WO2022024761A1 - 非線形光学デバイスの製造方法 - Google Patents

非線形光学デバイスの製造方法 Download PDF

Info

Publication number
WO2022024761A1
WO2022024761A1 PCT/JP2021/026467 JP2021026467W WO2022024761A1 WO 2022024761 A1 WO2022024761 A1 WO 2022024761A1 JP 2021026467 W JP2021026467 W JP 2021026467W WO 2022024761 A1 WO2022024761 A1 WO 2022024761A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid material
recess
solute
nonlinear optical
optical device
Prior art date
Application number
PCT/JP2021/026467
Other languages
English (en)
French (fr)
Inventor
英久 田澤
泰典 村上
明 大友
俊樹 山田
秀雄 横濱
里永子 上田
Original Assignee
国立研究開発法人情報通信研究機構
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構, 住友電気工業株式会社 filed Critical 国立研究開発法人情報通信研究機構
Priority to JP2022540154A priority Critical patent/JPWO2022024761A1/ja
Priority to US18/015,467 priority patent/US20230330955A1/en
Priority to CN202180048924.7A priority patent/CN115968450A/zh
Publication of WO2022024761A1 publication Critical patent/WO2022024761A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3615Organic materials containing polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0073Solution

Definitions

  • This disclosure relates to a method for manufacturing a nonlinear optical device.
  • This application claims priority based on Japanese Patent Application No. 2020-13371, which is a Japanese patent application filed on July 31, 2020. All the contents of the Japanese patent application are incorporated herein by reference.
  • Patent Documents 1 to 5 A method of filling a liquid material into a minute recess formed on the surface of a substrate is being studied (see, for example, Patent Documents 1 to 5 and Non-Patent Document 1).
  • the method for manufacturing a nonlinear optical device is as follows. Forming recesses on the surface of the semiconductor substrate, Filling the recess with the first liquid material in a reduced pressure environment, To prepare a third liquid material by bringing the second liquid material into contact with the first liquid material filled in the recess. and, By solidifying the third liquid material, an embedded portion is formed. Including The first liquid material contains the first solute and the first solvent, or comprises only the first solvent. The second liquid material contains a second solute and a second solvent. The second solute contains a non-linear optical polymer and contains. The concentration of the second solute in the second liquid material is higher than the concentration of the first solute in the first liquid material.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a nonlinear optical device according to the present embodiment.
  • FIG. 2 is a first schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • FIG. 3 is a schematic top view showing a first example of the recess.
  • FIG. 4 is a schematic top view showing a second example of the recess.
  • FIG. 5 is a second schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • FIG. 6 is a third schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • FIG. 7 is a fourth schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a nonlinear optical device according to the present embodiment.
  • FIG. 2 is a first schematic cross-sectional view showing a manufacturing process of the
  • FIG. 8 is a fifth schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • FIG. 9 is a sixth schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • FIG. 10 shows No. 2 is a first schematic cross-sectional view showing the manufacturing process of 2.
  • FIG. 11 shows No. 2 is a second schematic cross-sectional view showing the manufacturing process of 2.
  • FIG. 12 shows No. 3 is a schematic cross-sectional view showing the manufacturing process of 3.
  • FIG. 13 is a schematic top view of the evaluation device.
  • FIG. 14 shows No. It is a measurement example of the light propagation streak image of 2.
  • FIG. 15 shows No. It is a calculation example of the propagation loss of 2.
  • FIG. 16 shows No. 1 to No. It is an evaluation result of 3.
  • FIG. 17 is a schematic cross-sectional view showing an example of the bottom portion.
  • FIG. 18 is an example of a synthetic scheme for sidechain cop
  • Embedded structures are being investigated in nonlinear optics (NLO) devices.
  • the embedded structure is formed by filling the recesses formed on the surface of the semiconductor substrate with the NLO polymer.
  • NLO nonlinear optics
  • a polymer solution in which an NLO polymer is dissolved is used. That is, the polymer solution is applied to the surface of the semiconductor substrate having the recesses and solidified, so that the embedded portion can be formed.
  • the embedded portion includes an optical waveguide, light may be scattered by the voids in the embedded portion. As a result, propagation loss can occur.
  • the NLO polymer includes, for example, a host polymer and a guest molecule.
  • Guest molecules are dispersed in the host polymer.
  • the guest molecule is a polar molecule and has NLO activity.
  • dipole interactions can cause guest molecules to aggregate. The aggregation of guest molecules can result in the loss of NLO activity.
  • An object of the present disclosure is to form an embedded portion having a smooth surface and few voids in an NLO device.
  • the method for manufacturing a nonlinear optical device includes the following (a) to (d).
  • a recess is formed on the surface of the semiconductor substrate.
  • B) The recess is filled with the first liquid material under a reduced pressure environment.
  • a third liquid material is prepared by bringing the second liquid material into contact with the first liquid material filled in the recess.
  • D) The embedded portion is formed by solidifying the third liquid material.
  • the first liquid material contains the first solute and the first solvent, or consists only of the first solvent.
  • the second liquid material contains a second solute and a second solvent.
  • the second solute contains a non-linear optical polymer. The concentration of the second solute in the second liquid material is higher than the concentration of the first solute in the first liquid material.
  • the second liquid material of the present disclosure has a higher concentration than the first liquid material.
  • the second liquid material is also referred to as a "high concentration solution”.
  • the first liquid material is also referred to as a "low concentration solution”.
  • “high concentration and low concentration” indicate the relative concentration between the second liquid material and the first liquid material, and do not indicate the absolute concentration.
  • a low-concentration solution (first liquid material) is filled in the recess.
  • the first liquid material may consist only of the solvent.
  • Low concentration solutions can have low viscosities. It is considered that the low-concentration solution easily enters the recess. It is considered that bubbles are likely to move in a low-concentration solution. That is, it is considered that bubbles are easily removed.
  • the low-concentration solution does not easily solidify from the surface even when exposed to a reduced pressure environment.
  • the high concentration solution (second liquid material) is added to the low concentration solution.
  • a mixed solution (third liquid material) is formed by diffusing the solute (NLO polymer) from the high-concentration solution to the low-concentration solution.
  • the embedded portion is formed by solidifying the mixed solution in the recess.
  • solidification in the present disclosure is meant precipitating a solute by substantially removing the solvent from the solution.
  • the low-concentration solution first liquid material
  • reduction of air bubbles is expected. Therefore, it is expected that the voids will be reduced even in the embedded portion after solidification.
  • the first solute may contain, for example, a nonlinear optical polymer.
  • At least a part of the recess may be formed so as to extend linearly along the surface of the semiconductor substrate, for example.
  • the recess extending linearly can also be referred to as a "slot" or the like.
  • a slot waveguide type NLO device can be manufactured.
  • the ratio of the depth of the recess to the width of the recess may be, for example, 0.5 to 12.
  • the "ratio of the depth (d) of the recess to the width (w) of the recess" is also referred to as "aspect ratio (d / w)".
  • aspect ratio 0.5 or more, for example, high integration is expected.
  • aspect ratio is 12 or less, for example, reduction of voids is expected.
  • the recess may have, for example, a width of 170 nm or less.
  • the concentration of the first solute in the first liquid material may be, for example, 0% by mass to 35% by mass.
  • concentration of the second solute in the second liquid material may be, for example, 5% by mass to 40% by mass.
  • the concentration of the first liquid material is 35% by mass or less, reduction of voids is expected.
  • the concentration of the second liquid material is 40% by mass or less, the time required for the diffusion of the solute can be shortened.
  • the nonlinear optical polymer is, for example, the following formula (I): It may include the structure represented by.
  • R 1 and R 2 are independently hydrogen atom, alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, alkoxy group, haloalkyl group, aryl group, hydroxy group, thiol group, respectively. Or indicate an amino group.
  • the structure of the above formula (I) can be an electron acceptor.
  • a large NLO effect is expected in the NLO polymer containing the structure of the above formula (I).
  • Each of the first solvent and the second solvent is, for example, acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, cycloheptanone, acetylacetone, methylamylketone, n-methylketone, ⁇ -butyrolactone, tetrahydrofuran, chloroform, dibromomethane, 1, 2-Dichloroethane, 1,2-dibromoethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-tribromoethane, 1,1,2,2-tetrabromo It may contain at least one selected from the group consisting of ethane, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, butyl lactate, propylene
  • the second solvent may be, for example, the same material as the first solvent.
  • the second solute may be, for example, the same material as the first solute.
  • the second solvent is the same material as the first solvent and the second solute is the same material as the first solute, it is expected that, for example, the second liquid material and the first liquid material are uniformly mixed.
  • the first solute may contain, for example, a nonlinear optical polymer.
  • at least a part of the recess may be formed so as to extend linearly along the surface of the semiconductor substrate.
  • the ratio of the depth of the recess to the width of the recess may be 0.5 to 12.
  • the recess may have a width of 170 nm or less.
  • the concentration of the first solute in the first liquid material may be 0% by mass to 35% by mass.
  • the concentration of the second solute in the second liquid material may be 5% by mass to 40% by mass.
  • Geometric terms eg, "parallel”, “vertical”, “straight line”, etc.
  • Geometric terms in this embodiment should not be understood in a strict sense.
  • “parallel” indicates a state of being substantially parallel. That is, “parallel” may deviate slightly from the “parallel” state in the strict sense.
  • the “substantially parallel state” can naturally include, for example, design and manufacturing tolerances, errors, and the like.
  • 0.5 to 12 indicates a range including a boundary value unless otherwise specified.
  • 0.5 to 12 indicates a range of "0.5 or more and 12 or less”.
  • the "non-linear optical device” in the present embodiment indicates a product containing at least a semiconductor substrate and a non-linear optical polymer.
  • the nonlinear optical device may consist of a semiconductor substrate and a nonlinear optical polymer.
  • the nonlinear optical device can be any device, as long as it includes at least a semiconductor substrate and a nonlinear optical polymer.
  • the nonlinear optical device may be, for example, an optical modulator, an optical switch, an optical transceiver, an optical phased array, a LiDAR (Light Detection And Ringing), a terahertz wave generator, a terahertz wave detector, a semiconductor substrate with a polymer film, or the like. ..
  • a nonlinear optical device having an embedded portion is provided.
  • the nonlinear optical device can have any structure as long as it has an embedded portion.
  • the nonlinear optical device may have, for example, a slot waveguide structure, a photonic crystal structure, a metamaterial structure, a plasmon waveguide structure, or the like.
  • the slot waveguide structure and the photonic crystal structure will be described later.
  • the “non-linear optical polymer” in this embodiment is a polymer material exhibiting a non-linear optical effect.
  • the nonlinear optical effect may be, for example, an electro-optical effect, a photoharmonic generation, an optical Kerr effect, or the like. That is, the "non-linear optical polymer” in the present embodiment includes an “electro-optic polymer”.
  • the “non-linear optical device” in the present embodiment includes an "electro-optic device”.
  • dimensions of 1 ⁇ m or less are measured in an electron microscope image.
  • electron microscope images are taken at three or more separate locations. In each electron microscope image, the dimensions are measured at three or more points. That is, the dimensions are measured at 9 or more points. Arithmetic mean values at 9 or more points are considered to be the dimensions to be measured.
  • the electron microscope is arbitrarily selected according to the measurement target.
  • the electron microscope may be, for example, a transmission electron microscope (TEM) or the like, or may be a scanning electron microscope (SEM) or the like.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a nonlinear optical device according to the present embodiment.
  • the method for manufacturing the NLO device of the present embodiment is "(a) formation of a recess", “(b) filling of a first liquid material”, “(c) addition of a second liquid material”, and “(d) solidification”. “including.
  • the method for manufacturing the NLO device of the present embodiment may further include “(e) polling" and the like.
  • FIG. 2 is a first schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • the method for manufacturing an NLO device of the present embodiment includes forming a recess 10 on the surface 101 of the semiconductor substrate 100.
  • the semiconductor substrate 100 may have any shape.
  • the planar shape of the semiconductor substrate 100 may be, for example, circular or rectangular.
  • the semiconductor substrate 100 may have a diameter of, for example, 25 mm to 300 mm.
  • the diameter of the semiconductor substrate 100 indicates the diameter of a circle.
  • the diameter of the semiconductor substrate 100 indicates the distance between the two most distant points on the contour line of the semiconductor substrate 100.
  • the semiconductor substrate 100 may include any semiconductor material.
  • the description is represented by a stoichiometric composition formula, but the material is not strictly limited to the material represented by the stoichiometric composition formula, and is represented by the stoichiometric composition formula.
  • the semiconductor material is shown.
  • the semiconductor substrate 100 may have, for example, a single-layer structure.
  • the semiconductor substrate 100 may be composed of only the Si substrate 110.
  • the semiconductor substrate 100 may have, for example, a multilayer structure.
  • the semiconductor substrate 100 may be, for example, an SOI (Silicon On Insulator) substrate. That is, the semiconductor substrate 100 may include, for example, a Si substrate 110, a BOX (Buried whicheverxide) layer 120, and a Si active layer 130.
  • the Si active layer 130 is a Si single crystal layer.
  • the Si active layer may be doped with impurities, for example.
  • the BOX layer 120 is interposed between the Si substrate 110 and the Si active layer 130.
  • the BOX layer 120 contains silicon dioxide (SiO 2 ). By forming the optical waveguide on the BOX layer 120, for example, a strong light confinement effect is expected.
  • the BOX layer 120 may have a thickness of, for example, 0.1 ⁇ m to 50 ⁇ m.
  • the BOX layer 120 may have a thickness of, for example, 1 ⁇ m to 10 ⁇ m.
  • the Si active layer 130 may have a thickness of, for example, 0.1 ⁇ m to 500 ⁇ m.
  • the Si active layer 130 may have a thickness of, for example, 0.1 ⁇ m to 1 ⁇ m.
  • the Si active layer 130 may have a thickness of, for example, 0.1 ⁇ m to 0.5 ⁇ m (100 nm to 500 nm).
  • the Si substrate 110 may have a thickness of, for example, 100 ⁇ m to 1 mm.
  • the recess 10 can be formed by any method.
  • the recess 10 may be formed by patterning by lithography and reactive ion etching (RIE).
  • RIE reactive ion etching
  • the periphery of the recess 10 may be scraped so that the opening of the recess 10 is higher than the periphery.
  • the “recess 10" in the present embodiment includes the side wall 11 and the bottom 12.
  • the side wall 11 intersects the surface 101 of the semiconductor substrate 100.
  • the side wall 11 may have a flat surface or a curved surface.
  • the side wall 11 may be substantially perpendicular to the surface 101 of the semiconductor substrate 100.
  • the side wall 11 may be inclined from the surface 101 of the semiconductor substrate 100.
  • the bottom portion 12 connects a pair of side walls 11 facing each other.
  • the bottom portion 12 may have, for example, a flat surface or a curved surface.
  • the bottom portion 12 may be, for example, a point.
  • the bottom portion 12 may be parallel to, for example, the surface 101 of the semiconductor substrate 100.
  • the bottom portion 12 does not have to be parallel to the surface 101 of the semiconductor substrate 100, for example.
  • the cross-sectional shape of the recess 10 may be, for example, rectangular, U-shaped, V-shaped, or the like.
  • the width of the bottom 12 may be larger than the width of the opening.
  • the bottom portion 12 may be located in, for example, the Si active layer 130.
  • the bottom portion 12 may be located, for example, in the BOX layer 120.
  • the bottom portion 12 may be located, for example, in the Si substrate 110.
  • the "width (w)" of the recess 10 indicates the diameter of the circle.
  • the "width (w)” of the concave portion 10 indicates the minor axis of the planar shape of the concave portion 10.
  • the “minor diameter” of this embodiment is defined as follows. On the contour line of the planar shape of the recess 10, the straight line connecting the two most distant points is the major axis. Of the diameters orthogonal to the major axis, the largest diameter is the minor axis. If the planar shape of the recess 10 extends linearly, the major axis may not be specified. In this case, in the top view of the recess (FIG. 3), the width in the direction orthogonal to the extending direction of the recess 10 is regarded as the width (w) of the recess 10.
  • the recess 10 may have an arbitrary width (w).
  • the recess 10 may have, for example, a width (w) of 170 nm or less. In the method for manufacturing an NLO device of the present embodiment, reduction of voids is expected even in a narrow recess 10 having a width (w) of 170 nm or less, for example.
  • the recess 10 may have a width (w) of, for example, 150 nm or less.
  • the recess 10 may have, for example, a width (w) of 100 nm or less.
  • the lower limit of the width (w) is arbitrary.
  • the recess 10 may have a width (w) of, for example, 10 nm or more.
  • the recess 10 may have a width (w) of, for example, 50 nm or more.
  • the recess 10 may have a width (w) of, for example, 80 nm or more.
  • the "depth (d)" of the recess 10 indicates the shortest distance between the deepest portion of the recess 10 and the opening of the recess 10 in a cross section perpendicular to the surface 101 of the semiconductor substrate 100 (for example, FIG. 2). ..
  • the recess 10 may have any depth (d).
  • the recess 10 may have a depth (d) of, for example, 50 nm or more.
  • the recess 10 may have a depth (d) of, for example, 100 nm or more.
  • the recess 10 may have a depth (d) of, for example, 200 nm or more.
  • the upper limit of the depth (d) is arbitrary.
  • the recess 10 may have a depth (d) of, for example, 3 ⁇ m or less.
  • the recess 10 may have a depth (d) of, for example, 2 ⁇ m or less.
  • the recess 10 may have a depth (d) of, for example, 1 ⁇ m or less.
  • the recess 10 may have a depth (d) of, for example, 300 nm or less.
  • the recess 10 may have an arbitrary aspect ratio (d / w).
  • the recess 10 may have, for example, an aspect ratio (d / w) of 0.5 to 12. When the aspect ratio (d / w) is 0.5 or more, for example, high integration is expected.
  • the recess 10 may have, for example, an aspect ratio (d / w) of 1 or more.
  • the recess 10 may have, for example, an aspect ratio (d / w) of 1.5 or more. When the aspect ratio (d / w) is 12 or less, for example, reduction of voids is expected.
  • the recess 10 may have, for example, an aspect ratio (d / w) of 8 or less.
  • the recess 10 may have, for example, an aspect ratio (d / w) of 4 or less.
  • the recess 10 may have, for example, an aspect ratio (d / w) of 0.5 to 4.
  • the recess 10 may have an arbitrary planar shape.
  • the planar shape of the recess 10 may be, for example, a circle, a polygon, or the like.
  • the polygon may be, for example, a triangle, a quadrangle, a pentagon, a hexagon, or the like.
  • FIG. 3 is a schematic top view showing a first example of the recess.
  • the recess 10 may be formed so as to extend linearly, for example. By filling the linearly extending recesses with the NLO polymer, for example, a slot waveguide structure can be formed.
  • the arrows in FIG. 3 indicate the propagation direction of light.
  • the recess 10 may extend linearly, for example.
  • the recess 10 may extend in a curved shape, for example.
  • the recess 10 may extend in a polygonal line, for example.
  • the recess 10 may be branched into a plurality of portions, for example. For example, a plurality of recesses 10 may be merged into one.
  • FIG. 4 is a schematic top view showing a second example of the recess.
  • the recess 10 may form, for example, a photonic crystal structure.
  • the planar shape of the recess 10 may be, for example, circular.
  • a plurality of recesses 10 are arranged in a triangular lattice pattern.
  • one row of recesses 10 may be filled with NLO polymer.
  • a row filled with NLO polymer can form a photonic crystal waveguide.
  • the arrows in FIG. 4 indicate the propagation direction of light.
  • a photonic crystal structure may be combined around the linearly extending slot structure. In this case, some of the recesses 10 out of the plurality of recesses 10 extend linearly along the surface of the semiconductor substrate 100. That is, at least a part of the recess 10 may extend linearly along the surface of the semiconductor substrate 100.
  • FIG. 5 is a second schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • the doping of impurities, the formation of electrodes, and the like may be carried out.
  • the first doping region 131 and the second doping region 132 may be formed on the Si active layer 130.
  • Each doping region can be formed by any method. For example, ion implantation or the like may be carried out.
  • Each of the first doping region 131 and the second doping region 132 may have, for example, an n-type conductive type.
  • Each of the first doping region 131 and the second doping region 132 may be doped with impurities such as phosphorus (P), for example.
  • the first doping region 131 includes the side wall 11 of the recess 10.
  • the first doping region 131 may have a relatively low doping concentration. By having the first doping region 131 having a low doping concentration, for example, it is expected that the propagation loss will be small.
  • the second doping region 132 is in contact with the electrode 200.
  • the second doping region 132 may have a relatively high doping concentration. It is expected that the contact resistance with the electrode 200 is reduced, for example, by having the second doping region 132 having a high doping concentration.
  • the doping concentration in the first doping region 131 may be lower than, for example, the doping concentration in the second doping region 132.
  • the doping concentration in the first doping region 131 may be, for example, 1 ⁇ 10 16 cm -3 to 1 ⁇ 10 17 cm -3 .
  • the doping concentration in the second doping region 132 may be, for example, 1 ⁇ 10 17 cm -3 to 1 ⁇ 10 18 cm -3 .
  • impurity doping can be performed at any time.
  • impurity doping may be performed prior to the formation of the recess 10.
  • impurity doping may be performed after the formation of the recess 10.
  • the electrode 200 is, for example, aluminum (Al), tungsten (W), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), chromium (Cr), molybdenum (Mo), tantalum (Ta). , Niob (Nb), Nickel (Ni), Cobalt (Co), Gold (Au), Silver (Ag), Copper (Cu), Platinum (Pt) and the like. You may.
  • the electrode 200 can be formed by any method.
  • the electrode 200 may be formed by a vapor deposition method or the like.
  • the electrode 200 may be, for example, a signal electrode or the like.
  • the electrode 200 may be, for example, a ground electrode or the like.
  • the electrode 200 can be formed at any timing.
  • the electrode 200 may be formed prior to application of the polymer solution.
  • the electrode 200 may be formed after the formation of the polymer film 300.
  • FIG. 6 is a third schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • the method for manufacturing an NLO device of the present embodiment includes filling the recess 10 with the first liquid material 31 under a reduced pressure environment.
  • the first liquid material 31 is filled in the recess 10 by any method.
  • the first liquid material 31 may be applied to the surface 101 of the semiconductor substrate 100 by a spin coating method or the like.
  • a spin coater or the like that can control the atmospheric pressure may be used.
  • the "decompressed atmosphere” in the present embodiment indicates an atmosphere having a pressure lower than the atmospheric pressure. It is considered that defoaming is promoted in a reduced pressure atmosphere.
  • the first liquid material 31 is a low-concentration solution or the solvent itself. It is considered that solidification of the material is unlikely to occur on the surface of the first liquid material 31.
  • the decompressed atmosphere may have a pressure of, for example, 0.1 Pa to 90 kPa.
  • the decompressed atmosphere may have a pressure of, for example, 100 Pa to 80 kPa.
  • the decompressed atmosphere may have a pressure of, for example, 3 kPa to 70 kPa.
  • the first liquid material 31 contains a first solute and a first solvent, or the first liquid material 31 consists of only the first solvent.
  • the first solute is dissolved in the first solvent.
  • the concentration of the first solute in the first liquid material 31 may be, for example, 0% by mass to 35% by mass.
  • the concentration of the first solute in the first liquid material 31 may be, for example, 0% by mass to 20% by mass.
  • the concentration of the first solute in the first liquid material 31 may be, for example, 0% by mass to 10% by mass.
  • the first liquid material 31 may have a low viscosity.
  • the first liquid material may have a viscosity of, for example, 1 mPa ⁇ s to 2000 mPa ⁇ s.
  • the first liquid material may have a viscosity of, for example, 1 mPa ⁇ s to 1000 mPa ⁇ s.
  • the first liquid material may have a viscosity of, for example, 1 mPa ⁇ s to 10 mPa ⁇ s.
  • the "viscosity" of the liquid in this embodiment can be measured by a trace sample viscometer (product name "micr GmbHVISC”) manufactured by RheoSense. An equivalent product to the viscometer may be used.
  • the measurement temperature is 25 ° C ⁇ 1 ° C.
  • the viscosity is measured three or more times for one measurement target. The arithmetic mean of the results of three or more times is considered to be the viscosity to be measured.
  • the first solvent may contain any component.
  • the first solvent is, for example, acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, cycloheptanone, acetylacetone, methylamylketone, n-methylketone, ⁇ -butyrolactone, tetrahydrofuran, chloroform, dibromomethane, 1,2-dichloroethane, 1, 2-Dibromoethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-tribromoethane, 1,1,2,2-tetrabromoethane, ethyl acetate, acetate It may contain at least one selected from the group consisting of butyl, methyl lactate, ethyl lactate, butyl lactate, propylene glycol methyl ether, propylene glycol monomethyl ether acetate, and eth
  • the first solute may contain any component.
  • the first solute may be composed of substantially only one kind of component, or may be composed of a plurality of kinds of components.
  • the first solute may contain, for example, small molecule compounds, oligomers, polymers and the like.
  • the first solute may contain, for example, a surfactant or the like.
  • the surfactant may function, for example, as a solvent evaporation inhibitor.
  • evaporation of the solvent can be reduced, for example, on the surfaces of the first liquid material 31 and the third liquid material 33 (described later).
  • the surfactant may contain, for example, a fluorine-based surfactant or the like (for example, a product name “Megafuck” manufactured by DIC Corporation).
  • the first solute may contain, for example, an NLO dye molecule or the like.
  • the NLO dye molecule represents a molecule having NLO activity.
  • the NLO dye molecule may contain, for example, an electro-optic (EO) dye molecule described later. Since the first solute contains NLO dye molecules, it is expected that the orientation of the NLO dye molecules will be improved, for example, during the polling process.
  • EO electro-optic
  • the first solute may contain, for example, an NLO polymer.
  • the first solute may consist substantially only of the NLO polymer.
  • NLO polymer is a polymer material that exhibits a non-linear optical effect.
  • the NLO polymer may contain, for example, an EO polymer or the like.
  • the NLO polymer may consist, for example, substantially only the EO polymer.
  • the EO polymer exhibits an electro-optic effect.
  • the EO polymer may contain any component as long as it exhibits an electro-optic effect.
  • the EO polymer may include, for example, a guest / host polymer and the like.
  • the guest / host polymer includes a guest molecule and a host polymer.
  • the guest molecule is dispersed in the host polymer.
  • the concentration of guest molecules in the guest / host polymer may be, for example, 10% by weight to 50% by weight.
  • the host polymer may contain, for example, polymethylmethacrylate (PMMA), polycarbonate (PC) and the like.
  • Guest molecules exhibit an electro-optic effect.
  • Guest molecules are also referred to as "EO dye molecules".
  • the guest molecule may contain, for example, an electron donating group (donor), a linking group, and an electron acceptor.
  • the linking group is linked to the donor and acceptor.
  • the linking group may contain, for example, a ⁇ -conjugated structure or the like.
  • the linking group is, for example, the following formulas (II) to (IV) :. It may include the structure represented by.
  • the donor is, for example, the following formula (V) :. It may include the structure represented by.
  • R 3 and R 4 independently represent a hydrogen atom, an alkyl group, a hydroxyalkyl group, a haloalkyl group, an aryl group and the like.
  • the acceptor is, for example, the following formula (I) :. May be represented by. That is, the NLO polymer may contain a structure represented by the above formula (I).
  • R 1 and R 2 are independently hydrogen atom, alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, alkoxy group, haloalkyl group, aryl group, hydroxy group, thiol group, respectively. Or indicate an amino group.
  • the EO polymer containing the acceptor of the above formula (I) can exhibit a large electro-optic effect.
  • the alkyl group may be, for example, a methyl group or the like.
  • the haloalkyl group may be, for example, a trifluoromethyl group or the like.
  • R 1 and R 2 are aryl groups, the aryl group may be substituted.
  • the aryl group may be, for example, a phenyl group, a naphthyl group or the like.
  • the hydrogen atom of the aryl group may be substituted with, for example, a halogen atom, an alkyl group, a haloalkyl group or the like.
  • R 1 and R 2 may independently represent a hydrogen atom, a methyl group, a trifluoromethyl group, or a phenyl group, respectively.
  • the EO polymer may be formed by binding the EO dye molecule as a side chain to the linear polymer.
  • the EO dye molecule can be attached to a linear polymer (main chain), for example, by the reaction of a reactive group (for example, a hydroxy group) contained in the donor.
  • the linear polymer may be a homopolymer or a copolymer.
  • the copolymer may be, for example, a random copolymer, an alternating copolymer, a block copolymer, or a graft copolymer.
  • an EO polymer in which an EO dye molecule is bonded as a side chain to a linear copolymer is also referred to as a "side chain copolymer".
  • FIG. 18 is an example of a synthetic scheme of the side chain copolymer.
  • a linear copolymer is synthesized by copolymerization of dicyclopentanyl methacrylate (DCPMA) and 2-methacryloyloxyethyl isocyanate (MOI).
  • DCPMA dicyclopentanyl methacrylate
  • MOI 2-methacryloyloxyethyl isocyanate
  • the EO dye molecule has one hydroxy group.
  • EO dye molecules are introduced as side chains of the linear copolymer.
  • a plurality of polymer chains may be crosslinked by an EO dye molecule.
  • the EO dye molecule has two reactive groups, the EO dye molecule can crosslink the two polymer chains.
  • the EO polymer crosslinked by the EO dye molecule is also referred to as a "crosslink copolymer".
  • the guest molecule In the guest / host polymer, it is considered that the guest molecule (EO dye molecule) tends to aggregate when the concentration of the guest molecule becomes high. In the side chain copolymer and the cross-link copolymer, it is considered that the concentration of the EO dye molecule is likely to be increased because the EO dye molecule is difficult to aggregate.
  • FIG. 7 is a fourth schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • FIG. 8 is a fifth schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • the method for manufacturing the NLO device of the present embodiment includes preparing the third liquid material 33 by bringing the second liquid material 32 into contact with the first liquid material 31 filled in the recess 10.
  • the second liquid material 32 comes into contact with the first liquid material 31 by any method.
  • the second liquid material 32 may be dropped on the liquid surface of the first liquid material 31.
  • the second liquid material 32 may be applied to the liquid surface of the first liquid material 31.
  • the second liquid material 32 may be sprayed on the liquid surface of the first liquid material 31.
  • the second liquid material 32 contains a second solute and a second solvent.
  • the second solute is dissolved in the second solvent.
  • the second solute contains an NLO polymer.
  • the second solute may consist, for example, substantially only the NLO polymer.
  • the second solute may further contain other components as long as it contains an NLO polymer.
  • the second solute may further contain, for example, the above-mentioned surfactant and the like.
  • the second solute and the first solute are different materials from each other.
  • the second solute and the first solute may be different materials from each other or may be the same material.
  • the second solvent may contain, for example, the material described as the first solvent.
  • the second solvent may be, for example, a material different from that of the first solvent.
  • the second solvent may be, for example, the same material as the first solvent. Since the second solute is the same material as the first solute and the second solvent is the same material as the first solvent, for example, the second liquid material 32 and the first liquid material 31 can be uniformly mixed. Be expected.
  • the second liquid material 32 is a high-concentration solution.
  • the concentration of the second solute in the second liquid material 32 is higher than the concentration of the first solute in the first liquid material 31.
  • the concentration of the second liquid material 32 may be, for example, 5% by mass to 40% by mass.
  • the concentration of the second liquid material 32 may be, for example, 10% by mass to 30% by mass.
  • the concentration of the second liquid material 32 may be, for example, 10% by mass to 20% by mass.
  • the difference between the concentration of the second liquid material 32 and the concentration of the first liquid material 31 may be, for example, more than 0% by mass and 40% by mass or less.
  • the difference between the concentration of the second liquid material 32 and the concentration of the first liquid material 31 may be, for example, 5% by mass to 40% by mass.
  • the difference between the concentration of the second liquid material 32 and the concentration of the first liquid material 31 may be, for example, 10% by mass to 20% by mass.
  • the second liquid material 32 may have a higher viscosity than the first liquid material 31.
  • the second liquid material 32 may have a viscosity of, for example, 2 mPa ⁇ s to 2500 mPa ⁇ s.
  • the second liquid material 32 may have a viscosity of, for example, 5 mPa ⁇ s to 2500 mPa ⁇ s.
  • the second liquid material 32 may have a viscosity of, for example, 10 mPa ⁇ s to 2500 mPa ⁇ s.
  • the second liquid material 32 may have a viscosity of, for example, 100 mPa ⁇ s to 2500 mPa ⁇ s.
  • the second liquid material 32 may have a viscosity of, for example, 1000 mPa ⁇ s to 2500 mPa ⁇ s.
  • the third liquid material 33 is prepared by diffusing the solute from the second liquid material 32 to the first liquid material 31.
  • the liquid material may be heated to facilitate the diffusion of the solute. However, the heating temperature is adjusted so that the solute does not aggregate.
  • the solute may be diffused in a temperature environment of 20 ° C to 80 ° C.
  • the solute may be diffused in a temperature environment of 30 ° C to 60 ° C.
  • Diffusion of the solute may be carried out, for example, in a normal pressure environment or in a pressurized environment.
  • the third liquid material can be prepared to have a substantially uniform concentration.
  • the concentration of the solute in the third liquid material 33 may be, for example, 5% by mass to 40% by mass.
  • the concentration of the solute in the third liquid material 33 may be, for example, 5% by mass to 20% by mass.
  • the concentration of the solute in the third liquid material 33 may be, for example, 5% by mass to 10% by mass.
  • FIG. 9 is a sixth schematic cross-sectional view showing a manufacturing process of the nonlinear optical device of the present embodiment.
  • the method for manufacturing the NLO device of the present embodiment includes forming the embedded portion 310 by solidifying the third liquid material 33. The formation of the embedded portion 310 completes the NLO device 1000.
  • the polymer film 300 is formed by solidifying the third liquid material 33.
  • the first solvent and the second solvent can be removed from the third liquid material 33.
  • at least one selected from the group consisting of natural drying, vacuum drying, spin drying, hot air drying, and infrared drying may be carried out.
  • the polymer film 300 includes an embedded portion 310.
  • the embedded portion 310 is embedded in the recess 10. Part or all of the embedded portion 310 may form, for example, an optical waveguide.
  • the embedded portion 310 of the present embodiment may have a low porosity. Therefore, it is expected that the propagation loss in the optical waveguide is small.
  • the polymer film 300 (embedded portion 310) of the present embodiment may have a smooth surface.
  • the polymer film 300 may have, for example, a small surface roughness.
  • the polymer film 300 may have, for example, a predetermined surface smoothness.
  • the smooth surface of the polymer membrane 300 may provide a miniaturizable NLO device.
  • the method for manufacturing the NLO device of the present embodiment may further include, for example, polling the embedded portion 310.
  • the embedded portion 310 when the embedded portion 310 contains an EO polymer, the embedded portion 310 is heated to near the glass transition temperature (T g ) of the EO polymer. A predetermined voltage is applied between the electrodes 200 in the heated state. As a result, the embedded portion 310 is placed in the electric field. The EO dye molecule is oriented along the direction of the electric field. With the voltage applied, the EO polymer is cooled to room temperature. As a result, the EO dye molecule can be fixed in a state where the EO dye molecule is oriented.
  • T g glass transition temperature
  • NLO devices No. 1 to No. Evaluation devices
  • the evaluation device in this embodiment is a slot waveguide type optical modulator.
  • the recess 10 is formed by patterning by photolithography and RIE.
  • the recess 10 of this embodiment is a slot extending linearly.
  • the width (w) of the recess 10 is 134 nm.
  • the depth (d) of the recess 10 is 302 nm.
  • the bottom portion 12 of the recess 10 is located in the BOX layer 120.
  • the first liquid material 31 in this embodiment comprises only the first solvent.
  • the first solvent is cyclohexanone.
  • the concentration of the first solute in the first liquid material 31 is 0% by mass.
  • the first liquid material 31 is dropped on the surface of the semiconductor substrate 100. After the dropping, the first liquid material 31 is allowed to stand for 10 minutes in a reduced pressure atmosphere, so that the first liquid material 31 is sufficiently defoamed. As a result, the recess 10 is filled with the first liquid material 31. After filling, the semiconductor substrate 100 is rotated at 500 rpm for 3 seconds by the spin coater. As a result, the excess first liquid material 31 is removed.
  • Second liquid material An EO polymer is prepared as the second solute.
  • the EO polymer is a cross-link copolymer.
  • Cyclohexanone is prepared as the second solvent.
  • the second liquid material 32 is prepared by dissolving the second solute in the second solvent.
  • the concentration of the second solvent in the second liquid material 32 is 16% by mass.
  • the concentration of the second solute in the second liquid material 32 (16% by mass) is higher than the concentration of the first solute in the first liquid material 31 (0% by mass).
  • the second liquid material 32 is dropped onto the first liquid material 31. That is, the second liquid material 32 comes into contact with the first liquid material 31.
  • the third liquid material 33 is prepared by diffusing the second solute (EO polymer) in a room temperature environment.
  • the third liquid material 33 is prepared to have a substantially uniform concentration.
  • ⁇ (d) solidification After dropping the second liquid material 32, the semiconductor substrate 100 is rotated at 1500 rpm for 60 seconds by the spin coater. As a result, the third liquid material 33 spreads substantially uniformly on the surface of the semiconductor substrate 100, and the first solvent and the second solvent volatilize. As a result, the second solute precipitates in the recess 10. That is, the third liquid material 33 solidifies. As a result, the polymer film 300 is formed. The portion of the polymer film 300 that has entered the recess 10 forms the embedded portion 310. The polymer film 300 is further heated to near the glass transition temperature (T g ) of the EO polymer and heat-treated in a reduced pressure atmosphere for 1 hour to remove the remaining first solvent and second solvent.
  • T g glass transition temperature
  • the embedded portion 310 is heated to near the glass transition temperature (T g ) of the EO polymer. In the heated state, the embedded portion 310 is placed in an electric field. After that, the temperature of the embedded portion 310 is lowered while the electric field is maintained. From the above, the evaluation device is manufactured.
  • FIG. 10 shows No. 2 is a first schematic cross-sectional view showing the manufacturing process of 2.
  • the semiconductor substrate 100 having the recess 10 is prepared.
  • the polymer solution 35 is prepared.
  • the solvent of the polymer solution 35 is cyclohexanone.
  • the solute is No. It is the same EO polymer as 1.
  • the concentration of the polymer solution 35 is 16% by mass.
  • the polymer solution 35 is applied to the surface of the semiconductor substrate 100 under a normal pressure atmosphere by a spin coater. As a result, the recess 10 is filled with the polymer solution 35. It is considered that the bubble 1 is difficult to escape from the recess 10 because of the normal pressure atmosphere.
  • FIG. 11 shows No. 2 is a second schematic cross-sectional view showing the manufacturing process of 2.
  • the polymer film 300 is formed by solidifying the polymer solution 35. It is considered that the void 2 remains in the embedded portion 310. After forming the polymer film 300, No. The polling process is carried out in the same manner as in 1.
  • FIG. 12 shows No. 3 is a schematic cross-sectional view showing the manufacturing process of 3.
  • the polymer solution 35 is applied and filled under a reduced pressure environment.
  • No. It is considered that the number of bubbles 1 is reduced as compared with 2.
  • the surface of the polymer solution 35 is solidified, it is considered that irregularities are formed on the surface of the polymer film 300.
  • No. The polling process is carried out in the same manner as in 1.
  • a first near-infrared camera is arranged above the semiconductor substrate 100.
  • the first near-infrared camera captures a light propagation streak image due to scattering of light propagating through the embedded portion 310.
  • FIG. 13 is a schematic top view of the evaluation device.
  • the evaluation device 2000 is symmetrical.
  • the evaluation device 2000 includes a first polymer waveguide 2001, a first spot size converter 2002, a first Si strip waveguide 2003, a second spot size converter 2004, a Si slot waveguide 2005, and a third spot size converter 2006.
  • the second Si strip waveguide 2007, the fourth spot size converter 2008, and the second polymer waveguide 2009 are connected in this order.
  • the length of the Si slot waveguide 2005 is 1736 ⁇ m.
  • FIG. 14 No. 14 in FIG.
  • the light propagation streak image of 2 is shown.
  • the light propagation streak image of FIG. 14 is taken in the Si slot waveguide 2005 of FIG.
  • the scattered light intensity (relative value) of the light propagation streak image is plotted with respect to the position (Z) in the Si slot waveguide 2005.
  • Propagation loss is obtained by approximating the plot group to an exponential function by the least squares method.
  • a second near-infrared camera is arranged in the direction of the end face of the semiconductor substrate 100.
  • the light output near-field image is taken by the second near-infrared camera.
  • Light output The light output (relative value) is calculated from the value of the light attenuator that has the same light intensity as the near-field image.
  • the evaluation device 2000 is broken so as to cross the Si slot waveguide 2005. By observing the fracture surface with SEM, the presence or absence of voids is confirmed in the embedded portion 310. The presence or absence of voids is confirmed in each of the fracture surfaces at five or more locations.
  • the porosity is calculated from the following formula.
  • Porosity (%) ⁇ (number of fractured surfaces with voids) / (number of observed fractured surfaces) ⁇ x 100
  • FIG. 16 shows No. 1 to No. It is an evaluation result of 3. A void is confirmed in the cross-sectional SEM image. The void is a portion where the bottom 12 of the recess 10 is not filled with the polymer.
  • No. No voids can be confirmed in the cross-sectional SEM image of 1.
  • the porosity of 1 is 0%.
  • the propagation loss of No. 1 is No. 2 and No. It is smaller than the propagation loss of 3.
  • the optical output of No. 1 is No. 2 and No. It is higher than the light output of 3. Since the first liquid material 31 easily penetrates into the recess 10, it is considered that the voids are significantly reduced. No. In No. 1, it is considered that the voids are substantially completely removed.
  • the surface of the polymer film 300 in 1 can be smooth. It is considered that the surface solidification is unlikely to occur in the first liquid material 31.
  • NLO devices of the following ⁇ Appendix 1 >> to ⁇ Appendix 3 >> may also be provided.
  • ⁇ Appendix 1 With a semiconductor substrate, With a polymer membrane, Including A recess is formed on the surface of the semiconductor substrate, and the recess is formed. The recess extends along the surface of the semiconductor substrate and extends. The polymer film covers at least a part of the surface of the semiconductor substrate.
  • the polymer membrane includes an embedding portion. The embedded portion is embedded in the recess, and the embedded portion is embedded in the recess.
  • the embedding portion contains a non-linear optical polymer and contains. The propagation loss in the embedded portion is not more than a predetermined value. Non-linear optical device.
  • ⁇ Appendix 2 The porosity in the embedded portion is not more than a predetermined value.
  • the nonlinear optical device according to ⁇ Appendix 1 >>.
  • ⁇ Appendix 3 The surface roughness of the polymer film is not more than a predetermined value.
  • the present embodiment and the present embodiment are exemplary in all respects.
  • the present embodiment and the present embodiment are not limiting.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

非線形光学デバイスの製造方法が提供される。半導体基板(100)の表面に凹部(10)が形成される。減圧環境下において、凹部(10)に第1液体材料(31)が充填される。凹部(10)に充填された第1液体材料(31)に、第2液体材料(32)が接触することにより、第3液体材料(33)が調製される。第3液体材料(33)が固化されることにより、埋め込み部(310)が形成される。第1液体材料(31)は、第1溶質と第1溶媒とを含むか、または該第1溶媒のみからなる。第2液体材料(32)は、第2溶質と第2溶媒とを含む。第2溶質は、非線形光学ポリマーを含む。該第2液体材料(32)における該第2溶質の濃度は、該第1液体材料(31)における該第1溶質の濃度よりも高い。

Description

非線形光学デバイスの製造方法
 本開示は、非線形光学デバイスの製造方法に関する。本出願は、2020年7月31日に出願した日本特許出願である特願2020-130371号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 基板の表面に形成された微小凹部に、液体材料を充填する方法が検討されている(例えば、特許文献1から5、非特許文献1を参照のこと)。
特開2004-071934号公報 特開2004-103817号公報 特表2007-509769号公報 特開2011-210942号公報 特開2014-099525号公報
H.Hiroshima,M.Komuro,"Control of Bubble Defects in UV Nanoimprint"Japanese Journal Applied Physics,Vol.46,pp.6391-6394(Sep.2007)
 本開示の一態様に係る非線形光学デバイスの製造方法は、
 半導体基板の表面に凹部を形成すること、
 減圧環境下において、前記凹部に第1液体材料を充填すること、
 前記凹部に充填された前記第1液体材料に、第2液体材料を接触させることにより、第3液体材料を調製すること、
 および、
 前記第3液体材料を固化することにより、埋め込み部を形成すること、
 を含み、
 前記第1液体材料は、第1溶質と第1溶媒とを含むか、または前記第1溶媒のみからなり、
 前記第2液体材料は、第2溶質と第2溶媒とを含み、
 前記第2溶質は、非線形光学ポリマーを含み、
 前記第2液体材料における前記第2溶質の濃度は、前記第1液体材料における前記第1溶質の濃度よりも高い。
図1は、本実施形態の非線形光学デバイスの製造方法の概略フローチャートである。 図2は、本実施形態の非線形光学デバイスの製造過程を示す第1概略断面図である。 図3は、凹部の第1例を示す概略上面図である。 図4は、凹部の第2例を示す概略上面図である。 図5は、本実施形態の非線形光学デバイスの製造過程を示す第2概略断面図である。 図6は、本実施形態の非線形光学デバイスの製造過程を示す第3概略断面図である。 図7は、本実施形態の非線形光学デバイスの製造過程を示す第4概略断面図である。 図8は、本実施形態の非線形光学デバイスの製造過程を示す第5概略断面図である。 図9は、本実施形態の非線形光学デバイスの製造過程を示す第6概略断面図である。 図10は、No.2の製造過程を示す第1概略断面図である。 図11は、No.2の製造過程を示す第2概略断面図である。 図12は、No.3の製造過程を示す概略断面図である。 図13は、評価用デバイスの概略上面図である。 図14は、No.2の光伝搬ストリーク像の測定例である。 図15は、No.2の伝搬損失の計算例である。 図16は、No.1からNo.3の評価結果である。 図17は、底部の一例を示す概略断面図である。 図18は、サイドチェーンコポリマーの合成スキームの一例である。
 <本開示が解決しようとする課題>
 非線形光学(Nonlinear оptics:NLO)デバイスにおいて、埋め込み構造が検討されている。埋め込み構造は、半導体基板の表面に形成された凹部に、NLOポリマーが充填されることにより形成される。例えば、NLOポリマーが溶解したポリマー溶液が使用される。すなわち、ポリマー溶液が、凹部を有する半導体基板の表面に塗布され、固化されることにより、埋め込み部が形成され得る。
 NLOデバイスの小型化および高集積化が進むにつれて、より幅が狭く、より深い凹部にポリマー溶液を充填することが求められる。幅が狭く、深い凹部になるほど、充填後の凹部に空隙が残存しやすくなる。例えば、埋め込み部が光導波路を含む場合、埋め込み部内の空隙によって光が散乱し得る。その結果、伝搬損失が生じる可能性がある。
 空隙を低減するために、例えば、凹部に充填されたポリマー溶液を加熱することが考えられる。ポリマー溶液の温度が上昇することにより、気泡が動きやすくなり、空隙の低減が期待される。
 ここで、NLOポリマーは、例えば、ホストポリマーとゲスト分子とを含む。ゲスト分子は、ホストポリマー中に分散している。ゲスト分子は極性分子であり、NLO活性を有する。ポリマー溶液が加熱されることにより、NLOポリマーが流動する程度に、ポリマー溶液の温度が上昇すると、双極子相互作用により、ゲスト分子が凝集する可能性がある。ゲスト分子が凝集することにより、NLO活性が消失する可能性がある。
 空隙を低減するために、例えば、加圧雰囲気下において、凹部にポリマー溶液を充填することが考えられる。加圧により気泡が収縮すると考えられる。気泡の収縮により、空隙の低減が期待される。しかし、気泡は、圧力に反比例して小さくなるに過ぎない。したがって、空隙を完全に除去することはできないと考えられる。
 空隙を低減するために、例えば、減圧雰囲気下において、凹部に充填されたポリマー溶液を脱泡することが考えられる。減圧脱泡は、溶媒の揮発を伴うと考えられる。溶媒の揮発は、ポリマー溶液の表面で起こる。そのため、ポリマー溶液の表面から固化が始まる。減圧脱泡時に、ポリマー溶液が表面から固化することにより、脱泡が阻害されたり、埋め込み部の表面に凹凸が形成されたりする可能性がある。例えば、埋め込み部が光導波路を含む場合、表面の凹凸が光学特性を低下させる可能性がある。したがって、光学特性への影響が十分小さくなるように、表面から光導波路を遠ざけることが求められる。その結果、NLOデバイスの小型化が阻害される可能性がある。
 本開示の目的は、NLOデバイスにおいて、平滑な表面を有し、かつ空隙が少ない埋め込み部を形成することである。
 <本開示の効果>
 本開示によれば、平滑な表面を有し、かつ空隙が少ない埋め込み部が形成されることが期待される。
<本開示の実施形態の説明>
 最初に、本開示の実施態様およびその説明が列記される。ただし、本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否は、請求の範囲を限定しない。
〔1〕本開示の一態様に係る非線形光学デバイスの製造方法は、下記(a)から(d)を含む。
 (a)半導体基板の表面に凹部を形成する。
 (b)減圧環境下において、凹部に第1液体材料を充填する。
 (c)凹部に充填された第1液体材料に、第2液体材料を接触させることにより、第3液体材料を調製する。
 (d)第3液体材料を固化することにより、埋め込み部を形成する。
 第1液体材料は、第1溶質と第1溶媒とを含むか、または第1溶媒のみからなる。第2液体材料は、第2溶質と第2溶媒とを含む。第2溶質は、非線形光学ポリマーを含む。第2液体材料における第2溶質の濃度は、第1液体材料における第1溶質の濃度よりも高い。
 本開示の第2液体材料は、第1液体材料に比して高い濃度を有する。ここでは、第2液体材料が「高濃度溶液」とも記される。第1液体材料が「低濃度溶液」とも記される。ただし「高濃度および低濃度」は、第2液体材料と第1液体材料との間における相対的な濃度を示しており、絶対的な濃度を示していない。
 本開示のNLOデバイスの製造方法においては、まず低濃度溶液(第1液体材料)が凹部に充填される。第1液体材料は溶媒のみからなっていてもよい。低濃度溶液は、低粘度を有し得る。低濃度溶液は、凹部に入り込みやすいと考えられる。低濃度溶液中では、気泡が移動しやすいと考えられる。すなわち、気泡が抜けやすいと考えられる。
 さらに、低濃度溶液は、減圧環境に曝されても、表面から固化が進行し難いと考えられる。
 凹部が低濃度溶液で満たされた後、低濃度溶液に高濃度溶液(第2液体材料)が加えられる。高濃度溶液から低濃度溶液へ溶質(NLOポリマー)が拡散することにより、混合溶液(第3液体材料)が形成される。凹部内の混合溶液が固化されることにより、埋め込み部が形成される。本開示における「固化」は、溶液から溶媒を実質的に除去することにより、溶質を析出させることを示す。
 上記のように、本開示のNLOデバイスの製造方法においては、低濃度溶液(第1液体材料)が凹部の隅々まで浸透し得るため、気泡の低減が期待される。したがって、固化後の埋め込み部においても、空隙の低減が期待される。
 さらに、低濃度溶液(第1液体材料)においては、表面から固化が進行し難いと考えられる。したがって、埋め込み部の表面が平滑になることが期待される。
〔2〕上記〔1〕に記載の非線形光学デバイスの製造方法において、
 第1溶質は、例えば、非線形光学ポリマーを含んでいてもよい。
〔3〕上記〔1〕または〔2〕に記載の非線形光学デバイスの製造方法において、
 凹部の少なくとも一部は、例えば、半導体基板の表面に沿って線状に延びるように形成されてもよい。
 線状に延びる凹部は「スロット」等とも称され得る。凹部が線状に延びることにより、例えば、スロット導波路型のNLOデバイスが製造され得る。
〔4〕上記〔1〕から〔3〕のいずれか1つに記載の非線形光学デバイスの製造方法において、
 凹部の幅に対する、凹部の深さの比は、例えば、0.5から12であってもよい。
 以下「凹部の幅(w)に対する、凹部の深さ(d)の比」が「アスペクト比(d/w)」とも記される。アスペクト比が0.5以上であることにより、例えば、高集積化が期待される。アスペクト比が12以下であることにより、例えば、空隙の低減が期待される。
〔5〕上記〔1〕から〔4〕のいずれか1つに記載の非線形光学デバイスの製造方法において、
 凹部は、例えば、170nm以下の幅を有していてもよい。
 本開示のNLOデバイスの製造方法においては、例えば、170nm以下の幅を有する狭い凹部であっても、空隙の低減が期待される。
〔6〕上記〔1〕から〔5〕のいずれか1つに記載の非線形光学デバイスの製造方法において、
 第1液体材料における第1溶質の濃度は、例えば、0質量%から35質量%であってもよい。第2液体材料における第2溶質の濃度は、例えば、5質量%から40質量%であってもよい。
 例えば、第1液体材料の濃度が35質量%以下であることにより、空隙の低減が期待される。例えば、第2液体材料の濃度が40質量%以下であることにより、溶質の拡散に要する時間が短くなり得る。
〔7〕上記〔1〕から〔6〕のいずれか1つに記載の非線形光学デバイスの製造方法において、
 非線形光学ポリマーは、例えば、下記式(I):
Figure JPOXMLDOC01-appb-C000002

 によって表される構造を含んでいてもよい。
 上記式(I)中、R1およびR2は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アルコキシ基、ハロアルキル基、アリール基、ヒドロキシ基、チオール基、またはアミノ基を示す。
 上記式(I)の構造は、電子吸引基(アクセプター)となり得る。上記式(I)の構造を含むNLOポリマーにおいては、大きなNLO効果が期待される。
〔8〕上記〔1〕から〔7〕のいずれか1つに記載の非線形光学デバイスの製造方法において、
 第1溶媒および第2溶媒の各々は、例えば、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、アセチルアセトン、メチルアミルケトン、n-メチルケトン、γ-ブチロラクトン、テトラヒドロフラン、クロロホルム、ジブロモメタン、1,2-ジクロロエタン、1,2-ジブロモエタン、1,1,2-トリクロロエタン、1,1,2,2-テトラクロロエタン、1,1,2-トリブロモエタン、1,1,2,2-テトラブロモエタン、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチル、プロピレングリコールメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、およびエチルセロソルブアセテートからなる群より選択される少なくとも1種を含んでいてもよい。
〔9〕上記〔1〕から〔8〕のいずれか1つに記載の非線形光学デバイスの製造方法において、
 第2溶媒は、例えば、第1溶媒と同一材料であってもよい。第2溶質は、例えば、第1溶質と同一材料であってもよい。
 第2溶媒が第1溶媒と同一材料であり、かつ第2溶質が第1溶質と同一材料であることにより、例えば、第2液体材料と第1液体材料とが均一に混ざり合うことが期待される。
〔10〕上記〔1〕に記載の非線形光学デバイスの製造方法において、
 第1溶質は、例えば、非線形光学ポリマーを含んでいてもよい。例えば、凹部の少なくとも一部は、半導体基板の表面に沿って線状に延びるように形成されてもよい。凹部の幅に対する、凹部の深さの比は、0.5から12であってもよい。凹部は、170nm以下の幅を有していてもよい。第1液体材料における第1溶質の濃度は、0質量%から35質量%であってもよい。第2液体材料における第2溶質の濃度は、5質量%から40質量%であってもよい。
<本開示の実施形態の詳細>
 以下、本開示の実施形態(以下「本実施形態」とも記される。)が詳細に説明される。ただし、以下の説明は請求の範囲を限定しない。
 本実施形態における幾何学的な用語(例えば「平行」、「垂直」、「直線」等)は、実質的にその状態であればよいことを示している。本実施形態における幾何学的な用語は、厳密な意味に解されるべきではない。例えば「平行」は、実質的に平行である状態を示す。すなわち「平行」は、厳密な意味での「平行」状態から多少ずれていてもよい。「実質的に平行である状態」は、例えば、設計上、製造上等の公差、誤差等を当然に含み得る。
 本実施形態において、例えば「0.5から12」等の記載は、特に断りのない限り、境界値を含む範囲を示す。例えば「0.5から12」は、「0.5以上12以下」の範囲を示す。
 本実施形態における「非線形光学デバイス」は、半導体基板と非線形光学ポリマーとを少なくとも含む製品を示す。例えば、非線形光学デバイスは、半導体基板と、非線形光学ポリマーとからなっていてもよい。半導体基板と非線形光学ポリマーとを少なくとも含む限り、非線形光学デバイスは任意のデバイスであり得る。非線形光学デバイスは、例えば、光変調器、光スイッチ、光トランシーバー、光フェーズドアレイ、LiDAR(Light Detection And Ranging)、テラヘルツ波発生装置、テラヘルツ波検出装置、ポリマー膜付き半導体基板等であってもよい。
 本実施形態においては、埋め込み部を有する非線形光学デバイスが提供される。非線形光学デバイスは、埋め込み部を有する限り、任意の構造を有し得る。非線形光学デバイスは、例えば、スロット導波路構造、フォトニック結晶構造、メタマテリアル構造、プラズモン導波路構造等を有していてもよい。なお、あくまで一例として、スロット導波路構造、およびフォトニック結晶構造が後述される。
 本実施形態における「非線形光学ポリマー」は、非線形光学効果を示すポリマー材料である。非線形光学効果は、例えば、電気光学効果等であってもよいし、光高調波発生、光カー効果等であってもよい。すなわち、本実施形態における「非線形光学ポリマー」は、「電気光学ポリマー」を含む。本実施形態における「非線形光学デバイス」は、「電気光学デバイス」を含む。
 本実施形態において、1μm以下の寸法(例えば、凹部の幅等)は、電子顕微鏡画像において測定される。1つの測定対象について、電子顕微鏡画像は、別々の3箇所以上で撮影される。各電子顕微鏡画像において、それぞれ3箇所以上で寸法が測定される。すなわち寸法は9箇所以上で測定される。9箇所以上の算術平均値が、測定対象の寸法とみなされる。電子顕微鏡は、測定対象に応じて任意に選択される。電子顕微鏡は、例えば、透過型電子顕微鏡(TEM)等であってもよいし、走査電子顕微鏡(SEM)等であってもよい。
<非線形光学デバイスの製造方法>
 図1は、本実施形態の非線形光学デバイスの製造方法の概略フローチャートである。本実施形態のNLOデバイスの製造方法は、「(a)凹部の形成」、「(b)第1液体材料の充填」、「(c)第2液体材料の追加」、および「(d)固化」を含む。本実施形態のNLOデバイスの製造方法は、「(e)ポーリング」等をさらに含んでいてもよい。
《(a)凹部の形成》
 図2は、本実施形態の非線形光学デバイスの製造過程を示す第1概略断面図である。本実施形態のNLOデバイスの製造方法は、半導体基板100の表面101に凹部10を形成することを含む。
(半導体基板)
 半導体基板100は、任意の形状を有し得る。半導体基板100の平面形状は、例えば、円形であってもよいし、矩形であってもよい。半導体基板100は、例えば、25mmから300mmの径を有していてもよい。半導体基板100の平面形状が円形である時、半導体基板100の径は、円の直径を示す。半導体基板100の平面形状が円形ではない時、半導体基板100の径は、半導体基板100の輪郭線上において最も離れた2点間の距離を示す。
 半導体基板100は、任意の半導体材料を含み得る。半導体基板100は、例えば、シリコン(Si)、炭化珪素(SiC)、インジウムリン(InP)、ガリウム砒素(GaAs)、窒化ガリウム(GaN)、ダイヤモンド、窒化シリコン(Si34)、酸化チタン(TiO2)、酸窒化タンタル(TaON)、五酸化タンタル(Ta25)、酸窒化ニオブ(NbON)、五酸化ニオブ(Nb25)、IZO〔(In23x(ZnO)1-x〕、IGZO〔(In23x(ZnO)y(Ga23z、x+y+z=1〕、AZO〔(Al23x(ZnO)1-x〕、およびTTON〔(TiO2x(TaON)1-x〕等からなる群より選択される少なくとも1種を含んでいてもよい。なお、上記の例では化学量論的組成式で代表して記載したが、厳密に化学量論的組成式で表される材料に限定される訳ではなく、化学量論的組成式で代表される半導体材料を示している。
 半導体基板100は、例えば、単層構造を有していてもよい。例えば、半導体基板100は、Si基板110のみからなっていてもよい。半導体基板100は、例えば、多層構造を有していてもよい。半導体基板100は、例えば、SOI(Silicon On Insulator)基板であってもよい。すなわち、半導体基板100は、例えば、Si基板110と、BOX(Buried оxide)層120と、Si活性層130とを含んでいてもよい。Si活性層130は、Si単結晶層である。Si活性層は、例えば、不純物がドーピングされていてもよい。BOX層120は、Si基板110とSi活性層130との間に介在している。BOX層120は、二酸化珪素(SiO2)を含む。BOX層120上に光導波路が形成されることにより、例えば、強い光閉じ込め効果が期待される。
 SOI基板の各層は、任意の厚さを有し得る。BOX層120は、例えば、0.1μmから50μmの厚さを有していてもよい。BOX層120は、例えば、1μmから10μmの厚さを有していてもよい。Si活性層130は、例えば、0.1μmから500μmの厚さを有していてもよい。Si活性層130は、例えば、0.1μmから1μmの厚さを有していてもよい。Si活性層130は、例えば、0.1μmから0.5μm(100nmから500nm)の厚さを有していてもよい。Si基板110は、例えば、100μmから1mmの厚さを有していてもよい。
(凹部)
 凹部10は、任意の方法により形成され得る。例えば、リソグラフィーによるパターニングと、反応性イオンエッチング(Reactive Ion Etching:RIE)とにより、凹部10が形成されてもよい。例えば、凹部10の開口部が周囲よりも高くなるように、凹部10の周囲が削り取られてもよい。
 本実施形態における「凹部10」は、側壁11と底部12とを含む。側壁11は、半導体基板100の表面101と交差している。側壁11は、平面を有していてもよいし、曲面を有していてもよい。例えば、側壁11は、実質的に、半導体基板100の表面101に垂直であってもよい。例えば、側壁11は、半導体基板100の表面101から傾斜していてもよい。
 図2の断面において、底部12は、相対する一対の側壁11を連結している。底部12は、例えば、平面を有していてもよいし、曲面を有していてもよい。図2の断面において、底部12は、例えば点であってもよい。底部12は、例えば、半導体基板100の表面101と平行であってもよい。底部12は、例えば、半導体基板100の表面101と平行でなくてもよい。凹部10の断面形状は、例えば、矩形状、U字状、V字状等であってもよい。例えば、図17に示されるように、底部12の幅が、開口部の幅よりも大きくてもよい。
 半導体基板100がSOI基板である場合、底部12は、例えば、Si活性層130内に位置していてもよい。底部12は、例えば、BOX層120内に位置していてもよい。底部12は、例えば、Si基板110内に位置していてもよい。
 凹部10の平面形状が円形である時、凹部10の「幅(w)」は、円の直径を示す。凹部10の平面形状が円形でない時、凹部10の「幅(w)」は、凹部10の平面形状の短径を示す。本実施形態の「短径」は次のように定義される。凹部10の平面形状の輪郭線上において、最も離れた2点を結ぶ直線が長径である。長径に直交する径のうち、最も大きい径が短径である。なお、凹部10の平面形状が線状に延びている場合、長径が特定されない場合がある。この場合、凹部の上面図(図3)において、凹部10の延びる方向と直交する方向の幅が、凹部10の幅(w)とみなされる。
 凹部10は、任意の幅(w)を有し得る。凹部10は、例えば、170nm以下の幅(w)を有していてもよい。本実施形態のNLOデバイスの製造方法においては、例えば、170nm以下の幅(w)を有する狭い凹部10であっても、空隙の低減が期待される。凹部10は、例えば、150nm以下の幅(w)を有していてもよい。凹部10は、例えば、100nm以下の幅(w)を有していてもよい。幅(w)の下限は任意である。凹部10は、例えば、10nm以上の幅(w)を有していてもよい。凹部10は、例えば、50nm以上の幅(w)を有していてもよい。凹部10は、例えば、80nm以上の幅(w)を有していてもよい。
 凹部10の「深さ(d)」は、半導体基板100の表面101に垂直な断面(例えば図2)において、凹部10の中で最も深い箇所と、凹部10の開口部との最短距離を示す。凹部10は、任意の深さ(d)を有し得る。凹部10は、例えば、50nm以上の深さ(d)を有していてもよい。凹部10は、例えば、100nm以上の深さ(d)を有していてもよい。凹部10は、例えば、200nm以上の深さ(d)を有していてもよい。深さ(d)の上限は任意である。凹部10は、例えば、3μm以下の深さ(d)を有していてもよい。凹部10は、例えば、2μm以下の深さ(d)を有していてもよい。凹部10は、例えば、1μm以下の深さ(d)を有していてもよい。凹部10は、例えば、300nm以下の深さ(d)を有していてもよい。
 凹部10は、任意のアスペクト比(d/w)を有し得る。凹部10は、例えば、0.5から12のアスペクト比(d/w)を有していてもよい。アスペクト比(d/w)が0.5以上であることにより、例えば、高集積化が期待される。凹部10は、例えば、1以上のアスペクト比(d/w)を有していてもよい。凹部10は、例えば、1.5以上のアスペクト比(d/w)を有していてもよい。アスペクト比(d/w)が12以下であることにより、例えば、空隙の低減が期待される。凹部10は、例えば、8以下のアスペクト比(d/w)を有していてもよい。凹部10は、例えば、4以下のアスペクト比(d/w)を有していてもよい。凹部10は、例えば、0.5から4のアスペクト比(d/w)を有していてもよい。
 凹部10は、任意の平面形状を有し得る。凹部10の平面形状は、例えば、円形、多角形等であってもよい。多角形は、例えば、三角形、四角形、五角形、六角形等であってもよい。
 図3は、凹部の第1例を示す概略上面図である。凹部10は、例えば、線状に延びるように形成されてもよい。線状に延びる凹部にNLOポリマーが充填されることにより、例えば、スロット導波路構造が形成され得る。図3中の矢印は、光の伝搬方向を示している。凹部10は、例えば、直線状に延びていてもよい。凹部10は、例えば、曲線状に延びていてもよい。凹部10は、例えば、折れ線状に延びていてもよい。凹部10は、例えば、複数に分岐していてもよい。例えば、複数の凹部10が1つに合流していてもよい。
 図4は、凹部の第2例を示す概略上面図である。凹部10は、例えば、フォトニック結晶構造を形成していてもよい。フォトニック結晶構造において、凹部10の平面形状は、例えば、円形等であってもよい。例えば、半導体基板100の表面101において、複数の凹部10が三角格子状に配列される。例えば、一列分の凹部10に、NLOポリマーが充填されてもよい。NLOポリマーが充填された一列分が、フォトニック結晶導波路を形成し得る。図4中の矢印は、光の伝搬方向を示している。さらに、線状に延びるスロット構造の周囲にフォトニック結晶構造が組み合わされてもよい。この場合、複数の凹部10のうち一部の凹部10が、半導体基板100の表面に沿って線状に延びることになる。すなわち、凹部10の少なくとも一部が、半導体基板100の表面に沿って線状に延びていてもよい。
 図5は、本実施形態の非線形光学デバイスの製造過程を示す第2概略断面図である。本実施形態においては、凹部10の形成に加えて、不純物のドーピング、および電極の形成等が実施されてもよい。
 例えば、Si活性層130に第1ドーピング領域131および第2ドーピング領域132が形成されてもよい。各ドーピング領域は、任意の方法により形成され得る。例えば、イオン注入等が実施されてもよい。第1ドーピング領域131および第2ドーピング領域132の各々は、例えば、n型の導電型を有していてもよい。第1ドーピング領域131および第2ドーピング領域132の各々は、例えば、リン(P)等の不純物がドーピングされていてもよい。
 第1ドーピング領域131は、凹部10の側壁11を含む。第1ドーピング領域131は、相対的に低いドーピング濃度を有していてもよい。第1ドーピング領域131が低いドーピング濃度を有することにより、例えば、伝搬損失が小さくなることが期待される。
 第2ドーピング領域132は、電極200と接触している。第2ドーピング領域132は、相対的に高いドーピング濃度を有していてもよい。第2ドーピング領域132が高いドーピング濃度を有することにより、例えば、電極200との接触抵抗が低減することが期待される。
 第1ドーピング領域131におけるドーピング濃度は、例えば、第2ドーピング領域132におけるドーピング濃度よりも低くてもよい。第1ドーピング領域131におけるドーピング濃度は、例えば、1×1016cm-3から1×1017cm-3であってもよい。第2ドーピング領域132におけるドーピング濃度は、例えば、1×1017cm-3から1×1018cm-3であってもよい。
 本実施形態において、不純物のドーピングは、任意のタイミングで実施され得る。例えば、凹部10の形成前に、不純物のドーピングが実施されてもよい。例えば、凹部10の形成後に、不純物のドーピングが実施されてもよい。
 電極200は、例えば、アルミニウム(Al)、タングステン(W)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、ニオブ(Nb)、ニッケル(Ni)、コバルト(Co)、金(Au)、銀(Ag)、銅(Cu)、および白金(Pt)等からなる群より選択される少なくとも1種を含んでいてもよい。電極200は、任意の方法により形成され得る。例えば、蒸着法等により、電極200が形成されてもよい。電極200は、例えば、信号電極等であってもよい。電極200は、例えば、接地電極等であってもよい。
 本実施形態において、電極200は、任意のタイミングで形成され得る。例えば、ポリマー溶液の塗布前に、電極200が形成されてもよい。例えば、ポリマー膜300の形成後に、電極200が形成されてもよい。
《(b)第1液体材料の充填》
 図6は、本実施形態の非線形光学デバイスの製造過程を示す第3概略断面図である。本実施形態のNLOデバイスの製造方法は、減圧環境下において、凹部10に第1液体材料31を充填することを含む。
 第1液体材料31は、任意の方法により、凹部10に充填される。例えば、スピンコート法等によって、第1液体材料31が半導体基板100の表面101に塗布されてもよい。例えば、雰囲気圧力を制御できるスピンコーター等が使用されてもよい。
 本実施形態における「減圧雰囲気」は、大気圧未満の圧力を有する雰囲気を示す。減圧雰囲気下においては、脱泡が促進されると考えられる。第1液体材料31は、低濃度溶液であるか、溶媒そのものである。第1液体材料31の表面において、材料の固化は起こり難いと考えられる。減圧雰囲気は、例えば、0.1Paから90kPaの圧力を有していてもよい。減圧雰囲気は、例えば、100Paから80kPaの圧力を有していてもよい。減圧雰囲気は、例えば、3kPaから70kPaの圧力を有していてもよい。
 第1液体材料31は第1溶質と第1溶媒とを含むか、または第1液体材料31は第1溶媒のみからなる。第1溶質は、第1溶媒に溶解している。第1液体材料31における第1溶質の濃度は、例えば、0質量%から35質量%であってもよい。第1液体材料31における第1溶質の濃度は、例えば、0質量%から20質量%であってもよい。第1液体材料31における第1溶質の濃度は、例えば、0質量%から10質量%であってもよい。
 第1液体材料31は、低い粘度を有していてもよい。第1液体材料は、例えば、1mPa・sから2000mPa・sの粘度を有していてもよい。第1液体材料は、例えば、1mPa・sから1000mPa・sの粘度を有していてもよい。第1液体材料は、例えば、1mPa・sから10mPa・sの粘度を有していてもよい。本実施形態における液体の「粘度」は、RheoSense社製の微量サンプル粘度計(製品名「micrо VISC」)によって測定され得る。該粘度計と同等品が使用されてもよい。測定温度は、25℃±1℃である。1つの測定対象について、粘度は3回以上測定される。3回以上の結果の算術平均値が、測定対象の粘度とみなされる。
(溶媒)
 第1溶媒は、任意の成分を含み得る。第1溶媒は、例えば、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、アセチルアセトン、メチルアミルケトン、n-メチルケトン、γ-ブチロラクトン、テトラヒドロフラン、クロロホルム、ジブロモメタン、1,2-ジクロロエタン、1,2-ジブロモエタン、1,1,2-トリクロロエタン、1,1,2,2-テトラクロロエタン、1,1,2-トリブロモエタン、1,1,2,2-テトラブロモエタン、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチル、プロピレングリコールメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、およびエチルセロソルブアセテートからなる群より選択される少なくとも1種を含んでいてもよい。
(溶質)
 第1溶質は、任意の成分を含み得る。第1溶質は、実質的に1種の成分のみからなっていてもよいし、複数種の成分からなっていてもよい。第1溶質は、例えば、低分子化合物、オリゴマー、ポリマー等を含んでいてもよい。
 第1溶質は、例えば界面活性剤等を含んでいてもよい。界面活性剤は、例えば、溶媒の蒸発抑制剤として機能してもよい。界面活性剤が蒸発抑制剤として機能することにより、例えば、第1液体材料31および第3液体材料33(後述)の表面において、溶媒の蒸発が低減し得る。その結果、例えば、ポリマー膜300(後述)の表面粗さが小さくなることが期待される。界面活性剤は、例えば、フッ素系界面活性剤等(例えばDIC社製の製品名「メガファック」等)を含んでいてもよい。
 第1溶質は、例えば、NLO色素分子等を含んでいてもよい。NLO色素分子は、NLO活性を有する分子を示す。NLO色素分子は、例えば、後述の電気光学(Electro-Optic:EO)色素分子を含んでいてもよい。第1溶質がNLO色素分子を含むことにより、例えば、ポーリング処理時に、NLO色素分子の配向性が向上することが期待される。
 第1溶質は、例えば、NLOポリマーを含んでいてもよい。第1溶質は、実質的にNLOポリマーのみからなっていてもよい。NLOポリマーは、非線形光学効果を示すポリマー材料である。NLOポリマーは、例えば、EOポリマー等を含んでいてもよい。NLOポリマーは、例えば、実質的にEOポリマーのみからなっていてもよい。
(EOポリマー)
 EOポリマーは、電気光学効果を示す。EOポリマーは、電気光学効果を示す限り、任意の成分を含み得る。EOポリマーは、例えば、ゲスト/ホストポリマー等を含んでいてもよい。ゲスト/ホストポリマーは、ゲスト分子とホストポリマーとを含む。ゲスト分子は、ホストポリマーに分散している。ゲスト/ホストポリマーにおけるゲスト分子の濃度は、例えば、10質量%から50質量%であってもよい。ホストポリマーは、例えば、ポリメチルメタクリレート(PMMA)やポリカーボネート(PC)等を含んでいてもよい。
 ゲスト分子は、電気光学効果を示す。ゲスト分子は「EO色素分子」とも記される。ゲスト分子は、例えば、電子供与基(ドナー)と、連結基と、電子吸引基(アクセプター)とを含んでいてもよい。連結基は、ドナーとアクセプターと連結している。連結基は、例えば、π共役構造等を含んでいてもよい。連結基は、例えば、下記式(II)から(IV):
Figure JPOXMLDOC01-appb-C000003

 によって表される構造を含んでいてもよい。
 ドナーは、例えば、下記式(V):
Figure JPOXMLDOC01-appb-C000004

 によって表される構造を含んでいてもよい。
 上記式(V)中、R3およびR4は、それぞれ独立に、水素原子、アルキル基、ヒドロキシアルキル基、ハロアルキル基、アリール基等を示す。
 アクセプターは、例えば、下記式(I):
Figure JPOXMLDOC01-appb-C000005

 により表されてもよい。すなわち、NLOポリマーが、上記式(I)で表される構造を含んでいてもよい。
 上記式(I)中、R1およびR2は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アルコキシ基、ハロアルキル基、アリール基、ヒドロキシ基、チオール基、またはアミノ基を示す。
 上記式(I)のアクセプターを含むEOポリマーは、大きな電気光学効果を示し得る。アルキル基は、例えば、メチル基等であってもよい。ハロアルキル基は、例えば、トリフルオロメチル基等であってもよい。R1、R2がアリール基である時、アリール基は置換されていてもよい。アリール基は、例えば、フェニル基、ナフチル基等であってもよい。アリール基の水素原子は、例えば、ハロゲン原子、アルキル基、ハロアルキル基等によって置換されていてもよい。
 上記式(I)中、例えば、R1およびR2は、それぞれ独立に、水素原子、メチル基、トリフルオロメチル基、またはフェニル基を示していてもよい。
 例えば、直鎖状ポリマーに、側鎖としてEO色素分子が結合されることにより、EOポリマーが形成されていてもよい。EO色素分子は、例えば、ドナーに含まれる反応性基(例えばヒドロキシ基等)の反応によって、直鎖状ポリマー(主鎖)に結合し得る。直鎖状ポリマーは、ホモポリマーであってもよいし、コポリマーであってもよい。コポリマーは、例えば、ランダムコポリマー、交互コポリマー、ブロックコポリマー、またはグラフトコポリマーのいずれであってもよい。本実施形態においては、直鎖状コポリマーに、側鎖としてEO色素分子が結合したEOポリマーが「サイドチェーンコポリマー」とも記される。
 図18は、サイドチェーンコポリマーの合成スキームの一例である。まず、ジシクロペンタニルメタクリレート(DCPMA)と、2-メタクリロイルオキシエチルイソシアネート(MOI)との共重合により、直鎖状コポリマーが合成される。EO色素分子は、1個のヒドロキシ基を有する。直鎖状コポリマーの側鎖としてEO色素分子が導入される。
 例えば、EO色素分子によって、複数のポリマー鎖が架橋されていてもよい。例えば、EO色素分子が2個の反応性基を有する場合、EO色素分子が2個のポリマー鎖を架橋し得る。本実施形態においては、EO色素分子によって架橋されたEOポリマーが「クロスリンクコポリマー」とも記される。
 ゲスト/ホストポリマーにおいては、ゲスト分子が高濃度になると、ゲスト分子(EO色素分子)が凝集しやすくなると考えられる。サイドチェーンコポリマー、およびクロスリンクコポリマーにおいては、EO色素分子が凝集し難いため、EO色素分子の濃度を高めやすいと考えられる。
《(c)第2液体材料の追加》
 図7は、本実施形態の非線形光学デバイスの製造過程を示す第4概略断面図である。図8は、本実施形態の非線形光学デバイスの製造過程を示す第5概略断面図である。本実施形態のNLOデバイスの製造方法は、凹部10に充填された第1液体材料31に第2液体材料32を接触させることにより、第3液体材料33を調製することを含む。
 第2液体材料32は、任意の方法により、第1液体材料31に接触する。例えば、第1液体材料31の液面に、第2液体材料32が滴下されてもよい。例えば、第1液体材料31の液面に、第2液体材料32が塗布されてもよい。例えば、第1液体材料31の液面に、第2液体材料32が吹き付けられてもよい。
 第2液体材料32は、第2溶質と第2溶媒とを含む。第2溶質は、第2溶媒に溶解している。第2溶質は、NLOポリマーを含む。第2溶質は、例えば、実質的にNLOポリマーのみからなっていてもよい。第2溶質は、NLOポリマーを含む限り、その他の成分をさらに含んでいてもよい。第2溶質は、例えば、前述の界面活性剤等をさらに含んでいてもよい。
 例えば、第1溶質がNLOポリマーを含まない時、第2溶質と第1溶質とは互いに異なる材料である。例えば、第1溶質がNLOポリマーを含む時、第2溶質と第1溶質とは互いに異なる材料であってもよいし、同一材料であってもよい。
 第2溶媒は、例えば、第1溶媒として説明された材料を含んでいてもよい。第2溶媒は、例えば、第1溶媒と異なる材料であってもよい。第2溶媒は、例えば、第1溶媒と同一材料であってもよい。第2溶質が第1溶質と同一材料であり、かつ第2溶媒が第1溶媒と同一材料であることにより、例えば、第2液体材料32と第1液体材料31とが均一に混ざり合うことが期待される。
 第2液体材料32は、高濃度溶液である。第2液体材料32における第2溶質の濃度は、第1液体材料31における第1溶質の濃度よりも高い。第2液体材料32の濃度は、例えば、5質量%から40質量%であってもよい。第2液体材料32の濃度は、例えば、10質量%から30質量%であってもよい。第2液体材料32の濃度は、例えば、10質量%から20質量%であってもよい。
 第2液体材料32の濃度と、第1液体材料31の濃度との差は、例えば、0質量%を超えて、40質量%以下であってもよい。第2液体材料32の濃度と、第1液体材料31の濃度との差は、例えば、5質量%から40質量%であってもよい。第2液体材料32の濃度と、第1液体材料31の濃度との差は、例えば、10質量%から20質量%であってもよい。
 第2液体材料32は、第1液体材料31に比して高い粘度を有していてもよい。第2液体材料32は、例えば、2mPa・sから2500mPa・sの粘度を有していてもよい。第2液体材料32は、例えば、5mPa・sから2500mPa・sの粘度を有していてもよい。第2液体材料32は、例えば、10mPa・sから2500mPa・sの粘度を有していてもよい。第2液体材料32は、例えば、100mPa・sから2500mPa・sの粘度を有していてもよい。第2液体材料32は、例えば、1000mPa・sから2500mPa・sの粘度を有していてもよい。
 第2液体材料32から第1液体材料31に溶質が拡散することにより、第3液体材料33が調製される。溶質の拡散を促進するため、液体材料が加熱されてもよい。ただし、加熱温度は、溶質が凝集しないように調整される。例えば、20℃から80℃の温度環境下において、溶質が拡散されてもよい。例えば、30℃から60℃の温度環境下において、溶質が拡散されてもよい。
 溶質の拡散は、例えば、常圧環境下で実施されてもよいし、加圧環境下で実施されてもよい。
 第3液体材料は、実質的に均一な濃度を有するように調製され得る。第3液体材料33における溶質の濃度は、例えば、5質量%から40質量%であってもよい。第3液体材料33における溶質の濃度は、例えば、5質量%から20質量%であってもよい。第3液体材料33における溶質の濃度は、例えば、5質量%から10質量%であってもよい。
《(d)固化》
 図9は、本実施形態の非線形光学デバイスの製造過程を示す第6概略断面図である。本実施形態のNLOデバイスの製造方法は、第3液体材料33を固化することにより、埋め込み部310を形成することを含む。埋め込み部310の形成により、NLOデバイス1000が完成する。
 第3液体材料33が固化することにより、ポリマー膜300が形成される。任意の方法により、第1溶媒および第2溶媒が、第3液体材料33から除去され得る。例えば、自然乾燥、減圧乾燥、スピン乾燥、熱風乾燥、および赤外線乾燥からなる群より選択される少なくとも1種が実施されてもよい。
 ポリマー膜300は、埋め込み部310を含む。埋め込み部310は、凹部10に埋め込まれている。埋め込み部310の一部または全部が、例えば、光導波路を形成してもよい。本実施形態の埋め込み部310は、低い空隙率を有し得る。そのため、光導波路における伝搬損失が小さいことが期待される。
 本実施形態のポリマー膜300(埋め込み部310)は、平滑な表面を有し得る。ポリマー膜300は、例えば、小さい表面粗さを有し得る。ポリマー膜300は、例えば、所定の表面平滑性を有し得る。ポリマー膜300が平滑な表面を有することにより、小型化可能なNLOデバイスが提供され得る。
《(e)ポーリング》
 本実施形態のNLOデバイスの製造方法は、例えば、埋め込み部310にポーリング処理を施すことをさらに含んでいてもよい。
 例えば、埋め込み部310がEOポリマーを含む場合、EOポリマーのガラス転移温度(Tg)付近まで、埋め込み部310が加熱される。加熱状態のまま、電極200間に所定の電圧が印加される。これにより埋め込み部310が電場中に置かれる。EO色素分子は、電場の向きに沿って配向する。電圧が印加された状態で、EOポリマーが室温まで降温される。これにより、EO色素分子が配向した状態で、EO色素分子が固定され得る。
 以下、本開示の実施例(以下「本実施例」とも記される。)が説明される。ただし以下の説明は、請求の範囲を限定しない。
<非線形光学デバイスの製造>
 下記No.1からNo.3の製造方法により、評価用デバイス(NLOデバイス)がそれぞれ製造される。本実施例における評価用デバイスは、スロット導波路型の光変調器である。
<No.1>
《(a)凹部の形成》
 半導体基板100として、SOI基板が準備される。フォトリソグラフィーによるパターニングと、RIEとにより、凹部10が形成される。本実施例の凹部10は、線状に延びるスロットである。凹部10の幅(w)は、134nmである。凹部10の深さ(d)は、302nmである。凹部10の底部12は、BOX層120内に位置する。
《(b)第1液体材料の充填》
 本実施例における第1液体材料31は、第1溶媒のみからなる。第1溶媒は、シクロヘキサノンである。第1液体材料31における第1溶質の濃度は、0質量%である。
 半導体基板100の表面に第1液体材料31が滴下される。滴下後、第1液体材料31が減圧雰囲気下で10分間静置されることにより、第1液体材料31が十分に脱泡される。これにより、凹部10に第1液体材料31が充填される。充填後、スピンコーターによって、半導体基板100が500rpmで3秒間回転する。これにより、余分な第1液体材料31が除去される。
《(c)第2液体材料の追加》
 第2溶質として、EOポリマーが準備される。EOポリマーはクロスリンクコポリマーである。第2溶媒としてシクロヘキサノンが準備される。第2溶質が第2溶媒に溶解されることにより、第2液体材料32が調製される。第2液体材料32における第2溶媒の濃度は、16質量%である。第2液体材料32における第2溶質の濃度(16質量%)は、第1液体材料31における第1溶質の濃度(0質量%)よりも高い。
 第2液体材料32が第1液体材料31に滴下される。すなわち、第2液体材料32が第1液体材料31に接触する。室温環境下において、第2溶質(EOポリマー)が拡散することにより、第3液体材料33が調製される。第3液体材料33は、略均一な濃度を有するように調製される。
《(d)固化》
 第2液体材料32の滴下後、スピンコーターによって、半導体基板100が1500rpmで60秒間回転する。これにより、第3液体材料33が半導体基板100の表面に略均一に広がると共に、第1溶媒および第2溶媒が揮発する。その結果、凹部10内において第2溶質が析出する。すなわち、第3液体材料33が固化する。これによりポリマー膜300が形成される。ポリマー膜300のうち凹部10に入り込んだ部分は、埋め込み部310を形成している。ポリマー膜300が、さらにEOポリマーのガラス転移温度(Tg)付近まで加熱され減圧雰囲気下で1時間熱処理されることにより、残存している第1溶媒および第2溶媒が除去される。
《(e)ポーリング》
 埋め込み部310がEOポリマーのガラス転移温度(Tg)付近まで加熱される。加熱状態において、埋め込み部310が電場中に置かれる。その後、電場が維持された状態で、埋め込み部310が降温される。以上より、評価用デバイスが製造される。
<No.2>
 図10は、No.2の製造過程を示す第1概略断面図である。No.1と同様に、凹部10を有する半導体基板100が準備される。ポリマー溶液35が準備される。ポリマー溶液35の溶媒は、シクロヘキサノンである。溶質は、No.1と同じEOポリマーである。ポリマー溶液35の濃度は、16質量%である。
 スピンコーターにより、常圧雰囲気下において、半導体基板100の表面にポリマー溶液35が塗布される。これにより、凹部10にポリマー溶液35が充填される。常圧雰囲気であるため、凹部10から気泡1が抜けにくいと考えられる。
 図11は、No.2の製造過程を示す第2概略断面図である。ポリマー溶液35が固化されることにより、ポリマー膜300が形成される。埋め込み部310には、空隙2が残存すると考えられる。ポリマー膜300の形成後、No.1と同様にポーリング処理が実施される。
<No.3>
 図12は、No.3の製造過程を示す概略断面図である。減圧環境下において、ポリマー溶液35の塗布、充填が実施される。減圧脱泡により、No.2に比して気泡1が低減すると考えられる。ただし、ポリマー溶液35の表面が固化するため、ポリマー膜300の表面に凹凸が形成されると考えられる。ポリマー膜300の形成後、No.1と同様にポーリング処理が実施される。
<評価>
 半導体基板100の上方に、第1近赤外カメラが配置される。第1近赤外カメラにより、埋め込み部310を伝搬する光の散乱による光伝搬ストリーク像が撮影される。
 図13から図15により、伝搬損失の測定例が説明される。図13は、評価用デバイスの概略上面図である。評価用デバイス2000は、左右対称である。評価用デバイス2000は、第1ポリマー導波路2001、第1スポットサイズ変換器2002、第1Siストリップ導波路2003、第2スポットサイズ変換器2004、Siスロット導波路2005、第3スポットサイズ変換器2006、第2Siストリップ導波路2007、第4スポットサイズ変換器2008、および第2ポリマー導波路2009が、この順で接続されることにより構成されている。Siスロット導波路2005の長さは、1736μmである。
 図14にNo.2の光伝搬ストリーク像が示される。図14の光伝搬ストリーク像は、図13のSiスロット導波路2005において撮影される。図15に示されるように、Siスロット導波路2005内の位置(Z)に対して、光伝搬ストリーク像の散乱光強度(相対値)がプロットされる。プロット群が最小二乗法により指数関数に近似されることにより、伝搬損失が求められる。
 半導体基板100の端面方向に、第2近赤外カメラが配置される。第2近赤外カメラにより、光出力近視野像が撮影される。光出力近視野像と同等の光強度になる光アッテネータの値から、光出力(相対値)が算出される。
 Siスロット導波路2005を横切るように評価用デバイス2000が破断される。破断面がSEMで観察されることにより、埋め込み部310内で空隙の有無が確認される。5箇所以上の破断面で、それぞれ空隙の有無が確認される。下記式より空隙率が算出される。
 空隙率(%)={(空隙がある破断面の数)/(観察された破断面の数)}×100
<結果>
 図16は、No.1からNo.3の評価結果である。
 断面SEM像において、空隙が確認される。空隙は、凹部10の底部12にポリマーが充填されていない部分である。
 No.2の断面SEM像においては、多くの場合に空隙が確認される。No.2の空隙率は71%である。埋め込み部310に多数の空隙が残存していると考えられる。伝搬損失は最も大きく、光出力は最も低い。
 No.3の断面SEM像においては、No.2に比して空隙が減少している。No.3の空隙率は9%である。減圧脱泡により、空隙が低減していると考えられる。ただし、少ないながらも、空隙が確認できることから、少量の空隙は残存していると考えられる。No.3は、No.2に比して伝搬損失が減少し、光出力が増加している。また、No.3においては、ポリマー溶液35の表面固化により、ポリマー膜300(埋め込み部310)の表面に凹凸が形成されている。
 No.1の断面SEM像においては、空隙が確認できない。No.1の空隙率は0%である。No.1の伝搬損失は、No.2およびNo.3の伝搬損失よりも小さい。No.1の光出力は、No.2およびNo.3の光出力よりも高い。第1液体材料31が凹部10に浸透しやすいため、空隙が顕著に低減していると考えられる。No.1においては、実質的に完全に空隙が除去されているとも考えられる。No.1におけるポリマー膜300の表面は、平滑であり得る。第1液体材料31においては、表面固化が起こり難いためと考えられる。
<付記>
 本開示においては、下記《付記1》から《付記3》のNLOデバイスも提供され得る。
《付記1》
 半導体基板と、
 ポリマー膜と、
 を含み、
 前記半導体基板の表面に凹部が形成されており、
 前記凹部は、前記半導体基板の前記表面に沿って延びており、
 前記ポリマー膜は、前記半導体基板の前記表面の少なくとも一部を被覆しており、
 前記ポリマー膜は、埋め込み部を含み、
 前記埋め込み部は、前記凹部に埋め込まれており、
 前記埋め込み部は、非線形光学ポリマーを含み、
 前記埋め込み部における伝搬損失は、所定値以下である、
 非線形光学デバイス。
《付記2》
 前記埋め込み部における空隙率は、所定値以下である、
 《付記1》に記載の非線形光学デバイス。
《付記3》
 前記ポリマー膜の表面粗さは、所定値以下である、
 《付記1》または《付記2》に記載の非線形光学デバイス。
 本実施形態および本実施例は、全ての点で例示である。本実施形態および本実施例は、制限的ではない。例えば、本実施形態および本実施例から、任意の構成が抽出され、それらが任意に組み合わされることも、当初から予定されている。
 請求の範囲の記載に基づいて定められる技術的範囲は、請求の範囲の記載と均等の意味における全ての変更を包含する。さらに、請求の範囲の記載に基づいて定められる技術的範囲は、請求の範囲の記載と均等の範囲内における全ての変更も包含する。
 1 気泡、2 空隙、10 凹部、11 側壁、12 底部、31 第1液体材料、32 第2液体材料、33 第3液体材料、35 ポリマー溶液、100 半導体基板、101 表面、110 Si基板、120 BOX層、130 Si活性層、131 第1ドーピング領域、132 第2ドーピング領域、200 電極、300 ポリマー膜、310 埋め込み部、1000 非線形光学デバイス、2000 評価用デバイス、2001 第1ポリマー導波路、2002 第1スポットサイズ変換器、2003 第1Siストリップ導波路、2004 第2スポットサイズ変換器、2005 Siスロット導波路、2006 第3スポットサイズ変換器、2007 第2Siストリップ導波路、2008 第4スポットサイズ変換器、2009 第2ポリマー導波路。

Claims (10)

  1.  半導体基板の表面に凹部を形成すること、
     減圧環境下において、前記凹部に第1液体材料を充填すること、
     前記凹部に充填された前記第1液体材料に、第2液体材料を接触させることにより、第3液体材料を調製すること、
     および、
     前記第3液体材料を固化することにより、埋め込み部を形成すること、
     を含み、
     前記第1液体材料は、第1溶質と第1溶媒とを含むか、または前記第1溶媒のみからなり、
     前記第2液体材料は、第2溶質と第2溶媒とを含み、
     前記第2溶質は、非線形光学ポリマーを含み、
     前記第2液体材料における前記第2溶質の濃度は、前記第1液体材料における前記第1溶質の濃度よりも高い、
     非線形光学デバイスの製造方法。
  2.  前記第1溶質は、非線形光学ポリマーを含む、
     請求項1に記載の非線形光学デバイスの製造方法。
  3.  前記凹部の少なくとも一部は、前記半導体基板の前記表面に沿って線状に延びるように形成される、
     請求項1または請求項2に記載の非線形光学デバイスの製造方法。
  4.  前記凹部の幅に対する、前記凹部の深さの比は、0.5から12である、
     請求項1から請求項3のいずれか1項に記載の非線形光学デバイスの製造方法。
  5.  前記凹部は、170nm以下の幅を有する、
     請求項1から請求項4のいずれか1項に記載の非線形光学デバイスの製造方法。
  6.  前記第1液体材料における前記第1溶質の濃度は、0質量%から35質量%であり、
     前記第2液体材料における前記第2溶質の濃度は、5質量%から40質量%である、
     請求項1から請求項5のいずれか1項に記載の非線形光学デバイスの製造方法。
  7.  前記非線形光学ポリマーは、下記式(I):
    Figure JPOXMLDOC01-appb-C000001

     によって表される構造を含み、
     上記式(I)中、R1およびR2は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基、アルコキシ基、ハロアルキル基、アリール基、ヒドロキシ基、チオール基、またはアミノ基を示す、
     請求項1から請求項6のいずれか1項に記載の非線形光学デバイスの製造方法。
  8.  前記第1溶媒および前記第2溶媒の各々は、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、アセチルアセトン、メチルアミルケトン、n-メチルケトン、γ-ブチロラクトン、テトラヒドロフラン、クロロホルム、ジブロモメタン、1,2-ジクロロエタン、1,2-ジブロモエタン、1,1,2-トリクロロエタン、1,1,2,2-テトラクロロエタン、1,1,2-トリブロモエタン、1,1,2,2-テトラブロモエタン、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチル、プロピレングリコールメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、およびエチルセロソルブアセテートからなる群より選択される少なくとも1種を含む、
     請求項1から請求項7のいずれか1項に記載の非線形光学デバイスの製造方法。
  9.  前記第2溶媒は、前記第1溶媒と同一材料であり、
     前記第2溶質は、前記第1溶質と同一材料である、
     請求項1から請求項8のいずれか1項に記載の非線形光学デバイスの製造方法。
  10.  前記第1溶質は、非線形光学ポリマーを含み、
     前記凹部の少なくとも一部は、前記半導体基板の前記表面に沿って線状に延びるように形成され、
     減圧雰囲気下において、前記凹部に前記第1液体材料が充填され、
     前記凹部の幅に対する、前記凹部の深さの比は、0.5から12であり、
     前記凹部は、170nm以下の幅を有し、
     前記第1液体材料における前記第1溶質の濃度は、0質量%から35質量%であり、
     前記第2液体材料における前記第2溶質の濃度は、5質量%から40質量%である、
     請求項1に記載の非線形光学デバイスの製造方法。
PCT/JP2021/026467 2020-07-31 2021-07-14 非線形光学デバイスの製造方法 WO2022024761A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022540154A JPWO2022024761A1 (ja) 2020-07-31 2021-07-14
US18/015,467 US20230330955A1 (en) 2020-07-31 2021-07-14 Method of producing nonlinear optical device
CN202180048924.7A CN115968450A (zh) 2020-07-31 2021-07-14 非线性光学器件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130371 2020-07-31
JP2020130371 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022024761A1 true WO2022024761A1 (ja) 2022-02-03

Family

ID=80037312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026467 WO2022024761A1 (ja) 2020-07-31 2021-07-14 非線形光学デバイスの製造方法

Country Status (4)

Country Link
US (1) US20230330955A1 (ja)
JP (1) JPWO2022024761A1 (ja)
CN (1) CN115968450A (ja)
WO (1) WO2022024761A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295143A (ja) * 2002-03-29 2003-10-15 Hitachi Ltd 光機能素子及びその製造方法
JP2007108515A (ja) * 2005-10-14 2007-04-26 Fujitsu Ltd 光学素子及びその製造方法
JP2008024832A (ja) * 2006-07-21 2008-02-07 Tokyo Ohka Kogyo Co Ltd 高屈折率材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295143A (ja) * 2002-03-29 2003-10-15 Hitachi Ltd 光機能素子及びその製造方法
JP2007108515A (ja) * 2005-10-14 2007-04-26 Fujitsu Ltd 光学素子及びその製造方法
JP2008024832A (ja) * 2006-07-21 2008-02-07 Tokyo Ohka Kogyo Co Ltd 高屈折率材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKADAI ET AL.: "Design of double-slotted high-Q photonic crystal nanocavity filled with electro- optic polymer", 2016 21ST OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) HELD JOINTLY WITH 2016 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING (PS, vol. WE3-2, 3 July 2016 (2016-07-03), pages 1 - 3, XP032986242 *
YAN CHONGQING, LI CHANGHONG, WAN YONG: "Dynamic modulation of wideband slow light with continuous group index in polymer-filled photonic crystal waveguide", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, US, vol. 56, no. 35, 10 December 2017 (2017-12-10), US , pages 9749, XP055903828, ISSN: 1559-128X, DOI: 10.1364/AO.56.009749 *

Also Published As

Publication number Publication date
CN115968450A (zh) 2023-04-14
US20230330955A1 (en) 2023-10-19
JPWO2022024761A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
Tondiglia et al. Holographic Formation of Electro‐Optical Polymer–Liquid Crystal Photonic Crystals
Bitar et al. Cholesteric liquid crystal self-organization of gold nanoparticles
Matthias et al. Large‐Area Three‐Dimensional Structuring by Electrochemical Etching and Lithography
Birner et al. Silicon‐based photonic crystals
Di et al. Structural rearrangements in a lamellar diblock copolymer thin film during treatment with saturated solvent vapor
Vlasov et al. On-chip natural assembly of silicon photonic bandgap crystals
US20030175004A1 (en) Optical polymer nanocomposites
US7305161B2 (en) Encapsulated photonic crystal structures
Galisteo et al. Self-assembly approach to optical metamaterials
US20050206020A1 (en) Self assembled three-dimensional photonic crystal
Si et al. Suspended slab and photonic crystal waveguides in lithium niobate
US20170336692A1 (en) Electrochromic photonic-crystal reflective display device and method of manufacturing the same
Bhandaru et al. Confinement induced ordering in dewetting of ultra-thin polymer bilayers on nanopatterned substrates
Schilling et al. Optical characterisation of 2D macroporous silicon photonic crystals with bandgaps around 3.5 and 1.3 μm
Van Der Heijden et al. InP-based two-dimensional photonic crystals filled with polymers
Míguez et al. Optical properties of colloidal photonic crystals confined in rectangular microchannels
WO2022024761A1 (ja) 非線形光学デバイスの製造方法
Sabarinathan et al. Submicron three-dimensional infrared GaAs/Al x O y-based photonic crystal using single-step epitaxial growth
Arsenault et al. Tailoring photonic crystals with nanometer-scale precision using polyelectrolyte multilayers
Schiek et al. Organic nanofibers from chloride-functionalized p-quaterphenylenes
Geiss et al. Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width
Alshehri et al. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique
KR101623461B1 (ko) 광자 결정 소자, 상기 광자 결정 소자 제조 방법 및 상기 광자결정 소자를 포함하는 반사형 디스플레이 장치
Summers et al. Active photonic crystal nano-architectures
Astrova et al. Silicon periodic structures and their liquid crystal composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848667

Country of ref document: EP

Kind code of ref document: A1