JP2011000012A - Plant factory - Google Patents

Plant factory Download PDF

Info

Publication number
JP2011000012A
JP2011000012A JP2009143844A JP2009143844A JP2011000012A JP 2011000012 A JP2011000012 A JP 2011000012A JP 2009143844 A JP2009143844 A JP 2009143844A JP 2009143844 A JP2009143844 A JP 2009143844A JP 2011000012 A JP2011000012 A JP 2011000012A
Authority
JP
Japan
Prior art keywords
light
sunlight
plants
plant factory
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009143844A
Other languages
Japanese (ja)
Inventor
Motohiro Nakahara
中原基博
Kazuomi Uchida
内田和臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAHARA KODENSHI KENKYUSHO KK
Optoenergy Inc
Original Assignee
NAKAHARA KODENSHI KENKYUSHO KK
Optoenergy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAHARA KODENSHI KENKYUSHO KK, Optoenergy Inc filed Critical NAKAHARA KODENSHI KENKYUSHO KK
Priority to JP2009143844A priority Critical patent/JP2011000012A/en
Publication of JP2011000012A publication Critical patent/JP2011000012A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Landscapes

  • Photovoltaic Devices (AREA)
  • Cultivation Of Plants (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plant factory solving the following problem in a conventional plant factory utilizing solar light and artificial light for illumination: the solar light containing the wave length area of near-infrared ray damaging for plants is radiated to plants; and the illumination of the artificial light requires much electric power and thereby results in having a problem from the aspects of economical efficiency, energy saving and environmental burden.SOLUTION: The plant factory works as follows: splitting the solar light into visible light useful for the growth of the plants, and near-infrared light making solar battery have highest power generation efficiency while damaging for the growth of the plants; irradiating the plants with only the visible light; and irradiating the solar battery with the near-infrared light to generate and store electric power so as to utilize also to the power supply for the artificial light.

Description

本発明は太陽光および人工光を照明として使用し植物を栽培する植物工場において、太陽光線の一部を太陽電池にも照射させて発電し人工光の電力供給に利用できるようにした経済的で省エネルギー、環境負荷が小さい植物工場に関するものである。   The present invention is economical in that a plant factory that uses sunlight and artificial light as illumination to grow a plant can irradiate a part of solar rays to a solar cell to generate power and use it for supplying artificial light. It relates to a plant factory with low energy consumption and low environmental impact.

野菜などの農産物を屋外の畑などで栽培する場合、その育成度は天候に左右され易く、台風、大雨などの被害または病害虫による被害などのため収穫量が減少することがある。またこれらの農産物の栽培には広い土地面積が必要となるため、狭隘な土地では十分な耕作面積を確保することが困難になる。   When agricultural products such as vegetables are cultivated in outdoor fields, the degree of growth is easily affected by the weather, and the yield may be reduced due to damage such as typhoons and heavy rains or damage by pests. Moreover, since a large land area is required for cultivation of these agricultural products, it is difficult to secure a sufficient cultivation area in a narrow land.

このため最近では工場内で人工的にこれらの農産物を栽培する技術が開発され植物工場として知られている。植物は光合成によって成長するため、植物工場では太陽光または太陽光に代わる人工光を植物に照射することが最も重要になる。近年では非特許文献1などに記載されているように、蛍光灯やLEDの性能が向上してきており、人工光の照明によって野菜を地下室やビルあるいは工場内で栽培する試みが盛んに行われている状況にある。   Therefore, recently, a technique for artificially cultivating these agricultural products in the factory has been developed and is known as a plant factory. Since plants grow by photosynthesis, it is most important in plant factories to irradiate plants with sunlight or artificial light instead of sunlight. In recent years, as described in Non-Patent Document 1, etc., the performance of fluorescent lamps and LEDs has been improved, and attempts have been actively made to grow vegetables in basements, buildings, or factories by artificial light illumination. Is in a situation.

LEDを使用して野菜を栽培する場合、図1に示すよう、野菜等の株の直上に多数のLEDを配置・配列させる方法がある。ここで1は棚、2はトレンチ、3はLEDである。野菜は2のトレンチに多数設置されており水耕栽培される。1の棚は多段に縦横に積層されるのが一般的である。   When cultivating vegetables using LEDs, as shown in FIG. 1, there is a method of arranging and arranging a large number of LEDs directly above a stock such as vegetables. Here, 1 is a shelf, 2 is a trench, and 3 is an LED. Many vegetables are installed in the trench 2 and are hydroponically cultivated. One shelf is generally stacked vertically and horizontally in multiple stages.

野菜栽培の場所とは異なる場所にLEDを設置しそこから光ファイバで野菜株の直上までLEDの光を導光する方法もある。また太陽光線をフレネルレンズで集光させ光ファイバに入射させて野菜株直上まで導光する方法などもある。   There is also a method in which LEDs are installed at a location different from the vegetable cultivation location, and the light from the LEDs is guided to the top of the vegetable stock by optical fiber. There is also a method in which sunlight is condensed by a Fresnel lens, incident on an optical fiber, and guided directly to the vegetable stock.

さらに図2に示すように、光ファイバと光スイッチを用いればLEDと太陽光を併用できるようにする方法も可能になる。ここで41、42、43、44は光ファイバであり、5は太陽光集光レンズ、6は光スイッチである。   Further, as shown in FIG. 2, a method of using both LED and sunlight is possible by using an optical fiber and an optical switch. Here, 41, 42, 43, and 44 are optical fibers, 5 is a sunlight condensing lens, and 6 is an optical switch.

この場合LED光と太陽光とは光スイッチで電気的に切替え可能になっており太陽光の強弱によってLEDか太陽光のどちらかに自動的に切替えて利用することができ、常時LEDを照射させるときに較べてエネギーコストは下がる利点がある。   In this case, LED light and sunlight can be electrically switched by an optical switch, and can be automatically switched to either LED or sunlight depending on the intensity of sunlight, and always irradiates the LED. Compared to the case, there is an advantage that the energy cost is lowered.

また逆に常時太陽光のみを利用する場合に較べてLEDと太陽光の併用方法は、安定して野菜に光を照射できることになり最近特に注目されている。   On the other hand, the combined use of LED and sunlight has attracted much attention recently as it can stably irradiate vegetables with light compared to the case where only sunlight is always used.

これら光ファイバを使用した野菜工場は特願2009-025523として出願されている。   A vegetable factory using these optical fibers has been filed as Japanese Patent Application No. 2009-025523.

『LED光源、植物工場ハンドブック』東海大学出版会、1997年"LED Light Source, Plant Factory Handbook" Tokai University Press, 1997

省エネルギーの観点からは、太陽光とLED光の併用が植物工場用光源として最も適していると考えられるが、この場合以下の問題があった。   From the viewpoint of energy saving, the combined use of sunlight and LED light is considered the most suitable as a light source for plant factories, but in this case, there were the following problems.

一般に植物の成長には赤色の波長の光が適しており、一部青色も必要であると考えられている。LEDのみを使用する場合、波長はLEDの種類によって決まるため、赤色と青色で発光するLEDをそれぞれ所望の割合で配置し照射すれば植物にとって最適な波長のみで照射できる。   In general, light of a red wavelength is suitable for plant growth, and it is considered that a part of blue is also necessary. When only LEDs are used, the wavelength is determined by the type of LED. Therefore, if LEDs that emit red and blue light are arranged and irradiated at desired ratios, irradiation can be performed only at the optimum wavelength for the plant.

一方、植物の成長にとって950nm近傍の波長域での照射は好ましくはないと言われている。しかし、例えば石英ガラス製光ファイバを用いて太陽光を植物株のところまで導光し照射すれば、950nm近傍の近赤外波長域を含む広い範囲の波長の光が植物に照射されることになる。   On the other hand, it is said that irradiation in the wavelength region near 950 nm is not preferable for plant growth. However, for example, if sunlight is guided to a plant strain using an optical fiber made of silica glass and irradiated, light in a wide range of wavelengths including the near infrared wavelength region near 950 nm is irradiated on the plant. Become.

従って太陽光を光ファイバで導光するようにした植物工場においては、植物にとって好ましくない波長域での照射も避けられないという問題があった。   Therefore, in a plant factory in which sunlight is guided by an optical fiber, there has been a problem that irradiation in a wavelength range that is undesirable for plants is unavoidable.

また、波長フィルタなどを用いれば植物の成長にとって不要な波長域を太陽光から除いて光ファイバに入射させ植物に照射することも可能となるが、この場合には波長フィルタで遮断された太陽光は結局無駄な光となり、太陽の光エネルギーをより多く利用し、省エネルギーで環境負荷が小さい経済的な植物工場を実現するという観点からは好ましくないという問題があった。   In addition, if a wavelength filter or the like is used, it is possible to remove the wavelength range unnecessary for plant growth from sunlight and enter the optical fiber to irradiate the plant. In this case, the sunlight blocked by the wavelength filter is used. In the end, the light was wasted, and there was a problem that it was not preferable from the viewpoint of realizing an economical plant factory that uses more of the light energy of the sun and saves energy and has a low environmental impact.

本発明は以上に記述した諸問題を解決するため特願2009-025523にさらに改良を加えたものである。   The present invention is obtained by further improving Japanese Patent Application No. 2009-025523 in order to solve the problems described above.

従来技術での課題を解決するため本発明では、植物にとって不要・有害な950nm近傍の波長域の光が、逆にシリコンの太陽電池の発光効率が最も高くなる波長域に一致しているという材料特性を利用した。   In order to solve the problems in the prior art, in the present invention, light in the wavelength range near 950 nm that is unnecessary and harmful to plants is conversely matched with the wavelength range in which the luminous efficiency of the silicon solar cell is highest. The characteristics were used.

図3は単結晶シリコン太陽電池の光―電気変換効率の波長依存性を模式的に示すものである。横軸は光の波長、左側縦軸は太陽光強度、右側縦軸は太陽電池の光−電気変換効率であり、点線は太陽光強度、実線は太陽電池の変換効率を示す。いずれも縦軸は相対値で表現されている。   FIG. 3 schematically shows the wavelength dependence of the photoelectric conversion efficiency of a single crystal silicon solar cell. The horizontal axis indicates the wavelength of light, the left vertical axis indicates the sunlight intensity, the right vertical axis indicates the photoelectric conversion efficiency of the solar cell, the dotted line indicates the sunlight intensity, and the solid line indicates the conversion efficiency of the solar cell. In both cases, the vertical axis is expressed as a relative value.

図3からわかるように単結晶シリコン太陽電池の光―電気変換効率は950nm近傍で最大となり800nm以下では950nmの約70%以下になる。   As can be seen from FIG. 3, the photoelectric conversion efficiency of the single crystal silicon solar cell is maximum near 950 nm, and is less than about 70% of 950 nm below 800 nm.

つまり、太陽光を波長フィルタで例えば800nm以上の長波長域の光(主に近赤外光)と800nm以下の短波長域の光(主に可視光)に分割し、800nm以上の近赤外光は太陽光発電に利用してLEDの電力供給に用い、それ以下の赤色を含む可視波長域の太陽光は光ファイバに入射させて植物栽培に用いるようにすれば従来技術の課題が解決できることになる。   In other words, sunlight is divided into long-wavelength light (mainly near-infrared light) of, for example, 800 nm or more by a wavelength filter and short-wavelength light (mainly visible light) of 800 nm or less, and near-infrared light of 800 nm or more If the light is used for solar power generation and used to supply LED power, and sunlight in the visible wavelength range including red below that is incident on an optical fiber and used for plant cultivation, the problems of the prior art can be solved. become.

具体的には太陽光が光ファイバに入射する前の空間に、800nm以上の長波長域を反射しそれ以外の短波長域は透過させる波長フィルタを挿入し、800nm以上の反射光側に太陽電池を配置し、それ以下の波長透過側には光ファイバを配置させる手段を用いた。   Specifically, in the space before sunlight enters the optical fiber, a wavelength filter that reflects a long wavelength region of 800 nm or more and transmits the other short wavelength region is inserted, and a solar cell is provided on the reflected light side of 800 nm or more. And a means for arranging an optical fiber on the wavelength transmission side below that.

太陽電池で発電した電力は蓄電器に充電され、必要に応じてLEDへの電力として利用できるようにした。   The electric power generated by the solar battery is charged into the battery and can be used as power to the LED as needed.

なおここで波長フィルタで分割する波長を代表的に800nmとしたが、これは950nm近傍の光線を除去するのが目的であるため、750nmで分割しても850nmで分割しても本質的な差を生じるものでなく本発明の範囲に含まれるものである。   Here, the wavelength divided by the wavelength filter is typically 800 nm, but this is intended to remove light near 950 nm, so there is an essential difference between dividing at 750 nm and dividing at 850 nm. Is not included in the scope of the present invention.

本発明では、太陽光を光ファイバで導光し植物の栽培に利用する際、植物の成長に有害な950nm近傍の波長域の光を除いた太陽光で照射できるため植物の栽培に適した照射環境の植物工場を実現できる。   In the present invention, when sunlight is guided by an optical fiber for use in plant cultivation, irradiation suitable for plant cultivation is possible because it can be irradiated with sunlight excluding light in the wavelength range near 950 nm that is harmful to plant growth. An environmental plant factory can be realized.

また植物のへの照射に供しない800nm以上の長波長域の光はシリコン太陽電池の光―電気変換エネルギーとして利用され、LEDなどの人工光での照射時の電力となるため、無駄な光エネルギーがなくなり、省エネルギーの効果は極めて大きい。さらに本発明によれば、太陽光の広い波長域を全て有効に利用できるため植物工場全体として環境に与える負荷も極めて小さくなる。   In addition, light in the long wavelength range of 800 nm or more that is not used for irradiation of plants is used as light-electrical conversion energy for silicon solar cells, and is used as power for irradiation with artificial light such as LEDs. The energy saving effect is extremely large. Furthermore, according to the present invention, the entire wavelength range of sunlight can be used effectively, so the load on the environment as a whole plant factory is extremely small.

LED照明による植物工場の模式図。Schematic diagram of a plant factory with LED lighting. 太陽光とLEDを併用した植物工場の模式図。A schematic diagram of a plant factory that uses both sunlight and LEDs. 単結晶シリコン太陽電池の光―電気変換効率波長依存性模式図。Schematic diagram of wavelength dependence of light-electric conversion efficiency of a single crystal silicon solar cell. 本発明による植物工場の模式図(実施例1)。The schematic diagram of the plant factory by the present invention (Example 1).

図4は本発明による植物工場の模式図を示したものである。ここで7は波長フィルタ、8は太陽電池、91、92は電力ケーブル、10は蓄電器である。
実際の植物工場は図4のユニットが複数結合された構造になっており、ここではその一部のみを示している。
FIG. 4 shows a schematic diagram of a plant factory according to the present invention. Here, 7 is a wavelength filter, 8 is a solar cell, 91 and 92 are power cables, and 10 is a capacitor.
An actual plant factory has a structure in which a plurality of units shown in FIG. 4 are combined, and only a part of them is shown here.

太陽光は5の集光レンズで集光され41の光ファイバに入射させられる。集光レンズ5と光ファイバ41の間には800nm以上の長波長域を反射させ、800nm以下の短波長域を透過させる波長フィルタ7が挿入されている。   Sunlight is collected by a condenser lens 5 and is incident on 41 optical fibers. A wavelength filter 7 is inserted between the condenser lens 5 and the optical fiber 41 to reflect a long wavelength region of 800 nm or more and transmit a short wavelength region of 800 nm or less.

使用する光ファイバは通常のゲルマニウムドープ石英ファイバやフッ素クラッド石英ファイバなどでも良い。しかしここでは、経済性の観点とNAが非常に大きく照明用に適している理由で空気クラッド石英光ファイバを用いた。   The optical fiber used may be a normal germanium-doped silica fiber or a fluorine-clad silica fiber. However, air-clad silica optical fiber was used here because of its economic viewpoint and NA, which is very large and suitable for illumination.

波長フィルタ7で反射した800nm以上の長波長太陽光は8の太陽電池に入射させられ発電に利用された。   Long wavelength sunlight of 800 nm or more reflected by the wavelength filter 7 was made incident on the solar cell 8 and used for power generation.

一方波長フィルタ7を透過した主に可視域の光は41,43,44の光ファイバを通って植物に照射された。   On the other hand, mainly visible light transmitted through the wavelength filter 7 was irradiated to the plant through 41, 43 and 44 optical fibers.

直射日光が当たっている時間帯は6の光スイッチは800nmより短波長の太陽光を43の光ファイバに導光するように作動し、3のLEDの発光は停止させた。   During the period of direct sunlight, the 6 optical switch operated to guide sunlight with a wavelength shorter than 800 nm to 43 optical fibers, and the 3 LEDs stopped emitting light.

直射日光が当たらない時間帯や雨天の場合、3のLEDは発光状態にし42の光ファイバに入射させた。この場合6の光スイッチは42の光ファイバと43の光ファイバを光学的に結合するように作動させた。晴れた時点で9の太陽電池で発電し91のケーブルで10の蓄電器に充電されていた電力は92のケーブルを介して3のLEDの発光用に供せられた。   In a time zone where it was not exposed to direct sunlight or in rainy weather, 3 LEDs were turned on and entered into 42 optical fibers. In this case, the optical switch 6 was operated so as to optically couple 42 optical fibers and 43 optical fibers. The electricity that was generated by 9 solar cells when it was clear and charged to 10 capacitors with 91 cables was provided for light emission of 3 LEDs via 92 cables.

このように太陽光とLEDを併用し、しかも太陽光から植物にとって有害な光の成分を遮断した光で植物を栽培し、遮断された太陽光エネルギーは太陽電池の発電に利用され、LEDの電力になるため、照射光源がLEDのみの場合の植物工場に較べて2重に省エネルギー効果が出てきた。また照明光に有害な波長を含まないため植物の生育状況も極めて良好であった。   In this way, sunlight and LEDs are used together, and plants are cultivated with light that blocks light components harmful to plants from sunlight, and the blocked solar energy is used for power generation of solar cells. Therefore, the energy saving effect has been doubled compared to the plant factory where the irradiation light source is only LED. Moreover, since the harmful wavelength was not included in illumination light, the growth condition of the plant was also very favorable.

さらに太陽光とLEDを併用する場合に較べても、本実施例ではLEDへの商用電源からの供給を少なくすることができ省エネルギー効果は著しいものがあった。   Furthermore, compared with the case where sunlight and LED are used in combination, in this embodiment, the supply from the commercial power source to the LED can be reduced, and the energy saving effect is remarkable.

1 棚
2 トレンチ
3 LED
41,42,43,44 光ファイバ
5 集光レンズ
6 光スイッチ
7 波長フィルタ
8 太陽電池
91,92 電力ケーブル
10 蓄電器
1 Shelf 2 Trench 3 LED
41, 42, 43, 44 Optical fiber 5 Condensing lens 6 Optical switch 7 Wavelength filter 8 Solar cell
91,92 power cable
10 Battery

Claims (4)

太陽光および人工光によって植物を栽培する植物工場において、太陽光を可視光と近赤外光に分離する波長フィルタと、前記可視光または人工光を導光し植物を照射するための光ファイバと、前記近赤外光を用いて発電するための太陽電池と、前期太陽電池で発電した電力を蓄えるための蓄電器と、少なくとも前記蓄電器からの電力を用いて発光する人工光とを具備することを特徴とする植物工場。   In a plant factory that cultivates plants by sunlight and artificial light, a wavelength filter that separates sunlight into visible light and near infrared light, and an optical fiber that guides the visible light or artificial light and irradiates the plant A solar cell for generating power using the near-infrared light, a capacitor for storing the power generated by the previous solar cell, and at least artificial light that emits light using the power from the capacitor. A feature plant factory. 請求項1に記載の近赤外光の波長域は800nm以上であることを特徴とする植物工場。   2. The plant factory according to claim 1, wherein the near infrared light has a wavelength range of 800 nm or more. 請求項1に記載の光ファイバに入射する光が、前記太陽光もしくは前記人工光のいずれかであるように切替えるための光スイッチを具備することを特徴とする植物工場。   A plant factory comprising an optical switch for switching so that light incident on the optical fiber according to claim 1 is either the sunlight or the artificial light. 請求項1に記載の光ファイバはコアが石英ガラスであり、前記コア側面とは大部分において接触していない保護用の石英ガラスチューブで取囲んだ空気クラッド光ファイバであることを特徴とする植物工場。
The optical fiber according to claim 1, wherein the core is a quartz glass, and is an air-clad optical fiber surrounded by a protective quartz glass tube that is not in contact with most of the side surface of the core. factory.
JP2009143844A 2009-06-17 2009-06-17 Plant factory Pending JP2011000012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143844A JP2011000012A (en) 2009-06-17 2009-06-17 Plant factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143844A JP2011000012A (en) 2009-06-17 2009-06-17 Plant factory

Publications (1)

Publication Number Publication Date
JP2011000012A true JP2011000012A (en) 2011-01-06

Family

ID=43558509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143844A Pending JP2011000012A (en) 2009-06-17 2009-06-17 Plant factory

Country Status (1)

Country Link
JP (1) JP2011000012A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121067B1 (en) * 2011-04-04 2012-03-16 이상우 Plant cultivation device of plants using of led light
KR101211246B1 (en) * 2012-04-10 2012-12-11 김완중 Water culture system
CN102921362A (en) * 2012-11-05 2013-02-13 北京泊菲莱科技有限公司 Method and device for biological irradiation
JP2013229609A (en) * 2012-04-26 2013-11-07 Changzhou Almaden Co Ltd Solar photovoltaic-thermal system
CN105067112A (en) * 2015-07-09 2015-11-18 北京农业信息技术研究中心 Apparatus and method of sensing artificial light source light environmental parameter of plant factory
WO2016154570A1 (en) 2015-03-25 2016-09-29 Vitabeam Ltd. Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
JP2017147973A (en) * 2016-02-24 2017-08-31 Necエンジニアリング株式会社 Light energy time-sharing distribution apparatus, plant factory, building, light energy time-sharing distribution method, and rotating cylinder
KR20210059516A (en) * 2019-11-15 2021-05-25 대한민국(농촌진흥청장) Closed-type light system to use both artificial lights and natural light in Smart farm(Plant factory) and light supply method using the same
WO2022024336A1 (en) * 2020-07-31 2022-02-03 日本電信電話株式会社 Optical fiber and solar transmission system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121067B1 (en) * 2011-04-04 2012-03-16 이상우 Plant cultivation device of plants using of led light
KR101211246B1 (en) * 2012-04-10 2012-12-11 김완중 Water culture system
JP2013229609A (en) * 2012-04-26 2013-11-07 Changzhou Almaden Co Ltd Solar photovoltaic-thermal system
CN102921362A (en) * 2012-11-05 2013-02-13 北京泊菲莱科技有限公司 Method and device for biological irradiation
CN102921362B (en) * 2012-11-05 2015-10-21 北京泊菲莱科技有限公司 A kind of biological irradiation method and device
WO2016154570A1 (en) 2015-03-25 2016-09-29 Vitabeam Ltd. Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
CN105067112A (en) * 2015-07-09 2015-11-18 北京农业信息技术研究中心 Apparatus and method of sensing artificial light source light environmental parameter of plant factory
JP2017147973A (en) * 2016-02-24 2017-08-31 Necエンジニアリング株式会社 Light energy time-sharing distribution apparatus, plant factory, building, light energy time-sharing distribution method, and rotating cylinder
KR20210059516A (en) * 2019-11-15 2021-05-25 대한민국(농촌진흥청장) Closed-type light system to use both artificial lights and natural light in Smart farm(Plant factory) and light supply method using the same
KR102405590B1 (en) * 2019-11-15 2022-06-07 대한민국 Closed-type light system to use both artificial lights and natural light in Smart farm(Plant factory) and light supply method using the same
WO2022024336A1 (en) * 2020-07-31 2022-02-03 日本電信電話株式会社 Optical fiber and solar transmission system
JP7435789B2 (en) 2020-07-31 2024-02-21 日本電信電話株式会社 Optical fiber and solar transmission system

Similar Documents

Publication Publication Date Title
JP2011000012A (en) Plant factory
US20110197317A1 (en) Multistory bioreaction system for enhancing photosynthesis
US8716010B2 (en) Solar hybrid photobioreactor
KR20100057849A (en) Led lighting device for growing plants
WO2005026626A3 (en) Solar based electrical energy generation with spectral cooling
CA2862860A1 (en) Luminescent electricity-generating window for plant growth
CN202635225U (en) Solar lighting system for greenhouse
TW201503575A (en) Transparent organic solar cells for agronomic applications
JP2010178682A (en) Plant factory
KR102225203B1 (en) Smart plant cultivating system using solar photovoltaic power generation
US20130111810A1 (en) Photovoltaic modules for an agricultural greenhouse and method for manufacturing such modules
CN104025939A (en) Plant culturing shelf
KR20130052306A (en) Lighting apparatus for plant cultivation
CN203723156U (en) Planting equipment enabling sunlight to be applied to plant factory
CN102550334A (en) Multifunctional plant cultivation facility for integrating photovoltaic power generation and characteristic spectrum illumination
TWI708401B (en) Power generation system of light-transmitting solar photovoltaic panel
CN202708659U (en) LED tissue culture lamp for plants
CN201256569Y (en) Large power LED light source for plant growth
CN206196492U (en) The glass sunlight house of plant light compensation is carried out using selective transmission photovoltaic film
KR101904676B1 (en) Energy independent container type cultivation apparatus utilizing artificial light source
CN207132284U (en) A kind of efficiently spectrum plant light compensation light energy generator
CN209882630U (en) Solar energy conversion plant light filling lamp
Yen et al. Artificial-lighting sources for plant growth
CN202893341U (en) Biological irradiation device
US10393942B2 (en) Color shifting illuminator