimension of the continuous gap 70 may be, for example, 30 mm or less, preferably 10 mm or less, and more preferably 5 mm or less, as long as it can substantially prevent high frequency leakage to the outside.
  • the continuous gap 70 is a pair extending in the transport direction of the base material 11 on both sides of the facing region, the introduction part 71 into which the base material 11 including the object to be heated 20 is introduced, the out-out part 72 from which the base material 11 is derived, and the continuous gap 70. It is composed of the side gaps 73 and 74 of the above.
  • the continuous gap 70 is formed on four sides of the upstream side in the first direction, the downstream side in the first direction, and both sides in the second direction when viewed from the facing region of the radiation antenna 22 in a plan view.
  • the "side" of the facing region means a direction orthogonal to the transport direction.
  • each of the introduction portion 71 and the lead-out portion 72 is composed of a gap formed between the short side portion of the flat region 27 of the substrate 23 and the outer peripheral portion 52 facing the short side portion. ..
  • Each of the lateral gaps 73 and 74 is composed of a gap formed between a long side portion of the flat region 27 of the substrate 23 and an outer peripheral portion 52 facing the long side portion. The lateral gaps 73 and 74 are connected to the introduction section 71 and the lead section 72, respectively.
  • the high frequency output from the oscillator 21 is supplied to each tooth portion 31a of the first comb tooth electrode 31 and each tooth portion 32a of the second comb tooth electrode 32. Resonance occurs due to high frequency in the tooth portions 31a and 32a of the comb tooth electrodes 31 and 32, and the tip of each tooth portion 31a and 32a becomes the abdomen of the standing wave due to the high frequency.
  • the abdomen of the standing wave in the plurality of tooth portions 31a of the first comb tooth electrode 31 is lined up in a row in the first direction, and the abdomen of the standing wave in the plurality of tooth portions 32a of the second comb tooth electrode 32. Line up in a row in the first direction.
  • a relatively strong electric field coupling occurs between the tooth portions 31a and 32a adjacent to each other in the first direction.
  • a strong electric field region is formed so as to include the transport path of the base material 11 and the object to be heated 20.
  • the dielectric component, the conductive component, and the like are heated by high frequencies.
  • the object to be heated 20 undergoes a temperature rise, and desired physical / chemical changes (polymerization, annealing, drying, curing, etc.) occur.
  • a plurality of objects to be heated 20 are arranged at intervals in the transport direction of the base material 11.
  • the plurality of objects to be heated 20 are conveyed at intervals so as to sequentially pass through the strong electric field region.
  • a continuous gap 70 in which the side gaps 73 and 74 are connected to each of the introduction portion 71 and the lead-out portion 72 is formed in the shielding portion 60. Therefore, not only the base material 11 having a narrow width shown in FIG. 20 but also the base material 11 having a size protruding from the lateral gaps 73 and 74 as shown in FIG. 24A, the introduction portion 71.
  • the base material 11 can be conveyed from the lead unit 72 toward the lead-out unit 72. At that time, in the internal space 40, the heated object 20 can be heat-treated in the facing region (strong electric field region) of the radiating antenna 22.
  • the shielding portion 60 it is not necessary to increase the size of the shielding portion 60 so that the entire base material 11 can pass through the internal space 40, and the shielding portion 60 and the electromagnetic wave heating device 10 can be made compact.
  • This embodiment is useful when the object to be heated 20 is provided only on a part of the large-sized conveyed object 11.
  • FIG. 24A the description of the upper portion of the cover 50 above the shield member 46 is omitted. This point is the same in FIGS. 24 (b), 25 (a) to (c), 26 (a) to (c), 27, and 35. Further, the white arrow indicates the wind direction of the air supplied from the blower 35 to the object to be heated 20.
  • the vertical direction of the envelope is aligned with the width direction of the base material 11, and the adhesive application areas of the large number of envelopes are lined up in a row.
  • a large number of envelopes are conveyed by the base material 11.
  • the shielding portion 60 can be sized to fit the adhesive application area.
  • high frequency resonance occurs at each tooth portion 31a, 32a of the radiation antenna 22, and the electric field strength in the strong electric field region becomes relatively high.
  • the stronger the electric field the easier it is for the high frequency to be absorbed by the object to be heated 20, and the object to be heated 20 can be heated efficiently. Therefore, the power input to the oscillator 21 can be suppressed as compared with the case where resonance does not occur.
  • the oscillator 21 can be operated with lower power than when a magnetron is used. As a result, the radiation intensity of high frequency can be suppressed to a low level.
  • the choke structure 55 is provided so as to face the continuous gap 70.
  • a gap cannot be provided around the door.
  • the high frequency resonance structure (radiation antenna 22) and the semiconductor oscillator by using the high frequency resonance structure (radiation antenna 22) and the semiconductor oscillator, the high frequency radiation intensity can be suppressed low, and the high frequency toward the continuous gap 70 becomes weak. Therefore, even if a continuous gap 70 through which the base material (thin material) 11 is provided is provided, high frequency leakage can be sufficiently suppressed.
  • the excess high frequency is reduced as the radiation antenna 22 is miniaturized according to the dimensions of the object to be heated 20 and the high frequency is matched (absorbed) to the object 20 to be heated.
  • the dimensional accuracy required for the continuous gap 70 through which the base material 11 (thin material) is passed is relaxed.
  • the blower 35 when the object to be heated 20 is dried by heating, the organic solvent and moisture evaporated from the object to be heated 20 can be discharged to the outside of the shielding portion 60.
  • the evaporative gas discharge point is the continuous gap 70, the flow velocity becomes relatively high, and the evaporative gas can be quickly moved away from the object to be heated 20.
  • the internal space 40 is always ventilated with dry air having no or little evaporative gas component, the mass transfer (evaporation) rate of the evaporative gas component to the dry air in the object to be heated 20 is maintained.
  • the electromagnetic wave heating device 10 when the electromagnetic wave heating device 10 is used as a drying device, the object to be heated 20 can be efficiently dried.
  • the blowing direction of the blower 35 faces the downstream side in the first direction, the air in the internal space 40 is discharged to the outside from the lead-out portion 72 or the side gaps 73 and 74.
  • the air in the internal space 40 is hardly discharged from the introduction portion 71. Therefore, for example, when the steam gas does not like to hit the upstream device, the exhaust gas from the shielding unit 60 is suppressed from reaching the upstream device.
  • the desired exhaust direction may be controlled by the shape of the through hole 46a of the shield member 46 or the wind direction adjusting plate 68 according to the surrounding environment.
  • a shield member 46 that allows air to pass through and shields high frequencies is provided in the air passage 45 in the cover 50.
  • the high frequency hardly reaches the blower 35, so that the failure of the blower 35 due to the high frequency can be avoided. Further, high frequency leakage through the air inlet of the air passage 45 can be suppressed.
  • the continuous gap 70 is composed of a three-way gap consisting of an introduction portion 71 on the upstream side in the first direction, a lead-out portion 72 on the downstream side in the transport direction, and a lateral gap 73 on one side in the second direction. Has been done.
  • the continuous gap 70 is formed only on three sides when viewed from the facing region.
  • a support member 80 for supporting the cover 50 by the substrate 23 is provided on the other side in the second direction when viewed from the facing region.
  • the choke structure 55 is a linear choke groove in a cross-sectional view, as shown in FIG. 25 (b).
  • the choke structure 55 opens at a position closer to the radiation antenna 22 in the cross-sectional view, but may be opened at a position closer to the outer periphery of the substrate 23.
  • the choke structure 56 is provided not on the cover 50 but on the substrate 23 side.
  • the shape of the choke structure 56 is linear, but other shapes such as spirals can be used.
  • the thickness of the substrate 23 is larger than that of the second embodiment described above.
  • the cover 50 is formed in a plate shape.
  • the cover 50 and the substrate 23 are provided with choke structures 55 and 56, respectively.
  • the opening of the choke structure 55 of the cover 50 is formed at the same position as the opening of the choke structure 56 of the substrate 23 in a plan view, but is separated from the opening of the choke structure 56 of the substrate 23. It may be formed at a position.
  • the radiation antenna 22 is provided and supported on the cover 50 side.
  • the radiation antenna 22 is electrically insulated from the cover 50 and is suspended by a support member (not shown).
  • the radiation antenna 22 is arranged at the outlet of the air passage 45.
  • the substrate 23 is not formed with a recess 17 for accommodating the radiation antenna 22.
  • a high frequency is applied to the object to be heated 20 from above. Further, since air passes between the radiant antennas 22 that generate heat by energization and receives heat, the drying efficiency can be improved in the drying step.
  • a plurality of slits 59 are provided in the choke structure 55 of the cover 50.
  • the distance between the plurality of adjacent slits 59 can be, for example, about 1/20 of the electric length ⁇ .
  • the choke structure 56 of the substrate 23 may be provided with a plurality of slits similar to the cover 50 (not shown). By providing the slit 59, high frequency leakage can be effectively suppressed when a plurality of modes occur in the internal space.
  • the description of the through hole 46a of the shield member 46 is omitted.
  • the electromagnetic wave heating device 10 includes a waste heat utilization unit 90 that heats the air supplied to the object to be heated 20 by the blower 35 by utilizing the waste heat of the oscillator 21.
  • the waste heat utilization unit 90 includes a heat dissipation unit 111 that dissipates heat generated by the oscillator 21 during operation, a case 112 that houses the heat dissipation unit 111 and has an introduction port for introducing air from the outside, and air inside the case 112. Is provided with a connection flow path 113 for supplying the duct portion 53.
  • the heat radiating unit 111 is, for example, a plurality of heat radiating fins.
  • a blower (not shown) is provided in the connection flow path 113.
  • the connection flow path 113 may be connected to the suction port of the blower 35 so that air can be sent from the case 112 to the duct portion 53 side by using negative pressure.
  • hot air drying can be performed using waste heat. Therefore, the object to be heated 20 can be dried with less energy.
  • ⁇ Modification 10 of Embodiment 2> a variation of the choke structure 55 of the modification 3 will be described.
  • the choke structure 55 can be continuously provided over the circumferential direction of the cover 50 in a plan view.
  • the width of the choke structure 55 is constant over the entire circumference.
  • the depth (height dimension) of the choke structure 55 is constant over the entire circumference.
  • the widths of the choke structure 55 are partially different in the circumferential direction, and the choke structure 55 in a plan view has a narrow portion 55a and a wide portion wider than the narrow portion 55a. It is composed of 55b.
  • wide portions 55b are provided on the long side portions of the choke structure 55 in a plan view, and face each other with the internal space 40 interposed therebetween.
  • the choke structure 55 in a plan view may be composed of a plurality of choke portions 55c and 55d interrupted in the middle.
  • the choke structure 55 is composed of an I-shaped first choke portion 55c in a plan view and a U-shaped second choke portion 55d in a plan view.
  • One end of the second choke portion 55d is located near one end of the first choke portion 55c, and the other end of the second choke portion 55d is located near the other end of the first choke portion 55c.
  • the length of each choke portion 55c, 55d is designed to be ⁇ ⁇ n / 2 (n is a natural number).
  • is the high frequency electrical length of the choke portions 55c and 55d.
  • the choke structure 55 is a straight groove in the cross-sectional view, but the width may be partially different in the plan view or may be interrupted in the middle in the plan view due to another cross-sectional shape. good.
  • Embodiment 2 ⁇ Other Modifications of Embodiment 2>
  • the upper section is the cover 50 and the lower section is the substrate 23, but the upper section is the substrate 23 and the lower part is the lower.
  • the side compartment may be the cover 50. That is, the electromagnetic wave heating device 10 according to the second embodiment may be turned upside down.
  • the plurality of tooth portions 31a and 32a are provided diagonally with respect to the base line 31b and 32b in each of the comb tooth electrodes 31 and 32, but the plurality of tooth portions 31a and 32a are provided on the base line. It may be provided perpendicular to 31b and 32b.
  • the input portion 30 is electrically connected to the first comb tooth electrode 31 and the second comb tooth electrode 32 in the radiation antenna 22, but the first comb tooth electrode 31 and the second comb tooth electrode 31 and the second comb tooth electrode 32 are electrically connected to each other.
  • the input unit 30 may be electrically connected only to the first comb tooth electrode 31 of the electrodes 32.
  • the first comb tooth electrode 31 becomes an electrode on the high voltage side, and the second comb tooth electrode 32 is grounded.
  • high-frequency resonance occurs in each of the tooth portions 31a and 32a, and a thin strong electric field region is formed in the facing region of the radiation antenna 22.
  • the electromagnetic wave heating device 10 is not intended to heat the liquid or solid object to be heated 20 on the base material 11, but is simply a device intended to heat the base material 11 itself. May be good. Further, the electromagnetic wave heating device 10 may heat the object to be heated 20 without transporting the object to be heated 20.
  • This embodiment is an electromagnetic wave heating device 10 that heats an object to be heated 20 by using an electromagnetic wave such as a high frequency wave.
  • the electromagnetic wave heating device 10 is a dielectric heating type heating device.
  • the electromagnetic wave used in the electromagnetic wave heating device 10 is a high frequency of 50 MHz or more (for example, a high frequency of 800 MHz or more (microwave or the like)).
  • the electromagnetic wave heating device 10 includes a radiation antenna 22 that emits high frequency waves (electromagnetic waves) for heating the object to be heated 20 and the above-mentioned electromagnetic wave heating device 10.
  • the shielding portion 60 having the substrate 23 and the cover 50 of the above, and the blower 35 attached to the shielding portion 60 are provided.
  • the shielding unit 60 shields the internal space in which the radiation antenna 22 is arranged from the outside.
  • one of the above-mentioned lateral gaps 73 and 74 serves as an introduction portion of the base material (conveyed object) 11 containing the object to be heated 20, and the other serves as a lead-out portion.
  • the base material 11 is moved from the side gap (introduction portion) 73 to the side gap (leading portion) 74 by the transport mechanism 12 so that the object to be heated 20 passes through the facing region of the radiation antenna 22. Is transported toward. Further, the cover 50 is supported by the substrate 23 by a support member 80 provided on each short side portion of the substrate 23.
  • the blower 35 supplies air to the object to be heated 20 conveyed in the internal space.
  • the shielding portion 60 is formed with a blower passage through which air flows from the blower 35 to the object to be heated 20.
  • the blower passage is provided with a shield member 46 that shields the blower 35 from the high frequency radiated from the radiation antenna 22 and allows air to pass from the blower 35 toward the object to be heated 20.
  • a plurality of electromagnetic wave heating devices 10 shown in FIG. 30 may be arranged side by side in the transport direction of the transported object 11 so that one base material 11 is passed through.
  • the organic solvent and moisture evaporated from the object to be heated 20 are discharged to the outside from the introduction unit 73 and the outlet unit 74. be able to.
  • the shielding portion 60 is provided in order to suppress the leakage of high frequency, it is conceivable to provide a blower 35 upstream or downstream of the shielding portion 60 to dry the object to be heated 20.
  • the gas component evaporated from the object to be heated 20 stays in the shielding portion 60, and the object to be heated 20 cannot be dried efficiently.
  • the gas component evaporated from the object to be heated 20 is suppressed from staying, so that the object to be heated 20 can be efficiently dried.
  • This embodiment is an electromagnetic wave heating device 10 that heats an object to be heated 20 by using an electromagnetic wave such as a high frequency wave.
  • the electromagnetic wave heating device 10 is a dielectric heating type heating device.
  • the electromagnetic wave used in the electromagnetic wave heating device 10 is a high frequency (for example, microwave) of 800 MHz or more.
  • the object to be heated 20 heated by the electromagnetic wave heating device 10 contains a substance (liquid, solid, etc.) that absorbs high frequencies.
  • the object to be heated 20 is a thin object having a thin thickness, and exhibits a sheet shape or a film shape.
  • the object to be heated 20 is, for example, an adhesive.
  • the object to be heated 20 is applied or arranged on the surface of a sheet-like long base material (transported object) 11.
  • the object to be heated 20 is conveyed together with the base material 11 in a predetermined direction (direction of the arrow shown in FIG. 31) and passes through a strong electric field region due to high frequency. At that time, the object to be heated 20 is heated by absorbing high frequencies.
  • the object to be heated 20 does not have to be in the form of a sheet or a film, and may have a certain thickness. Further, the object to be heated 20 (for example, an adhesive) may be applied or placed on a sheet body (for example, an envelope) placed on the surface of the base material 11, and in this case, the object to be heated 20 may be the sheet body and the base. It is conveyed together with the material 11.
  • an adhesive for example, an adhesive
  • a sheet body for example, an envelope placed on the surface of the base material 11
  • the object to be heated 20 may be the sheet body and the base. It is conveyed together with the material 11.
  • the electromagnetic wave heating device 10 is an upstream device (for example, an adhesive coating device; not shown) for applying or arranging the object to be heated 20 on the surface of the base material 11, and at least the electromagnetic wave heating device 10 from the inlet of the upstream device.
  • a transport type processing system is configured.
  • the transport mechanism 12 transports the base material 11 and the object to be heated 20 using a plurality of pairs of rollers 13 (see FIG. 34).
  • the transport direction of the base material 11 is referred to as a “first direction”, and the direction orthogonal to the first direction is referred to as a “second direction” (see FIG. 31 and the like).
  • the cover 50 side is referred to as "front side” and the substrate 23 side is referred to as "back side” (see FIG. 32 and the like).
  • the inventor of the present application states that in an electromagnetic wave heating device in which resonance occurs due to electromagnetic waves in a radiant antenna, the resonance frequency in the radiant antenna may be sequentially changed due to an object to be heated or the like, and in this case, an efficient heating state is maintained. I found it difficult. Therefore, the inventor of the present application has considered the application of frequency control that controls the oscillation frequency of the oscillator with respect to the resonance frequency.
  • phase control and reflected power control are performed in order.
  • it takes time to detect the reflected power in the reflected power control it is not possible to make the oscillation frequency follow the resonance frequency at a high speed in this frequency control.
  • This embodiment is made in view of such circumstances, and is configured so that the oscillation frequency can be made to follow the resonance frequency at high speed in the electromagnetic wave heating device in which resonance occurs due to electromagnetic waves in the radiation antenna. With the goal.
  • the electromagnetic wave heating device 10 is provided with an oscillator 21 that oscillates a high frequency, a radiant antenna 22 that radiates a high frequency for heating the object to be heated 20, and a radiant antenna 22 on one side. It is provided with a substrate 23.
  • the radiation antenna 22 is a conductor that radiates a high frequency output from the oscillator 21, and has a resonance structure in which resonance occurs in the conductor due to a high frequency in the frequency band transmitted from the oscillator 21.
  • the electromagnetic wave heating device 10 is configured such that a strong electric field region (high frequency heating region) for heating the object to be heated 20 is formed along the radiant antenna 22 by the high frequency supplied from the oscillator 21 to the radiant antenna 22. Has been done.
  • the electromagnetic wave heating device 10 includes a cover 50 that covers the radiant antenna 22 side of the substrate 23, as in the second embodiment. Further, the electromagnetic wave heating device 10 further includes a control device 75 for controlling the oscillator 21. Details of the control device 75 will be described later.
  • the substrate 23 and the cover 50 are made of metal.
  • the substrate 23 corresponds to a grounded ground electrode.
  • the substrate 23 and the cover 50 correspond to a shielding portion 60 that shields the internal space 40 (see FIG. 33) in which the radiation antenna 22 is arranged from the outside.
  • the cover 50 corresponds to a first section that partitions the internal space 40 of the shield 60 from one side (upper side).
  • the substrate 23 corresponds to a second compartment that partitions the internal space 40 from the side (lower side) opposite to the first compartment.
  • a continuous gap 70 continuous in the circumferential direction is formed between the substrate 23 and the cover 50 at the outer peripheral portion of the shielding portion 60 in a plan view.
  • the radiation antenna 22 is composed of an interdigital circuit.
  • the radiation antenna 22 includes a first comb tooth electrode 31 and a second comb tooth electrode 32 that meshes with the first comb tooth electrode 31 with a gap.
  • the first comb tooth electrode 31 is formed in a comb shape by a plurality of tooth portions 31a.
  • the second comb tooth electrode 32 is formed in a comb shape by a plurality of tooth portions 32a.
  • the first comb tooth electrode 31 includes a straight base line 31b and a plurality of tooth portions 31a whose roots are connected to the base line 31b.
  • the plurality of tooth portions 31a are provided in parallel with each other.
  • Each tooth portion 31a extends diagonally from the base line 31b.
  • the plurality of tooth portions 31a are arranged at equal intervals in the first direction.
  • the second comb tooth electrode 32 includes a straight base line 32b and a plurality of tooth portions 32a whose roots are connected to the base line 32b.
  • the base line 32b is parallel to the base line 31b of the first comb tooth electrode 31.
  • the plurality of tooth portions 32a are provided in parallel with each other.
  • the tooth portion 32a of the second comb tooth electrode 32 is parallel to the tooth portion 31a of the first comb tooth electrode 31.
  • Each tooth portion 32a extends diagonally from the base line 32b.
  • the plurality of tooth portions 32a are arranged at equal intervals in the first direction.
  • a plurality of tooth portions 31a and 32a are arranged in the same plane with a gap in a predetermined direction (first direction).
  • the region in which the plurality of tooth portions 31a and 32a are arranged (hereinafter, referred to as “arrangement region”) is a band-shaped region in a plan view.
  • the total number of tooth portions (conductor lines) 31a and 32a arranged in the first direction may be 3 or more, and may be 10 or more as in the present embodiment.
  • the radiation antenna 22 has a first connection that connects the first comb tooth electrode 31 and the second comb tooth electrode 32 on one end side of the arrangement region in the first direction.
  • a line 57 and a second connection line 58 connecting the first comb tooth electrode 31 and the second comb tooth electrode 32 on the other end side of the arrangement region are provided.
  • the radiation antenna 22 is a closed circuit.
  • An input unit 30 to which a high frequency from the oscillator 21 is input is connected to the first connection line 57.
  • the input unit 30 is, for example, a coaxial connector, and is connected to the oscillator 21 via a coaxial line.
  • the input unit 30 is provided on the back side of the substrate 23.
  • a strong electric field region for heating the object to be heated 20 is formed in the facing region (the region above the arrangement region) of the radiation antenna 22.
  • the strong electric field region is formed in the vicinity of the front side of the radiation antenna 22 in the facing region, and is a parallel and thin region.
  • the radiation antenna 22 is configured so that high-frequency resonance occurs in the high-frequency frequency band oscillated by the oscillator 21 during the above-mentioned input period.
  • resonance due to high frequency occurs simultaneously at the tooth portions 31a and 32a.
  • the length L1 of the tooth portion 31a and the length L2 of the tooth portion 32a are designed using the equations 6 and 7 when the wavelength (electrical length) of the transmitted high frequency is ⁇ (n 1 , n 2 is a natural number).
  • the total length of the adjacent tooth portions 31a and the tooth portions 32a is represented by 2 m ⁇ ⁇ / 4 (m is a natural number).
  • the lengths L1 and L2 of the tooth portions 31a and 32a are both ⁇ / 4.
  • the radiation antenna 22 is configured so that a relatively strong electric field coupling occurs between the tooth portions 31a and 32a adjacent to each other in the first direction during the above-mentioned input period.
  • a plurality of tooth portions 31a and 32a are arranged at equal intervals in the first direction, and the distance (gap size) between the tooth portions 31a and 32a adjacent to each other in the first direction is the tooth portion 31a.
  • 32a is less than 5 times the line width. This distance may be 3 times or less of the line width of the tooth portions 31a and 32a, or may be 1 time or less.
  • the tooth portions 31a of the first comb tooth electrode 31 and the tooth portions 32a of the second comb tooth electrode 32 all have the same line width, but the line widths may be different from each other.
  • the substrate 23 is configured by using, for example, a metal plate material.
  • the planar shape of the substrate 23 is substantially rectangular.
  • the longitudinal direction of the substrate 23 coincides with the first direction.
  • a recess 17 having a substantially rectangular planar shape is formed on the front side of the substrate 23.
  • the longitudinal direction of the recess 17 also coincides with the first direction.
  • a radiation antenna 22 is housed in the recess 17.
  • the radiation antenna 22 is supported in a floating state by a dielectric (not shown) provided on the bottom surface.
  • the radiation antenna 22 is electrically isolated from the metal portion of the substrate 23.
  • the region of the surface of the substrate 23 other than the recess 17 is a flat region 27 surrounding the radiation antenna 22.
  • the height position of the flat region 27 is, for example, the same as or slightly above or slightly below the upper surface of the radiation antenna 22.
  • the substrate 23 is composed of a frame-shaped front side metal plate 23a and a rectangular back side metal plate 23b stacked on the back surface of the front side metal plate 23a, but the substrate 23 has one side. It may be composed of one metal plate having a recess 17 formed therein. Further, the surface of the flat region 27 and / or the upper surface of the radiating antenna 22 may be coated with a coating that absorbs high frequencies (for example, a dielectric coating) in order to suppress the generation of discharge due to a strong electric field.
  • a coating that absorbs high frequencies for example, a dielectric coating
  • the cover 50 is a metal housing. As shown in FIGS. 32 and 33, the cover 50 includes a main body 51 that covers the radiation antenna 22 from the front side, an outer peripheral portion 52 integrated into the main body 51 so as to surround the entire circumference of the main body 51, and a main body. It is provided with a duct portion 53 connected to the upper surface of the portion 51. At the outer end of the duct portion 53, a blower 35 that supplies air to the object to be heated 20 that is conveyed in the internal space 40 is attached.
  • the main body 51 has a substantially rectangular shape in a plan view, and has, for example, a flat dimension similar to that of the recess 17.
  • the main body 51 is located directly above the recess 17.
  • the main body 51 is formed in a box shape with the lower side open. As shown in FIG. 34, the internal space of the main body 51 and the internal space of the duct 53 are connected to each other, and are a blower passage 45 through which air flows from the blower 35 to the object to be heated 20.
  • the outer peripheral portion 52 is a portion outside the main body portion 51 and exhibits a substantially rectangular frame shape in a plan view.
  • the outer peripheral portion 52 faces the flat region 27 of the substrate 23 via the continuous gap 70 in the circumferential direction.
  • the outer peripheral portion 52 is provided with a shield structure 55 that prevents leakage of high frequencies through the continuous gap 70 over the entire circumference.
  • the shield structure 55 is composed of, for example, a choke structure 55.
  • the structure and shape of the choke structure are not particularly limited, but a short-circuit type ⁇ / 4 resonance choke can be adopted.
  • the choke structure 55 is composed of a spiral (or ring-shaped) cavity in a cross-sectional view, and is open at a position closer to the radiation antenna 22.
  • the dimensions of the choke structure 55 are, for example, that the peripheral length in cross-sectional view is " ⁇ / 2 ⁇ a (a is a natural number)" and the depth is " ⁇ / 4 ⁇ b (b is a natural number)".
  • is the high frequency electrical length in the choke structure 55.
  • the duct portion 53 is arranged on the upstream side (introduction portion 71 side) in the transport direction (first direction) of the base material 11.
  • the duct portion 53 is inclined diagonally downward toward the downstream side in the first direction.
  • the blowing direction of the blower 35 faces the downstream side in the first direction.
  • a plurality of wind direction adjusting plates 68 are provided inside the main body 51.
  • Each wind direction adjusting plate 68 is, for example, a louver, and directs the wind direction to the downstream side in the first direction.
  • the air blown from the blower 35 flows toward the downstream side in the first direction, is mainly discharged to the outside from the lead-out portion 72 of the continuous gap 70, and a part of the air is discharged to the outside from the side gaps 73 and 74. Is discharged from.
  • the wind direction adjusting plate 68 may be omitted.
  • a metal shield member 46 is formed with a through hole 46a that shields the blower 35 from the high frequency radiated from the radiation antenna 22 and allows air to pass from the blower 35 toward the object to be heated 20. It is provided.
  • the shield member 46 is formed in a plate shape.
  • the shield member 46 is attached to the main body 51 so as to partition the air passage 45 into the upstream side and the downstream side (so as to partition the upper and lower sides).
  • a plurality of through holes 46a are formed in the shield member 46. Each through hole 46a is formed in such a size that the high frequency radiated from the radiating antenna 22 cannot pass through.
  • the shielding portion 60 is a housing for accommodating the radiation antenna 22 in the internal space 40, and is composed of a substrate 23 and a cover 50.
  • the shielding portion 60 is configured so that the internal space 40 becomes a shielding space while allowing the base material 11 to pass by providing the introduction portion 71, the lead-out portion 72, and the like.
  • the base material 11 is conveyed from the introduction portion 71 toward the lead-out portion 72 so that the object to be heated 20 passes through the facing region of the radiation antenna 22.
  • the shielding portion 60 is formed with a continuous continuous gap 70 extending over the entire circumference of the side portion of the shielding portion 60 as a gap for communicating the internal space 40 to the outside.
  • the cover 50 is supported by a support member (not shown) so as to float with respect to the substrate 23.
  • the continuous gap 70 is formed by the upper surface of the flat region 27 of the substrate 23 and the lower surface of the outer peripheral portion 52 of the cover 50 in a cross-sectional view.
  • the gap dimension (distance between the flat region 27 and the outer peripheral portion 52) of the continuous gap 70 in the cross-sectional view is constant over, for example, the entire circumference of the shielding portion 60.
  • the lower limit of the gap size of the continuous gap 70 may be a size that allows the base material (transported object) 11 to pass through.
  • the upper limit of the gap dimension of the continuous gap 70 may be, for example, 30 mm or less, preferably 10 mm or less, and more preferably 5 mm or less, as long as it can substantially prevent high frequency leakage to the outside.
  • the continuous gap 70 is a pair extending in the transport direction of the base material 11 on both sides of the facing region, the introduction part 71 into which the base material 11 including the object to be heated 20 is introduced, the out-out part 72 from which the base material 11 is derived, and the continuous gap 70. It is composed of the side gaps 73 and 74 of the above.
  • the continuous gap 70 is formed on four sides of the upstream side in the first direction, the downstream side in the first direction, and both sides in the second direction when viewed from the facing region of the radiation antenna 22 in a plan view.
  • each of the introduction portion 71 and the lead-out portion 72 is composed of a gap formed between the short side portion of the flat region 27 of the substrate 23 and the outer peripheral portion 52 facing the short side portion. ..
  • Each of the lateral gaps 73 and 74 is composed of a gap formed between a long side portion of the flat region 27 of the substrate 23 and an outer peripheral portion 52 facing the long side portion. The lateral gaps 73 and 74 are connected to the introduction section 71 and the lead section 72, respectively.
  • the high frequency output from the oscillator 21 is supplied to each tooth portion 31a of the first comb tooth electrode 31 and each tooth portion 32a of the second comb tooth electrode 32. Resonance occurs due to high frequency in the tooth portions 31a and 32a of the comb tooth electrodes 31 and 32, and the tip of each tooth portion 31a and 32a becomes the abdomen of the standing wave due to the high frequency.
  • the abdomen of the standing wave in the plurality of tooth portions 31a of the first comb tooth electrode 31 is lined up in a row in the first direction, and the abdomen of the standing wave in the plurality of tooth portions 32a of the second comb tooth electrode 32. Line up in a row in the first direction.
  • a relatively strong electric field coupling occurs between the tooth portions 31a and 32a adjacent to each other in the first direction.
  • a strong electric field region is formed so as to include the transport path of the base material 11 and the object to be heated 20.
  • the dielectric component, the conductive component, and the like are heated by high frequencies.
  • the object to be heated 20 undergoes a temperature rise, and desired physical / chemical changes (polymerization, annealing, drying, curing, etc.) occur.
  • a plurality of objects to be heated 20 are arranged at intervals in the transport direction of the base material 11.
  • the plurality of objects to be heated 20 are conveyed at intervals so as to sequentially pass through the strong electric field region.
  • high frequency resonance occurs at each tooth portion 31a, 32a of the radiation antenna 22, and the electric field strength in the strong electric field region becomes relatively high. Therefore, the power input to the oscillator 21 can be suppressed as compared with the case where resonance does not occur.
  • the continuous gap 70 is formed in the shielding portion 60, it is possible to suppress the leakage of high frequency to the outside while allowing the base material 11 to pass through. Further, by providing the shield member 46, high frequency leakage through the inlet of the air passage 45 can be suppressed. Further, since the blower 35 is provided, when the heated object 20 is dried by heating, the organic solvent and moisture evaporated from the heated object 20 can be discharged to the outside of the shielding portion 60, and the heated object 20 can be discharged. Can be dried efficiently.
  • the control device 75 is configured to control the oscillation frequency of the oscillator 21. As shown in FIG. 36, the control device 75 includes a directional coupler 76, a phase difference information generation unit 77, and a control unit 78. Hereinafter, the configuration of the oscillator 21 will be described before the control device 75 is described.
  • the directional coupler 76 is provided on the transmission line 16 extending from the oscillator 21 to the radiation antenna 22, and corresponds to an information extraction unit that extracts reflected wave information.
  • the oscillator 21 is provided between the voltage variable oscillator (VCO) 21a whose oscillation frequency changes depending on the control voltage, the amplifier 21b provided after the voltage variable oscillator 21a, the voltage variable oscillator 21a, and the DC power supply 15. It is equipped with a voltage adjusting circuit 21c.
  • the voltage adjustment circuit 21c is configured to be able to change the control voltage applied to the voltage variable oscillator 21a by turning ON / OFF the switches SW1 and SW2.
  • the voltage adjustment circuit 21c includes an inductor L and a capacitor C in addition to the first switch SW1 and the second switch SW2.
  • the first terminal of the inductor L is on the positive side of the DC power supply
  • the first terminal of the capacitor C is on the negative side of the DC power supply
  • the second terminal of the inductor L and the second terminal of the capacitor C are.
  • the first switch SW1 is connected between the first terminal of the inductor L and the positive side of the DC power supply 15.
  • the second switch SW2 is connected between the wiring connecting the first terminal of the inductor L and the positive side of the DC power supply 15 and the wiring connecting the first terminal of the capacitor C and the negative side of the DC power supply 15. .
  • the capacitor C In the first state in which only the first switch SW1 of the first switch SW1 and the second switch SW2 is set to ON, the capacitor C is charged. In the first state, the control voltage gradually increases, and the oscillation frequency gradually increases as the control voltage increases. Further, in the second state in which only the second switch SW2 of the first switch SW1 and the second switch SW2 is set to ON, the capacitor C is discharged. In the second state, the control voltage gradually decreases, and the oscillation frequency gradually decreases as the control voltage decreases. Further, in the third state in which both the first switch SW1 and the second switch SW2 are set to OFF, the potential difference between the first terminal and the second terminal in the capacitor C and the control voltage are constant. In the third state, the oscillation frequency of the voltage variable oscillator 21a does not change.
  • the configuration of the voltage adjusting circuit 21c is not limited to this embodiment.
  • the directional coupler 76 is connected to the transmission line 16.
  • the directional coupler 76 includes an incident wave signal representing a high frequency (incident wave) waveform directed from the transmission line 16 toward the radiation antenna 22 and a reflected wave signal representing a high frequency (reflected wave) waveform returning from the radiation antenna 22. And are configured to be extracted respectively.
  • the directional coupler 76 has a first output terminal and a second output terminal connected to the phase difference information generation unit 77, and outputs an incident wave signal from the first output terminal to the phase difference information generation unit 77. 2
  • the incident wave signal is output from the output terminal to the phase difference information generation unit 77.
  • phase correction unit 99 In the line for transmitting the incident wave signal from the directional coupler 76 to the phase difference information generation unit 77, only a predetermined phase is used as the phase correction unit 99 for correcting the phase shift between the incident wave signal and the reflected wave signal.
  • a delay line (cable) that delays the signal is provided. Instead of the delay line, a delay element that delays the signal by a predetermined phase may be provided.
  • the phase difference information generation unit 77 is a device that generates a phase difference signal representing the phase difference ( ⁇ 1- ⁇ 2) between the incident wave and the reflected wave by arithmetic processing for calculating the incident wave signal and the reflected wave signal.
  • the phase difference signal corresponds to the phase difference information.
  • a phase detector or an amplitude / phase detector can be used for the phase difference information generation unit 77. For example, after performing the multiplication shown in Equation 8, the phase difference information generation unit 77 generates a component (double harmonic component (cos (2 ⁇ t + ⁇ 1 + ⁇ 2)) including an angular frequency ⁇ corresponding to the oscillation frequency f and a time function t).
  • Equation 9 By performing the filtering process to be removed, the phase difference signal PDS shown in Equation 9 is generated and output. According to the filtering process, the phase difference signal PDS for the direct current remains. The phase difference signal PDS is continuously generated and output by the phase difference information generation unit 77.
  • Equation 8 [Equation 9] In Equation 8, NPA represents an incident wave signal (Asin ( ⁇ t + ⁇ 1)) and NPB represents a reflected wave signal (Bsin ( ⁇ t + ⁇ 2)). ⁇ 1 represents the phase of the incident wave signal NPA, and ⁇ 2 represents the phase of the reflected wave signal NPB.
  • the incident is output from the first log amplifier 81 to which the incident wave signal is input, the second log amplifier 82 to which the reflected wave signal is input, and the first log amplifier 81.
  • a multiplier 83 that adds the wave signal and the reflected wave signal output from the second log amplifier 82 (that is, a multiplier that outputs the result of multiplying the signal before conversion by adding the logarithically converted signals). It is provided with a filter unit 84 that performs the above-mentioned filtering process on the output signal of the multiplier 83.
  • the logarithmically converted incident wave signal and the logarithmically converted reflected wave signal are added (that is, the multiplication of the incident wave signal and the reflected wave signal).
  • the filter unit 84 removes the double frequency component from the multiplication result.
  • a low-pass filter can be used for the filter unit 84.
  • the filter unit 84 may be used as a digital filter, and in this case, the filter unit 84 is provided after the AD converter.
  • the control unit 78 determines the direction detection operation for detecting the adjustment direction of the oscillation frequency in which the difference between the resonance frequency in the radiation antenna 22 and the oscillation frequency of the oscillator 21 becomes small, and the detection result of the direction detection operation. It is configured to repeat the control process, which performs a frequency adjustment operation that adjusts the oscillation frequency based on the above.
  • the control unit 78 includes a detection unit 78a that performs a direction detection operation, and a first command unit 78b and a second command unit 78c that perform a frequency adjustment operation.
  • the control unit 78 can be configured by, for example, a microcomputer. In this case, a control program is installed in the control unit 78.
  • the control unit 78 has a detection unit 78a, a first command unit 78b, and a second command unit 78c as functional blocks realized by the CPU executing and interpreting a control program.
  • the control unit 78 may be configured by an analog circuit.
  • control process of the control unit 78 will be described with reference to the flowchart of FIG. 37.
  • steps ST1 to ST3 correspond to the direction detection operation
  • steps ST4 to ST6 correspond to the frequency adjustment operation.
  • the control unit 78 repeats the control process of the flowchart in a predetermined control cycle S.
  • the control cycle S is set to 50 ms or less.
  • the phase difference signal is continuously input to the detection unit 78a via the AD converter.
  • the detection unit 78a detects the voltage value of the phase difference signal as the phase difference voltage V in a sampling period equal to, for example, the control cycle S by performing normalization processing or the like on the digitally converted phase difference signal. do.
  • the threshold range corresponds to the reference information in the state where the phase of the incident wave and the phase of the reflected wave are equal to each other.
  • the first graph G1 showing the change in the phase difference voltage V with respect to the frequency and the second graph G2 showing the change in the reflected wave intensity with respect to the frequency are superimposed and described.
  • the first graph G1 shows that in the lower frequency region fb where the oscillation frequency is smaller than the resonance frequency f 0 , the phase difference voltage V is smaller than zero, and in the upper frequency region fe where the oscillation frequency is larger than the resonance frequency f 0 . It means that the phase difference voltage V becomes zero at a frequency in which the phase difference voltage V becomes larger than zero and the oscillation frequency becomes equal to the resonance frequency f 0 (that is, the frequency at which the impedance matching is achieved in the radiation antenna 22). ..
  • step ST2 When the phase difference voltage V is lower than the lower limit value ⁇ Vc of the threshold range in step ST2, the oscillation frequency is in the lower frequency range fb smaller than the resonance frequency f0 .
  • the process proceeds to step ST4, and the first command unit 78b, which receives a command from the detection unit 78a, outputs an ON signal to the first switch SW1 as a frequency adjustment operation.
  • the detection unit 78a causes the second command unit 78c to switch the second switch SW2 to OFF.
  • the voltage adjusting circuit 21c switches to the first state, and the control voltage to the voltage variable oscillator 21a gradually increases.
  • the oscillation frequency of the oscillator 21 gradually increases and approaches the resonance frequency f0 .
  • step ST2 when the phase difference voltage V does not fall below the lower limit value ⁇ Vc of the threshold range in step ST2, the process proceeds to step ST3, and the detection unit 78a performs the second comparison operation in which the phase difference voltage V is the upper limit value of the threshold range. It is determined whether or not it exceeds Vc.
  • the phase difference voltage V exceeds the upper limit value Vc of the threshold range in step ST3, the oscillation frequency is in the upper frequency range fe larger than the resonance frequency f 0 .
  • the process proceeds to step ST5, and the second command unit 78c, which receives a command from the detection unit 78a, outputs an ON signal to the second switch SW2 as a frequency adjustment operation.
  • step ST5 the process returns to step ST1.
  • step ST6 If the phase difference voltage V does not exceed the upper limit value Vc of the threshold range in step ST3, the phase difference voltage V is within the threshold range. In this case, the process proceeds to step ST6, and if the first switch SW1 is ON, the detection unit 78a causes the first command unit 78b to switch the first switch SW1 to OFF, and the second switch SW2 is ON. If it is, the second command unit 78c is made to switch the second switch SW2 to OFF. As a result, the voltage adjusting circuit 21c is switched to the third state, and the control voltage becomes constant. As a result, the oscillation frequency of the voltage variable oscillator 21a is held at the value at that time. After the execution of step ST6, the process returns to step ST1.
  • step ST1 A state in which the oscillation frequency is made to follow the resonance frequency f 0 will be described with reference to FIG. 39.
  • the process starting from step ST1 and returning to the first step ST1 will be referred to as "nth process" as one unit.
  • the value of the oscillation frequency is fA at the time of the first processing (see FIG. 39 (a)).
  • the phase difference voltage becomes the value on the vertical axis of the detection point A, and it is detected that the phase difference voltage is below the lower limit value ⁇ Vc. Therefore, the voltage adjustment circuit 21c is switched to the first state (only the first switch SW1 is in the ON state), and the oscillation frequency gradually increases and approaches the resonance frequency f0 .
  • the value of the oscillation frequency is f B at the time of the second processing (see FIG. 39 (b)).
  • the second processing is performed in this state, it is continuously detected that the phase difference voltage is below the lower limit value ⁇ Vc.
  • the voltage adjustment circuit 21c is maintained in the first state, and the oscillation frequency further approaches the resonance frequency f0 .
  • the value of the oscillation frequency is f C at the time of the third processing (see FIG. 39 (c)).
  • the third process is performed in this state, it is detected that the phase difference voltage is between the upper limit value Vc and the lower limit value ⁇ Vc. In this case, the voltage adjustment circuit 21c is switched to the third state (both switches SW1 and SW2 are in the OFF state), and the oscillation frequency is held.
  • the value of the oscillation frequency is f D at the time of the fifth processing (see FIG. 39 (e)).
  • the fifth process is performed in this state, it is detected that the phase difference voltage continues to exceed the upper limit value Vc.
  • the voltage adjustment circuit 21c is maintained in the second state, and the oscillation frequency further approaches the resonance frequency f0 .
  • the value of the oscillation frequency is f E at the time of the sixth processing (see FIG. 39 (f)).
  • the voltage adjustment circuit 21c is switched to the third state and the oscillation frequency is held as in the third process. In this way, in the control process, the oscillation frequency is adjusted so as to follow the resonance frequency f0 .
  • the phase difference information representing the phase difference between the incident wave and the reflected wave is generated by the arithmetic processing using the incident wave signal and the reflected wave signal. Then, the adjustment direction of the oscillation frequency is detected based on the phase difference information and the reference information (threshold value range), and the control process for controlling the oscillation frequency is repeated based on the detection result, so that the resonance frequency f0 is reached.
  • the oscillation frequency follows.
  • the above-mentioned arithmetic processing can be performed at high speed. That is, the phase difference information can be generated at high speed.
  • the adjustment direction of the oscillation frequency can be detected at high speed. According to this embodiment, it is possible to make the oscillation frequency follow the resonance frequency at high speed.
  • the resonance frequency f0 changes sequentially depending on the presence or absence of the object to be heated 20, the change over time in the amount of water in the object to be heated 20, the steam generated by heating, and the like.
  • the object to be heated 20 is a small amount and has a light load, and even in an environment where the resonance specific mode in the internal space 40 is maintained, the resonance frequency f0 changes sequentially in the resonance mode. For example, a high frequency is applied to the object to be heated 20, and the relative permittivity decreases as the temperature of the object to be heated 20 rises and dries, so that the resonance frequency f 0 changes.
  • the resonance frequency is f0
  • the ratio of high-frequency energy absorbed by the object to be heated 20 (hereinafter referred to as “high-frequency energy absorption rate”) becomes maximum.
  • the resonance frequency f 0 changes sequentially, it is difficult to keep the high frequency energy absorption rate at a high value because the oscillation frequency cannot be made to follow the resonance frequency f 0 at high speed by the prior art.
  • high frequencies are likely to leak into the open space.
  • the oscillation frequency can be made to follow the resonance frequency f0 at high speed, the high frequency energy absorption rate is high even when the object to be heated 20 is heated by the transport type. The value can be maintained, and high frequency leakage can be suppressed.
  • the inventor of the present application states that (i) when the oscillation frequency is fixed, the high-frequency energy absorption rate is particularly lowered immediately after the power of the electromagnetic wave heating device 10 is turned on, and (ii) the electromagnetic wave heating device 10 is used. It has been confirmed in an experiment with a control cycle of 30 ms that the high-frequency energy absorption rate is greatly improved from the time when the power is turned on by performing the above-mentioned frequency control from the time when the power is turned on.
  • the control unit 78 detects the deviation direction (shift direction) of the oscillation frequency with respect to the resonance frequency using the reference information and the phase difference information, and performs averaging processing on the detection result. , Detects the adjustment direction of the oscillation frequency. The averaging process is performed on the result of the comparison operation in which the threshold range ( ⁇ Vc to Vc) and the phase difference voltage V are compared.
  • the points different from the embodiments will be mainly described with reference to FIG. 40.
  • the detection unit 78a determines that the deviation is in the negative direction and records the determination result ( ⁇ X). Further, when the phase difference voltage V exceeds the upper limit value Vc of the threshold range in the second comparison operation, it is determined that the deviation is in the positive direction and the determination result (+ X) is recorded. Further, when the phase difference voltage V does not exceed the upper limit value Vc of the threshold range in the second comparison operation, it is determined that there is no phase shift and the determination result ( ⁇ 0) is recorded.
  • the detection unit 78a performs an averaging process for averaging the determination results of the comparison operations arranged in time series with the number of samples n of the predetermined comparison results.
  • Equation 10 is an example of an equation used for the averaging process from the m-th determination result D (m) to the (m + n-1) th determination result D (m + n-1).
  • Y represents the calculated value of the averaging process.
  • the detection unit 78a causes the first command unit 78b to output an ON signal to the first switch SW1.
  • the detection unit 78a causes the second command unit 78c to output an ON signal to the second switch SW2.
  • a graph G3 showing the time-series change of the phase difference voltage V a graph G4 showing the time-series change of the determination result of the comparison operation, and a graph G5 showing the time-series change of the calculated value Y are superimposed. It is described as. According to this modification, noise can be removed by the averaging process, so that the tracking accuracy of the oscillation frequency is improved. Therefore, the high frequency energy absorption rate is increased, and the electric power required for heating can be reduced.
  • the comparison target of the calculated value Y of the averaging process may be the threshold range.
  • the detection unit 78a causes the first switch SW1 to output an ON signal when the calculated value Y is lower than the lower limit value ⁇ Vc of the threshold range, and causes the second switch SW2 when the calculated value Y exceeds the upper limit value Vc of the threshold range. Output an ON signal.
  • control unit 78 may adjust the number of samples n of the detection result used in the averaging process based on the transport speed of the object to be heated 20.
  • the resonance frequency f 0 fluctuates finely. Therefore, the faster the transport speed, the smaller the number of samples n, and finer follow-up control is performed.
  • the control cycle S may be adjusted based on the transport speed, or the control cycle S may be lengthened as the transport speed is faster for noise reduction.
  • the control unit 78 detects the adjustment amount (or offset amount) of the oscillation frequency in addition to the adjustment direction of the oscillation frequency based on the reference information and the phase difference information.
  • the adjustment amount of the oscillation frequency can be detected based on the magnitude of the phase difference voltage V (difference between the phase difference information and the reference information). For example, the larger the difference between the phase difference voltage V and zero, the smaller the adjustment amount of the oscillation frequency.
  • the control unit 78 adjusts the oscillation frequency in the adjustment direction according to the adjustment amount, so that the oscillation frequency can be made to follow the resonance frequency f 0 at a higher speed.
  • the oscillator 21 includes a voltage variable oscillator 21a, a synthesizer 21d provided after the voltage variable oscillator 21a, a quadrature modulator 21e provided after the synthesizer 21d, and a quadrature modulator 21e. It includes an amplifier 21b provided in the subsequent stage and a voltage adjusting circuit 21c. In this modification, the voltage adjustment circuit 21c is configured by a DA converter.
  • the synthesizer 21d is provided with a register (not shown) for recording / updating the register value R.
  • the oscillation frequency of the oscillator 21 is the high frequency frequency output from the synthesizer 21d.
  • the orthogonal modulator 21e modulates the high frequency output from the synthesizer 21d into the first I component signal and the first Q component signal, and outputs the modulation to the amplifier 21b.
  • the oscillator 21 oscillates a quadrature modulated high frequency.
  • the control device 75 includes a directional coupler 76, a first orthogonal demodulation unit 91, a second orthogonal demodulation unit 92, and a control unit 78.
  • the first orthogonal demodulation unit 91 and the second orthogonal demodulation unit 92 constitute an orthogonal demodulation unit.
  • the first orthogonal demodulation unit 91 demodulates the incident wave signal into a first I component signal and a first Q component signal.
  • the second orthogonal demodulation unit 92 demodulates the reflected wave signal into a second I component signal and a second Q component signal.
  • a synchronization signal for synchronizing with the quadrature modulator 21e is input to each of the quadrature demodulation units 91 and 92 from the synthesizer 21d.
  • the control unit 78 reflects the incident wave and reflection based on the demodulated incident wave signal (1st I component signal and 1st Q component signal) and the demodulated reflected wave signal (2nd I component signal and 2nd Q component signal).
  • the information generation operation that generates the phase difference information indicating the phase difference of the wave and the adjustment direction of the oscillation frequency that the difference between the resonance frequency f 0 in the radiation antenna 22 and the oscillation frequency of the oscillator 21 becomes small are detected based on the phase difference information. It is configured to repeat the control process of performing the direction detection operation and the frequency adjustment operation of adjusting the oscillation frequency based on the detection result of the direction detection operation.
  • the control unit 78 can be configured by, for example, a microcomputer.
  • a control program is installed in the control unit 78.
  • the control unit 78 has a detection unit 87 and a command unit 88 as functional blocks realized by the CPU executing and interpreting a control program.
  • the detection unit 87 performs an information generation operation and a direction detection operation.
  • the detection unit 87 also serves as a phase information generation unit.
  • the detection unit 87 calculates the phase difference representing the phase difference ( ⁇ 1- ⁇ 2) between the incident wave and the reflected wave by arithmetic processing using the first I component signal and the first Q component signal, and the second I component signal and the second Q component signal.
  • the value PDC is calculated as phase difference information. Then, the adjustment direction of the oscillation frequency is detected based on the phase difference calculated value PDC.
  • the detection unit 87 calculates the incident wave information NPA and the reflected wave information NPB by performing the arithmetic processing shown in the equations 11 and 12, and then the arithmetic shown in the equation 13 (complex division (multiplication of conjugate complex numbers)).
  • the phase difference calculation value PDC is calculated as a value obtained by dividing the reflected wave information NPB by the incident wave information NPA.
  • Equations 11 and 12 the 1st I component signal is represented by Acos ( ⁇ t + ⁇ 1), the 1st Q component signal is represented by Aisin ( ⁇ t + ⁇ 1), and the 2nd I component signal is represented by Bcos ( ⁇ t + ⁇ 2).
  • the component signal is represented by Bisin ( ⁇ t + ⁇ 2).
  • the reflected wave intensity has a predetermined determination level k in the frequency band in which the oscillator 21 can oscillate (hereinafter, referred to as “oscillating band”) before the transfer of the object to be heated 20 is started.
  • oscillating band the frequency band in which the oscillator 21 can oscillate
  • FIG. 42A is a flowchart of search control.
  • the control unit 78 sets the initial frequency fi (for example, the lower limit of the oscillating band) in the oscillator 21 and starts the oscillation of the high frequency by the oscillator 21.
  • the control unit 78 causes the oscillator 21 to perform frequency sweep.
  • the bandwidth (fi to fi + ⁇ f) at which the frequency sweep is performed is equal to the initial value of the resist value R.
  • the component signal and the second Q component signal are input to the detection unit 87 as continuous signals.
  • each I component signal and each Q component signal are digitally converted.
  • step ST13 the detection unit 87 calculates the phase difference calculated value PDC by the calculation of the formulas 11 to 13 in a predetermined calculation cycle during the period of performing the frequency sweep.
  • the phase difference calculated value PDC represents the coordinate value of the complex plane of the Smith chart shown in FIG. 43.
  • Step ST14 is performed after the frequency sweep is completed.
  • the detection unit 87 has the phase ⁇ 1 of the incident wave in the coordinate values (hereinafter referred to as “calculated coordinate values”) represented by the plurality of phase difference calculated values PDC calculated in a predetermined calculation cycle.
  • step ST14 If there is no coordinate value at which the phase ⁇ 1 and the phase ⁇ 2 are equal in step ST14, the resonance frequency f0 does not exist in the band where the frequency sweep is performed. After the addition, the process returns to step ST12.
  • the resist value R is ⁇ f ⁇ 2.
  • the control unit 78 causes the oscillator 21 to perform frequency sweep in the upper band (fi + ⁇ f to fi + ⁇ f ⁇ 2) adjacent to the band in which the frequency sweep was performed immediately before.
  • the resonance frequency f0 is in the band where the frequency sweep is performed. It is determined whether or not the reflection coefficient B / A at the equal resonance frequency f 0 is lower than the determination level k.
  • the determination level k is stored in advance in the control unit 78.
  • the reflection coefficient B / A does not fall below the determination level k in step ST16, the reflected wave intensity is not small at the resonance frequency f0 in the frequency-swept band, so the predetermined value ⁇ f is added to the resist value R in step ST15. After that, the process returns to step ST12. On the other hand, when the reflection coefficient B / A is lower than the determination level k in step ST16, a band in which the reflected wave intensity becomes small at the resonance frequency f 0 is found. After the detection, the search control is terminated and the frequency control is started.
  • FIG. 42B is a flowchart of the control process constituting the frequency control.
  • steps ST23 correspond to the information generation operation
  • ST26 to ST27 correspond to the direction detection operation
  • steps ST28 to ST29 correspond to the frequency adjustment operation.
  • step ST21 the power supply of the transport mechanism 12 is switched to ON, and the transport of the object to be heated 20 is started.
  • the control unit 78 sets the oscillation frequency f of the oscillator 21 to the resonance frequency f0 detected in step ST17.
  • the detection unit 87 uses the first I component signal, the first Q component signal, the second I component signal, and the second Q component signal at that time to calculate the phase difference calculated value PDC by the calculation of equations 11 to 13. calculate.
  • step ST24 the detection unit 87 determines whether or not the reflection coefficient B / A is lower than the determination level k. If the reflection coefficient B / A does not fall below the determination level k in step ST24, the process returns to step ST22 after adding a predetermined value ⁇ f to the resist value R in step ST25. As a result, when the reflected wave intensity is no longer in the band due to the fluctuation of the resonance frequency f 0 , it is possible to move to another band.
  • the detection unit 87 represents the calculated coordinate value represented by the phase difference calculated value PDC and the center line P of the Smith chart in step ST26.
  • the first comparison operation for comparing with the reference information it is determined whether or not the calculated coordinate values are in the positive phase (that is, whether or not ⁇ 1> ⁇ 2).
  • p 1 MHz
  • step ST26 the process proceeds to step ST27, and the detection unit 87 performs the second comparison operation as to whether or not the calculated coordinate value is ⁇ / 2 to 0 (that is,). , ⁇ 1 ⁇ 2).
  • the calculated coordinate value for example, the position B in FIG. 43
  • q 1 MHz
  • step ST27 If the condition of ⁇ 1 ⁇ 2 is not satisfied in step ST27, the coordinate value is on the center line P. In this case, the process returns to step ST23. The oscillation frequency is maintained at the same value.
  • phase difference information representing the phase difference between the incident wave and the reflected wave is generated by digital arithmetic processing using the incident wave signal and the reflected wave signal.
  • the resonance frequency f is detected by repeatedly performing the control process of detecting the adjustment direction of the oscillation frequency based on the phase difference information and the reference information (information of the center line P) and controlling the oscillation frequency based on the detection result.
  • the oscillation frequency follows 0 .
  • the above-mentioned arithmetic processing can be performed at high speed.
  • the adjustment direction of the oscillation frequency can be detected at high speed. According to this modification, it is possible to make the oscillation frequency follow the resonance frequency at high speed.
  • the orthogonal demodulator has one orthogonal demodulator 91 and a first period in which an incident wave signal is input from the directional coupler 76 to the orthogonal demodulator 91. It is provided with a changeover switch SW3 for switching between the second period in which the reflected wave signal is input.
  • the changeover switch SW3 is switched by the control unit 78 at a predetermined changeover cycle. For example, the switching cycle is less than half of the phase difference information generation cycle.
  • the first half of step ST23 described above is the first period when the changeover switch SW3 is switched to the contact on the incident wave signal side.
  • the incident wave signal is demodulated into the first I component signal and the first Q component signal.
  • the latter half of step ST23 is the second period in which the changeover switch SW3 is switched to the contact on the reflected wave signal side.
  • the reflected wave signal is demodulated into the second I component signal and the second Q component signal.
  • the detection unit 87 calculates the phase difference calculation value PDC by the arithmetic processing of the equations 11 to 13. According to this modification, the configuration of the orthogonal demodulator can be simplified.
  • This modification is a variation of the modification 3 of the fourth embodiment.
  • a coupler 93 is provided to extract the incident wave signal from the transmission line 16
  • an isolator 94 is provided to extract the reflected wave signal from the transmission line 16.
  • a circulator type is used for the isolator 94.
  • the incident wave signal extracted by the coupler 93 is input to the control unit 78 without being demodulated.
  • the control unit 78 detects the intensity A of the incident wave signal after amplification by the amplifier 21b based on the incident wave signal.
  • the information of the intensity A is used for the above-mentioned calculation of the reflection coefficient B / A.
  • the reflected wave signal extracted by the isolator 94 is input to the orthogonal demodulator 91 via the attenuator 95.
  • the orthogonal demodulator is composed of one orthogonal demodulator 91.
  • the reflected wave signal is demodulated into the second I component signal and the second Q component signal.
  • the second I component signal and the second Q component signal demodulated by the orthogonal demodulator 91 are input to the control unit 78.
  • the control unit 78 is configured to generate phase difference information by using the incident wave information (incident wave information derived from the oscillation information) of the phase at the high frequency output timing of the oscillator 21. Specifically, the control unit 78 uses the first I component information and the first Q component information of the incident wave information derived from the oscillation information, and the second I component information and the second Q component information demodulated by the orthogonal demodulator 91. The arithmetic processing of equations 11 to 13 is performed to calculate the phase difference calculation value PDC. In this arithmetic processing, the control unit 78 corrects the phase shift of the incident wave information from the reflected wave information before the arithmetic processing. By this correction, the phase shift between the phase of the incident wave output from the oscillator 21 and the reflected wave signal extracted by the isolator 94 is corrected.
  • control unit 78 performs the above-mentioned frequency control during the initial heating period in which the first object to be heated 20 passes through the strong electric field region, and at the same time, the oscillation frequency adjustment history is used as the control history information of the frequency control. (Adjustment direction in each control process) is sequentially recorded in the memory, and frequency control is performed using the control history information recorded in the memory during the period of heating the object to be heated 20 passing through the strong electric field region after the recording.
  • the control history information the history of the resonance frequency f 0 calculated from the phase difference information and the oscillation frequency, or the history of the oscillation frequency (voltage information representing the frequency, etc.) of the oscillator 21 may be recorded. Further, in the frequency control using the control history information, the oscillation frequency of the history information may be applied as it is, but the phase difference voltage V sequentially detected by the detection unit 78a is used for the oscillation frequency of the history information. The corrected frequency may be given to the oscillator 21.
  • an object detection sensor for example, a light receiving element or an image pickup element for detecting the presence or absence of the object to be heated 20 is provided in the internal space 40, and the heating start time of the object to be heated 20 (for example, at a position on the upstream side of the radiation antenna 22).
  • the control history information may be recorded together with the time passage information from the time when the object to be heated 20 arrives).
  • the object detection sensor detects the next heating start timing of the object to be heated 20, and the frequency control is started from the detection timing.
  • ⁇ Modification 7 of Embodiment 4> in order to correct the phase shift due to the floating reactors generated in the radiation antenna 22, the frequency at which the reflection coefficient (reflected wave power) shows the minimum value and the phase angle of 0 ° are set at the setting stage of the electromagnetic wave heating device 10. Phase modulation may be performed on the high frequency oscillated from the oscillator 21 by the amount of the correction phase angle for correcting the difference from the frequency. As a result, the electromagnetic wave heating device 10 can be shipped in a state where the minimum value of the resonance impedance in the reflected wave signal demodulated by the demodulation unit and the phase angle of 0 ° are matched.
  • each heated object 20 is ink printed on the base material 11, and the control unit 78 uses, for example, the measured value of the light receiving sensor using the light receiving element to obtain the heated object 20. Detects the amount of ink.
  • the amount of ink can be detected, for example, by the integrated value (integrated value of the amount of light) measured by the light receiving sensor during the passing period of the object to be heated 20.
  • control unit 78 controls the output of the oscillator 21 based on the detected value VI of the ink amount.
  • the control unit 78 estimates the high-frequency energy amount Pt absorbed by the object to be heated 20 by integrating the phase difference information according to the elapsed time from the start of heating of the object to be heated 20. Then, the output of the oscillator 21 is increased or decreased by comparing the detected value VI of the ink amount with the high frequency energy amount Pt.
  • the output of the oscillator 21 can be stopped at the timing when the calculated value T of the equation 14 exceeds the predetermined drying threshold value, and the calculated value T is calculated at the timing when the object to be heated 20 reaches the downstream end of the radiation antenna 22.
  • the output of the oscillator 21 can also be adjusted so that the value T becomes the dry threshold value.
  • the measured value of the humidity sensor that detects the humidity of the air in the internal space 40 or the air discharged from the internal space 40 may be used.
  • the control unit 78 determines that the object to be heated 20 is drying at an early stage, reduces the output of the oscillator 21, and determines the measured humidity of the humidity sensor. If it is lower than the value, it is determined that the drying of the object to be heated 20 is delayed, and the output of the oscillator 21 is increased.
  • This modification is an electromagnetic wave heating device 10 that heats and thawes an object to be heated 20 such as food by using an electromagnetic wave such as a high frequency.
  • the electromagnetic wave heating device 10 radiates a box-shaped member 101 forming the thawing chamber 100, an oscillator 21 that oscillates a high frequency, and a high frequency for heating the object to be heated 20 in the thawing chamber 100.
  • the radiating antenna 22 and the control device 75 for controlling the oscillator 21 are provided.
  • the box-shaped member 101 is provided with an air inlet and an outlet, and a fan for sending air from the inlet to the outlet.
  • the thawing chamber 100 is provided with a mounting table 102 on which the object to be heated (object to be thawed) 20 is placed.
  • the radiation antenna 22 may have a resonance structure in which resonance occurs due to a high frequency in the frequency band transmitted from the oscillator 21, and the same antenna as in the fourth embodiment can be used.
  • the control device 75 of the fourth embodiment is used in this modification, the control device 75 of the third modification of the fourth embodiment may be used.
  • the frequency at which high frequency is easily absorbed differs greatly depending on whether it is a solid phase or a liquid phase. Therefore, the resonance frequency f 0 changes sequentially with the phase change of the object to be heated 20. Therefore, by performing frequency control in which the oscillation frequency is made to follow the resonance frequency f0 at high speed by the control device 75, the object to be heated 20 can be efficiently heated and thawed.
  • the resonance mode may change with the phase change of the object to be heated 20, and the change in the resonance mode depends on the type and weight of the object to be heated 20 and the like. different. Therefore, the control device 75 has a plurality of resonance modes that transition with the phase change of the heated object 20 from the start to the end of thawing for each condition of the heated object 20 including the type and weight of the heated object 20. For each, the time-series change of the resonance frequency f 0 may be recorded in advance as a pattern of the resonance frequency f 0 , and the recorded pattern may be used for frequency control.
  • control cycle S is determined in advance for each resonance mode, and the control device 75 has a plurality of resonance patterns recorded in advance based on the transition of the heating time of the object to be heated 20 and the change of the resonance frequency f0 . You may detect which resonance pattern is used and perform frequency control in the control cycle S corresponding to the detected resonance pattern.
  • the oscillation output of the oscillator 21 is determined in advance for each resonance mode, and the control device 75 records a plurality of resonance patterns in advance based on the transition of the heating time of the object to be heated 20 and the change of the resonance frequency f0 .
  • the oscillator 21 may be controlled so as to detect which resonance pattern is used and to obtain an oscillation output corresponding to the detected resonance pattern.
  • Embodiment 4 ⁇ Other Modifications of Embodiment 4>
  • the control unit 78 estimates the degree of heating progress of the object to be heated 20 with respect to the heating target state of the object to be heated 20.
  • the width of the threshold range (-Vc to Vc) is adjusted based on the estimation result.
  • the degree of heating progress of the object to be heated 20 is estimated by using the integrated value of the measured values of the humidity sensor described above, the high frequency energy amount Pt absorbed by the object to be heated 20, the ink detection amount VI, and the like. Can be calculated as.
  • the heating target state of the object to be heated 20 can be prepared in advance as a threshold value. Further, when the estimated value of the degree of heating progress of the object to be heated 20 is small, it may be determined that the band is not in the band where the reflected wave intensity is low, and the object may be moved to another band.
  • the control unit 78 uses information on the print pattern of the object to be heated 20 to adjust the control parameters of the control process. You may use it.
  • the control cycle S, the width of the threshold range ( ⁇ Vc to Vc), or the number of samples n in the averaging process can be increased or decreased according to the resolution of the print pattern.
  • the resonance frequency f 0 may fluctuate finely. Therefore, the higher the resolution, the shorter the control cycle S, the narrower the width of the threshold range, and the smaller the number of samples n.
  • the plurality of tooth portions 31a, 32a are provided obliquely with respect to the base line 31b, 32b in each of the comb tooth electrodes 31, 32, but the plurality of tooth portions 31a, 32a are provided on the base line. It may be provided perpendicular to 31b and 32b.
  • the present invention is applicable to an electromagnetic wave heating device or the like used for heating an object to be heated.
  • Electromagnetic wave heating device 11
  • Base material 12
  • Conveyance mechanism 20
  • Heated object 21
  • Oscillator 22
  • Radiation antenna 23
  • Board Dielectric layer
  • Ground electrode layer 25
  • Input part 31
  • First comb tooth electrode 31a Tooth part (conductor line)
  • Second comb tooth electrode 32a Tooth part (conductor line)
  • Interior space 50
  • Cover 60
  • Shielding part 70 Continuous gap 75 Control device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

電磁波を利用して被加熱物20を加熱する電磁波加熱装置10について、電磁波が被加熱物20に吸収されやすいレベルの強電界領域を低電力で形成可能に構成するために、電磁波加熱装置10は、電磁波を出力する発振器21と、発振器21から出力される電磁波を放射する導体であって、発振器21から伝送される周波数帯域の電磁波により導体で共振が生じる共振構造を有する放射アンテナ22とを備え、発振器21から放射アンテナ22へ供給される電磁波により、放射アンテナ22に沿って、被加熱物を加熱するための強電界領域が形成されるように構成されている。

Description

電磁波加熱装置
 本発明は、被加熱物の加熱に用いられる電磁波加熱装置等に関する。
 従来から、食品の加熱など様々な用途に、誘電加熱方式の電磁波加熱装置が利用されている。電磁波加熱装置は、被加熱物に含まれる誘電体に対し電磁波を照射する。そうすると、電磁波による電界の作用により、誘電体における分子レベルのダイポールが振動し、その振動に伴う誘電損失により発熱が生じて、被加熱物が加熱される。また、誘電加熱方式以外の高周波加熱について、被加熱物に導体成分やイオン物質が含まれる場合には電流により生じる導電(ジュール)損失により、磁性成分が含まれる場合には磁性損失により、被加熱物が加熱される。
 特許文献1には、トナー像を加熱・溶融して記録媒体上に定着する定着部材を誘電加熱する誘電加熱部が記載されている。この誘電加熱部は、定着部材の外周面又は/及び内周面に対向して、定着部材の誘電体の周囲に高周波電界を形成する少なくとも一対の棒状電極を備えている。棒状電極は、隣接する棒状電極との極性が異なるように配設されていて、電源から高周波電力が供給される。
特開2008-292606号公報
 ところで、特許文献1には、40MHzの高周波を用いた実験結果が記載されている。この場合、高周波の波長は約7.5mとなる。このことから、特許文献1に記載の従来技術では、各棒状電極で高周波による共振を生じさせるものではなく、各棒状電極について長さ方向の電界は概ね均一になると考えられる。ここで、電界が強いほど、電磁波は被加熱物に吸収されやすくなり、被加熱物を効率的に加熱することができる。しかし、従来技術では、各棒状電極で概ね均一電界が形成される反面、電磁波が被加熱物に吸収されやすいレベルの強電界領域を形成するためには、棒状電極への投入電力を大きくする必要がある。
 本発明は、このような事情に鑑みてなされたものであり、電磁波を利用して被加熱物を加熱する電磁波加熱装置について、電磁波が被加熱物に吸収されやすいレベルの強電界領域を低電力で形成可能に構成することを目的とする。
 上述の課題を解決するべく、第1の発明は、電磁波加熱装置であって、電磁波を出力する発振器と、発振器から出力される電磁波を放射する導体であって、発振器から伝送される周波数帯域の電磁波により導体で共振が生じる共振構造を有する放射アンテナとを備え、発振器から放射アンテナへ供給される電磁波により、放射アンテナに沿って、被加熱物を加熱するための強電界領域が形成されるように構成されている。
 第2の発明は、第1の発明において、放射アンテナでは、それぞれが共振構造を有する3本以上の導体線路が、所定の方向に隙間を空けて配列されて、3本以上の導体線路の少なくとも一部に電磁波を供給するための入力部をさらに備え、放射アンテナでは、入力部に電磁波が入力される入力期間に、3本以上の導体線路の各々で電磁波による共振が生じて、3本以上の導体線路が配列された領域に沿って、強電界領域が形成される。
 第3の発明は、第2の発明において、3本以上の導体線路に対して被加熱物が配置される側とは反対側に配置され、3本以上の導体線路の少なくとも一部に対面する接地電極をさらに備えている。
 第4の発明は、第2又は第3の発明において、所定の方向に隣り合う導体線路間の距離は、該導体線路の線路幅の5倍以下である。
 第5の発明は、第2乃至第4の何れか1つの発明において、被加熱物は、所定の搬送方向に搬送され、3本以上の導体線路は、搬送方向に配列されている。
 第6の発明は、第2乃至第5の何れか1つの発明において、導体線路の配列方向に対し、各導体線路が斜めに延びている。
 第7の発明は、第2乃至第6の何れか1つの発明において、3本以上の導体線路の配列領域は、平面視で帯状の領域であり、3本以上の導体線路では、配列領域における幅方向の一端側に電磁波による定在波の腹部が形成される導体線路と、他端側に定在波の腹部が形成される導体線路とが交互に並ぶ。
 第8の発明は、第2乃至第7の何れか1つの発明において、放射アンテナでは、4本以上の導体線路が、所定の方向に隙間を空けて配列され、4本以上の導体線路では、電磁波による定在波の腹部となる導体線路の強電界箇所が、導体線路の配列方向に並ぶ強電界列が、2列以上形成される。
 第9の発明は、第2乃至第8の何れか1つの発明において、放射アンテナは、それぞれが導体線路に相当する複数の歯部を有する第1櫛歯電極と、それぞれが導体線路に相当する複数の歯部を有する第2櫛歯電極とを備え、第1櫛歯電極及び第2櫛歯電極は、それぞれの歯部同士が隙間を空けて噛み合うように配置されている。
 第10の発明は、第2乃至第9の何れか1つの発明において、3本以上の導体線路を囲うように設けられた筐体をさらに備え、被加熱物は、筐体に形成された開口部、又は、筐体により形成された隙間を通じて、筐体内に出し入れ可能となっている。
 第11の発明は、第2乃至第10の何れか1つの発明において、誘電体により構成され、3本以上の導体線路に対して被加熱物が配置される側を覆う被覆部材が設けられている。
 第12の発明は、第1乃至第11の何れか1つの発明において、被加熱物は、所定の搬送方向に搬送され、放射アンテナにおいて、発振器からの電磁波の入力箇所が搬送方向の下流側に位置している。
 第13の発明は、第1乃至第12の何れか1つの発明において、被加熱物は、所定の搬送方向に搬送され、放射アンテナにおいて、発振器からの電磁波の入力箇所が、被加熱物の通過領域の外側に位置している。
 第14の発明は、第1乃至第9の何れか1つの発明において、放射アンテナが配置された内部空間を外部から遮蔽し、被加熱物を含む搬送物の導入部及び導出部が形成されて、内部空間では、被加熱物が放射アンテナの対面領域を通過するように、搬送物が導入部から導出部に向かって搬送される遮蔽部をさらに備え、遮蔽部には、内部空間を外部に連通させる隙間として、対面領域の側方において搬送物の搬送方向に延びる側方隙間が導入部及び導出部の各々に対して繋がった連続隙間が形成されている。
 第15の発明は、第14の発明において、連続隙間は、搬送方向の上流側の導入部、搬送方向の下流側の導出部、及び、搬送方向に直交する方向の片側の側方隙間を有する少なくとも三方の隙間により構成されている。
 第16の発明は、第15の発明において、遮蔽部は、内部空間を片側から区画する第1区画部と、第1区画部との間に連続隙間を形成して第1区画部とは反対側から内部空間を区画する第2区画部とを有し、第1区画部は、搬送方向に直交する方向のもう片側で、第2区画部に支持されている。
 第17の発明は、第14又は第15の発明において、内部空間を搬送される被加熱物に空気を供給する送風機をさらに備え、遮蔽部は、内部空間を片側から区画する第1区画部と、第1区画部との間に連続隙間を形成して第1区画部とは反対側から内部空間を区画する第2区画部とを有し、送風機は、第1区画部に取り付けられている。
 第18の発明は、第1乃至第11の何れか1つの発明において、放射アンテナが配置された内部空間を外部から遮蔽し、被加熱物を含む搬送物の導入部及び導出部が形成されて、内部空間では、被加熱物が放射アンテナの対面領域を通過するように、搬送物が導入部から導出部に向かって搬送される遮蔽部と、遮蔽部に取り付けられて、内部空間を搬送される被加熱物に空気を供給する送風機とをさらに備えている。
 第19の発明は、第17又は第18の発明において、遮蔽部には、送風機から被加熱物に向かう空気が流れる送風通路が形成され、送風通路には、放射アンテナから放射される電磁波から送風機を遮蔽し、且つ、送風機から被加熱物に向かう空気を通過させるシールド部材が設けられている。
 第20の発明は、第17乃至第19の何れか1つの発明において、送風機の送風方向が、搬送方向の下流側を向いている。
 第21の発明は、第17乃至第19の何れか1つの発明において、発振器の廃熱を利用して、送風機により被加熱物に供給される空気を加熱する廃熱利用部をさらに備えている。
 第22の発明は、第1乃至第21の何れか1つの発明において、発振器から放射アンテナへ延びる伝送線路に設けられ、放射アンテナから戻る反射波の波形を表す反射波情報を抽出する信号抽出部と、発振器から放射アンテナへ伝送される入射波の波形を表す入射波情報と反射波情報とを用いる演算処理により、入射波と反射波の位相差を表す位相差情報を生成する位相差情報生成部と、入射波の位相と反射波の位相とが等しくなる状態の基準情報と、位相差情報とに基づいて、放射アンテナにおける共振周波数と発振器の発振周波数との差が小さくなる発振周波数の調節方向を検出し、その検出された調節方向に基づいて発振周波数を制御する制御処理を繰り返し行う制御部とをさらに備えている。
 第23の発明は、第22の発明において、制御部は、基準情報と位相差情報とを用いて、共振周波数に対する発振周波数のずれ方向を検出し、その検出結果に対し平均化処理を行うことにより、発振周波数の調節方向を検出する。
 第24の発明は、第23の発明において、被加熱物が強電界領域を通過するように搬送され、制御部は、被加熱物の搬送速度に基づいて、平均化処理に用いる検出結果のサンプル数を調節する。
 第25の発明は、第22乃至第24の何れか1つの発明において、発振器は、直交変調された電磁波を放射アンテナに出力し、反射波情報を直交復調する直交復調部をさらに備え、入射波情報を構成する第1I成分情報及び第1Q成分情報と、反射波情報を構成する第2I成分情報及び第2Q成分情報とを用いる演算処理により、位相差情報を生成する。
 第26の発明は、第25の発明において、信号抽出部は、伝送線路から入射波情報を抽出し、直交復調部は、1つの直交復調器と、信号抽出部から直交復調器に対し、入射波情報が入力される第1期間と、反射波情報が入力される第2期間とを切り替える切替スイッチとを備え、位相差情報の生成周期よりも短い周期で、切替スイッチにより、第1期間と第2期間の切り替えが行われる。
 第27の発明は、第22乃至第26の何れか1つの発明において、信号抽出部は、伝送線路から入射波情報を抽出し、信号抽出部から位相差情報生成部へ入射波情報を伝送する線路には、入射波情報と反射波情報との位相のずれを補正する遅延線路又は遅延素子が設けられている。
 第28の発明は、第22乃至第25の何れか1つの発明において、制御部は、発振器の電磁波の出力タイミングにおける位相の入射波情報を用いて、位相差情報の生成を行うように構成され、演算処理の前に、入射波情報に対し反射波情報との位相のずれの補正を行う。
 第29の発明は、第22乃至第28の何れか1つの発明において、制御部は、位相差情報に基づいて、被加熱物に吸収される電磁波エネルギー量を推測し、その推測結果に基づいて発振器の出力制御を行う。
 第30の発明は、第22乃至第29の何れか1つの発明において、基準情報は、所定の幅を持つ閾値範囲であり、制御部は、被加熱物の加熱目標状態に対する、該被加熱物の加熱進行度合いを推測し、その推測結果に基づいて閾値範囲の幅を調節する。
 第31の発明は、第22乃至第30の何れか1つの発明において、強電界領域を順番に通過するように、複数の被加熱物が間隔を空けて搬送され、制御部は、1つの被加熱物が強電界領域を通過する期間に制御処理を繰り返す周波数制御を行うと共に、該周波数制御の制御履歴情報を記録し、その記録後に強電界領域を通過する被加熱物を加熱する期間に、制御履歴情報を用いて周波数制御を行う。
 第32の発明は、第22乃至第31の何れか1つの発明において、強電界領域を順番に通過するように、複数の被加熱物が間隔を空けて搬送され、被加熱物は、印刷装置で印刷されたインクであり、制御部は、制御処理の制御パラメータの調節に、被加熱物の印刷パターンの情報を用いる。
 本発明では、発振器から伝送される周波数帯域の電磁波により共振が生じる共振構造を有する放射アンテナが用いられる。そのため、発振器から放射アンテナへ電磁波が供給されると、放射アンテナでは電磁波による共振が生じる。放射アンテナに沿って形成される強電界領域は、電界強度が比較的高くなる。本発明によれば、共振が生じない場合に比べて、電磁波が被加熱物に吸収されやすいレベルの強電界領域を低電力で形成することができる。
図1は、実施形態1に係る電磁波加熱装置及び処理システムを斜め上から見た斜視図である。 図2は、実施形態1に係る電磁波加熱装置及び処理システムの側面図である。 図3は、実施形態1に係る電磁波加熱装置の上面図である。 図4は、実施形態1の変形例1に係る電磁波加熱装置の上面図である。 図5は、実施形態1の変形例2に係る電磁波加熱装置の上面図である。 図6(a)は、実施形態1の変形例3に係る電磁波加熱装置の上面図であり、図6(b)は、図6(a)のA-A断面図(横断面図)である。 図7は、実施形態1の変形例4に係る電磁波加熱装置の上面図である。 図8は、実施形態1の変形例5に係る電磁波加熱装置を斜め上から見た斜視図である。 図9は、実施形態1の変形例6に係る電磁波加熱装置の拡大上面図である。 図10は、実施形態1の変形例7に係る電磁波加熱装置を斜め上から見た斜視図である。 図11は、実施形態1の変形例8に係る電磁波加熱装置の側面図である。 図12は、実施形態1の変形例9に係る電磁波加熱装置を斜め上から見た斜視図である。 図13は、実施形態1の変形例10に係る電磁波加熱装置の上面図である。 図14は、実施形態1の変形例11に係る電磁波加熱装置の上面図である。 図15は、実施形態1の変形例12に係る電磁波加熱装置の上面図である。 図16は、実施形態1の変形例13に係る電磁波加熱装置の上面図である。 図17は、実施形態1の変形例14に係る電磁波加熱装置の上面図である。 図18は、実施形態1の変形例15に係る電磁波加熱装置及び処理システムを斜め上から見た斜視図である。 図19(a)は、実施形態1のその他の変形例に係る電磁波加熱装置の電界形成部について第1方向に切断した断面図であり、図19(b)は、別の形態の電界形成部の断面図であり、図19(c)は、さらに別の形態の電界形成部の断面図である。 図20は、実施形態2に係る電磁波加熱装置においてカバーを取り外した状態を斜め上から見た斜視図である。 図21は、実施形態2に係る電磁波加熱装置を斜め上から見た斜視図である。 図22は、図21のA-Aの断面図である。 図23は、図21のB-Bの断面図であり、基材が搬送されている状態を示す。 図24(a)は、実施形態2に係る電磁波加熱装置の断面図であり、図23(b)は、実施形態2の変形例1に係る電磁波加熱装置の断面図である。 図25(a)は、実施形態2の変形例2に係る電磁波加熱装置の断面図であり、図25(b)は、実施形態2の変形例3に係る電磁波加熱装置の断面図であり、図25(c)は、実施形態2の変形例4に係る電磁波加熱装置の断面図である。 図26(a)は、実施形態2の変形例5に係る電磁波加熱装置の断面図であり、図26(b)は、実施形態2の変形例6に係る電磁波加熱装置の断面図であり、図26(c)は、実施形態2の変形例7に係る電磁波加熱装置の断面図である。 図27は、実施形態2の変形例8に係る電磁波加熱装置を斜め下から見た斜視図である。 図28は、実施形態2の変形例9に係る電磁波加熱装置を側方から見た概略構成図である。 図29(a)は、図25(b)のC-Cの断面図であり、図29(b)は、チョーク構造55の平面形状について図29(a)とは別のバリエーションの断面図であり、図29(c)は、さらに別のバリエーションの断面図である。 図30(a)は、実施形態3に係る電磁波加熱装置を側方から見た概略構成図であり、図30(b)は、その電磁波加熱装置の基板の平面図である。 図31は、実施形態4に係る電磁波加熱装置においてカバーを取り外した状態を斜め上から見た斜視図である。 図32は、実施形態4に係る電磁波加熱装置を斜め上から見た斜視図である。 図33は、図32のA-Aの断面図である。 図34は、図32のB-Bの断面図であり、基材が搬送されている状態を示す。 図35は、実施形態4に係る電磁波加熱装置の断面図である。 図36は、実施形態4に係る電磁波加熱装置の概略回路図である。 図37は、実施形態4に係る電磁波加熱装置の制御部により行われる処理のフローチャートである。 図38は、共振周波数に対する位相差電圧の関係を表すグラフ等を記載した図表である。 図39(a)~(f)は、共振周波数に発振周波数を追従させる様子を説明するための図表である。 図40は、実施形態4の変形例1に係る平均化処理を説明するための図表である。 図41は、実施形態4の変形例3に係る電磁波加熱装置の概略回路図である。 図42は、実施形態4の変形例3に係る電磁波加熱装置の制御部により行われる処理のフローチャートである。 図43は、共振周波数に発振周波数を追従させる様子を説明するための図表(スミスチャート)である。 図44は、実施形態4の変形例4に係る電磁波加熱装置の概略回路図である。 図45は、実施形態4の変形例5に係る電磁波加熱装置の概略回路図である。 図46は、実施形態4の変形例9に係る電磁波加熱装置の概略回路図である。
 以下、図面を参照しながら、本発明を実施するための形態を詳細に説明する。なお、以下の実施形態及び変形例は、本発明の一例であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
<実施形態1>
 本実施形態は、高周波等の電磁波を利用して被加熱物20を加熱する電磁波加熱装置10である。電磁波加熱装置10は、誘電加熱方式の加熱装置である。電磁波加熱装置10で利用される電磁波は、50MHz以上の高周波(例えば800MHz以上の高周波(マイクロ波など))である。
 電磁波加熱装置10で加熱される被加熱物20は、高周波を吸収する物質(液体、固体など)を含む。被加熱物20は、厚みが薄い薄物であり、シート状又は膜状を呈する。被加熱物20は、例えば接着剤である。被加熱物20は、シート状で長尺の基材(搬送物)11の表面に塗布又は配置される。被加熱物20は、基材11と共に所定の方向(図1に示す矢印の方向)に搬送されて、高周波による強電界領域を通過する。その際、被加熱物20は、高周波を吸収することで加熱される。なお、被加熱物20は、シート状又は膜状ではなくてもよく、ある程度の厚みがあってもよい。また、被加熱物20(例えば接着剤)は、基材11の表面に載せられたシート体(例えば封筒)に塗布又は配置されてもよく、この場合、被加熱物20は、シート体及び基材11とともに搬送される。
 電磁波加熱装置10は、基材11の表面に被加熱物20を塗布又は配置する上流側装置(例えば、接着剤の塗布装置。図示省略)と、少なくとも上流側装置の入口から電磁波加熱装置10の出口までの処理区間において基材11を搬送する搬送機構12と共に、搬送式の処理システムを構成している。搬送機構12は、複数対のローラ13を用いて基材11及び被加熱物20を搬送する(図2参照)。以下では、被加熱物20の搬送方向を「第1方向」と言い、第1方向に直交する方向を「第2方向」と言う(図1等参照)。また、電磁波加熱装置10において、被加熱物20が配置される側を「表側」と言い、その反対側を「裏側」と言う(図2参照)。
[電磁波加熱装置の構成]
 電磁波加熱装置10は、高周波を発振する発振器21と、被加熱物20を加熱するための高周波を放射する放射アンテナ22と、片面に放射アンテナ22が設けられた基板23とを備えている。放射アンテナ22は、発振器21から出力される高周波を放射する導体であって発振器21から伝送される周波数帯域の高周波により導体で共振が生じる共振構造を有する。電磁波加熱装置10は、発振器21から放射アンテナ22へ供給される高周波により、放射アンテナ22に沿って、被加熱物20を加熱するための強電界領域(高周波加熱領域)が形成されるように構成されている。
 発振器21には、例えば半導体発振器が用いられる。基板23は、平板状に形成されて放射アンテナ22を支持する。また、基板23は、基板23の表面に露出する誘電体層24と、誘電体層24の裏面に積層された接地電極層25とを有する。基板23には、発振器21からの高周波が入力される入力部30が設けられている。入力部30は、例えば同軸コネクタである。放射アンテナ22は入力部30に接続されている。放射アンテナ22において、発振器21からの高周波の入力箇所(給電箇所)Xは、搬送機構12により搬送される被加熱物20の通過領域の外側に位置している。
 放射アンテナ22は、図3に示すように、入力部30に入力された高周波が供給される第1櫛歯電極31と、接地電極層25に電気的に接続された第2櫛歯電極32とを備えている。第1櫛歯電極31は、高圧側の電極であり、複数の歯部31aを有する。第2櫛歯電極32は、接地側の電極であり、複数の歯部32aを有する。第1櫛歯電極31と第2櫛歯電極32とは、同一平面内において、それぞれの歯部31a,32a同士が、隙間を空けて噛み合うように配置されている。放射アンテナ22は、インターディジタル型の回路により構成されている。
 ここで、第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aは、本発明に係る導体線路に相当する。各歯部31a,32aは、直線状の導体線路である。放射アンテナ22では、多数の歯部31a,32aが、所定の方向(第1方向)に隙間を空けて配列されている。多数の歯部31a,32aが配列された領域(以下、「配列領域」と言う。)は、平面視で帯状の領域である。放射アンテナ22では、多数の導体線路の一部である第1櫛歯電極31に、入力部30からの高周波が供給される。放射アンテナ22では、入力部30に高周波が入力される入力期間に、多数の歯部31a,32aに沿って、被加熱物20を加熱するための強電界領域が形成される。
 なお、本明細書において「多数」とは、5以上を意味している。但し、所定の方向に隙間を空けて配列される歯部(導体線路)31a,32aの本数は、3本以上であればよい。また、図3に示す放射アンテナ22のように、各櫛歯電極31,32が多数(5本以上)の歯部31a,32aを有し、歯部31a,32aの合計本数を10本以上としてもよい。
 また、本実施形態では、放射アンテナ22を構成する多数の導体線路について1つ置きに高周波が直接的に供給されるが、全ての導体線路に高周波が直接的に供給されるようにしてもよいし(後述の実施形態1の変形例10等を参照)、多数の導体線路において2つ置きに高周波が直接的に供給されるようにしてもよい。
 図3に示す各櫛歯電極31,32について詳細に説明する。第1櫛歯電極31は、誘電体層24の表面に支持されている。第1櫛歯電極31は、入力部30側から延びる基部線路31bと、基部線路31bに付け根が接続された多数の歯部31aとを備えている。基部線路31bは、入力部30から第2方向に延びる導体線路に接続され、折れ曲がり箇所に位置する入力箇所Xから第1方向に真っすぐ延びている。多数の歯部31aは、互いに平行となるように基部線路31bから突出している。多数の歯部31aは、第1方向に等間隔で配列されている。各歯部31aは、誘電体層24の表面に沿って第2方向に延びており、基部線路31bに直交している。
 第2櫛歯電極31も、誘電体層24の表面に支持されている。第2櫛歯電極31は、基部線路32bと、基部線路32bに付け根が接続された多数の歯部32aとを備えている。基部線路32bは、第1櫛歯電極31の基部線路31bに平行に延びている。基部線路32bは、その一部が誘電体層24の表面に積層され、基板23の外周位置で折り曲げられている。基部線路32bの残りの部分は、折り曲げ箇所から基板23の側面に沿って裏側に延びて、接地電極層25に接続されている。また、多数の歯部32aは、互いに平行となるように、基部線路32bから第1櫛歯電極31側に突出している。多数の歯部32aは、第1方向に等間隔で配列されている。各歯部32aは、誘電体層24の表面に沿って第2方向に延びており、基部線路32bに直交している。
 放射アンテナ22は、上述の入力期間に、各導体線路31a,32aで高周波による共振が同時に生じるように構成されている。具体的に、歯部31aの長さL1と歯部32aの長さL2とは、伝送される高周波の波長(電気長)をλとした場合に、式1を用いて設計される(nは自然数)。隣り合う歯部31aと歯部32aの合計長さは、2m×λ/4で表される(mは自然数)。本実施形態では、歯部31a,32aの長さL1,L2は、式1においてn=1とした長さλ/4である。なお、第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aは、全て同じ長さであり、全て同じ線路幅であるが、長さ又は太さを互いに異ならせてもよい。放射アンテナ22では、それぞれの歯部31a,32aが共振構造を有する。この共振構造は、空間の電磁界分布により共振モードを生じさせる構造ではなく、放射アンテナ22(高周波の伝送体)自体において定在波による共振を生じさせる構造である。
  式1:L1=L2=λ×(2n-1)/4
 放射アンテナ22は、上述の入力期間に、第1方向に隣り合う導体線路31a,32aの間で比較的強固な電界結合が生じるように構成されている。具体的に、放射アンテナ22では、多数の歯部31a,32aが第1方向に等間隔で配列され、第1方向に隣り合う歯部31a,32aの距離(隙間の寸法)Gは、歯部31a,32aの線路幅の5倍以下となっている。この距離Gは、歯部31a,32aの線路幅の3倍以下としてもよいし、1倍以下としてもよい。なお、歯部31a,32aの線路幅について、歯部31aの線路幅と歯部32aの線路幅が互いに異なる場合、歯部31aの線路幅と歯部32aの線路幅の平均値を採用する。この点は、後述する各実施形態及び各変形例において隙間Gの数値範囲を規定する導体線路の線路幅でも同じである。
 誘電体層24は、セラミックなどの誘電体により構成されている。誘電体層24の厚みは、例えば、全面に亘って一様である。誘電体層24は、接地電極層25に対し、第1櫛歯電極31及び第2櫛歯電極32を離間させている。
 接地電極層25は、導体(例えば、金属板)により構成され、接地電位となっている。接地電極層25は、多数の歯部31a、32aの裏側に配置され、誘電体層24を介して配列領域の歯部31a、32aに対面している。接地電極層25を設けることで、上述の入力期間では多数の歯部31a、32aの表側のみに高周波が放射され、多数の歯部31a、32aの表側近傍に強電界領域が形成される。強電界領域では、被加熱物20の導電成分又はイオン物質は導電損失により加熱され、磁性成分は磁性損失により加熱され、誘電成分は誘電損失により加熱される。接地電極層25は、多数の歯部31a、32aの一部に対面する平面寸法としてもよい。
[処理システムの動作]
 電磁波加熱装置10を含めた処理システムの動作について説明を行う。処理システムの電源をONにすると、電磁波加熱装置10及び搬送機構12の各電源がONになる。これにより、搬送機構12により基材11が第1方向に搬送されると共に、発振器21から高周波が発振される。基材11は、被加熱物20側の面を表側(図2において上側)に向けて、放射アンテナ22の表側近傍を搬送される。なお、基材11は、被加熱物20側の面を裏側に向けて搬送してもよい。
 電磁波加熱装置10では、発振器21から出力された高周波が、第1櫛歯電極31の各歯部31aに供給される。第1櫛歯電極31では、上述したように、各歯部31aの長さがλ/4である。そのため、第1櫛歯電極31の各歯部31aでは、高周波による共振が生じ、各歯部31aの先端が、高周波による定在波の腹部となる。
 また、上述したように、第1櫛歯電極31と第2櫛歯電極32の間では、比較的強固な電界結合が生じる。これにより、第2櫛歯電極32の各歯部32aでは、高周波による共振が生じ、各歯部32aの先端が、高周波による定在波の腹部となる。また、第1櫛歯電極31と第2櫛歯電極32の隙間の電界強度は比較的強くなる。
 多数の歯部31a,32aの表側には、基材11及び被加熱物20の搬送路を含むように、強電界領域が形成される。強電界領域を通過する被加熱物20は、誘電成分や導電成分などが高周波により加熱される。これにより、被加熱物20は昇温を経て、所望の物理/化学変化(重合、アニール、乾燥、硬化等)が生じる。
[実施形態1の効果等]
 本実施形態では、高周波の入力期間に、放射アンテナ22における各歯部31a,32aで高周波による共振が生じる。多数の歯部31a,32aに沿って形成される強電界領域は、電界強度が比較的高くなる。本実施形態によれば、共振が生じない場合に比べて、高周波が被加熱物20に吸収されやすいレベルの強電界領域を低電力で形成することができる。
 また、本実施形態では、放射アンテナ22では、多数の歯部31a,32aが所定の方向に隙間を空けて配列され、第1方向に隣り合う歯部31a,32aの距離Gは歯部31a,32aの線路幅の5倍以下である。そのため、隣り合う歯部31a,32aの間では、比較的強い電界結合が生じる。また、隣り合う歯部31aと歯部32aでは、定在波の腹部となる先端と、定在波の節部となる付け根とが、互いに近接する。そのため、隣り合う歯部31a,32aの隙間における電界強度が比較的高くなる。多数の歯部31a,32aの配列領域では強電界領域の面積が広くなり、被加熱物20に対し、平行で厚みが薄い強電界領域が形成される。
 ここで、被加熱物20がシート状又は膜状で、体積の割に表面積が大きい場合、高周波加熱時の放熱量が大きく、被加熱物20を昇温させることが容易ではない。本実施形態では、多数の歯部31a,32aの配列領域において、被加熱物20に対し、平行で厚みが薄い強電界領域が形成される。そして、この強電界領域では、多くの電気力線がシート状又は膜状の被加熱物20に平行となるため、被加熱物20に高周波のエネルギーを集中させることができ、被加熱物20を効率的に昇温及び物理/化学反応を生じさせることができる。また、歯部31a,32aの配列領域では、隣り合う歯部31a,32aの隙間でも電界強度が比較的高く、被加熱物20の加熱を連続的に行うことができ、体積の割に表面積が大きい被加熱物20を効果的に昇温させることができる。
 また、本実施形態では、多数の歯部31a,32aの配列領域(帯状の領域)における幅方向の一端側に高周波による定在波の腹部が形成される歯部31aと、他端側に定在波の腹部が形成される歯部32aとが交互に並ぶ。これにより、定在波の腹部となる各歯部31a,32aの強電界箇所が第1方向に並ぶ強電界列が、2列形成される。そのため、被加熱物20には幅方向の両側から強い電界が作用することになり、平面視における被加熱物20の加熱度合いを均一化することができる。
 また、本実施形態では、放射アンテナ22において高周波の入力箇所Xが、被加熱物20の通過領域の外側に位置している。高周波の入力箇所Xは、通過領域とは重なっていない。ここで、高周波の入力箇所が通過領域と重なる場合、その入力箇所の近傍で電界が集中し、被加熱物20が局所的に加熱される虞がある。それに対し、本実施形態では、そのような局所加熱が生じず、平面視における被加熱物20の加熱度合いを均一化することができる。
<実施形態1の変形例1>
 本変形例では、図4に示すように、各歯部31a,32aが、歯部31a,32aの配列方向(第1方向)に対し斜めに延びている。
 具体的に、第1櫛歯電極31では、第1方向に延びる基部線路31bに対し、各歯部31aが斜めに延びている。第2櫛歯電極32では、第1方向に延びる基部線路32bに対し、各歯部32aが斜めに延びている。第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aとは、互いに平行である。
 また、歯部31a,32aの長さは、実施形態1と同様に、伝送される高周波の波長(電気長)をλとした場合に、λ/4に設計される。各歯部31a,32aでは、高周波による共振が生じ、先端が高周波の腹部となる。
 ここで、図1の被加熱物20に比べて被加熱物20の幅を狭くする場合は、被加熱物20の幅が、歯部31a,32aの長さに比べて短くなり、また強電界領域の幅に比べて狭くなる。被加熱物20は各歯部31a,32aの先端から内側に離れ、各歯部31a,32aの先端の電界は被加熱物20に作用しにくくなる。その結果、被加熱物20に吸収されない高周波のエネルギーが増える。
 それに対し、本変形例では、被加熱物20の幅が歯部31a,32aの長さに比べて短い場合であっても、各歯部31a,32aを斜めにすることで、被加熱物20の幅に合わせて強電界領域の幅を調整することができる。そのため、被加熱物20の加熱に高周波のエネルギーを有効利用することができる。
 なお、後述の各実施形態、及び、各変形例において、本変形例のように各歯部31a,32aの延伸方向を第1方向に対し斜めにする構成と、実施形態1のように各歯部31a,32aの延伸方向を第1方向に直交させる構成との何れを採用してもよい。
<実施形態1の変形例2>
 本変形例では、図5に示すように、第1櫛歯電極31の歯部31aの長さL1が、第2櫛歯電極32の歯部32aの長さL2に比べて長い。第1櫛歯電極31の歯部31aの長さL1は、式2を用いて設計され、第2櫛歯電極32の歯部32aの長さL2は、式3を用いて設計される(n,nはともに自然数であり、n>nの関係が成立する)。図5では、歯部31aの長さL1は「λ×3/4」であり、歯部32aの長さL2は「λ/4」である。
  式2:L1=λ×(2n-1)/4
  式3:L2=λ×(2n-1)/4
 本変形例では、第1櫛歯電極31の各歯部31aにおいては、付け根からλ/4離れた位置と先端との2箇所が、定在波の腹部となる。一方、第2櫛歯電極32の各歯部32aでは、先端の1箇所が、定在波の腹部となる。そのため、放射アンテナ22では、3列の強電界列が形成される。なお、図5とは逆に、第2櫛歯電極32の歯部32aの長さL2が、第1櫛歯電極31の歯部31aの長さL1に比べて長くなるようにしてもよい。
<実施形態1の変形例3>
 本変形例では、図6(a)及び図6(b)に示すように、基板23において多数の歯部31a,32aの配列領域の裏側の誘電体層24をなくしている。配列領域の裏側では、誘電体層24に略矩形状の開口部(凹部)24aが形成されている。接地電極層25は、開口部24a内の空気(誘電体)を介して、各歯部31a,32aに対面する。
 本変形例によれば、誘電体層24が低誘電率の空気に置き換わることで、基板23における誘電損失を削減することができ、被加熱物20の加熱効率が向上する。
<実施形態1の変形例4>
 本変形例では、図7に示すように、変形例3について、基板23における誘電体層24の面積をさらに減らしている。基板23では、第1櫛歯電極31の基部線路31bの裏側及びその近傍と、第2櫛歯電極32の基部線路32bの裏側及びその近傍だけに、誘電体層24が設けられている。本変形例によれば、基板23における誘電損失をさらに削減することができる。
<実施形態1の変形例5>
 本変形例では、図8に示すように、第1櫛歯電極31及び第2櫛歯電極32の多数の歯部31a,32aに対し被加熱物20が配置される側(表側)を覆う被覆部材26が設けられている。被覆部材26は、板状の誘電体により構成されている。これにより、第1櫛歯電極31と第2櫛歯電極32の隙間に異物が侵入することを抑制することができる。
 また、本変形例では、第1櫛歯電極31及び第2櫛歯電極32を囲うように筐体28が設けられている。筐体28は、下方が開放された箱状に形成され、基板23の表面を覆うように設けられている。筐体28は、基材11及び被加熱物20が通過する箇所に、基板23との間に隙間28aが形成されるように設けられている。なお、筐体28に開口部(例えば、横長のスリット)を形成して、その開口部に基材11及び被加熱物20を通過させるようにしてもよい。
<実施形態1の変形例6>
 本変形例では、図9に示すように、第2櫛歯電極32の位置を第1方向に少しスライドさせている。放射アンテナ22では、隣り合う歯部31a,32aの隙間が狭い箇所と、隙間が広い箇所とが交互に並ぶ。これにより、各歯部31a,32aにおける共振周波数を調節することができる。
<実施形態1の変形例7>
 本変形例では、図10に示すように、基板23の接地電極層25上に、誘電体層を構成する複数の支持板24が設けられている。各支持板24は、例えば円板状に形成されている。各支持板24は、第1櫛歯電極31を支持する。本変形例によれば、基板23における誘電損失を削減することができる。
 また、基部線路31bに接続する導体は、各支持板24に重なる位置が、支持板24の形状に合わせて膨らんだ幅広部49となっている。幅広部49は円形である。この場合、接地電極層25に対して基部線路31b及び支持板24を固定する際、接地電極層25の表面に支持板24及び幅広部49を重ねた状態で、幅広部49の表面から接地電極層25に向けてネジ止めを行う。なお、図10では第2櫛歯電極32の記載を省略している。第2櫛歯電極32についても、第1櫛歯電極31と同様に、複数の支持板24により支持するようにしてもよく、また幅広部49を設けてもよい。
<実施形態1の変形例8>
 本変形例では、図11に示すように、入力部30が基板23の裏側に設けられている。具体的に、入力部30は、基板線路31bのうち多数の歯部31aが接続されていない端部側の部分の裏側に配置され、その端部側の部分に接続されている。また、基板線路31bにおける入力部30の接続箇所は、支持板24に支持されている。
 本変形例によれば、基材11が幅広である場合であっても、入力部30が基材11に覆われることがなく、入力部30へのアクセスが容易である。また、基板23の表側に入力部30が突出することはないため、入力部30が基材11に干渉することはなく、幅広の基材11を使用することができる。
<実施形態1の変形例9>
 本変形例では、図12に示すように、基板23の表面において、第1櫛歯電極31の基部線路31bの外側に、基部線路31bに沿って多数のグランドピン29が設けられている。各グランドピン29は、接地電極層25に接触している。本変形例によれば、配列領域の幅方向における高周波の漏洩を抑制することができる。なお、第2櫛歯電極32の基部線路32bの外側に、多数のグランドピン29を設けてもよい。
<実施形態1の変形例10>
 本変形例は、実施形態1と同様に、搬送式の処理システムを構成する電磁波加熱装置10である。以下では、実施形態1とは異なる点を中心に説明を行う。
 本変形例では、放射アンテナ22が、図13に示すように、第1櫛歯電極31と、第1櫛歯電極31に隙間を空けて噛み合う第2櫛歯電極32とが設けられた閉回路である。放射アンテナ22は、第1櫛歯電極31及び第2櫛歯電極32に加えて、第1方向における配列領域の一端側で第1櫛歯電極31と第2櫛歯電極32を接続する第1接続線路57と、他端側で第1櫛歯電極31と第2櫛歯電極32を接続する第2接続線路58とを備えている。
 また、入力部30が、第1接続線路57を支持する誘電体層24の裏側に設けられて、第1接続線路57に接続されている。放射アンテナ22では、入力部30が接続された入力箇所Xから、第1櫛歯電極31及び第2櫛歯電極32の両方に高周波が直接的に供給される。なお、入力部30を2箇所設けてもよい。この場合、もう一方の入力部30は、例えば第2接続線路58に接続する。
 第1櫛歯電極31は、複数の歯部31aを有する。第2櫛歯電極32も、複数の歯部32aを有する。第1櫛歯電極31と第2櫛歯電極32とは、同一平面内において、それぞれの歯部31a,32a同士が、隙間を空けて互いに噛み合うように配置されている。第1櫛歯電極31及び第2櫛歯電極32は、両方の櫛歯電極31,32が高圧側電極となる点で、実施形態1の第1櫛歯電極31及び第2櫛歯電極32とは相違するが、実施形態1又は変形例1の第1櫛歯電極31及び第2櫛歯電極32と同じ形状および寸法にすることができる。
 第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aは、本発明に係る導体線路に相当する。放射アンテナ22では、多数の歯部31a,32aが第1方向に等間隔で配列されている。
 本変形例では、実施形態1と同様に、高周波の入力期間に、各歯部31a,32aで高周波による共振が生じる。また、第1方向に隣り合う歯部31a,32aの距離Gは歯部31a,32aの線路幅の5倍以下であり、隣り合う導体線路31a,32aの間で比較的強い電界結合が生じる。そのため、多数の歯部31a,32aに沿って強電界領域が形成される。なお、第1方向に隣り合う歯部31a,32aの距離Gは、歯部31a,32aの線路幅の3倍以下にしてもよいし、1倍以下にしてもよい。また、本変形例について、上述の変形例2~9の構成を採用してもよい。
<実施形態1の変形例11>
 本変形例は、実施形態1と同様に、搬送式の処理システムを構成する電磁波加熱装置10である。以下では、実施形態1とは異なる点を中心に説明を行う。
 本変形例は、放射アンテナ22が、図14に示すように、ミアンダ回路(ミアンダ配線パターン)により構成されている。具体的に、放射アンテナ22は、第2方向に延びる直線線路44と、直線線路44の端部に連続する折り返し部47とが交互に設けられることで、所定の帯状領域内において複数回蛇行する回路が構成されている。放射アンテナ22は、互いに同じ長さに形成された多数の直線線路44を有する。各直線線路44は、本発明に係る導体線路に相当する。放射アンテナ22では、多数の直線線路44が第1方向に等間隔で配列されている。直線線路44の長さは、λ×(2n-1)/4に設計される(nは自然数)。なお、直線線路44の本数は3本以上であればよい。
 また、放射アンテナ22では、多数の直線線路44のうち、第1方向において最も端の直線線路44に、入力部30から延びる基部線路48が接続されている。なお、上述の変形例10と同様に、入力部30を2箇所にしてもよい。
 本変形例では、高周波の入力期間に、各直線線路44で高周波による共振が生じる。また、第1方向に隣り合う直線線路44の距離Gは、直線線路44の線路幅の5倍以下であり、隣り合う直線線路44の間で比較的強い電界結合が生じる。そのため、多数の直線線路44に沿って強電界領域が形成される。なお、第1方向に隣り合う直線線路44の距離Gは、直線線路44の線路幅の3倍以下にしてもよいし、1倍以下にしてもよい。
<実施形態1の変形例12>
 本変形例は、実施形態1と同様に、搬送式の処理システムを構成する電磁波加熱装置10である。以下では、実施形態1とは異なる点を中心に説明を行う。
 本変形例では、放射アンテナ22が、図15に示すように、互いに同じ長さに形成された多数の渦巻き状線路63を備えている。各渦巻き状線路63は、本発明に係る導体線路に相当する。放射アンテナ22では、多数の渦巻き状線路63が第1方向に等間隔で配列されている。渦巻き状線路63の長さは、λ×(2n-1)/4に設計される(nは自然数)。なお、渦巻き状線路63の本数は3本以上であればよい。また、図15では、渦巻き状線路63を含む導体部分にハッチングを付けている。
 放射アンテナ22は、多数の渦巻き状線路63に加え、互いに間隔を空けて平行に配置された第1基部線路61と第2基部線路62を備えている。放射アンテナ22では、付け根が第1基部線路61に接続された渦巻き状線路63と、付け根が第2基部線路62に接続された渦巻き状線路63とが交互に並ぶ。
 基板23では、第1方向における一方の端部に第1入力部30aが、他方の端部に第2入力部30bが設けられている。各入力部30a,30bには、発振器21から出力された高周波が入力される。各入力部30a,30bは、第1基部線路61及び第2基部線路62にそれぞれ接続されている。
 本変形例では、高周波の入力期間に、各渦巻き状線路63で高周波による共振が生じ、渦巻き状線路63の内側の線路間で強い電界結合が生じる。また、第1方向に隣り合う渦巻き状線路63の距離Gは、各渦巻き状線路63の線路幅の5倍以下であり、隣り合う渦巻き状線路63の間でも比較的強い電界結合が生じる。そのため、多数の渦巻き状線路63に沿って強電界領域が形成される。なお、第1方向に隣り合う渦巻き状線路63の距離Gは、渦巻き状線路63の線路幅の3倍以下にしてもよいし、1倍以下にしてもよい。
<実施形態1の変形例13>
 本変形例は、実施形態1と同様に、搬送式の処理システムを構成する電磁波加熱装置10である。以下では、実施形態1とは異なる点を中心に説明を行う。
 本変形例は、放射アンテナ22が、図16に示すように、1本の基部線路85と、付け根が基部線路85に接続された多数の分岐型線路86とを備えている。各分岐型線路86は、途中で2手に分岐し、分岐箇所から先端側が渦巻状に形成されている。各分岐型線路86は、互いに同じ形状及び寸法である。各分岐型線路86は、本発明に係る導体線路に相当する。放射アンテナ22では、第2方向における基部線路85の片側で、多数の分岐型線路86が第1方向に等間隔で配列され、基部線路85のもう片側でも、複数の分岐型線路86が第1方向に等間隔で配列されている。分岐型線路86は、付け根から分岐後の各先端までの長さが、λ×(2n-1)/4に設計される(nは自然数)。なお、基部線路85の片側における分岐型線路86の本数は3本以上であればよい。また、図16では、基部線路85及び分岐型線路86を含む導体部分にハッチングを付けている。
 放射アンテナ22では、第1方向における基部線路85の両側に、入力部30a,30bがそれぞれ接続されている。各入力部30a,30bには、発振器21から出力された高周波が入力される。
 本変形例では、高周波の入力期間に、各分岐型線路86で高周波による共振が生じ、各分岐型線路86の内側の線路間で強い電界結合が生じる。また、第1方向に隣り合う分岐型線路86の距離Gは、分岐型線路86の線路幅の5倍以下であり、隣り合う分岐型線路86の間で比較的強い電界結合が生じる。そのため、多数の分岐型線路86に沿って強電界領域が形成される。なお、第1方向に隣り合う分岐型線路86の距離Gは、分岐型線路86の線路幅の3倍以下にしてもよいし、1倍以下にしてもよい。
<実施形態1の変形例14>
 本変形例は、実施形態1と同様に、搬送式の処理システムを構成する電磁波加熱装置10である。以下では、実施形態1とは異なる点を中心に説明を行う。
 本変形例は、電磁波加熱装置10が、図17に示すように、それぞれに入力部30が接続された複数の放射アンテナ22を備えている。複数の放射アンテナ22は、第1方向に間隔を空けて配列されている。また、各放射アンテナ22は、第2方向に隙間を空けて配列された3本以上の直線線路38を有する。直線線路38の長さは、λ×(2n-1)/4に設計される(nは自然数)。なお、各放射アンテナ22における直線線路38の本数は3本以上であればよい。また、第2方向に隣り合う直線線路38の距離Gについて、直線線路38の線路幅の5倍以下としているが、3倍以下にしてもよいし、1倍以下にしてもよい。また、図17では、放射アンテナ22は、上述のミアンダ回路であるが、それ以外の回路を採用してもよい。
 本変形例では、各入力部30に高周波が入力される期間に、各放射アンテナ22において各直線線路38で高周波による共振が生じ、第2方向に隣り合う直線線路38の間で比較的強い電界結合が生じる。そのため、各放射アンテナ22で、多数の直線線路38に沿って強電界領域が形成される。
<実施形態1の変形例15>
 本変形例では、図18に示すように、放射アンテナ22において、発振器21からの高周波の入力箇所(給電箇所)Xが、被加熱物20の搬送方向の下流側に位置している。高周波の入力箇所Xは、放射アンテナ22に入力部30が直接接続されている場合は、放射アンテナ22における入力部30の接続箇所であり、放射アンテナ22に入力部30が導体線路を介して接続されている場合は、放射アンテナ22における導体線路の接続箇所である。
 ここで、被加熱物20が水分を含む場合、被加熱物20に含まれる水分量は搬送方向の上流側ほど多くなる。そのため、高周波の入力箇所Xが搬送方向の上流側の場合(図1などの場合)、放射アンテナ22の上流側で被加熱物20に吸収される高周波が多くなり過ぎる虞がある。この場合、放射アンテナ22の下流側に供給される高周波が少なくなり、搬送方向における均一加熱は難しい。
 それに対し、本変形例では、高周波の入力箇所Xが、被加熱物20の水分量が減少した下流側である。そのため、放射アンテナ22の下流側で被加熱物20に吸収される高周波が多くなり過ぎることを回避できる。本変形例によれば、搬送方向における均一加熱を実現することができる。
<実施形態1のその他の変形例>
 上述の実施形態1及び各変形例(以下、「実施形態1等」と言う。)では、本発明に係る導体線路36の断面形状が略矩形であるが、図19(a)に示すように、断面視において導体線路36に曲面部37を設けてもよい。なお、図19(a)に示す導体線路36は、実施形態1等の歯部31a,32a、変形例10の歯部31a,32a、変形例11の直線線路44、変形例12の渦巻き状線路63、変形例13の分岐型線路86、変形例14の直線線路38に相当する。この点は、図19(b)~図19(c)も同じである。ここで、導体線路36の断面形状が略矩形である場合、高周波電力を増大させると、導体線路36の間で放電が生じて、基材11が損傷する虞がある。それに対し、導体線路36に曲面部37を設けることで、導体線路36の間で放電が生じることを抑制することができる。なお、図19(a)では導体線路36の裏側(基板23側)に曲面部37を設けたが、導体線路36の表側に曲面部37を設けても良い。また、導体線路36の断面形状は、角がない断面形状(例えば円形又は楕円形)としても良い。
 上述の実施形態1の変形例3、4では、多数の歯部31a,32aの配列領域の裏側で接地電極層25が露出しているが、図19(b)に示すように、接地電極層25の表側に誘電体板39を設けてもよい。これにより、高周波エネルギーの一部が誘電体板39に吸収されるため、導体線路36の間で放電が生じることを抑制することができる。
 上述の実施形態1等では、各導体線路36が露出しているが、図19(c)に示すように、樹脂又はセラミックなどの誘電体43により、導体線路36を被覆してもよい。この場合も、導体線路36の間で放電が生じることを抑制することができる。
 上述の実施形態1等では、放射アンテナ22の表側だけで被加熱物20の加熱を行ったが、基板23を設けずに、放射アンテナ22の裏側でも被加熱物20の加熱を行うようにしてもよい。
 上述の実施形態1等において、電磁波加熱装置10は、基材11上における液体あるいは固体の被加熱物20の加熱を目的とせずに、単に基材11そのものの加熱を目的とした装置であってもよい。また、電磁波加熱装置10は、被加熱物20の搬送を行うことなく、被加熱物20の加熱を行うものであってもよい。
<実施形態2>
 本実施形態は、高周波等の電磁波を利用して被加熱物20を加熱する電磁波加熱装置10である。電磁波加熱装置10は、誘電加熱方式の加熱装置である。電磁波加熱装置10で利用される電磁波は、50MHz以上の高周波(例えば800MHz以上の高周波(マイクロ波など))である。
 電磁波加熱装置10で加熱される被加熱物20は、高周波を吸収する物質(液体、固体など)を含む。被加熱物20は、厚みが薄い薄物であり、シート状又は膜状を呈する。被加熱物20は、例えば接着剤である。被加熱物20は、シート状で長尺の基材(搬送物)11の表面に塗布又は配置される。被加熱物20は、基材11と共に所定の方向(図20に示す矢印の方向)に搬送されて、高周波による強電界領域を通過する。その際、被加熱物20は、高周波を吸収することで加熱される。なお、被加熱物20は、シート状又は膜状ではなくてもよく、ある程度の厚みがあってもよい。また、被加熱物20(例えば接着剤)は、基材11の表面に載せられたシート体(例えば封筒)に塗布又は配置されてもよく、この場合、被加熱物20は、シート体及び基材11とともに搬送される。
 電磁波加熱装置10は、基材11の表面に被加熱物20を塗布又は配置する上流側装置(例えば、接着剤の塗布装置。図示省略)と、少なくとも上流側装置の入口から電磁波加熱装置10の出口までの処理区間において基材11を搬送する搬送機構12と共に、搬送式の処理システムを構成している。搬送機構12は、複数対のローラ13を用いて基材11及び被加熱物20を搬送する(図23参照)。以下では、基材11の搬送方向を「第1方向」と言い、第1方向に直交する方向を「第2方向」と言う(図20等参照)。また、電磁波加熱装置10において、カバー50側を「表側」と言い、基板23側を「裏側」と言う(図22等参照)。
 ここで、電磁波加熱装置では、電磁波の漏洩対策が必要となる。特開昭57-118281号公報には、誘電加熱装置を囲むケーシングと、ケーシングの記録材進入口及び排出口に共振室とが設けられた定着装置が記載されている。この定着装置では、誘電加熱装置から発せられる電磁波の一部が、記録材以外に照射され、定着器装置内で反射・散乱を繰り返し排出口及び進入口まで到達するが、記録材進入口及び排出口に共振室を設けることにより電波の漏洩を防止できる。
 他方、電磁波加熱装置では、放射アンテナが配置された内部空間を外部から遮蔽する遮蔽部に対し、導入部及び導出部を設けることで、被加熱物(例えば、接着剤)を含む搬送物が、遮蔽部の内部空間を連続的に通過することが可能となる。そして、連続処理により、多くの被加熱物に対する加熱を短時間で行うことが可能となる。しかし、特開昭57-118281号公報に記載の装置は、導入部から導出部に向かう搬送物の全体が、遮蔽部の内部空間を通過できるようにしている。そのため、搬送物に対して被加熱物が小さい場合でも、遮蔽部の大きさを確保する必要がある。
 本実施形態は、このような事情に鑑みてなされたものであり、電磁波を利用して被加熱物を加熱する電磁波加熱装置について、遮蔽部のコンパクト化を図ることを目的とする。
[電磁波加熱装置の構成]
 電磁波加熱装置10は、図20及び図21に示すように、高周波を発振する発振器21と、被加熱物20を加熱するための高周波を放射する放射アンテナ22と、片面に放射アンテナ22が設けられた基板23とを備えている。放射アンテナ22は、発振器21から出力される高周波を放射する導体であって発振器21から伝送される周波数帯域の高周波により導体で共振が生じる共振構造を有する。電磁波加熱装置10は、発振器21から放射アンテナ22へ供給される高周波により、放射アンテナ22に沿って、被加熱物20を加熱するための強電界領域(高周波加熱領域)が形成されるように構成されている。電磁波加熱装置10は、基板23の放射アンテナ22側を覆うカバー50をさらに備えている。
 発振器21には、例えば半導体発振器が用いられる。基板23及びカバー50は、金属製である。基板23は、接地された接地電極に相当する。基板23及びカバー50は、放射アンテナ22が配置された内部空間40(図22参照)を外部から遮蔽する遮蔽部60に相当する。カバー50は、遮蔽部60の内部空間40を片側(上側)から区画する第1区画部に相当する。基板23は、第1区画部とは反対側(下側)から内部空間40を区画する第2区画部に相当する。基板23とカバー50の間には、平面視における遮蔽部60の外周部において周方向に連続する連続隙間70が形成されている。
 放射アンテナ22は、インターディジタル型の回路により構成されている。放射アンテナ22は、第1櫛歯電極31と、第1櫛歯電極31に隙間を空けて噛み合う第2櫛歯電極32とを備えている。第1櫛歯電極31は、複数の歯部31aにより櫛状に形成されている。第2櫛歯電極32は、複数の歯部32aにより櫛状に形成されている。
 第1櫛歯電極31は、真っすぐ延びる基部線路31bと、基部線路31bに付け根が接続された複数の歯部31aとを備えている。複数の歯部31aは、互いに平行に設けられている。各歯部31aは、基部線路31bから斜めに延びている。複数の歯部31aは、第1方向に等間隔で配列されている。
 第2櫛歯電極32は、真っすぐ延びる基部線路32bと、基部線路32bに付け根が接続された複数の歯部32aとを備えている。基部線路32bは、第1櫛歯電極31の基部線路31bに平行である。複数の歯部32aは、互いに平行に設けられている。第2櫛歯電極32の歯部32aは、第1櫛歯電極31の歯部31aに平行である。各歯部32aは、基部線路32bから斜めに延びている。複数の歯部32aは、第1方向に等間隔で配列されている。
 放射アンテナ22では、同一平面内において、複数の歯部31a,32aが、所定の方向(第1方向)に隙間を空けて配列されている。複数の歯部31a,32aが配列された領域(以下、「配列領域」と言う。)は、平面視で帯状の領域である。なお、第1の方向に配列される歯部(導体線路)31a,32aの合計本数は、3本以上であればよく、本実施形態のように10本以上としてもよい。
 放射アンテナ22は、第1櫛歯電極31及び第2櫛歯電極32に加え、第1方向における配列領域の一端側で第1櫛歯電極31と第2櫛歯電極32を接続する第1接続線路57と、配列領域の他端側で第1櫛歯電極31と第2櫛歯電極32を接続する第2接続線路58とを備えている。放射アンテナ22は閉回路である。第1接続線路57には、発振器21からの高周波が入力される入力部30が接続されている。入力部30は、例えば同軸コネクタであり、同軸線路を介して発振器21に接続されている。入力部30は、基板23の裏側に設けられている。入力部30に高周波が入力される入力期間に、放射アンテナ22の対面領域(配列領域の上方の領域)では、被加熱物20を加熱するための強電界領域が形成される。強電界領域は、対面領域のうち放射アンテナ22の表側近傍に形成され、平行で厚みが薄い領域となる。
 放射アンテナ22は、上述の入力期間に、発振器21が発振する高周波の周波数帯域で、高周波の共振が生じるように構成されている。放射アンテナ22では、各歯部31a,32aで高周波による共振が同時に生じる。歯部31aの長さL1と歯部32aの長さL2とは、伝送される高周波の波長(電気長)をλとした場合に、式4及び式5を用いて設計される(n、nは自然数)。隣り合う歯部31aと歯部32aの合計長さは、2m×λ/4で表される(mは自然数)。本実施形態では、歯部31a,32aの長さL1,L2は、ともにλ/4である。なお、第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aは、全て同じ長さにしているが、長さを互いに異ならせてもよい。
  式4:L1=λ×(2n-1)/4
  式5:L2=λ×(2n-1)/4
 放射アンテナ22は、上述の入力期間に、第1方向に隣り合う歯部31a,32aの間で比較的強固な電界結合が生じるように構成されている。具体的に、放射アンテナ22では、複数の歯部31a,32aが第1方向に等間隔で配列され、第1方向に隣り合う歯部31a,32aの距離(隙間の寸法)は、歯部31a,32aの線路幅の5倍以下となっている。この距離は、歯部31a,32aの線路幅の3倍以下としてもよいし、1倍以下としてもよい。なお、第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aは、全て同じ線路幅にしているが、線路幅を互いに異ならせてもよい。
 基板23は、例えば金属製の板材を用いて構成されている。基板23の平面形状は、略矩形である。基板23の長手方向は、第1方向に一致している。基板23の表側には、平面形状が略矩形の凹部17が形成されている。凹部17の長手方向も第1方向に一致している。凹部17には、放射アンテナ22が収容されている。凹部17では、例えば底面に設けられた誘電体(図示省略)によって、放射アンテナ22が浮いた状態で支持されている。放射アンテナ22は、基板23の金属部分から電気的に絶縁されている。基板23の表面のうち凹部17以外の領域は、放射アンテナ22を囲う平坦領域27となっている。平坦領域27の高さ位置は、例えば、放射アンテナ22の上面と同程度又は少し上側あるいは下側となっている。
 なお、本実施形態では、基板23が、枠状の表側金属板23aと、表側金属板23aの裏面に重ねられた矩形状の裏側金属板23bとにより構成されているが、基板23は、片面に凹部17が形成された1枚の金属板により構成してもよい。また、平坦領域27の表面及び/又は放射アンテナ22の上面には、強電界による放電の発生を抑制するために、高周波を吸収するコーティング(例えば、誘電体のコーティング)を施してもよい。
 カバー50は、金属製の筐体である。カバー50は、図21及び図22に示すように、表側から放射アンテナ22を覆う本体部51と、本体部51の全周囲を囲うように本体部51に一体化された外周部52と、本体部51の上面に接続されたダクト部53とを備えている。ダクト部53の外端部には、内部空間40を搬送される被加熱物20に空気を供給する送風機35が取り付けられている。
 本体部51は、平面視において略矩形状を呈し、例えば凹部17と同程度の平面寸法を有する。本体部51は、凹部17の真上に位置している。本体部51は、下側が開放された箱状に形成されている。図23に示すように、本体部51の内部空間とダクト部53の内部空間とは、互いに繋がっており、送風機35から被加熱物20に向かう空気が流れる送風通路45となっている。
 外周部52は、本体部51よりも外側の部分であり、平面視において略矩形の枠状を呈する。外周部52は、周方向に亘って、連続隙間70を介して基板23の平坦領域27に対面している。外周部52には、連続隙間70を通じた高周波の漏洩を防止するシールド構造55が全周囲に亘って設けられている。シールド構造55は、例えばチョーク構造55により構成されている。チョーク構造の構造や形状は、特に限定されないが、短絡型λ/4共振チョークを採用することができる。チョーク構造55は、断面視において渦巻状(又はリング形状)の空洞より構成され、放射アンテナ22寄りの位置に開口している。なお、チョーク構造55の寸法は、例えば、断面視の周長が「λ/2×a(aは自然数)」で、深さが「λ/4×b(bは自然数)」となる。λは、チョーク構造55における高周波の電気長である。
 ダクト部53は、基材11の搬送方向(第1方向)において上流側(導入部71側)に配置されている。ダクト部53は、第1方向において下流側に向かって斜め下方に傾斜している。送風機35の送風方向は、第1方向の下流側を向いている。また、本体部51の内部には、複数の風向調節板68が設けられている。各風向調節板68は、例えばルーバーであり、風向を第1方向の下流側に向かせる。これらの構成により、送風機35から送風された空気は、第1方向の下流側に向かって流れ、連続隙間70のうち導出部72から主に外部に排出され、一部は側方隙間73,74から排出される。なお、風向調節板68は省略してもよい。
 送風通路45には、放射アンテナ22から放射される高周波から送風機35を遮蔽し、且つ、送風機35から被加熱物20に向かう空気を通過させる貫通孔46aが形成された金属製のシールド部材46が設けられている。シールド部材46は、板状に形成されている。シールド部材46は、送風通路45を上流側と下流側に区画するように(上下に区画するように)、本体部51に取り付けられている。シールド部材46には、複数の貫通孔46aが形成されている。各貫通孔46aは、放射アンテナ22から放射される高周波が通過できない大きさに形成されている。
[遮蔽部の構成]
 図22及び図23等を参照しながら、遮蔽部60の構成について説明を行う。
 遮蔽部60は、内部空間40に放射アンテナ22を収容する筐体であり、基板23及びカバー50により構成されている。遮蔽部60は、導入部71及び導出部72などを設けることで基材11の通過を許容しつつ、内部空間40が遮蔽空間となるように構成されている。内部空間40では、被加熱物20が放射アンテナ22の対面領域を通過するように、基材11が導入部71から導出部72に向かって搬送される。
 遮蔽部60には、内部空間40を外部に連通させる隙間として、遮蔽部60の側部の全周囲に亘って連続する連続隙間70が形成されている。例えば、遮蔽部60では、カバー50が、基板23に対して浮いた状態になるように、支持部材(図示省略)により支持されている。
 連続隙間70は、断面視において、基板23の平坦領域27の上面とカバー50の外周部52の下面とにより形成されている。断面視における連続隙間70の隙間寸法(平坦領域27と外周部52との距離)は、例えば遮蔽部60の全周囲に亘って一定である。連続隙間70の隙間寸法の下限値は、基材(搬送物)11が通過可能な寸法であればよい。連続隙間70の隙間寸法の上限値は、外部への高周波漏洩を実質的に阻止できればよく、例えば30mm以下であり、好ましくは10mm以下、さらに好ましくは5mm以下である。
 連続隙間70は、被加熱物20を含む基材11が導入される導入部71と、基材11が導出される導出部72と、対面領域の両側方において基材11の搬送方向に延びる一対の側方隙間73,74とにより構成されている。連続隙間70は、平面視において放射アンテナ22の対面領域から見て、第1方向の上流側、第1方向の下流側、及び、第2方向の両側方の四方に形成されている。なお、本明細書において対面領域の「側方」とは、搬送方向に直交する方向を意味する。
 具体的に、導入部71及び導出部72の各々は、基板23の平坦領域27の短辺部分と、その短辺部分に対面する外周部52との間に形成された隙間により構成されている。各側方隙間73,74は、基板23の平坦領域27の長辺部分と、その長辺部分に対面する外周部52との間に形成された隙間により構成されている。各側方隙間73,74は、導入部71と導出部72にそれぞれ繋がっている。
[処理システムの動作]
 電磁波加熱装置10を含めた処理システムの動作について説明を行う。処理システムの電源をONにすると、電磁波加熱装置10及び搬送機構12の各電源がONになる。これにより、搬送機構12により基材11が第1方向に搬送されると共に、発振器21から高周波が発振される。基材11は、被加熱物20側を表側(図20において上側)に向けて、放射アンテナ22の表側近傍を搬送される。なお、基材11は、被加熱物20側を裏側に向けて搬送してもよい。
 電磁波加熱装置10では、発振器21から出力された高周波が、第1櫛歯電極31の各歯部31a及び第2櫛歯電極32の各歯部32aに供給される。櫛歯電極31,32の各歯部31a,32aでは、高周波による共振が生じ、各歯部31a,32aの先端が、高周波による定在波の腹部となる。放射アンテナ22では、第1櫛歯電極31の複数の歯部31aにおける定在波の腹部が第1方向に一列に並び、第2櫛歯電極32の複数の歯部32aにおける定在波の腹部が第1方向に一列に並ぶ。
 また、第1方向に隣り合う歯部31a,32aの間では、比較的強い電界結合が生じる。これにより、放射アンテナ22の対面領域では、基材11及び被加熱物20の搬送路を含むように強電界領域が形成される。強電界領域を通過する被加熱物20は、誘電成分や導電成分などが高周波により加熱される。これにより、被加熱物20は昇温を経て、所望の物理/化学変化(重合、アニール、乾燥、硬化等)が生じる。なお、基材11では、複数の被加熱物20が、基材11の搬送方向に間隔を空けて並べられている。複数の被加熱物20は、強電界領域を順番に通過するように間隔を空けて搬送される。
[実施形態2の効果等]
 本実施形態では、導入部71及び導出部72の各々に対して側方隙間73,74が繋がった連続隙間70が、遮蔽部60に形成されている。そのため、図20に示す幅が狭い基材11だけでなく、図24(a)に示すように、側方隙間73,74から外部にはみ出す大きさの基材11であっても、導入部71から導出部72に向かって基材11を搬送することができる。その際、内部空間40において、放射アンテナ22の対面領域(強電界領域)で、被加熱物20に対する加熱処理を施すことができる。従って、基材11の全体が内部空間40を通過できるように遮蔽部60を大きくする必要がなく、遮蔽部60及び電磁波加熱装置10のコンパクト化を図ることができる。本実施形態は、大判の搬送物11の一部だけに被加熱物20を設ける場合などに有用である。
 なお、図24(a)では、カバー50のうちシールド部材46よりも上側部分の記載を省略している。この点は、図24(b)、図25(a)~(c)、図26(a)~(c)、図27、及び、図35でも同様である。また、白抜きの矢印は、送風機35から被加熱物20へ供給される空気の風向きを表す。
 例えば、多数の封筒の各々における口部分に塗布された接着剤を加熱する場合、基材11の幅方向に封筒の縦方向を合わせ、且つ、多数の封筒における接着剤の塗布領域が一列に並ぶように、多数の封筒を基材11により搬送する。この場合に、封筒の縦寸法の分だけ遮蔽部60の内部空間40の広さを確保する必要はない。遮蔽部60は、接着剤の塗布領域に合わせた大きさにすることができる。
 本実施形態では、放射アンテナ22の各歯部31a,32aで高周波の共振が生じ、強電界領域の電界強度が比較的高くなる。ここで、電界が強いほど、高周波は被加熱物20に吸収されやすくなり、被加熱物20を効率的に加熱することができる。従って、共振が生じない場合に比べて、発振器21への投入電力を抑制することができる。特に、本実施形態では、発振器21に半導体発振器を用いることでも、マグネトロンを用いる場合に比べて、低電力で発振器21の運転を行うことができる。その結果、高周波の放射強度を低く抑えることができる。さらに、本実施形態では、連続隙間70に臨むようにチョーク構造55を設けている。ここで、マグネトロンを用いる電子レンジでは、チョーク構造を設けても扉の周囲に隙間を設けることはできない。それに対し、本実施形態では、高周波の共振構造体(放射アンテナ22)と半導体発振器を用いることにより、高周波の放射強度を低く抑えることができ、連続隙間70に向かう高周波は弱くなる。従って、基材(薄物)11を通す連続隙間70を設けても、高周波の漏洩を十分に抑制することができる。さらに、本実施形態において、被加熱物20の寸法に合わせて放射アンテナ22を小型化するほど、ならびに、高周波が被加熱物20に整合(吸収)されるほど、余剰の高周波は低減されるため、高周波漏洩の抑制要求に対して、基材11(薄物)を通す連続隙間70に求められる寸法精度が緩和される。
 本実施形態では、送風機35を設けているため、加熱により被加熱物20を乾燥させる場合に、被加熱物20から蒸発した有機溶剤や水分を遮蔽部60の外部に排出することができる。特に、蒸発ガスの排出箇所は連続隙間70であるため、流速が比較的速くなり、被加熱物20から速やかに蒸発ガスを遠ざけることができる。また、内部空間40は蒸発ガス成分がないあるいは少ない乾き空気で常に換気されるため、被加熱物20における蒸発ガス成分の乾き空気への物質移動(蒸発)速度は維持される。本実施形態によれば、電磁波加熱装置10を乾燥装置として用いる場合、被加熱物20を効率的に乾燥させることができる。
 本実施形態では、送風機35の送風方向が第1方向の下流側を向いているため、内部空間40の空気が、導出部72又は側方隙間73,74から外部に排出される。内部空間40の空気は、導入部71からはほとんど排出されない。そのため、例えば、上述の上流側装置に蒸気ガスが当たることを嫌う場合に、遮蔽部60からの排気が上流側装置に到達することが抑制される。もちろん周囲環境に合わせて、シールド部材46の貫通孔46aあるいは風向調節板68の形状によって、所望する排気方向を制御してもよい。
 本実施形態では、風を通し且つ高周波をシールドするシールド部材46が、カバー50内の送風通路45に設けられている。これにより、高周波が送風機35にほとんど到達しないため、高周波による送風機35の故障を回避することができる。さらに、送風通路45の空気の入口を通じての高周波漏洩を抑制することができる。
<実施形態2の変形例1>
 本変形例では、連続隙間70が、第1方向の上流側の導入部71、搬送方向の下流側の導出部72、及び、第2方向の片側の側方隙間73からなる三方の隙間により構成されている。連続隙間70は、対面領域から見て三方だけに形成されている。また、図24(b)に示すように、対面領域から見て第2方向のもう片側には、基板23によりカバー50を支持するための支持部材80が設けられている。
<実施形態2の変形例2>
 本変形例では、チョーク構造55の空洞について、図25(a)に示すように、上述の実施形態2とは渦巻きの向きが逆になっている。チョーク構造55の空洞は、断面視において、基板23の外周寄りの位置に開口している。
<実施形態2の変形例3>
 本変形例では、チョーク構造55が、図25(b)に示すように、断面視において直線状のチョーク溝である。なお、図25(b)では、チョーク構造55が、断面視において、放射アンテナ22寄りの位置に開口しているが、基板23の外周寄りの位置に開口していてもよい。
<実施形態2の変形例4>
 本変形例では、図25(c)に示すように、外周部52の高さが、上述の実施形態2の半分程度である。また、断面視におけるチョーク構造55における空洞の形状は、渦巻き状ではなく、平坦領域27に臨む開口から外側に真っすぐ延びている。
<実施形態2の変形例5>
 本変形例では、図26(a)に示すように、カバー50ではなく基板23側に、チョーク構造56が設けられている。チョーク構造56の形状は、直線状としているが、渦巻き状などの他の形状にすることもできる。基板23の厚みは、上述の実施形態2に比べて大きい。また、カバー50は、板状に形成されている。
<実施形態2の変形例6>
 本変形例では、図26(b)に示すように、カバー50と基板23にそれぞれ、チョーク構造55,56が設けられている。図26(b)では、平面視において、カバー50のチョーク構造55の開口が、基板23のチョーク構造56の開口と同じ位置に形成されているが、基板23のチョーク構造56の開口とはずれた位置に形成されていてもよい。
<実施形態2の変形例7>
 本変形例では、図26(c)に示すように、放射アンテナ22が、カバー50側に設けられて支持されている。放射アンテナ22は、カバー50とは電気的に絶縁されて、支持部材(図示省略)により吊り下げられている。放射アンテナ22は、送風通路45の出口に配置されている。基板23には、放射アンテナ22を収容する凹部17が形成されていない。本変形例では、被加熱物20に対して上側から高周波が照射される。また、通電により発熱する放射アンテナ22の間を空気が通過して、空気が受熱するため、乾燥工程においては、乾燥効率を向上させることができる。
<実施形態2の変形例8>
 本変形例では、図27に示すように、カバー50のチョーク構造55に複数のスリット59が設けられている。隣り合う複数のスリット59の距離は、例えば電気長λの20分の1程度とすることができる。なお、基板23のチョーク構造56に、カバー50と同様の複数のスリットを設けてもよい(図示省略)。スリット59を設けることで、内部空間で複数モードが生じる際などに、高周波漏洩を効果的に抑制することができる。なお、図27ではシールド部材46の貫通孔46aの記載を省略している。
<実施形態2の変形例9>
 本変形例では、図28に示すように、電磁波加熱装置10が、発振器21の廃熱を利用して、送風機35により被加熱物20に供給される空気を加熱する廃熱利用部90を備えている。廃熱利用部90は、運転中の発振器21で発生する熱を放熱する放熱部111と、放熱部111を収納して外部から空気を導入する導入口を有するケース112と、ケース112内の空気をダクト部53に供給するための接続流路113とを備えている。放熱部111は、例えば複数の放熱フィンである。接続流路113には送風機(図示省略)が設けられている。なお、接続流路113は、負圧を利用してケース112からダクト部53側に空気を送ることができるように、送風機35の吸入口に接続してもよい。
 本変形例によれば、廃熱を利用して熱風乾燥を行うことができる。そのため、少ないエネルギーで被加熱物20を乾燥させることができる。
<実施形態2の変形例10>
 本変形例では、変形例3のチョーク構造55のバリエーションについて説明を行う。チョーク構造55は、図29(a)及び図29(b)に示すように、平面視におけるカバー50の周方向に亘って連続して設けることができる。図29(a)では、全周に亘ってチョーク構造55の幅を一定にしている。なお、図示はしないが、チョーク構造55の深さ(高さ寸法)は、全周に亘って一定である。
 図29(b)では、周方向においてチョーク構造55の幅を部分的に異ならせており、平面視におけるチョーク構造55は、幅狭部55aと、幅狭部55aに比べて幅が広い幅広部55bとにより構成されている。図29(b)では、幅広部55bが、平面視におけるチョーク構造55の長辺部分にそれぞれ設けられ、内部空間40を挟んで対向している。このように、チョーク構造55の幅を部分的に異ならせることで、共振周波数や共振ポイントを調節することができる。これにより、例えば平面視におけるチョーク構造55の角部で共振が生じないようにチョーク構造55を設計することが可能となる。なお、共振周波数や共振ポイントの調節は、チョーク構造55の深さ(高さ寸法)を部分的に異ならせることにより行ってもよい。
 また、平面視におけるチョーク構造55は、図29(c)に示すように、途中で途切れた複数のチョーク部55c,55dにより構成されていてもよい。図29(c)では、チョーク構造55が、平面視でI字状の第1チョーク部55cと、平面視でU字状の第2チョーク部55dとにより構成されている。第2チョーク部55dの一端は第1チョーク部55cの一端近傍に位置し、第2チョーク部55dの他端は第1チョーク部55cの他端近傍に位置している。各チョーク部55c,55dの長さは、λ×n/2(nは自然数)に設計される。λは、チョーク部55c,55dにおける高周波の電気長である。なお、本変形例は、チョーク構造55は、断面視において真っすぐな溝であるが、他の断面形状で、平面視において部分的に幅を異ならせたり、平面視において途中で途切れるようにしてもよい。
<実施形態2のその他の変形例>
 上述の実施形態2及び各変形例(以下、「実施形態2等」と言う。)では、上側区画部がカバー50で下側区画部が基板23であるが、上側区画部が基板23で下側区画部がカバー50であってもよい。つまり、実施形態2に係る電磁波加熱装置10は、上下を反転させてもよい。
 上述の実施形態2等では、各櫛歯電極31,32において複数の歯部31a,32aが基部線路31b,32bに対して斜めに設けられているが、複数の歯部31a,32aが基部線路31b,32bに対して垂直に設けられていてもよい。
 上述の実施形態2等では、放射アンテナ22において第1櫛歯電極31と第2櫛歯電極32に入力部30が電気的に接続されているが、第1櫛歯電極31と第2櫛歯電極32のうち第1櫛歯電極31だけに入力部30が電気的に接続されていてもよい。この場合、第1櫛歯電極31は高圧側の電極となり、第2櫛歯電極32は接地される。本変形例でも、各歯部31a,32aで高周波の共振が生じて、放射アンテナ22の対面領域に、厚みが薄い強電界領域が形成される。
 上述の実施形態2等において、電磁波加熱装置10は、基材11上における液体あるいは固体の被加熱物20の加熱を目的とせずに、単に基材11そのものの加熱を目的とした装置であってもよい。また、電磁波加熱装置10は、被加熱物20の搬送を行うことなく、被加熱物20の加熱を行うものであってもよい。
<実施形態3>
 本実施形態は、高周波等の電磁波を利用して被加熱物20を加熱する電磁波加熱装置10である。電磁波加熱装置10は、誘電加熱方式の加熱装置である。電磁波加熱装置10で利用される電磁波は、50MHz以上の高周波(例えば800MHz以上の高周波(マイクロ波など))である。
 電磁波加熱装置10は、図30(a)及び図30(b)に示すように、電磁波加熱装置10は、被加熱物20を加熱するための高周波(電磁波)を放射する放射アンテナ22と、上述の基板23及びカバー50を有する遮蔽部60と、遮蔽部60に取り付けられた送風機35とを備えている。遮蔽部60は、放射アンテナ22が配置された内部空間を外部から遮蔽する。遮蔽部60では、上述の側方隙間73,74の一方が、被加熱物20を含む基材(搬送物)11の導入部となり、他方が導出部となる。遮蔽部60の内部空間では、被加熱物20が放射アンテナ22の対面領域を通過するように、搬送機構12により基材11が側方隙間(導入部)73から側方隙間(導出部)74に向かって搬送される。また、カバー50は、基板23における各短辺部分に設けられた支持部材80により基板23に支持されている。送風機35は、内部空間を搬送される被加熱物20に空気を供給する。遮蔽部60には、送風機35から被加熱物20に向かう空気が流れる送風通路が形成されている。送風通路には、放射アンテナ22から放射される高周波から送風機35を遮蔽し、且つ、送風機35から被加熱物20に向かう空気を通過させるシールド部材46が設けられている。なお、搬送物11の搬送方向に、図30に示す電磁波加熱装置10を複数台並べて、1つの基材11を通すようにしてもよい。
[実施形態3の効果等]
 本実施形態では、遮蔽部60内で送風機35からの風を被加熱物20に供給するため、被加熱物20から蒸発した有機溶剤や水分を、導入部73及び導出部74から外部に排出することができる。ここで、高周波の漏洩を抑制するために遮蔽部60を設ける場合に、遮蔽部60より上流又は下流に送風機35を設けて被加熱物20を乾燥させることが考えられる。しかし、遮蔽部60内では、被加熱物20から蒸発したガス成分が滞留し、被加熱物20を効率的に乾燥させることができない。それに対し、本実施形態では、被加熱物20から蒸発したガス成分が滞留することが抑制されるため、被加熱物20を効率的に乾燥させることができる。
<実施形態4>
 本実施形態は、高周波等の電磁波を利用して被加熱物20を加熱する電磁波加熱装置10である。電磁波加熱装置10は、誘電加熱方式の加熱装置である。電磁波加熱装置10で利用される電磁波は、800MHz以上の高周波(例えばマイクロ波)である。
 電磁波加熱装置10で加熱される被加熱物20は、高周波を吸収する物質(液体、固体など)を含む。被加熱物20は、厚みが薄い薄物であり、シート状又は膜状を呈する。被加熱物20は、例えば接着剤である。被加熱物20は、シート状で長尺の基材(搬送物)11の表面に塗布又は配置される。被加熱物20は、基材11と共に所定の方向(図31に示す矢印の方向)に搬送されて、高周波による強電界領域を通過する。その際、被加熱物20は、高周波を吸収することで加熱される。なお、被加熱物20は、シート状又は膜状ではなくてもよく、ある程度の厚みがあってもよい。また、被加熱物20(例えば接着剤)は、基材11の表面に載せられたシート体(例えば封筒)に塗布又は配置されてもよく、この場合、被加熱物20は、シート体及び基材11とともに搬送される。
 電磁波加熱装置10は、基材11の表面に被加熱物20を塗布又は配置する上流側装置(例えば、接着剤の塗布装置。図示省略)と、少なくとも上流側装置の入口から電磁波加熱装置10の出口までの処理区間において基材11を搬送する搬送機構12と共に、搬送式の処理システムを構成している。搬送機構12は、複数対のローラ13を用いて基材11及び被加熱物20を搬送する(図34参照)。以下では、基材11の搬送方向を「第1方向」と言い、第1方向に直交する方向を「第2方向」と言う(図31等参照)。また、電磁波加熱装置10において、カバー50側を「表側」と言い、基板23側を「裏側」と言う(図32等参照)。
 ところで、本願発明者は、放射アンテナにおいて電磁波による共振が生じる電磁波加熱装置は、被加熱物などによって、放射アンテナにおける共振周波数が逐次変化する場合があり、この場合は効率的な加熱状態を維持することが困難であることに気が付いた。そのため、本願発明者は、共振周波数に対して発振器の発振周波数を制御する周波数制御の適用を考えた。
 ここで、特許第6157036号公報に記載の周波数制御では、位相制御と反射電力制御とが順番に行われる。しかし、反射電力制御において反射電力の検出に時間を要することから、この周波数制御では、共振周波数に対して発振周波数を高速で追従させることはできない。
 本実施形態は、このような事情に鑑みてなされたものであり、放射アンテナにおいて電磁波による共振が生じる電磁波加熱装置について、共振周波数に対して発振周波数を高速で追従させることが可能に構成することを目的とする。
[電磁波加熱装置の構成]
 電磁波加熱装置10は、図31及び図32に示すように、高周波を発振する発振器21と、被加熱物20を加熱するための高周波を放射する放射アンテナ22と、片面に放射アンテナ22が設けられた基板23とを備えている。放射アンテナ22は、発振器21から出力される高周波を放射する導体であって発振器21から伝送される周波数帯域の高周波により導体で共振が生じる共振構造を有する。電磁波加熱装置10は、発振器21から放射アンテナ22へ供給される高周波により、放射アンテナ22に沿って、被加熱物20を加熱するための強電界領域(高周波加熱領域)が形成されるように構成されている。
 電磁波加熱装置10は、実施形態2と同様に、基板23の放射アンテナ22側を覆うカバー50を備えている。また、電磁波加熱装置10は、発振器21を制御する制御装置75をさらに備えている。制御装置75についての詳細は後述する。
 発振器21には、例えば半導体発振器が用いられる。基板23及びカバー50は、金属製である。基板23は、接地された接地電極に相当する。基板23及びカバー50は、放射アンテナ22が配置された内部空間40(図33参照)を外部から遮蔽する遮蔽部60に相当する。カバー50は、遮蔽部60の内部空間40を片側(上側)から区画する第1区画部に相当する。基板23は、第1区画部とは反対側(下側)から内部空間40を区画する第2区画部に相当する。基板23とカバー50の間には、平面視における遮蔽部60の外周部において周方向に連続する連続隙間70が形成されている。
 放射アンテナ22は、インターディジタル型の回路により構成されている。放射アンテナ22は、第1櫛歯電極31と、第1櫛歯電極31に隙間を空けて噛み合う第2櫛歯電極32とを備えている。第1櫛歯電極31は、複数の歯部31aにより櫛状に形成されている。第2櫛歯電極32は、複数の歯部32aにより櫛状に形成されている。
 第1櫛歯電極31は、真っすぐ延びる基部線路31bと、基部線路31bに付け根が接続された複数の歯部31aとを備えている。複数の歯部31aは、互いに平行に設けられている。各歯部31aは、基部線路31bから斜めに延びている。複数の歯部31aは、第1方向に等間隔で配列されている。
 第2櫛歯電極32は、真っすぐ延びる基部線路32bと、基部線路32bに付け根が接続された複数の歯部32aとを備えている。基部線路32bは、第1櫛歯電極31の基部線路31bに平行である。複数の歯部32aは、互いに平行に設けられている。第2櫛歯電極32の歯部32aは、第1櫛歯電極31の歯部31aに平行である。各歯部32aは、基部線路32bから斜めに延びている。複数の歯部32aは、第1方向に等間隔で配列されている。
 放射アンテナ22では、同一平面内において、複数の歯部31a,32aが、所定の方向(第1方向)に隙間を空けて配列されている。複数の歯部31a,32aが配列された領域(以下、「配列領域」と言う。)は、平面視で帯状の領域である。なお、第1の方向に配列される歯部(導体線路)31a,32aの合計本数は、3本以上であればよく、本実施形態のように10本以上としてもよい。
 放射アンテナ22は、第1櫛歯電極31及び第2櫛歯電極32に加え、第1方向における配列領域の一端側で第1櫛歯電極31と第2櫛歯電極32を接続する第1接続線路57と、配列領域の他端側で第1櫛歯電極31と第2櫛歯電極32を接続する第2接続線路58とを備えている。放射アンテナ22は閉回路である。第1接続線路57には、発振器21からの高周波が入力される入力部30が接続されている。入力部30は、例えば同軸コネクタであり、同軸線路を介して発振器21に接続されている。入力部30は、基板23の裏側に設けられている。入力部30に高周波が入力される入力期間に、放射アンテナ22の対面領域(配列領域の上方の領域)では、被加熱物20を加熱するための強電界領域が形成される。強電界領域は、対面領域のうち放射アンテナ22の表側近傍に形成され、平行で厚みが薄い領域となる。
 放射アンテナ22は、上述の入力期間に、発振器21が発振する高周波の周波数帯域で、高周波の共振が生じるように構成されている。放射アンテナ22では、各歯部31a,32aで高周波による共振が同時に生じる。歯部31aの長さL1と歯部32aの長さL2とは、伝送される高周波の波長(電気長)をλとした場合に、式6及び式7を用いて設計される(n、nは自然数)。隣り合う歯部31aと歯部32aの合計長さは、2m×λ/4で表される(mは自然数)。本実施形態では、歯部31a,32aの長さL1,L2は、ともにλ/4である。なお、第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aは、全て同じ長さにしているが、長さを互いに異ならせてもよい。
  式6:L1=λ×(2n-1)/4
  式7:L2=λ×(2n-1)/4
 放射アンテナ22は、上述の入力期間に、第1方向に隣り合う歯部31a,32aの間で比較的強固な電界結合が生じるように構成されている。具体的に、放射アンテナ22では、複数の歯部31a,32aが第1方向に等間隔で配列され、第1方向に隣り合う歯部31a,32aの距離(隙間の寸法)は、歯部31a,32aの線路幅の5倍以下となっている。この距離は、歯部31a,32aの線路幅の3倍以下としてもよいし、1倍以下としてもよい。なお、第1櫛歯電極31の各歯部31aと第2櫛歯電極32の各歯部32aは、全て同じ線路幅にしているが、線路幅を互いに異ならせてもよい。
 基板23は、例えば金属製の板材を用いて構成されている。基板23の平面形状は、略矩形である。基板23の長手方向は、第1方向に一致している。基板23の表側には、平面形状が略矩形の凹部17が形成されている。凹部17の長手方向も第1方向に一致している。凹部17には、放射アンテナ22が収容されている。凹部17では、例えば底面に設けられた誘電体(図示省略)によって、放射アンテナ22が浮いた状態で支持されている。放射アンテナ22は、基板23の金属部分から電気的に絶縁されている。基板23の表面のうち凹部17以外の領域は、放射アンテナ22を囲う平坦領域27となっている。平坦領域27の高さ位置は、例えば、放射アンテナ22の上面と同程度又は少し上側あるいは下側となっている。
 なお、本実施形態では、基板23が、枠状の表側金属板23aと、表側金属板23aの裏面に重ねられた矩形状の裏側金属板23bとにより構成されているが、基板23は、片面に凹部17が形成された1枚の金属板により構成してもよい。また、平坦領域27の表面及び/又は放射アンテナ22の上面には、強電界による放電の発生を抑制するために、高周波を吸収するコーティング(例えば、誘電体のコーティング)を施してもよい。
 カバー50は、金属製の筐体である。カバー50は、図32及び図33に示すように、表側から放射アンテナ22を覆う本体部51と、本体部51の全周囲を囲うように本体部51に一体化された外周部52と、本体部51の上面に接続されたダクト部53とを備えている。ダクト部53の外端部には、内部空間40を搬送される被加熱物20に空気を供給する送風機35が取り付けられている。
 本体部51は、平面視において略矩形状を呈し、例えば凹部17と同程度の平面寸法を有する。本体部51は、凹部17の真上に位置している。本体部51は、下側が開放された箱状に形成されている。図34に示すように、本体部51の内部空間とダクト部53の内部空間とは、互いに繋がっており、送風機35から被加熱物20に向かう空気が流れる送風通路45となっている。
 外周部52は、本体部51よりも外側の部分であり、平面視において略矩形の枠状を呈する。外周部52は、周方向に亘って、連続隙間70を介して基板23の平坦領域27に対面している。外周部52には、連続隙間70を通じた高周波の漏洩を防止するシールド構造55が全周囲に亘って設けられている。シールド構造55は、例えばチョーク構造55により構成されている。チョーク構造の構造や形状は、特に限定されないが、短絡型λ/4共振チョークを採用することができる。チョーク構造55は、断面視において渦巻状(又はリング形状)の空洞より構成され、放射アンテナ22寄りの位置に開口している。なお、チョーク構造55の寸法は、例えば、断面視の周長が「λ/2×a(aは自然数)」で、深さが「λ/4×b(bは自然数)」となる。λは、チョーク構造55における高周波の電気長である。
 ダクト部53は、基材11の搬送方向(第1方向)において上流側(導入部71側)に配置されている。ダクト部53は、第1方向において下流側に向かって斜め下方に傾斜している。送風機35の送風方向は、第1方向の下流側を向いている。また、本体部51の内部には、複数の風向調節板68が設けられている。各風向調節板68は、例えばルーバーであり、風向を第1方向の下流側に向かせる。これらの構成により、送風機35から送風された空気は、第1方向の下流側に向かって流れ、連続隙間70のうち導出部72から主に外部に排出され、一部は側方隙間73,74から排出される。なお、風向調節板68は省略してもよい。
 送風通路45には、放射アンテナ22から放射される高周波から送風機35を遮蔽し、且つ、送風機35から被加熱物20に向かう空気を通過させる貫通孔46aが形成された金属製のシールド部材46が設けられている。シールド部材46は、板状に形成されている。シールド部材46は、送風通路45を上流側と下流側に区画するように(上下に区画するように)、本体部51に取り付けられている。シールド部材46には、複数の貫通孔46aが形成されている。各貫通孔46aは、放射アンテナ22から放射される高周波が通過できない大きさに形成されている。
[遮蔽部の構成]
 図33及び図34等を参照しながら、遮蔽部60の構成について説明を行う。
 遮蔽部60は、内部空間40に放射アンテナ22を収容する筐体であり、基板23及びカバー50により構成されている。遮蔽部60は、導入部71及び導出部72などを設けることで基材11の通過を許容しつつ、内部空間40が遮蔽空間となるように構成されている。内部空間40では、被加熱物20が放射アンテナ22の対面領域を通過するように、基材11が導入部71から導出部72に向かって搬送される。
 遮蔽部60には、内部空間40を外部に連通させる隙間として、遮蔽部60の側部の全周囲に亘って連続する連続隙間70が形成されている。例えば、遮蔽部60では、カバー50が、基板23に対して浮いた状態になるように、支持部材(図示省略)により支持されている。
 連続隙間70は、断面視において、基板23の平坦領域27の上面とカバー50の外周部52の下面とにより形成されている。断面視における連続隙間70の隙間寸法(平坦領域27と外周部52との距離)は、例えば遮蔽部60の全周囲に亘って一定である。連続隙間70の隙間寸法の下限値は、基材(搬送物)11が通過可能な寸法であればよい。連続隙間70の隙間寸法の上限値は、外部への高周波漏洩を実質的に阻止できればよく、例えば30mm以下であり、好ましくは10mm以下、さらに好ましくは5mm以下である。
 連続隙間70は、被加熱物20を含む基材11が導入される導入部71と、基材11が導出される導出部72と、対面領域の両側方において基材11の搬送方向に延びる一対の側方隙間73,74とにより構成されている。連続隙間70は、平面視において放射アンテナ22の対面領域から見て、第1方向の上流側、第1方向の下流側、及び、第2方向の両側方の四方に形成されている。
 具体的に、導入部71及び導出部72の各々は、基板23の平坦領域27の短辺部分と、その短辺部分に対面する外周部52との間に形成された隙間により構成されている。各側方隙間73,74は、基板23の平坦領域27の長辺部分と、その長辺部分に対面する外周部52との間に形成された隙間により構成されている。各側方隙間73,74は、導入部71と導出部72にそれぞれ繋がっている。
[処理システムの動作]
 電磁波加熱装置10を含めた処理システムの動作について説明を行う。処理システムの電源をONにすると、電磁波加熱装置10及び搬送機構12の各電源がONになる。これにより、搬送機構12により基材11が第1方向に搬送されると共に、発振器21から高周波が発振される。基材11は、被加熱物20側を表側(図31において上側)に向けて、放射アンテナ22の表側近傍を搬送される。なお、基材11は、被加熱物20側を裏側に向けて搬送してもよい。発振器21を制御する制御装置75の動作については後述する。
 電磁波加熱装置10では、発振器21から出力された高周波が、第1櫛歯電極31の各歯部31a及び第2櫛歯電極32の各歯部32aに供給される。櫛歯電極31,32の各歯部31a,32aでは、高周波による共振が生じ、各歯部31a,32aの先端が、高周波による定在波の腹部となる。放射アンテナ22では、第1櫛歯電極31の複数の歯部31aにおける定在波の腹部が第1方向に一列に並び、第2櫛歯電極32の複数の歯部32aにおける定在波の腹部が第1方向に一列に並ぶ。
 また、第1方向に隣り合う歯部31a,32aの間では、比較的強い電界結合が生じる。これにより、放射アンテナ22の対面領域では、基材11及び被加熱物20の搬送路を含むように強電界領域が形成される。強電界領域を通過する被加熱物20は、誘電成分や導電成分などが高周波により加熱される。これにより、被加熱物20は昇温を経て、所望の物理/化学変化(重合、アニール、乾燥、硬化等)が生じる。なお、基材11では、複数の被加熱物20が、基材11の搬送方向に間隔を空けて並べられている。複数の被加熱物20は、強電界領域を順番に通過するように間隔を空けて搬送される。
 本実施形態では、放射アンテナ22の各歯部31a,32aで高周波の共振が生じ、強電界領域の電界強度が比較的高くなる。従って、共振が生じない場合に比べて、発振器21への投入電力を抑制することができる。また、本実施形態では、連続隙間70が遮蔽部60に形成されているため、基材11の通過を許容しつつ、外部への高周波の漏洩を抑制できる。また、シールド部材46を設けることで、送風通路45の入口を通じての高周波漏洩も抑制することができる。また、送風機35を設けているため、加熱により被加熱物20を乾燥させる場合に、被加熱物20から蒸発した有機溶剤や水分を遮蔽部60の外部に排出することができ、被加熱物20を効率的に乾燥させることができる。
[制御装置の構成及び動作]
 制御装置75は、発振器21の発振周波数を制御するように構成されている。制御装置75は、図36に示すように、方向性結合器76と、位相差情報生成部77と、制御部78とを備えている。以下では、制御装置75について説明を行う前に、発振器21の構成について説明を行う。方向性結合器76は、発振器21から放射アンテナ22へ延びる伝送線路16に設けられ、反射波情報を抽出する情報抽出部に相当する。
 発振器21は、制御電圧により発振周波数が変化する電圧可変発振器(VCO)21aと、電圧可変発振器21aの後段に設けられた増幅器21bと、電圧可変発振器21aと直流電源15との間に設けられた電圧調整回路21cとを備えている。電圧調整回路21cは、スイッチSW1,SW2のON/OFFにより、電圧可変発振器21aに印加する制御電圧を変化させることが可能に構成されている。
 例えば、電圧調整回路21cは、第1スイッチSW1及び第2スイッチSW2に加え、インダクタLとコンデンサCを備えている。電圧調整回路21cでは、インダクタLの第1端子が直流電源15のプラス側に、コンデンサCの第1端子が直流電源15のマイナス側に、インダクタLの第2端子とコンデンサCの第2端子とが互いに接続されて電圧可変発振器21aに接続されている。第1スイッチSW1は、インダクタLの第1端子と直流電源15のプラス側との間に接続されている。第2スイッチSW2は、インダクタLの第1端子と直流電源15のプラス側とを結ぶ配線と、コンデンサCの第1端子と直流電源15のマイナス側とを結ぶ配線との間に接続されている。
 第1スイッチSW1及び第2スイッチSW2のうち第1スイッチSW1だけをONに設定する第1状態では、コンデンサCの充電が行われる。第1状態では、制御電圧が徐々に増加し、その増加に伴って発振周波数が徐々に高くなる。また、第1スイッチSW1及び第2スイッチSW2のうち第2スイッチSW2だけをONに設定する第2状態では、コンデンサCの放電が行われる。第2状態では、制御電圧が徐々に低下し、その低下に伴って発振周波数が徐々に低くなる。また、第1スイッチSW1及び第2スイッチSW2の両方をOFFに設定する第3状態では、コンデンサCにおける第1端子と第2端子の電位差、及び、制御電圧は一定である。第3状態では、電圧可変発振器21aの発振周波数は変化しない。なお、電圧調整回路21cの構成は本実施形態に限定されない。
 制御装置75の各要素について説明を行う。方向性結合器76は、伝送線路16に接続されている。方向性結合器76は、伝送線路16から、放射アンテナ22へ向かう高周波(入射波)の波形を表す入射波信号と、放射アンテナ22から戻ってくる高周波(反射波)の波形を表す反射波信号とをそれぞれ抽出するように構成されている。方向性結合器76は、位相差情報生成部77に接続された第1出力端子及び第2出力端子を有し、第1出力端子から入射波信号を位相差情報生成部77に出力し、第2出力端子から入射波信号を位相差情報生成部77に出力する。
 なお、方向性結合器76から位相差情報生成部77へ入射波信号を伝送する線路には、入射波信号と反射波信号との位相のずれを補正する位相補正部99として、所定の位相だけ信号を遅延させる遅延線路(ケーブル)が設けられている。なお、遅延線路の代わりに、所定の位相だけ信号を遅延させる遅延素子を設けてもよい。
 位相差情報生成部77は、入射波信号と反射波信号とを演算する演算処理により、入射波と反射波の位相差(θ1-θ2)を表す位相差信号を生成する機器である。位相差信号は、位相差情報に相当する。位相差情報生成部77には、位相検出器又は振幅・位相検出器を用いることができる。位相差情報生成部77は、例えば、式8に示す乗算を行った後に、発振周波数fに対応する角周波数ω及び時間関数tを含む成分(2倍調波成分(cos(2ωt+θ1+θ2)))を除去するフィルタ処理を行うことにより、式9に示す位相差信号PDSを生成して出力する。フィルタ処理によれば、直流分の位相差信号PDSが残る。位相差情報生成部77における位相差信号PDSの生成及び出力は、連続的に行われる。
[式8]
Figure JPOXMLDOC01-appb-I000001
[式9]
Figure JPOXMLDOC01-appb-I000002
 式8において、NPAは入射波信号(Asin(ωt+θ1))を表し、NPBは反射波信号(Bsin(ωt+θ2))を表す。θ1は入射波信号NPAの位相、θ2は反射波信号NPBの位相を表す。
 図36に示す位相差情報生成部77では、入射波信号が入力される第1ログアンプ81と、反射波信号が入力される第2ログアンプ82と、第1ログアンプ81から出力される入射波信号と第2ログアンプ82から出力される反射波信号とを加算する乗算器83(つまり、対数変換された信号の加算により、変換前の信号を乗算した結果を出力する乗算器)と、乗算器83の出力信号に対し上述のフィルタ処理を施すフィルタ部84とを備えている。乗算器83では、対数変換された入射波信号と、対数変換された反射波信号との加算(つまり、入射波信号と反射波信号との乗算)が行われる。フィルタ部84は、乗算結果から2倍周波数成分を除去するものである。フィルタ部84には、ローパスフィルタを用いることができる。なお、フィルタ部84は、デジタルフィルタとしてもよく、この場合は、AD変換器の後段に設ける。
 制御部78は、位相差信号に基づいて、放射アンテナ22における共振周波数と発振器21の発振周波数との差が小さくなる発振周波数の調節方向を検出する方向検出動作と、方向検出動作の検出結果に基づいて発振周波数を調節する周波数調節動作とを行う、制御処理を繰り返し行うように構成されている。制御部78は、方向検出動作を行う検出部78aと、周波数調節動作を行う第1指令部78b及び第2指令部78cとを備えている。
 制御部78は、例えば、マイコンにより構成することができる。この場合、制御部78には、制御用のプログラムがインストールされる。制御部78は、CPUが制御用プログラムを実行及び解釈することによって実現される機能ブロックとして、検出部78a、第1指令部78b及び第2指令部78cを有する。なお、制御部78は、アナログ回路により構成してもよい。
 図37のフローチャートを参照して、制御部78の制御処理について説明を行う。なお、フローチャートでは、ステップST1~ST3が方向検出動作に相当し、ステップST4~ST6が周波数調節動作に相当する。また、制御部78は、所定の制御周期Sでフローチャートの制御処理を繰り返す。制御周期Sは、50ms以下に設定される。
 検出部78aには、AD変換器を介して、位相差信号が連続的に入力される。ステップST1において、検出部78aは、デジタル変換された位相差信号に対し正規化処理等を行うことにより、例えば制御周期Sに等しいサンプリング周期で、位相差信号の電圧値を位相差電圧Vとして検出する。ステップST2では、検出部78aが、閾値(電圧=0)を含む閾値範囲(-Vc~Vc)と、位相差電圧Vとを比較する第1比較動作として、位相差電圧Vが閾値範囲の下限値-Vcを下回るか否かの判定を行う。閾値範囲は、入射波の位相と反射波の位相とが等しくなる状態の基準情報に相当する。
 ここで、図38には、周波数に対する位相差電圧Vの変化を表す第1グラフG1と、周波数に対する反射波強度の変化を表す第2グラフG2とが重ねて記載されている。第1グラフG1は、発振周波数が共振周波数fよりも小さい下位周波数域fbでは、位相差電圧Vがゼロより小さくなり、発振周波数が共振周波数fよりも大きくなる上位周波数域feでは、位相差電圧Vがゼロより大きくなり、発振周波数が共振周波数fと等しくなる周波数(つまり、放射アンテナ22においてインピーダンス整合が取れている周波数)では、位相差電圧Vがゼロになることを表している。
 ステップST2において位相差電圧Vが閾値範囲の下限値-Vcを下回る場合、発振周波数は、共振周波数fよりも小さい下位周波数域fbにある。この場合、ステップST4に移行して、検出部78aから指令を受けた第1指令部78bが、周波数調節動作として、第1スイッチSW1にON信号を出力する。この時、第2スイッチSW2がONになっていれば、検出部78aは、第2指令部78cに対し第2スイッチSW2をOFFに切り替えさせる。これにより、電圧調整回路21cは第1状態に切り替わり、電圧可変発振器21aへの制御電圧が徐々に増加していく。その結果、発振器21の発振周波数は、徐々に高くなっていき、共振周波数fに近づいていく。ステップST4の実行後は、ステップST1に戻る。
 一方、ステップST2において位相差電圧Vが閾値範囲の下限値-Vcを下回らない場合、ステップST3に移行して、検出部78aが、第2比較動作として、位相差電圧Vが閾値範囲の上限値Vcを上回るか否かの判定を行う。ステップST3において位相差電圧Vが閾値範囲の上限値Vcを上回る場合、発振周波数が、共振周波数fよりも大きい上位周波数域feにある。この場合、ステップST5に移行して、検出部78aから指令を受けた第2指令部78cが、周波数調節動作として、第2スイッチSW2にON信号を出力する。この時、第1スイッチSW1がONになっていれば、検出部78aは、第1指令部78bに対し第1スイッチSW1をOFFに切り替えさせる。これにより、電圧調整回路21cは第2状態に切り替わり、電圧可変発振器21aへの制御電圧が徐々に低下していく。その結果、発振器21の発振周波数は、徐々に低くなっていき、共振周波数fに近づいていく。ステップST5の実行後は、ステップST1に戻る。
 ステップST3において位相差電圧Vが閾値範囲の上限値Vcを上回らない場合は、位相差電圧Vが閾値範囲内にある。この場合、ステップST6に移行して、検出部78aは、第1スイッチSW1がONになっていれば、第1指令部78bに対し第1スイッチSW1をOFFに切り替えさせ、第2スイッチSW2がONになっていれば、第2指令部78cに対し第2スイッチSW2をOFFに切り替えさせる。これにより、電圧調整回路21cは第3状態に切り替わり、制御電圧は一定となる。その結果、電圧可変発振器21aの発振周波数は、その時点の値にホールドされる。ステップST6の実行後は、ステップST1に戻る。
 図39を参照して、共振周波数fに発振周波数を追従させる様子について説明を行う。なお、以下では、ステップST1から始まって再び第1ステップST1に戻るまでの処理を1単位として、「n回目の処理」と表現する。
 1回目の処理の時点で、発振周波数の値がfになっているとする(図39(a)参照)。この状態で1回目の処理が行われると、位相差電圧は検出点Aの縦軸の値となり、位相差電圧が下限値-Vcを下回っていることが検出される。そのため、電圧調整回路21cが第1状態(第1スイッチSW1だけがON状態)に切り替えられ、発振周波数は徐々に増加し共振周波数fに近づいていく。
 2回目の処理の時点で、発振周波数の値がfになっているとする(図39(b)参照)。この状態で2回目の処理が行われると、引き続き位相差電圧が下限値-Vcを下回っていることが検出される。電圧調整回路21cは第1状態に維持され、発振周波数はさらに共振周波数fに近づいていく。3回目の処理の時点で、発振周波数の値がfになっているとする(図39(c)参照)。この状態で3回目の処理が行われると、位相差電圧が上限値Vcと下限値-Vcの間にあることが検出される。この場合は、電圧調整回路21cが第3状態(両スイッチSW1,SW2ともOFF状態)に切り替えられ、発振周波数がホールドされる。
 この状態から、図39(d)に示すように、被加熱物20などの影響により共振周波数fが小さくなったとする(グラフG1,G2が左へ移動したとする)。発振周波数の値はfのままである。この状態で4回目の処理が行われると、位相差電圧は検出点C’の縦軸の値となり、位相差電圧が上限値Vcを上回っていることが検出される。そのため、電圧調整回路21cが第2状態(第2スイッチSW2だけがON状態)に切り替えられ、発振周波数が徐々に低下し共振周波数fに近づいていく。
 5回目の処理の時点で、発振周波数の値がfになっているとする(図39(e)参照)。この状態で5回目の処理が行われると、引き続き位相差電圧が上限値Vcを上回っていることが検出される。電圧調整回路21cは第2状態に維持され、発振周波数はさらに共振周波数fに近づいていく。6回目の処理の時点で、発振周波数の値がfになっているとする(図39(f)参照)。この状態で6回目の処理が行われると、3回目の処理と同様に、電圧調整回路21cが第3状態に切り替えられ、発振周波数がホールドされる。このように、制御処理では、共振周波数fに対し追従するように発振周波数が調節される。
[実施形態4の効果等]
 本実施形態では、入射波信号と反射波信号を用いる演算処理により、入射波と反射波の位相差を表す位相差情報が生成される。そして、位相差情報と基準情報(閾値範囲)とに基づいて発振周波数の調節方向を検出し、その検出結果に基づいて発振周波数を制御する制御処理を繰り返し行うことで、共振周波数fに対して発振周波数が追従する。ここで、上述の演算処理は、高速で行うことができる。つまり、位相差情報の生成は高速で行うことができる。また、基準情報の数値データは予め準備できるため、発振周波数の調節方向も高速で検出できる。本実施形態によれば、共振周波数に対して発振周波数を高速で追従させることが可能である。
 ところで、本実施形態の処理システムでは、被加熱物20の搬送を行いながら、その搬送経路において被加熱物20の加熱を行う。この場合、被加熱物20の有無や、被加熱物20における水分量の経時変化、加熱により生じる蒸気などによって、共振周波数fは逐次変化する。具体的に、被加熱物20は少量で軽負荷であり、内部空間40における共振特定モードを維持する環境においても、共振モード内で共振周波数fは逐次変化する。例えば、被加熱物20に高周波が印加され、被加熱物20の昇温及び乾燥とともに比誘電率が低下するため、共振周波数fは遷移する。
 ここで、共振周波数fの時に、被加熱物20に吸収される高周波エネルギーの割合(以下、「高周波エネルギー吸収率」という。)は最大となる。しかし、共振周波数fは逐次変化する場合、従来技術では、共振周波数fに対し発振周波数を高速に追従させることができず、高周波エネルギー吸収率を高い値に維持することは難しかった。また、開放空間への高周波が漏洩しやすくもなる。
 それに対し、本実施形態では、共振周波数fに対して発振周波数を高速で追従させることができるため、搬送式で被加熱物20の加熱を行う場合であっても、高周波エネルギー吸収率を高い値に維持することができ、さらに高周波漏洩も抑制できる。
 なお、本願発明者は、(i)発振周波数を固定する場合は、電磁波加熱装置10の電源をONした直後に、特に高周波エネルギー吸収率が低下すること、及び、(ii)電磁波加熱装置10の電源のON時点から上述の周波数制御を実施することで、ON時点から高周波エネルギー吸収率が大きく改善されることを、制御周期30msの実験で確認している。
<実施形態4の変形例1>
 本変形例では、制御部78が、基準情報と位相差情報とを用いて、共振周波数に対する発振周波数のずれ方向(偏移方向)を検出し、その検出結果に対し平均化処理を行うことにより、発振周波数の調節方向を検出する。平均化処理は、閾値範囲(-Vc~Vc)と位相差電圧Vとを比較する比較動作の結果に対し行われる。以下では、図40を参照しながら、実施形態と異なる点を中心に説明を行う。
 本変形例では、第1比較動作において位相差電圧Vが閾値範囲の下限値-Vcを下回る場合に、検出部78aは、マイナス方向のずれと判定して判定結果(-X)を記録する。また、第2比較動作において位相差電圧Vが閾値範囲の上限値Vcを上回る場合に、プラス方向のずれと判定して判定結果(+X)を記録する。また、第2比較動作において位相差電圧Vが閾値範囲の上限値Vcを上回わらない場合に、位相のずれがない状態と判定して判定結果(±0)を記録する。
 検出部78aは、所定の比較結果のサンプル数nで、時系列に並ぶ比較動作の判定結果を平均化する平均化処理を行う。式10は、m番目の判定結果D(m)から、(m+n-1)番目の判定結果D(m+n-1)に対する平均化処理に用いる式の一例である。Yは平均化処理の算出値を表す。
[式10]
Figure JPOXMLDOC01-appb-I000003
 検出部78aは、平均化処理の算出値Yがマイナスの場合に、第1指令部78bに対し、第1スイッチSW1にON信号を出力させる。検出部78aは、算出値Yがプラスの場合に、第2指令部78cに対し、第2スイッチSW2にON信号を出力させる。なお、図40には、位相差電圧Vの時系列変化を表すグラフG3と共に、比較動作の判定結果の時系列変化を表すグラフG4と、算出値Yの時系列変化を表すグラフG5とを重ねて記載している。本変形例によれば、平均化処理によりノイズを除去できるため、発振周波数の追従精度が向上する。そのため、高周波エネルギー吸収率が増加し、加熱に要する電力を低減させることができる。
 なお、本変形例において、平均化処理の算出値Yの比較対象が、閾値範囲であってもよい。検出部78aは、算出値Yが閾値範囲の下限値-Vcを下回る場合に第1スイッチSW1にON信号を出力させ、算出値Yが閾値範囲の上限値Vcを上回る場合に第2スイッチSW2にON信号を出力させる。この場合、算出値Yを閾値(V=0)と比較する場合に比べて、ノイズを除去できるため、加熱に要する電力を低減させることができる。
 また、制御部78は、被加熱物20の搬送速度に基づいて、平均化処理に用いる検出結果のサンプル数nを調節してもよい。搬送速度が速い場合は、共振周波数fが細かく変動するため、搬送速度が速いほどサンプル数nを小さくして、きめ細かな追従制御を行う。なお、搬送速度に基づいて制御周期Sを調節してもよく、ノイズ除去のために搬送速度が速いほど制御周期Sを長くしてもよい。
<実施形態4の変形例2>
 本変形例では、制御部78が、基準情報と位相差情報に基づいて、発振周波数の調節方向に加えて、発振周波数の調節量(又は偏移量)を検出する。この場合、発振周波数の調節量は、位相差電圧Vの大きさ(位相差情報と基準情報との差)に基づいて検出することができる。例えば位相差電圧Vとゼロとの差が大きいほど、発振周波数の調節量は小さくなる。本変形例では、制御部78により、調節量に応じて、調節方向への発振周波数の調節がなされることで、共振周波数fに対して発振周波数をより高速に追従させることができる。
<実施形態4の変形例3>
 本変形例は、制御装置75の構成が実施形態4とは異なる。以下では、実施形態4と異なる点を中心に本変形例について説明を行う。
 発振器21は、図41に示すように、電圧可変発振器21aと、電圧可変発振器21aの後段に設けられたシンセサイザー21dと、シンセサイザー21dの後段に設けられた直交変調器21eと、直交変調器21eの後段に設けられた増幅器21bと、電圧調整回路21cとを備えている。本変形例では、電圧調整回路21cがDAコンバータにより構成されている。
 シンセサイザー21dは、電圧可変発振器21aから高周波fvcoが入力されると、その高周波の周波数fvcoにレジスタ値Rを加えた周波数f(f=fvco+R)の高周波を出力する。シンセサイザー21dには、レジスタ値Rを記録・更新するレジスタ(図示省略)が設けられている。本変形例では、発振器21の発振周波数が、シンセサイザー21dから出力される高周波の周波数となる。
 また、直交変調器21eは、シンセサイザー21dから出力される高周波を、第1I成分信号及び第1Q成分信号に変調して、増幅器21bに出力する。発振器21は、直交変調された高周波を発振する。
 制御装置75は、方向性結合器76と、第1直交復調部91と、第2直交復調部92と、制御部78とを備えている。第1直交復調部91及び第2直交復調部92は、直交復調部を構成している。
 第1直交復調部91は、入射波信号を、第1I成分信号と第1Q成分信号とに復調する。第2直交復調部92は、反射波信号を、第2I成分信号と第2Q成分信号とに復調する。各直交復調部91,92には、直交変調器21eと同期を取るための同期信号が、シンセサイザー21dから入力される。
 制御部78は、復調後の入射波信号(第1I成分信号と第1Q成分信号)、及び、復調後の反射波信号(第2I成分信号と第2Q成分信号)に基づいて、入射波と反射波の位相差を表す位相差情報を生成する情報生成動作と、位相差情報に基づいて放射アンテナ22における共振周波数fと発振器21の発振周波数との差が小さくなる発振周波数の調節方向を検出する方向検出動作と、方向検出動作の検出結果に基づいて発振周波数を調節する周波数調節動作と行う、制御処理を繰り返し行うように構成されている。制御部78は、例えば、マイコンにより構成することができる。制御部78には、制御用のプログラムがインストールされる。制御部78は、CPUが制御用プログラムを実行及び解釈することによって実現される機能ブロックとして、検出部87と指令部88とを有する。
 検出部87は、情報生成動作、及び、方向検出動作を行う。検出部87は、位相情報生成部を兼ねている。検出部87では、第1I成分信号及び第1Q成分信号と、第2I成分信号及び第2Q成分信号とを用いる演算処理により、入射波と反射波の位相差(θ1-θ2)を表す位相差算出値PDCが、位相差情報として算出される。そして、位相差算出値PDCに基づいて発振周波数の調節方向が検出される。
 検出部87は、例えば、式11及び式12に示す演算処理を行うことにより、入射波情報NPAと反射波情報NPBを算出した後、式13に示す演算(複素除算(共役複素数の乗算))を行うことにより、入射波情報NPAにより反射波情報NPBを除した値として位相差算出値PDCを算出する。
 なお、式11及び式12において、第1I成分信号はAcos(ωt+θ1)で表され、第1Q成分信号はAisin(ωt+θ1)で表され、第2I成分信号はBcos(ωt+θ2)で表され、第2Q成分信号はBisin(ωt+θ2)で表される。α=ωt+θ1、β=ωt+θ2とする。
[式11]
Figure JPOXMLDOC01-appb-I000004
[式12]
Figure JPOXMLDOC01-appb-I000005
[式13]
Figure JPOXMLDOC01-appb-I000006
 図42のフローチャートを参照して、制御部78の動作について説明を行う。本変形例では、被加熱物20の搬送を開始する前に、発振器21が発振可能な周波数帯域(以下、「発振可能帯域」と言う。)の中で、反射波強度が所定の判定レベルkより低くなる帯域を探索する探索制御を行った後、周波数制御を行う。
[探索制御]
 図42(a)は探索制御のフローチャートである。探索制御では、ステップST11で、制御部78が、発振器21に初期周波数fi(例えば、発振可能帯域の下限値)を設定し、発振器21による高周波の発振を開始させる。次に、ステップST12で、制御部78は、発振器21に周波数掃引を行わせる。周波数掃引が行われる帯域幅(fi~fi+Δf)はレジスト値Rの初期値に等しい。
 ここで、発振器21から高周波が発振されている期間は、第1直交復調部91にて復調された第1I成分信号及び第1Q成分信号と、第2直交復調部92にて復調された第2I成分信号及び第2Q成分信号とが、連続的な信号として検出部87に入力される。検出部87では、各I成分信号及び各Q成分信号がデジタル変換される。
 ステップST13では、検出部87が、式11~式13の演算により、周波数掃引を行う期間に所定の算出周期で、位相差算出値PDCを算出する。位相差算出値PDCは、図43に示すスミスチャートの複素平面の座標値を表す。ステップST14は、周波数掃引が終了した後に行われる。ステップST14では、検出部87が、所定の算出周期で算出した複数の位相差算出値PDCにより表される座標値(以下、「算出座標値」と言う。)の中に、入射波の位相θ1と反射波の位相θ2とが等しくなる座標値(スミスチャートにおいて中心点Pを通る中心線P上の座標値)があるか否かを判定する。なお、図43では、中心線Pより上側の領域が0~π/2であり、中心線Pより下側の領域が-π/2~0である。
 ステップST14において位相θ1と位相θ2が等しくなる座標値がない場合は、周波数掃引を行った帯域に共振周波数fはないため、ステップST15でレジスト値Rに所定値Δf(上述の帯域幅)を加算した後に、ステップST12に戻る。レジスト値Rは、Δf×2となる。ステップST12では、制御部78が、直前に周波数掃引がなされた帯域の隣りの上位帯域(fi+Δf~fi+Δf×2)で、発振器21に周波数掃引を行わせる。
 一方、ステップST14において位相θ1と位相θ2が等しくなる座標値がある場合は、周波数掃引を行った帯域に共振周波数fがあるため、ステップST16で、検出部87が、位相θ1と位相θ2が等しくなる共振周波数fにおける反射係数B/Aが判定レベルkを下回るか否かの判定を行う。判定レベルkは、制御部78に予め記憶されている。
 ステップST16において反射係数B/Aが判定レベルkを下回らない場合は、周波数掃引を行った帯域における共振周波数fで反射波強度が小さくないため、ステップST15でレジスト値Rに所定値Δfを加算した後に、ステップST12に戻る。一方、ステップST16において反射係数B/Aが判定レベルkを下回る場合は、共振周波数fで反射波強度が小さくなる帯域が見つかったため、ステップST17において周波数掃引を行った帯域の共振周波数fを検出した後、探索制御を終了して周波数制御を開始する。
[周波数制御]
 図42(b)は、周波数制御を構成する制御処理のフローチャートである。なお、フローチャートでは、ステップST23が情報生成動作に相当し、ST26~ST27が方向検出動作に相当し、ステップST28~ST29が周波数調節動作に相当する。
 周波数制御では、ステップST21で、搬送機構12の電源がONに切り替えられて、被加熱物20の搬送が開始される。次に、ステップST22で、制御部78が、ステップST17で検出した共振周波数fに、発振器21の発振周波数fを設定する。ステップST23では、検出部87が、その時点における第1I成分信号、第1Q成分信号、第2I成分信号及び第2Q成分信号を用いて、式11~式13の演算により、位相差算出値PDCを算出する。
 次に、ステップST24で、検出部87が、反射係数B/Aが判定レベルkを下回るか否かの判定を行う。ステップST24において反射係数B/Aが判定レベルkを下回らない場合は、ステップST25でレジスト値Rに所定値Δfを加算した後に、ステップST22に戻る。これにより、共振周波数fの変動により、反射波強度が低くなる帯域ではなくなった場合に、他の帯域に移動できる。
 一方、ステップST24において反射係数B/Aが判定レベルkを下回る場合は、ステップST26で、検出部87が、位相差算出値PDCによる表される算出座標値と、スミスチャートの中心線Pを表す基準情報とを比較する第1比較動作として、算出座標値が正位相にあるか否か(つまり、θ1>θ2か否か)の判定を行う。
 ステップST26においてθ1>θ2の条件を満たす場合、算出座標値(例えば、図43の位置A)が0~π/2にある。この場合、ステップST28に移行して、指令部88が、電圧調整回路21cを介して、所定の加算周波数p(例えば、p=1MHz)だけ発振周波数を増加させる。これにより、発振器21の発振周波数は、共振周波数fに近づく。位相算出値Aは、矢印の方向に動く。ステップST28の実行後は、ステップST23に戻る。
 一方、ステップST26においてθ1>θ2の条件を満たさない場合、ステップST27に移行して、検出部87が、第2比較動作として、算出座標値が-π/2~0にあるか否か(つまり、θ1<θ2か否か)の判定を行う。ステップST27においてθ1<θ2の条件を満たす場合、算出座標値(例えば、図43の位置B)が-π/2~0にある。この場合、ステップST29に移行して、指令部88が、電圧調整回路21cを介して、所定の減算周波数q(例えば、q=1MHz)だけ発振周波数を減少させる。これにより、発振器21の発振周波数は、共振周波数fに近づく。位相算出値Bは、矢印の方向に動く。ステップST29の実行後は、ステップST23に戻る。
 ステップST27においてθ1<θ2の条件を満たさない場合は、座標値が中心線P上にある。この場合、ステップST23に戻る。発振周波数は、そのままの値に維持される。
[実施形態4の変形例3の効果等]
 本変形例では、入射波信号と反射波信号を用いるデジタルの演算処理により、入射波と反射波の位相差を表す位相差情報が生成される。そして、位相差情報と基準情報(中心線Pの情報)とに基づいて発振周波数の調節方向を検出し、その検出結果に基づいて発振周波数を制御する制御処理を繰り返し行うことで、共振周波数fに対して発振周波数が追従する。ここで、上述の演算処理は、高速で行うことができる。また、基準情報の数値データは予め準備できるため、発振周波数の調節方向も高速で検出できる。本変形例によれば、共振周波数に対して発振周波数を高速で追従させることが可能である。
<実施形態4の変形例4>
 本変形例は、実施形態4の変形例3のバリエーションである。本変形例では、図44に示すように、直交復調部が、1つの直交復調器91と、方向性結合器76から直交復調器91に対し、入射波信号が入力される第1期間と、反射波信号が入力される第2期間とを切り替える切替スイッチSW3とを備えている。切替スイッチSW3は、制御部78により所定の切替周期で切り替えられる。例えば、切替周期は、位相差情報の生成周期の半分以下である。
 本変形例では、上述のステップST23の前半は、切替スイッチSW3が入射波信号側の接点に切り替えられて第1期間となる。直交復調器91では、入射波信号が、第1I成分信号及び第1Q成分信号に復調される。ステップST23の後半は、切替スイッチSW3が反射波信号側の接点に切り替えられて第2期間となる。直交復調器91では、反射波信号が、第2I成分信号及び第2Q成分信号に復調される。そして、検出部87が、式11~式13の演算処理により、位相差算出値PDCを算出する。本変形例によれば、直交復調器の構成を簡素化できる。
<実施形態4の変形例5>
 本変形例は、実施形態4の変形例3のバリエーションである。本変形例では、図45に示すように、伝送線路16から入射波信号を抽出するためにカプラー93が設けられ、伝送線路16から反射波信号を抽出するためにアイソレータ94が設けられている。アイソレータ94にはサーキュレータ方式のものが用いられる。
 カプラー93により抽出された入射波信号は、復調されることなく、制御部78に入力される。制御部78は、入射波信号に基づいて、増幅器21bで増幅後の入射波信号の強度Aを検出する。強度Aの情報は、上述の反射係数B/Aの算出に用いられる。
 アイソレータ94により抽出された反射波信号は、アッテネータ95を経て直交復調器91に入力される。本変形例では、直交復調部が、1つの直交復調器91により構成されている。直交復調器91では、反射波信号が、第2I成分信号及び第2Q成分信号に復調される。直交復調器91により復調された第2I成分信号及び第2Q成分信号は、制御部78に入力される。
 本変形例では、制御部78が、発振器21の高周波の出力タイミングにおける位相の入射波情報(発振情報由来の入射波情報)を用いて、位相差情報の生成を行うように構成されている。具体的に、制御部78は、発振情報由来の入射波情報の第1I成分情報及び第1Q成分情報と、直交復調器91で復調された第2I成分情報及び第2Q成分情報とを用いて、式11~式13の演算処理を行い、位相差算出値PDCを算出する。この演算処理にあたっては、制御部78は、演算処理の前に、入射波情報に対し反射波情報との位相のずれの補正を行う。この補正により、発振器21から出力される入射波の位相と、アイソレータ94により抽出される反射波信号との位相のずれが補正される。
<実施形態4の変形例6>
 本変形例では、制御部78が、最初の被加熱物20が強電界領域を通過する初回加熱期間に、上述の周波数制御を行うと共に、該周波数制御の制御履歴情報として、発振周波数の調整履歴(各制御処理における調節方向)をメモリーに逐次記録し、その記録後に強電界領域を通過する被加熱物20を加熱する期間に、メモリーに記録した制御履歴情報を用いて周波数制御を行う。
 なお、制御履歴情報として、位相差情報及び発振周波数から算出した共振周波数fの履歴、又は、発振器21の発振周波数(周波数を表す電圧情報など)の履歴を記録してもよい。また、制御履歴情報を用いる周波数制御においては、履歴情報の発振周波数をそのまま適用してもよいが、履歴情報の発振周波数に対して、検出部78aにより逐次検出される位相差電圧Vを用いて補正を行った周波数を、発振器21に与えるようにしてもよい。
 また、内部空間40に被加熱物20の有無を検出する物体検出センサ(例えば、受光素子、撮像素子)を設け、被加熱物20の加熱開始時間(例えば、放射アンテナ22の上流側の位置に被加熱物20が到達する時間)からの時間経過情報と併せて、制御履歴情報を記録してもよい。制御履歴情報を用いる周波数制御では、物体検出センサにより次の被加熱物20の加熱開始タイミングを検出し、その検出タイミングから周波数制御が開始される。
<実施形態4の変形例7>
 本変形例では、放射アンテナ22に生じる浮遊リアクタンスによる位相のずれを補正するために、電磁波加熱装置10のセッティング段階で、反射係数(反射波電力)が最小値を示す周波数と位相角0°の周波数との差分を補正するための補正用位相角の分だけ、発振器21から発振される高周波に対し位相変調を行ってもよい。これにより、復調部で復調される反射波信号における共振インピーダンスの最小値と位相角0°とを一致させた状態で、電磁波加熱装置10を出荷することができる。
<実施形態4の変形例8>
 本変形例では、各被加熱物20が、基材11に印刷されたインクであり、制御部78が、例えば、受光素子を用いた受光センサの測定値を用いて、各被加熱物20のインク量の検出を行う。インク量は、例えば、被加熱物20の通過期間における受光センサの測定値の積算値(光量の積算値)により検出することができる。
 また、制御部78は、インク量の検出値VIに基づいて発振器21の出力制御を行う。ここで、位相差情報を用いることで、単位時間当たりに被加熱物20に吸収される高周波エネルギー量Pを推測可能である。制御部78は、被加熱物20の加熱開始からの経過時間によって位相差情報を積分することにより、被加熱物20に吸収される高周波エネルギー量Ptを推測する。そして、インク量の検出値VIと、高周波エネルギー量Ptとを比較することにより、発振器21の出力を増減させる。
 例えば、式14の算出値Tが、予め定めた乾燥閾値を超えるタイミングで、発振器21の出力を停止させることができるし、放射アンテナ22の下流端に被加熱物20が到達するタイミングで、算出値Tが乾燥閾値となるように発振器21の出力を加減することもできる。なお、式14においてKは、被加熱物20に応じて設定する乾燥係数である。
 式14:T=(Pt×K/VI)
 なお、発振器21の出力制御に、内部空間40の空気又は内部空間40から排出される空気の湿度を検出する湿度センサの計測値を用いてもよい。制御部78は、湿度センサの計測湿度が所定値より高い場合は、被加熱物20の乾燥が早期に進んでいると判断して、発振器21の出力を低下させ、湿度センサの計測湿度が所定値より低い場合は、被加熱物20の乾燥が遅れていると判断して、発振器21の出力を増加させる。
<実施形態4の変形例9>
 本変形例は、高周波等の電磁波を利用して、食品等の被加熱物20を加熱して解凍する電磁波加熱装置10である。電磁波加熱装置10は、図46に示すように、解凍室100を形成する箱状部材101と、高周波を発振する発振器21と、解凍室100内の被加熱物20を加熱するための高周波を放射する放射アンテナ22と、発振器21を制御する制御装置75とを備えている。箱状部材101には、空気の導入口及び排出口と、導入口から排出口に空気を送るファンが設けられている。解凍室100には、被加熱物(解凍対象物)20を載せる載置台102が設けられている。なお、放射アンテナ22は、発振器21から伝送される周波数帯域の高周波により共振が生じる共振構造を有するものであればよく、実施形態4と同じアンテナを用いることができる。また、本変形例では、実施形態4の制御装置75を用いているが、実施形態4の変形例3の制御装置75を用いてもよい。
 ここで、被加熱物20の解凍においては、固相か液相により高周波を吸収しやすい周波数が大きく異なる。そのため、被加熱物20の相変化に伴って共振周波数fが逐次で変化する。従って、制御装置75により共振周波数fに対して発振周波数を高速で追従させる周波数制御を行うことで、効率的に被加熱物20の加熱・解凍を行うことができる。
 また、電磁波加熱装置10を解凍装置として用いる場合は、被加熱物20の相変化に伴って共振モードが変化する場合があり、この共振モードの変化は、被加熱物20の種類及び重量などによって異なる。そのため、制御装置75は、被加熱物20の種類及び重量などからなる被加熱物20の条件ごとに、解凍開始から終了までに被加熱物20の相変化に伴って遷移する複数の共振モードの各々について、共振周波数fの時系列変化を共振周波数fのパターンとして予め記録しておき、その記録したパターンを周波数制御に利用してもよい。例えば、共振モード毎に制御周期Sを予め決めておき、制御装置75は、被加熱物20の加熱時間の推移及び共振周波数fの変化に基づいて、予め記録させた複数の共振パターンのうち何れの共振パターンであるかを検出し、検出した共振パターンに対応する制御周期Sで周波数制御を行ってもよい。また、共振モード毎に発振器21の発振出力を予め決めておき、制御装置75は、被加熱物20の加熱時間の推移及び共振周波数fの変化に基づいて、予め記録させた複数の共振パターンのうち何れの共振パターンであるかを検出し、検出した共振パターンに対応する発振出力となるように発振器21を制御してもよい。
<実施形態4のその他の変形例>
 上述の実施形態4及び各変形例(以下、「実施形態4等」と言う。)において、制御部78は、被加熱物20の加熱目標状態に対する、被加熱物20の加熱進行度合いを推測し、その推測結果に基づいて、閾値範囲(-Vc~Vc)の幅を調節する。この場合に、被加熱物20の加熱進行度合いは、上述の湿度センサの計測値の積算値、被加熱物20に吸収される高周波エネルギー量Pt、インクの検出量VIなどを用いて、推測値として算出できる。被加熱物20の加熱目標状態は、予め閾値として準備することができる。また、被加熱物20の加熱進行度合いの推測値が、小さい場合は、反射波強度が低くなる帯域ではないと判断して、他の帯域に移動してもよい。
 上述の実施形態4等において、被加熱物20は、印刷装置で印刷されたインクである場合に、制御部78は、制御処理の制御パラメータの調節に、被加熱物20の印刷パターンの情報を用いてもよい。例えば、印刷パターンの解像度に応じて、制御周期S、閾値範囲(-Vc~Vc)の幅、又は、平均化処理のサンプル数nを増減させることができる。解像度が高い場合は、共振周波数fが細かく変動する虞があるため、解像度が高いほど、制御周期Sは短く、閾値範囲の幅を狭く、サンプル数nは少なくする。
 上述の実施形態4等では、各櫛歯電極31,32において複数の歯部31a,32aが基部線路31b,32bに対して斜めに設けられているが、複数の歯部31a,32aが基部線路31b,32bに対して垂直に設けられていてもよい。
 本発明は、被加熱物の加熱に用いられる電磁波加熱装置等に適用可能である。
 10  電磁波加熱装置
 11  基材
 12  搬送機構
 20  被加熱物
 21  発振器
 22  放射アンテナ
 23  基板
 24  誘電体層
 25  接地電極層
 30  入力部
 31  第1櫛歯電極
 31a 歯部(導体線路)
 32  第2櫛歯電極
 32a 歯部(導体線路)
 40  内部空間
 50  カバー
 60  遮蔽部
 70  連続隙間
 75  制御装置
 

Claims (32)

  1.  電磁波加熱装置であって、
     電磁波を出力する発振器と、
     前記発振器から出力される電磁波を放射する導体であって、前記発振器から伝送される周波数帯域の電磁波により前記導体で共振が生じる共振構造を有する放射アンテナとを備え、
     前記発振器から前記放射アンテナへ供給される電磁波により、前記放射アンテナに沿って、被加熱物を加熱するための強電界領域が形成されるように構成されている、電磁波加熱装置。
  2.  前記放射アンテナでは、それぞれが前記共振構造を有する3本以上の導体線路が、所定の方向に隙間を空けて配列されて、
     前記3本以上の導体線路の少なくとも一部に電磁波を供給するための入力部をさらに備え、
     前記放射アンテナでは、前記入力部に電磁波が入力される入力期間に、前記3本以上の導体線路の各々で電磁波による共振が生じて、前記3本以上の導体線路が配列された領域に沿って、前記強電界領域が形成される、請求項1に記載の電磁波加熱装置。
  3.  前記3本以上の導体線路に対して前記被加熱物が配置される側とは反対側に配置され、前記3本以上の導体線路の少なくとも一部に対面する接地電極をさらに備えている、請求項2に記載の電磁波加熱装置。
  4.  前記所定の方向に隣り合う導体線路間の距離は、該導体線路の線路幅の5倍以下である、請求項2又は3に記載の電磁波加熱装置。
  5.  前記被加熱物は、所定の搬送方向に搬送され、
     前記3本以上の導体線路は、前記搬送方向に配列されている、請求項2乃至4の何れか1つに記載の電磁波加熱装置。
  6.  前記導体線路の配列方向に対し、各導体線路が斜めに延びている、請求項2乃至5の何れか1つに記載の電磁波加熱装置。
  7.  前記3本以上の導体線路の配列領域は、平面視で帯状の領域であり、
     前記3本以上の導体線路では、前記配列領域における幅方向の一端側に電磁波による定在波の腹部が形成される導体線路と、他端側に前記定在波の腹部が形成される導体線路とが交互に並ぶ、請求項2乃至6の何れかに記載の電磁波加熱装置。
  8.  前記放射アンテナでは、4本以上の前記導体線路が、前記所定の方向に隙間を空けて配列され、
     前記4本以上の導体線路では、電磁波による定在波の腹部となる導体線路の強電界箇所が、前記導体線路の配列方向に並ぶ強電界列が、2列以上形成される、請求項2乃至7の何れか1つに記載の電磁波加熱装置。
  9.  前記放射アンテナは、それぞれが前記導体線路に相当する複数の歯部を有する第1櫛歯電極と、それぞれが前記導体線路に相当する複数の歯部を有する第2櫛歯電極とを備え、
     前記第1櫛歯電極及び前記第2櫛歯電極は、それぞれの歯部同士が隙間を空けて噛み合うように配置されている、請求項2乃至8の何れか1つに記載の電磁波加熱装置。
  10.  前記3本以上の導体線路を囲うように設けられた筐体をさらに備え、
     前記被加熱物は、前記筐体に形成された開口部、又は、前記筐体により形成された隙間を通じて、前記筐体内に出し入れ可能となっている、請求項2乃至9の何れか1つに記載の電磁波加熱装置。
  11.  誘電体により構成され、前記3本以上の導体線路に対して前記被加熱物が配置される側を覆う被覆部材が設けられている、請求項2乃至10の何れか1つに記載の電磁波加熱装置。
  12.  前記被加熱物は、所定の搬送方向に搬送され、
     前記放射アンテナにおいて、前記発振器からの電磁波の入力箇所が前記搬送方向の下流側に位置している、請求項1乃至11の何れか1つに記載の電磁波加熱装置。
  13.  前記被加熱物は、所定の搬送方向に搬送され、
     前記放射アンテナにおいて、前記発振器からの電磁波の入力箇所が、前記被加熱物の通過領域の外側に位置している、請求項1乃至12の何れか1つに記載の電磁波加熱装置。
  14.  前記放射アンテナが配置された内部空間を外部から遮蔽し、前記被加熱物を含む搬送物の導入部及び導出部が形成されて、前記内部空間では、前記被加熱物が前記放射アンテナの対面領域を通過するように、前記搬送物が前記導入部から前記導出部に向かって搬送される遮蔽部をさらに備え、
     前記遮蔽部には、前記内部空間を外部に連通させる隙間として、前記対面領域の側方において前記搬送物の搬送方向に延びる側方隙間が前記導入部及び前記導出部の各々に対して繋がった連続隙間が形成されている、請求項1乃至9の何れか1つに記載の電磁波加熱装置。
  15.  前記連続隙間は、前記搬送方向の上流側の導入部、前記搬送方向の下流側の導出部、及び、前記搬送方向に直交する方向の片側の側方隙間を有する少なくとも三方の隙間により構成されている、請求項14に記載の電磁波加熱装置。
  16.  前記遮蔽部は、前記内部空間を片側から区画する第1区画部と、前記第1区画部との間に前記連続隙間を形成して前記第1区画部とは反対側から前記内部空間を区画する第2区画部とを有し、
     前記第1区画部は、前記搬送方向に直交する方向のもう片側で、前記第2区画部に支持されている、請求項15に記載の電磁波加熱装置。
  17.  前記内部空間を搬送される前記被加熱物に空気を供給する送風機をさらに備え、
     前記遮蔽部は、前記内部空間を片側から区画する第1区画部と、前記第1区画部との間に前記連続隙間を形成して前記第1区画部とは反対側から前記内部空間を区画する第2区画部とを有し、
     前記送風機は、前記第1区画部に取り付けられている、請求項14又は15に記載の電磁波加熱装置。
  18.  前記放射アンテナが配置された内部空間を外部から遮蔽し、前記被加熱物を含む搬送物の導入部及び導出部が形成されて、前記内部空間では、前記被加熱物が前記放射アンテナの対面領域を通過するように、前記搬送物が前記導入部から前記導出部に向かって搬送される遮蔽部と、
     前記遮蔽部に取り付けられて、前記内部空間を搬送される前記被加熱物に空気を供給する送風機とをさらに備えている、請求項1乃至11の何れか1つに記載の電磁波加熱装置。
  19.  前記遮蔽部には、前記送風機から前記被加熱物に向かう空気が流れる送風通路が形成され、
     前記送風通路には、前記放射アンテナから放射される電磁波から前記送風機を遮蔽し、且つ、前記送風機から前記被加熱物に向かう空気を通過させるシールド部材が設けられている、請求項17又は18に記載の電磁波加熱装置。
  20.  前記送風機の送風方向が、前記搬送方向の下流側を向いている、請求項17乃至19の何れか1つに記載の電磁波加熱装置。
  21.  前記発振器の廃熱を利用して、前記送風機により前記被加熱物に供給される空気を加熱する廃熱利用部をさらに備えている、請求項17乃至19の何れか1つに記載の電磁波加熱装置。
  22.  前記発振器から前記放射アンテナへ延びる伝送線路に設けられ、前記放射アンテナから戻る反射波の波形を表す反射波情報を抽出する信号抽出部と、
     前記発振器から前記放射アンテナへ伝送される入射波の波形を表す入射波情報と前記反射波情報とを用いる演算処理により、前記入射波と前記反射波の位相差を表す位相差情報を生成する位相差情報生成部と、
     前記入射波の位相と前記反射波の位相とが等しくなる状態の基準情報と、前記位相差情報とに基づいて、前記放射アンテナにおける共振周波数と前記発振器の発振周波数との差が小さくなる前記発振周波数の調節方向を検出し、その検出された調節方向に基づいて前記発振周波数を制御する制御処理を繰り返し行う制御部とをさらに備えている、請求項1乃至21の何れか1つに記載の電磁波加熱装置。
  23.  前記制御部は、前記基準情報と前記位相差情報とを用いて、前記共振周波数に対する前記発振周波数のずれ方向を検出し、その検出結果に対し平均化処理を行うことにより、前記発振周波数の調節方向を検出する、請求項22に記載の電磁波加熱装置。
  24.  前記被加熱物が前記強電界領域を通過するように搬送され、
     前記制御部は、前記被加熱物の搬送速度に基づいて、前記平均化処理に用いる検出結果のサンプル数を調節する、請求項23に記載の電磁波加熱装置。
  25.  前記発振器は、直交変調された電磁波を前記放射アンテナに出力し、
     前記反射波情報を直交復調する直交復調部をさらに備え、
     前記入射波情報を構成する第1I成分情報及び第1Q成分情報と、前記反射波情報を構成する第2I成分情報及び第2Q成分情報とを用いる演算処理により、前記位相差情報を生成する、請求項22乃至24の何れか1つに記載の電磁波加熱装置。
  26.  前記信号抽出部は、前記伝送線路から前記入射波情報を抽出し、
     前記直交復調部は、
      1つの直交復調器と、
      前記信号抽出部から前記直交復調器に対し、前記入射波情報が入力される第1期間と、前記反射波情報が入力される第2期間とを切り替える切替スイッチとを備え、
     前記位相差情報の生成周期よりも短い周期で、前記切替スイッチにより、前記第1期間と前記第2期間の切り替えが行われる、請求項25に記載の電磁波加熱装置。
  27.  前記信号抽出部は、前記伝送線路から前記入射波情報を抽出し、
     前記信号抽出部から前記位相差情報生成部へ前記入射波情報を伝送する線路には、前記入射波情報と前記反射波情報との位相のずれを補正する遅延線路又は遅延素子が設けられている、請求項22乃至26の何れか1つに記載の電磁波加熱装置。
  28.  前記制御部は、前記発振器の電磁波の出力タイミングにおける位相の前記入射波情報を用いて、前記位相差情報の生成を行うように構成され、前記演算処理の前に、前記入射波情報に対し前記反射波情報との位相のずれの補正を行う、請求項22乃至25の何れか1つに記載の電磁波加熱装置。
  29.  前記制御部は、前記位相差情報に基づいて、前記被加熱物に吸収される電磁波エネルギー量を推測し、その推測結果に基づいて前記発振器の出力制御を行う、請求項22乃至28の何れか1つに記載の電磁波加熱装置。
  30.  前記基準情報は、所定の幅を持つ閾値範囲であり、
     前記制御部は、前記被加熱物の加熱目標状態に対する、該被加熱物の加熱進行度合いを推測し、その推測結果に基づいて前記閾値範囲の幅を調節する、請求項22乃至29の何れか1つに記載の電磁波加熱装置。
  31.  前記強電界領域を順番に通過するように、複数の被加熱物が間隔を空けて搬送され、
     前記制御部は、1つの被加熱物が前記強電界領域を通過する期間に前記制御処理を繰り返す周波数制御を行うと共に、該周波数制御の制御履歴情報を記録し、その記録後に前記強電界領域を通過する被加熱物を加熱する期間に、前記制御履歴情報を用いて前記周波数制御を行う、請求項22乃至30の何れか1つに記載の電磁波加熱装置。
  32.  前記強電界領域を順番に通過するように、複数の被加熱物が間隔を空けて搬送され、
     前記被加熱物は、印刷装置で印刷されたインクであり、
     前記制御部は、前記制御処理の制御パラメータの調節に、前記被加熱物の印刷パターンの情報を用いる、請求項22乃至31の何れか1つに記載の電磁波加熱装置。
PCT/JP2021/027904 2020-07-30 2021-07-28 電磁波加熱装置 WO2022025115A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/103,421 US20230284351A1 (en) 2020-07-30 2023-01-30 Electromagnetic Wave Heating Device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-128953 2020-07-30
JP2020128953A JP7296634B2 (ja) 2020-07-30 2020-07-30 電磁波加熱装置
JP2021-017282 2021-02-05
JP2021017282A JP2022120407A (ja) 2021-02-05 2021-02-05 電磁波加熱装置
JP2021091069A JP7245549B2 (ja) 2021-05-31 2021-05-31 電磁波加熱装置
JP2021-091069 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/103,421 Division US20230284351A1 (en) 2020-07-30 2023-01-30 Electromagnetic Wave Heating Device

Publications (1)

Publication Number Publication Date
WO2022025115A1 true WO2022025115A1 (ja) 2022-02-03

Family

ID=80035734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027904 WO2022025115A1 (ja) 2020-07-30 2021-07-28 電磁波加熱装置

Country Status (2)

Country Link
US (1) US20230284351A1 (ja)
WO (1) WO2022025115A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474540A (en) * 1977-11-28 1979-06-14 Ngk Insulators Ltd Inductive heater accompanying evaporation of large amount of water
JPS6380189A (ja) * 1986-09-22 1988-04-11 大阪下田産業株式会社 高周波誘電乾燥装置
JPH0997674A (ja) * 1995-10-02 1997-04-08 Yamamoto Vinita Co Ltd 高周波加熱装置のグリッド電極
JP2003510402A (ja) * 1999-09-23 2003-03-18 アメリサーム, インコーポレイテッド 接着、接合およびコーティングで使用するためのrf活性組成物
JP2017050216A (ja) * 2015-09-03 2017-03-09 株式会社リコー 高周波誘電加熱装置及び画像形成装置
WO2019104216A1 (en) * 2017-11-21 2019-05-31 The Texas A&M University System Radio frequency heating for rapid curing of nanocomposite adhesives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474540A (en) * 1977-11-28 1979-06-14 Ngk Insulators Ltd Inductive heater accompanying evaporation of large amount of water
JPS6380189A (ja) * 1986-09-22 1988-04-11 大阪下田産業株式会社 高周波誘電乾燥装置
JPH0997674A (ja) * 1995-10-02 1997-04-08 Yamamoto Vinita Co Ltd 高周波加熱装置のグリッド電極
JP2003510402A (ja) * 1999-09-23 2003-03-18 アメリサーム, インコーポレイテッド 接着、接合およびコーティングで使用するためのrf活性組成物
JP2017050216A (ja) * 2015-09-03 2017-03-09 株式会社リコー 高周波誘電加熱装置及び画像形成装置
WO2019104216A1 (en) * 2017-11-21 2019-05-31 The Texas A&M University System Radio frequency heating for rapid curing of nanocomposite adhesives

Also Published As

Publication number Publication date
US20230284351A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
KR101495378B1 (ko) 마이크로파 가열 장치
JP5142364B2 (ja) マイクロ波処理装置
RU2253193C2 (ru) Микроволновая печь и способ оптимизации ее конструктивных параметров
JPS58142184A (ja) 乾燥装置
WO2022025115A1 (ja) 電磁波加熱装置
JP6273598B2 (ja) マイクロ波加熱装置
JP2010092795A (ja) マイクロ波処理装置
JP7245549B2 (ja) 電磁波加熱装置
JP4381001B2 (ja) プラズマプロセス装置
WO2019156142A1 (ja) マイクロ波加熱方法、マイクロ波加熱装置及び化学反応方法
JP2022120407A (ja) 電磁波加熱装置
RU2133933C1 (ru) Вакуумно-электромагнитная сушилка древесины
JP2010177006A (ja) マイクロ波処理装置
JP5467341B2 (ja) マイクロ波処理装置
JP2020013759A (ja) 電磁波加熱装置、及び、アンテナ
JP2022025839A (ja) 電磁波加熱装置
EP4033862B1 (en) Radiation device, heating device, method for manufacturing a heating device, and use of a radiation device
JP6486207B2 (ja) プラズマ処理装置
CA2355152C (en) Electromagnetic exposure chamber for improved heating
JP2020013761A (ja) 電磁波加熱装置
Ramey et al. Microwave properties of thin films with apertures
JPH02155194A (ja) 高周波加熱装置
JP2020013760A (ja) 電磁波加熱装置
JPS5832239Y2 (ja) 高周波加熱器
JP2011060530A (ja) マイクロ波処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849957

Country of ref document: EP

Kind code of ref document: A1