WO2022024727A1 - Epoxy resin composition and under-filling material - Google Patents

Epoxy resin composition and under-filling material Download PDF

Info

Publication number
WO2022024727A1
WO2022024727A1 PCT/JP2021/026037 JP2021026037W WO2022024727A1 WO 2022024727 A1 WO2022024727 A1 WO 2022024727A1 JP 2021026037 W JP2021026037 W JP 2021026037W WO 2022024727 A1 WO2022024727 A1 WO 2022024727A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
inorganic filler
skeleton
less
Prior art date
Application number
PCT/JP2021/026037
Other languages
French (fr)
Japanese (ja)
Inventor
一 大塚
隆宏 明石
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022540138A priority Critical patent/JPWO2022024727A1/ja
Publication of WO2022024727A1 publication Critical patent/WO2022024727A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to an epoxy resin composition and an underfill material in general, and more particularly to an epoxy resin composition containing a liquid epoxy resin and an underfill material.
  • underfill materials for semiconductor mounting have been required to have high thermal conductivity in addition to low thermal expansion, high heat resistance (high Tg), an appropriate range of storage elastic modulus, and high penetration.
  • liquid epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin are known as main agents widely used for underfill materials.
  • the mesogen epoxy resin is solid at 25 ° C. Therefore, when the mesogen epoxy resin is dissolved in a solvent, it can be used as a prepreg, a laminated board, or the like.
  • the mesogen epoxy resin cannot be used as it is as a solvent-free underfill material.
  • An object of the present disclosure is to provide an epoxy resin composition and an underfill material that can improve the performance required for the underfill material.
  • the epoxy resin composition according to one aspect of the present disclosure includes a mesogen skeleton-containing epoxy resin (A), a liquid epoxy resin (B) having a viscosity at 25 ° C. of 1500 mPa ⁇ s or less, a curing agent (C), and an inorganic substance. Contains the filler (D).
  • the underfill material according to one aspect of the present disclosure includes the epoxy resin composition.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor package according to an embodiment of the present disclosure.
  • the epoxy resin composition according to the present embodiment contains a mesogen skeleton-containing epoxy resin (A), a liquid epoxy resin (B), a curing agent (C), and an inorganic filler (D).
  • the viscosity of the liquid epoxy resin (B) at 25 ° C. is 1500 mPa ⁇ s or less.
  • the mesogen skeleton-containing epoxy resin (A) is solid at room temperature (25 ° C.), but the epoxy resin composition can be liquefied at room temperature by dissolving it in the liquid epoxy resin (B). Thereby, the permeability can be improved. Further, the orientation of the mesogen skeleton-containing epoxy resin (A) facilitates the formation of a high thermal conductive region. Thereby, the thermal conductivity can be improved.
  • the performance required for the underfill material can be improved.
  • Other performance will be described later.
  • Epoxy resin composition The epoxy resin composition according to the present embodiment is in a liquid state at room temperature (25 ° C.) while being solvent-free. Therefore, the epoxy resin composition is suitably used as an underfill material (liquid encapsulant) for semiconductor mounting.
  • the epoxy resin composition contains a mesogen skeleton-containing epoxy resin (A), a liquid epoxy resin (B), a curing agent (C), and an inorganic filler (D).
  • the epoxy resin composition may further contain other (E).
  • E the constituent components of the epoxy resin composition will be described.
  • the mesogen skeleton-containing epoxy resin (A) is an epoxy resin having a mesogen skeleton.
  • the epoxy resin composition contains the mesogen skeleton-containing epoxy resin (A)
  • the epoxy resin composition tends to have good fluidity. Therefore, the epoxy resin composition tends to have high moldability.
  • the mesogen skeleton is a molecular structure capable of expressing crystallinity. Therefore, the mesogen skeleton-containing epoxy resin (A) is easy to self-arrange.
  • the mesogen skeleton is from a phenyl benzoate skeleton, a biphenyl skeleton, a benzophenone skeleton, a phenyl ether skeleton, a benzanilide skeleton, a stillben skeleton, a diazobenzene skeleton and a benzylidene aniline skeleton, and a skeleton of a derivative having a substituent bonded to these skeletons.
  • the phenylbenzoate skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (I), or a structure in which a substituent is bonded to this structure.
  • the biphenyl skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (II), or a structure in which a substituent is bonded to this structure.
  • benzophenone skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (III), or a structure in which a substituent is bonded to this structure.
  • the phenyl ether skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (IV) or a structure in which a substituent is bonded to this structure.
  • the benzanilide skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (V), or a structure in which a substituent is bonded to this structure.
  • the stilbene skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (VI), or a structure in which a substituent is bonded to this structure.
  • the diazobenzene skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (VII), or a structure in which a substituent is bonded to this structure.
  • the benzylidene aniline skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (VIII), or a structure in which a substituent is bonded to this structure.
  • the mesogen skeleton-containing epoxy resin (A) is, for example, a modified epoxy synthesized by reacting a biphenyl type epoxy resin, a stilbene type epoxy resin, a mixture of hydroquinone and 4,4'-dihydroxybiphenyl with epichlorohydrin. It contains at least one selected from the group consisting of a resin and a phenylbenzoate type epoxy resin.
  • the mesogen skeleton-containing epoxy resin (A) preferably contains a modified epoxy resin synthesized by reacting a mixture of hydroquinone and 4,4'-dihydroxybiphenyl with epichlorohydrin.
  • the mesogen skeleton-containing epoxy resin (A) also preferably contains the epoxy resin (a12) synthesized by the following method.
  • the compound represented by the following formula (1) is reacted with the compound represented by the following formula (2) to obtain a phenol compound.
  • This phenol compound is reacted with epihalohydrin in the presence of an alkali metal hydroxide.
  • the product thus obtained is heated to 150 ° C. or higher to melt the crystalline components in the product, and then rapidly cooled at 50 ° C. or lower.
  • the epoxy resin (a12) is obtained.
  • each of the plurality of R 1s is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group or a carbon. It is a substituted or unsubstituted alkoxy group of the number 1 to 10. l represents the number of R1 and is an integer of 0 to 4.
  • R 2 (each of a plurality of R 2s when there are a plurality of R 2s in one molecule) is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and 6 carbon atoms. It is a substituted or unsubstituted aryl group of ⁇ 10, a hydroxyl group, a nitro group, a formyl group, an allyl group or a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms.
  • k represents the number of R2 and is an integer of 0 to 4.
  • the mesogen skeleton-containing epoxy resin (A) can have a structure close to a crystal, scattering of phonons (sounds) can be suppressed. As described above, since it is possible to form a structure that does not hinder the transmission of phonons, it is possible to improve the thermal conductivity in the cured product of the epoxy resin composition.
  • the mesogen skeleton-containing epoxy resin (A) is an oligomer, and this oligomer has a molecular weight distribution. As described above, since the mesogen skeleton-containing epoxy resin (A) has a molecular weight distribution, it is presumed that the mesogen skeleton-containing epoxy resin (A) is easily compatible with the liquid epoxy resin (B). The mesogen skeleton-containing epoxy resin (A) is solid at room temperature (25 ° C.), but becomes liquid crystal when melted by heating.
  • the softening point of the mesogen skeleton-containing epoxy resin (A) is 40 ° C. or higher and 70 ° C. or lower.
  • the compatibility between the mesogen skeleton-containing epoxy resin (A) and the liquid epoxy resin (B) can be further improved.
  • the softening point of the mesogen skeleton-containing epoxy resin (A) is 70 ° C. or lower, precipitation of crystals of the mesogen skeleton-containing epoxy resin (A) is suppressed when the epoxy resin composition is heated at a temperature of more than 70 ° C. can do. This improves the permeability of the epoxy resin composition.
  • the penetrability means a property that when the epoxy resin composition is used as an underfill material, it easily penetrates into a gap (gap) between the semiconductor chip 2 and the substrate 3. (See FIG. 1).
  • the content of the mesogen skeleton-containing epoxy resin (A) is 10 parts by mass or more and 25 parts by mass or less with respect to a total of 100 parts by mass of the mesogen skeleton-containing epoxy resin (A) and the liquid epoxy resin (B).
  • the thermal conductivity can be improved. That is, in the cured product of the epoxy resin composition, a highly oriented high thermal conduction region (focal conic domain) of the mesogen skeleton-containing epoxy resin (A) is likely to be formed.
  • the compatibility with the liquid epoxy resin (B) can be improved. That is, in the epoxy resin composition, it becomes easy to suppress the precipitation of crystals of the mesogen skeleton-containing epoxy resin (A).
  • the ICI melt viscosity of the mesogen skeleton-containing epoxy resin (A) at 150 ° C. is preferably 0.03 Pa ⁇ s or more and 0.10 Pa ⁇ s or less.
  • the ICI melt viscosity can be measured, for example, using a conical plate (cone plate) viscometer.
  • the epoxy equivalent of the mesogen skeleton-containing epoxy resin (A) is preferably 210 g / eq or more and 240 g / eq or less.
  • the liquid epoxy resin (B) is an epoxy resin that forms a liquid at room temperature (25 ° C.). Specifically, the liquid epoxy resin (B) has a viscosity at 25 ° C. of 1500 mPa ⁇ s or less. As described above, the liquid epoxy resin (B) is not particularly limited as long as it is liquid at room temperature, but an epoxy resin having an aromatic ring (aromatic ring-containing epoxy resin) is preferable to the alicyclic epoxy resin. This is because the aromatic ring-containing epoxy resin is more easily compatible with the mesogen skeleton-containing epoxy resin (A) than the alicyclic epoxy resin.
  • the aromatic ring-containing epoxy resin is not particularly limited, and examples thereof include a bisphenol F type epoxy resin, a glycidylamine type epoxy resin, and a bisphenol A type epoxy resin.
  • the glycidylamine type epoxy resin is effective in increasing the glass transition temperature (Tg) of the cured product of the epoxy resin composition.
  • the epoxy equivalent of the liquid epoxy resin (B) is preferably 90 g / eq or more and 170 g / eq or less.
  • the epoxy equivalent of the bisphenol F type epoxy resin is preferably 150 g / eq or more and 170 g / eq or less.
  • the epoxy equivalent of the glycidylamine type epoxy resin is preferably 90 g / eq or more and 100 g / eq or less.
  • the liquid epoxy resin (B) contains at least one of a bisphenol F type epoxy resin and a glycidylamine type epoxy resin.
  • the compatibility between the liquid epoxy resin (B) and the mesogen skeleton-containing epoxy resin (A) can be further improved. Further, the precipitation of crystals of the mesogen skeleton-containing epoxy resin (A) can be further suppressed.
  • the content of the liquid epoxy resin (B) is preferably 75 parts by mass or more and 90 parts by mass or less with respect to a total of 100 parts by mass of the mesogen skeleton-containing epoxy resin (A) and the liquid epoxy resin (B).
  • the content of the liquid epoxy resin (B) is 75 parts by mass or more, it becomes easy to suppress the precipitation of crystals of the mesogen skeleton-containing epoxy resin (A).
  • the content of the liquid epoxy resin (B) is 90 parts by mass or less, the decrease in thermal conductivity can be suppressed.
  • the curing agent (C) is not particularly limited, and examples thereof include amines, acid anhydrides, and phenol novolac resins.
  • the curing agent (C) preferably contains an aromatic amine, more preferably an aromatic diamine. This makes it possible to increase the glass transition temperature (Tg) of the cured product of the epoxy resin composition. Further, the thermal conductivity of the cured product of the epoxy resin composition can be improved. That is, the aromatic amine facilitates the formation of a highly oriented high thermal conduction region of the mesogen skeleton-containing epoxy resin (A) in the cured product of the epoxy resin composition. In particular, the aromatic diamine tends to orient the mesogen skeleton-containing epoxy resin (A).
  • the inorganic filler (D) can adjust the coefficient of thermal expansion, thermal conductivity, mechanical strength, and the like of the cured product of the epoxy resin composition. Specifically, since the inorganic filler (D) is contained in the epoxy resin composition, the coefficient of thermal expansion of the cured product of the epoxy resin composition can be lowered. Further, the thermal conductivity of the cured product of the epoxy resin composition can be increased.
  • the inorganic filler (D) is not particularly limited, and examples thereof include alumina, molten silica, and crystalline silica.
  • the inorganic filler (D) contains ⁇ -alumina.
  • the ⁇ -alumina of the present embodiment means alumina whose main crystal phase is the ⁇ phase.
  • the main crystal phase is determined based on the CuK ⁇ characteristic X-ray diffraction pattern.
  • the ⁇ phase, the ⁇ phase, the ⁇ phase, the ⁇ phase, and the ⁇ phase which are known as the crystal phases of alumina, have peaks at the following positions in the CuK ⁇ characteristic X-ray diffraction pattern. Among the peaks appearing at the following positions, the phase corresponding to the peak having the highest intensity is used as the main crystal phase.
  • the ⁇ crystallization rate of ⁇ -alumina is 40% or more and 90% or less, and the average circularity is 0.80 or more and 0.96 or less.
  • the inorganic filler (D) By including such ⁇ -alumina in the inorganic filler (D), it is possible to achieve both the thermal conductivity of the cured product of the epoxy resin composition and the fluidity of the epoxy resin composition. That is, when the ⁇ crystallization rate of ⁇ -alumina is 40% or more and 90% or less, the mesogen skeleton-containing epoxy resin (A) is oriented around ⁇ -alumina, and it becomes easy to form a high thermal conduction region. This makes it possible to improve the thermal conductivity of the cured product of the epoxy resin composition.
  • the average circularity of ⁇ -alumina is 0.80 or more and 0.96 or less, the particles of ⁇ -alumina become close to a true sphere, and the fluidity of the liquid epoxy resin composition can be improved. ..
  • the above average circularity is the average value of the circularity. That is, a predetermined number of circularities are measured, and a numerical value obtained by averaging these measured values is the average circularity. The larger the number of measurements of the circularity, the more preferable, for example, 30 or more.
  • the above circularity can be calculated by the following formula (1) using the area of one particle and its peripheral length. The closer the circularity is to 1, the closer to a perfect circle.
  • Circularity 4 ⁇ x area / (perimeter) 2 (where 0 ⁇ circularity ⁇ 1)
  • the area of one particle (the number of pixels contained in one particle) and its peripheral length are obtained by observing the particles using a microscope or a scanning electron microscope (SEM).
  • the microscope is not particularly limited, and examples thereof include a model "VHX-6000" manufactured by KEYENCE CORPORATION.
  • the scanning electron microscope is not particularly limited, and examples thereof include a model "JSM-7900F” (acceleration voltage: 5 kV) manufactured by JEOL Ltd.
  • the area of one particle is less than 30 pixels, this number of pixels is defined as the "area” in the equation (1).
  • the "perimeter” in the equation (1) is the number of boundary pixels. Boundary pixels are pixels that include the contour lines of one particle.
  • the area of one particle is 30 pixels or more
  • the remaining number of pixels obtained by subtracting half of the number of boundary pixels from this number of pixels is defined as the "area” in the equation (1).
  • the "perimeter” in the equation (1) is the number of boundary pixels.
  • the above average circularity may be calculated using a known image analysis device. That is, the above average circularity can be calculated by imaging particles with a CCD or the like and appropriately analyzing the obtained particle images with an image analysis device.
  • the maximum particle size of the inorganic filler (D) is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. This makes it possible to impart high permeability to the epoxy resin composition. That is, when the epoxy resin composition is used as the underfill material, it is easy to penetrate even if the gap between the semiconductor chip 2 and the substrate 3 is narrow.
  • the average particle size of the inorganic filler (D) is 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • the average particle size of the inorganic filler (D) is 0.1 ⁇ m or more, it is possible to suppress an increase in viscosity of the liquid epoxy resin composition and suppress a decrease in permeability. In addition, the decrease in thermal conductivity can be suppressed.
  • the average particle size of the inorganic filler (D) is 2.0 ⁇ m or less, when the epoxy resin composition is used as the underfill material, the inorganic filler (D) for curing the epoxy resin composition. ) Can be suppressed.
  • the average particle size of the inorganic filler (D) is 0.1 ⁇ m or more and 2.0 ⁇ m or less, the permeability of the epoxy resin composition and the thermal conductivity of the cured product can be further improved.
  • the average particle size of the inorganic filler (D) is preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the average particle diameter means the median diameter (D50) obtained from the particle size distribution obtained from the measurement results by the laser diffraction / scattering method.
  • the inorganic filler (D) contains a first inorganic filler and a second inorganic filler.
  • the average particle size of the first inorganic filler is larger than the average particle size of the second inorganic filler.
  • the average particle size of the first inorganic filler is, for example, 1.0 ⁇ m or more and 2.0 ⁇ m or less.
  • the average particle size of the second inorganic filler is, for example, 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the content of the first inorganic filler is 60 parts by mass or more and 80 parts by mass or less with respect to a total of 100 parts by mass of the first inorganic filler and the second inorganic filler.
  • the content of the inorganic filler (D) is 50% by mass or more and 85% by mass or less with respect to the total mass of the epoxy resin composition.
  • the thermal expansion rate can be lowered.
  • the thermal conductivity can be improved.
  • the storage elastic modulus can be kept within an appropriate range.
  • the content of the inorganic filler (D) is 85% by mass or less, the decrease in fluidity can be suppressed.
  • the storage elastic modulus can be prevented from becoming too high. If the storage modulus is too high, the followability to displacement may decrease.
  • the content of the inorganic filler (D) is 85% by mass or less, it is possible to suppress a decrease in followability to displacement.
  • the other (E) is not particularly limited, and examples thereof include a coupling agent, a dispersant, and a curing accelerator.
  • the epoxy resin composition contains a coupling agent
  • the interface between the mesogen skeleton-containing epoxy resin (A), the liquid epoxy resin (B) and the curing agent (C) and the inorganic filler (D) is wetted and adhered.
  • the sex can be improved.
  • the coupling agent is not particularly limited, and examples thereof include a silane coupling agent and the like.
  • the silane coupling agent is not particularly limited, and examples thereof include N-phenyl- ⁇ -aminopropyltrimethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane.
  • the method of using the coupling agent is not particularly limited, and examples thereof include a direct treatment method and an integral blending method.
  • the direct treatment method is a pretreatment of the inorganic filler (D), and specifically, the surface treatment of the inorganic filler (D) is performed in advance with a coupling agent.
  • the integral blending method is a method of adding a coupling agent at the time of producing the epoxy resin composition.
  • the epoxy resin composition contains a dispersant
  • the dispersibility of the inorganic filler (D) can be improved.
  • the dispersant is not particularly limited, and examples thereof include polyester phosphate-based dispersants.
  • the acid value of the dispersant is preferably 110 mgKOH / g or more and 140 mgKOH / g or less.
  • the epoxy resin composition contains a curing accelerator
  • the curing reaction of the mesogen skeleton-containing epoxy resin (A), the liquid epoxy resin (B) and the curing agent (C) can be promoted.
  • the curing accelerator is not particularly limited, and examples thereof include aluminum organic compounds such as aluminum tris (acetylacetonate).
  • the cured product of the epoxy resin composition according to the present embodiment When used as an underfill material, it has suitable properties (for example, low thermal expansion, high heat resistance (high Tg), moderate range of storage elastic modulus, and high storage elasticity). It has permeable and high thermal conductivity).
  • the cured product can have a linear expansion coefficient of 35 ppm / ° C or less as a low thermal expansion characteristic, and more specifically, it can be adjusted to be 20 ppm / ° C or more and 35 ppm / ° C or less. Is.
  • the glass transition temperature (Tg) of the cured product can be as high as 150 ° C. or higher, more preferably 155 ° C. or higher.
  • the flexural modulus of the cured product can be in the range of 6 GPa or more and 12 GPa or less, and if it is within this range, it can be said that the storage elastic modulus is within an appropriate range.
  • the cured product can realize a thermal conductivity of 1.2 W / (m ⁇ K) or more, more preferably 1.5 W / (m ⁇ K) or more.
  • the underfill material according to the present embodiment contains the above-mentioned epoxy resin composition.
  • the underfill material is liquid at room temperature (25 ° C.) while being solvent-free.
  • the underfill material according to the present embodiment is suitably used as a capillary underfill material. That is, the underfill material can be infiltrated into the gap between the substrate 3 and the semiconductor chip 2 by utilizing the capillary phenomenon as described later.
  • the underfill material after infiltration is heated and hardened to become the sealing material 1 (see FIG. 1).
  • FIG. 1 shows the semiconductor package 10.
  • the semiconductor package 10 includes a substrate 3, a semiconductor chip 2 (IC chip), and a sealing material 1.
  • the semiconductor chip 2 is mounted face-down on the substrate 3.
  • the semiconductor chip 2 is electrically connected to the pad 5 of the substrate 3 via the bump 4.
  • Solder resists 7 are provided on both sides of the substrate 3. Through holes 6 are formed in the thickness direction of the substrate 3.
  • the sealing material 1 seals a gap between the substrate 3 and the semiconductor chip 2.
  • the sealing material 1 is a cured product of the underfill material. Since the underfill material contains the above-mentioned epoxy resin composition, it is easy to penetrate into the gap (gap) between the substrate 3 and the semiconductor chip 2 by utilizing the capillary phenomenon.
  • the glass transition temperature (Tg) of the sealing material 1 is high. Further, since the storage elastic modulus of the sealing material 1 is within an appropriate range, the deterioration of the followability to the displacement is suppressed. Further, the coefficient of thermal expansion of the sealing material 1 is low. As a result, the decrease in followability to displacement is further suppressed. Further, the encapsulant 1 tends to form a highly oriented high thermal conductive region (focal conic domain) of the mesogen skeleton-containing epoxy resin (A). Therefore, the thermal conductivity of the sealing material 1 is improved. As a result, the heat generated from the semiconductor chip 2 can be efficiently dissipated from the sealing material 1 to the substrate 3 and the like. Therefore, the reliability of the semiconductor package 10 can be improved.
  • Epoxy resin composition (1) Raw materials The raw materials for the epoxy resin composition are as follows.
  • Degree 0.95 -Inorganic filler 4 ⁇ -alumina surface-treated with N-phenyl- ⁇ -aminopropyltrimethoxysilane (2.3 wt%), true spherical shape, average particle size 0.4 ⁇ m, ⁇ crystallization rate 85%, average circular shape.
  • ⁇ Other (E)> -Coupling agent silane coupling agent: Shin-Etsu Chemical Industry Co., Ltd., trade name "KBM-403", ⁇ -glycidoxypropyltrimethoxysilane-Dispersant: Big Chemie Japan, trade name "DISPERBYK-111” , A phosphate ester compound of a block copolymer of ethylene glycol and polycaprolactone, a dispersant having phosphate groups at both ends of the copolymer, acid value 129 mgKOH / g. -Curing accelerator: Aluminum organic compound (aluminum tris (acetylacetone)).
  • the thermal diffusivity a (m 2 / s) of the test piece was measured using a xenon flash analyzer (manufactured by NETZSCH, model "NanoFlash LFA447").
  • the density ⁇ (kg / m 3 ) of the test piece at 25 ° C. was measured by the Archimedes method.
  • the specific heat c (J / (kg ⁇ K)) of the test piece was measured by the DSC method.
  • Thermal conductivity k (W / (m ⁇ K)) density ⁇ (kg / m 3 ) ⁇ thermal diffusivity a (m 2 / s) ⁇ specific heat c (J / (kg ⁇ K))
  • Dynamic viscoelasticity using a viscoelastic spectrometer (manufactured by SII Nanotechnology Co., Ltd., model "DMS7100") under the conditions of bending mode 10 Hz, heating rate 2 ° C / min, and temperature range -60 ° C to 260 ° C. Measurement (DMA) was performed to determine the glass transition temperature (Tg).
  • thermomechanical analysis of the above test piece using a thermomechanical analyzer (manufactured by Seiko Instruments Co., Ltd., model "TMA / SS-6000") under the conditions of a heating rate of 5 ° C / min and a temperature range of -60 ° C to 260 ° C.
  • the linear expansion coefficient ( ⁇ 1 (30 to 50 ° C.)) was calculated.
  • the above test piece was subjected to a three-point bending test using a universal tensile compression tester at room temperature (25 ° C), and the flexural modulus was measured.
  • the measurement conditions were a test speed of 2 mm / min and a distance between fulcrums: 48 mm. If the flexural modulus is 6 GPa or more and 12 GPa or less, it can be said that the storage elastic modulus is within an appropriate range.

Abstract

This epoxy resin composition comprises a mesogenic framework-containing epoxy resin (A), a liquid-state epoxy resin (B) having a viscosity of 1,500 mPa·s or lower at 25°C, a hardener (C), and an inorganic filler (D).

Description

エポキシ樹脂組成物、及びアンダーフィル材Epoxy resin composition and underfill material
 本開示は、一般にエポキシ樹脂組成物、及びアンダーフィル材に関し、より詳細には液状エポキシ樹脂を含有するエポキシ樹脂組成物、及びアンダーフィル材に関する。 The present disclosure relates to an epoxy resin composition and an underfill material in general, and more particularly to an epoxy resin composition containing a liquid epoxy resin and an underfill material.
 近年、半導体実装用のアンダーフィル材には、低熱膨張性、高耐熱性(高Tg)、適度な範囲の貯蔵弾性率、高浸入性に加えて、高熱伝導性が求められている。 In recent years, underfill materials for semiconductor mounting have been required to have high thermal conductivity in addition to low thermal expansion, high heat resistance (high Tg), an appropriate range of storage elastic modulus, and high penetration.
 従来、アンダーフィル材に汎用されている主剤としては、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂等の液状エポキシ樹脂が知られている。 Conventionally, liquid epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin are known as main agents widely used for underfill materials.
 しかしながら、これらの液状エポキシ樹脂の硬化物は熱伝導率が低い。そこで、高熱伝導性の無機フィラーを充填することが検討されているが、このような無機フィラーを高充填するにつれて、アンダーフィル材の流動性が損なわれるという問題があった。 However, the cured products of these liquid epoxy resins have low thermal conductivity. Therefore, it has been studied to fill with an inorganic filler having high thermal conductivity, but there is a problem that the fluidity of the underfill material is impaired as the inorganic filler is filled with high heat.
 一方、メソゲンエポキシ樹脂とα-アルミナとを組み合わせることで、メソゲンエポキシ樹脂の配向が促進されて、メソゲンエポキシ樹脂とα-アルミナとを含む硬化物の熱伝導率が上がることが報告されている(例えば、非特許文献1参照)。 On the other hand, it has been reported that the combination of the mesogen epoxy resin and α-alumina promotes the orientation of the mesogen epoxy resin and increases the thermal conductivity of the cured product containing the mesogen epoxy resin and α-alumina (). For example, see Non-Patent Document 1).
 ここで、メソゲンエポキシ樹脂は25℃で固体である。そのため、メソゲンエポキシ樹脂を溶剤に溶かす場合には、プリプレグ及び積層板等の用途として使用することができる。 Here, the mesogen epoxy resin is solid at 25 ° C. Therefore, when the mesogen epoxy resin is dissolved in a solvent, it can be used as a prepreg, a laminated board, or the like.
 しかしながら、無溶剤のアンダーフィル材としてメソゲンエポキシ樹脂をそのまま使用することはできない。 However, the mesogen epoxy resin cannot be used as it is as a solvent-free underfill material.
 またメソゲンエポキシ樹脂と液状エポキシ樹脂とを混合した事例も報告されているが(例えば、特許文献1参照)、半導体実装用のアンダーフィル材として必要な特性(例えば、低熱膨張性、高耐熱性(高Tg)、適度な範囲の貯蔵弾性率、高浸入性、及び高熱伝導性等)を有するものではなかった。 In addition, a case where a mesogen epoxy resin and a liquid epoxy resin are mixed has been reported (for example, see Patent Document 1), but the characteristics required as an underfill material for semiconductor mounting (for example, low thermal expansion and high heat resistance (for example). It did not have high Tg), moderate range of storage elastic modulus, high permeability, high thermal conductivity, etc.).
特開2013-112694号公報Japanese Unexamined Patent Publication No. 2013-11264
 本開示の目的は、アンダーフィル材に求められる性能を向上させることができるエポキシ樹脂組成物、及びアンダーフィル材を提供することにある。 An object of the present disclosure is to provide an epoxy resin composition and an underfill material that can improve the performance required for the underfill material.
 本開示の一態様に係るエポキシ樹脂組成物は、メソゲン骨格含有エポキシ樹脂(A)と、25℃における粘度が1500mPa・s以下である液状エポキシ樹脂(B)と、硬化剤(C)と、無機充填材(D)と、を含有する。 The epoxy resin composition according to one aspect of the present disclosure includes a mesogen skeleton-containing epoxy resin (A), a liquid epoxy resin (B) having a viscosity at 25 ° C. of 1500 mPa · s or less, a curing agent (C), and an inorganic substance. Contains the filler (D).
 本開示の一態様に係るアンダーフィル材は、前記エポキシ樹脂組成物を含む。 The underfill material according to one aspect of the present disclosure includes the epoxy resin composition.
図1は、本開示の一実施形態に係る半導体パッケージを示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a semiconductor package according to an embodiment of the present disclosure.
 1.概要
 本実施形態に係るエポキシ樹脂組成物は、メソゲン骨格含有エポキシ樹脂(A)と、液状エポキシ樹脂(B)と、硬化剤(C)と、無機充填材(D)と、を含有する。液状エポキシ樹脂(B)の25℃における粘度は1500mPa・s以下である。
1. 1. Outline The epoxy resin composition according to the present embodiment contains a mesogen skeleton-containing epoxy resin (A), a liquid epoxy resin (B), a curing agent (C), and an inorganic filler (D). The viscosity of the liquid epoxy resin (B) at 25 ° C. is 1500 mPa · s or less.
 メソゲン骨格含有エポキシ樹脂(A)は、室温(25℃)において固体であるが、液状エポキシ樹脂(B)に溶解させることにより、室温においてエポキシ樹脂組成物を液状にすることができる。これにより、浸入性を向上させることができる。さらにメソゲン骨格含有エポキシ樹脂(A)が配向することで、高熱伝導領域を形成しやすくなる。これにより、熱伝導性を向上させることもできる。 The mesogen skeleton-containing epoxy resin (A) is solid at room temperature (25 ° C.), but the epoxy resin composition can be liquefied at room temperature by dissolving it in the liquid epoxy resin (B). Thereby, the permeability can be improved. Further, the orientation of the mesogen skeleton-containing epoxy resin (A) facilitates the formation of a high thermal conductive region. Thereby, the thermal conductivity can be improved.
 したがって、本実施形態によれば、アンダーフィル材に求められる性能を向上させることができる。その他の性能については後述する。 Therefore, according to the present embodiment, the performance required for the underfill material can be improved. Other performance will be described later.
 2.詳細
 (1)エポキシ樹脂組成物
 本実施形態に係るエポキシ樹脂組成物は、室温(25℃)において、無溶剤でありながら、液状をなしている。したがって、エポキシ樹脂組成物は、半導体実装用のアンダーフィル材(液状封止材)として好適に用いられる。
2. 2. Details (1) Epoxy resin composition The epoxy resin composition according to the present embodiment is in a liquid state at room temperature (25 ° C.) while being solvent-free. Therefore, the epoxy resin composition is suitably used as an underfill material (liquid encapsulant) for semiconductor mounting.
 エポキシ樹脂組成物は、メソゲン骨格含有エポキシ樹脂(A)と、液状エポキシ樹脂(B)と、硬化剤(C)と、無機充填材(D)と、を含有する。エポキシ樹脂組成物は、その他(E)を更に含有してもよい。以下、エポキシ樹脂組成物の構成成分について説明する。 The epoxy resin composition contains a mesogen skeleton-containing epoxy resin (A), a liquid epoxy resin (B), a curing agent (C), and an inorganic filler (D). The epoxy resin composition may further contain other (E). Hereinafter, the constituent components of the epoxy resin composition will be described.
 <メソゲン骨格含有エポキシ樹脂(A)>
 メソゲン骨格含有エポキシ樹脂(A)は、メソゲン骨格を有するエポキシ樹脂である。エポキシ樹脂組成物がメソゲン骨格含有エポキシ樹脂(A)を含有することで、エポキシ樹脂組成物が良好な流動性を有しやすくなる。そのため、エポキシ樹脂組成物が高い成形性を有しやすくなる。
<Epoxy resin (A) containing mesogen skeleton>
The mesogen skeleton-containing epoxy resin (A) is an epoxy resin having a mesogen skeleton. When the epoxy resin composition contains the mesogen skeleton-containing epoxy resin (A), the epoxy resin composition tends to have good fluidity. Therefore, the epoxy resin composition tends to have high moldability.
 メソゲン骨格とは、結晶性を発現させることができる分子構造をいう。そのため、メソゲン骨格含有エポキシ樹脂(A)は、自己配列しやすい。好ましくは、メソゲン骨格は、安息香酸フェニル骨格、ビフェニル骨格、ベンゾフェノン骨格、フェニルエーテル骨格、ベンズアニリド骨格、スチルベン骨格、ジアゾベンゼン骨格及びベンジリデンアニリン骨格、並びにこれらの骨格に置換基が結合した誘導体の骨格からなる群より選ばれた少なくとも1種の骨格を含む。これにより、エポキシ樹脂組成物の流動性が特に高まりやすい。より好ましくは、上記に列挙した骨格(すなわち、安息香酸フェニル骨格、ビフェニル骨格、ベンゾフェノン骨格、フェニルエーテル骨格、ベンズアニリド骨格、スチルベン骨格、ジアゾベンゼン骨格及びベンジリデンアニリン骨格)には置換基が結合していない。 The mesogen skeleton is a molecular structure capable of expressing crystallinity. Therefore, the mesogen skeleton-containing epoxy resin (A) is easy to self-arrange. Preferably, the mesogen skeleton is from a phenyl benzoate skeleton, a biphenyl skeleton, a benzophenone skeleton, a phenyl ether skeleton, a benzanilide skeleton, a stillben skeleton, a diazobenzene skeleton and a benzylidene aniline skeleton, and a skeleton of a derivative having a substituent bonded to these skeletons. Contains at least one skeleton selected from the group. This tends to increase the fluidity of the epoxy resin composition. More preferably, no substituents are attached to the skeletons listed above (ie, phenylbenzoate skeleton, biphenyl skeleton, benzophenone skeleton, phenyl ether skeleton, benzanilide skeleton, stilbene skeleton, diazobenzene skeleton and benzylidene aniline skeleton). ..
 ここで、安息香酸フェニル骨格は、例えば、下記式(I)に示す構造から任意の2つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Here, the phenylbenzoate skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (I), or a structure in which a substituent is bonded to this structure.
 またビフェニル骨格は、例えば、下記式(II)に示す構造から任意の2つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Further, the biphenyl skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (II), or a structure in which a substituent is bonded to this structure.
 またベンゾフェノン骨格は、例えば、下記式(III)に示す構造から任意の2つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Further, the benzophenone skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (III), or a structure in which a substituent is bonded to this structure.
 またフェニルエーテル骨格は、例えば、下記式(IV)に示す構造から任意の2つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Further, the phenyl ether skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (IV) or a structure in which a substituent is bonded to this structure.
 またベンズアニリド骨格は、例えば、下記式(V)に示す構造から任意の2つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Further, the benzanilide skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (V), or a structure in which a substituent is bonded to this structure.
 またスチルベン骨格は、例えば、下記式(VI)に示す構造から任意の2つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Further, the stilbene skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (VI), or a structure in which a substituent is bonded to this structure.
 またジアゾベンゼン骨格は、例えば、下記式(VII)に示す構造から任意の2つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Further, the diazobenzene skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (VII), or a structure in which a substituent is bonded to this structure.
 またベンジリデンアニリン骨格は、例えば下記式(VIII)に示す構造から任意の二つの水素を除いた構造又はこの構造に置換基を結合した構造を有する。 Further, the benzylidene aniline skeleton has, for example, a structure in which any two hydrogens are removed from the structure represented by the following formula (VIII), or a structure in which a substituent is bonded to this structure.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 メソゲン骨格含有エポキシ樹脂(A)は、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ヒドロキノンと4,4’-ジヒドロキシビフェニルとの混合物と、エピクロロヒドリンとを反応させて合成される変性エポキシ樹脂、及びフェニルベンゾエート型エポキシ樹脂からなる群より選ばれた少なくとも1種を含有する。 The mesogen skeleton-containing epoxy resin (A) is, for example, a modified epoxy synthesized by reacting a biphenyl type epoxy resin, a stilbene type epoxy resin, a mixture of hydroquinone and 4,4'-dihydroxybiphenyl with epichlorohydrin. It contains at least one selected from the group consisting of a resin and a phenylbenzoate type epoxy resin.
 メソゲン骨格含有エポキシ樹脂(A)は、ヒドロキノンと4,4’-ジヒドロキシビフェニルとの混合物と、エピクロロヒドリンとを反応させて合成される変性エポキシ樹脂を含有することが好ましい。 The mesogen skeleton-containing epoxy resin (A) preferably contains a modified epoxy resin synthesized by reacting a mixture of hydroquinone and 4,4'-dihydroxybiphenyl with epichlorohydrin.
 メソゲン骨格含有エポキシ樹脂(A)は、次の方法で合成されるエポキシ樹脂(a12)を含有することも好ましい。まず、下記式(1)に示す化合物と、下記式(2)で示される化合物とを反応させて、フェノール化合物を得る。このフェノール化合物にアルカリ金属水酸化物の存在下、エピハロヒドリンと反応させる。これにより得られた生成物を150℃以上に加熱することで生成物中の結晶成分を融解した後に、50℃以下にて急冷する。これによりエポキシ樹脂(a12)が得られる。 The mesogen skeleton-containing epoxy resin (A) also preferably contains the epoxy resin (a12) synthesized by the following method. First, the compound represented by the following formula (1) is reacted with the compound represented by the following formula (2) to obtain a phenol compound. This phenol compound is reacted with epihalohydrin in the presence of an alkali metal hydroxide. The product thus obtained is heated to 150 ° C. or higher to melt the crystalline components in the product, and then rapidly cooled at 50 ° C. or lower. As a result, the epoxy resin (a12) is obtained.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)中、複数のRの各々は水素原子、炭素数1~10の置換又は非置換のアルキル基、炭素数6~10の置換又は非置換のアリール基、水酸基、ニトロ基又は炭素数1~10の置換又は非置換のアルコキシ基である。lはRの数を表し、0~4の整数である。 In formula (1), each of the plurality of R 1s is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group or a carbon. It is a substituted or unsubstituted alkoxy group of the number 1 to 10. l represents the number of R1 and is an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(2)において、R(1分子中にRが複数ある場合には複数のRの各々)は、水素原子、炭素数1~10の置換又は非置換のアルキル基、炭素数6~10の置換又は非置換のアリール基、水酸基、ニトロ基、ホルミル基、アリル基又は炭素数1~10の置換又は非置換のアルコキシ基である。kはRの数を表し、0~4の整数である。 In the formula (2), R 2 (each of a plurality of R 2s when there are a plurality of R 2s in one molecule) is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and 6 carbon atoms. It is a substituted or unsubstituted aryl group of ~ 10, a hydroxyl group, a nitro group, a formyl group, an allyl group or a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms. k represents the number of R2 and is an integer of 0 to 4.
 メソゲン骨格含有エポキシ樹脂(A)は、結晶に近い構造を持つことができるので、フォノン(音子)の散乱を抑制し得る。このように、フォノンの伝わりを阻害しない構造を形成することが可能になるので、エポキシ樹脂組成物の硬化物において熱伝導性を向上させることができる。 Since the mesogen skeleton-containing epoxy resin (A) can have a structure close to a crystal, scattering of phonons (sounds) can be suppressed. As described above, since it is possible to form a structure that does not hinder the transmission of phonons, it is possible to improve the thermal conductivity in the cured product of the epoxy resin composition.
 メソゲン骨格含有エポキシ樹脂(A)はオリゴマーであり、このオリゴマーには分子量分布がある。このように、メソゲン骨格含有エポキシ樹脂(A)には分子量分布があるため、メソゲン骨格含有エポキシ樹脂(A)は、液状エポキシ樹脂(B)と相溶しやすいと推定される。メソゲン骨格含有エポキシ樹脂(A)は、室温(25℃)において固体であるが、加熱して溶かすと液晶状をなす。 The mesogen skeleton-containing epoxy resin (A) is an oligomer, and this oligomer has a molecular weight distribution. As described above, since the mesogen skeleton-containing epoxy resin (A) has a molecular weight distribution, it is presumed that the mesogen skeleton-containing epoxy resin (A) is easily compatible with the liquid epoxy resin (B). The mesogen skeleton-containing epoxy resin (A) is solid at room temperature (25 ° C.), but becomes liquid crystal when melted by heating.
 好ましくは、メソゲン骨格含有エポキシ樹脂(A)の軟化点は40℃以上70℃以下である。これにより、メソゲン骨格含有エポキシ樹脂(A)と液状エポキシ樹脂(B)との相溶性を更に向上させることができる。メソゲン骨格含有エポキシ樹脂(A)の軟化点が70℃以下であることで、エポキシ樹脂組成物を70℃超の温度で加熱したときに、メソゲン骨格含有エポキシ樹脂(A)の結晶の析出を抑制することができる。これにより、エポキシ樹脂組成物の浸入性が良好になる。ここで、本明細書において、浸入性とは、エポキシ樹脂組成物をアンダーフィル材として使用する場合に、半導体チップ2と基板3との間の隙間(ギャップ)への浸入しやすい性質を意味する(図1参照)。 Preferably, the softening point of the mesogen skeleton-containing epoxy resin (A) is 40 ° C. or higher and 70 ° C. or lower. Thereby, the compatibility between the mesogen skeleton-containing epoxy resin (A) and the liquid epoxy resin (B) can be further improved. Since the softening point of the mesogen skeleton-containing epoxy resin (A) is 70 ° C. or lower, precipitation of crystals of the mesogen skeleton-containing epoxy resin (A) is suppressed when the epoxy resin composition is heated at a temperature of more than 70 ° C. can do. This improves the permeability of the epoxy resin composition. Here, in the present specification, the penetrability means a property that when the epoxy resin composition is used as an underfill material, it easily penetrates into a gap (gap) between the semiconductor chip 2 and the substrate 3. (See FIG. 1).
 好ましくは、メソゲン骨格含有エポキシ樹脂(A)及び液状エポキシ樹脂(B)の合計100質量部に対して、メソゲン骨格含有エポキシ樹脂(A)の含有量が10質量部以上25質量部以下である。メソゲン骨格含有エポキシ樹脂(A)の含有量が10質量部以上であることで、熱伝導性を向上させることができる。すなわち、エポキシ樹脂組成物の硬化物において、メソゲン骨格含有エポキシ樹脂(A)の配向性の高い高熱伝導領域(フォーカルコニックドメイン)が形成されやすくなる。一方、メソゲン骨格含有エポキシ樹脂(A)の含有量が25質量部以下であることで、液状エポキシ樹脂(B)との相溶性を向上させることができる。すなわち、エポキシ樹脂組成物において、メソゲン骨格含有エポキシ樹脂(A)の結晶の析出を抑制しやすくなる。 Preferably, the content of the mesogen skeleton-containing epoxy resin (A) is 10 parts by mass or more and 25 parts by mass or less with respect to a total of 100 parts by mass of the mesogen skeleton-containing epoxy resin (A) and the liquid epoxy resin (B). When the content of the mesogen skeleton-containing epoxy resin (A) is 10 parts by mass or more, the thermal conductivity can be improved. That is, in the cured product of the epoxy resin composition, a highly oriented high thermal conduction region (focal conic domain) of the mesogen skeleton-containing epoxy resin (A) is likely to be formed. On the other hand, when the content of the mesogen skeleton-containing epoxy resin (A) is 25 parts by mass or less, the compatibility with the liquid epoxy resin (B) can be improved. That is, in the epoxy resin composition, it becomes easy to suppress the precipitation of crystals of the mesogen skeleton-containing epoxy resin (A).
 メソゲン骨格含有エポキシ樹脂(A)の150℃におけるICI溶融粘度は、好ましくは0.03Pa・s以上0.10Pa・s以下である。ICI溶融粘度は、例えば、円錐平板(コーンプレート)式粘度計を用いて測定することができる。 The ICI melt viscosity of the mesogen skeleton-containing epoxy resin (A) at 150 ° C. is preferably 0.03 Pa · s or more and 0.10 Pa · s or less. The ICI melt viscosity can be measured, for example, using a conical plate (cone plate) viscometer.
 メソゲン骨格含有エポキシ樹脂(A)のエポキシ当量は、好ましくは210g/eq以上240g/eq以下である。 The epoxy equivalent of the mesogen skeleton-containing epoxy resin (A) is preferably 210 g / eq or more and 240 g / eq or less.
 <液状エポキシ樹脂(B)>
 液状エポキシ樹脂(B)は、室温(25℃)において、液状をなすエポキシ樹脂である。具体的には、液状エポキシ樹脂(B)は、25℃における粘度が1500mPa・s以下である。このように、液状エポキシ樹脂(B)としては、室温で液状であれば特に限定されないが、脂環式エポキシ樹脂よりも、芳香環を持つエポキシ樹脂(芳香環含有エポキシ樹脂)が好ましい。芳香環含有エポキシ樹脂は、脂環式エポキシ樹脂に比べて、メソゲン骨格含有エポキシ樹脂(A)と相溶しやすいからである。芳香環含有エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールF型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びビスフェノールA型エポキシ樹脂等が挙げられる。グリシジルアミン型エポキシ樹脂は、エポキシ樹脂組成物の硬化物のガラス転移温度(Tg)を高めるのに有効である。
<Liquid epoxy resin (B)>
The liquid epoxy resin (B) is an epoxy resin that forms a liquid at room temperature (25 ° C.). Specifically, the liquid epoxy resin (B) has a viscosity at 25 ° C. of 1500 mPa · s or less. As described above, the liquid epoxy resin (B) is not particularly limited as long as it is liquid at room temperature, but an epoxy resin having an aromatic ring (aromatic ring-containing epoxy resin) is preferable to the alicyclic epoxy resin. This is because the aromatic ring-containing epoxy resin is more easily compatible with the mesogen skeleton-containing epoxy resin (A) than the alicyclic epoxy resin. The aromatic ring-containing epoxy resin is not particularly limited, and examples thereof include a bisphenol F type epoxy resin, a glycidylamine type epoxy resin, and a bisphenol A type epoxy resin. The glycidylamine type epoxy resin is effective in increasing the glass transition temperature (Tg) of the cured product of the epoxy resin composition.
 液状エポキシ樹脂(B)のエポキシ当量は、好ましくは90g/eq以上170g/eq以下である。特にビスフェノールF型エポキシ樹脂のエポキシ当量は、好ましくは150g/eq以上170g/eq以下である。またグリシジルアミン型エポキシ樹脂のエポキシ当量は、好ましくは90g/eq以上100g/eq以下である。 The epoxy equivalent of the liquid epoxy resin (B) is preferably 90 g / eq or more and 170 g / eq or less. In particular, the epoxy equivalent of the bisphenol F type epoxy resin is preferably 150 g / eq or more and 170 g / eq or less. The epoxy equivalent of the glycidylamine type epoxy resin is preferably 90 g / eq or more and 100 g / eq or less.
 好ましくは、液状エポキシ樹脂(B)が、ビスフェノールF型エポキシ樹脂及びグリシジルアミン型エポキシ樹脂の少なくともいずれかを含む。これにより、液状エポキシ樹脂(B)とメソゲン骨格含有エポキシ樹脂(A)との相溶性を更に向上させることができる。またメソゲン骨格含有エポキシ樹脂(A)の結晶の析出を更に抑制することができる。 Preferably, the liquid epoxy resin (B) contains at least one of a bisphenol F type epoxy resin and a glycidylamine type epoxy resin. Thereby, the compatibility between the liquid epoxy resin (B) and the mesogen skeleton-containing epoxy resin (A) can be further improved. Further, the precipitation of crystals of the mesogen skeleton-containing epoxy resin (A) can be further suppressed.
 好ましくは、メソゲン骨格含有エポキシ樹脂(A)及び液状エポキシ樹脂(B)の合計100質量部に対して、液状エポキシ樹脂(B)の含有量が75質量部以上90質量部以下である。液状エポキシ樹脂(B)の含有量が75質量部以上であることで、メソゲン骨格含有エポキシ樹脂(A)の結晶の析出を抑制しやすくなる。一方、液状エポキシ樹脂(B)の含有量が90質量部以下であることで、熱伝導性の低下を抑制することができる。 The content of the liquid epoxy resin (B) is preferably 75 parts by mass or more and 90 parts by mass or less with respect to a total of 100 parts by mass of the mesogen skeleton-containing epoxy resin (A) and the liquid epoxy resin (B). When the content of the liquid epoxy resin (B) is 75 parts by mass or more, it becomes easy to suppress the precipitation of crystals of the mesogen skeleton-containing epoxy resin (A). On the other hand, when the content of the liquid epoxy resin (B) is 90 parts by mass or less, the decrease in thermal conductivity can be suppressed.
 <硬化剤(C)>
 硬化剤(C)としては、特に限定されないが、例えば、アミン、酸無水物、及びフェノールノボラック樹脂等が挙げられる。
<Curing agent (C)>
The curing agent (C) is not particularly limited, and examples thereof include amines, acid anhydrides, and phenol novolac resins.
 硬化剤(C)は、好ましくは芳香族アミン、より好ましくは芳香族ジアミンを含む。これにより、エポキシ樹脂組成物の硬化物のガラス転移温度(Tg)を高めることができる。さらにエポキシ樹脂組成物の硬化物の熱伝導性を向上させることができる。すなわち、芳香族アミンによって、エポキシ樹脂組成物の硬化物において、メソゲン骨格含有エポキシ樹脂(A)の配向性の高い高熱伝導領域が形成されやすくなる。特に芳香族ジアミンは、メソゲン骨格含有エポキシ樹脂(A)を配向させやすい。 The curing agent (C) preferably contains an aromatic amine, more preferably an aromatic diamine. This makes it possible to increase the glass transition temperature (Tg) of the cured product of the epoxy resin composition. Further, the thermal conductivity of the cured product of the epoxy resin composition can be improved. That is, the aromatic amine facilitates the formation of a highly oriented high thermal conduction region of the mesogen skeleton-containing epoxy resin (A) in the cured product of the epoxy resin composition. In particular, the aromatic diamine tends to orient the mesogen skeleton-containing epoxy resin (A).
 <無機充填材(D)>
 無機充填材(D)は、エポキシ樹脂組成物の硬化物の熱膨張係数、熱伝導率、及び機械強度などを調整することができる。具体的には、無機充填材(D)がエポキシ樹脂組成物に含有されていることで、エポキシ樹脂組成物の硬化物の熱膨張係数を下げることができる。さらにエポキシ樹脂組成物の硬化物の熱伝導率を上げることができる。
<Inorganic filler (D)>
The inorganic filler (D) can adjust the coefficient of thermal expansion, thermal conductivity, mechanical strength, and the like of the cured product of the epoxy resin composition. Specifically, since the inorganic filler (D) is contained in the epoxy resin composition, the coefficient of thermal expansion of the cured product of the epoxy resin composition can be lowered. Further, the thermal conductivity of the cured product of the epoxy resin composition can be increased.
 無機充填材(D)としては、特に限定されないが、例えば、アルミナ、溶融シリカ、及び結晶性シリカ等が挙げられる。 The inorganic filler (D) is not particularly limited, and examples thereof include alumina, molten silica, and crystalline silica.
 好ましくは、無機充填材(D)が、α-アルミナを含む。ここで、本実施形態のα-アルミナとは、主結晶相がα相であるアルミナを意味する。主結晶相は、CuKα特性X線回折パターンに基づいて決定される。一般に、アルミナの結晶相として知られている、α相、θ相、δ相、γ相及びκ相は、CuKα特性X線回折パターンにおいて、それぞれ下記の位置にピークを有する。下記の位置に現れるピークのうち、最も強度が大きいピークに相当する相を主結晶相とする。 Preferably, the inorganic filler (D) contains α-alumina. Here, the α-alumina of the present embodiment means alumina whose main crystal phase is the α phase. The main crystal phase is determined based on the CuKα characteristic X-ray diffraction pattern. Generally, the α phase, the θ phase, the δ phase, the γ phase, and the κ phase, which are known as the crystal phases of alumina, have peaks at the following positions in the CuKα characteristic X-ray diffraction pattern. Among the peaks appearing at the following positions, the phase corresponding to the peak having the highest intensity is used as the main crystal phase.
 α相:2θ=57.5°
 θ相:2θ=32.7°
 δ相:2θ=36.5°
 γ相:2θ=45.4°
 κ相:2θ=42.9°。
α phase: 2θ = 57.5 °
θ phase: 2θ = 32.7 °
δ phase: 2θ = 36.5 °
γ phase: 2θ = 45.4 °
κ phase: 2θ = 42.9 °.
 より好ましくは、α-アルミナのα結晶化率が40%以上90%以下、かつ平均円形度が0.80以上0.96以下である。このようなα-アルミナを無機充填材(D)が含むことにより、エポキシ樹脂組成物の硬化物の熱伝導性と、エポキシ樹脂組成物の流動性とを両立させることができる。すなわち、α-アルミナのα結晶化率が40%以上90%以下であることで、α-アルミナを中心としてメソゲン骨格含有エポキシ樹脂(A)が配向し、高熱伝導領域を形成しやすくなる。これにより、エポキシ樹脂組成物の硬化物の熱伝導性を向上させることができる。一方、α-アルミナの平均円形度が0.80以上0.96以下であることで、α-アルミナの粒子が真球に近くなり、液状のエポキシ樹脂組成物の流動性を向上させることができる。 More preferably, the α crystallization rate of α-alumina is 40% or more and 90% or less, and the average circularity is 0.80 or more and 0.96 or less. By including such α-alumina in the inorganic filler (D), it is possible to achieve both the thermal conductivity of the cured product of the epoxy resin composition and the fluidity of the epoxy resin composition. That is, when the α crystallization rate of α-alumina is 40% or more and 90% or less, the mesogen skeleton-containing epoxy resin (A) is oriented around α-alumina, and it becomes easy to form a high thermal conduction region. This makes it possible to improve the thermal conductivity of the cured product of the epoxy resin composition. On the other hand, when the average circularity of α-alumina is 0.80 or more and 0.96 or less, the particles of α-alumina become close to a true sphere, and the fluidity of the liquid epoxy resin composition can be improved. ..
 上記の平均円形度は、円形度の平均値である。すなわち、所定数の円形度を測定し、これらの測定値を平均して得られた数値が平均円形度である。円形度の測定数は、多いほど好ましく、例えば、30個以上である。 The above average circularity is the average value of the circularity. That is, a predetermined number of circularities are measured, and a numerical value obtained by averaging these measured values is the average circularity. The larger the number of measurements of the circularity, the more preferable, for example, 30 or more.
 上記の円形度は、1つの粒子の面積及びその周囲長を用いて、以下の式(1)により算出することができる。円形度が1に近いほど真円に近くなる。 The above circularity can be calculated by the following formula (1) using the area of one particle and its peripheral length. The closer the circularity is to 1, the closer to a perfect circle.
 式(1):円形度=4π×面積/(周囲長)(ただし、0<円形度≦1)
 具体的には、マイクロスコープ又は走査型電子顕微鏡(SEM)を用いて粒子を観察することにより、1つの粒子の面積(1つの粒子に含まれる画素数)及びその周囲長を求める。マイクロスコープとしては、特に限定されないが、例えば、株式会社キーエンス製、型式「VHX-6000」等が挙げられる。走査型電子顕微鏡としては、特に限定されないが、例えば、日本電子株式会社製、型式「JSM-7900F」(加速電圧:5kV)等が挙げられる。
Equation (1): Circularity = 4π x area / (perimeter) 2 (where 0 <circularity ≤ 1)
Specifically, the area of one particle (the number of pixels contained in one particle) and its peripheral length are obtained by observing the particles using a microscope or a scanning electron microscope (SEM). The microscope is not particularly limited, and examples thereof include a model "VHX-6000" manufactured by KEYENCE CORPORATION. The scanning electron microscope is not particularly limited, and examples thereof include a model "JSM-7900F" (acceleration voltage: 5 kV) manufactured by JEOL Ltd.
 粒子の観察の結果、1つの粒子の面積が30画素未満の場合には、この画素数を式(1)中の「面積」とする。式(1)中の「周囲長」は、境界画素数である。境界画素は、1つの粒子の輪郭線を含む画素である。 As a result of observing the particles, if the area of one particle is less than 30 pixels, this number of pixels is defined as the "area" in the equation (1). The "perimeter" in the equation (1) is the number of boundary pixels. Boundary pixels are pixels that include the contour lines of one particle.
 一方、1つの粒子の面積が30画素以上の場合には、この画素数から境界画素数の半分を差し引いた残りの画素数を式(1)中の「面積」とする。式(1)中の「周囲長」は、境界画素数である。 On the other hand, when the area of one particle is 30 pixels or more, the remaining number of pixels obtained by subtracting half of the number of boundary pixels from this number of pixels is defined as the "area" in the equation (1). The "perimeter" in the equation (1) is the number of boundary pixels.
 なお、上記の平均円形度は、公知の画像解析装置を用いて算出してもよい。すなわち、CCD等で粒子を撮像し、得られた粒子画像を画像解析装置により適宜解析することにより、上記の平均円形度を算出することができる。 The above average circularity may be calculated using a known image analysis device. That is, the above average circularity can be calculated by imaging particles with a CCD or the like and appropriately analyzing the obtained particle images with an image analysis device.
 無機充填材(D)の最大粒子径は、好ましくは10μm以下、より好ましくは5μm以下である。これにより、エポキシ樹脂組成物に高浸入性を付与することができる。すなわち、エポキシ樹脂組成物をアンダーフィル材として使用する場合に、半導体チップ2と基板3との間の隙間(ギャップ)が狭くても浸入させやすくなる。 The maximum particle size of the inorganic filler (D) is preferably 10 μm or less, more preferably 5 μm or less. This makes it possible to impart high permeability to the epoxy resin composition. That is, when the epoxy resin composition is used as the underfill material, it is easy to penetrate even if the gap between the semiconductor chip 2 and the substrate 3 is narrow.
 好ましくは、無機充填材(D)の平均粒子径が0.1μm以上2.0μm以下である。無機充填材(D)の平均粒子径が0.1μm以上であることで、液状のエポキシ樹脂組成物の粘度の上昇を抑え、浸入性の低下を抑制することができる。また熱伝導性の低下も抑制することができる。一方、無機充填材(D)の平均粒子径が2.0μm以下であることで、エポキシ樹脂組成物をアンダーフィル材として使用する場合に、エポキシ樹脂組成物を硬化させる際の無機充填材(D)の沈降を抑制することができる。このように、無機充填材(D)の平均粒子径が0.1μm以上2.0μm以下であれば、エポキシ樹脂組成物の浸入性及び硬化物の熱伝導性を更に向上させることができる。フローマーク及びボイドの発生を抑制するためには、無機充填材(D)の平均粒子径は0.1μm以上0.5μm以下であることが好ましい。なお、本明細書において、平均粒子径とは、レーザー回折・散乱法により測定結果から得られる粒度分布から求められるメジアン径(D50)を意味する。 Preferably, the average particle size of the inorganic filler (D) is 0.1 μm or more and 2.0 μm or less. When the average particle size of the inorganic filler (D) is 0.1 μm or more, it is possible to suppress an increase in viscosity of the liquid epoxy resin composition and suppress a decrease in permeability. In addition, the decrease in thermal conductivity can be suppressed. On the other hand, since the average particle size of the inorganic filler (D) is 2.0 μm or less, when the epoxy resin composition is used as the underfill material, the inorganic filler (D) for curing the epoxy resin composition. ) Can be suppressed. As described above, when the average particle size of the inorganic filler (D) is 0.1 μm or more and 2.0 μm or less, the permeability of the epoxy resin composition and the thermal conductivity of the cured product can be further improved. In order to suppress the generation of flow marks and voids, the average particle size of the inorganic filler (D) is preferably 0.1 μm or more and 0.5 μm or less. In the present specification, the average particle diameter means the median diameter (D50) obtained from the particle size distribution obtained from the measurement results by the laser diffraction / scattering method.
 好ましくは、無機充填材(D)は、第1無機充填材と、第2無機充填材と、を含む。第1無機充填材の平均粒子径は、第2無機充填材の平均粒子径よりも大きい。第1無機充填材の平均粒子径は、例えば、1.0μm以上2.0μm以下である。第2無機充填材の平均粒子径は、例えば、0.1μm以上0.5μm以下である。好ましくは、第1無機充填材及び第2無機充填材の合計100質量部に対して、第1無機充填材の含有量は、60質量部以上80質量部以下である。これにより、液状のエポキシ樹脂組成物の粘度の上昇を抑えつつ、エポキシ樹脂組成物の硬化物における無機充填材(D)全体の充填率を高めることができる。 Preferably, the inorganic filler (D) contains a first inorganic filler and a second inorganic filler. The average particle size of the first inorganic filler is larger than the average particle size of the second inorganic filler. The average particle size of the first inorganic filler is, for example, 1.0 μm or more and 2.0 μm or less. The average particle size of the second inorganic filler is, for example, 0.1 μm or more and 0.5 μm or less. Preferably, the content of the first inorganic filler is 60 parts by mass or more and 80 parts by mass or less with respect to a total of 100 parts by mass of the first inorganic filler and the second inorganic filler. As a result, it is possible to increase the filling rate of the entire inorganic filler (D) in the cured product of the epoxy resin composition while suppressing the increase in the viscosity of the liquid epoxy resin composition.
 好ましくは、エポキシ樹脂組成物の全質量に対して、無機充填材(D)の含有量が50質量%以上85質量%以下である。無機充填材(D)の含有量が50質量%以上であることで、熱膨張率を低くすることができる。また熱伝導性を向上させることができる。さらに貯蔵弾性率を適度な範囲に収めることができる。一方、無機充填材(D)の含有量が85質量%以下であることで、流動性の低下を抑制することができる。また貯蔵弾性率が高くなり過ぎないようにすることができる。貯蔵弾性率が高すぎると、変位に対する追従性が低下し得る。この場合、応力が生じやすくなって、硬化後のアンダーフィル材(封止材1)にクラックが発生したり、封止材1と半導体チップ2及び基板3との剥離が生じやすくなったりするが、無機充填材(D)の含有量が85質量%以下であることで、変位に対する追従性の低下を抑制し得る。 Preferably, the content of the inorganic filler (D) is 50% by mass or more and 85% by mass or less with respect to the total mass of the epoxy resin composition. When the content of the inorganic filler (D) is 50% by mass or more, the thermal expansion rate can be lowered. Moreover, the thermal conductivity can be improved. Furthermore, the storage elastic modulus can be kept within an appropriate range. On the other hand, when the content of the inorganic filler (D) is 85% by mass or less, the decrease in fluidity can be suppressed. In addition, the storage elastic modulus can be prevented from becoming too high. If the storage modulus is too high, the followability to displacement may decrease. In this case, stress is likely to occur, cracks are likely to occur in the cured underfill material (sealing material 1), and peeling of the sealing material 1 from the semiconductor chip 2 and the substrate 3 is likely to occur. When the content of the inorganic filler (D) is 85% by mass or less, it is possible to suppress a decrease in followability to displacement.
 <その他(E)>
 その他(E)としては、特に限定されないが、例えば、カップリング剤、分散剤、及び硬化促進剤等が挙げられる。
<Other (E)>
The other (E) is not particularly limited, and examples thereof include a coupling agent, a dispersant, and a curing accelerator.
 エポキシ樹脂組成物がカップリング剤を含有することで、メソゲン骨格含有エポキシ樹脂(A)、液状エポキシ樹脂(B)及び硬化剤(C)と、無機充填材(D)との界面の濡れ及び接着性を改良することができる。カップリング剤としては、特に限定されないが、例えば、シランカップリング剤等が挙げられる。シランカップリング剤としては、特に限定されないが、例えば、N-フェニル-γ-アミノプロピルトリメトキシシラン、及びγ-グリシドキシプロピルトリメトキシシラン等が挙げられる。 When the epoxy resin composition contains a coupling agent, the interface between the mesogen skeleton-containing epoxy resin (A), the liquid epoxy resin (B) and the curing agent (C) and the inorganic filler (D) is wetted and adhered. The sex can be improved. The coupling agent is not particularly limited, and examples thereof include a silane coupling agent and the like. The silane coupling agent is not particularly limited, and examples thereof include N-phenyl-γ-aminopropyltrimethoxysilane and γ-glycidoxypropyltrimethoxysilane.
 カップリング剤の使用方法としては、特に限定されないが、例えば、直接処理法、及びインテグラルブレンド法等が挙げられる。直接処理法は、無機充填材(D)の前処理のことであり、具体的には、あらかじめカップリング剤で無機充填材(D)を表面処理しておくことである。インテグラルブレンド法は、エポキシ樹脂組成物の製造時にカップリング剤を添加する方法である。 The method of using the coupling agent is not particularly limited, and examples thereof include a direct treatment method and an integral blending method. The direct treatment method is a pretreatment of the inorganic filler (D), and specifically, the surface treatment of the inorganic filler (D) is performed in advance with a coupling agent. The integral blending method is a method of adding a coupling agent at the time of producing the epoxy resin composition.
 またエポキシ樹脂組成物が分散剤を含有することで、無機充填材(D)の分散性を向上させることができる。分散剤としては、特に限定されないが、例えば、リン酸ポリエステル系分散剤等が挙げられる。分散剤の酸価は、好ましくは110mgKOH/g以上140mgKOH/g以下である。 Further, since the epoxy resin composition contains a dispersant, the dispersibility of the inorganic filler (D) can be improved. The dispersant is not particularly limited, and examples thereof include polyester phosphate-based dispersants. The acid value of the dispersant is preferably 110 mgKOH / g or more and 140 mgKOH / g or less.
 またエポキシ樹脂組成物が硬化促進剤を含有することで、メソゲン骨格含有エポキシ樹脂(A)、液状エポキシ樹脂(B)及び硬化剤(C)の硬化反応を促進させることができる。硬化促進剤としては、特に限定されないが、アルミニウムトリス(アセチルアセトネート)等のアルミニウム有機化合物等が挙げられる。 Further, when the epoxy resin composition contains a curing accelerator, the curing reaction of the mesogen skeleton-containing epoxy resin (A), the liquid epoxy resin (B) and the curing agent (C) can be promoted. The curing accelerator is not particularly limited, and examples thereof include aluminum organic compounds such as aluminum tris (acetylacetonate).
 本実施形態に係るエポキシ樹脂組成物の硬化物は、アンダーフィル材として用いた場合に、好適な特性(例えば、低熱膨張性、高耐熱性(高Tg)、適度な範囲の貯蔵弾性率、高浸入性、及び高熱伝導性)を有する。 When the cured product of the epoxy resin composition according to the present embodiment is used as an underfill material, it has suitable properties (for example, low thermal expansion, high heat resistance (high Tg), moderate range of storage elastic modulus, and high storage elasticity). It has permeable and high thermal conductivity).
 例えば、上記硬化物にあっては、低熱膨張特性としてその線膨張係数を35ppm/℃以下とすることが可能であり、より具体的には20ppm/℃以上35ppm/℃以下となるように調製可能である。 For example, the cured product can have a linear expansion coefficient of 35 ppm / ° C or less as a low thermal expansion characteristic, and more specifically, it can be adjusted to be 20 ppm / ° C or more and 35 ppm / ° C or less. Is.
 また上記硬化物のガラス転移温度(Tg)は150℃以上、より好ましくは155℃以上の高Tgを実現可能である。 Further, the glass transition temperature (Tg) of the cured product can be as high as 150 ° C. or higher, more preferably 155 ° C. or higher.
 また上記硬化物の曲げ弾性率は6GPa以上12GPa以下の範囲内にすることが可能であり、この範囲内であれば貯蔵弾性率は適度な範囲に収まっているといえる。 Further, the flexural modulus of the cured product can be in the range of 6 GPa or more and 12 GPa or less, and if it is within this range, it can be said that the storage elastic modulus is within an appropriate range.
 また上記硬化物では、1.2W/(m・K)以上、より好ましくは1.5W/(m・K)以上の熱伝導率を実現することができる。 Further, the cured product can realize a thermal conductivity of 1.2 W / (m · K) or more, more preferably 1.5 W / (m · K) or more.
 (2)アンダーフィル材
 本実施形態に係るアンダーフィル材は、上述のエポキシ樹脂組成物を含む。アンダーフィル材は、室温(25℃)において、無溶剤でありながら、液状をなしている。本実施形態に係るアンダーフィル材は、キャピラリーアンダーフィル材として好適に用いられる。すなわち、アンダーフィル材は、後述のように毛細管現象を利用して、基板3と半導体チップ2との間の隙間(ギャップ)に浸入させることができる。浸入後のアンダーフィル材は、加熱されて硬化し、封止材1となる(図1参照)。
(2) Underfill material The underfill material according to the present embodiment contains the above-mentioned epoxy resin composition. The underfill material is liquid at room temperature (25 ° C.) while being solvent-free. The underfill material according to the present embodiment is suitably used as a capillary underfill material. That is, the underfill material can be infiltrated into the gap between the substrate 3 and the semiconductor chip 2 by utilizing the capillary phenomenon as described later. The underfill material after infiltration is heated and hardened to become the sealing material 1 (see FIG. 1).
 (3)半導体パッケージ
 図1に半導体パッケージ10を示す。半導体パッケージ10は、基板3と、半導体チップ2(ICチップ)と、封止材1と、を備える。
(3) Semiconductor package FIG. 1 shows the semiconductor package 10. The semiconductor package 10 includes a substrate 3, a semiconductor chip 2 (IC chip), and a sealing material 1.
 半導体チップ2は、基板3にフェイスダウンで実装されている。半導体チップ2は、バンプ4を介して、基板3のパッド5に電気的に接続されている。 The semiconductor chip 2 is mounted face-down on the substrate 3. The semiconductor chip 2 is electrically connected to the pad 5 of the substrate 3 via the bump 4.
 基板3の両面にはソルダーレジスト7が設けられている。基板3の厚さ方向にはスルーホール6が形成されている。 Solder resists 7 are provided on both sides of the substrate 3. Through holes 6 are formed in the thickness direction of the substrate 3.
 封止材1は、基板3と半導体チップ2との間の隙間(ギャップ)を封止している。封止材1は、アンダーフィル材の硬化物である。アンダーフィル材は、上述のエポキシ樹脂組成物を含んでいるので、毛細管現象を利用して、基板3と半導体チップ2との間の隙間(ギャップ)に浸入させやすい。 The sealing material 1 seals a gap between the substrate 3 and the semiconductor chip 2. The sealing material 1 is a cured product of the underfill material. Since the underfill material contains the above-mentioned epoxy resin composition, it is easy to penetrate into the gap (gap) between the substrate 3 and the semiconductor chip 2 by utilizing the capillary phenomenon.
 さらに封止材1のガラス転移温度(Tg)は高い。また封止材1の貯蔵弾性率は適度な範囲に収まっているので、変位に対する追従性の低下は抑制されている。また封止材1の熱膨張率は低い。これにより、変位に対する追従性の低下は更に抑制されている。さらに封止材1は、メソゲン骨格含有エポキシ樹脂(A)の配向性の高い高熱伝導領域(フォーカルコニックドメイン)が形成されやすくなっている。したがって、封止材1の熱伝導性が向上している。これにより、半導体チップ2から発生した熱を封止材1から基板3等に効率的に放散させることができる。したがって、半導体パッケージ10の信頼性を向上させることができる。 Furthermore, the glass transition temperature (Tg) of the sealing material 1 is high. Further, since the storage elastic modulus of the sealing material 1 is within an appropriate range, the deterioration of the followability to the displacement is suppressed. Further, the coefficient of thermal expansion of the sealing material 1 is low. As a result, the decrease in followability to displacement is further suppressed. Further, the encapsulant 1 tends to form a highly oriented high thermal conductive region (focal conic domain) of the mesogen skeleton-containing epoxy resin (A). Therefore, the thermal conductivity of the sealing material 1 is improved. As a result, the heat generated from the semiconductor chip 2 can be efficiently dissipated from the sealing material 1 to the substrate 3 and the like. Therefore, the reliability of the semiconductor package 10 can be improved.
 以下、本開示を実施例によって具体的に説明する。ただし、本開示は、実施例に限定されない。 Hereinafter, the present disclosure will be specifically described with reference to examples. However, the present disclosure is not limited to the examples.
 1.エポキシ樹脂組成物
 (1)原材料
 エポキシ樹脂組成物の原材料は、以下のとおりである。
1. 1. Epoxy resin composition (1) Raw materials The raw materials for the epoxy resin composition are as follows.
 <メソゲン骨格含有エポキシ樹脂(A)>
 ・日本化薬株式会社製、商品名「TCX-8」、軟化点57℃、150℃におけるICI溶融粘度0.04Pa・s、エポキシ当量223g/eq。
<Epoxy resin (A) containing mesogen skeleton>
-Manufactured by Nippon Kayaku Co., Ltd., trade name "TCX-8", ICI melt viscosity 0.04 Pa · s at softening points 57 ° C and 150 ° C, epoxy equivalent 223 g / eq.
 <液状エポキシ樹脂(B)>
 ・液状エポキシ樹脂1:日鉄ケミカル&マテリアル株式会社製、商品名「エポトートYDF-8170」、ビスフェノールF型エポキシ樹脂、25℃における粘度1500mPa・s、エポキシ当量160g/eq
 ・液状エポキシ樹脂2:株式会社ADEKA製、商品名「アデカレジンEP-3950S」、グリシジルアミン型エポキシ樹脂、25℃における粘度650mPa・s、エポキシ当量95g/eq。
<Liquid epoxy resin (B)>
-Liquid epoxy resin 1: Nittetsu Chemical & Materials Co., Ltd., trade name "Epototo YDF-8170", bisphenol F type epoxy resin, viscosity at 25 ° C, 1500 mPa · s, epoxy equivalent 160 g / eq
Liquid epoxy resin 2: Made by ADEKA Corporation, trade name "ADEKA REGIN EP-3950S", glycidylamine type epoxy resin, viscosity at 25 ° C., 650 mPa · s, epoxy equivalent 95 g / eq.
 <硬化剤(C)(芳香族アミン)>
 ・硬化剤1:芳香族ジアミン、日本化薬株式会社製、商品名「カヤハードA-A」、芳香族アミン系硬化剤(3,3’-ジエチル-4,4’-ジアミノジフェニルメタン)
 ・硬化剤2:三菱ケミカル株式会社製、商品名「jERキュアWA」、芳香族ポリアミン。
<Hardener (C) (aromatic amine)>
-Curing agent 1: Aromatic diamine, manufactured by Nippon Kayaku Co., Ltd., trade name "Kayahard A-A", aromatic amine-based curing agent (3,3'-diethyl-4,4'-diaminodiphenylmethane)
-Curing agent 2: Mitsubishi Chemical Corporation, trade name "jER Cure WA", aromatic polyamine.
 <無機充填材(D)>
 ・無機充填材1:α-アルミナ、真球状、平均粒子径1.5μm、α結晶化率45%、平均円形度0.95
 ・無機充填材2:α-アルミナ、真球状、平均粒子径0.4μm、α結晶化率85%、平均円形度0.95
 ・無機充填材3:N-フェニル-γ-アミノプロピルトリメトキシシラン(0.79wt%)で表面処理したα-アルミナ、真球状、平均粒子径1.5μm、α結晶化率45%、平均円形度0.95
 ・無機充填材4:N-フェニル-γ-アミノプロピルトリメトキシシラン(2.3wt%)で表面処理したα-アルミナ、真球状、平均粒子径0.4μm、α結晶化率85%、平均円形度0.95
 ・無機充填材5:住友化学株式会社製、商品名「AA-1.5」、多面体形状、平均粒子径1.5μm、α結晶化率100%、平均円形度0.85
 ・無機充填材6:住友化学株式会社製、商品名「AA-03F」、多面体形状、平均粒子径0.3μm、α結晶化率100%、平均円形度0.90。
<Inorganic filler (D)>
-Inorganic filler 1: α-alumina, true sphere, average particle diameter 1.5 μm, α crystallization rate 45%, average circularity 0.95
-Inorganic filler 2: α-alumina, true sphere, average particle diameter 0.4 μm, α crystallization rate 85%, average circularity 0.95
-Inorganic filler 3: α-alumina surface-treated with N-phenyl-γ-aminopropyltrimethoxysilane (0.79 wt%), true spherical shape, average particle size 1.5 μm, α crystallization rate 45%, average circular shape. Degree 0.95
-Inorganic filler 4: α-alumina surface-treated with N-phenyl-γ-aminopropyltrimethoxysilane (2.3 wt%), true spherical shape, average particle size 0.4 μm, α crystallization rate 85%, average circular shape. Degree 0.95
-Inorganic filler 5: manufactured by Sumitomo Chemical Co., Ltd., trade name "AA-1.5", polyhedral shape, average particle diameter 1.5 μm, α crystallization rate 100%, average circularity 0.85
-Inorganic filler 6: manufactured by Sumitomo Chemical Co., Ltd., trade name "AA-03F", polyhedral shape, average particle diameter 0.3 μm, α crystallization rate 100%, average circularity 0.90.
 <その他(E)>
 ・カップリング剤(シランカップリング剤):信越化学工業株式会社製、商品名「KBM-403」、γ-グリシドキシプロピルトリメトキシシラン
 ・分散剤:ビックケミー・ジャパン製、商品名「DISPERBYK-111」、エチレングリコールとポリカプロラクトンのブロック共重合体のリン酸エステル化合物であり、共重合体の両末端にリン酸基を有する分散剤、酸価129mgKOH/g
 ・硬化促進剤:アルミニウム有機化合物(アルミニウムトリス(アセチルアセトネート))。
<Other (E)>
-Coupling agent (silane coupling agent): Shin-Etsu Chemical Industry Co., Ltd., trade name "KBM-403", γ-glycidoxypropyltrimethoxysilane-Dispersant: Big Chemie Japan, trade name "DISPERBYK-111" , A phosphate ester compound of a block copolymer of ethylene glycol and polycaprolactone, a dispersant having phosphate groups at both ends of the copolymer, acid value 129 mgKOH / g.
-Curing accelerator: Aluminum organic compound (aluminum tris (acetylacetone)).
 (2)製造方法
 まず、表1の組成の欄に示すメソゲン骨格含有エポキシ樹脂(A)、液状エポキシ樹脂(B)、無機充填材(D)、カップリング剤、及び分散剤を配合し、プラネタリーミキサー及び三本ロールの順にて混合を行った。
(2) Production method First, the mesogen skeleton-containing epoxy resin (A), the liquid epoxy resin (B), the inorganic filler (D), the coupling agent, and the dispersant shown in the composition column of Table 1 are blended and planeta. Mixing was performed in the order of a Lee mixer and three rolls.
 次いで、上記の混合物に硬化剤及び硬化促進剤を加え、プラネタリーミキサーを用いて、再度、撹拌、混合して、液状のエポキシ樹脂組成物を製造した。 Next, a curing agent and a curing accelerator were added to the above mixture, and the mixture was stirred and mixed again using a planetary mixer to produce a liquid epoxy resin composition.
 2.評価項目
 上記のようにして得られた液状のエポキシ樹脂組成物について、以下の評価項目の試験を行った。その結果を表1の評価の欄に示す。
2. 2. Evaluation Items The following evaluation items were tested on the liquid epoxy resin composition obtained as described above. The results are shown in the evaluation column of Table 1.
 (1)浸入性
 2枚のスライドガラスの表面を溶剤で拭き、プラズマクリーニングした。プラズマクリーニングした面が対向するように、2枚のスライドガラスを40μmの隙間を介して対向させた。2枚のスライドガラスの温度を80℃に保持した状態で、2枚のスライドガラスの間にエポキシ樹脂組成物を毛細管現象で浸入させることで注入し、2枚のスライドガラスの間でエポキシ樹脂組成物を流動させた。注入時から10分経過した時点でのエポキシ樹脂組成物が流動した距離を測定した。
(1) Infiltration property The surfaces of the two slide glasses were wiped with a solvent and plasma-cleaned. Two slide glasses were opposed to each other through a gap of 40 μm so that the plasma-cleaned surfaces faced each other. While the temperature of the two slide glasses is maintained at 80 ° C., the epoxy resin composition is injected by capillarity between the two slide glasses, and the epoxy resin composition is injected between the two slide glasses. I made things flow. The distance at which the epoxy resin composition flowed 10 minutes after the injection was measured.
 (2)粘度
 レオメータ(ティー・エイ・インスツルメンツ株式会社製、型式「DISCOVERY HR-2」)を用い、25mmのパラレルプレートにて、せん断速度50/secの条件で、80℃でのエポキシ樹脂組成物の粘度を測定した。
(2) Using a viscosity rheometer (manufactured by TA Instruments Co., Ltd., model "DISCOVERY HR-2"), an epoxy resin composition at 80 ° C. on a 25 mm parallel plate under a shear rate of 50 / sec. The viscosity of the was measured.
 (3)熱伝導率
 エポキシ樹脂組成物を130℃で1時間加熱した後、180℃で3時間加熱して硬化させて硬化物を得た。この硬化物から、9.8mm×9.8mm×1.0mm厚の正方形の板状の試験片を切り出した。この試験片にファインケミカルジャパン株式会社製のグラファイトスプレー(商品名「FC-153」)を噴射した。
(3) Thermal Conductivity The epoxy resin composition was heated at 130 ° C. for 1 hour and then heated at 180 ° C. for 3 hours to be cured to obtain a cured product. From this cured product, a square plate-shaped test piece having a thickness of 9.8 mm × 9.8 mm × 1.0 mm was cut out. A graphite spray (trade name "FC-153") manufactured by Fine Chemical Japan Co., Ltd. was sprayed onto this test piece.
 キセノンフラッシュアナライザー(NETZSCH社製、型式「NanoFlash LFA447」)を用いて、上記試験片の熱拡散率a(m/s)を測定した。またアルキメデス法により、上記試験片の25℃における密度ρ(kg/m)を測定した。さらにDSC法により、上記試験片の比熱c(J/(kg・K))を測定した。そして、上記の熱拡散率a(m/s)に密度ρ(kg/m)及び比熱c(J/(kg・K))を乗じることにより、上記試験片の厚さ方向の熱伝導率k(W/(m・K))を求めた。 The thermal diffusivity a (m 2 / s) of the test piece was measured using a xenon flash analyzer (manufactured by NETZSCH, model "NanoFlash LFA447"). The density ρ (kg / m 3 ) of the test piece at 25 ° C. was measured by the Archimedes method. Further, the specific heat c (J / (kg · K)) of the test piece was measured by the DSC method. Then, by multiplying the thermal diffusivity a (m 2 / s) by the density ρ (kg / m 3 ) and the specific heat c (J / (kg · K)), the heat conduction in the thickness direction of the test piece The rate k (W / (m · K)) was calculated.
 熱伝導率k(W/(m・K))=密度ρ(kg/m)×熱拡散率a(m/s)×比熱c(J/(kg・K)) Thermal conductivity k (W / (m · K)) = density ρ (kg / m 3 ) × thermal diffusivity a (m 2 / s) × specific heat c (J / (kg · K))
 (4)ガラス転移温度(Tg)
 エポキシ樹脂組成物を130℃で1時間加熱した後、180℃で3時間加熱して硬化させて硬化物を得た。この硬化物から、5mm幅×50mm長×0.2mm厚の試験片を切り出した。
(4) Glass transition temperature (Tg)
The epoxy resin composition was heated at 130 ° C. for 1 hour and then heated at 180 ° C. for 3 hours to be cured to obtain a cured product. A test piece having a width of 5 mm, a length of 50 mm, and a thickness of 0.2 mm was cut out from this cured product.
 粘弾性スペクトロメータ(エスアイアイ・ナノテクノロジー株式会社製、型式「DMS7100」)を用い、曲げモード10Hz、昇温速度2℃/分、温度範囲-60℃~260℃の条件で、動的粘弾性測定(DMA)を行い、ガラス転移温度(Tg)を求めた。 Dynamic viscoelasticity using a viscoelastic spectrometer (manufactured by SII Nanotechnology Co., Ltd., model "DMS7100") under the conditions of bending mode 10 Hz, heating rate 2 ° C / min, and temperature range -60 ° C to 260 ° C. Measurement (DMA) was performed to determine the glass transition temperature (Tg).
 (5)線膨張係数
 エポキシ樹脂組成物を130℃で1時間加熱した後、180℃で3時間加熱して硬化させて硬化物を得た。この硬化物から、70mm以上長×10mm幅×1~3mm厚の試験片を切り出した。
(5) Linear Expansion Coefficient The epoxy resin composition was heated at 130 ° C. for 1 hour and then heated at 180 ° C. for 3 hours to be cured to obtain a cured product. From this cured product, a test piece having a length of 70 mm or more, a width of 10 mm, and a thickness of 1 to 3 mm was cut out.
 熱機械分析装置(セイコーインスツルメンツ株式会社製、型式「TMA/SS-6000」)を用い、昇温速度5℃/分、温度範囲-60℃~260℃の条件で、上記試験片の熱機械分析を行い、線膨張係数(α1(30~50℃))を算出した。 Thermomechanical analysis of the above test piece using a thermomechanical analyzer (manufactured by Seiko Instruments Co., Ltd., model "TMA / SS-6000") under the conditions of a heating rate of 5 ° C / min and a temperature range of -60 ° C to 260 ° C. The linear expansion coefficient (α1 (30 to 50 ° C.)) was calculated.
 (6)曲げ弾性率
 エポキシ樹脂組成物を120℃、1時間の条件で硬化させて硬化物を得た。この硬化物から、幅10mm×長さ80mm×厚さ3mmの試験片を切り出した。
(6) Flexural modulus The epoxy resin composition was cured at 120 ° C. for 1 hour to obtain a cured product. A test piece having a width of 10 mm, a length of 80 mm, and a thickness of 3 mm was cut out from this cured product.
 上記の試験片について、室温(25℃)において万能引張圧縮試験機による3点曲げ試験を行って、曲げ弾性率を測定した。測定条件は、試験速度:2mm/分、支点間距離:48mmとした。なお、曲げ弾性率が6GPa以上12GPa以下であれば、貯蔵弾性率は適度な範囲に収まっているといえる。 The above test piece was subjected to a three-point bending test using a universal tensile compression tester at room temperature (25 ° C), and the flexural modulus was measured. The measurement conditions were a test speed of 2 mm / min and a distance between fulcrums: 48 mm. If the flexural modulus is 6 GPa or more and 12 GPa or less, it can be said that the storage elastic modulus is within an appropriate range.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  メソゲン骨格含有エポキシ樹脂(A)と、25℃における粘度が1500mPa・s以下である液状エポキシ樹脂(B)と、硬化剤(C)と、無機充填材(D)と、を含有する、
     エポキシ樹脂組成物。
    It contains a mesogen skeleton-containing epoxy resin (A), a liquid epoxy resin (B) having a viscosity at 25 ° C. of 1500 mPa · s or less, a curing agent (C), and an inorganic filler (D).
    Epoxy resin composition.
  2.  前記無機充填材(D)が、α結晶化率が40%以上90%以下、かつ平均円形度が0.80以上0.96以下であるα-アルミナを含む、
     請求項1に記載のエポキシ樹脂組成物。
    The inorganic filler (D) contains α-alumina having an α crystallization rate of 40% or more and 90% or less and an average circularity of 0.80 or more and 0.96 or less.
    The epoxy resin composition according to claim 1.
  3.  前記メソゲン骨格含有エポキシ樹脂(A)の軟化点が40℃以上70℃以下である、
     請求項1又は2に記載のエポキシ樹脂組成物。
    The softening point of the mesogen skeleton-containing epoxy resin (A) is 40 ° C. or higher and 70 ° C. or lower.
    The epoxy resin composition according to claim 1 or 2.
  4.  前記液状エポキシ樹脂(B)が、ビスフェノールF型エポキシ樹脂及びグリシジルアミン型エポキシ樹脂の少なくともいずれかを含む、
     請求項1~3のいずれか1項に記載のエポキシ樹脂組成物。
    The liquid epoxy resin (B) contains at least one of a bisphenol F type epoxy resin and a glycidylamine type epoxy resin.
    The epoxy resin composition according to any one of claims 1 to 3.
  5.  前記メソゲン骨格含有エポキシ樹脂(A)及び前記液状エポキシ樹脂(B)の合計100質量部に対して、前記メソゲン骨格含有エポキシ樹脂(A)の含有量が10質量部以上25質量部以下である、
     請求項1~4のいずれか1項に記載のエポキシ樹脂組成物。
    The content of the mesogen skeleton-containing epoxy resin (A) is 10 parts by mass or more and 25 parts by mass or less with respect to a total of 100 parts by mass of the mesogen skeleton-containing epoxy resin (A) and the liquid epoxy resin (B).
    The epoxy resin composition according to any one of claims 1 to 4.
  6.  前記無機充填材(D)の平均粒子径が0.1μm以上2.0μm以下である、
     請求項1~5のいずれか1項に記載のエポキシ樹脂組成物。
    The average particle size of the inorganic filler (D) is 0.1 μm or more and 2.0 μm or less.
    The epoxy resin composition according to any one of claims 1 to 5.
  7.  前記エポキシ樹脂組成物の全質量に対して、前記無機充填材(D)の含有量が50質量%以上85質量%以下である、
     請求項1~6のいずれか1項に記載のエポキシ樹脂組成物。
    The content of the inorganic filler (D) is 50% by mass or more and 85% by mass or less with respect to the total mass of the epoxy resin composition.
    The epoxy resin composition according to any one of claims 1 to 6.
  8.  前記硬化剤(C)が、芳香族アミンを含む、
     請求項1~7のいずれか1項に記載のエポキシ樹脂組成物。
    The curing agent (C) contains an aromatic amine.
    The epoxy resin composition according to any one of claims 1 to 7.
  9.  請求項1~8のいずれか1項に記載のエポキシ樹脂組成物を含む、
     アンダーフィル材。
    The epoxy resin composition according to any one of claims 1 to 8 is included.
    Underfill material.
PCT/JP2021/026037 2020-07-31 2021-07-09 Epoxy resin composition and under-filling material WO2022024727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540138A JPWO2022024727A1 (en) 2020-07-31 2021-07-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020131109 2020-07-31
JP2020-131109 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022024727A1 true WO2022024727A1 (en) 2022-02-03

Family

ID=80037330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026037 WO2022024727A1 (en) 2020-07-31 2021-07-09 Epoxy resin composition and under-filling material

Country Status (2)

Country Link
JP (1) JPWO2022024727A1 (en)
WO (1) WO2022024727A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179882A (en) * 2000-12-07 2002-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006219575A (en) * 2005-02-10 2006-08-24 Sumitomo Bakelite Co Ltd Liquid sealing resin and semiconductor device using the same
JP2009029910A (en) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd Liquid epoxy resin composition for sealing and semiconductor device
JP2012144661A (en) * 2011-01-13 2012-08-02 Shin-Etsu Chemical Co Ltd Underfill material and semiconductor device
JP2013006893A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2014240351A (en) * 2008-04-30 2014-12-25 電気化学工業株式会社 Alumina powder, method for manufacturing the same, and resin composition using the same
JP2018024770A (en) * 2016-08-10 2018-02-15 住友ベークライト株式会社 Sealing resin composition, and semiconductor device
WO2018155165A1 (en) * 2017-02-21 2018-08-30 ナミックス株式会社 Liquid epoxy resin sealing material and semiconductor device
JP2019151713A (en) * 2018-03-01 2019-09-12 ナミックス株式会社 Film-like semiconductor encapsulation material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179882A (en) * 2000-12-07 2002-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006219575A (en) * 2005-02-10 2006-08-24 Sumitomo Bakelite Co Ltd Liquid sealing resin and semiconductor device using the same
JP2009029910A (en) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd Liquid epoxy resin composition for sealing and semiconductor device
JP2014240351A (en) * 2008-04-30 2014-12-25 電気化学工業株式会社 Alumina powder, method for manufacturing the same, and resin composition using the same
JP2012144661A (en) * 2011-01-13 2012-08-02 Shin-Etsu Chemical Co Ltd Underfill material and semiconductor device
JP2013006893A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd High thermal conductivity resin composition, high thermal conductivity cured product, adhesive film, sealing film, and semiconductor device using them
JP2018024770A (en) * 2016-08-10 2018-02-15 住友ベークライト株式会社 Sealing resin composition, and semiconductor device
WO2018155165A1 (en) * 2017-02-21 2018-08-30 ナミックス株式会社 Liquid epoxy resin sealing material and semiconductor device
JP2019151713A (en) * 2018-03-01 2019-09-12 ナミックス株式会社 Film-like semiconductor encapsulation material

Also Published As

Publication number Publication date
JPWO2022024727A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US7981977B2 (en) Sealant for electronics of epoxy resin, aromatic amine, accelerator and inorganic filler
TWI405810B (en) Semiconductor device manufacturing method and semiconductor device
JP5354753B2 (en) Underfill material and semiconductor device
WO2014157626A1 (en) Composition for interlayer filler of layered semiconductor device, layered semiconductor device, and method for manufacturing layered semiconductor device
JP6032593B2 (en) Liquid epoxy resin composition, composite member, and electronic component device
JPH11255864A (en) Liquid epoxy rein composition and resin-sealed type semiconductor apparatus
US20020013420A1 (en) Thermally degradable epoxy underfills for flip-chip applications
WO2021193028A1 (en) Resin composition for molding and electronic device
JP2015183093A (en) Composition suitable to interlaminar filler for lamination type semiconductor device, lamination type semiconductor device, and method for producing lamination type semiconductor device
JP3104589B2 (en) Thermosetting resin composition and semiconductor device
WO2022024727A1 (en) Epoxy resin composition and under-filling material
JP6512699B2 (en) One-component epoxy resin composition for semiconductor encapsulation, cured product, method for producing semiconductor component and semiconductor component
JPH09302070A (en) Thermosetting epoxy resin composition, its use, and its curative
JP2695598B2 (en) Die bonding material
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
TWI657513B (en) Resin composition for sealing sheet, sealing sheet and semiconductor device
JP2012082281A (en) Liquid epoxy resin composition and semiconductor device
TW201211145A (en) Encapsulating resin composition
KR102481902B1 (en) Method for producing glassy liquid crystalline epoxy resin and glassy liquid crystalline epoxy resin composition, preservation method for liquid crystalline epoxy resin and liquid crystalline epoxy resin composition, glassy liquid crystalline epoxy resin and glassy liquid crystalline epoxy resin composition, liquid crystalline epoxy resin and liquid crystalline Epoxy resin composition and method for producing cured epoxy resin material
WO2018164042A1 (en) Curable resin composition, cured product thereof, and method for producing curable resin composition
KR20110104918A (en) Novel epoxy resin and epoxy resin composite for semiconductor encapsulant
WO2023062877A1 (en) Liquid sealing agent, electronic component and method for producing same, and semiconductor device
JP2019167436A (en) Resin composition, semiconductor device and method for producing semiconductor device
US11767397B2 (en) Thermally conductive resin composition
JP2022060084A (en) Epoxy resin composition and underfill material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848969

Country of ref document: EP

Kind code of ref document: A1