WO2022024393A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022024393A1
WO2022024393A1 PCT/JP2020/029582 JP2020029582W WO2022024393A1 WO 2022024393 A1 WO2022024393 A1 WO 2022024393A1 JP 2020029582 W JP2020029582 W JP 2020029582W WO 2022024393 A1 WO2022024393 A1 WO 2022024393A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
transmission
sri
dci
information
Prior art date
Application number
PCT/JP2020/029582
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/029582 priority Critical patent/WO2022024393A1/ja
Priority to CN202080105402.1A priority patent/CN116349272A/zh
Priority to JP2022539985A priority patent/JPWO2022024393A5/ja
Priority to EP20947368.5A priority patent/EP4192070A4/en
Publication of WO2022024393A1 publication Critical patent/WO2022024393A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • the user terminal (user terminal, User Equipment (UE)) may be set with spatial relation information (may be called Spatial Relation Information (SRI)) related to Physical Uplink Control Channel (PUCCH).
  • SRI Spatial Relation Information
  • PUCCH Physical Uplink Control Channel
  • the UE repeatedly transmits the PUCCH to a plurality of transmission / reception points in order to improve the reliability of the PUCCH.
  • the repeated transmission of PUCCH may be called PUCCH repetition.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station capable of realizing suitable PUCCH repetitive transmission.
  • the terminal is based on a control unit that applies a plurality of spatial relation information (SRI) to a plurality of Physical Uplink Control Channel (PUCCH) resources, and the plurality of spatial relation information.
  • SRI spatial relation information
  • PUCCH Physical Uplink Control Channel
  • Each of the spatial domain transmission filters has a transmission unit that transmits uplink control information in the plurality of PUCCH resources.
  • suitable PUCCH repetitive transmission can be realized.
  • FIG. 1A and 1B are diagrams showing an example of an SRI sequence according to the first embodiment.
  • FIG. 2 is a diagram showing an example in which the number of spatial relationships in a particular SRI sequence is limited.
  • FIG. 3 is a diagram showing an example of the spatial relationship corresponding to the PUCCH resource group.
  • 4A and 4B are diagrams showing an example of mapping of a plurality of SRIs to PUCCH transmission according to the second embodiment.
  • FIG. 5 is a diagram showing an example of mapping of a plurality of SRIs to PUCCH transmission according to the third embodiment.
  • FIG. 6 is a diagram showing an example in which a group of PUCCH resource sets common to PUCCH transmission opportunities is set in the first embodiment.
  • FIG. 7 is a diagram showing an example in which a group of PUCCH resource sets is set for each PUCCH transmission opportunity in the first embodiment.
  • FIG. 8 is a diagram showing an example in which a group of PUCCH resource sets common to PUCCH transmission opportunities is set in the second embodiment.
  • FIG. 9 is a diagram showing an example in which a group of PUCCH resource sets is set for each PUCCH transmission opportunity in the second embodiment.
  • FIG. 10 is a diagram showing an example of using non-scheduled DCI in Embodiment 3.2.
  • FIG. 11 is a diagram showing an example of using the scheduling DCI in the second embodiment.
  • 12A-12C are diagrams showing an example of the symbol gap according to the fourth embodiment.
  • FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 14 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 15 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the UE performs transmission processing (eg, transmission, mapping, precoding, modulation, etc.) of at least one of the uplink signal and channel (also referred to as signal / channel) based on a predetermined spatial relation. Control at least one of the encodings).
  • transmission processing eg, transmission, mapping, precoding, modulation, etc.
  • the spatial relationship applied to a predetermined signal / channel may be specified by spatial relationship information (Spatial Relation Information (SRI)) notified (set) using higher layer signaling.
  • SRI Spatial Relation Information
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • RRC Physical Uplink Control Channel
  • the predetermined RS is a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information-Reference Signal (CSI-RS)), and a measurement reference signal (Sounding Reference Signal (SRS)). There may be at least one.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • the SRI to be set may include an SRI Identifier (ID) for identifying the SRI. Further, the SRI may include at least one of the SSB index, the CSI-RS resource ID, and the SRS resource ID as the index of the predetermined RS. Further, these spatial relation information may include a serving cell index corresponding to the predetermined RS, a bandwidth portion (Bandwidth Part (BWP)) ID, and the like.
  • ID SRI Identifier
  • the SRI may include at least one of the SSB index, the CSI-RS resource ID, and the SRS resource ID as the index of the predetermined RS. Further, these spatial relation information may include a serving cell index corresponding to the predetermined RS, a bandwidth portion (Bandwidth Part (BWP)) ID, and the like.
  • BWP Bandwidth Part
  • index, ID, indicator, resource ID, etc. may be read as each other.
  • the UE transmits PUCCH using the same spatial domain filter as the spatial domain filter for receiving the SSB or CSI-RS. May be good. That is, in this case, the UE may assume that the UE receiving beam of SSB or CSI-RS and the UE transmitting beam of PUCCH are the same.
  • the UE may transmit the PUCCH using the same spatial domain filter as the spatial domain filter for the transmission of the SRS. That is, in this case, the UE may assume that the UE transmission beam of SRS and the UE transmission beam of PUCCH are the same.
  • the spatial domain filter for transmission of the base station, the downlink spatial domain transmission filter (downlink spatial domain transmission filter), and the transmission beam of the base station may be read as each other.
  • the spatial domain filter for receiving the base station, the uplink spatial domain receive filter (uplink spatial domain receive filter), and the received beam of the base station may be read as each other.
  • the spatial domain filter for the transmission of the UE, the uplink spatial domain transmission filter (uplink spatial domain transmission filter), and the transmission beam of the UE may be read as each other.
  • the spatial domain filter for receiving the UE, the downlink spatial domain receive filter (downlink spatial domain receive filter), and the received beam of the UE may be read as each other.
  • the UE may set SRI in units of PUCCH settings (PUCCH-Config).
  • the SRI set by the PUCCH setting may be applied to all PUCCH resources set by the PUCCH setting.
  • the UE When more than one SRI related to PUCCH is set, the UE has one PUCCH resource at a certain time based on the PUCCH spatial relation activation / deactivation MAC CE (PUCCH spatial relation Activation / Deactivation MAC CE).
  • PUCCH spatial relation activation / deactivation MAC CE PUCCH spatial relation Activation / Deactivation MAC CE.
  • One PUCCH SRI may be controlled to be active.
  • Multi TRP In NR, the UE performs UL transmission (for example, PUCCH transmission) to one or more transmission / reception points (Transmission / Reception Point (TRP)) (multi-TRP (Multi-TRP (M-TRP))). Is being considered.
  • TRP Transmission / Reception Point
  • M-TRP Multi-TRP
  • SRI may correspond to a beam.
  • the UE may assume that PUCCHs of different SRIs are transmitted using different beams.
  • the present inventors have conceived a method for realizing suitable PUCCH repetitive transmission.
  • the UE can appropriately determine the number of iterations.
  • a / B may mean "at least one of A and B”.
  • activation, deactivation, instruction (or indication), selection, setting (configure), update (update), decision (determine), etc. may be read as each other.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • DMRS demodulation reference signal
  • predetermined antenna port group for example, DMRS port group
  • predetermined group for example, for example.
  • CORESET pool PUCCH group (PUCCH resource group), spatial relationship group, downlink TCI state (DL TCI state), uplink TCI state (UL TCI state), unified TCI state (unified TCI state), etc. May be read as interchangeable with each other.
  • the i-th TRP may mean the i-th TCI state, the i-th CDM group, or the like (i is an integer).
  • the panel may be associated with at least one of the SSB / CSI-RS group group index, the group-based beam reporting group index, and the SSB / CSI-RS group group index for group-based beam reporting.
  • the panel Identifier (ID) and the panel may be read as each other. That is, the TRP ID and TRP, the CORESET group ID and the CORESET group, and the like may be read as each other.
  • index, ID, indicator, and resource ID may be read as each other.
  • lists, groups, clusters, subsets, etc. may be read interchangeably.
  • spatial relation may be read as mutual with the spatial relation of PUCCH.
  • the PUCCH repeats of the present disclosure are based on MTRP repeats, Rel. It may be read as "repetition of 17", “repetition of applying different spatial relationships", and the like. Further, the PUCCH is described as a PUCCH used for hybrid automatic repeat reQuest ACK knowledgement (HARQ-ACK) transmission to the PDSCH in the following example, but at least one such as HARQ-ACK, SR, and CSI (for example, aperiodic CSI). It may be a PUCCH for one UCI transmission, and may be read as such.
  • HARQ-ACK hybrid automatic repeat reQuest ACK knowledgement
  • the plurality of spatial relationships (SRIs) in the present disclosure may be read as SRI sequences, SRI sets, SRI patterns, SRIs applied to PUCCH repetition, and the like.
  • the UE may determine the number of PUCCH iterations based on the number of settings / activations / specified spatial relationships (eg, the number of SRIs included in the SRI sequence).
  • the UE may set the SRI applied to the PUCCH iteration by RRC signaling in the form of an SRI sequence over the PUCCH iteration.
  • SRI may be read as PUCCH spatial relation information (SRI), RRC parameter “Spatialrelationinfo”, SRI ID, and the like.
  • SRI sequence may be read as a sequence of SRI, a set of SRI, a pattern of SRI, etc. applied to PUCCH repetition.
  • the UE may set a predetermined number (for example, M) of SRI sequences by RRC signaling.
  • M a predetermined number
  • the predetermined number M may be, for example, 8, 64, or the like, or may be larger than 64.
  • the UE may further activate one or more SRI sequences (subset of SRI sequences) using MAC CE.
  • the maximum number of active SRI sequences may be limited to a predetermined number (eg, 8).
  • One of the activated SRI sequences may be specified based on DCI.
  • the UE may determine one of the activated SRI sequences as a sequence to utilize for PUCCH iteration, based on a particular field of DCI and certain parameters (or information) about that DCI. ..
  • the specific field may be a PUCCH resource indicator (PUCCH Resource Indicator (PRI)) field, an SRI field, a transmission configuration instruction (TCI) field, or other fields. It may be represented by a combination of a plurality of fields.
  • PUCCH resource indicator PUCCH Resource Indicator (PRI)
  • SRI SRI
  • TCI transmission configuration instruction
  • the PRI field is included in the DCI that schedules the PDSCH and corresponds to the information that specifies the PUCCH resource for transmitting the HARQ-ACK corresponding to the PDSCH.
  • the SRI field may be a field that specifies the spatial relationship of PUCCH.
  • the SRI field may be included in the DCI if it is set by higher layer signaling to be (included) in the DCI.
  • the TCI field may be a field indicating the TCI state (TCI state) of the scheduled PDSCH, or may be a UL TCI field indicating the UL TCI state used for PUCCH transmission.
  • the other field may be, for example, a field for controlling PUCCH (for example, a field called a PUCCH control field).
  • the PUCCH control field may be included in the DCI if it is set by higher layer signaling to be (included) in the DCI.
  • the above specific parameters are the (detected) DCI (or corresponding to or used for reception), time resource, frequency resource, Control Channel Element (CCE) index, physical resource block (Physical). Even if it contains at least one of Resource Block (PRB) index, Resource Element (RE) index, Search space index, Control Resource Set (CORESET) index, CORESET pool index, and aggregation level. good. In other words, the particular parameter corresponds to an implicit notification using DCI.
  • PRB Resource Block
  • RE Resource Element
  • CORESET Control Resource Set index
  • CORESET CORESET pool index
  • FIG. 1A and 1B are diagrams showing an example of an SRI sequence according to the first embodiment.
  • FIG. 1A shows the values of SRI fields contained in DCI and the corresponding SRI sequences.
  • the SRI field is 3 bits in this example, but the number of bits is not limited to this.
  • the SRI sequence is specified by the SRI field
  • the present invention is not limited to this.
  • the designation of the SRI sequence based on the SRI field described below may be read as the designation of the SRI sequence based on at least one of the specific fields and specific parameters described above.
  • the fields listed in the particular fields described above may be read interchangeably.
  • different SRI sequences are specified according to the value of the SRI field.
  • the UE may assume that the SRI sequence ID activated by MAC CE corresponds to the value of each SRI field in ascending or descending order. That is, when the IDs of the plurality of activated SRI sequences and the values of the SRI fields are arranged in ascending or descending order, it may be assumed that there is a one-to-one correspondence from the smallest.
  • FIG. 1B is a diagram showing the correspondence between the SRI sequence ID and the corresponding SRI sequence (set of SRI). The correspondence may be set / activated by higher layer signaling.
  • SRI ID # x is also referred to as SRI # x, or simply # x, for the sake of simplicity.
  • the SRI sequence may indicate the SRI applied to each iteration of the PUCCH iteration.
  • PUCCH repetitive transmission using different spatial relationships may be read as mutual with PUCCH repetitive transmission using precoder cycling.
  • the number of repetitions can be appropriately determined and PUCCH repeated transmission can be performed.
  • the number of spatial relationships associated with the value of some SRI fields may always be limited to a particular value (eg, 1 or 2) (values of other SRI fields). (Or the value of SRI) is not particularly limited).
  • the value of the SRI field / SRI sequence ID whose number of spatial relations is limited to 1 may be specified in the UE.
  • FIG. 2 is a diagram showing an example in which the number of spatial relationships of a specific SRI sequence is limited.
  • the SRI corresponding to the SRI ID # x_1 may be predetermined by specifications, may be set in the UE by higher layer signaling, or may be determined based on the UE capability.
  • ⁇ Modification 2 of the first embodiment Rel.
  • NR after 16 a PUCCH resource group is introduced, and control for designating / updating a plurality of spatial relationships for each group is being studied.
  • FIG. 3 is a diagram showing an example of the spatial relationship corresponding to the PUCCH resource group.
  • one spatial relationship (SRI # 1) is set in group 1 and two spatial relationships (SRI # 1, # 2) are set in group 2 by higher layer signaling (for example, RRC, MAC CE).
  • RRC Radio Resource Control
  • MAC CE MAC CE
  • the UE may determine the number of times the PUCCH is repeated based on the number of settings / activations / designated spatial relationships.
  • the UE when the PUCCH resource belonging to group 1 is specified by PRI, the UE performs PUCCH transmission once (no repetition), and when the PUCCH resource belonging to group 2 is specified by PRI, the UE performs PUCCH transmission.
  • the UE may perform PUCCH transmission with a number of repetitions of 2.
  • the UE transmits UCI using a plurality of SRIs in one PUCCH resource in one slot.
  • the plurality of SRIs may be given as described above in the first embodiment.
  • FIGS. 4A and 4B are diagrams showing an example of mapping of a plurality of SRIs to PUCCH transmission according to the second embodiment.
  • one PUCCH resource using the N symbol in one slot is illustrated.
  • Intra frequency hopping is applied to this PUCCH resource, and the first frequency hop is the time length of the Floor (N / 2) symbol, and the second frequency hop is the time length of the N-Floor (N / 2) symbol.
  • Floor (X) is a value obtained by applying a floor function to X.
  • FIG. 4A shows an example of mapping SRI for each hop of in-frequency hopping.
  • the symbol boundaries of SRI # 1 and # 2 are frequency hopping boundaries and can be uniquely determined.
  • the UE may, for example, assign the first SRI to one of the first and second frequency hops and the second SRI to the other.
  • FIG. 4B shows an example of mapping SRI in symbol units of PUCCH resources.
  • the UE applies SRI # 1 to the number of N symbols larger than Floor (N / 2) from the first symbol, and applies SRI # 2 thereafter.
  • the UE would assign the first SRI to both the first and second frequency hops (over a plurality of frequency hops) and the second SRI to the second frequency hop.
  • the number of symbols of SRI # 1 may be smaller than the number of symbols of SRI # 2.
  • the UE may be notified of the position of the symbol boundary of SRI # 1 and # 2 by upper layer signaling, physical layer signaling, or a combination thereof.
  • the UE may be notified by higher layer signaling, physical layer signaling, or a combination thereof, with a bitmap indicating whether SRI # 1 or # 2 is applied to each symbol.
  • the symbol unit here may be read as a symbol set unit (for example, 2 symbol units) in consideration of the trade-off between flexibility and notification overhead.
  • the mapping in FIG. 4B allows more flexible SRI allocation than the mapping in FIG. 4A. For example, it may be mapped to increase the time length of the more preferable beam (SRI).
  • the UE may, for example, assign the first SRI to the PUCCH transmission opportunity having the smaller start symbol number and the second SRI to the PUCCH transmission opportunity having the larger start symbol number.
  • the PUCCH transmission opportunity may mean a PUCCH (or a resource of the PUCCH or a time resource of the PUCCH) to which the same SRI is applied.
  • TPC Transmission power control (TPC) related parameters (eg, TPC command, ⁇ , P0, Pathloss Reference Signal (PL-RS)) for each PUCCH transmission opportunity will be described.
  • TPC command e.g, TPC command, ⁇ , P0, Pathloss Reference Signal (PL-RS)
  • ⁇ , P0, and PL-RS set by higher layer signaling if they are set in / related / corresponding to spatial relations (SRI), even if different SRIs are applied for each PUCCH transmission opportunity. , PUCCH parameters for each transmission opportunity are appropriately assigned.
  • the DCI that schedules the PDSCH may include a TPC command field for each PUCCH transmission opportunity (in other words, for the number of SRIs). .. According to this configuration, the TPC for the PUCCH transmission opportunity corresponding to each SRI can be appropriately controlled.
  • the DCI may include one TPC command field indicating a TPC command for each PUCCH transmission opportunity. According to this configuration, an increase in the size of DCI can be suppressed.
  • the UE may apply one specified TPC command equally to each PUCCH transmission opportunity.
  • it may be controlled as (not applying closed-loop charge control).
  • the UE may read that the TPC command field of the DCI indicates the TPC command field of each PUCCH transmission opportunity. For example, if the TPC command field is 2 bits, the UE indicates that the first half bit (1 bit in this example) is the TPC command field of the PUCCH transmission opportunity corresponding to the first SRI, and the second half bit (1 bit in this example). ) May be determined to indicate the TPC command field of the PUCCH transmission opportunity corresponding to the second SRI.
  • the first half bit and the second half bit do not have to have the same number of bits, and may have different numbers of bits.
  • This 1 bit may correspond to, for example, the correction value +1 or -1 of the TPC command.
  • the value of this correction value may be predetermined by specifications or may be set by higher layer signaling.
  • a value for each PUCCH transmission opportunity may be set / specified, or a value common to all PUCCH transmission opportunities may be set / specified.
  • a bit string having a specific bit (for example, '0', '1) or a bit string added before or after the first half bit is a TPC command field of a PUCCH transmission opportunity corresponding to the first SRI. May be determined to indicate. Further, in the UE, a bit string having a specific bit (for example, '0', '1) or a bit string added before or after the latter half bit is a TPC command field of a PUCCH transmission opportunity corresponding to the second SRI. May be determined to indicate.
  • the UE may determine the correction value of the TPC command of each PUCCH transmission opportunity based on the correspondence between the value of one specified TPC command field and the correction value of the TPC command of each PUCCH transmission opportunity. ..
  • the correspondence may be defined in advance by the specification, may be set in the UE by higher layer signaling, may be specified by DCI, or may be determined based on the UE capability. According to this configuration, it is possible to appropriately and flexibly instruct the TPC command of each PUCCH transmission opportunity while suppressing the increase in the size of DCI.
  • the phases within the same frequency hop of the same slot are continuous (channel estimation results of continuous symbols can be used).
  • the channel on which the symbol of the antenna port used for uplink transmission is transmitted will be another symbol of the same antenna port. It may be inferred from the channel being transmitted, provided that the two symbols correspond to the same SRI (regardless of whether the two symbols correspond to the same frequency hop).
  • the phases in the PUCCH transmission opportunity corresponding to one SRI are continuous (any two symbols in this PUCCH transmission opportunity are mutually exclusive).
  • Channel estimation results can be used).
  • the channel estimation result in the symbol in the PUCCH transmission opportunity is preferably used. can.
  • the UE transmits UCI using a plurality of SRIs in a plurality of PUCCH resources in one slot.
  • the plurality of SRIs may be given as described above in the first embodiment.
  • the UCI may be individually coded within each PUCCH resource. That is, the same UCI may be transmitted on each of the plurality of PUCCHs. This operation may be called UCI repetition.
  • the base station can decode the UCI if it can receive one of the PUCCH resources.
  • the UCI may be encoded across the plurality of PUCCH resources described above. That is, one UCI may be divided into the plurality of PUCCH resources and transmitted. This operation may be referred to as UCI encoding across multiple PUCCH resources (UCI encoding across multiple PUCCH resources). For UCI encodings that span multiple PUCCH resources, it is desirable for the base station to receive both PUCCH resources for decoding. If both PUCCH resources can be received with a certain quality or higher, improvement of characteristics can be expected.
  • FIG. 5 is a diagram showing an example of mapping of a plurality of SRIs to PUCCH transmission according to the third embodiment.
  • two PUCCH resources PUCCH resources # 1 and # 2 are shown in one slot.
  • In-frequency hopping is not applied to each PUCCH resource for simplicity, but it may be applied.
  • the UE may apply different SRIs (SRI # 1, # 2) to PUCCH resources # 1 and # 2, respectively.
  • the short PUCCH format may be, for example, PUCCH format 0 or 2 having a time length of 1 or 2 symbols.
  • the long PUCCH format may be, for example, PUCCH formats 1, 3 or 4 having a time length of 4 symbols or more. The definition is not limited to this, and the long PUCCH format may have a longer time length than the short PUCCH format.
  • the TPC-related parameters for each PUCCH transmission opportunity (in the third embodiment, the PUCCH transmission opportunity corresponds to the PUCCH resource) are set in the same manner as described in the first embodiment. / May be specified.
  • the DCI that schedules PDSCH may include PRI fields for each PUCCH transmission opportunity (in other words, for the number of SRIs). According to this configuration, the PUCCH resource for the PUCCH transmission opportunity corresponding to each SRI can be appropriately controlled.
  • the DCI may include one PRI field indicating a PUCCH resource for each PUCCH transmission opportunity. According to this configuration, an increase in the size of DCI can be suppressed.
  • the UE determines the PUCCH resource for a particular PUCCH transmission opportunity (eg, the first PUCCH transmission opportunity) based on one specified PRI field, and the PUCCH resource for other PUCCH transmission opportunities based on specific rules. May be determined.
  • the UE may determine that the PUCCH resource of the other PUCCH transmission opportunity is at a position obtained by adding a predetermined time / frequency offset from the PUCCH resource of the first PUCCH transmission opportunity.
  • the predetermined time / frequency offset may be predetermined by specifications, may be set in the UE by higher layer signaling, or may be determined based on the UE capability.
  • the offset may be predetermined by specification, may be set in the UE by higher layer signaling, or may be determined based on the UE capability.
  • the UE may read that the PRI field of the DCI indicates the PRI field of each PUCCH transmission opportunity. For example, if the PRI field is 2 bits, the UE indicates that the first half bit (1 bit in this example) is the PRI field of the PUCCH transmission opportunity corresponding to the first SRI, and the second half bit (1 bit in this example) is. It may be determined to indicate the PRI field of the PUCCH transmission opportunity corresponding to the second SRI. The first half bit and the second half bit do not have to have the same number of bits, and may have different numbers of bits.
  • the correspondence between the values of the first half bit or the second half bit and the PUCCH resource may be predetermined by specifications or may be set by higher layer signaling. This correspondence may be set / specified for each PUCCH transmission opportunity, or may be set / specified in common for all PUCCH transmission opportunities.
  • a bit string having a specific bit (for example, '0', '1) or a bit string added before or after the first half bit described above sets the PRI field of the PUCCH transmission opportunity corresponding to the first SRI. It may be determined to indicate. Further, the UE performs a PRI field of the PUCCH transmission opportunity in which a bit string having a specific bit (for example, '0', '1) or a bit string added before or after the latter-half bit described above corresponds to the second SRI. It may be determined to indicate.
  • the UE may determine the PUCCH resource for each PUCCH transmission opportunity based on the correspondence between the value of one specified PRI field and the PUCCH resource (or PRI value) of each PUCCH transmission opportunity.
  • the correspondence may be defined in advance by the specification, may be set in the UE by higher layer signaling, may be specified by DCI, or may be determined based on the UE capability. According to this configuration, the PUCCH resource of each PUCCH transmission opportunity can be appropriately and flexibly instructed while suppressing the increase in the size of the DCI.
  • the UE may set a PUCCH resource set common to PUCCH transmission opportunities by the upper layer, or may set a PUCCH resource set for each PUCCH transmission opportunity by the upper layer.
  • the UE may determine the PUCCH resource for each PUCCH transmission opportunity based on at least one of the PRI field for each PUCCH transmission opportunity and one PRI field common to the PUCCH transmission opportunities as described above.
  • the PUCCH resource set referred to for determining the PUCCH resource may be used sequentially (switched) for each PUCCH transmission opportunity, or may be determined based on the CORESET pool index of the CORESET where DCI was detected. good.
  • FIG. 6 is a diagram showing an example in which a group of PUCCH resource sets common to PUCCH transmission opportunities is set in the first embodiment.
  • the UE sets a group of PUCCH resource sets composed of PUCCH resource sets 1, 2, ..., Common to PUCCH transmission opportunities (without distinguishing between PUCCH transmission opportunities).
  • TRPs 1 and 2 in the figure are conceptual examples, and they may be the same TRP.
  • the PUCCH resource set i may be specified so that a larger i is used as the size of the UCI bit is larger, but the present invention is not limited to this. Further, an example is shown in which the number of PUCCH resources included in one PUCCH resource set is 8, but the present invention is not limited to this.
  • the HARQ-ACK transmission is transmitted using the PUCCH resource of the PUCCH resource set 2 (that is, the PUCCH resource set 2 is selected based on the size of the UCI). Not limited.
  • DCI PRI field (PRI # 1 or PRI # 2 field), the same in the following drawings
  • PUCCH resource 1 8
  • the UE receives DCI1 instructing the PDSCH of TRP1 and transmits HARQ1 (HARQ-ACK) corresponding to the PDSCH.
  • the PUCCH resource for HARQ1 may be specified by the PRI # 1 and PRI # 2 fields of DCI1.
  • the PRI # 1 field of DCI1 is 010
  • the PRI # 2 field is 000
  • the UE is the first PUCCH transmission opportunity (SRI for TRP1 is applied) based on the table on the right of FIG.
  • the PUCCH resource of is resource 13, and the PUCCH resource of the second PUCCH transmission opportunity (SRI for TRP2 is applied) is resource 11.
  • FIG. 7 is a diagram showing an example in which a group of PUCCH resource sets is set for each PUCCH transmission opportunity in the first embodiment.
  • the UE sets a group of PUCCH resource sets including PUCCH resource sets 1, 2, ... For each PUCH transmission opportunity.
  • the UE receives DCI1 instructing the PDSCH of TRP1 and transmits HARQ1 (HARQ-ACK) corresponding to the PDSCH.
  • the PUCCH resource for HARQ1 may be specified by the PRI # 1 and PRI # 2 fields of DCI1.
  • the PRI # 1 field of DCI1 is 000
  • the PRI # 2 field is 000
  • the UE is given a first PUCCH transmission opportunity (SRI for TRP1 is applied).
  • the PUCCH resource of is resource 1-11
  • the PUCCH resource of the second PUCCH transmission opportunity (SRI for TRP2 is applied) is resource 2-11.
  • At least one of these DCIs may be used to schedule the PDSCH.
  • the other DCI not used in the PDSCH schedule eg, the second DCI
  • the first DCI and the second DCI may be in the same DCI format (for example, DCI format 1-11), may be in different DCI formats, or may be in different radio network temporary identifiers (RNTI). )) May have a Cyclic Redundancy Check (CRC) scrambled.
  • DCI format 1-11 may be in different DCI formats, or may be in different radio network temporary identifiers (RNTI). )
  • RNTI radio network temporary identifiers
  • CRC Cyclic Redundancy Check
  • the UE may set a PUCCH resource set common to PUCCH transmission opportunities by the upper layer, or may set a PUCCH resource set for each PUCCH transmission opportunity by the upper layer.
  • the PUCCH resource set referred to for determining the PUCCH resource may be used sequentially (switched) for each PUCCH transmission opportunity, or may be determined based on the CORESET pool index of the CORESET where DCI was detected. good.
  • FIG. 8 is a diagram showing an example in which a group of PUCCH resource sets common to PUCCH transmission opportunities is set in the second embodiment.
  • FIG. 9 is a diagram showing an example in which a group of PUCCH resource sets is set for each PUCCH transmission opportunity in the second embodiment.
  • FIG. 8 is similar to the example of FIG. 6 and FIG. 9 is similar to the example of FIG. 7, but the differences are as follows.
  • PDSCH is scheduled by at least one of DCI # 1 and # 2, and the PRI # 1 field of DCI # 1 indicates the PUCCH resource of the first PUCCH transmission opportunity (SRI for TRP1 is applied) of DCI # 2.
  • the PRI # 2 field indicates the PUCCH resource of the second PUCCH transmission opportunity (SRI for TRP2 is applied).
  • a DCI that triggers a PUCCH resource to send a HARQ-ACK for a PDSCH scheduled by another DCI and is not used for the PDSCH schedule (eg, the second DCI described above). do.
  • this DCI will also be referred to as a non-scheduled DCI, a PUCCH trigger dedicated DCI, and the like.
  • the UE that has detected the non-scheduled DCI may not receive the PDSCH or send HARQ-ACK to the PDSCH even if the non-scheduled DCI contains information for scheduling the PDSCH. ..
  • the UE that detects the non-scheduled DCI uses the PUCCH resource, TPC command, etc. indicated by the non-scheduled DCI to perform HARQ-ACK for the PDSCH scheduled by another DCI (for example, the first DCI described above). (Or an aperiodic CSI report triggered by that other DCI) may be sent.
  • the fields contained in the non-scheduled DCI may include the HARQ process number field indicating the same HARQ process number (or HARQ process ID) as indicated by the other DCI above, or the same new data as indicated by the other DCI above. It may include an NDI field indicating the value of the instruction (New Data Indicator (NDI)).
  • NDI New Data Indicator
  • the non-scheduled DCI may not include information that can determine the schedule (eg, frequency domain resource allocation field, time domain resource allocation field, etc.).
  • the UE may determine that this DCI is a non-scheduled DCI if the detected DCI meets at least one of the following conditions: -A specific field of the DCI is a predetermined value. -The DCI was detected in a specific CORESET.
  • the specific CORESET is the same CORESET as the CORESET in which another DCI was detected, a CORESET different from the CORESET in which another DCI was detected, a CORESET corresponding to the same CORESET pool index as the CORESET in which another DCI was detected, and another. It may correspond to at least one of the CORESETs corresponding to the CORESET pool index different from the CORESET in which the DCI was detected.
  • the receivable period of non-scheduled DCI may be defined.
  • the UE may assume that the DCI detected during the receivable period can be determined as a non-scheduled DCI, and the DCI that is not detected cannot be determined as a non-scheduled DCI.
  • the receivable period of the non-scheduled DCI is defined in this way, it can be suitably distinguished from the DCI for retransmission of the normal PDSCH.
  • the receivable period may correspond to at least one of the following: -From the reception symbol of another DCI (the last symbol received) to the reception start symbol of the PDSCH scheduled by the other DCI. -From the reception symbol of another DCI to the reception end symbol (final symbol) of the PDSCH scheduled by the other DCI. -From the reception symbol of another DCI to the transmission start symbol of the PUCCH triggered by the other DCI. -From the reception symbol of another DCI to the transmission end symbol of the PUCCH triggered by the other DCI.
  • the symbols in the above description of the receivable period may be read in other time units (for example, slots, subslots, subframes, frames, etc.).
  • the last example may be read as "between the reception symbol of another DCI and the transmission end slot of the PUCCH triggered by the other DCI".
  • the receivable period is when the UCI iteration described above is used (the same UCI is transmitted on a PUCCH corresponding to another DCI and a PUCCH corresponding to a non-scheduled DCI) and when the UCI encoding across multiple PUCCH resources described above (different).
  • the UCI may be coded and transmitted across the PUCCH corresponding to the DCI and the PUCCH corresponding to the non-scheduled DCI (the UCI may be encoded and transmitted), and may be specified differently (different values may be used).
  • FIG. 10 is a diagram showing an example of using non-scheduled DCI in the second embodiment. This example is similar to FIGS. 8, 9, etc., where the DCI1 schedules the PDSCH and controls the transmission of the corresponding PUCCH1. Also, the DCI2 does not schedule the PDSCH, but the transmission of the PUCCH2, which transmits the UCI for the PDSCH scheduled by the DCI1, is controlled by the DCI2.
  • Period 1 corresponds to the receivable period from the reception symbol of another DCI described above to the reception start symbol of the PDSCH scheduled by the other DCI.
  • Period 2 corresponds to the receivable period from after the reception symbol of another DCI described above to the reception end symbol of PDSCH scheduled by the other DCI.
  • Period 3 corresponds to the receivable period from after the reception symbol of another DCI described above to the transmission start symbol of PUCCH triggered by the other DCI.
  • the HARQ codebook may be one or both of a quasi-static HARQ codebook and a dynamic HARQ codebook.
  • the DL allocation index (Downlink Assignment Indicator (Index) (DAI)) does not have to be counted.
  • the DAI may be at least one of a counter DAI (Counter DAI (C-DAI)) and a total DAI (Total DAI (T-DAI)).
  • C-DAI Counter DAI
  • T-DAI Total DAI
  • the UE may ignore the DAI field of the non-scheduled DCI.
  • DAI may be counted for non-scheduled DCI.
  • the UE may control HARQ-ACK in consideration of the DAI field of the non-scheduled DCI.
  • the base station can grasp an error (for example, a reception error) about the non-scheduled DCI.
  • a DCI that triggers a PUCCH resource to send a HARQ-ACK for a PDSCH scheduled by another DCI may be used for the same PDSCH schedule.
  • the DCI can be used as a backup in case the other DCI is wrong.
  • the DCI and another DCI may have the same field except for the PRI field and the TPC command field.
  • the UE can receive the PDSCH scheduled by the other DCI based on the DCI, and corresponds to the PDSCH by using the PUCCH corresponding to the DCI.
  • HARQ-ACK can be sent.
  • FIG. 11 is a diagram showing an example of using the scheduling DCI in the second embodiment. This example is similar to FIGS. 8, 9, etc., where the DCI1 schedules the PDSCH and controls the transmission of the corresponding PUCCH1. Further, the DCI2 schedules the same PDSCH, and the transmission of the PUCCH2 for transmitting the UCI for the PDSCH scheduled by the DCI1 is controlled by the DCI2.
  • the UE failed to receive DCI1, but succeeded in receiving DCI2, so that it can receive PDSCH. Further, since the UE fails to receive the DCI1, the information of the PUCCH1 cannot be obtained, and the UCI corresponding to the PDSCH cannot be transmitted by the PUCCH1. On the other hand, since the UE succeeded in receiving the DCI2, the UE transmits the UCI corresponding to the PDSCH on the PUCCH2.
  • a fourth embodiment relates to a symbol gap during SRI switching.
  • the SRI (beam) switching process of the UE takes time.
  • -A symbol gap is required between symbols with different SRIs in one PUCCH resource.
  • -A symbol gap is required between PUCCH # 1 and PUCCH # 2 with different SRIs, but no symbol gap is required between symbols with different SRIs in one PUCCH resource.
  • a first symbol gap is required between PUCCH # 1 and PUCCH # 2 with different SRIs, and a second symbol gap is required between symbols with different SRIs in one PUCCH resource (eg, first).
  • the symbol gap of 1 may be larger, the same, or smaller than the second symbol gap).
  • the above constraint may be a constraint for each UL BWP, a constraint for each UL carrier (or cell), or a constraint common to a plurality of UL carriers (or cells).
  • the symbol gap may be used as a constraint when allocating PUCCH resources (for example, prohibiting PUCCH resource allocation within the symbol gap).
  • the UE may be allocated a PUCCH resource that overlaps with the symbol gap, in which case it may be assumed that the UE is not required (does not perform) PUCCH transmission within the symbol gap.
  • the value of the symbol gap may be specified in advance by the specification, may be set in the UE by higher layer signaling, may be specified by DCI, or may be determined based on the UE capability.
  • the value of the symbol gap is not limited to a positive value, and may be 0, a negative value, or the like.
  • FIGS. 12A-12C are diagrams showing an example of the symbol gap according to the fourth embodiment.
  • FIG. 12A corresponds to a case where UCI is transmitted using a plurality of SRIs (SRI # 1, # 2) in a plurality of PUCCH resources (PUCCH # 1, # 2) in one slot.
  • SRI # 1, # 2 SRI # 1, # 2
  • PUCCH resources may be allocated so that a symbol gap is secured between PUCCH resources.
  • FIG. 12B corresponds to a case where UCI is transmitted using a plurality of SRIs (SRI # 1, # 2) in one PUCCH resource (PUCCH # 1) in one slot.
  • SRI # 1, # 2 SRI # 1, # 2
  • PUCCH # 1 PUCCH resource
  • no symbol gap may be required (symbol gap is 0) between symbols with different SRIs in one PUCCH resource.
  • FIG. 12C corresponds to a case where UCI is transmitted using a plurality of SRIs (SRI # 1, # 2) in a plurality of PUCCH resources (PUCCH # 1, # 2) in one slot.
  • the symbol of PUCCH # 2 exists in the period within the symbol gap from the last symbol of PUCCH # 1.
  • the UE may assume that PUCCH # 2 does not transmit during the period of PUCCH # 2 that overlaps with the symbol gap from PUCCH # 1.
  • the UE may transmit PUCCH # 2 or drop (or cancel) the transmission of PUCCH # 2 during the period that does not overlap with the symbol gap (the period after the symbol gap).
  • the SRI can be switched by appropriately considering the symbol gap.
  • At least one of the above embodiments may be applied only to UEs that report or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: -Whether or not to support PUCCH repetition -Supports in-slot PUCCH repetition or -Maximum number of SRIs (or spatial relationships) for each PUCCH resource supported, -Maximum number of SRIs (or spatial relationships) (for PUCCH) per supported slot.
  • the UE is set with specific information related to the above-mentioned embodiment by higher layer signaling.
  • the particular information indicates that different spatial relationships are enabled for PUCCH transmission opportunities, information that configures the use of non-scheduled DCIs, optional for a particular release (eg, Rel.17). It may be the RRC parameter of.
  • the TPC command / PRI notification method for each PUCCH transmission opportunity as shown in the second and third embodiments may be applied to the SRI notification for each PUCCH transmission opportunity.
  • the TPC command, PRI, etc. of the second and third embodiments may be read as SRI.
  • At least one of UCI repeat and UCI encoding may be applied to a plurality of PUCCH transmission opportunities.
  • a plurality of PUCCH transmission opportunities in one slot is controlled by using one or a plurality of DCIs
  • the present invention is not limited to this.
  • a plurality of PUCCH transmission opportunities over a plurality of slots are controlled by using one or a plurality of DCIs
  • at least one content of the above-described embodiment may be applied.
  • “inside the slot” in the description may be read as "between slots", “inside a plurality of slots", or may be read by deleting "inside the slot”.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request for example.
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a reference signal for demodulation (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS positioning reference signal
  • PRS Positioning Reference Signal
  • PTRS phase tracking reference signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 14 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit information that specifies a plurality of spatial relation information (SRI) related to one Physical Uplink Control Channel (PUCCH) resource.
  • SRI spatial relation information
  • PUCCH Physical Uplink Control Channel
  • the control unit 110 may receive a plurality of PUCCH transmission opportunities in the PUCCH resource transmitted by using the spatial domain transmission filters based on the plurality of spatial relation information.
  • the transmission / reception unit 120 may transmit information that specifies a plurality of spatial relation information (SRI) regarding a plurality of Physical Uplink Control Channel (PUCCH) resources.
  • SRI spatial relation information
  • PUCCH Physical Uplink Control Channel
  • the control unit 110 may receive uplink control information in the plurality of PUCCH resources transmitted by using the spatial domain transmission filters based on the plurality of spatial relation information.
  • FIG. 15 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
  • control unit 210 may apply a plurality of spatial relation information (SRI) to one Physical Uplink Control Channel (PUCCH) resource.
  • SRI spatial relation information
  • PUCCH Physical Uplink Control Channel
  • the transmission / reception unit 220 may transmit a plurality of PUCCH transmission opportunities in the PUCCH resource by using each of the spatial domain transmission filters based on the plurality of spatial relation information.
  • the control unit 210 may apply the plurality of SRIs to the PUCCH resource in units of each hop of in-frequency hopping.
  • the control unit 210 may apply at least one of the plurality of SRIs to the plurality of hops of in-frequency hopping for the PUCCH resource.
  • the control unit 210 may apply a plurality of spatial relation information (SRI) to a plurality of Physical Uplink Control Channel (PUCCH) resources.
  • SRI spatial relation information
  • PUCCH Physical Uplink Control Channel
  • the transmission / reception unit 220 may transmit uplink control information in the plurality of PUCCH resources by using each of the spatial domain transmission filters based on the plurality of spatial relation information.
  • the transmission / reception unit 220 may transmit the same uplink control information (UCI repetition) in the plurality of PUCCH resources.
  • the control unit 210 triggers one of the plurality of PUCCH resources by the first downlink control information and the rest of the plurality of PUCCH resources is triggered by the second downlink control information, the second downlink control unit 210. It may be assumed that the downlink shared channel is not scheduled by the link control information.
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, mini-slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given channel / signal outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area is a base station subsystem (for example, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Remote Radio
  • the term "cell” or “sector” refers to a portion or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • the words such as "up” and “down” may be read as words corresponding to the communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios.
  • UMB Ultra Mobile Broadband
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as accessing) (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、複数のPhysical Uplink Control Channel(PUCCH)リソースについて、複数の空間関係情報(Spatial Relation Information(SRI))を適用する制御部と、前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて、前記複数のPUCCHリソースにおける上りリンク制御情報の送信を行う送信部と、を有する。本開示の一態様によれば好適なPUCCH繰り返し送信を実現できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 Rel.15 NRでは、ユーザ端末(user terminal、User Equipment(UE))は、Physical Uplink Control Channel(PUCCH)に関する空間関係情報(Spatial Relation Information(SRI)と呼ばれてもよい)を設定されてもよい。Rel-15 NRでは、ある時間において、1つのPUCCHリソースに対して1つのPUCCH SRIがアクティブになるように制御される。
 NRでは、UEは、PUCCHの信頼性を向上するために、複数の送受信ポイント向けにPUCCHを繰り返し送信することが検討されている。PUCCHの繰り返し送信は、PUCCH repetitionと呼ばれてもよい。
 しかしながら、これまでのNR仕様に従うと、PUCCH繰り返しにおいて異なるSRIを適用することができず、PUCCHの受信品質を効果的に向上できない。この場合、例えば複数の送受信ポイントを用いる場合の空間ダイバーシチ利得、高ランク送信などが好適に実現できず、通信スループットの増大が抑制されるおそれがある。
 そこで、本開示は、好適なPUCCH繰り返し送信を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、複数のPhysical Uplink Control Channel(PUCCH)リソースについて、複数の空間関係情報(Spatial Relation Information(SRI))を適用する制御部と、前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて、前記複数のPUCCHリソースにおける上りリンク制御情報の送信を行う送信部と、を有する。
 本開示の一態様によれば、好適なPUCCH繰り返し送信を実現できる。
図1A及び1Bは、第1の実施形態に係るSRIシーケンスの一例を示す図である。 図2は、特定のSRIシーケンスの空間関係の数が制限される一例を示す図である。 図3は、PUCCHリソースグループと対応する空間関係の一例を示す図である。 図4A及び4Bは、第2の実施形態に係るPUCCH送信への複数のSRIのマッピングの一例を示す図である。 図5は、第3の実施形態に係るPUCCH送信への複数のSRIのマッピングの一例を示す図である。 図6は、実施形態3.1においてPUCCH送信機会共通のPUCCHリソースセットのグループが設定される一例を示す図である。 図7は、実施形態3.1においてPUCCH送信機会ごとのPUCCHリソースセットのグループが設定される一例を示す図である。 図8は、実施形態3.2においてPUCCH送信機会共通のPUCCHリソースセットのグループが設定される一例を示す図である。 図9は、実施形態3.2においてPUCCH送信機会ごとのPUCCHリソースセットのグループが設定される一例を示す図である。 図10は、実施形態3.2において非スケジューリングDCIを利用する一例を示す図である。 図11は、実施形態3.2においてスケジューリングDCIを利用する一例を示す図である。 図12A-12Cは、第4の実施形態にかかるシンボルギャップの一例を示す図である。 図13は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図14は、一実施形態に係る基地局の構成の一例を示す図である。 図15は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図16は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(空間関係情報)
 NRにおいて、UEは、所定の空間関係(spatial relation)に基づいて、上りリンクの信号及びチャネルの少なくとも一方(信号/チャネルとも表現する)の送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御する。
 所定の信号/チャネルに適用する空間関係は、上位レイヤシグナリングを用いて通知(設定)される空間関係情報(Spatial Relation Information(SRI))によって特定されてもよい。
 なお、本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 例えば、Rel-15 NRにおいては、所定の参照信号(Reference Signal(RS))と上り制御チャネル(Physical Uplink Control Channel(PUCCH))との間の空間関係情報(RRCの「PUCCH-SpatialRelationInfo」情報要素)が、PUCCH設定情報(RRCの「PUCCH-Config」情報要素)に含まれてUEに設定されてもよい。
 当該所定のRSは、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information-Reference Signal(CSI-RS))及び測定用参照信号(Sounding Reference Signal(SRS))の少なくとも1つであってもよい。
 設定されるSRIは、SRIを識別するためのSRI Identifier(ID)を含んでもよい。また、SRIは、上記所定のRSのインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。また、これらの空間関係情報は、上記所定のRSに対応するサービングセルインデックス、帯域幅部分(Bandwidth Part(BWP)) IDなどを含んでもよい。
 なお、本開示において、インデックス、ID、インディケーター、リソースIDなどは、互いに読み替えられてもよい。
 UEは、SSB又はCSI-RSとPUCCHとに関する空間関係情報を設定される場合には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタと同じ空間ドメインフィルタを用いてPUCCHを送信してもよい。つまり、この場合、UEはSSB又はCSI-RSのUE受信ビームとPUCCHのUE送信ビームとが同じであると想定してもよい。
 UEは、SRSとPUCCHとに関する空間関係情報を設定される場合には、当該SRSの送信のための空間ドメインフィルタと同じ空間ドメインフィルタを用いてPUCCHを送信してもよい。つまり、この場合、UEはSRSのUE送信ビームとPUCCHのUE送信ビームとが同じであると想定してもよい。
 なお、基地局の送信のための空間ドメインフィルタと、下りリンク空間ドメイン送信フィルタ(downlink spatial domain transmission filter)と、基地局の送信ビームと、は互いに読み替えられてもよい。基地局の受信のための空間ドメインフィルタと、上りリンク空間ドメイン受信フィルタ(uplink spatial domain receive filter)と、基地局の受信ビームと、は互いに読み替えられてもよい。
 また、UEの送信のための空間ドメインフィルタと、上りリンク空間ドメイン送信フィルタ(uplink spatial domain transmission filter)と、UEの送信ビームと、は互いに読み替えられてもよい。UEの受信のための空間ドメインフィルタと、下りリンク空間ドメイン受信フィルタ(downlink spatial domain receive filter)と、UEの受信ビームと、は互いに読み替えられてもよい。
 UEは、PUCCH設定(PUCCH-Config)単位でSRIを設定されてもよい。PUCCH設定によって設定されるSRIは、当該PUCCH設定によって設定される全てのPUCCHリソースに適用されてもよい。
 UEは、PUCCHに関するSRIが1つより多く設定される場合には、PUCCH空間関係アクティベーション/ディアクティベーションMAC CE(PUCCH spatial relation Activation/Deactivation MAC CE)に基づいて、ある時間において1つのPUCCHリソースに対して1つのPUCCH SRIがアクティブになるように制御してもよい。
(マルチTRP)
 NRでは、UEは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(M-TRP)))に対してUL送信(例えば、PUCCH送信)を行うことが検討されている。
 一例として、超高信頼及び低遅延(例えば、Ultra Reliable and Low Latency Communications(URLLC))のユースケース(又はサービス)向けにPUCCHの信頼性を向上するために、マルチTRPに対して異なるSRIを適用したPUCCHを繰り返し送信することが検討されている。PUCCHの繰り返し送信は、PUCCH repetitionと呼ばれてもよい。繰り返し送信は、単に繰り返しと呼ばれてもよい。
 なお、SRIは、ビームに対応してもよい。例えば、UEは、異なるSRIのPUCCHは、異なるビームを用いて送信されると想定してもよい。
 PUCCHの繰り返し送信によれば、PUCCHについて、ネットワーク側の受信品質の向上が期待できる。しかしながら、現状のRel.15/16 NRでは、PUCCH繰り返し送信に対して、同じ空間関係を適用することしか許容されていない。
 したがって、これまでのNR仕様に従うと、PUCCH繰り返しにおいて異なるSRIを適用することができず、PUCCHの受信品質を効果的に向上できない。この場合、マルチTRPを用いる場合の空間ダイバーシチ利得、高ランク送信などが好適に実現できず、通信スループットの増大が抑制されるおそれがある。
 そこで、本発明者らは、好適なPUCCH繰り返し送信を実現するための方法を着想した。本開示の一態様では、例えば、異なる空間関係を用いるPUCCH繰り返しについて、繰り返し回数をUEが適切に決定できる。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、本開示において、「A/B」は、「A及びBの少なくとも一方」を意味してもよい。
 なお、本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。また、本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、ビーム、パネルグループ、ビームグループ、Uplink(UL)送信エンティティ、TRP、空間関係情報(SRI)、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード、基地局、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ)、所定のリソース(例えば、所定の参照信号リソース)、所定のリソースセット(例えば、所定の参照信号リソースセット)、CORESETプール、PUCCHグループ(PUCCHリソースグループ)、空間関係グループ、下りリンクのTCI状態(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、などは、互いに読み替えられてもよい。
 なお、シングルDCIについて、第iのTRP(TRP#i)は、第iのTCI状態、第iのCDMグループなどを意味してもよい(iは、整数)。
 なお、マルチDCIについて、第iのTRP(TRP#i)は、CORESETプールインデックス=iに対応するCORESET、第iのTCI状態、第iのCDMグループなどを意味してもよい(iは、整数)。
 パネルは、SSB/CSI-RSグループのグループインデックス、グループベースビーム報告のグループインデックス、グループベースビーム報告のためのSSB/CSI-RSグループのグループインデックス、の少なくとも1つに関連してもよい。
 また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。つまり、TRP IDとTRP、CORESETグループIDとCORESETグループなどは、互いに読み替えられてもよい。
 本開示において、インデックス、ID、インディケーター、リソースID、は互いに読み替えられてもよい。本開示において、リスト、グループ、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、単に「空間関係」という記載は、PUCCHの空間関係と互いに読み替えられてもよい。
 本開示のPUCCH繰り返しは、MTRPベース繰り返し、Rel.17の繰り返し、異なる空間関係を適用する繰り返し、などと互いに読み替えられてもよい。また、PUCCHは、以下の例ではPDSCHに対するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)送信に用いられるPUCCHとして説明するが、HARQ-ACK、SR、CSI(例えば、非周期的CSI)などの少なくとも1つのUCI送信のためのPUCCHであってもよく、そのようい読み替えられてもよい。
 また、本開示における、複数の空間関係(SRI)は、SRIシーケンス、SRIのセット、SRIのパターン、PUCCH繰り返しに適用されるSRIなどと互いに読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態においては、UEは、PUCCHの繰り返し回数を、設定/アクティベート/指定された空間関係の数(例えば、SRIシーケンスに含まれるSRIの数)に基づいて決定してもよい。
 UEは、PUCCH繰り返しに適用するSRIを、PUCCH繰り返しにわたるSRIシーケンスの形でRRCシグナリングによって設定されてもよい。
 なお、本開示において、SRIは、PUCCHの空間関係情報(SRI)、RRCパラメータ「Spatialrelationinfo」、SRI IDなどと互いに読み替えられてもよい。また、本開示において、SRIシーケンスは、PUCCH繰り返しに適用されるSRIの系列、SRIのセット、SRIのパターンなどと互いに読み替えられてもよい。
 UEは、RRCシグナリングによって、所定の数(例えば、M)のSRIシーケンスを設定されてもよい。ここで、当該所定の数Mは、例えば、8、64などであってもよいし、64より大きくてもよい。
 UEは、複数のSRIシーケンスが設定される場合に、さらにMAC CEを用いて1つ又は複数のSRIシーケンス(SRIシーケンスのサブセット)をアクティベートされてもよい。アクティブであるSRIシーケンスの最大数は、所定の数(例えば、8)に制限されてもよい。
 DCIに基づいて、アクティベートされたSRIシーケンスのうち、1つのシーケンスが指定されてもよい。例えば、UEは、DCIの特定のフィールド及び当該DCIに関する特定のパラメータ(又は情報)に基づいて、アクティベートされたSRIシーケンスのうち、1つのシーケンスを、PUCCH繰り返しに利用するシーケンスとして決定してもよい。
 ここで、当該特定のフィールドは、PUCCHリソースインディケーター(PUCCH Resource Indicator(PRI))フィールド、SRIフィールド、送信設定指示(Transmission Configuration Indication(TCI))フィールド、その他のフィールドなどであってもよいし、複数のフィールドの組み合わせによって表現されてもよい。
 PRIフィールドは、PDSCHをスケジュールするDCIに含まれ、当該PDSCHに対応するHARQ-ACKを送信するためのPUCCHリソースを指定する情報に該当する。
 SRIフィールドは、PUCCHの空間関係を指定するフィールドであってもよい。SRIフィールドは、DCI内に存在する(含まれる)ことが上位レイヤシグナリングによって設定された場合に、DCIに含まれてもよい。
 TCIフィールドは、スケジュールされるPDSCHのTCI状態(TCI state)を示すフィールドであってもよいし、PUCCH送信に用いるUL TCI状態を示すUL TCIフィールドであってもよい。
 その他のフィールドは、例えば、PUCCHを制御するためのフィールド(例えば、PUCCH制御フィールド(PUCCH Control field)と呼ばれるフィールド)であってもよい。PUCCH制御フィールドは、DCI内に存在する(含まれる)ことが上位レイヤシグナリングによって設定された場合に、DCIに含まれてもよい。
 上記特定のパラメータは、(検出した)DCIの(又は当該DCIに対応する又は受信に用いた)、時間リソース、周波数リソース、制御チャネル要素(Control Channel Element(CCE))インデックス、物理リソースブロック(Physical Resource Block(PRB))インデックス、リソースエレメント(Resource Element(RE))インデックス、サーチスペースインデックス、制御リソースセット(Control Resource Set(CORESET))インデックス、CORESETプールインデックス、アグリゲーションレベル、の少なくとも1つを含んでもよい。言い換えると、上記特定のパラメータは、DCIを用いる暗黙的な通知に該当する。
 図1A及び1Bは、第1の実施形態に係るSRIシーケンスの一例を示す図である。図1Aは、DCIに含まれるSRIフィールドの値と、対応するSRIシーケンスと、を示す。SRIフィールドは、本例では3ビットであるが、ビット数はこれに限られない。
 また、以下、本開示ではSRIシーケンスがSRIフィールドによって指定されるケースを例に説明するが、これに限られない。以降の説明のSRIフィールドに基づくSRIシーケンスの指定は、上述の特定のフィールド及び特定のパラメータの少なくとも1つに基づくSRIシーケンスの指定で読み替えられてもよい。本開示において、上述の特定のフィールドに列挙されたフィールドは、互いに読み替えられてもよい。
 図1Aにおいては、SRIフィールドの値に応じて異なるSRIシーケンス(第1から第8のSRIシーケンス)が指定される。UEは、MAC CEによってアクティベートされたSRIシーケンスIDが、昇順又は降順に各SRIフィールドの値に対応すると想定してもよい。つまり、アクティベートされた複数のSRIシーケンスのIDと、SRIフィールドの値と、をそれぞれ昇順又は降順に並べたときに、小さい方から1対1に対応すると想定してもよい。
 図1Bは、SRIシーケンスIDと、対応するSRIシーケンス(SRIのセット)と、の対応関係を示す図である。当該対応関係は、上位レイヤシグナリングによって設定/アクティベートされてもよい。
 本例では、SRIシーケンスID=1は{#1、#2、#3、#4}に該当し、SRIシーケンスID=5は{#1、#2}に該当し、SRIシーケンスID=8は{#1}に該当する。なお、本開示では、簡単のためSRI ID#xを、SRI#x、単に#xとも表す。
 上述したように、SRIシーケンスは、PUCCH繰り返しの各繰り返しに適用するSRIを示してもよい。例えば、図1Aの第iのSRIシーケンスが、図1BのSRIシーケンスID=i+1に対応するケースでは、SRIフィールド=000を指定されたUEは、PUCCH繰り返し回数が4であると想定し、PUCCH繰り返しの1、2、3及び4番目を、それぞれSRI#1、#2、#3及び#4を適用して送信してもよい。
 また、SRIフィールド=100を指定されたUEは、PUCCH繰り返し回数が2であると想定し、PUCCH繰り返しの1及び2番目を、それぞれSRI#1及び#2を適用して送信してもよい。
 また、SRIフィールド=111を指定されたUEは、PUCCH繰り返し回数が1である(繰り返しなしのPUCCH送信が指定された)と想定し、PUCCHを、SRI#1を適用して送信してもよい。
 なお、本開示において、異なる空間関係を用いたPUCCH繰り返し送信は、プリコーダサイクリングを用いたPUCCH繰り返し送信と互いに読み替えられてもよい。
 以上説明した第1の実施形態によれば、繰り返し回数を適切に判断してPUCCH繰り返し送信を実施できる。
<第1の実施形態の変形例>
 一部のSRIフィールドの値(又はSRIシーケンスIDの値)に関連付けられる(設定可能な)空間関係の数は、その他のSRIフィールドの値(又はSRIシーケンスIDの値)と比べて制限されてもよい。
 例えば、一部のSRIフィールドの値(又はSRIシーケンスIDの値)に関連付けられる空間関係の数は、必ず特定の値(例えば、1又は2)に制限されてもよい(その他のSRIフィールドの値(又はSRIの値)は特に制限なし)。繰り返しなしのPUCCH送信を指定したい場合には、空間関係の数が1に制限されたSRIフィールド/SRIシーケンスIDの値をUEに指定すればよい。このように空間関係の数に制限を設けることで、SRI/SRIシーケンス設定のためのシグナリングオーバーヘッドの増大を好適に抑制できる。
 図2は、特定のSRIシーケンスの空間関係の数が制限される一例を示す図である。本例では、SRIシーケンスID=0に関連付けられる空間関係の数が、1に制限されている。SRI ID#x_1に対応するSRIは、予め仕様によって定められてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力に基づいて判断されてもよい。
<第1の実施形態の変形例その2>
 Rel.16以降のNRでは、PUCCHリソースグループが導入され、当該グループごとに複数の空間関係を指定/更新する制御が検討されている。
 図3は、PUCCHリソースグループと対応する空間関係の一例を示す図である。本例では、PRI=0から7の値がそれぞれPUCCHリソース1-8に対応し、PUCCHリソース1-4はグループ1、PUCCHリソース5-8はグループ2に対応する。
 ここでは、上位レイヤシグナリング(例えば、RRC、MAC CE)によって、グループ1に1つの空間関係(SRI#1)が設定され、グループ2に2つの空間関係(SRI#1、#2)が設定されたとする。
 第1の実施形態で上述したように、UEは、PUCCHの繰り返し回数を、設定/アクティベート/指定された空間関係の数に基づいて決定してもよい。図3の例では、グループ1に属するPUCCHリソースがPRIによって指定されると、UEは繰り返し回数1回(繰り返しなし)のPUCCH送信を行い、グループ2に属するPUCCHリソースがPRIによって指定されると、UEは繰り返し回数2のPUCCH送信を行ってもよい。
<第2の実施形態>
 第2の実施形態では、UEは、1スロット内の1つのPUCCHリソースにおいて、複数のSRIを用いてUCIを送信する。当該複数のSRIは、第1の実施形態において上述したように与えられてもよい。
 図4A及び4Bは、第2の実施形態に係るPUCCH送信への複数のSRIのマッピングの一例を示す図である。本例では、1スロット内のNシンボルを用いる1つのPUCCHリソースが図示されている。このPUCCHリソースは、周波数内ホッピング(intra frequency hopping)が適用され、第1の周波数ホップはFloor(N/2)シンボル、第2の周波数ホップはN-Floor(N/2)シンボルの時間長を有する。なお、Floor(X)はXに床関数を適用した値である。
 このPUCCH送信に複数のSRI(SRI#1、#2)を用いることが決定されたと考える。図4Aは、周波数内ホッピングの各ホップ単位でSRIをマッピングする例を示す。この場合、SRI#1及び#2のシンボル境界は、周波数ホッピング境界となり、一意に決定できる。
 UEは、例えば、第1のSRIを第1及び第2の周波数ホップの一方に割り当て、第2のSRIをこれらの他方に割り当ててもよい。
 図4Bは、PUCCHリソースのシンボル単位でSRIをマッピングする例を示す。本例では、UEは、Nシンボルのうち、先頭シンボルからFloor(N/2)より大きいシンボル数だけSRI#1を適用し、それ以降はSRI#2を適用する。この場合、UEは、第1のSRIを第1及び第2の周波数ホップの両方に(複数の周波数ホップにわたって)割り当て、第2のSRIを第2の周波数ホップに割り当てることになる。なお、これとは逆にSRI#1のシンボル数がSRI#2のシンボル数より少なくてもよい。
 例えば、UEは、SRI#1及び#2のシンボル境界の位置を、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって通知されてもよい。UEは、各シンボルにSRI#1及び#2のどちらを適用するかを示すビットマップを、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって通知されてもよい。
 ここでのシンボル単位は、柔軟性と通知オーバーヘッドとのトレードオフを考慮して、シンボルセット単位(例えば、2シンボル単位)で読み替えられてもよい。
 図4Bのマッピングは、図4Aのマッピングより柔軟なSRIの割り当てが可能である。例えば、より好ましいビーム(SRI)の時間長が多くなるようにマッピングされてもよい。
 UEは、例えば、第1のSRIを開始シンボル番号が小さい方のPUCCH送信機会に割り当て、第2のSRIを開始シンボル番号が大きい方のPUCCH送信機会に割り当ててもよい。なお、本開示において、PUCCH送信機会は、同じSRIが適用されるPUCCH(又は当該PUCCHのリソース又は当該PUCCHの時間リソース)を意味してもよい。
[TPC]
 各PUCCH送信機会のための送信電力制御(Transmit Power Control(TPC))関連パラメータ(例えば、TPCコマンド、α、P0、パスロス参照信号(Pathloss Reference Signal(PL-RS)))について説明する。
 上位レイヤシグナリングによって設定されるα、P0、PL-RSについては、空間関係(SRI)と一緒に/関連して/対応して設定される場合、PUCCH送信機会ごとに異なるSRIが適用されても、PUCCH送信機会ごとのパラメータが適切に割り当てられる。
 PDSCHをスケジュールするDCI(例えば、DCIフォーマット1_1)(DLアサインメントDCIと呼ばれてもよい)には、PUCCH送信機会ごとの(言い換えると、SRI数分の)TPCコマンドフィールドが含まれてもよい。この構成によれば、各SRIに対応するPUCCH送信機会のためのTPCを適切に制御できる。
 上記DCIには、各PUCCH送信機会のTPCコマンドを示す1つのTPCコマンドフィールドが含まれてもよい。この構成によれば、DCIのサイズの増大を抑制できる。
 UEは、指定された1つのTPCコマンドを、各PUCCH送信機会に等しく適用してもよい。
 UEは、指定された1つのTPCコマンドを、特定のPUCCH送信機会(例えば、1番目のPUCCH送信機会)に適用し、その他のPUCCH送信機会についてはTPCコマンドが通知されない(TPCによる補正値=0又は閉ループ電量制御を適用しない)として制御してもよい。
 UEは、上記DCIのTPCコマンドフィールドが各PUCCH送信機会のTPCコマンドフィールドを示すと読み換えてもよい。例えば、TPCコマンドフィールドが2ビットである場合、UEは、前半ビット(本例では1ビット)は第1のSRIに対応するPUCCH送信機会のTPCコマンドフィールドを示し、後半ビット(本例では1ビット)は第2のSRIに対応するPUCCH送信機会のTPCコマンドフィールドを示すと判断してもよい。なお、前半ビット及び後半ビットは、同じビット数でなくてもよく、異なるビット数であってもよい。
 この1ビットは、例えばTPCコマンドの補正値+1又は-1に対応してもよい。この補正値の値は、予め仕様によって定められてもよいし、上位レイヤシグナリングによって設定されてもよい。この補正値の値は、PUCCH送信機会ごとの値が設定/規定されてもよいし、全てのPUCCH送信機会で共通する値が設定/規定されてもよい。
 なお、UEは、上記の前半ビットの前又は後ろに、特定のビット(例えば、‘0’、‘1)又はビット列を付したビット列が、第1のSRIに対応するPUCCH送信機会のTPCコマンドフィールドを示すと判断してもよい。また、UEは、上記の後半ビットの前又は後ろに、特定のビット(例えば、‘0’、‘1)又はビット列を付したビット列が、第2のSRIに対応するPUCCH送信機会のTPCコマンドフィールドを示すと判断してもよい。
 UEは、指定された1つのTPCコマンドフィールドの値と、各PUCCH送信機会のTPCコマンドの補正値と、の対応関係に基づいて、各PUCCH送信機会のTPCコマンドの補正値を決定してもよい。当該対応関係は、予め仕様によって規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、DCIによって指定されてもよいし、UE能力に基づいて判断されてもよい。この構成によれば、DCIのサイズの増大を抑制しつつ、各PUCCH送信機会のTPCコマンドを適度に柔軟に指示できる。
[位相連続性]
 既存のRel.15/16 NRの仕様では、PUCCHのためにスロット内周波数内ホッピングが上位レイヤパラメータによって有効化される場合には、上りリンク送信のために用いられるアンテナポートのシンボルが伝送されるチャネルは、同じアンテナポートの別のシンボルが伝送されるチャネルから推定されてもよい、ただし、この2つのシンボルが同じ周波数ホップに対応する場合に限られる(なお、この周波数ホップ距離がゼロか否かに関わらない)と規定されている。
 言い換えると、既存の仕様では、同一スロットの同一周波数ホップ内の位相が連続する(連続するシンボルのチャネル推定結果を利用できる)。
 第2の実施形態においては、以下の規定が導入されてもよい:
 ・PUCCHのためにスロット内周波数内ホッピングが上位レイヤパラメータによって有効化される場合には、上りリンク送信のために用いられるアンテナポートのシンボルが伝送されるチャネルは、同じアンテナポートの別のシンボルが伝送されるチャネルから推定されてもよい、ただし、この2つのシンボルが同じSRIに対応する場合に限られる(なお、この2つのシンボルが同じ周波数ホップに対応するか否かに関わらない)。
 第2の実施形態においては、1つのPUCCHリソースに複数のSRIが割り当てられる場合、1つのSRIに対応するPUCCH送信機会内の位相は連続する(このPUCCH送信機会内の任意の2シンボルは、互いにチャネル推定結果を利用できる)と想定されてもよい。この構成によれば、図4Bに示したような、同一スロット内の異なる周波数ホップにわたるPUCCH送信機会において、同じSRIが適用される場合に、PUCCH送信機会内のシンボルにおけるチャネル推定結果を好適に利用できる。
 以上説明した第2の実施形態によれば、シングルDCIに基づいて、異なるSRIを適用した繰り返し送信を適切に実施できる。
<第3の実施形態>
 第3の実施形態では、UEは、1スロット内の複数のPUCCHリソースにおいて、複数のSRIを用いてUCIを送信する。当該複数のSRIは、第1の実施形態において上述したように与えられてもよい。
 UCIは、各PUCCHリソース内でそれぞれ符号化されてもよい。つまり、同じUCIが、上記複数のPUCCHのそれぞれで送信されてもよい。この動作は、UCI繰り返し(UCI repetition)と呼ばれてもよい。UCI繰り返しの場合、基地局は一方のPUCCHリソースを受信できれば、UCIの復号が可能である。
 UCIは、上記複数のPUCCHリソースにわたって符号化されてもよい。つまり、1つのUCIが、上記複数のPUCCHリソースに分割されて送信されてもよい。この動作は、複数PUCCHリソースにわたるUCIエンコーディング(UCI encoding across multiple PUCCH resources)と呼ばれてもよい。複数PUCCHリソースにわたるUCIエンコーディングの場合、基地局は復号のためには両方のPUCCHリソースを受信することが望ましい。両方のPUCCHリソースを一定以上の品質で受信できれば、特性の向上が期待できる。
 図5は、第3の実施形態に係るPUCCH送信への複数のSRIのマッピングの一例を示す図である。本例では、1スロット内に2つのPUCCHリソース(PUCCHリソース#1、#2)が図示されている。各PUCCHリソースは、簡単のため周波数内ホッピングが適用されていないが、適用されてもよい。UEは、PUCCHリソース#1及び#2に対して、それぞれ異なるSRI(SRI#1、#2)を適用してもよい。
 なお、スロット内で異なるSRIを適用して送信される2つのPUCCHのフォーマットの組み合わせについて、制約はないと想定されてもよいし、以下の少なくとも1つの制約があると想定されてもよい:
 ・時間長が比較的短いショートPUCCHフォーマットとショートPUCCHフォーマットとの組み合わせは禁止される(予期されない)又は許容される、
 ・ショートPUCCHフォーマットと時間長が比較的長いロングPUCCHフォーマットとの組み合わせは禁止される(予期されない)又は許容される、
 ・ロングPUCCHフォーマットとロングPUCCHフォーマットとの組み合わせは禁止される(予期されない)又は許容される。
 なお、ショートPUCCHフォーマットは、例えば、1、2シンボルの時間長を有するPUCCHフォーマット0又は2であってもよい。なお、ロングPUCCHフォーマットは、例えば、4シンボル以上の時間長を有するPUCCHフォーマット1、3又は4であってもよい。定義はこれに限られず、ロングPUCCHフォーマットは、ショートPUCCHフォーマットに比べて時間長が長ければよい。
 以下、スロット内で異なるSRIを適用して送信される2つのPUCCHが、1つのDCI(シングルDCI)を用いてトリガーされる場合(実施形態3.1)と、別々のDCI(マルチDCI)を用いてそれぞれトリガーされる場合(実施形態3.2)と、について説明する。
[実施形態3.1]
 実施形態3.1では、各PUCCH送信機会(第3の実施形態では、PUCCH送信機会はPUCCHリソースに相当する)のためのTPC関連パラメータは、第1の実施形態で説明したのと同様に設定/指定されてもよい。
 以下では、実施形態3.1におけるPRIフィールドについて説明する。
 PDSCHをスケジュールするDCI(例えば、DCIフォーマット1_1)(DLアサインメントDCIと呼ばれてもよい)には、PUCCH送信機会ごとの(言い換えると、SRI数分の)PRIフィールドが含まれてもよい。この構成によれば、各SRIに対応するPUCCH送信機会のためのPUCCHリソースを適切に制御できる。
 上記DCIには、各PUCCH送信機会のPUCCHリソースを示す1つのPRIフィールドが含まれてもよい。この構成によれば、DCIのサイズの増大を抑制できる。
 UEは、指定された1つのPRIフィールドに基づいて特定のPUCCH送信機会(例えば、1番目のPUCCH送信機会)のPUCCHリソースを決定し、その他のPUCCH送信機会については特定のルールに基づいてPUCCHリソースを決定してもよい。
 UEは、当該その他のPUCCH送信機会のPUCCHリソースは、1番目のPUCCH送信機会のPUCCHリソースから所定の時間/周波数オフセットを加えた位置にあると決定してもよい。当該所定の時間/周波数オフセットは、予め仕様によって定められてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力に基づいて判断されてもよい。
 UEは、当該その他のPUCCH送信機会のPUCCHリソースは、上記指定された1つのPRIフィールドの値にオフセットを加算又は減算した値(又は当該値をPRIフィールドの取り得る値の数で割った余り)に対応するPUCCHリソースであると決定してもよい。例えば、オフセットが‘2’であって、指定された1つのPRIフィールドの値が‘1’である場合は、当該その他のPUCCH送信機会については、PRIフィールドの値=3(=1+2)が通知されたと判断して、PUCCHリソースを決定してもよい。当該オフセットは、予め仕様によって定められてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力に基づいて判断されてもよい。
 UEは、上記DCIのPRIフィールドが各PUCCH送信機会のPRIフィールドを示すと読み換えてもよい。例えば、PRIフィールドが2ビットである場合、UEは、前半ビット(本例では1ビット)は第1のSRIに対応するPUCCH送信機会のPRIフィールドを示し、後半ビット(本例では1ビット)は第2のSRIに対応するPUCCH送信機会のPRIフィールドを示すと判断してもよい。なお、前半ビット及び後半ビットは、同じビット数でなくてもよく、異なるビット数であってもよい。
 この前半ビット又は後半ビットの値とPUCCHリソースとの対応関係は、予め仕様によって定められてもよいし、上位レイヤシグナリングによって設定されてもよい。この対応関係は、PUCCH送信機会ごとに設定/規定されてもよいし、全てのPUCCH送信機会で共通して設定/規定されてもよい。
 なお、UEは、上記の前半ビットの前又は後ろに、特定のビット(例えば、‘0’、‘1)又はビット列を付したビット列が、第1のSRIに対応するPUCCH送信機会のPRIフィールドを示すと判断してもよい。また、UEは、上記の後半ビットの前又は後ろに、特定のビット(例えば、‘0’、‘1)又はビット列を付したビット列が、第2のSRIに対応するPUCCH送信機会のPRIフィールドを示すと判断してもよい。
 UEは、指定された1つのPRIフィールドの値と、各PUCCH送信機会のPUCCHリソース(又はPRIの値)と、の対応関係に基づいて、各PUCCH送信機会のPUCCHリソースを決定してもよい。当該対応関係は、予め仕様によって規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、DCIによって指定されてもよいし、UE能力に基づいて判断されてもよい。この構成によれば、DCIのサイズの増大を抑制しつつ、各PUCCH送信機会のPUCCHリソースを適度に柔軟に指示できる。
 なお、UEは、PUCCH送信機会に共通のPUCCHリソースセットを上位レイヤによって設定されてもよいし、PUCCH送信機会ごとのPUCCHリソースセットを上位レイヤによって設定されてもよい。UEは、上述したようなPUCCH送信機会ごとのPRIフィールド、PUCCH送信機会共通の1つのPRIフィールドの少なくとも一方に基づいて、PUCCH送信機会ごとのPUCCHリソースを決定してもよい。PUCCHリソースの決定のために参照されるPUCCHリソースセットは、PUCCH送信機会ごとに順番に(切り替えて)用いられてもよいし、DCIが検出されたCORESETのCORESETプールインデックスに基づいて決定されてもよい。
 図6は、実施形態3.1においてPUCCH送信機会共通のPUCCHリソースセットのグループが設定される一例を示す図である。本例では、UEは、PUCCHリソースセット1、2、…、から構成されるPUCCHリソースセットのグループを、PUCCH送信機会共通(PUCCH送信機会を区別せずに)設定される。なお、図中のTRP1、2は概念的な例示であって、これらは同じTRPであってもよい。
 なお、本開示において、PUCCHリソースセットiは、UCIビットのサイズが大きいほどより大きなiが用いられるように規定されてもよいが、これに限られない。また、1つのPUCCHリソースセットに含まれるPUCCHリソースの数が8である例を示すが、これに限られない。
 また、以降の例では、HARQ-ACK送信がPUCCHリソースセット2のPUCCHリソースを用いて送信される(つまり、UCIのサイズに基づいてPUCCHリソースセット2が選択された)例を示すが、これに限られない。
 図6の右に示すように、PUCCHリソースセット1では、DCI(PRIフィールド(PRI#1又はPRI#2フィールド)、以降の図面において同じ。)=000から111に対応して、PUCCHリソース1から8が設定されている。PUCCHリソースセット2では、DCI=000から111に対応して、PUCCHリソース11から18が設定されている。
 図6の左上に示すように、UEは、TRP1のPDSCHを指示するDCI1を受信し、当該PDSCHに対応するHARQ1(HARQ-ACK)を送信する。ここで、HARQ1のためのPUCCHリソースは、DCI1のPRI#1及びPRI#2フィールドによって指定されてもよい。ここでは、DCI1のPRI#1フィールドが010、PRI#2フィールドが000であり、図6の右のテーブルに基づいて、UEが、第1のPUCCH送信機会(TRP1向けのSRIが適用される)のPUCCHリソースがリソース13であり、第2のPUCCH送信機会(TRP2向けのSRIが適用される)のPUCCHリソースがリソース11である例が示されている。
 図7は、実施形態3.1においてPUCCH送信機会ごとのPUCCHリソースセットのグループが設定される一例を示す図である。本例では、UEは、PUCCHリソースセット1、2、…、から構成されるPUCCHリソースセットのグループを、PUCH送信機会ごとに設定される。
 図7の右上に示すように、第1のPUCCH送信機会のためのPUCCHリソースセット1では、DCI=000から111に対応して、PUCCHリソース1-1から1-8が設定されている。第1のPUCCH送信機会のためのPUCCHリソースセット2では、DCI=000から111に対応して、PUCCHリソース1-11から1-18が設定されている。
 図7の右下に示すように、第2のPUCCH送信機会のためのPUCCHリソースセット1では、DCI=000から111に対応して、PUCCHリソース2-1から2-8が設定されている。第2のPUCCH送信機会のためのPUCCHリソースセット2では、DCI=000から111に対応して、PUCCHリソース2-11から2-18が設定されている。
 図7の左上に示すように、UEは、TRP1のPDSCHを指示するDCI1を受信し、当該PDSCHに対応するHARQ1(HARQ-ACK)を送信する。ここで、HARQ1のためのPUCCHリソースは、DCI1のPRI#1及びPRI#2フィールドによって指定されてもよい。ここでは、DCI1のPRI#1フィールドが000、PRI#2フィールドが000であり、図7の右のテーブルに基づいて、UEが、第1のPUCCH送信機会(TRP1向けのSRIが適用される)のPUCCHリソースがリソース1-11であり、第2のPUCCH送信機会(TRP2向けのSRIが適用される)のPUCCHリソースがリソース2-11である例が示されている。
[実施形態3.2]
 実施形態3.2では、TRP#1向けのDCI(例えば、CORESETプールインデックス=0に対応するCORESETで検出されるDCI)を用いて、TRP#1向けのPUCCH送信機会のTPCコマンド、PRIなどが指定されてもよい。また、TRP#2向けのDCI(例えば、CORESETプールインデックス=1に対応するCORESETで検出されるDCI)を用いて、TRP#2向けのPUCCH送信機会のTPCコマンド、PRIなどが指定されてもよい。
 これらのDCI(マルチDCI)の少なくとも一方(例えば、第1のDCI)が、PDSCHをスケジュールするために用いられてもよい。PDSCHのスケジュールに用いられない他方のDCI(例えば、第2のDCI)は、第1のDCIによってスケジュールされる上記PDSCHのためのHARQ-ACKを送信するためのPUCCHについて、PUCCHリソース、TPCコマンドなどの通知のために利用されてもよい。
 第1のDCI及び第2のDCIは、同じDCIフォーマット(例えば、DCIフォーマット1_1)であってもよいし、異なるDCIフォーマットであってもよいし、異なる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))によってスクランブルされる巡回冗長検査(Cyclic Redundancy Check(CRC))を有してもよい。
 なお、UEは、PUCCH送信機会に共通のPUCCHリソースセットを上位レイヤによって設定されてもよいし、PUCCH送信機会ごとのPUCCHリソースセットを上位レイヤによって設定されてもよい。PUCCHリソースの決定のために参照されるPUCCHリソースセットは、PUCCH送信機会ごとに順番に(切り替えて)用いられてもよいし、DCIが検出されたCORESETのCORESETプールインデックスに基づいて決定されてもよい。
 図8は、実施形態3.2においてPUCCH送信機会共通のPUCCHリソースセットのグループが設定される一例を示す図である。図9は、実施形態3.2においてPUCCH送信機会ごとのPUCCHリソースセットのグループが設定される一例を示す図である。図8は図6の例と、図9は図7の例と、それぞれ類似するが、異なる点は以下のとおりである。
 UEは、TRP#1(例えば、CORESETプールインデックス=0のCORESET)からDCI#1を、TRP#2(例えば、CORESETプールインデックス=1のCORESET)からDCI#2を検出する。DCI#1及び#2の少なくとも一方によってPDSCHがスケジュールされ、DCI#1のPRI#1フィールドが第1のPUCCH送信機会(TRP1向けのSRIが適用される)のPUCCHリソースを示し、DCI#2のPRI#2フィールドが第2のPUCCH送信機会(TRP2向けのSRIが適用される)のPUCCHリソースを示す。
[[PDSCHをスケジュールしないDCI]]
 別のDCIによってスケジュールされるPDSCHのためのHARQ-ACKを送信するためのPUCCHリソースをトリガーするDCIであって、PDSCHのスケジュールには用いられないDCI(例えば、上述の第2のDCI)について説明する。以下、本開示では、このDCIのことを、非スケジューリングDCI、PUCCHトリガー専用DCI、などとも呼ぶ。
 非スケジューリングDCIを検出したUEは、仮に当該非スケジューリングDCIがPDSCHをスケジュールする情報を含んでいても、当該PDSCHを受信しなくてもよいし、当該PDSCHに対するHARQ-ACKを送信しなくてもよい。非スケジューリングDCIを検出したUEは、当該非スケジューリングDCIによって指示されるPUCCHリソース、TPCコマンドなどを用いて、別のDCI(例えば、上述の第1のDCI)がスケジュールするPDSCHのためのHARQ-ACK(又は当該別のDCIによってトリガーされる非周期的CSIレポート)を送信してもよい。
 非スケジューリングDCIに含まれるフィールドは、上記別のDCIが示すのと同じHARQプロセス番号(又はHARQプロセスID)を示すHARQプロセス番号フィールドを含んでもよいし、上記別のDCIが示すのと同じ新データ指示(New Data Indicator(NDI))の値を示すNDIフィールドを含んでもよい。非スケジューリングDCIは、スケジュールを判断できる情報(例えば、周波数ドメインリソース割り当てフィールド、時間ドメインリソース割り当てフィールドなど)を含まなくてもよい。
 UEは、検出したDCIが以下の少なくとも1つの条件を満たす場合、このDCIが非スケジューリングDCIであると判断してもよい:
 ・当該DCIの特定のフィールドが所定の値である、
 ・当該DCIが特定のCORESETで検出された。
 この「特定のフィールドが所定の値である」は、「HARQプロセス番号フィールドが別のDCIと同じである」、「NDIフィールドが別のDCIと同じである」の少なくとも1つに該当してもよい。
 上記特定のCORESETは、別のDCIが検出されたCORESETと同じCORESET、別のDCIが検出されたCORESETと異なるCORESET、別のDCIが検出されたCORESETと同じCORESETプールインデックスに対応するCORESET、別のDCIが検出されたCORESETと異なるCORESETプールインデックスに対応するCORESET、の少なくとも1つに該当してもよい。
 非スケジューリングDCIの受信可能期間が定義されてもよい。UEは、当該受信可能期間に検出されたDCIについては、非スケジューリングDCIと判断可能であり、そうでないDCIについては、非スケジューリングDCIとは判断できないと想定してもよい。このように非スケジューリングDCIの受信可能期間が定義されると、通常のPDSCHの再送のためのDCIと好適に区別できる。
 当該受信可能期間は、以下の少なくとも1つに該当してもよい:
 ・別のDCIの受信シンボル(受信した最終シンボル)後から、当該別のDCIによってスケジュールされるPDSCHの受信開始シンボルまでの間、
 ・別のDCIの受信シンボル後から、当該別のDCIによってスケジュールされるPDSCHの受信終了シンボル(最終シンボル)までの間、
 ・別のDCIの受信シンボル後から、当該別のDCIによってトリガーされるPUCCHの送信開始シンボルまでの間、
 ・別のDCIの受信シンボル後から、当該別のDCIによってトリガーされるPUCCHの送信終了シンボルまでの間。
 なお、当該受信可能期間の上記説明におけるシンボルの一部又は全部は、他の時間単位(例えば、スロット、サブスロット、サブフレーム、フレームなど)で読み替えられてもよい。例えば、最後に挙げた例は、「別のDCIの受信シンボル後から、当該別のDCIによってトリガーされるPUCCHの送信終了スロットまでの間」で読み替えられてもよい。
 受信可能期間は、上述したUCI繰り返しが用いられる(別のDCIに対応するPUCCHと非スケジューリングDCIに対応するPUCCHで同じUCIが送信される)場合と、上述した複数PUCCHリソースにわたるUCIエンコーディング(別のDCIに対応するPUCCHと非スケジューリングDCIに対応するPUCCHにわたってUCIが符号化され送信される)場合と、でそれぞれ異なって規定されてもよい(異なる値が利用されてもよい)。
 図10は、実施形態3.2において非スケジューリングDCIを利用する一例を示す図である。本例は図8、図9などと類似しており、DCI1によって、PDSCHがスケジュールされ、対応するPUCCH1の送信が制御される。また、DCI2は、PDSCHをスケジュールしないが、上記DCI1によってスケジュールされるPDSCHのためのUCIを送信するPUCCH2の送信が、当該DCI2によって制御される。
 期間1が、上述の別のDCIの受信シンボル後から、当該別のDCIによってスケジュールされるPDSCHの受信開始シンボルまでの間の受信可能期間に該当する。
 期間2が、上述の別のDCIの受信シンボル後から、当該別のDCIによってスケジュールされるPDSCHの受信終了シンボルまでの間の受信可能期間に該当する。
 期間3が、上述の別のDCIの受信シンボル後から、当該別のDCIによってトリガーされるPUCCHの送信開始シンボルまでの間の受信可能期間に該当する。
 非スケジューリングDCIはPDSCHをスケジュールしないため、HARQコードブック(HARQ-ACKコードブック)に関しては、UEは非スケジューリングDCIをカウントしなくてもよい。当該HARQコードブックは、準静的なHARQコードブック、動的なHARQコードブックの一方又は両方であってもよい。
 非スケジューリングDCIについて、DL割り当てインデックス(Downlink Assignment Indicator(Index)(DAI))はカウントされなくてもよい。当該DAIは、カウンタDAI(Counter DAI(C-DAI))及びトータルDAI(Total DAI(T-DAI))の少なくとも一方であってもよい。UEは、非スケジューリングDCIのDAIフィールドを無視してもよい。
 一方で、非スケジューリングDCIについて、DAIがカウントされてもよい。UEは、非スケジューリングDCIのDAIフィールドを考慮してHARQ-ACKの制御を行ってもよい。この場合、非スケジューリングDCIについての誤り(例えば、受信ミス)を、基地局が把握できる。
[[PDSCHをスケジュールするDCI]]
 別のDCIによってスケジュールされるPDSCHのためのHARQ-ACKを送信するためのPUCCHリソースをトリガーするDCIが、同じPDSCHのスケジュールのために用いられてもよい。上記DCIは、上記別のDCIが誤った場合のバックアップとして用いることができる。
 上記DCI及び上記別のDCIは、PRIフィールド及びTPCコマンドフィールドを除くフィールドが同じ値であってもよい。
 UEは、上記別のDCIを誤ったとしても、当該別のDCIがスケジュールするはずのPDSCHを、上記DCIに基づいて受信することができ、上記DCIに対応するPUCCHを用いて当該PDSCHに対応するHARQ-ACKを送信できる。
 図11は、実施形態3.2においてスケジューリングDCIを利用する一例を示す図である。本例は図8、図9などと類似しており、DCI1によって、PDSCHがスケジュールされ、対応するPUCCH1の送信が制御される。また、DCI2は、同じPDSCHをスケジュールし、上記DCI1によってスケジュールされるPDSCHのためのUCIを送信するPUCCH2の送信が、当該DCI2によって制御される。
 本例では、UEは、DCI1の受信に失敗したが、DCI2の受信には成功したため、PDSCHを受信できる。また、UEは、DCI1の受信に失敗したため、PUCCH1の情報を得ることができず、上記PDSCHに対応するUCIを、PUCCH1では送信できない。一方で、UEは、DCI2の受信には成功したため、上記PDSCHに対応するUCIを、PUCCH2で送信する。
 複数のDCIが同じPDSCHをスケジュールする図11のような制御は、CORESETプールインデックスを有するCORESETがUEに全く設定されない場合か、当該複数のDCIが検出されるCORESETのCORESETプールインデックスが同じ場合に行われてもよいし、当該複数のDCIが検出されるCORESETのCORESETプールインデックスが異なる場合に行われてもよい。
[位相連続性]
 第3の実施形態においては、1スロット内の複数のPUCCHリソースに複数のSRIが割り当てられる場合、以下の少なくとも1つの想定がされてもよい:
・複数のPUCCHリソースの2つのシンボルについて、互いに位相は連続する(連続するシンボル内のチャネルが変動しない、チャネル推定結果を利用できる)、
・複数のPUCCHリソースの2つのシンボルについて、互いに位相は連続しない(連続するシンボル内でチャネルが変動するかもしれない、チャネル推定結果を利用できない)、
・複数のPUCCHリソースの2つのシンボルが連続し、かつそれぞれのSRIが同じである場合、これらのシンボルの位相は連続し、そうでない(例えば、SRIが異なる)場合、位相は連続しない。
 以上説明した第3の実施形態によれば、マルチDCIに基づいて、異なるSRIを適用した繰り返し送信を適切に実施できる。
<第4の実施形態>
 第4の実施形態は、SRI切り替えの際のシンボルギャップに関する。
 第2の実施形態、第3の実施形態などに示したように、同一スロット内に異なるSRIのための複数のPUCCH送信機会が存在する場合、UEのSRI(ビーム)切り替え処理には時間がかかる可能性があるので、以下の少なくとも1つの制約があってもよい:
 ・SRIの異なるPUCCH#1とPUCCH#2の間は、シンボルギャップが必要、
 ・1つのPUCCHリソース内の、SRIの異なるシンボルの間は、シンボルギャップが必要、
 ・SRIの異なるPUCCH#1とPUCCH#2の間はシンボルギャップが必要だが、1つのPUCCHリソース内の、SRIの異なるシンボルの間は、シンボルギャップが不要、
 ・SRIの異なるPUCCH#1とPUCCH#2の間は第1のシンボルギャップが必要であり、1つのPUCCHリソース内の、SRIの異なるシンボルの間は、第2のシンボルギャップが必要(例えば、第1のシンボルギャップは第2のシンボルギャップより大きくてもよいし、同じでもよいし、小さくてもよい)。
 なお、上記の制約は、UL BWPごとの制約でもよいし、ULキャリア(又はセル)ごとの制約でもよいし、複数のULキャリア(又はセル)に共通の制約でもよい。
 シンボルギャップは、PUCCHリソース割り当ての際の制約(例えば、シンボルギャップ内でのPUCCHリソース割り当てを禁止)に用いられてもよい。UEは、シンボルギャップと重複するPUCCHリソースを割り当てられてもよく、その場合、当該UEは、当該シンボルギャップ内でのPUCCH送信は要求されない(行わない)と想定してもよい。
 シンボルギャップの値は、予め仕様によって規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、DCIによって指定されてもよいし、UE能力に基づいて判断されてもよい。なお、シンボルギャップの値は、正の値に限られず、0、負の値などを取ってもよい。
 図12A-12Cは、第4の実施形態にかかるシンボルギャップの一例を示す図である。図12Aは、1スロット内の複数のPUCCHリソース(PUCCH#1、#2)において、複数のSRI(SRI#1、#2)を用いてUCIを送信するケースに該当する。本例のように、PUCCHリソース間でシンボルギャップが確保されるように、PUCCHリソースの割り当てが行われていてもよい。
 図12Bは、1スロット内の1つのPUCCHリソース(PUCCH#1)において、複数のSRI(SRI#1、#2)を用いてUCIを送信するケースに該当する。本例のように、1つのPUCCHリソース内の、SRIの異なるシンボルの間は、シンボルギャップが不要(シンボルギャップが0)であってもよい。
 図12Cは、1スロット内の複数のPUCCHリソース(PUCCH#1、#2)において、複数のSRI(SRI#1、#2)を用いてUCIを送信するケースに該当する。本例では、PUCCH#1の最終シンボルからシンボルギャップ内の期間に、PUCCH#2のシンボルが存在する。この場合、UEは、PUCCH#2のうち、PUCCH#1からのシンボルギャップと重複する期間においては、PUCCH#2は送信しないと想定してもよい。なお、UEは、シンボルギャップと重複しない期間(シンボルギャップ後の期間)においては、PUCCH#2を送信してもよいし、PUCCH#2の送信をドロップ(又はキャンセル)してもよい。
 以上説明した第4の実施形態によれば、シンボルギャップを適切に考慮してSRIの切り替えを実施できる。
<その他>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・PUCCH繰り返しをサポートするか否か、
 ・スロット内PUCCH繰り返しをサポートするか、
 ・サポートするPUCCHリソースごとのSRI(又は空間関係)の最大数、
 ・サポートするスロットごとの(PUCCHのための)SRI(又は空間関係)の最大数。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、PUCCH送信機会のための異なる空間関係を有効化することを示す情報、非スケジューリングDCIを用いることを設定する情報、特定のリリース(例えば、Rel.17)向けの任意のRRCパラメータなどであってもよい。
 なお、第2、第3の実施形態で示したようなPUCCH送信機会ごとのTPCコマンド/PRIの通知方法は、PUCCH送信機会ごとのSRIの通知に適用されてもよい。第2、第3の実施形態のTPCコマンド、PRIなどは、SRIで読み替えられてもよい。
 第2の実施形態では、複数のPUCCH送信機会について、UCI繰り返しと、UCIエンコーディングと、の少なくとも一方が適用されてもよい。第3の実施形態では、複数のPUCCH送信機会について、UCI繰り返しを用いる(PUCCHリソース単位でUCIが符号化される)方が、DCIの検出ミスを考慮すると好ましい。
 なお、各実施形態では、1つ又は複数のDCIを用いて、1スロット内の複数のPUCCH送信機会が制御される例を示したが、これに限られない。例えば、1つ又は複数のDCIを用いて、複数スロットにわたる複数のPUCCH送信機会が制御される場合に、上述の実施形態の少なくとも1つの内容が適用されてもよい。この場合、説明における「スロット内」は、「スロット間」、「複数のスロット内」などで読み替えられてもよいし、「スロット内」を削除して読んでもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図13は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図14は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、1つのPhysical Uplink Control Channel(PUCCH)リソースに関する複数の空間関係情報(Spatial Relation Information(SRI))を指定する情報を送信してもよい。
 制御部110は、前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて送信された、前記PUCCHリソースにおける複数のPUCCH送信機会の受信を行ってもよい。
 また、送受信部120は、複数のPhysical Uplink Control Channel(PUCCH)リソースに関する複数の空間関係情報(Spatial Relation Information(SRI))を指定する情報を送信してもよい。
 制御部110は、前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて送信された、前記複数のPUCCHリソースにおける上りリンク制御情報の受信を行ってもよい。
(ユーザ端末)
 図15は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、制御部210は、1つのPhysical Uplink Control Channel(PUCCH)リソースについて、複数の空間関係情報(Spatial Relation Information(SRI))を適用してもよい。
 送受信部220は、前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて、前記PUCCHリソースにおける複数のPUCCH送信機会の送信を行ってもよい。
 制御部210は、前記PUCCHリソースについて、前記複数のSRIを、周波数内ホッピングの各ホップ単位で適用してもよい。
 制御部210は、前記PUCCHリソースについて、前記複数のSRIの少なくとも1つを、周波数内ホッピングの複数のホップに適用してもよい。
 制御部210は、複数のPhysical Uplink Control Channel(PUCCH)リソースについて、複数の空間関係情報(Spatial Relation Information(SRI))を適用してもよい。
 送受信部220は、前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて、前記複数のPUCCHリソースにおける上りリンク制御情報の送信を行ってもよい。
 送受信部220は、前記複数のPUCCHリソースにおいて、同じ上りリンク制御情報を送信(UCI繰り返し)してもよい。
 制御部210は、第1の下りリンク制御情報によって前記複数のPUCCHリソースの1つがトリガーされ、第2の下りリンク制御情報によって前記複数のPUCCHリソースの残りがトリガーされる場合、前記第2の下りリンク制御情報によって下りリンク共有チャネルはスケジュールされないと想定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定のチャネル/信号を送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1.  複数のPhysical Uplink Control Channel(PUCCH)リソースについて、複数の空間関係情報(Spatial Relation Information(SRI))を適用する制御部と、
     前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて、前記複数のPUCCHリソースにおける上りリンク制御情報の送信を行う送信部と、を有する端末。
  2.  前記送信部は、前記複数のPUCCHリソースにおいて、同じ上りリンク制御情報を送信する請求項1に記載の端末。
  3.  前記制御部は、第1の下りリンク制御情報によって前記複数のPUCCHリソースの1つがトリガーされ、第2の下りリンク制御情報によって前記複数のPUCCHリソースの残りがトリガーされる場合、前記第2の下りリンク制御情報によって下りリンク共有チャネルはスケジュールされないと想定する請求項1又は請求項2に記載の端末。
  4.  複数のPhysical Uplink Control Channel(PUCCH)リソースについて、複数の空間関係情報(Spatial Relation Information(SRI))を適用するステップと、
     前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて、前記複数のPUCCHリソースにおける上りリンク制御情報の送信を行うステップと、を有する端末の無線通信方法。
  5.  複数のPhysical Uplink Control Channel(PUCCH)リソースに関する複数の空間関係情報(Spatial Relation Information(SRI))を指定する情報を送信する送信部と、
     前記複数の空間関係情報に基づく空間ドメイン送信フィルタをそれぞれ用いて送信された、前記複数のPUCCHリソースにおける上りリンク制御情報の受信を行う受信部と、を有する基地局。
PCT/JP2020/029582 2020-07-31 2020-07-31 端末、無線通信方法及び基地局 WO2022024393A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/029582 WO2022024393A1 (ja) 2020-07-31 2020-07-31 端末、無線通信方法及び基地局
CN202080105402.1A CN116349272A (zh) 2020-07-31 2020-07-31 终端、无线通信方法以及基站
JP2022539985A JPWO2022024393A5 (ja) 2020-07-31 端末、無線通信方法、基地局及びシステム
EP20947368.5A EP4192070A4 (en) 2020-07-31 2020-07-31 TERMINAL DEVICE, WIRELESS COMMUNICATION METHODS AND BASE STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029582 WO2022024393A1 (ja) 2020-07-31 2020-07-31 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022024393A1 true WO2022024393A1 (ja) 2022-02-03

Family

ID=80035333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029582 WO2022024393A1 (ja) 2020-07-31 2020-07-31 端末、無線通信方法及び基地局

Country Status (3)

Country Link
EP (1) EP4192070A4 (ja)
CN (1) CN116349272A (ja)
WO (1) WO2022024393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132535A1 (en) * 2020-10-22 2022-04-28 Acer Incorporated Device of Handling a HARQ Retransmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094673B2 (ja) * 2017-09-08 2022-07-04 シャープ株式会社 基地局装置、端末装置、および、通信方法
WO2020059150A1 (ja) * 2018-09-21 2020-03-26 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
NTT DOCOMO, INC.: "Discussion on multi-beam enhancement", 3GPP DRAFT; R1-1911185, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789957 *
OPPO: "Enhancements on multi-TRP and multi-panel transmission", 3GPP DRAFT; R1-1908351, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 13, XP051764960 *
See also references of EP4192070A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132535A1 (en) * 2020-10-22 2022-04-28 Acer Incorporated Device of Handling a HARQ Retransmission
US11902967B2 (en) * 2020-10-22 2024-02-13 Acer Incorporated Device of handling a HARQ retransmission

Also Published As

Publication number Publication date
EP4192070A4 (en) 2024-05-01
CN116349272A (zh) 2023-06-27
EP4192070A1 (en) 2023-06-07
JPWO2022024393A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2020217408A1 (ja) ユーザ端末及び無線通信方法
JPWO2020090091A1 (ja) ユーザ端末及び無線通信方法
WO2021090507A1 (ja) 端末及び無線通信方法
JP7499787B2 (ja) 端末、無線通信方法及びシステム
WO2020209281A1 (ja) ユーザ端末及び無線通信方法
WO2020250399A1 (ja) 端末及び無線通信方法
WO2020209342A1 (ja) ユーザ端末及び無線通信方法
WO2021090506A1 (ja) 端末及び無線通信方法
WO2022024396A1 (ja) 端末、無線通信方法及び基地局
JP7413414B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022024395A1 (ja) 端末、無線通信方法及び基地局
JP7480176B2 (ja) 端末、無線通信方法及びシステム
WO2021106167A1 (ja) 端末及び無線通信方法
WO2020250400A1 (ja) 端末及び無線通信方法
JP7467602B2 (ja) 端末、及び無線通信方法
WO2022030011A1 (ja) 端末、無線通信方法及び基地局
WO2021210108A1 (ja) 端末、無線通信方法及び基地局
WO2021220411A1 (ja) 端末、無線通信方法及び基地局
WO2020255395A1 (ja) 端末及び無線通信方法
WO2022024393A1 (ja) 端末、無線通信方法及び基地局
WO2022208747A1 (ja) 端末、無線通信方法及び基地局
WO2022153459A1 (ja) 端末、無線通信方法及び基地局
WO2022014055A1 (ja) 端末、無線通信方法及び基地局
WO2022024394A1 (ja) 端末、無線通信方法及び基地局
WO2022030003A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539985

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020947368

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020947368

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE