WO2021106167A1 - 端末及び無線通信方法 - Google Patents

端末及び無線通信方法 Download PDF

Info

Publication number
WO2021106167A1
WO2021106167A1 PCT/JP2019/046655 JP2019046655W WO2021106167A1 WO 2021106167 A1 WO2021106167 A1 WO 2021106167A1 JP 2019046655 W JP2019046655 W JP 2019046655W WO 2021106167 A1 WO2021106167 A1 WO 2021106167A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
qcl
transmission
reception
trp
Prior art date
Application number
PCT/JP2019/046655
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/756,597 priority Critical patent/US20230007667A1/en
Priority to EP19954350.5A priority patent/EP4068831A4/en
Priority to PCT/JP2019/046655 priority patent/WO2021106167A1/ja
Priority to JP2021561085A priority patent/JP7372622B2/ja
Priority to CN201980103513.6A priority patent/CN115004746B/zh
Publication of WO2021106167A1 publication Critical patent/WO2021106167A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • the user terminal measures the channel state based on the channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and the channel state is measured.
  • Information (Channel State Information (CSI)) is fed back (reported) to a network (for example, a base station).
  • aperiodic CSI (Aperiodic CSI, A-CSI) reporting is being considered.
  • the CSI-RS measured for A-CSI reporting may be referred to as A-CSI-RS (Aperiodic CSI-RS).
  • the assumption of pseudo collocation (Quasi-Co-Location (QCL)) for receiving A-CSI-RS is determined based on the beam switch timing reported by the UE.
  • one or more transmission / reception points (Transmission / Reception Point (TRP)) (multi-TRP) perform DL transmission to the UE using one or more panels (multi-panel). Is being considered.
  • TRP Transmission / Reception Point
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately determining the QCL assumption of the A-CSI-RS.
  • the terminal assumes the Quasi-Co-Location (QCL) of the aperiodic channel state information reference signal (Aperiodic Channel State Information-Reference Signal (A-CSI-RS)) as follows (1).
  • QCL Quasi-Co-Location
  • A-CSI-RS aperiodic Channel State Information-Reference Signal
  • TCI state Transmission Configuration Indication state
  • PDSCH Physical Downlink Shared Channel
  • A-CSI- The scheduling offset between the reception of the downlink control channel transmitting the downlink control information that schedules the RS and the reception of the A-CSI-RS is less than the value of the period for the reported beam switch (2).
  • TCI state Transmission Configuration Indication state
  • the QCL assumption of A-CSI-RS can be appropriately determined.
  • FIG. 1 is a diagram showing an example of the QCL assumption of A-CSI-RS.
  • FIG. 2A-2D is a diagram showing an example of a multi-TRP scenario.
  • 3A and 3B are diagrams showing an example of CORESET set for the first embodiment.
  • 4A and 4B are diagrams showing an example of CORESET set for the second embodiment.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • reception processing for example, reception, demapping, demodulation, etc.
  • transmission processing e.g., at least one of transmission, mapping, precoding, modulation, and coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo colocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information (SRI), or the like.
  • QCL Signal / channel pseudo colocation
  • SRI spatial relation information
  • the TCI state may be set on the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types AD with different parameters (or parameter sets) that can be assumed to be the same (QCL) may be provided, and the parameters (may be referred to as QCL parameters) are shown below:
  • QCL Type A QCL-A
  • QCL-B Doppler shift and Doppler spread
  • QCL type C QCL-C
  • QCL-D Spatial reception parameter.
  • the UE may assume that one control resource set (Control Resource Set (CORESET)), channel, or reference signal has a specific QCL (eg, QCL type D) relationship with another CORESET, channel, or reference signal.
  • QCL assumption QCL assumption
  • the UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal (Reference Signal (RS)) for the channel) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • Sounding Sounding
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the UE may receive setting information (for example, PDSCH-Config, tci-StatesToAddModList) including a list of information elements of the TCI state by upper layer signaling.
  • setting information for example, PDSCH-Config, tci-StatesToAddModList
  • the TCI state information element (RRC "TCI-state IE") set by the upper layer signaling may include a TCI state ID and one or more QCL information ("QCL-Info").
  • the QCL information may include at least one of information related to the RS having a QCL relationship (RS-related information) and information indicating the QCL type (QCL type information).
  • RS-related information includes RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), cell index where RS is located, and RS position.
  • Information such as the index of the Bandwidth Part (BWP) to be used may be included.
  • both QCL type A RS and QCL type D RS, or only QCL type A RS can be set for the UE.
  • TCI state for PDCCH Information about the PDCCH (or DeModulation Reference Signal (DMRS) antenna port associated with the PDCCH) and the QCL with a DL-RS may be referred to as the TCI state for the PDCCH.
  • DMRS DeModulation Reference Signal
  • the UE may determine the TCI state for the UE-specific PDCCH (CORESET) based on the upper layer signaling. For example, for the UE, one or more (K) TCI states may be set by RRC signaling for each CORESET.
  • CORESET UE-specific PDCCH
  • the UE may activate one of the plurality of TCI states set by RRC signaling for each CORESET by MAC CE.
  • the MAC CE may be called a TCI state indicating MAC CE (TCI State Indication for UE-specific PDCCH MAC CE) for UE-specific PDCCH.
  • the UE may monitor the CORESET based on the active TCI state corresponding to the CORESET.
  • TCI state for PDSCH Information about the PDSCH (or DMRS antenna port associated with the PDSCH) and the QCL with a given DL-RS may be referred to as the TCI state for the PDSCH and the like.
  • the UE may notify (set) M (M ⁇ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling.
  • the number M of TCI states set in the UE may be limited by at least one of the UE capability and the QCL type.
  • the DCI used for scheduling the PDSCH may include a predetermined field indicating the TCI state for the PDSCH (for example, it may be called a TCI field, a TCI state field, or the like).
  • the DCI may be used for scheduling the PDSCH of one cell, and may be called, for example, DL DCI, DL assignment, DCI format 1_0, DCI format 1-1-1 and the like.
  • Whether or not the TCI field is included in the DCI may be controlled by the information notified from the base station to the UE.
  • the information may be information (TCI-PresentInDCI) indicating whether or not a TCI field exists in DCI (present or absent).
  • TCI existence information may be set in the UE by, for example, higher layer signaling.
  • TCI states When more than 8 types of TCI states are set in the UE, 8 or less types of TCI states may be activated (or specified) using MAC CE.
  • the MAC CE may be referred to as a UE-specific PDSCH TCI state activation / deactivation MAC CE (TCI States Activation / Deactivation for UE-specific PDSCH MAC CE).
  • TCI States Activation / Deactivation for UE-specific PDSCH MAC CE The value of the TCI field in DCI may indicate one of the TCI states activated by MAC CE.
  • the UE measures the channel state using a predetermined reference signal (or resource for the reference signal), and feeds back (reports) the channel state information (CSI) to the base station. ..
  • the UE may measure the channel state based on at least one of CSI-RS, SS / PBCH block, DMRS, etc. as a reference signal.
  • CSI feedback methods include periodic CSI (Periodic CSI (P-CSI)) reports, aperiodic CSI (Aperiodic CSI (A-CSI)) reports, and semi-persistent CSI (Semi-Persistent CSI (SP)). -CSI)) Reports are being considered.
  • P-CSI Period CSI
  • A-CSI aperiodic CSI
  • SP semi-persistent CSI
  • SP-CSI reports using PUCCH may be activated by MAC CE.
  • SP-CSI reports using PUSCH PUSCH-based SP-CSI reports
  • A-CSI reports using PUSCH or PUCCH, etc. may be activated (or triggered) by DCI.
  • one trigger state may be specified from a plurality of trigger states (trigger states) set by higher layer signaling (for example, RRC signaling) by the CSI request field included in DCI.
  • the CSI request field may be read as the CSI trigger field.
  • the CSI-RS measured for A-CSI reporting may be referred to as Aperiodic CSI-RS (A-CSI-RS).
  • A-CSI-RS DCI is used to trigger A-CSI-RS measurement and A-CSI reporting at the same time, so RS resources and uplink channel resources are used efficiently while dynamically triggering CSI reporting. it can.
  • the list of trigger states for A-CSI reporting may be set in the RRC information element "CSI-AperiodicTriggerStateList".
  • Each trigger state may be associated with one or more report configuration IDs (CSI-ReportConfigId), CSI resource configuration information, A-CSI-RS TCI status (or QCL assumption), and the like.
  • the UE may be instructed by the upper layer to set the QCL including the RS resource of the QCL and the QCL type.
  • the TCI state (or QCL assumption) of the A-CSI-RS may be specified by the DCI (CSI request field) that triggers the measurement of the A-CSI-RS.
  • the period from DCI (trigger ring DCI) to A-CSI-RS instructed (triggered) by the DCI may be specified in relation to the above-mentioned trigger state.
  • the UE determines the CSI-RS resource set ID corresponding to the CSI-RS resource set to be measured based on the trigger state.
  • This CSI-RS resource set ID may be associated with an aperiodic triggering offset.
  • the aperiodic triggering offset may be read as the scheduling offset.
  • the scheduling offset is the last symbol of the PDCCH (or the last slot containing the PDCCH) carrying the DCI that triggers the A-CSI-RS resource set and the first of the A-CSI-RS resources of the resource set. It may mean an offset with a symbol (or slot).
  • a value of 0 or more and 4 or less may be set, or a value larger than 4 (for example, 16, 24, etc.) may be set.
  • the unit of the offset may be a symbol unit or a slot unit.
  • the information on the scheduling offset of A-CSI-RS may correspond to the RRC parameter "aperiodicTriggeringOffset".
  • the scheduling offset is a signal (eg, A-CSI-RS) or channel start (eg, A-CSI-RS) scheduled (or triggered) by the DCI from the reception of a predetermined DCI (PDCCH) (eg, the last symbol). For example, it may mean the period until the first symbol).
  • the scheduling offset may be read as a period for the schedule, a period from the PDCCH to the scheduled signal / channel, and the like.
  • A-CSI-RS beam switching timing A-CSI-RS beam switching timing
  • RRC parameter "beamSwitch Timing" RRC parameter "beamSwitch Timing"
  • the beam switch timing may be defined by the minimum time (for example, the number of OFDM symbols) between the DCI that triggers the A-CSI-RS and the transmission of the A-CSI-RS.
  • the beam switch timing may indicate the time from the last symbol that received the DCI to the first symbol of the A-CSI-RS triggered by the DCI.
  • the beam switch timing may be based on, for example, the delay in decoding the PDCCH and switching the beam.
  • the beam switch timing may be applied to at least one of the first frequency band (Frequency Range (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)) or 7125 MHz or less
  • FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). Good.
  • the frequency bands and definitions of FR1 and FR2 are not limited to these.
  • the beam switch timing may take a different value for each subcarrier interval (for example, 60 kHz, 120 kHz).
  • the beam switch timing can take values such as 14, 28, 48, 224, 336 symbols.
  • the relatively large value of 336 symbols was considered in the case where the UE is equipped with a multi-panel, taking into account the time it takes to power on the panel receiving the A-CSI-RS from off to on. This is because the panel of the unactivated beam may be powered off by the UE.
  • the A-CSI-RS scheduling offset is greater than or equal to the beam switch timing reported by the UE, and the reported beam switch timing value is one of 14, 28, and 48. If so, the UE may expect to apply the QCL assumption of the specified TCI state for the A-CSI-RS resource in the CSI trigger state specified by the CSI trigger (request) field of the DCI (the UE is expected to apply the QCL assumptions in the dedicated TCI states for the aperiodic CSI-RS resources in the CSI triggering state dedicated by the CSI trigger field in DCI). That is, in this case, the UE may receive the A-CSI-RS based on the TCI state specified by DCI.
  • the scheduling offset of the A-CSI-RS is less than the beam switch timing reported by the UE and the value of the reported beam switch timing is any of 14, 28 and 48
  • the other DL signals here have a PDSCH having a scheduling offset equal to or higher than a predetermined threshold value (UE capability information "timeDurationForQCL" (that is, an offset from the reception of the DCI to the start of reception of the PDSCH scheduled by the DCI).
  • A-CSI-RS ie, another A-CSI-RS
  • P-CSI- with a scheduling offset greater than or equal to the predetermined threshold and the beam switch timing of any of 14, 28 and 48 reported by the UE. It may be at least one of RS and SP-CSI-RS.
  • the timeDurationForQCL may be defined by the minimum time (for example, the number of OFDM symbols) when the UE receives the PDCCH and applies the spatial QCL information of the PDCCH (DCI) for the PDSCH processing.
  • the beam switch timing may indicate the time from the last symbol that received the DCI to the first symbol of the A-CSI-RS triggered by the DCI.
  • timeDurationForQCL is the time length for QCL (time duration), "Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", “Threshold-Sched-Offset", schedule offset threshold, scheduling offset. It may be called a threshold value, etc.
  • timeDurationForQCL can take values such as 7, 14, 28 symbols.
  • the QCL time length may be based on the UE capability, for example, the delay required for PDCCH decoding and beam switching.
  • the QCL time length may be the minimum time required for the UE to perform PDCCH reception and application of spatial QCL information received in the DCI for PDSCH processing.
  • the QCL time length may be represented by the number of symbols for each subcarrier interval, or may be represented by the time (for example, ⁇ s).
  • the QCL time length information may be reported from the UE to the base station as UE capability information, or may be set in the UE from the base station using higher layer signaling.
  • the threshold value for the other DL signal corresponds to the beam switch timing when the other DL signal is A-CSI-RS, and is reported by the UE when the other DL signal is PDSCH. It may correspond to the value of timeDurationForQCL.
  • the QCL assumptions of the other DL signals described above can be applied to the A-CSI-RS by using the NZP CSI-RS resource set that defines the A-CSI-RS resource as the upper layer parameter "trs-Info". It may be limited to the case where it does not have "repetition”.
  • the NZP CSI-RS resource set for which trs-Info is set to true may have the same antenna port for all NZP CSI-RS resources in the resource set.
  • the NZP CSI-RS resource set in which Repetition is set to off does not have to be assumed by the UE that the NZP CSI-RS resources in the resource set are transmitted by the same downlink space domain transmission filter.
  • the UE will have one or more of the active BWPs in the serving cell upon reception of the A-CSI-RS.
  • the UE applications the QCL assumption used for the CORESET associated with a may be applied (the UE appslies the QCL assumption used for the CORESET associated with a), which has the smallest CORESET-ID in the latest slot in which the CORESET is monitored and is associated with the monitored search space. Monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored).
  • FIG. 1 is a diagram showing an example of the QCL assumption of A-CSI-RS.
  • FIG. 1 shows an example in which DCI1 schedules (triggers) A-CSI-RS and DCI0 schedules another DL signal with the same symbol as the A-CSI-RS.
  • the UE reported to the network any of 14, 28 and 48 as beam switch timing values in the UE capability information.
  • the scheduling offset 1 of DCI1 and A-CSI-RS is smaller than the beam switch timing.
  • the scheduling offset 0 of DCI0 and other DL signals is equal to or larger than the threshold value (QCL time length).
  • the UE may apply the QCL assumption of the other DL signal to the reception of the A-CSI-RS.
  • the reception timing of DCI0 and DCI1 in FIG. 1 is not limited to this. Each embodiment of the present disclosure is also applicable when the reception timing of the DCI that schedules the A-CSI-RS and the DCI that schedules another DL signal are the same.
  • the TCI state or QCL (QCL assumption) that the UE assumes to be applied to the signal / channel when the scheduling offset for a certain signal / channel is smaller than a certain threshold value may be called a default QCL.
  • the default TCI state, default QCL, default QCL assumption, etc. may be read interchangeably.
  • the default QCL of the A-CSI-RS may be applied when the scheduling offset of the A-CSI-RS is smaller than the threshold value (reported beam switch timing). Further, the PDSCH default QCL may be applied when the scheduling offset of the PDSCH is smaller than the threshold value (QCL time length).
  • the default QCL may be, for example, a QCL assumed when the TCI state / QCL specified by the DCI is not available for a channel / signal (eg PDSCH), or the TCI state / QCL is specified (or set). ) May be the QCL assumed when it is not performed.
  • Multi TRP In NR, one or more transmission / reception points (Transmission / Reception Point (TRP)) (multi-TRP (multi TRP (M-TRP))) can be sent to the UE using one or more panels (multi-panel). On the other hand, DL transmission is being considered. It is also being considered that the UE performs UL transmission to one or more TRPs.
  • TRP Transmission / Reception Point
  • M-TRP multi TRP
  • DL transmission is being considered. It is also being considered that the UE performs UL transmission to one or more TRPs.
  • the plurality of TRPs may correspond to the same cell identifier (cell Identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • FIG. 2A-2D is a diagram showing an example of a multi-TRP scenario. In these examples, it is assumed that each TRP is capable of transmitting four different beams, but is not limited to this.
  • FIG. 2A shows an example of a case (which may be called single mode, single TRP, etc.) in which only one TRP (TRP1 in this example) of the multi-TRPs transmits to the UE.
  • the TRP1 transmits both a control signal (PDCCH) and a data signal (PDSCH) to the UE.
  • PDCH control signal
  • PDSCH data signal
  • FIG. 2B shows a case where only one TRP (TRP1 in this example) of the multi-TRP transmits a control signal to the UE, and the multi-TRP transmits a data signal (may be called a single master mode).
  • TRP1 TRP1 in this example
  • DCI Downlink Control Information
  • FIG. 2C shows an example of a case (which may be called a master-slave mode) in which each of the multi-TRPs transmits a part of a control signal to the UE and the multi-TRP transmits a data signal.
  • Part 1 of the control signal (DCI) may be transmitted in TRP1
  • part 2 of the control signal (DCI) may be transmitted in TRP2.
  • Part 2 of the control signal may depend on Part 1.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCI parts.
  • FIG. 2D shows an example of a case (which may be called a multi-master mode) in which each of the multi-TRPs transmits a separate control signal to the UE and the multi-TRP transmits a data signal.
  • the first control signal (DCI) may be transmitted in TRP1
  • the second control signal (DCI) may be transmitted in TRP2.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCIs.
  • the DCI is a single DCI (S-DCI, single). It may be called PDCCH).
  • S-DCI single DCI
  • PDCCH PDCCH
  • M-DCI multiple PDCCH (multiple PDCCH)
  • Non-Coherent Joint Transmission is being studied as a form of multi-TRP transmission.
  • TRP1 modulates and maps the first codeword, layer-maps, and transmits the first PDSCH to the first number of layers (for example, two layers) using the first precoding.
  • TRP2 modulates and maps the second codeword, layer-maps the second number of layers (for example, two layers), and transmits the second PDSCH using the second precoding.
  • the plurality of PDSCHs (multi-PDSCHs) to be NCJT may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains. That is, at least one of the time and frequency resources of the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap.
  • first PDSCH and second PDSCH may be assumed to be not quasi-co-located in a pseudo-collocation (Quasi-Co-Location (QCL)) relationship.
  • the reception of the multi-PDSCH may be read as the simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • PDSCH transport block (TB) or codeword (CW) repetition (repetition) across multi-TRP is supported. It is being considered that iterative schemes across multi-TRPs (URLLC schemes, eg, schemes 1, 2a, 2b, 3, 4) are supported on frequency domains or layer (spatial) domains or time domains.
  • the multi-PDSCH from the multi-TRP is space division multiplexing (SDM).
  • PDSCH from multi-TRP is frequency division multiplexing (FDM).
  • FDM frequency division multiplexing
  • the redundant version (redundancy version (RV)) is the same for the multi-TRP.
  • the RV may be the same or different for the multi-TRP.
  • the multi-PDSCH from the multi-TRP is time division multiplexing (TDM).
  • TDM time division multiplexing
  • the multi-PDSCH from the multi-TRP is transmitted within one slot.
  • the multi-PDSCH from the multi-TRP is transmitted in different slots.
  • NCJT using multi-TRP / panel may use high rank.
  • Single DCI single PDCCH, eg FIG. 2B
  • multi DCI single PDCCH, eg, single PDCCH, eg
  • the maximum number of TRPs may be 2 for both single DCI and multi DCI.
  • the maximum number of CORESET for each PDCCH setting information may be increased to 5 according to the UE capability.
  • the maximum number of CORESETs that can be configured with the same TRP may be up to the number reported by the UE capability.
  • the UE capability may include at least the candidate value "3".
  • the same TRP may correspond to the same upper layer index (for example, CORESET pool index, TRP index) set for each PDCCH setting information (for each CORESET if set).
  • the TRP corresponding to the signal / channel may be identified by the higher layer index.
  • the 16 NR also discusses the default QCL for cross-carrier scheduling. For example, if the PDSCH and the PDCCH that schedules the PDSCH belong to different CCs, and if these scheduling offsets are less than the QCL time length or the PDCCH (DCI) does not contain TCI status information, the UE is scheduled.
  • the QCL assumption for the scheduled PDSCH may be obtained from the TCI state of the smallest active TCI state ID applicable to the PDSCH in the cell's active BWP.
  • Rel. 16 In NR, when the cross carrier A-CSI-RS whose scheduling offset is smaller than the threshold value is triggered and the A-CSI-RS contains QCL-D information, the A-CSI-RS of the scheduled cell is used. If there is another DL signal in the same symbol as, the UE may apply the QCL-D of the other DL signal to the A-CSI-RS (reception).
  • the definition of the other DL signal is described in Rel. 15 It may be the same as NR.
  • the UE when there is no other DL signal and CORESET is set in the carrier (CC, cell) of the A-CSI-RS, the UE receives the A-CSI-RS when receiving the A-CSI-RS.
  • the UE when there is no other DL signal and CORESET is not set in the carrier (CC, cell) of the A-CSI-RS, the UE receives the A-CSI-RS when receiving the A-CSI-RS.
  • the TCI state QCL-D of the smallest active TCI state ID applicable to the PDSCH in the active BWP of the serving cell of the CSI-RS transmission may be applied.
  • the TCI state for the UE-specific PDSCH For 16 NR, for single DCI-based multi-TRP / panel transmissions containing QCL-D and having at least one configured TCI state for the scheduled PDSCH serving cell, the TCI state for the UE-specific PDSCH.
  • the UE After receiving the activation command, if the time offset between the reception of the PDCCH and the corresponding PDSCH is less than the threshold (timeDurationForQCL), the UE will say that the DMRS port of the PDSCH is in the TCI state shown below ( It is being considered that it may be assumed that the QCL parameters indicated by the default TCI state) are followed: A TCI state corresponding to the smallest code point of the TCI code points, including two different TCI states activated for PDSCH. ⁇ Rel. Same default TCI state as 15 (provided that all TCI code points are mapped to one TCI state).
  • Using the default TCI state for multiple PDSCHs based on a single DCI may be part of the UE capability.
  • Rel. 16 For NR, the time between PDCCH reception and the corresponding PDSCH when a CORESET pool index (eg, RRC parameter "CORESETPoolIndex") is set for a multi-DCI-based multi-TRP / panel transmission. If the offset is less than the threshold, the UE will have the same value of the CORESET pool index in each latest slot in the active BWP of the serving cell in which one or more CORESETs associated with each of the CORESET pool indexes are monitored by the UE. It may be assumed that the RS related to the QCL parameter used for the PDCCH of the minimum CORESET index in the CORESET to be set and the DM-RS port of the PDSCH are QCL. Support for this feature is indicated (reported) by the UE capability. If the UE does not support the above features, then regardless of the CORESET pool index, Rel. Fifteen operations may be reused.
  • CORESETPoolIndex eg, RRC parameter "C
  • the present inventors have conceived a method for appropriately determining the TCI state (QCL assumption) of the A-CSI-RS.
  • the panel Uplink (UL) transmission entity, TRP, spatial relationship, control resource set (COntrol REsource SET (CORESET)), PDSCH, code word (Code Word (CW)), base station, and a certain signal
  • An antenna port for example, a reference signal for demodulation (DeModulation Reference Signal (DMRS)) port
  • an antenna port group for a certain signal (for example, a DMRS port group)
  • a group for multiplexing for example, Code Division Multiplexing (Code Division Multiplexing).
  • CDM Code Division Multiplexing
  • reference signal group CORESET group
  • CORESET pool redundant version (redundancy version (RV)
  • layer MIMO layer, transmission layer, spatial layer
  • the TRP Identifier (ID) and the TRP may be read as each other.
  • NCJT NCJT using multi-TRP
  • multi-PDSCH using NCJT multi-PDSCH
  • a plurality of PDSCHs from multi-TRP and the like may be read as each other.
  • the CORESET-ID may be an ID (ID for identifying the CORESET) set by the RRC information element "ControlResourceSet”. Further, in the present disclosure, "minimum CORESET-ID” may be read as a specific CORESET-ID (for example, minimum CORESET-ID, maximum CORESET-ID).
  • the "latest slot” may mean the latest slot based on the timing of receiving the scheduled A-CSI-RS, and the A-CSI-RS may be referred to as the latest slot. It may mean the latest slot based on the timing of receiving the scheduled DCI (PDCCH).
  • the latest slot, the most recent slot, the latest search space, the latest search space, the latest CORESET, etc. may be read as each other.
  • the "latest slot” in the present disclosure may be read as the deleted content.
  • “CORESET in the latest slot” may be simply read as “CORESET”, that is, it may mean CORESET in any slot.
  • the value of the beam switch timing reported by the UE is any of 14, 28, and 48, but this value should be read as another value (for example, a specific value less than 100). May be done.
  • the "beam switch timing" of the present disclosure is a "value based on the beam switch timing" (for example, the beam switch timing + a specific value (for example, a value obtained based on the subcarrier interval of CSI-RS)). It may be read as.
  • S-DCI is set may be read as “S-DCI-based M-TRP transmission is set, instructed, or used.”
  • M-DCI is set may be read as "M-DCI-based M-TRP transmission is set or directed or used”.
  • M-TRP is set may be read as "M-TRP transmission is set or instructed or used”.
  • the UE may assume that at least one (at least one) CORESET is set for each TRP. In the first embodiment, there is no TRP for which the associated CORESET is not set. The UE may assume that the CORESET configured for at least one TRP is a CORESET that is not used to receive the PDCCH.
  • the default QCL for A-CSI-RS when M-TRP is set is Rel. 15 It may be the same as NR, and Rel. 16 It may be the same as NR.
  • the A-CSI-RS corresponding to each TRP can be set even if the schedule offset is within the beam switch timing. Can be received properly.
  • FIGS. 4A and 4B are diagrams showing an example of CORESET set for the first embodiment.
  • FIG. 3A shows an example in which M-DCI is set
  • FIG. 3B shows an example in which S-DCI is set.
  • A-CSI-RS # 1 corresponds to TRP # 1
  • A-CSI-RS # 2 corresponds to TRP # 2.
  • each of the CORESET pools # 1 and # 2 contains at least one CORESET.
  • the first number (5 in this example) of CORESET may be set at the maximum.
  • pool # 1 contains three CORESETs and pool # 2 contains two CORESETs.
  • a total of a second number (3 in this example) of CORESET may be set at the maximum.
  • the UE is set with two CORESETs corresponding to TRP # 1 and one CORESET corresponding to TRP # 2.
  • the number of each CORESET is an example, and is not limited to these. Further, the first number, the second number, and the like may be the maximum number of CORESET for each PDCCH setting information (PDCCH-Config) as described above, or may be a number related to UE capability. Good.
  • the CORESET pool corresponding to TRP may be set.
  • two CORESETs corresponding to TRP # 1 in FIG. 3B may be configured in the UE to be associated with pool # 1
  • one CORESET corresponding to TRP # 2 may be configured in the UE to be associated with pool # 2. ..
  • the UE corresponds to the A-CSI-RS # 1 TRP # 1 corresponding to the A-CSI-RS # 1 even if there is no other DL signal to which the same QCL assumption can be applied.
  • the CORESETs (FIG. 3A) related to CORESET pool # 1 or the CORESETs (FIG. 3B) related to TRP # 1, it may be assumed that the CORESETs and QCLs have the smallest CORESET ID.
  • the UE corresponds to the A-CSI-RS # 2 TRP # 2 corresponding to the A-CSI-RS # 2 even if there is no other DL signal to which the same QCL assumption can be applied.
  • the CORESETs (FIG. 3A) related to CORESET pool # 2 or the CORESETs (FIG. 3B) related to TRP # 2
  • the UE may receive the S-DCI using CORESET of only one TRP.
  • the CORESET corresponding to TRP # 2 may not be used for the reception of the DCI.
  • the S-DCI transmitted from TRP # 1 may schedule the reception of PDSCH, A-CSI-RS # 2, etc. of TRP # 2.
  • the TRP # 2 CORESET may be used for the default QCL assumption of the A-CSI-RS # 2.
  • the UE can grasp how the CORESET for each TRP when the M-TRP is set is set. Further, the default QCL of the A-CSI-RS can be determined based on the CORESET, and the reception of the A-CSI-RS can be preferably performed according to the default QCL.
  • the UE may assume that no CORESET may be set in one TRP. For example, the UE expects that CORESET will not be set for TRPs that are not related to at least one such as primary cell, primary secondary cell, PUCCH secondary cell, special cell, etc. (in other words, TRP that is related only to normal secondary cells). You may.
  • the default QCL for A-CSI-RS when M-TRP is set is Rel. 15 It may be the same as NR, and Rel. 16 It may be the same as NR, or a third embodiment described later may be applied.
  • FIG. 4A and 4B are diagrams showing an example of CORESET set for the second embodiment.
  • FIG. 4A shows an example in which M-DCI is set
  • FIG. 4B shows an example in which S-DCI is set.
  • each of the CORESET pools # 1 and # 2 contains no CORESET.
  • the first number (5 in this example) of CORESET may be set at the maximum.
  • pool # 1 contains three CORESETs and pool # 2 contains two CORESETs.
  • a total of a second number (3 in this example) of CORESET may be set at the maximum.
  • the UE is set with three CORESETs corresponding to TRP # 1, but is not set with CORESETs corresponding to TRP # 2.
  • the number of each CORESET is an example, and is not limited to these. Further, the first number, the second number, and the like may be the maximum number of CORESET for each PDCCH setting information (PDCCH-Config) as described above, or may be a number related to UE capability. Good.
  • the CORESET pool corresponding to TRP may be set.
  • the three CORESETs corresponding to TRP # 1 in FIG. 4B may be configured in the UE to be associated with pool # 1.
  • the UE corresponds to the A-CSI-RS # 1 TRP # 1 corresponding to the A-CSI-RS # 1 even if there is no other DL signal to which the same QCL assumption can be applied.
  • the CORESETs (FIG. 4A) related to CORESET pool # 1 or the CORESETs (FIG. 4B) related to TRP # 1, it may be assumed that the CORESETs and QCLs have the smallest CORESET ID.
  • the UE corresponds to TRP # 2 corresponding to A-CSI-RS # 2 even when there is no other DL signal to which the same QCL assumption can be applied to A-CSI-RS # 2.
  • the CORESETs of the CORESET pool # 2 related to the above it may be assumed that the CORESETs and QCLs have the smallest CORESET ID.
  • the UE cannot derive the default QCL assumption of A-CSI-RS # 2 based on CORESET.
  • the default QCL described in the third embodiment may be applied to this default QCL assumption.
  • the UE may receive the S-DCI using CORESET of only one TRP. For example, when the S-DCI is received by the CORESET corresponding to TRP # 1, the CORESET corresponding to TRP # 2 may not be used for the reception of the DCI.
  • the S-DCI transmitted from TRP # 1 may schedule the reception of PDSCH, A-CSI-RS # 2, etc. of TRP # 2.
  • the UE can grasp how the CORESET for each TRP when the M-TRP is set is set. Further, for the TRP in which the CORESET is set, the default QCL of the A-CSI-RS can be determined based on the CORESET, and the reception of the A-CSI-RS can be preferably performed according to the default QCL.
  • the third embodiment may be applied only when S-DCI is set in the UE, or when COSET corresponding to at least one TRP is not set in a certain BWP / CC / cell. It may be applied only to.
  • the third embodiment may be applied when M-DCI is set in the UE.
  • the UE may trigger two A-CSI-RSs from each TRP based on one detected DCI.
  • the UE may assume that the A-CSI trigger state corresponding to the value indicated by the CSI request field included in the DCI indicates the reception of two A-CSI-RSs.
  • the UE determines the parameters of each of the two A-CSI-RSs from each TRP based on the fields for identifying the individual A-CSI-RS parameters (eg, resources, etc.) contained in the DCI. You may.
  • the field may be an explicit field for the parameters of A-CSI-RS, or an implicit field using some or all of the other fields.
  • the time / frequency / resource fields included in DCI have been expanded to include A-CSI-RS # 1 from TRP # 1 and A-CSI-RS # from TRP # 2.
  • the DCI may be configured so that the UE can control the resources of 2 and 2.
  • the fields that are not expanded may be applied to a plurality of A-CSI-RS in common.
  • a UE that receives a DCI in which the time field is not expanded among the time / frequency / resource fields may assume that the time resources are the same for a plurality of A-CSI-RSs.
  • each A-CSI-RS may be triggered by using different DCIs.
  • the UE may trigger the A-CSI-RS from the TRP based on the DCI transmitted from the TRP (same TRP A-CSI-RS trigger).
  • the UE may also trigger A-CSI-RS from another TRP based on the DCI transmitted from one TRP (cross TRP A-CSI-RS trigger).
  • the DCI for the cross-TRP A-CSI-RS trigger may include a field for identifying the resource of the other A-CSI-RS and the like.
  • a UE that detects one DCI that triggers two A-CSI-RSs applies a default QCL for both if at least one of the triggered A-CSI-RS scheduling offsets is less than the beam switch timing. May be good.
  • the UE that detects the S-DCI transmitted from the TRP # 1 that triggers the A-CSI-RS # 1 and # 2 is the S-DCI and the A-CSI-RS # 1. If the scheduling offset is less than the beam switch timing, the default QCL may be applied to each of A-CSI-RS # 1 and # 2, or the default QCL may be applied only to A-CSI-RS # 1. Good.
  • a UE that detects one DCI that triggers two A-CSI-RSs applies a default QCL for one of the triggered A-CSI-RSs if the scheduling offset is less than the beam switch timing. For the other, the TCI state indicated by the DCI may be applied.
  • a UE that detects one DCI that triggers one A-CSI-RS applies the default QCL for that A-CSI-RS if the scheduling offset of the triggered A-CSI-RS is less than the beam switch timing. You may.
  • the default QCL of the A-CSI-RS may be derived based on the TCI state of the PDSCH or the default QCL of the PDSCH (in other words, it may be assumed to be the same as the TCI state of the PDSCH or the default QCL of the PDSCH. ).
  • the default QCL of the A-CSI-RS may be the PDSCH TCI state (default TCI state) shown below: (1) One of a plurality of TCI states corresponding to a specific code point in a TCI code point containing a plurality of different TCI states activated for PDSCH. (2) TCI state corresponding to a specific code point among TCI code points activated for PDSCH (if the TCI state corresponding to the code point includes a plurality of TCI states, one of them), (3) Rel. Same default TCI state as 15.
  • one of a plurality of TCI states in (1) and (2) may correspond to a TCI state related to TRP corresponding to A-CSI-RS.
  • the "specific code point” in (1) and (2) may correspond to, for example, the code point having the minimum or maximum index.
  • the default QCL of A-CSI-RS related to one TRP is Rel.
  • the default QCL of the A-CSI-RS which is determined by 15 rules and is related to the other TRP, may be determined based on (1) or (2) above.
  • the UE may refer to Rel.
  • the default QCL may be determined based on the CORESET as in the case of 15.
  • the UE appropriately determines the default QCL of the A-CSI-RS regarding the TRP in which the CORESET is not set, and it is preferable to receive the A-CSI-RS according to the default QCL. Can be carried out.
  • the UE may use the assumptions of the different embodiments described above, depending on the type of DCI set (M-DCI or S-DCI). For example, the UE may apply the CORESET assumption of the first embodiment when M-DCI is set, and the CORESET assumption of the second embodiment when S-DCI is set. Good.
  • the beam switch timing of A-CSI-RS of one TRP and the beam switch timing of A-CSI-RS of another TRP may have the same value or different values.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit A-CSI-RS, other DL signals, or the like to the user terminal 20.
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmitting / receiving unit 220 and the transmitting / receiving antenna 230.
  • the control unit 210 assumes the Quasi-Co-Location (QCL) of the aperiodic channel state information reference signal (Aperiodic Channel State Information-Reference Signal (A-CSI-RS)) as follows (1) and (2). ) Satisfy both conditions, it may be derived based on a specific Transmission Configuration Indication state (TCI state) for the Physical Downlink Shared Channel (PDSCH).
  • QCL Quasi-Co-Location
  • A-CSI-RS aperiodic Channel State Information-Reference Signal
  • the reported duration value for the beam switch eg, the value of the RRC parameter "beamSwitchTiming", which is 14, 28, 48.
  • the A-CSI-RS there is no other downlink signal (DL signal) having the indicated Transmission Configuration Indication state (TCI state), or another one having no indicated TCI state. There is a downlink signal.
  • the other downlink signals that do not have the indicated TCI state are the Physical Downlink Shared Channel (PDSCH) having a scheduling offset smaller than a predetermined threshold, and A having a scheduling offset smaller than the period for the beam switch.
  • PDSCH Physical Downlink Shared Channel
  • A having a scheduling offset smaller than the period for the beam switch.
  • -It may be at least one of CSI-RS.
  • the above QCL assumption when both the above conditions (1) and (2) are satisfied may be called a default QCL assumption.
  • the particular TCI state may be the default TCI state of the PDSCH, eg, a plurality corresponding to a particular code point within a TCI code point containing a plurality of different TCI states activated for the PDSCH. It may be one of the TCI states of.
  • the specific code point may correspond to, for example, the minimum or maximum code point.
  • the transmission / reception unit 220 may receive the A-CSI-RS using the QCL assumption based on the CORESET.
  • the control unit 210 may assume that at least one control resource set is set for each transmission / reception point among the plurality of transmission / reception points.
  • the control unit 210 may assume that no control resource set may be set for one transmission / reception point among the plurality of transmission / reception points.
  • the control unit 210 is based on the downlink control information including the information for triggering the plurality of A-CSI-RS and the field for specifying the individual parameters of the plurality of A-CSI-RS, and the plurality of A's.
  • the parameters of each CSI-RS for example, resource, mapping pattern, number of ports, CSI-RS index, scramble series, scramble ID, etc. may be determined.
  • the control unit 210 sets the single downlink control information (S-DCI) related to the multi-transmission / reception point (M-TRP), and the A-CSI is satisfied when both the conditions (1) and (2) are satisfied.
  • S-DCI single downlink control information
  • M-TRP multi-transmission / reception point
  • the beam switch timing of the present disclosure may be expressed as a predetermined threshold value (for example, a threshold value different from timeDurationForQCL).
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disc, a floppy (registered trademark) disc, an optical magnetic disc (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disc, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier Component Carrier (CC)
  • CC Component Carrier
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side”).
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • LTE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、非周期チャネル状態情報参照信号(Aperiodic Channel State Information-Reference Signal(A-CSI-RS))のQuasi-Co-Location(QCL)想定を、以下の(1)及び(2)の条件が両方満たされる場合に、Physical Downlink Shared Channel(PDSCH)のための特定のTransmission Configuration Indication state(TCI状態)に基づいて導出する、ここで、(1)前記A-CSI-RSをスケジュールする下りリンク制御情報を伝送する下りリンク制御チャネルの受信と、前記A-CSI-RSの受信との間のスケジューリングオフセットが、報告したビームスイッチのための期間の値より小さい、(2)前記A-CSI-RSと同じシンボルにおいて、指示されたTransmission Configuration Indication state(TCI状態)を有する他の下りリンク信号がない、又は指示されたTCI状態を有しない他の下りリンク信号がある、制御部と、前記QCL想定に基づいて前記A-CSI-RSを受信する受信部と、を有することを特徴とする。本開示の一態様によれば、A-CSI-RSのQCL想定を適切に決定できる。

Description

端末及び無線通信方法
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、ユーザ端末(UE:User Equipment)は、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))に基づいてチャネル状態を測定し、チャネル状態情報(Channel State Information(CSI))をネットワーク(例えば、基地局)にフィードバック(報告)する。
 CSIのフィードバック方法として、非周期的なCSI(Aperiodic CSI、A-CSI)報告が検討されている。A-CSI報告のために測定するCSI-RSは、A-CSI-RS(Aperiodic CSI-RS)と呼ばれてもよい。
 NRでは、UEの報告したビームスイッチタイミングに基づいて、A-CSI-RSの受信のための疑似コロケーション(Quasi-Co-Location(QCL))の想定が決定されることが検討されている。
 また、NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。
 しかしながら、これまでのNRの議論では、マルチTRPにおけるA-CSI-RSのデフォルトQCLについて、まだ検討されていない。このため、現状のNR仕様に従う場合には、A-CSI-RSのQCL想定を適切に決定してCSIを測定することができないケースがあり、通信スループットの増大が抑制されるおそれがある。
 そこで、本開示は、A-CSI-RSのQCL想定を適切に決定できる端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係る端末は、非周期チャネル状態情報参照信号(Aperiodic Channel State Information-Reference Signal(A-CSI-RS))のQuasi-Co-Location(QCL)想定を、以下の(1)及び(2)の条件が両方満たされる場合に、Physical Downlink Shared Channel(PDSCH)のための特定のTransmission Configuration Indication state(TCI状態)に基づいて導出する、ここで、(1)前記A-CSI-RSをスケジュールする下りリンク制御情報を伝送する下りリンク制御チャネルの受信と、前記A-CSI-RSの受信との間のスケジューリングオフセットが、報告したビームスイッチのための期間の値より小さい、(2)前記A-CSI-RSと同じシンボルにおいて、指示されたTransmission Configuration Indication state(TCI状態)を有する他の下りリンク信号がない、又は指示されたTCI状態を有しない他の下りリンク信号がある、制御部と、前記QCL想定に基づいて前記A-CSI-RSを受信する受信部と、を有することを特徴とする。
 本開示の一態様によれば、A-CSI-RSのQCL想定を適切に決定できる。
図1は、A-CSI-RSのQCL想定の一例を示す図である。 図2A-2Dは、マルチTRPシナリオの一例を示す図である。 図3A及び3Bは、第1の実施形態に関して設定されるCORESETの一例を示す図である。 図4A及び4Bは、第2の実施形態に関して設定されるCORESETの一例を示す図である。 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図6は、一実施形態に係る基地局の構成の一例を示す図である。 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、QCL、空間関係)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information(SRI))などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一(QCL)であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル、又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 UEは、TCI状態の情報要素のリストを含む設定情報(例えば、PDSCH-Config、tci-StatesToAddModList)を上位レイヤシグナリングによって受信してもよい。
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、TCI状態IDと、1つ又は複数のQCL情報(「QCL-Info」)と、を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。
 Rel.15 NRにおいては、PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定され得る。
<PDCCHのためのTCI状態>
 PDCCH(又はPDCCHに関連する復調用参照信号(DeModulation Reference Signal(DMRS))アンテナポート)及びあるDL-RSとのQCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。
 UEは、UE固有のPDCCH(CORESET)のためのTCI状態を、上位レイヤシグナリングに基づいて判断してもよい。例えば、UEに対して、CORESETごとに、1つ又は複数(K個)のTCI状態がRRCシグナリングによって設定されてもよい。
 UEは、各CORESETに対し、RRCシグナリングによって設定された複数のTCI状態の1つを、MAC CEによってアクティベートされてもよい。当該MAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)と呼ばれてもよい。UEは、CORESETのモニタを、当該CORESETに対応するアクティブなTCI状態に基づいて実施してもよい。
<PDSCHのためのTCI状態>
 PDSCH(又はPDSCHに関連するDMRSアンテナポート)及び所定のDL-RSとのQCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。
 UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定)されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。
 PDSCHのスケジューリングに用いられるDCIは、当該PDSCH用のTCI状態を示す所定のフィールド(例えば、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。
 TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(TCI-PresentInDCI)であってもよい。当該情報は、TCI存在情報と呼ばれてもよく、例えば、上位レイヤシグナリングによってUEに設定されてもよい。
 8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティベート(又は指定)されてもよい。当該MAC CEは、UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)と呼ばれてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティベートされたTCI状態の一つを示してもよい。
(Rel.15 NRのA-CSI―RSのデフォルトQCL)
 NRにおいては、UEは、所定の参照信号(又は、当該参照信号用のリソース)を用いてチャネル状態を測定し、チャネル状態情報(Channel State Information(CSI))を基地局にフィードバック(報告)する。
 UEは、参照信号として、CSI-RS、SS/PBCHブロック、DMRSなどの少なくとも1つに基づいて、チャネル状態を測定してもよい。
 CSIのフィードバック方法としては、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI))報告、セミパーシステントなCSI(Semi-Persistent CSI(SP-CSI))報告などが検討されている。
 PUCCHを用いるSP-CSI報告(PUCCHベースSP-CSI報告)は、MAC CEによってアクティベートされてもよい。PUSCHを用いるSP-CSI報告(PUSCHベースSP-CSI報告)、PUSCH又はPUCCHを用いるA-CSI報告などは、DCIによってアクティベート(又はトリガ)されてもよい。
 例えば、DCIに含まれるCSI要求フィールド(CSI request field)によって、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定された複数のトリガ状態(trigger state)から、1つのトリガ状態が指定されてもよい。なお、CSI要求フィールドは、CSIトリガフィールドと互いに読み替えられてもよい。
 A-CSI報告のために測定するCSI-RSは、Aperiodic CSI-RS(A-CSI-RS)と呼ばれてもよい。A-CSI報告では、DCIを用いてA-CSI-RSの測定及びA-CSI報告を同時にトリガするため、RSリソース及び上りチャネルのリソースを効率的に使用しつつ、動的にCSI報告をトリガできる。
 A-CSI報告用のトリガ状態のリストは、RRC情報要素「CSI-AperiodicTriggerStateList」で設定されてもよい。各トリガ状態は、1つ又は複数の報告設定ID(CSI-ReportConfigId)、CSIリソース設定情報、A-CSI-RSのTCI状態(又はQCL想定)などと関連付けられてもよい。
 トリガ状態に関連するCSI-RSリソースセットのA-CSI-RSリソースについて、UEは、上位レイヤによってQCLのRSリソース及びQCLタイプを含むQCL設定を指示されてもよい。例えば、A-CSI-RSのTCI状態(又はQCL想定)は、当該A-CSI-RSの測定をトリガするDCI(のCSI要求フィールド)によって指定されてもよい。
 ところで、DCI(トリガリングDCI)から当該DCIによって指示(トリガ)されたA-CSI-RSまでの期間は、上述のトリガ状態に関連して特定されてもよい。例えば、UEは、トリガ状態に基づいて、測定対象のCSI-RSリソースセットに対応するCSI-RSリソースセットIDを決定する。このCSI-RSリソースセットIDは、非周期トリガリングオフセット(aperiodic triggering offset)と関連付けられてもよい。非周期トリガリングオフセットは、スケジューリングオフセットで読み替えられてもよい。
 スケジューリングオフセットは、A-CSI-RSのリソースセットをトリガするDCIを伝送するPDCCHの最後のシンボル(又は当該PDCCHが含まれる最後のスロット)と、当該リソースセットのA-CSI-RSリソースの最初のシンボル(又はスロット)と、のオフセットを意味してもよい。A-CSI-RSのスケジューリングオフセットとしては、例えば0以上4以下の値が設定されてもよいし、4より大きい値(例えば、16、24など)が設定されてもよい。当該オフセットの単位は、シンボル単位であってもよいし、スロット単位であってもよい。A-CSI-RSのスケジューリングオフセットの情報は、RRCパラメータの「aperiodicTriggeringOffset」に対応してもよい。
 なお、本開示において、スケジューリングオフセットは、所定のDCI(PDCCH)の受信(例えば、最後のシンボル)から当該DCIによってスケジュール(又はトリガ)される信号(例えばA-CSI-RS)又はチャネルの開始(例えば、最初のシンボル)までの期間のことを意味してもよい。スケジューリングオフセットは、スケジュールのための期間、PDCCHからスケジュールされる信号/チャネルまでの期間などで読み替えられてもよい。
 また、ビームスイッチングタイミングに関するUE能力(UE capability)が定義されることが検討されている。当該UE能力は、A-CSI-RSビームスイッチングタイミング(A-CSI-RS beam switching timing)、単にビームスイッチングタイミング、ビームスイッチタイミング(RRCパラメータ「beamSwitchTiming」)などと呼ばれてもよい。
 ビームスイッチタイミングは、A-CSI-RSをトリガするDCIと当該A-CSI-RSの送信との間の最小の時間(例えば、OFDMシンボル数)で定義されてもよい。ビームスイッチタイミングは、上記DCIを受信した最後のシンボルから当該DCIによってトリガされるA-CSI-RSの最初のシンボルまでの時間を示してもよい。ビームスイッチタイミングは、例えば、PDCCHの復号及びビーム切り替えにかかる遅延に基づいてもよい。
 ビームスイッチタイミングは、第1の周波数帯(Frequency Range (FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも一方に適用されてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))又は7125MHz以下の周波数帯であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られない。
 ビームスイッチタイミングは、サブキャリア間隔(例えば、60kHz、120kHz)ごとに異なる値をとってもよい。
 ビームスイッチタイミングは、例えば、14、28、48、224、336シンボルなどの値を取り得る。336シンボルという比較的大きな値は、UEがマルチパネルを搭載するケースにおいて、A-CSI-RSを受信するパネルの電源をオフからオンにするための時間を考慮して検討された。アクティベートされていないビームのパネルはUEが電源をオフしても良いためである。
 Rel.15 NRの仕様では、A-CSI-RSのスケジューリングオフセットが、UEの報告したビームスイッチタイミング以上である場合であって、当該報告したビームスイッチタイミングの値が14、28及び48のいずれかである場合、UEは、DCIのCSIトリガ(要求)フィールドによって指定されるCSIトリガ状態におけるA-CSI-RSリソースのための指定されたTCI状態のQCL想定を適用すると予期してもよい(the UE is expected to apply the QCL assumptions in the indicated TCI states for the aperiodic CSI-RS resources in the CSI triggering state indicated by the CSI trigger field in DCI)。つまり、この場合、UEは、DCIによって指定されたTCI状態に基づいてA-CSI-RSを受信してもよい。
 また、A-CSI-RSのスケジューリングオフセットが、UEの報告したビームスイッチタイミング未満である場合であって、当該報告したビームスイッチタイミングの値が14、28及び48のいずれかである場合、当該A-CSI-RSと同じシンボルにおいて、指示されたTCI状態を有する他のDL信号があれば、当該UEは、A-CSI-RSの受信の際に、当該他のDL信号のQCL想定を適用してもよい。この仕様は、トリガリングDCIを復調してから当該DCIによって示されるTCI状態に対応するUEの受信ビームの切り替えには一定の時間がかかるため、A-CSI-RSの受信までに切り替えが間に合わない事態を抑制することを意図している。
 なお、ここでの他のDL信号は、所定の閾値(UE能力情報「timeDurationForQCL」)以上のスケジューリングオフセットを有するPDSCH(つまり、DCIの受信から当該DCIによってスケジュールされるPDSCHの受信開始までのオフセットが当該所定の閾値以上)、UEが報告した14、28及び48のいずれかのビームスイッチタイミング以上のスケジューリングオフセットを有するA-CSI-RS(つまり、別のA-CSI-RS)、P-CSI-RS、SP-CSI-RSの少なくとも1つであってもよい。
 timeDurationForQCLは、UEがPDCCHを受信し、当該PDCCH(DCI)の空間QCL情報をPDSCH処理のために適用する最小の時間(例えば、OFDMシンボル数)で定義されてもよい。ビームスイッチタイミングは、上記DCIを受信した最後のシンボルから当該DCIによってトリガされるA-CSI-RSの最初のシンボルまでの時間を示してもよい。
 timeDurationForQCLは、QCL用時間長(time duration)、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。timeDurationForQCLは、例えば7、14、28シンボルなどの値をとり得る。
 QCL用時間長は、UE能力に基づいてもよく、例えばPDCCHの復号及びビーム切り替えに掛かる遅延に基づいてもよい。QCL用時間長は、PDCCH受信と、PDSCH処理用のDCI内で受信される空間QCL情報の適用と、を行うためにUEに必要とされる最小時間であってもよい。QCL用時間長は、サブキャリア間隔毎にシンボル数で表されてもよいし、時間(例えば、μs)で表されてもよい。当該QCL用時間長の情報は、UEからUE能力情報として基地局に報告されてもよいし、基地局から上位レイヤシグナリングを用いてUEに設定されてもよい。
 なお、本開示において、他のDL信号に関する閾値は、当該他のDL信号がA-CSI-RSの場合にはビームスイッチタイミングに該当し、当該他のDL信号がPDSCHの場合にはUEが報告したtimeDurationForQCLの値に該当してもよい。
 なお、A-CSI-RSに対して上述の他のDL信号のQCL想定を適用可能なのは、当該A-CSI-RSリソースを規定するNZP CSI-RSリソースセットが上位レイヤパラメータ「trs-Info」及び「repetition」を有しない場合に限定されてもよい。
 trs-Infoがtrueに設定されるNZP CSI-RSリソースセットは、当該リソースセットの全てのNZP CSI-RSリソースのアンテナポートが同じであってもよい。Repetitionがoffに設定されるNZP CSI-RSリソースセットは、当該リソースセット内のNZP CSI-RSリソースが同じ下りリンク空間ドメイン送信フィルタで送信されるとUEによって想定されなくてもよい。
 なお、A-CSI-RSのスケジューリングオフセットが、UEの報告したビームスイッチタイミング未満である場合であって、当該報告したビームスイッチタイミングの値が14、28及び48のいずれかである場合、当該A-CSI-RSと同じシンボルにおいて、指示されたTCI状態を有する上述の他のDL信号がなければ、UEは、当該A-CSI-RSの受信の際、サービングセルのアクティブBWP内の1つ以上のCORESETがモニタされる最新のスロットにおいて最小のCORESET-IDを有し、モニタされるサーチスペースに関連付けられるCORESETのQCL想定を適用してもよい(the UE applies the QCL assumption used for the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored)。
 図1は、A-CSI-RSのQCL想定の一例を示す図である。図1には、DCI1がA-CSI-RSをスケジュール(トリガ)し、DCI0が当該A-CSI-RSと同じシンボルの他のDL信号をスケジュールする例が示されている。UEは、ビームスイッチタイミングの値として14、28及び48のいずれかをUE能力情報に含めてネットワークに報告した。
 図1において、DCI1及びA-CSI-RSのスケジューリングオフセット1は、ビームスイッチタイミングより小さい。一方で、DCI0及び他のDL信号のスケジューリングオフセット0は、閾値(QCL用時間長)以上である。この場合、UEは、A-CSI-RSの受信に当該他のDL信号のQCL想定を適用してもよい。
 図1のDCI0及びDCI1の受信タイミングはこれに限られない。本開示の各実施形態は、A-CSI-RSをスケジュールするDCIと他のDL信号をスケジュールするDCIの受信タイミングが同じ場合にも適用可能である。
 なお、ある信号/チャネルについてのスケジューリングオフセットがある閾値より小さい場合に、当該信号/チャネルに適用されるとUEが想定するTCI状態又はQCL(QCL想定)は、デフォルトQCLと呼ばれてもよい。本開示において、デフォルトTCI状態、デフォルトQCL、デフォルトQCL想定などは、互いに読み換えられてもよい。
 上述のように、A-CSI-RSのデフォルトQCLは、当該A-CSI-RSのスケジューリングオフセットが閾値(報告したビームスイッチタイミング)より小さい場合に適用されてもよい。また、PDSCHのデフォルトQCLは、当該PDSCHのスケジューリングオフセットが閾値(QCL用時間長)より小さい場合に適用されてもよい。
 デフォルトQCLは、例えば、あるチャネル/信号(例えば、PDSCH)について、DCIによって指定されるTCI状態/QCLが利用できない場合に想定するQCLであってもよいし、TCI状態/QCLが指定(又は設定)されない場合に想定するQCLであってもよい。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(M-TRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 図2A-2Dは、マルチTRPシナリオの一例を示す図である。これらの例において、各TRPは4つの異なるビームを送信可能であると想定するが、これに限られない。
 図2Aは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して送信を行うケース(シングルモード、シングルTRPなどと呼ばれてもよい)の一例を示す。この場合、TRP1は、UEに制御信号(PDCCH)及びデータ信号(PDSCH)の両方を送信する。
 図2Bは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(シングルマスタモードと呼ばれてもよい)の一例を示す。UEは、1つの下り制御情報(Downlink Control Information(DCI))に基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図2Cは、マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)の一例を示す。TRP1では制御信号(DCI)のパート1が送信され、TRP2では制御信号(DCI)のパート2が送信されてもよい。制御信号のパート2はパート1に依存してもよい。UEは、これらのDCIのパートに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図2Dは、マルチTRPのそれぞれがUEに対して別々の制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(マルチマスタモードと呼ばれてもよい)の一例を示す。TRP1では第1の制御信号(DCI)が送信され、TRP2では第2の制御信号(DCI)が送信されてもよい。UEは、これらのDCIに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図2BのようなマルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)を、1つのDCIを用いてスケジュールする場合、当該DCIは、シングルDCI(S-DCI、シングルPDCCH)と呼ばれてもよい。また、図2DのようなマルチTRPからの複数のPDSCHを、複数のDCIを用いてそれぞれスケジュールする場合、これらの複数のDCIは、マルチDCI(M-DCI、マルチPDCCH(multiple PDCCH))と呼ばれてもよい。
 マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が検討されている。
 NCJTにおいて、例えば、TRP1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。
 スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。
 スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。
 スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 マルチTRP/パネルを用いるNCJTは、高ランクを用いる可能性がある。複数TRPの間の理想的(ideal)及び非理想的(non-ideal)のバックホール(backhaul)をサポートするために、シングルDCI(シングルPDCCH、例えば、図2B)及びマルチDCI(シングルPDCCH、例えば、図2D)の両方がサポートされてもよい。シングルDCI及びマルチDCIの両方に対し、TRPの最大数が2であってもよい。
 マルチPDCCH設計に対し、UE能力に従って、PDCCH設定情報(PDCCH-Config)毎のCORESETの最大数は5に増やされてもよい。同じTRPを設定され得るCORESETの最大数は、UE能力によって報告される数までであってもよい。UE能力は、少なくとも候補値「3」を含んでもよい。
 同じTRPは、PDCCH設定情報ごと(もし設定されればCORESETごと)に設定される、同じ上位レイヤインデックス(例えば、CORESETプールインデックス、TRPインデックス)に対応してもよい。言い換えると、信号/チャネルに対応するTRPは、当該上位レイヤインデックスによって識別されてもよい。
(Rel.16 NRで検討されるデフォルトQCL)
 さて、Rel.16 NRでは、クロスキャリアスケジューリングの場合のデフォルトQCLも議論されている。例えば、PDSCHと当該PDSCHをスケジュールするPDCCHが異なるCCに属する場合、これらのスケジューリングオフセットがQCL用時間長より小さい又はPDCCH(DCI)にTCI状態の情報が含まれない場合、UEは、スケジュールされるセルのアクティブBWPにおけるPDSCHに適用可能な最小のアクティブなTCI状態IDのTCI状態から、スケジュールされるPDSCHのためのQCL想定を取得してもよい。
 また、Rel.16 NRでは、スケジューリングオフセットが閾値より小さいクロスキャリアA-CSI-RSのトリガが行われ、かつ当該A-CSI-RSがQCL-D情報を含む場合、スケジュールされるセルの当該A-CSI-RSと同じシンボルにおいて、他のDL信号があれば、UEは、当該A-CSI-RS(の受信)に、当該他のDL信号のQCL-Dを適用してもよい。ここで、当該他のDL信号の定義は、Rel.15 NRと同じであってもよい。
 上記ケースにおいて他のDL信号がない場合であって、A-CSI-RSのキャリア(CC、セル)においてCORESETが設定される場合には、UEは、当該A-CSI-RSの受信の際、サービングセルのアクティブBWP内の1つ以上のCORESETがモニタされる最新のスロットにおいて最小のCORESET-IDを有し、モニタされるサーチスペースに関連付けられるCORESETのQCL想定を適用してもよい。
 上記ケースにおいて他のDL信号がない場合であって、A-CSI-RSのキャリア(CC、セル)においてCORESETが設定されない場合には、UEは、当該A-CSI-RSの受信の際、A-CSI-RS送信のサービングセルのアクティブBWPにおけるPDSCHに適用可能な最小のアクティブなTCI状態IDのTCI状態のQCL-Dを適用してもよい。
 また、Rel.16 NRについて、QCL-Dを含み、スケジュールされるPDSCHのサービングセルに対して少なくとも1つの設定されるTCI状態を有するシングルDCIベースのマルチTRP/パネル送信に対し、UE固有のPDSCH用のTCI状態のアクティベーションコマンドの受信の後、もしPDCCHの受信と、対応するPDSCHと、の間の時間オフセットが、閾値(timeDurationForQCL)よりも小さい場合、UEは、PDSCHのDMRSポートが、以下に示すTCI状態(デフォルトTCI状態)によって指示されるQCLパラメータに従うと想定してもよいことが検討されている:
 ・PDSCH用にアクティベートされる2つの異なるTCI状態を含むTCIコードポイントの中の最小コードポイントに対応するTCI状態、
 ・Rel.15と同じデフォルトTCI状態(ただし、全てのTCIコードポイントが1つのTCI状態にマップされている場合)。
 シングルDCIに基づく複数PDSCHに対してデフォルトTCI状態を用いることは、UE能力の一部であってもよい。
 Rel.16 NRについて、マルチDCIベースのマルチTRP/パネル送信に対し、CORESETプールインデックス(例えば、RRCパラメータ「CORESETPoolIndex」)が設定される場合において、もしPDCCHの受信と、対応するPDSCHと、の間の時間オフセットが閾値よりも小さい場合、UEは、サービングセルのアクティブBWP内の、CORESETプールインデックスのそれぞれに関連付けられた1以上のCORESETがUEによってモニタされるそれぞれの最新スロット内において、CORESETプールインデックスの同じ値を設定されるCORESETの中の最小CORESETインデックスのPDCCHに用いられるQCLパラメータに関するRSと、当該PDSCHのDM-RSポートがQCLである、と想定してもよい。この機能のサポートは、UE能力によって表示(報告)される。もしUEが上記の特徴をサポートしない場合、CORESETプールインデックスに関わらず、Rel.15の動作が再利用されてもよい。
 しかしながら、これまでのNRの議論では、M-TRPにおける、A-CSI-RSのデフォルトQCLについて、まだ検討されていない。このため、現状のNR仕様に従う場合には、A-CSI-RSのTCI状態(QCL想定)を適切に決定してCSIを測定することができないケースがあり、通信スループットの増大が抑制されるおそれがある。
 そこで、本発明者らは、A-CSI-RSのTCI状態(QCL想定)を適切に決定する方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、本開示において、パネル、Uplink(UL)送信エンティティ、TRP、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード(Code Word(CW))、基地局、ある信号のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、ある信号のアンテナポートグループ(例えば、DMRSポートグループ)、多重のためのグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ)、CORESETプール、冗長バージョン(redundancy version(RV))、レイヤ(MIMOレイヤ、送信レイヤ、空間レイヤ)などは、互いに読み替えられてもよい。本開示において、TRP Identifier(ID)とTRPは、互いに読み替えられてもよい。
 本開示において、NCJT、マルチTRPを用いたNCJT、NCJTを用いたマルチPDSCH、マルチPDSCH、マルチTRPからの複数のPDSCHなどは、互いに読み替えられてもよい。
 なお、本開示において、CORESET-IDは、RRC情報要素「ControlResourceSet」によって設定されるID(CORESETの識別のためのID)であってもよい。また、本開示において、「最小のCORESET-ID」は、特定のCORESET-ID(例えば、最小のCORESET-ID、最大のCORESET-ID)で読み替えられてもよい。
 また、本開示において、「最新のスロット(latest slot)」は、スケジュールされるA-CSI-RSを受信するタイミングを基準とした最新のスロットを意味してもよいし、A-CSI-RSをスケジュールするDCI(PDCCH)を受信するタイミングを基準とした最新のスロットを意味してもよい。
 本開示において、最新の(the latest)スロット、最近の(the most recent)スロット、最新のサーチスペース、最近のサーチスペース、最新のCORESETなどは、互いに読み替えられてもよい。また、本開示の「最新のスロット」は、これを削除した内容で読み替えられてもよい。例えば、「最新のスロットにおけるCORESET」は、単に「CORESET」で読み替えられてもよく、つまり任意のスロットにおけるCORESETを意味してもよい。
 また、本開示においては、UEが報告したビームスイッチタイミングの値は14、28及び48のいずれかである場合を想定するが、この値は別の値(例えば100未満の特定の値)で読み替えられてもよい。また、本開示の「ビームスイッチタイミング」は、「ビームスイッチタイミングに基づく値」(例えば、ビームスイッチタイミング+特定の値(例えば、CSI-RSのサブキャリア間隔などに基づいて求められる値))で読み替えられてもよい。
 本開示において、「S-DCIが設定される」は、「S-DCIベースのM-TRP送信が設定される又は指示される又は用いられる」で読み替えられてもよい。本開示において、「M-DCIが設定される」は、「M-DCIベースのM-TRP送信が設定される又は指示される又は用いられる」で読み替えられてもよい。本開示において、「M-TRPが設定される」は、「M-TRP送信が設定される又は指示される又は用いられる」で読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態では、UEは、1つのTRPにつき少なくとも1つの(最小でも1つの)CORESETが設定されると想定してもよい。第1の実施形態では、関連するCORESETが設定されないTRPは存在しない。UEは、少なくとも1つのTRPに関して設定されたCORESETが、PDCCHの受信に用いられないCORESETであると想定してもよい。
 M-TRPが設定される場合のA-CSI-RSについてのデフォルトQCLは、Rel.15 NRと同じであってもよいし、Rel.16 NRと同じであってもよい。この場合、例えば、各TRPに対応するCORESETを介してUEがA-CSI-RSをトリガすることによって、各TRPに対応するA-CSI-RSを、スケジュールオフセットがビームスイッチタイミング以内であっても適切に受信できる。
 図3A及び3Bは、第1の実施形態に関して設定されるCORESETの一例を示す図である。図3Aは、M-DCIが設定される例を示し、図3Bは、S-DCIが設定される例を示す。また、以下の例(図4A及び4Bも同様)では、A-CSI-RS#1は、TRP#1に対応し、A-CSI-RS#2は、TRP#2に対応すると想定する。
 図3Aでは、TRP#1に対応するプールインデックス=0のCORESETプール#1と、TRP#2に対応するプールインデックス=1のCORESETプール#2と、がUEに対して設定されている。第1の実施形態の場合、CORESETプール#1及び#2はそれぞれ少なくとも1つずつのCORESETを含む。
 M-DCIが設定されるUEは、合計で第1の数(本例では5個)のCORESETが最大で設定されてもよい。図3Aでは、プール#1は3つのCORESETを含み、プール#2は2つのCORESETを含む。
 S-DCIが設定されるUEは、合計で第2の数(本例では3個)のCORESETが最大で設定されてもよい。図3Bでは、UEは、TRP#1に対応する2つのCORESETと、TRP#2に対応する1つのCORESETと、を設定されている。
 なお、それぞれのCORESETの数は一例であって、これらに限られない。また、第1の数、第2の数などは、上述したような、PDCCH設定情報(PDCCH-Config)毎のCORESETの最大数であってもよいし、UE能力に関連する数であってもよい。
 また、S-DCIが設定されるUEであっても、TRPに対応するCORESETプールが設定されてもよい。例えば、図3BのTRP#1に対応する2つのCORESETは、プール#1に関連し、TRP#2に対応する1つのCORESETは、プール#2に関連するように、UEに設定されてもよい。
 図3A及び3Bにおいて、UEは、A-CSI-RS#1について、同じQCL想定を適用できる他のDL信号がない場合であっても、当該A-CSI-RS#1に対応するTRP#1に関連するCORESETプール#1のCORESET(図3A)、又はTRP#1に関連するCORESET(図3B)のうち、最小のCORESET IDのCORESETとQCLであると想定してもよい。
 図3A及び3Bにおいて、UEは、A-CSI-RS#2について、同じQCL想定を適用できる他のDL信号がない場合であっても、当該A-CSI-RS#2に対応するTRP#2に関連するCORESETプール#2のCORESET(図3A)、又はTRP#2に関連するCORESET(図3B)のうち、最小のCORESET IDのCORESETとQCLであると想定してもよい。
 なお、図3Bの例において、UEは、S-DCIを一方のTRPのみのCORESETを用いて受信してもよい。例えば、S-DCIをTRP#1に対応するCORESETで受信する場合、TRP#2に対応するCORESETはDCIの受信には用いられなくてもよい。TRP#1から送信されるS-DCIは、TRP#2のPDSCH、A-CSI-RS#2などの受信をスケジュールしてもよい。この場合、TRP#2のCORESETは、A-CSI-RS#2のデフォルトQCL想定のために利用されてもよい。
 以上説明した第1の実施形態によれば、M-TRPが設定される場合の各TRPについてのCORESETがどのように設定されるかをUEが把握できる。また、A-CSI-RSのデフォルトQCLをCORESETに基づいて決定し、当該デフォルトQCLに従って当該A-CSI-RSの受信を好適に実施できる。
<第2の実施形態>
 第2の実施形態では、UEは、1つのTRPに1つもCORESETが設定されないことがあると想定してもよい。例えば、UEは、プライマリセル、プライマリセカンダリセル、PUCCHセカンダリセル、スペシャルセルなどの少なくとも1つに関連しないTRP(言い換えると、通常のセカンダリセルのみに関連するTRP)について、CORESETが設定されないことを予期してもよい。
 M-TRPが設定される場合のA-CSI-RSについてのデフォルトQCLは、Rel.15 NRと同じであってもよいし、Rel.16 NRと同じであってもよいし、後述する第3の実施形態が適用されてもよい。
 図4A及び4Bは、第2の実施形態に関して設定されるCORESETの一例を示す図である。図4Aは、M-DCIが設定される例を示し、図4Bは、S-DCIが設定される例を示す。
 図4Aでは、TRP#1に対応するプールインデックス=0のCORESETプール#1と、TRP#2に対応するプールインデックス=1のCORESETプール#2と、がUEに対して設定されている。第2の実施形態の場合、CORESETプール#1及び#2はそれぞれ1つもCORESETを含まないことが許容される。
 M-DCIが設定されるUEは、合計で第1の数(本例では5個)のCORESETが最大で設定されてもよい。図4Aでは、プール#1は3つのCORESETを含み、プール#2は2つのCORESETを含む。
 S-DCIが設定されるUEは、合計で第2の数(本例では3個)のCORESETが最大で設定されてもよい。図4Bでは、UEは、TRP#1に対応する3つのCORESETを設定されているが、TRP#2に対応するCORESETは設定されていない。
 なお、それぞれのCORESETの数は一例であって、これらに限られない。また、第1の数、第2の数などは、上述したような、PDCCH設定情報(PDCCH-Config)毎のCORESETの最大数であってもよいし、UE能力に関連する数であってもよい。
 また、S-DCIが設定されるUEであっても、TRPに対応するCORESETプールが設定されてもよい。例えば、図4BのTRP#1に対応する3つのCORESETは、プール#1に関連するように、UEに設定されてもよい。
 図4A及び4Bにおいて、UEは、A-CSI-RS#1について、同じQCL想定を適用できる他のDL信号がない場合であっても、当該A-CSI-RS#1に対応するTRP#1に関連するCORESETプール#1のCORESET(図4A)、又はTRP#1に関連するCORESET(図4B)のうち、最小のCORESET IDのCORESETとQCLであると想定してもよい。
 また、図4Aにおいて、UEは、A-CSI-RS#2について、同じQCL想定を適用できる他のDL信号がない場合であっても、当該A-CSI-RS#2に対応するTRP#2に関連するCORESETプール#2のCORESETのうち、最小のCORESET IDのCORESETとQCLであると想定してもよい。
 また、図4Bにおいて、UEは、A-CSI-RS#2のデフォルトQCL想定を、CORESETに基づいて導出することができない。このデフォルトQCL想定については、第3の実施形態で述べるデフォルトQCLを適用してもよい。
 なお、図4Bの例において、UEは、S-DCIを一方のTRPのみのCORESETを用いて受信してもよい。例えば、S-DCIをTRP#1に対応するCORESETで受信する場合、TRP#2に対応するCORESETはDCIの受信には用いられなくてもよい。TRP#1から送信されるS-DCIは、TRP#2のPDSCH、A-CSI-RS#2などの受信をスケジュールしてもよい。
 以上説明した第2の実施形態によれば、M-TRPが設定される場合の各TRPについてのCORESETがどのように設定されるかをUEが把握できる。また、CORESETが設定されるTRPについては、A-CSI-RSのデフォルトQCLをCORESETに基づいて決定し、当該デフォルトQCLに従って当該A-CSI-RSの受信を好適に実施できる。
<第3の実施形態>
 第3の実施形態では、A-CSI-RSのトリガ及びデフォルトQCLについて説明する。
 なお、第3の実施形態は、UEにS-DCIが設定される場合に限定して適用されてもよいし、あるBWP/CC/セルにおいて、少なくとも1つのTRPに対応するCORESETが設定されない場合に限定して適用されてもよい。第3の実施形態は、UEにM-DCIが設定される場合に適用されてもよい。
[A-CSI-RSのトリガ]
 UEは、検出した1つのDCIに基づいて、各TRPからの2つのA-CSI-RSをトリガしてもよい。
 UEは、当該DCIに含まれるCSIリクエストフィールドが示す値に対応するA-CSIトリガ状態が2つのA-CSI-RSの受信を指示すると想定してもよい。
 UEは、当該DCIに含まれる個別のA-CSI-RSのパラメータ(例えば、リソースなど)を特定するためのフィールドに基づいて、各TRPからの2つのA-CSI-RSそれぞれのパラメータを判断してもよい。当該フィールドは、A-CSI-RSのパラメータに関する明示的なフィールドであってもよいし、他のフィールドの一部又は全部を用いた暗示的なフィールドであってもよい。
 例えば、DCIに含まれる時間/周波数/リソースに関するフィールド(例えば、時間ドメインリソース割り当てフィールド)が拡張され、TRP#1からのA-CSI-RS#1とTRP#2からのA-CSI-RS#2と、のリソースなどをUEが制御できるように、DCIが構成されてもよい。
 なお、A-CSI-RSのための拡張され得るフィールドのうち、拡張されていないフィールドは、複数のA-CSI-RSに共通に適用されてもよい。例えば、時間/周波数/リソースに関するフィールドのうち、時間に関するフィールドが拡張されていないDCIを受信したUEは、複数のA-CSI-RSについて時間リソースは同じであると想定してもよい。
 なお、1つのDCIで2つのTRPのA-CSI-RSが同時にトリガされるケースを上述したが、別々のDCIを用いてそれぞれのA-CSI-RSがトリガされてもよい。例えば、UEは、あるTRPから送信されたDCIに基づいて、当該TRPからのA-CSI-RSをトリガしてもよい(同一TRP A-CSI-RSトリガ)。また、UEは、あるTRPから送信されたDCIに基づいて、別のTRPからのA-CSI-RSをトリガしてもよい(クロスTRP A-CSI-RSトリガ)。クロスTRP A-CSI-RSトリガのためのDCIは、当該別のA-CSI-RSのリソースなどを特定するためのフィールドを含んでもよい。
[A-CSI-RSのデフォルトQCL]
 2つのA-CSI-RSをトリガする1つのDCIを検出したUEは、トリガされるA-CSI-RSの少なくとも一方のスケジューリングオフセットがビームスイッチタイミング未満である場合、両方についてデフォルトQCLを適用してもよい。
 例えば、図4Bのケースでは、A-CSI-RS#1及び#2をトリガするTRP#1から送信されたS-DCIを検出したUEは、当該S-DCI及びA-CSI-RS#1のスケジューリングオフセットがビームスイッチタイミング未満の場合には、A-CSI-RS#1及び#2それぞれについてデフォルトQCLを適用してもよいし、A-CSI-RS#1のみにデフォルトQCLを適用してもよい。
 2つのA-CSI-RSをトリガする1つのDCIを検出したUEは、トリガされるA-CSI-RSの一方のスケジューリングオフセットがビームスイッチタイミング未満である場合、当該一方についてデフォルトQCLを適用し、他方については当該DCIによって指示されるTCI状態を適用してもよい。
 1つのA-CSI-RSをトリガする1つのDCIを検出したUEは、トリガされるA-CSI-RSのスケジューリングオフセットがビームスイッチタイミング未満である場合、当該A-CSI-RSについてデフォルトQCLを適用してもよい。
 A-CSI-RSのデフォルトQCLは、PDSCHのTCI状態又はPDSCHのデフォルトQCLに基づいて導出されてもよい(言い換えると、PDSCHのTCI状態又はPDSCHのデフォルトQCLと同じであると想定されてもよい)。
 例えば、A-CSI-RSのデフォルトQCLは、以下に示すPDSCHのTCI状態(デフォルトTCI状態)であってもよい:
 (1)PDSCH用にアクティベートされる複数の異なるTCI状態を含むTCIコードポイントの中の特定のコードポイントに対応する、複数のTCI状態の一方、
 (2)PDSCH用にアクティベートされるTCIコードポイントの中の特定のコードポイントに対応するTCI状態(当該コードポイントに対応するTCI状態が複数のTCI状態を含む場合、これらの一方)、
 (3)Rel.15と同じデフォルトTCI状態。
 なお、(1)及び(2)の「複数のTCI状態の一方」は、A-CSI-RSに対応するTRPに関連するTCI状態に該当してもよい。また、(1)及び(2)の「特定のコードポイント」は、例えばインデックスが最小又は最大のコードポイントに該当してもよい。
 なお、一方のTRPに関連するA-CSI-RSのデフォルトQCLは、Rel.15のルールで決定され、他方のTRPに関連するA-CSI-RSのデフォルトQCLは、上述の(1)又は(2)に基づいて決定されてもよい。
 UEは、関連するCORESETが少なくとも1つ設定されているTRPのA-CSI-RSについては、Rel.15と同様にCORESETに基づいてデフォルトQCLを判断してもよい。
 以上説明した第3の実施形態によれば、例えば、CORESETが設定されないTRPに関するA-CSI-RSのデフォルトQCLをUEが適切に判断し、当該デフォルトQCLに従って当該A-CSI-RSの受信を好適に実施できる。
<その他の実施形態>
 UEは、設定されるDCIのタイプ(M-DCIかS-DCIか)によって、上述した異なる実施形態の想定を用いてもよい。例えば、UEは、M-DCIが設定されるときは第1の実施形態のCORESETの想定を適用し、S-DCIが設定されるときは第2の実施形態のCORESETの想定を適用してもよい。
 なお、あるTRPのA-CSI-RSのビームスイッチタイミングと、別のTRPのA-CSI-RSのビームスイッチタイミングと、は同じ値であってもよいし、異なる値であってもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図6は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、ユーザ端末20に対して、A-CSI-RS、他のDL信号などを送信してもよい。
(ユーザ端末)
 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、制御部210は、非周期チャネル状態情報参照信号(Aperiodic Channel State Information-Reference Signal(A-CSI-RS))のQuasi-Co-Location(QCL)想定を、以下の(1)及び(2)の条件が両方満たされる場合に、Physical Downlink Shared Channel(PDSCH)のための特定のTransmission Configuration Indication state(TCI状態)に基づいて導出してもよい。
 ここで、(1)前記A-CSI-RSをスケジュールする下りリンク制御情報(DCI)を伝送する下りリンク制御チャネル(PDCCH)の受信と、前記A-CSI-RSの受信との間のスケジューリングオフセットが、報告したビームスイッチのための期間の値(例えば、RRCパラメータ「beamSwitchTiming」の値であって、14、28、48のいずれか)より小さい、
 (2)前記A-CSI-RSと同じシンボルにおいて、指示されたTransmission Configuration Indication state(TCI状態)を有する他の下りリンク信号(DL信号)がない、又は指示されたTCI状態を有しない他の下りリンク信号がある。
 なお、前記指示されたTCI状態を有しない他の下りリンク信号は、所定の閾値より小さいスケジューリングオフセットを有するPhysical Downlink Shared Channel(PDSCH)、及び前記ビームスイッチのための期間より小さいスケジューリングオフセットを有するA-CSI-RSの少なくとも一方であってもよい。
 上記(1)及び(2)の条件が両方満たされる場合の上記QCL想定は、デフォルトQCL想定と呼ばれてもよい。また、上記特定のTCI状態は、PDSCHのデフォルトTCI状態であってもよく、例えば、PDSCH用にアクティベートされる複数の異なるTCI状態を含むTCIコードポイントの中の特定のコードポイントに対応する、複数のTCI状態の一方であってもよい。当該特定のコードポイントは、例えば最小又は最大のコードポイントに該当してもよい。
 送受信部220は、上記CORESETに基づくQCL想定を用いて前記A-CSI-RSを受信してもよい。
 制御部210は、複数の送受信ポイントのうちの各送受信ポイントに関して、それぞれ少なくとも1つの制御リソースセットが設定されると想定してもよい。
 制御部210は、複数の送受信ポイントのうちの1つの送受信ポイントに関して1つも制御リソースセットが設定されないことがあると想定してもよい。
 制御部210は、複数のA-CSI-RSをトリガする情報と当該複数のA-CSI-RS個別のパラメータを特定するためのフィールドとを含む前記下りリンク制御情報に基づいて、当該複数のA-CSI-RSそれぞれのパラメータ(例えば、リソース、マッピングパターン、ポート数、CSI-RSインデックス、スクランブル系列、スクランブルIDなど)を判断してもよい。
 制御部210は、マルチ送受信ポイント(M-TRP)に関するシングル下りリンク制御情報(S-DCI)が設定され、かつ前記(1)及び(2)の条件が両方満たされる場合に、前記A-CSI-RSのQCL想定を、前記PDSCHのための特定のTCI状態に基づいて導出することを特徴とする請求項1から請求項4のいずれかに記載の端末。
 本開示のビームスイッチタイミングは、所定の閾値(例えば、timeDurationForQCLとは別の閾値)と表現されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  非周期チャネル状態情報参照信号(Aperiodic Channel State Information-Reference Signal(A-CSI-RS))のQuasi-Co-Location(QCL)想定を、以下の(1)及び(2)の条件が両方満たされる場合に、Physical Downlink Shared Channel(PDSCH)のための特定のTransmission Configuration Indication state(TCI状態)に基づいて導出する、ここで、
     (1)前記A-CSI-RSをスケジュールする下りリンク制御情報を伝送する下りリンク制御チャネルの受信と、前記A-CSI-RSの受信との間のスケジューリングオフセットが、報告したビームスイッチのための期間の値より小さい、
     (2)前記A-CSI-RSと同じシンボルにおいて、指示されたTransmission Configuration Indication state(TCI状態)を有する他の下りリンク信号がない、又は指示されたTCI状態を有しない他の下りリンク信号がある、制御部と、
     前記QCL想定に基づいて前記A-CSI-RSを受信する受信部と、を有することを特徴とする端末。
  2.  前記制御部は、複数の送受信ポイントのうちの各送受信ポイントに関して、それぞれ少なくとも1つの制御リソースセットが設定されると想定することを特徴とする請求項1に記載の端末。
  3.  前記制御部は、複数の送受信ポイントのうちの1つの送受信ポイントに関して1つも制御リソースセットが設定されないことがあると想定することを特徴とする請求項1に記載の端末。
  4.  前記制御部は、複数のA-CSI-RSをトリガする情報と当該複数のA-CSI-RS個別のパラメータを特定するためのフィールドとを含む前記下りリンク制御情報に基づいて、当該複数のA-CSI-RSそれぞれのパラメータを判断することを特徴とする請求項1から請求項3のいずれかに記載の端末。
  5.  前記制御部は、マルチ送受信ポイントに関するシングル下りリンク制御情報が設定され、かつ前記(1)及び(2)の条件が両方満たされる場合に、前記A-CSI-RSのQCL想定を、前記PDSCHのための特定のTCI状態に基づいて導出することを特徴とする請求項1から請求項4のいずれかに記載の端末。
  6.  非周期チャネル状態情報参照信号(Aperiodic Channel State Information-Reference Signal(A-CSI-RS))のQuasi-Co-Location(QCL)想定を、以下の(1)及び(2)の条件が両方満たされる場合に、Physical Downlink Shared Channel(PDSCH)のための特定のTransmission Configuration Indication state(TCI状態)に基づいて導出する、ここで、
     (1)前記A-CSI-RSをスケジュールする下りリンク制御情報を伝送する下りリンク制御チャネルの受信と、前記A-CSI-RSの受信との間のスケジューリングオフセットが、報告したビームスイッチのための期間の値より小さい、
     (2)前記A-CSI-RSと同じシンボルにおいて、指示されたTransmission Configuration Indication state(TCI状態)を有する他の下りリンク信号がない、又は指示されたTCI状態を有しない他の下りリンク信号がある、ステップと、
     前記QCL想定に基づいて前記A-CSI-RSを受信するステップと、を有することを特徴とする端末の無線通信方法。
PCT/JP2019/046655 2019-11-28 2019-11-28 端末及び無線通信方法 WO2021106167A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/756,597 US20230007667A1 (en) 2019-11-28 2019-11-28 Terminal and radio communication method
EP19954350.5A EP4068831A4 (en) 2019-11-28 2019-11-28 TERMINAL AND WIRELESS COMMUNICATION METHOD
PCT/JP2019/046655 WO2021106167A1 (ja) 2019-11-28 2019-11-28 端末及び無線通信方法
JP2021561085A JP7372622B2 (ja) 2019-11-28 2019-11-28 端末、無線通信方法及びシステム
CN201980103513.6A CN115004746B (zh) 2019-11-28 2019-11-28 终端以及无线通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046655 WO2021106167A1 (ja) 2019-11-28 2019-11-28 端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2021106167A1 true WO2021106167A1 (ja) 2021-06-03

Family

ID=76129426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046655 WO2021106167A1 (ja) 2019-11-28 2019-11-28 端末及び無線通信方法

Country Status (5)

Country Link
US (1) US20230007667A1 (ja)
EP (1) EP4068831A4 (ja)
JP (1) JP7372622B2 (ja)
CN (1) CN115004746B (ja)
WO (1) WO2021106167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024178670A1 (en) * 2023-03-01 2024-09-06 Qualcomm Incorporated Transmission configuration indicator state selection for channel state information or physical downlink shared channel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665722B2 (en) 2020-02-13 2023-05-30 Qualcomm Incorporated QCL assumption for A-CSI-RS configured with multi-TRP
CN115244875B (zh) * 2020-03-06 2023-11-10 Lg 电子株式会社 在无线通信系统中基于空间参数发送或接收信号的方法和设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190229792A1 (en) * 2018-01-24 2019-07-25 Qualcomm Incorporated Quasi co-location assumptions for aperiodic channel state information reference signal triggers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031248A (ja) * 2016-12-20 2020-02-27 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN110447255A (zh) * 2017-02-03 2019-11-12 株式会社Ntt都科摩 用户终端以及无线通信方法
KR101963365B1 (ko) * 2017-07-21 2019-03-28 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치
US20190239093A1 (en) * 2018-03-19 2019-08-01 Intel Corporation Beam indication information transmission
WO2019193731A1 (ja) * 2018-04-05 2019-10-10 株式会社Nttドコモ ユーザ端末及び無線基地局
US10986622B2 (en) * 2018-05-10 2021-04-20 Apple Inc. User equipment (UE) downlink transmission configuration indication (TCI)-state selection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190229792A1 (en) * 2018-01-24 2019-07-25 Qualcomm Incorporated Quasi co-location assumptions for aperiodic channel state information reference signal triggers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300 V8.12.0, April 2010 (2010-04-01)
ITRI: "Enhancements on multi-TRP and multi-panel transmission", 3GPP DRAFT; R1-1912861, vol. RAN WG1, 8 November 2019 (2019-11-08), Reno, USA, pages 1 - 5, XP051820213 *
MEDIATEK INC.: "On aperiodic CSI-RS triggering with different numerology between GSI-RS and triggering PDCCH", 3GPP DRAFT; R1-1912102, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, U.S.A, pages 1 - 4, XP051823195 *
NOKIA, NOKIA SHANGHAI BELL: "FL summary 2 on A-CSI- RS triggering with different numerology between CSI-RS and triggering PDCCH", 3GPP DRAFT; R1-1913390, vol. RAN WG1, 25 November 2019 (2019-11-25), Reno, NV, USA, pages 1 - 8, XP051830671 *
NTT DOCOMO, INC: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1912893, vol. RAN WG1, 22 November 2019 (2019-11-22), Reno, USA, pages 1 - 21, XP051820229 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024178670A1 (en) * 2023-03-01 2024-09-06 Qualcomm Incorporated Transmission configuration indicator state selection for channel state information or physical downlink shared channel

Also Published As

Publication number Publication date
CN115004746A (zh) 2022-09-02
JP7372622B2 (ja) 2023-11-01
CN115004746B (zh) 2024-04-09
EP4068831A1 (en) 2022-10-05
EP4068831A4 (en) 2023-08-02
JPWO2021106167A1 (ja) 2021-06-03
US20230007667A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2021024494A1 (ja) 端末及び無線通信方法
WO2020170449A1 (ja) ユーザ端末及び無線通信方法
EP3930274A1 (en) User terminal and wireless communication method
WO2020170398A1 (ja) ユーザ端末及び無線通信方法
WO2021090507A1 (ja) 端末及び無線通信方法
WO2020090060A1 (ja) ユーザ端末及び無線通信方法
WO2022097619A1 (ja) 端末、無線通信方法及び基地局
WO2020209282A1 (ja) ユーザ端末及び無線通信方法
WO2021065010A1 (ja) 端末及び無線通信方法
WO2021106169A1 (ja) 端末及び無線通信方法
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2021161472A1 (ja) 端末、無線通信方法及び基地局
WO2020144871A1 (ja) ユーザ端末及び無線通信方法
WO2021106168A1 (ja) 端末及び無線通信方法
WO2021090506A1 (ja) 端末及び無線通信方法
WO2022044287A1 (ja) 端末、無線通信方法及び基地局
WO2022049634A1 (ja) 端末、無線通信方法及び基地局
JP7372622B2 (ja) 端末、無線通信方法及びシステム
JP7480176B2 (ja) 端末、無線通信方法及びシステム
WO2021130941A1 (ja) 端末及び無線通信方法
WO2022038657A1 (ja) 端末、無線通信方法及び基地局
WO2022024377A1 (ja) 端末、無線通信方法及び基地局
WO2021210108A1 (ja) 端末、無線通信方法及び基地局
WO2021192302A1 (ja) 端末、無線通信方法及び基地局
WO2021186724A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019954350

Country of ref document: EP

Effective date: 20220628