WO2022024336A1 - Optical fiber and solar transmission system - Google Patents

Optical fiber and solar transmission system Download PDF

Info

Publication number
WO2022024336A1
WO2022024336A1 PCT/JP2020/029405 JP2020029405W WO2022024336A1 WO 2022024336 A1 WO2022024336 A1 WO 2022024336A1 JP 2020029405 W JP2020029405 W JP 2020029405W WO 2022024336 A1 WO2022024336 A1 WO 2022024336A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
wavelength
optical
transmission
Prior art date
Application number
PCT/JP2020/029405
Other languages
French (fr)
Japanese (ja)
Inventor
悠途 寒河江
千里 深井
隆 松井
和秀 中島
一貴 原
敦子 河北
友宏 谷口
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022539933A priority Critical patent/JP7435789B2/en
Priority to PCT/JP2020/029405 priority patent/WO2022024336A1/en
Publication of WO2022024336A1 publication Critical patent/WO2022024336A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • This disclosure relates to optical fibers and systems for transmitting sunlight.
  • Non-Patent Document 1 Currently, light of various wavelength bands is used for various purposes.
  • the visible light region is not only used for household lighting, but also lighting having a visible light spectrum optimized for growing conditions is used in a plant factory (Non-Patent Document 1).
  • the ultraviolet region is used in a sterilization system for the purpose of preventing infectious diseases, for example (Non-Patent Document 2).
  • various products are used as heater appliances (Non-Patent Document 3).
  • Non-Patent Documents 1 to 3 it is necessary to prepare power-driven light sources having wavelengths according to the intended use of light, and there is a problem that power consumption and device cost increase.
  • an arbitrary wavelength is extracted by designing the transmittance of an optical fiber that collects sunlight and transmits light to an irradiation target. This eliminates the need for a power source-driven light source unit and a wavelength filter having a specific wavelength, which are required for conventional light utilization, so that an economical system can be configured by saving power and reducing equipment cost.
  • the optical fiber according to the present disclosure is An optical fiber whose core is covered with a clad. It has a radius of the core and a difference in the specific refractive index of the clad with respect to the core, which transmits a predetermined wavelength among the wavelengths contained in sunlight.
  • the solar transmission system is A condensing unit that collects sunlight and An irradiation part that irradiates the irradiation target with light,
  • a power supply-driven light source unit and a wavelength filter having a specific wavelength which are required in the conventional light utilization, are not required, and thus problems in the prior art are solved. And an economical system can be realized.
  • An example of wavelength selection by optical fiber design of the optical transmission unit is shown.
  • An example of the structure dependence of the transmission peak wavelength in a pure quartz core step index fiber is shown.
  • An example of the ⁇ dependence of K1 is shown.
  • a first configuration example of the present disclosure is shown.
  • a first configuration example in which the wavelength can be selected is shown.
  • a second configuration example in which the optimum wavelength can be selected is shown.
  • a configuration example that realizes two irradiation methods is shown.
  • a first configuration example that realizes an increase in irradiation intensity is shown.
  • a second configuration example that realizes an increase in irradiation intensity is shown.
  • An example of the function of distributing light to two or more irradiation targets is shown.
  • FIG. 1 shows the core radius dependence of the light transmission spectrum when the difference in the specific refractive index of the clad with respect to the core of the pure quartz core fiber is ⁇ 0.35% and the bending radius is 30 mm.
  • the vertical axis is standardized by the transmittance at the peak wavelength. Since the wavelength characteristic of bending loss changes depending on the core radius, the transmission wavelength band can be designed. The same effect can be obtained with an optical fiber using quartz glass to which GeO 2 is added as a core.
  • any optical fiber in which light leakage loss and Rayleigh scattering loss occur due to bending can be applied to a rare earth-added optical fiber containing an element other than GeO2 , for example.
  • a more flexible wavelength filter can also be realized by adding a grating structure to the optical fiber. By using an optical fiber having a hollow core, it is possible to select a wavelength with relatively low loss even in the ultraviolet region.
  • FIG. 2 shows an example of the structure dependence of the transmission peak wavelength in the optical fiber.
  • the figure shows the core radius of the transmission peak wavelength in a step index fiber having a pure quartz core, and the ⁇ dependence of the specific refractive index difference of the clad with respect to the core.
  • the peak wavelength is linearly lengthened as the core radius increases. This is because the bending loss on the long wavelength side is suppressed by increasing the core radius.
  • K 1 is a coefficient depending on ⁇ .
  • a is the core radius.
  • FIG. 3 shows the ⁇ dependence of K1.
  • the curve can be expressed by the following equation.
  • the desired transmission peak wavelength ( ⁇ pk ) is a pure quartz core step index fiber having a core radius a determined by the following equation when ⁇ is ⁇ 0.7% or more and ⁇ 0.35% or less.
  • FIG. 4 shows an example of the basic configuration of the present disclosure.
  • the system of the present disclosure is a solar transmission system in which a condensing unit 91 and an irradiation unit 92 are connected by an optical transmission unit 93.
  • the light collecting unit 91 collects sunlight.
  • the condensing unit 91 includes an arbitrary device that includes a condensing system using one or more lenses or mirrors and is capable of optical coupling to the optical transmission unit 93.
  • the sunlight collected by the condensing unit 91 may be referred to as condensing light.
  • the irradiation unit 92 irradiates the irradiation target 101 with light of an arbitrary wavelength transmitted by the optical transmission unit 93 (the light may be referred to as transmission light).
  • the irradiation unit 92 emits the transmitted light directly from the end face of the optical fiber and irradiates the irradiation target 101.
  • the irradiation unit 92 may irradiate the transmitted light by propagating it by a spatial optical system using one or more lenses.
  • the irradiation unit 92 may irradiate the transmitted light by using the light leaked from the side surface due to bending of the optical fiber or the like.
  • the optical transmission unit 93 transmits the condensed light to the irradiation unit 92.
  • the optical transmission unit 93 uses an optical fiber having a core having a transmission wavelength designed as shown in FIGS. 1 to 3. Therefore, by bending the optical transmission unit 93 with a predetermined length and a predetermined bending radius according to the wavelength characteristics, it is operated like a wavelength bandpass filter by light leakage loss and Rayleigh scattering loss due to bending, which is desired. It is possible to extract the wavelength of.
  • the predetermined length of the optical fiber of the present disclosure provided in the optical transmission unit 93 may be a length capable of attenuating an unnecessary wavelength band.
  • an optical fiber having a core radius of 0.5 ⁇ m and a clad specific refractive index difference of ⁇ 0.35% with respect to the core is bent with a bending radius of 30 mm.
  • the wavelength band is 380 nm to 620 nm
  • an optical fiber having a core radius of 1.0 ⁇ m and a clad specific refractive index difference of ⁇ 0.35% with respect to the core is bent with a bending radius of 30 mm.
  • an optical fiber having a core radius of 1.5 ⁇ m and a clad specific refractive index difference of ⁇ 0.35% with respect to the core is bent with a bending radius of 30 mm.
  • the optical fiber of the present disclosure included in the optical transmission unit 93 is not limited to one, and optical fibers having different core radii may be continuously connected.
  • the optical transmission unit 93 includes, at least in part, a multi-core optical fiber having two or more cores designed with transmission wavelengths shown in FIGS. 1 to 3, or an optical fiber bundle in which optical fibers having one of the cores are bundled. include. It is preferable to use an optical fiber bundle because a larger light intensity can be transmitted.
  • the optical transmission unit 93 may use an optical fiber having a grating structure. This makes it possible to select any transmission wavelength in the present disclosure. Further, the optical transmission unit 93 may use an optical fiber having a hollow core. This makes it possible to transmit the present disclosure even with ultraviolet region light with relatively low loss.
  • FIG. 5 shows a first system configuration example in which the wavelength can be selected.
  • This system includes a wavelength selection unit 81, and an optical transmission unit 93 includes a transmission path selection unit 82 and an optical extraction unit 83.
  • a plurality of optical transmission lines 84 are connected between the transmission line selection unit 82 and the optical extraction unit 83.
  • the plurality of optical transmission lines 84 can combine the transmission bands of each optical fiber to enable arbitrary wavelength extraction. ..
  • the wavelength selection unit 81 selects the transmission wavelength in the optical transmission unit 93, and transmits the selected wavelength information to the transmission path selection unit 82 and the optical extraction unit 83.
  • the transmission line selection unit 82 selects an optical transmission line 84 capable of extracting light of a desired wavelength from sunlight based on the selection wavelength information transmitted from the wavelength selection unit 81.
  • the method of selecting light is arbitrary, and can be realized by, for example, a mechanical optical switch or a MEMS (Micro Electro Mechanical Systems) optical switch whose optical path switching characteristic has no wavelength.
  • the light extraction unit 83 extracts transmission light from one or more arbitrary optical transmission paths 84 based on the selection wavelength information transmitted from the wavelength selection unit 81 and transmits the transmission light to the irradiation unit 92.
  • the light extraction method is arbitrary, and can be realized by, for example, a mechanical optical switch, a MEMS optical switch, an optical coupler, or the like whose optical path switching characteristic has no wavelength.
  • FIG. 6 shows a second system configuration example in which the optimum wavelength can be selected.
  • This system includes a wavelength selection unit 81, and an optical transmission unit 93 includes a core selection unit 85 and an optical extraction unit 86.
  • a multi-core optical fiber 87 is connected between the core selection unit 85 and the optical extraction unit 86.
  • the multi-core optical fiber 87 has one or more cores optimized for transmission in different wavelength bands, so that the transmission bands of the cores can be combined to enable arbitrary wavelength extraction.
  • the wavelength selection unit 81 selects the transmission wavelength in the optical transmission unit 93, and transmits the selected wavelength information to the core selection unit 85 and the optical extraction unit 86.
  • the core selection unit 85 selects a core capable of extracting a desired wavelength from sunlight based on the selection wavelength information transmitted from the wavelength selection unit 81.
  • the method of selecting the core is arbitrary, and it can be realized by combining a mechanical optical switch or a MEMS optical switch whose optical path switching characteristic has no wavelength, and a fan-in device using a spatial optical system or a planar waveguide. ..
  • the light extraction unit 86 extracts transmission light from an arbitrary core based on the selection wavelength information transmitted from the wavelength selection unit 81 and transmits it to the irradiation unit 92.
  • the extraction of light from each core can be realized by combining a mechanical optical switch, a MEMS optical switch, or an optical coupler whose optical path switching characteristics have no wavelength, and a fan-out device using a spatial optical system or a planar waveguide. Is.
  • FIG. 7 shows an example of a system configuration that realizes two irradiation methods.
  • the irradiation unit 92 includes a wave packet forming unit 21 of a centralized irradiation method, a light diffusing unit 22 of a wide area irradiation method, and an irradiation control unit 23.
  • the irradiation control unit 23 guides the light transmitted by the optical transmission unit 93 to at least one of the wave packet forming unit 21 and the light diffusion unit 22.
  • the wave packet forming unit 21 performs selective intensive irradiation on the irradiation target 101.
  • the wave bundle forming unit 21 when light is propagated by an optical fiber, it can be realized by collimating or condensing the propagated light by imparting a lens function to the end face of the optical fiber.
  • it When light propagates in space, it can be realized by collimating or condensing the propagated light by using one or more lenses or mirrors.
  • the light diffusing unit 22 irradiates a wide area using the diffused light.
  • the light diffusing unit 22 imparts distributed bending to the optical fiber and imparts a plurality of scatterers such as bubbles in the longitudinal direction of the optical fiber to leak from the side surface of the optical fiber. It can be realized by using the light that is used.
  • the light of the irradiation unit 92 propagates in the space, it can be realized by using the light diffusion film for the light diffusion unit 22.
  • FIG. 8 shows a first system configuration example that realizes an increase in irradiation intensity.
  • N condensing units 91 (N is an integer of 2 or more) are connected to the optical combine unit 94 by the condensing light transmission unit 95.
  • the collected light from two or more condensing units 91 is combined and aggregated in the optical transmission unit 93.
  • the optical transmission unit 93 is composed of an optical fiber
  • the optical combiner unit 94 can be realized by one or more optical couplers.
  • the photosynthetic unit 94 can be realized by using one or more half mirrors.
  • This system is expected to improve the following two performances by installing the condensing unit 91 at two or more geographically different points.
  • Increased light intensity When each condensing unit 91 condenses sunlight of the same intensity, it is possible to irradiate light with N times the intensity by using N condensing units 91.
  • Improving stability By installing two or more condensing units 91 at positions with different environmental conditions, the risk of a decrease in the amount of sunshine due to obstacles is dispersed, and stable light irradiation is applied to the irradiation target 101. Is possible.
  • FIG. 9 shows a second system configuration example that realizes an increase in irradiation intensity.
  • this system includes two or more light collecting units 91 having different angles with respect to the ground plane PH .
  • each condensing unit 91 condenses light incident on the ground plane PH at different angles.
  • the figure shows an example in which a plurality of condensing units 91 having different installation angles are arranged in only one row, but there may be two or more rows. Further, the arrangement of the plurality of condensing units 91 having different installation angles is not limited to the uniaxial direction, but may be orthogonal to each other or may be biaxially intersecting at any angle.
  • This embodiment is preferable because the following two performance improvements are expected.
  • Increased light intensity Since light can be collected by two or more light collecting units 91 installed at an angle near the angle of the sun with respect to the ground surface, the irradiation light intensity is increased.
  • Improved stability Even if the angle of the sun with respect to the earth's surface changes throughout the day, the light condensing unit 91 with the same angle enables highly efficient condensing, so that stable condensing does not depend on the angle of the sun. Is possible.
  • FIG. 10 shows an example of a function of distributing light to two or more irradiation targets 101.
  • This system includes a light intensity determining unit 31, a light amount adjusting unit 32, and an optical branching unit 33 between the optical transmission unit 93 and the irradiation unit 92.
  • the optical branching unit 33 branches the transmitted light to two or more irradiation units 92.
  • the optical transmission unit 93 is composed of an optical fiber
  • the optical branching unit 33 can be realized by using one or more optical couplers.
  • the optical branching unit 33 can be realized by using one or more half mirrors.
  • the light intensity determination unit 31 determines the light transmission intensity to two or more irradiation units 92 for each irradiation unit 92. This function enables flexible switching of irradiation intensity according to irradiation demand.
  • the light amount adjusting unit 32 arbitrarily adjusts the light transmission intensity to two or more irradiation units 92.
  • light When light is transmitted using an optical fiber, it can be dimmed by adding bending or the like.
  • dimming In the case of spatial propagation light transmission, dimming is possible by using two or more polarizing plates or a dimming filter.
  • the condensing unit 91, the condensing light transmission unit 95, and the optical combine unit 94 shown in FIG. 9 may be applied to the condensing unit 91 at each point shown in FIG.
  • the optical transmission unit 93 shown in FIG. 9 functions as the focused optical transmission unit 95 shown in FIG. 8, and is combined by the optical combine unit 94.
  • This disclosure can be applied to the information and communication industry.
  • Wave bundle forming unit 22 Light diffusion unit 31: Light intensity determination unit 32: Light amount adjustment unit 33: Optical branch unit 81: Wave frequency selection unit 82: Transmission path selection unit 83: Light extraction unit 84: Optical transmission path 85: Core Selection unit 86: Optical extraction unit 87: Multi-core optical fiber 91: Condensing unit 92: Irradiation unit 93: Optical transmission unit 94: Optical confluence unit 95: Condensed light transmission unit 101: Irradiation target

Abstract

The purpose of the present invention is to eliminate the necessity for a wavelength filter or power-supply-driven light source unit having a specific wavelength when using sunlight. The present invention relates to an optical fiber in which the periphery of a core is covered by cladding, wherein the optical fiber transmits a predetermined wavelength among the wavelengths included in sunlight, and has a core radius and a difference in the relative refractive index of the cladding with respect to the core.

Description

光ファイバ及び太陽光伝送システムFiber optics and photovoltaic transmission systems
 本開示は、太陽光を伝送するための光ファイバ及びシステムに関する。 This disclosure relates to optical fibers and systems for transmitting sunlight.
 現在様々な波長帯の光が多様な用途で利用されている。可視光領域は家庭用照明に用いられるだけでなく、植物工場では生育状況に最適化された可視光スペクトルを有する照明が利用されている(非特許文献1)。紫外領域は例えば感染症予防などの目的から、殺菌システムに用いられている(非特許文献2)。また赤外領域はヒーター器具として多様な製品が利用されている(非特許文献3)。 Currently, light of various wavelength bands is used for various purposes. The visible light region is not only used for household lighting, but also lighting having a visible light spectrum optimized for growing conditions is used in a plant factory (Non-Patent Document 1). The ultraviolet region is used in a sterilization system for the purpose of preventing infectious diseases, for example (Non-Patent Document 2). Further, in the infrared region, various products are used as heater appliances (Non-Patent Document 3).
 非特許文献1~3では、光の利用用途に応じた波長の電力駆動光源をそれぞれ用意する必要があり、消費電力や装置コストが増大するという課題がある。電力不要源である太陽光から波長フィルタ用いて任意の波長を選択的に抽出して照射する技術があるが、装置コストの観点から経済的ではない。 In Non-Patent Documents 1 to 3, it is necessary to prepare power-driven light sources having wavelengths according to the intended use of light, and there is a problem that power consumption and device cost increase. There is a technique for selectively extracting and irradiating an arbitrary wavelength from sunlight, which is a power-free source, using a wavelength filter, but it is not economical from the viewpoint of equipment cost.
 本開示は、太陽光の利用において、特定波長を有する電源駆動の光源部や波長フィルタを不要とすることを目的とする。 It is an object of the present disclosure to eliminate the need for a power source-driven light source unit and a wavelength filter having a specific wavelength in the use of sunlight.
 本開示は、太陽光を集光し、照射対象へ光を伝送する光ファイバの透過率を設計するにより任意の波長を抽出する。これにより、従来の光利用で必要とされていた特定波長を有する電源駆動の光源部や波長フィルタが不要となるため省電力化、装置コスト削減により経済的なシステムを構成することができる。 In the present disclosure, an arbitrary wavelength is extracted by designing the transmittance of an optical fiber that collects sunlight and transmits light to an irradiation target. This eliminates the need for a power source-driven light source unit and a wavelength filter having a specific wavelength, which are required for conventional light utilization, so that an economical system can be configured by saving power and reducing equipment cost.
 本開示に係る光ファイバは、
 コアの周囲がクラッドで覆われている光ファイバであって、
 太陽光に含まれる波長のうちの予め定められた波長を透過させる、前記コアの半径、及び前記コアに対する前記クラッドの比屈折率差を有する。
The optical fiber according to the present disclosure is
An optical fiber whose core is covered with a clad.
It has a radius of the core and a difference in the specific refractive index of the clad with respect to the core, which transmits a predetermined wavelength among the wavelengths contained in sunlight.
 本開示に係る太陽光伝送システムは、
 太陽光を集光する集光部と、
 光を照射対象に照射する照射部と、
 前記集光部と前記照射部を接続し、少なくとも一部に、予め定められた曲げ半径で曲げられている、本開示の光ファイバ又は光ファイババンドルを含む光伝送部と、
 を備える。
The solar transmission system according to this disclosure is
A condensing unit that collects sunlight and
An irradiation part that irradiates the irradiation target with light,
An optical transmission unit including an optical fiber or an optical fiber bundle of the present disclosure, which connects the light collecting unit and the irradiation unit and is bent at least in a part with a predetermined bending radius.
To prepare for.
 本開示によれば、特定の波長を利用するシステムにおいて、従来の光利用で必要とされていた特定波長を有する電源駆動の光源部や波長フィルタが不要となるため、従来技術における課題を解決して、経済的なシステムを実現できる。 According to the present disclosure, in a system using a specific wavelength, a power supply-driven light source unit and a wavelength filter having a specific wavelength, which are required in the conventional light utilization, are not required, and thus problems in the prior art are solved. And an economical system can be realized.
光伝送部の光ファイバ設計による波長選択例の一例を示す。An example of wavelength selection by optical fiber design of the optical transmission unit is shown. 純石英コアステップインデックスファイバにおける透過ピーク波長の構造依存性の一例を示す。An example of the structure dependence of the transmission peak wavelength in a pure quartz core step index fiber is shown. K1のΔ依存性の一例を示す。An example of the Δ dependence of K1 is shown. 本開示の第1の構成例を示す。A first configuration example of the present disclosure is shown. 波長を選択できる第1の構成例を示す。A first configuration example in which the wavelength can be selected is shown. 最適な波長を選択できる第2の構成例を示す。A second configuration example in which the optimum wavelength can be selected is shown. 2つの照射方法を実現する構成例を示す。A configuration example that realizes two irradiation methods is shown. 照射強度増大を実現する第1の構成例を示す。A first configuration example that realizes an increase in irradiation intensity is shown. 照射強度増大を実現する第2の構成例を示す。A second configuration example that realizes an increase in irradiation intensity is shown. 2つ以上の照射対象に光を分配する機能の一例を示す。An example of the function of distributing light to two or more irradiation targets is shown.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The present disclosure is not limited to the embodiments shown below. Examples of these implementations are merely examples, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.
(光伝送部の光ファイバ設計による波長選択)
 石英ガラスのコアの周囲がクラッドで覆われている光ファイバは、曲げによる光の漏洩損失とレイリー散乱損失により波長バンドパスフィルタのように動作する。図1は純石英コアファイバのコアに対するクラッドの比屈折率差が-0.35%、および曲げ半径が30mmの時の、光の透過スペクトルのコア半径依存性である。縦軸はピーク波長における透過率で規格化した。曲げ損失の波長特性がコア半径によって変化するため、透過波長帯域を設計することができる。これは、GeOが添加された石英ガラスをコアに用いた光ファイバでも同様の効果を得ることができる。このほか曲げによる光の漏洩損失とレイリー散乱損失の生じる任意の光ファイバにも適用可能であり、例えばGeO以外の元素を含む希土類添加光ファイバにも適用可能と考えられる。より柔軟な波長フィルタは光ファイバへのグレーティング構造の付与でも実現できる。中空コアを有する光ファイバを用いることにより紫外領域でも比較的低損失な波長選択も可能である。
(Wavelength selection by optical fiber design of optical transmission unit)
An optical fiber in which the core of quartz glass is covered with a cladding behaves like a wavelength bandpass filter due to light leakage loss and Rayleigh scattering loss due to bending. FIG. 1 shows the core radius dependence of the light transmission spectrum when the difference in the specific refractive index of the clad with respect to the core of the pure quartz core fiber is −0.35% and the bending radius is 30 mm. The vertical axis is standardized by the transmittance at the peak wavelength. Since the wavelength characteristic of bending loss changes depending on the core radius, the transmission wavelength band can be designed. The same effect can be obtained with an optical fiber using quartz glass to which GeO 2 is added as a core. In addition, it can be applied to any optical fiber in which light leakage loss and Rayleigh scattering loss occur due to bending, and it is considered that it can be applied to a rare earth-added optical fiber containing an element other than GeO2 , for example. A more flexible wavelength filter can also be realized by adding a grating structure to the optical fiber. By using an optical fiber having a hollow core, it is possible to select a wavelength with relatively low loss even in the ultraviolet region.
 図2に、光ファイバにおける透過ピーク波長の構造依存性の一例を示す。図は純石英のコアを有するステップインデックスファイバにおける透過ピーク波長のコア半径、およびコアに対するクラッドの比屈折率差Δ依存性である。いずれの比屈折率差Δにおいてもコア半径の増加に伴いピーク波長は線形に長波長化する。これはコア半径の増加により長波長側での曲げ損失が抑制されるためである。各直線は、KをΔに依存する係数とすると以下の式で書くことができる。
Figure JPOXMLDOC01-appb-M000001
ここで、aはコア半径である。
FIG. 2 shows an example of the structure dependence of the transmission peak wavelength in the optical fiber. The figure shows the core radius of the transmission peak wavelength in a step index fiber having a pure quartz core, and the Δ dependence of the specific refractive index difference of the clad with respect to the core. In any of the specific refractive index differences Δ, the peak wavelength is linearly lengthened as the core radius increases. This is because the bending loss on the long wavelength side is suppressed by increasing the core radius. Each straight line can be written by the following equation, where K 1 is a coefficient depending on Δ.
Figure JPOXMLDOC01-appb-M000001
Here, a is the core radius.
 図3にKのΔ依存性を示す。曲線は下式で表すことができる。
Figure JPOXMLDOC01-appb-M000002
FIG. 3 shows the Δ dependence of K1. The curve can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
 以上より、所望の透過ピーク波長(λpk)は、Δが-0.7%以上、-0.35%以下において、下式で決まるコア半径aを有する純石英コアステップインデックスファイバとなる。
Figure JPOXMLDOC01-appb-M000003
From the above, the desired transmission peak wavelength (λ pk ) is a pure quartz core step index fiber having a core radius a determined by the following equation when Δ is −0.7% or more and −0.35% or less.
Figure JPOXMLDOC01-appb-M000003
(第1の実施形態)
 図4に、本開示の基本構成例を示す。本開示のシステムは、集光部91及び照射部92が光伝送部93で接続されている、太陽光伝送システムである。集光部91は、太陽光を集光する。例えば、集光部91は、一つ以上のレンズやミラーを用いた集光系を備え、光伝送部93への光結合が可能な任意の装置を含む。本開示では、集光部91によって集光された太陽光を集光光と称する場合がある。
(First Embodiment)
FIG. 4 shows an example of the basic configuration of the present disclosure. The system of the present disclosure is a solar transmission system in which a condensing unit 91 and an irradiation unit 92 are connected by an optical transmission unit 93. The light collecting unit 91 collects sunlight. For example, the condensing unit 91 includes an arbitrary device that includes a condensing system using one or more lenses or mirrors and is capable of optical coupling to the optical transmission unit 93. In the present disclosure, the sunlight collected by the condensing unit 91 may be referred to as condensing light.
 照射部92は、光伝送部93によって伝送された任意波長の光(当該光を伝送光と称する場合がある。)を照射対象101に照射する。例えば、照射部92は、伝送光を光ファイバ端面から直接出射させ、照射対象101に照射する。また、照射部92は、伝送光を一つ以上のレンズを用いた空間光学系により伝搬させて照射してもよい。また照射部92は、光ファイバの曲げなどによる側面からの漏洩光を用いて、伝送光を照射してもよい。 The irradiation unit 92 irradiates the irradiation target 101 with light of an arbitrary wavelength transmitted by the optical transmission unit 93 (the light may be referred to as transmission light). For example, the irradiation unit 92 emits the transmitted light directly from the end face of the optical fiber and irradiates the irradiation target 101. Further, the irradiation unit 92 may irradiate the transmitted light by propagating it by a spatial optical system using one or more lenses. Further, the irradiation unit 92 may irradiate the transmitted light by using the light leaked from the side surface due to bending of the optical fiber or the like.
 光伝送部93は、集光光を照射部92まで伝送する。光伝送部93は、図1~図3で示すような、透過波長が設計されたコアを有する光ファイバを用いている。このため、光伝送部93を所定の長さ、かつ波長特性に応じた所定の曲げ半径で曲げることで、曲げによる光の漏洩損失とレイリー散乱損失により波長バンドパスフィルタのように動作させ、所望の波長を抽出することが可能である。光伝送部93に備わる本開示の光ファイバの所定の長さは、不要な波長帯域を減衰させることの可能な長さであればよい。 The optical transmission unit 93 transmits the condensed light to the irradiation unit 92. The optical transmission unit 93 uses an optical fiber having a core having a transmission wavelength designed as shown in FIGS. 1 to 3. Therefore, by bending the optical transmission unit 93 with a predetermined length and a predetermined bending radius according to the wavelength characteristics, it is operated like a wavelength bandpass filter by light leakage loss and Rayleigh scattering loss due to bending, which is desired. It is possible to extract the wavelength of. The predetermined length of the optical fiber of the present disclosure provided in the optical transmission unit 93 may be a length capable of attenuating an unnecessary wavelength band.
 例えば、波長帯域が280nm~340nmであれば、コア半径0.5μm、コアに対するクラッドの比屈折率差が-0.35%の光ファイバを30mmの曲げ半径で曲げる。波長帯域が380nm~620nmであれば、コア半径1.0μm、コアに対するクラッドの比屈折率差が-0.35%の光ファイバを30mmの曲げ半径で曲げる。波長帯域が400nm~840nmであれば、コア半径1.5μm、コアに対するクラッドの比屈折率差が-0.35%の光ファイバを30mmの曲げ半径で曲げる。なお、光伝送部93に含まれている本開示の光ファイバは1本に限らず、コア半径の異なる光ファイバが縦続に接続されていてもよい。 For example, if the wavelength band is 280 nm to 340 nm, an optical fiber having a core radius of 0.5 μm and a clad specific refractive index difference of −0.35% with respect to the core is bent with a bending radius of 30 mm. When the wavelength band is 380 nm to 620 nm, an optical fiber having a core radius of 1.0 μm and a clad specific refractive index difference of −0.35% with respect to the core is bent with a bending radius of 30 mm. When the wavelength band is 400 nm to 840 nm, an optical fiber having a core radius of 1.5 μm and a clad specific refractive index difference of −0.35% with respect to the core is bent with a bending radius of 30 mm. The optical fiber of the present disclosure included in the optical transmission unit 93 is not limited to one, and optical fibers having different core radii may be continuously connected.
 光伝送部93は、少なくとも一部に、図1~図3で示す透過波長が設計されたコアを二つ以上有するマルチコア光ファイバ、又は前記コアを一つ有する光ファイバを束ねた光ファイババンドルを含む。光ファイババンドルを用いることでより大きな光強度を伝送できるため、好ましい。 The optical transmission unit 93 includes, at least in part, a multi-core optical fiber having two or more cores designed with transmission wavelengths shown in FIGS. 1 to 3, or an optical fiber bundle in which optical fibers having one of the cores are bundled. include. It is preferable to use an optical fiber bundle because a larger light intensity can be transmitted.
 光伝送部93は、グレーティング構造を付与されている光ファイバを用いてもよい。これにより、本開示は、任意の透過波長を選択することが可能になる。また光伝送部93は、中空コアを有する光ファイバを用いてもよい。これにより、本開示は、紫外領域光であっても比較的低損失に伝送することが可能になる。 The optical transmission unit 93 may use an optical fiber having a grating structure. This makes it possible to select any transmission wavelength in the present disclosure. Further, the optical transmission unit 93 may use an optical fiber having a hollow core. This makes it possible to transmit the present disclosure even with ultraviolet region light with relatively low loss.
(第2の実施形態)
 図5に、波長を選択できる第1のシステム構成例を示す。本システムは波長選択部81を備え、光伝送部93が伝送路選択部82及び光抽出部83を備える。伝送路選択部82及び光抽出部83の間には複数の光伝送路84が接続されている。複数の光伝送路84は、異なる波長帯の透過に最適化された本開示の光ファイバを一つ以上有することで、各光ファイバの透過帯域を組み合わせ、任意の波長抽出が可能になっている。
(Second embodiment)
FIG. 5 shows a first system configuration example in which the wavelength can be selected. This system includes a wavelength selection unit 81, and an optical transmission unit 93 includes a transmission path selection unit 82 and an optical extraction unit 83. A plurality of optical transmission lines 84 are connected between the transmission line selection unit 82 and the optical extraction unit 83. By having one or more optical fibers of the present disclosure optimized for transmission in different wavelength bands, the plurality of optical transmission lines 84 can combine the transmission bands of each optical fiber to enable arbitrary wavelength extraction. ..
 波長選択部81は、光伝送部93での透過波長を選択し、伝送路選択部82および光抽出部83へ選択波長情報を伝送する。 The wavelength selection unit 81 selects the transmission wavelength in the optical transmission unit 93, and transmits the selected wavelength information to the transmission path selection unit 82 and the optical extraction unit 83.
 伝送路選択部82は、波長選択部81から伝送される選択波長情報に基づき、太陽光から所望の波長の光を抽出可能な光伝送路84を選択する。ここで、光の選択方法は任意であり、例えば、光路切り替え特性が波長無異存なメカニカル光スイッチやMEMS(Micro Electro Mechanical Systems)光スイッチによって実現可能である。 The transmission line selection unit 82 selects an optical transmission line 84 capable of extracting light of a desired wavelength from sunlight based on the selection wavelength information transmitted from the wavelength selection unit 81. Here, the method of selecting light is arbitrary, and can be realized by, for example, a mechanical optical switch or a MEMS (Micro Electro Mechanical Systems) optical switch whose optical path switching characteristic has no wavelength.
 光抽出部83は、波長選択部81から伝送される選択波長情報に基づき、1以上の任意の光伝送路84から伝送光を抽出し照射部92へ伝送する。ここで、光の抽出方法は任意であり、例えば、光路切り替え特性が波長無異存なメカニカル光スイッチやMEMS光スイッチや光カプラなどによって実現可能である。 The light extraction unit 83 extracts transmission light from one or more arbitrary optical transmission paths 84 based on the selection wavelength information transmitted from the wavelength selection unit 81 and transmits the transmission light to the irradiation unit 92. Here, the light extraction method is arbitrary, and can be realized by, for example, a mechanical optical switch, a MEMS optical switch, an optical coupler, or the like whose optical path switching characteristic has no wavelength.
(第3の実施形態)
 図6に、最適な波長を選択できる第2のシステム構成例を示す。本システムは波長選択部81を備え、光伝送部93がコア選択部85及び光抽出部86を備える。コア選択部85及び光抽出部86の間にはマルチコア光ファイバ87が接続されている。マルチコア光ファイバ87は、異なる波長帯の透過に最適化されたコアを一つ以上有することで、各コアの透過帯域を組み合わせ、任意の波長抽出が可能になっている。
(Third embodiment)
FIG. 6 shows a second system configuration example in which the optimum wavelength can be selected. This system includes a wavelength selection unit 81, and an optical transmission unit 93 includes a core selection unit 85 and an optical extraction unit 86. A multi-core optical fiber 87 is connected between the core selection unit 85 and the optical extraction unit 86. The multi-core optical fiber 87 has one or more cores optimized for transmission in different wavelength bands, so that the transmission bands of the cores can be combined to enable arbitrary wavelength extraction.
 波長選択部81は、光伝送部93での透過波長を選択し、コア選択部85および光抽出部86へ選択波長情報を伝送する。 The wavelength selection unit 81 selects the transmission wavelength in the optical transmission unit 93, and transmits the selected wavelength information to the core selection unit 85 and the optical extraction unit 86.
 コア選択部85は、波長選択部81からの伝送される選択波長情報に基づき、太陽光から所望の波長を抽出可能なコアを選択する。ここで、コアの選択方法は任意であり、光路切り替え特性が波長無異存なメカニカル光スイッチやMEMS光スイッチと、空間光学系や平面導波路を用いたファンインデバイスを組み合わせることで実現可能である。 The core selection unit 85 selects a core capable of extracting a desired wavelength from sunlight based on the selection wavelength information transmitted from the wavelength selection unit 81. Here, the method of selecting the core is arbitrary, and it can be realized by combining a mechanical optical switch or a MEMS optical switch whose optical path switching characteristic has no wavelength, and a fan-in device using a spatial optical system or a planar waveguide. ..
 光抽出部86は、波長選択部81から伝送される選択波長情報に基づき、任意のコアから伝送光を抽出し、照射部92へ伝送する。ここで、各コアからの光の抽出は、光路切り替え特性が波長無異存なメカニカル光スイッチやMEMS光スイッチや光カプラと空間光学系や平面導波路を用いたファンアウトデバイスを組み合わせることで実現可能である。 The light extraction unit 86 extracts transmission light from an arbitrary core based on the selection wavelength information transmitted from the wavelength selection unit 81 and transmits it to the irradiation unit 92. Here, the extraction of light from each core can be realized by combining a mechanical optical switch, a MEMS optical switch, or an optical coupler whose optical path switching characteristics have no wavelength, and a fan-out device using a spatial optical system or a planar waveguide. Is.
(第4の実施形態)
 図7に、2つの照射方法を実現するシステム構成例を示す。本システムは、照射部92が、集中照射方式の波束成形部21と、広域照射方式の光拡散部22と、照射制御部23と、を備える。照射制御部23は、光伝送部93で伝送された光を、波束成形部21及び光拡散部22の少なくともいずれかに導く。
(Fourth Embodiment)
FIG. 7 shows an example of a system configuration that realizes two irradiation methods. In this system, the irradiation unit 92 includes a wave packet forming unit 21 of a centralized irradiation method, a light diffusing unit 22 of a wide area irradiation method, and an irradiation control unit 23. The irradiation control unit 23 guides the light transmitted by the optical transmission unit 93 to at least one of the wave packet forming unit 21 and the light diffusion unit 22.
 波束成形部21は、照射対象101への選択集中的な照射を行う。波束成形部21では、光が光ファイバによって伝搬される場合、光ファイバ端面へのレンズ機能付与により伝搬光をコリメート、又は集光することで実現可能である。光が空間を伝搬してくる場合、1つ以上のレンズまたはミラーを用いることで伝搬光をコリメート、又は集光することで実現可能である。 The wave packet forming unit 21 performs selective intensive irradiation on the irradiation target 101. In the wave bundle forming unit 21, when light is propagated by an optical fiber, it can be realized by collimating or condensing the propagated light by imparting a lens function to the end face of the optical fiber. When light propagates in space, it can be realized by collimating or condensing the propagated light by using one or more lenses or mirrors.
 光拡散部22は、拡散する光を用いて広域への照射を行う。光拡散部22では、光が光ファイバによって伝搬される場合、光ファイバへの分布的な曲げの付与や、光ファイバの長手方向に気泡などの散乱体を複数個付与し、光ファイバ側面から漏洩する光を利用することで実現可能である。照射部92の光が空間を伝搬してくる場合、光拡散フィルムを光拡散部22に利用することで実現可能である。 The light diffusing unit 22 irradiates a wide area using the diffused light. When the light is propagated by the optical fiber, the light diffusing unit 22 imparts distributed bending to the optical fiber and imparts a plurality of scatterers such as bubbles in the longitudinal direction of the optical fiber to leak from the side surface of the optical fiber. It can be realized by using the light that is used. When the light of the irradiation unit 92 propagates in the space, it can be realized by using the light diffusion film for the light diffusion unit 22.
(第5の実施形態)
 図8に、照射強度増大を実現する第1のシステム構成例を示す。本システムは、N個(Nは2以上の整数)の集光部91が集光光伝送部95で光合波部94に接続されている。
(Fifth Embodiment)
FIG. 8 shows a first system configuration example that realizes an increase in irradiation intensity. In this system, N condensing units 91 (N is an integer of 2 or more) are connected to the optical combine unit 94 by the condensing light transmission unit 95.
 光合波部94では2つ以上の集光部91からの集光光を合波し、光伝送部93に集約する。光伝送部93が光ファイバで構成される場合、光合波部94は1つ以上の光カプラによって実現可能である。光伝送部93で空間伝搬光を利用する場合、光合波部94は、1つ以上のハーフミラーを用いることで実現可能である。 In the optical combine unit 94, the collected light from two or more condensing units 91 is combined and aggregated in the optical transmission unit 93. When the optical transmission unit 93 is composed of an optical fiber, the optical combiner unit 94 can be realized by one or more optical couplers. When space propagating light is used in the optical transmission unit 93, the photosynthetic unit 94 can be realized by using one or more half mirrors.
 本システムは、地理的に異なる二つ以上の地点に集光部91を設置することで、以下の2つの性能向上が期待される。
 (i)光強度増大:各集光部91が同一強度の太陽光を集光する場合、N個の集光部91を用いることでN倍の強度で光照射が可能となる。
 (ii)安定性向上:環境条件の異なる位置に2つ以上の集光部91を設置することで、障害物による日照量低下などのリスクを分散し、照射対象101への安定的な光照射が可能となる。
This system is expected to improve the following two performances by installing the condensing unit 91 at two or more geographically different points.
(I) Increased light intensity: When each condensing unit 91 condenses sunlight of the same intensity, it is possible to irradiate light with N times the intensity by using N condensing units 91.
(Ii) Improving stability: By installing two or more condensing units 91 at positions with different environmental conditions, the risk of a decrease in the amount of sunshine due to obstacles is dispersed, and stable light irradiation is applied to the irradiation target 101. Is possible.
(第6の実施形態)
 図9に、照射強度増大を実現する第2のシステム構成例を示す。地表に対する太陽位置の角度と集光部91の設置角度が異なるとき、集光効率は低下する。そこで、本システムでは、接地面Pに対する角度が異なる二つ以上の集光部91を備える。これにより、各集光部91は、接地面Pに対して異なる角度で入射する光を集光する。図では、設置角度の異なる複数の集光部91が1列のみに配列されている例を示すが、2列以上であってもよい。また、設置角度の異なる複数の集光部91の配列は1軸方向に限らず、互いに直交、または任意の角度で交わる2軸方向であってもよい。
(Sixth Embodiment)
FIG. 9 shows a second system configuration example that realizes an increase in irradiation intensity. When the angle of the position of the sun with respect to the ground surface and the installation angle of the condensing unit 91 are different, the condensing efficiency decreases. Therefore, this system includes two or more light collecting units 91 having different angles with respect to the ground plane PH . As a result, each condensing unit 91 condenses light incident on the ground plane PH at different angles. The figure shows an example in which a plurality of condensing units 91 having different installation angles are arranged in only one row, but there may be two or more rows. Further, the arrangement of the plurality of condensing units 91 having different installation angles is not limited to the uniaxial direction, but may be orthogonal to each other or may be biaxially intersecting at any angle.
 本実施形態は、以下2つの性能向上が期待され好ましい。
 (i)光強度増大:地表に対する太陽の角度近傍の角度で設置された二つ以上の複数の集光部91で集光が可能なため、照射光強度が増大する。
 (ii)安定性向上:地表に対する太陽の角度が一日を通して変化しても、角度が一致する集光部91によって高効率な集光が可能なため、太陽の角度に依存しない安定した集光が可能となる。
This embodiment is preferable because the following two performance improvements are expected.
(I) Increased light intensity: Since light can be collected by two or more light collecting units 91 installed at an angle near the angle of the sun with respect to the ground surface, the irradiation light intensity is increased.
(Ii) Improved stability: Even if the angle of the sun with respect to the earth's surface changes throughout the day, the light condensing unit 91 with the same angle enables highly efficient condensing, so that stable condensing does not depend on the angle of the sun. Is possible.
(第7の実施形態)
 図10に、2つ以上の照射対象101に光を分配する機能の一例を示す。本システムは、光伝送部93と照射部92の間に光強度決定部31、光量調整部32及び光分岐部33が備わる。
(7th Embodiment)
FIG. 10 shows an example of a function of distributing light to two or more irradiation targets 101. This system includes a light intensity determining unit 31, a light amount adjusting unit 32, and an optical branching unit 33 between the optical transmission unit 93 and the irradiation unit 92.
 光分岐部33では、伝送光を2つ以上の照射部92へ分岐する。光伝送部93が光ファイバで構成される場合、一つ以上の光カプラを利用することで光分岐部33を実現可能である。光伝送部93において空間伝搬光を利用する場合、1つ以上のハーフミラーを利用することで光分岐部33を実現可能である。 The optical branching unit 33 branches the transmitted light to two or more irradiation units 92. When the optical transmission unit 93 is composed of an optical fiber, the optical branching unit 33 can be realized by using one or more optical couplers. When spatial propagation light is used in the optical transmission unit 93, the optical branching unit 33 can be realized by using one or more half mirrors.
 光強度決定部31では2つ以上の照射部92への光伝送強度を照射部92ごとに決定する。当該機能により照射需要に応じて柔軟な照射強度の切り替えが可能となる。 The light intensity determination unit 31 determines the light transmission intensity to two or more irradiation units 92 for each irradiation unit 92. This function enables flexible switching of irradiation intensity according to irradiation demand.
 光量調整部32では、2つ以上の照射部92への光伝送強度を任意に調整する。光ファイバを用いて光を伝送する場合、曲げの付与などにより減光可能である。空間伝搬光伝送する場合、2つ以上の偏光板、もしくは減光フィルタを用いることで減光可能である。 The light amount adjusting unit 32 arbitrarily adjusts the light transmission intensity to two or more irradiation units 92. When light is transmitted using an optical fiber, it can be dimmed by adding bending or the like. In the case of spatial propagation light transmission, dimming is possible by using two or more polarizing plates or a dimming filter.
 以上の本開示の原理を採用した第1の実施形態から第7の実施形態は組み合わせることが可能である。例えば、図8に示す各地点の集光部91に、図9に示す集光部91、集光光伝送部95及び光合波部94を適用してもよい。この場合、図9に示す光伝送部93は、図8に示す集光光伝送部95として機能し、光合波部94で合波される。 It is possible to combine the first to seventh embodiments that adopt the above-mentioned principle of the present disclosure. For example, the condensing unit 91, the condensing light transmission unit 95, and the optical combine unit 94 shown in FIG. 9 may be applied to the condensing unit 91 at each point shown in FIG. In this case, the optical transmission unit 93 shown in FIG. 9 functions as the focused optical transmission unit 95 shown in FIG. 8, and is combined by the optical combine unit 94.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communication industry.
21:波束成形部
22:光拡散部
31:光強度決定部
32:光量調整部
33:光分岐部
81:波長選択部
82:伝送路選択部
83:光抽出部
84:光伝送路
85:コア選択部
86:光抽出部
87:マルチコア光ファイバ
91:集光部
92:照射部
93:光伝送部
94:光合波部
95:集光光伝送部
101:照射対象
21: Wave bundle forming unit 22: Light diffusion unit 31: Light intensity determination unit 32: Light amount adjustment unit 33: Optical branch unit 81: Wave frequency selection unit 82: Transmission path selection unit 83: Light extraction unit 84: Optical transmission path 85: Core Selection unit 86: Optical extraction unit 87: Multi-core optical fiber 91: Condensing unit 92: Irradiation unit 93: Optical transmission unit 94: Optical confluence unit 95: Condensed light transmission unit 101: Irradiation target

Claims (8)

  1.  コアの周囲がクラッドで覆われている光ファイバであって、
     太陽光に含まれる波長のうちの予め定められた波長を透過させる、前記コアの半径、及び前記コアに対する前記クラッドの比屈折率差を有する、
     光ファイバ。
    An optical fiber whose core is covered with a clad.
    It has a radius of the core and a difference in the specific refractive index of the clad with respect to the core, which transmits a predetermined wavelength among the wavelengths contained in sunlight.
    Optical fiber.
  2.  太陽光を集光する集光部と、
     光を照射対象に照射する照射部と、
     前記集光部と前記照射部を接続し、少なくとも一部に、予め定められた曲げ半径で曲げられている、請求項1に記載の光ファイバを含む光伝送部と、
     を備える太陽光伝送システム。
    A condensing unit that collects sunlight and
    An irradiation part that irradiates the irradiation target with light,
    The optical transmission unit including the optical fiber according to claim 1, which connects the light collecting unit and the irradiation unit and is bent at least in a part with a predetermined bending radius.
    A solar transmission system equipped with.
  3.  前記光伝送部における透過波長を選択する波長選択部をさらに備え、
     前記光伝送部は、
     異なる波長帯を透過させる複数の光伝送路と、
     前記複数の光伝送路が接続され、前記波長選択部の選択した波長を透過波長に含む光伝送路に前記集光部からの集光光を伝送する伝送路選択部と、
     前記複数の光伝送路が接続され、前記波長選択部の選択した波長を透過波長に含む光伝送路の伝送光を抽出する光抽出部と、
     を備える請求項2に記載の太陽光伝送システム。
    Further, a wavelength selection unit for selecting a transmission wavelength in the optical transmission unit is provided.
    The optical transmission unit
    Multiple optical transmission lines that transmit different wavelength bands,
    A transmission line selection unit that connects the plurality of optical transmission lines and transmits the condensed light from the light collecting unit to an optical transmission line that includes the wavelength selected by the wavelength selection unit as a transmission wavelength.
    An optical extraction unit that is connected to the plurality of optical transmission lines and extracts transmission light of the optical transmission line that includes the wavelength selected by the wavelength selection unit as a transmission wavelength.
    The solar transmission system according to claim 2.
  4.  前記複数の光伝送路は、異なる波長帯を透過させる複数のコアを備えるマルチコア光ファイバであり、
     前記伝送路選択部は、前記波長選択部の選択した波長を透過波長に含むコアに前記集光部からの集光光を伝送するコア選択部であり、
     前記光抽出部は、前記波長選択部の選択した波長を透過波長に含むコアの伝送光を抽出する、
     請求項3に記載の太陽光伝送システム。
    The plurality of optical transmission lines are multi-core optical fibers including a plurality of cores that transmit different wavelength bands.
    The transmission path selection unit is a core selection unit that transmits condensed light from the condensing unit to a core that includes the wavelength selected by the wavelength selection unit as a transmission wavelength.
    The light extraction unit extracts the transmission light of the core including the wavelength selected by the wavelength selection unit as the transmission wavelength.
    The solar transmission system according to claim 3.
  5.  前記照射部は、
     前記光伝送部の伝送光を照射対象に集光させる波束成形部と、
     前記光伝送部の伝送光を拡散して照射対象に照射する光拡散部と、
     前記光伝送部の伝送光を前記照射部及び前記光拡散部の少なくともいずれかに導く照射制御部と、
     を備える請求項2から4のいずれかに記載の太陽光伝送システム。
    The irradiation part is
    A wave packet forming unit that concentrates the transmitted light of the optical transmission unit on the irradiation target,
    A light diffusing unit that diffuses the transmitted light of the optical transmission unit and irradiates the irradiation target,
    An irradiation control unit that guides the transmitted light of the optical transmission unit to at least one of the irradiation unit and the light diffusion unit.
    The solar transmission system according to any one of claims 2 to 4.
  6.  二つ以上の前記集光部と、
     二つ以上の前記集光部の集光光を合波する光合波部と、
     を備える請求項2から5のいずれかに記載の太陽光伝送システム。
    With two or more of the light collectors,
    A photosynthetic unit that combines the condensed light of two or more condensing units, and a photosynthetic unit.
    The solar transmission system according to any one of claims 2 to 5.
  7.  二つ以上の前記集光部は、あらかじめ定められた面に対して異なる角度で入射する光を集光する、
     請求項6に記載の太陽光伝送システム。
    The two or more light collectors collect light incident on a predetermined surface at different angles.
    The solar transmission system according to claim 6.
  8.  前記光伝送部の伝送光を二つ以上に分岐する光分岐部と、
     前記光分岐部で分岐された分岐光ごとに備わる、二つ以上の前記照射部と、
     前記照射部ごとの強度を決定する光強度決定部と、
     前記光分岐部と各照射部との間に接続され、前記照射部への光伝送強度を前記光強度決定部で決定された強度に調整する光量調整部と、
     を備える請求項2から7のいずれかに記載の太陽光伝送システム。
    An optical branching section that splits the transmitted light of the optical transmitting section into two or more,
    Two or more of the irradiation units provided for each branch light branched at the optical branch, and
    A light intensity determining unit that determines the intensity of each irradiation unit, and a light intensity determining unit.
    A light amount adjusting unit connected between the light branching portion and each irradiation unit and adjusting the light transmission intensity to the irradiation unit to the intensity determined by the light intensity determining unit.
    The solar transmission system according to any one of claims 2 to 7.
PCT/JP2020/029405 2020-07-31 2020-07-31 Optical fiber and solar transmission system WO2022024336A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022539933A JP7435789B2 (en) 2020-07-31 2020-07-31 Optical fiber and solar transmission system
PCT/JP2020/029405 WO2022024336A1 (en) 2020-07-31 2020-07-31 Optical fiber and solar transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029405 WO2022024336A1 (en) 2020-07-31 2020-07-31 Optical fiber and solar transmission system

Publications (1)

Publication Number Publication Date
WO2022024336A1 true WO2022024336A1 (en) 2022-02-03

Family

ID=80035287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029405 WO2022024336A1 (en) 2020-07-31 2020-07-31 Optical fiber and solar transmission system

Country Status (2)

Country Link
JP (1) JP7435789B2 (en)
WO (1) WO2022024336A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192307A (en) * 1989-12-22 1991-08-22 Hoya Corp Optical fiber bundle filter
JPH0481308U (en) * 1990-11-26 1992-07-15
WO2010051595A1 (en) * 2008-11-07 2010-05-14 Soliton Network Consulting Pty Ltd A light distribution system
JP2010276862A (en) * 2009-05-28 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cord and method of identifying coated optical fiber
JP2011000012A (en) * 2009-06-17 2011-01-06 Nakahara Kodenshi Kenkyusho:Kk Plant factory
US20150125113A1 (en) * 2013-11-02 2015-05-07 Jerome Schreiber Fiber optic solar collector
JP2015207481A (en) * 2014-04-22 2015-11-19 ユーヴィックス株式会社 Sunlight guiding system
JP2019032973A (en) * 2017-08-07 2019-02-28 キヤノン株式会社 Light source device and display device comprising the light source device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192307A (en) * 1989-12-22 1991-08-22 Hoya Corp Optical fiber bundle filter
JPH0481308U (en) * 1990-11-26 1992-07-15
WO2010051595A1 (en) * 2008-11-07 2010-05-14 Soliton Network Consulting Pty Ltd A light distribution system
JP2010276862A (en) * 2009-05-28 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cord and method of identifying coated optical fiber
JP2011000012A (en) * 2009-06-17 2011-01-06 Nakahara Kodenshi Kenkyusho:Kk Plant factory
US20150125113A1 (en) * 2013-11-02 2015-05-07 Jerome Schreiber Fiber optic solar collector
JP2015207481A (en) * 2014-04-22 2015-11-19 ユーヴィックス株式会社 Sunlight guiding system
JP2019032973A (en) * 2017-08-07 2019-02-28 キヤノン株式会社 Light source device and display device comprising the light source device

Also Published As

Publication number Publication date
JP7435789B2 (en) 2024-02-21
JPWO2022024336A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN100470302C (en) Photon crystal ratio light intensity light splitter
CN103261934A (en) Optical amplifier for multi-core optical fiber
Wohlfeil et al. A two-dimensional fiber grating coupler on SOI for mode division multiplexing
US5892868A (en) Fiber optic coupler combiner and process using same
US20200135960A1 (en) Method and Apparatus For Control and Suppression of Stray Light in a Photonic Integrated Circuit
US20190025506A1 (en) Polarization splitter rotator
CN102902011B (en) Array waveguide grating with insensitive temperature
CN102354023B (en) 1*N waveguide type adjustable light power beam splitter
KR20140059434A (en) Sunlight optical coupler and sunlight system comprising thereof
Tembhare et al. A review study on the multiple and useful application of fiber optic illumination system
Wohlfeil et al. Compact fiber grating coupler on SOI for coupling of higher order fiber modes
WO2001065300A3 (en) Optical switch having equalized beam spreading in all connections
CN105549155A (en) Planar monolithic integrated wavelength division multiplexer-demultiplexer and realization method thereof
WO2022024336A1 (en) Optical fiber and solar transmission system
JP6233083B2 (en) Optical element
Jung et al. All-fiber optical interconnection for dissimilar multicore fibers with low insertion loss
US7327917B2 (en) Directional light beam generators
CN104714276A (en) Optical divider and optical coupling unit thereof
CN103605182A (en) Reflection-type optical attenuator and method for attenuating power of optical waves
Yi et al. Ultra-short silicon MMI duplexer
US6836600B2 (en) Optical coupler with low loss interconnections
CN101852891B (en) Single-fiber three-way multiplexer chip for fiber to the home
D’Mello et al. Numerical Analysis and Optimization of a Multi-Mode Interference Based Polarization Beam Splitter
KR20000032760A (en) Integrated typed optical coupler using phase-grating structure
Wang et al. Efficient Chip-to-Chip Silicon Grating Coupler With High Alignment Tolerance at O-Band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946691

Country of ref document: EP

Kind code of ref document: A1