JP2010276862A - Optical fiber cord and method of identifying coated optical fiber - Google Patents

Optical fiber cord and method of identifying coated optical fiber Download PDF

Info

Publication number
JP2010276862A
JP2010276862A JP2009129407A JP2009129407A JP2010276862A JP 2010276862 A JP2010276862 A JP 2010276862A JP 2009129407 A JP2009129407 A JP 2009129407A JP 2009129407 A JP2009129407 A JP 2009129407A JP 2010276862 A JP2010276862 A JP 2010276862A
Authority
JP
Japan
Prior art keywords
optical fiber
light
fiber cord
cord
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009129407A
Other languages
Japanese (ja)
Other versions
JP5117443B2 (en
Inventor
Shinichi Aozasa
真一 青笹
Yoshitaka Enomoto
圭高 榎本
Yuji Azuma
裕司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009129407A priority Critical patent/JP5117443B2/en
Publication of JP2010276862A publication Critical patent/JP2010276862A/en
Application granted granted Critical
Publication of JP5117443B2 publication Critical patent/JP5117443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber cord in which coated optical fiber is identified with visible light, when the optical fiber is used in which an optical transmission part or a core is enclosed by a plurality of cavities. <P>SOLUTION: The optical fiber cord uses the optical fiber in which the optical transmission part or the core 21 is enclosed by a plurality of cavities 23; a light of which the wavelength is in the range of 380 to 1,200 nm is transmitted through the gap between the cavities 23; the optical fiber is covered by a UV coat 24; Kevlar (R) fibers 25 and a cord outer coat 26; and when the light passes through the UV coat 24, the Kevlar fibers 25 and the cord outer coat 26 in the direction of cross section, the total transmittance is 0.1% or larger and 70% or smaller for the wavelength range of 380 to 1,200 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばHAF(ホールアシストファイバ)、PCF(フォトニッククリスタルファイバ)等の断面において光伝搬部もしくはコアが複数の空孔で囲まれた光ファイバを用いた場合に、可視光による心線対照を可能にする光ファイバコード及びその心線対照方法に関する。   In the present invention, for example, when an optical fiber in which a light propagation part or a core is surrounded by a plurality of holes is used in a cross section of HAF (Hall Assist Fiber), PCF (Photonic Crystal Fiber) or the like, a core wire by visible light is used. The present invention relates to an optical fiber cord that enables control and a method for controlling the cores thereof.

2010年2000万光アクセスの実現を背景とした光アクセスサービスの急速な普及により、光サービスの大量開通時代を迎え、それに伴い所内光設備は急激に増加している(例えば、非特許文献1,2参照。)。   With the rapid spread of optical access services against the backdrop of the realization of 20 million optical access in 2010, the era of mass service of optical services has been entered, and accordingly, in-house optical facilities have increased rapidly (for example, Non-Patent Document 1, 2).

次世代の所内光設備では、増加する光設備を限られたスペースで収容することが予想されるため、従来以上に高密度化による省スペース化が求められる可能性がある。しかし、高密度化が進むと光コードや光ケーブル等が輻輳し、保守・管理が困難となることが懸念される。そのため次世代の所内光設備では、高密度化に対応した安全性と確実性を兼ね備えた所内光配線及び管理技術への要請がある。   In the next-generation in-house optical equipment, it is expected that the increasing optical equipment will be accommodated in a limited space. Therefore, there is a possibility that space saving by higher density than before is required. However, as the density increases, there is a concern that optical cords, optical cables, etc. will become congested, making maintenance and management difficult. For this reason, in the next-generation in-house optical equipment, there is a demand for in-house optical wiring and management technology having both safety and certainty corresponding to higher density.

図2は従来の所内光配線設備を示す構成説明図である。図2に示すように、通信局ビル11の所内光配線設備は、IPサービス等を提供する伝送装置OLT(Optical Line Terminal)と専用配線架IDM-B(IDM: Integrated Distribution Module)を接続する識別タグ12を有する所内光ケーブル(光コード)13、及び専用配線架IDM-Bと専用配線架IDM-Aを接続する識別タグ12を有する所内光ケーブル(光コード)13から構成される。前記専用配線架IDM-Aは所外光ケーブル(光コード)14により顧客宅15と接続される。この場合、所外側とOLT側でそれぞれ専用配線架IDM-A,IDM-Bを設置し機能分割することで効率的な光配線収容を実現している(例えば、非特許文献3〜6参照。)。   FIG. 2 is an explanatory diagram illustrating a conventional in-house optical wiring facility. As shown in FIG. 2, the in-house optical wiring facility of the communication station building 11 is an identification that connects a transmission device OLT (Optical Line Terminal) that provides an IP service or the like and a dedicated wiring rack IDM-B (IDM: Integrated Distribution Module). An in-house optical cable (optical code) 13 having a tag 12 and an in-house optical cable (optical code) 13 having an identification tag 12 for connecting the dedicated wiring rack IDM-B and the dedicated wiring rack IDM-A. The dedicated wiring rack IDM-A is connected to a customer home 15 by an off-site optical cable (optical cord) 14. In this case, efficient optical wiring accommodation is realized by installing dedicated wiring racks IDM-A and IDM-B on the outside side and the OLT side, respectively, and dividing the functions (see, for example, Non-Patent Documents 3 to 6). ).

さらに保守・運用上大変重要な所望の光ファイバ心線を特定する心線対照技術が開発されている。信号波長帯より長波長の対照光を光ファイバに入力し、ファイバを湾曲させ、漏光する対照光をモニタすることで心線対照が可能である(例えば、非特許文献7参照。)。   Furthermore, a core-contrast technique has been developed that identifies a desired optical fiber core that is very important for maintenance and operation. By comparing the control light having a wavelength longer than the signal wavelength band into the optical fiber, bending the fiber, and monitoring the control light leaking, it is possible to perform contrast control (for example, see Non-Patent Document 7).

このように、現在の所内光配線は高効率運用・作業性の平易化を目的に熟慮された構成となっている。さらに次世代の所内光配線設備ではさらに高密度化が求められることが予想されるため、光配線の際発生しうる課題として、新設・廃止等の作業時に、誤って光コードおよび光ケーブルを引っ掛けて曲げ損失を増加させてしまい、通信遮断する可能性がある。そのため光ファイバコードおよび光ケーブルの光ファイバ素線を現在のシングルモードファイバから曲げ損失特性に優れるホールアシストファイバ(HAF)へ置き換えることが提案されている(例えば、非特許文献8参照。)。しかし、HAFは曲げ損失が発生し難い構造のため対照光が漏光せず、心線対照が困難であった。   As described above, the current in-house optical wiring has a configuration that is considered for the purpose of high efficiency operation and easy workability. Furthermore, since it is expected that higher density will be required for next-generation in-house optical wiring equipment, a problem that may occur during optical wiring is that an optical cord or optical cable may be accidentally hooked during work such as new installation or abolition. This may increase the bending loss and cut off communication. Therefore, it has been proposed to replace the optical fiber cord of the optical fiber cord and the optical cable with a hole assist fiber (HAF) excellent in bending loss characteristics from the current single mode fiber (for example, see Non-Patent Document 8). However, because HAF has a structure in which bending loss is unlikely to occur, the control light does not leak and the cord control is difficult.

H. Shinohara, “Overview of Japanese FTTH market and NTT’s strategies for entering full-scale FTTH era,” presented at the 32nd European Conference on Optical Communication, Cannes, France September 24-28, 2006.H. Shinohara, “Overview of Japanese FTTH market and NTT ’s strategies for entering full-scale FTTH era,” presented at the 32nd European Conference on Optical Communication, Cannes, France September 24-28, 2006. O. Yamauchi, “Trends in optical access network technologies toward ‘30 million optical subscribers by 2010’,” NTT Technical Review 4, 21-28 (2006).O. Yamauchi, “Trends in optical access network technologies toward ‘30 million optical subscribers by 2010’, ”NTT Technical Review 4, 21-28 (2006). M. Tachikura, K. Mine, H. Izumita, S. Uruno, M. Nakamura,” Newly developed optical fiber distribution system and cable management in central office,” Proc. 50th IWCS, pp. 98-105.M. Tachikura, K. Mine, H. Izumita, S. Uruno, M. Nakamura, “Newly developed optical fiber distribution system and cable management in central office,” Proc. 50th IWCS, pp. 98-105. 宇留野重則, 泉田史, 中村稔,”所内光配線マネジメントシステムにおける経済化MUコネクタ技術,” NTT技術ジャーナル, vol. 15, no. 10, pp. 12-15, 2003Shigenori Uruno, Fumi Izumida, Satoshi Nakamura, “Economic MU Connector Technology in In-House Optical Wiring Management System,” NTT Technical Journal, vol. 15, no. 10, pp. 12-15, 2003 宇留野重則,立蔵正男,泉田史,峰恒司,富田信夫“所内光配線マネジメントシステムにおける統合配線モジュール(IDMの設計)",信学総大, B-10-25, 2000Shigenori Uruno, Masao Tatekura, Fumi Izumida, Tsuneji Mine, Nobuo Tomita “Integrated Wiring Module in the In-House Optical Wiring Management System (IDM Design)”, Shingaku Sodai, B-10-25, 2000 Koji Mine, Yoshitaka Enomoto, Hisashi Izumita, M. Tachikura, N. Tomita, J. Yamaguchi, K. Sasakura and K. Kaneko,”Automatic Cross-connecting Fiber Termination Module,” APCC/OECC’99, vol. 1, pp. 267-269, 1999Koji Mine, Yoshitaka Enomoto, Hisashi Izumita, M. Tachikura, N. Tomita, J. Yamaguchi, K. Sasakura and K. Kaneko, “Automatic Cross-connecting Fiber Termination Module,” APCC / OECC'99, vol. 1, pp 267-269, 1999 有居正仁, 東裕司, 榎本圭高, 鈴木勝晶, 荒木則幸, 宇留野重則, 渡邉常一, “拡大する光アクセス網を支える光媒体網運用技術,” NTT技術ジャーナル, vol. 18, no. 12, pp. 58-61, 2006.Masahito Ari, Yuji Higashi, Yasutaka Enomoto, Katsaki Suzuki, Noriyuki Araki, Shigenori Uruno, Tsuneichi Watanabe, “Optical Media Network Operation Technology Supporting Expanding Optical Access Networks,” NTT Technical Journal, vol. 18, no. 12 , pp. 58-61, 2006. 青笹真一、宇留野重則、和氣正樹、榎本圭高、東裕司, ”次世代所内光配線・管理技術”, 信学技報, OFT2008-50, pp. 19- 22, 2008.Shinichi Aoki, Shigenori Uruno, Masaki Wada, Toshitaka Enomoto, Yuji Higashi, “Next-generation in-house optical wiring and management technology”, IEICE Technical Report, OFT2008-50, pp. 19- 22, 2008.

本発明は上記の事情に鑑みてなされたもので、例えばHAF(ホールアシストファイバ)、PCF(フォトニッククリスタルファイバ)等の断面において光伝搬部もしくはコアが複数の空孔で囲まれた光ファイバを用いた光ファイバコードであっても所望の光ファイバコードを特定可能な心線対照を実現することを目的とする。さらに対照光に可視光を用いる事で視認による簡易な心線対照も実現可能とする。   The present invention has been made in view of the above circumstances. For example, an optical fiber in which a light propagation portion or a core is surrounded by a plurality of holes in a cross section of HAF (Hall Assist Fiber), PCF (Photonic Crystal Fiber) or the like. An object of the present invention is to realize a cord contrast capable of specifying a desired optical fiber cord even with the used optical fiber cord. Furthermore, by using visible light as the reference light, it is possible to realize simple core line contrast by visual recognition.

上記目的を達成するため本発明は、光伝搬部もしくはコアが複数の空孔で囲まれると共に空孔の間隙を波長範囲380〜1200nmの光が伝搬可能である光ファイバを用いた光ファイバコードであって、前記光ファイバを覆うように被覆部材が設けられ、被覆部材として380〜1200nmの波長範囲の光が通過する被覆部材を用いることを特徴とするものである。   In order to achieve the above object, the present invention is an optical fiber cord using an optical fiber in which a light propagation part or core is surrounded by a plurality of holes and light in a wavelength range of 380 to 1200 nm can propagate through the gaps of the holes. A covering member is provided so as to cover the optical fiber, and a covering member through which light in a wavelength range of 380 to 1200 nm passes is used as the covering member.

また本発明は、前記光ファイバコードにおいて、被覆部材として、被覆部材を光が断面方向に通過する場合の透過率が380〜1200nmの波長範囲で0.1%以上70%以下である被覆部材を用いること、被覆部材として、UV被覆、強度保持材、コード外被覆の少なくとも1つ以上より構成される被覆部材を用いることを特徴とするものである。   In the optical fiber cord, the present invention uses a covering member having a transmittance of 0.1% or more and 70% or less in a wavelength range of 380 to 1200 nm when light passes through the covering member in the cross-sectional direction. As the covering member, a covering member composed of at least one of a UV coating, a strength retaining material, and a cord outer coating is used.

また本発明は、前記光ファイバコードにおいて、UV被覆、強度保持材、コード外被覆の少なくともいずれかに波長範囲380〜1200nmの光を散乱させる粒子を含有することを特徴とするものである。   Further, the present invention is characterized in that the optical fiber cord contains particles that scatter light in a wavelength range of 380 to 1200 nm in at least one of a UV coating, a strength holding material, and an outer coating of the cord.

また本発明は、前記光ファイバコードにおいて、光ファイバコードを湾曲させた場合に、光ファイバを伝搬する光のうち、波長範囲380〜1200nmの光の少なくともいずれか1波長の光を漏光し、1200nmを超える波長の光を漏光しないことを特徴とするものである。   According to the present invention, in the optical fiber cord, when the optical fiber cord is bent, at least one of the wavelengths in the wavelength range of 380 to 1200 nm out of the light propagating through the optical fiber is leaked to 1200 nm. It is characterized by not leaking light having a wavelength exceeding.

また本発明は、前記光ファイバコードにおいて、光ファイバコードを半径5mmで湾曲させた場合に、光ファイバを伝搬する光のうち、波長範囲380〜1200nmの光の少なくともいずれか1波長の光を漏光し、1200nmを超える波長の光を漏光しないことを特徴とするものである。   According to the present invention, in the optical fiber cord, when the optical fiber cord is bent with a radius of 5 mm, light having a wavelength in the wavelength range of 380 to 1200 nm out of light propagating through the optical fiber leaks. However, it does not leak light having a wavelength exceeding 1200 nm.

また本発明は、前記光ファイバコードにおいて、波長範囲380〜1200nmの光を光ファイバコードの光伝搬部もしくコアに結合する光結合器を具備することを特徴とするものである。   The present invention is also characterized in that the optical fiber cord includes an optical coupler that couples light having a wavelength range of 380 to 1200 nm to an optical propagation portion or a core of the optical fiber cord.

また本発明は、前記光ファイバコードにおいて、光ファイバコードの光伝搬部もしくコアを伝搬する信号光に影響を与えずに波長範囲380〜1200nmの光を合波する光結合器を有することを特徴とするものである。   The present invention further includes an optical coupler for combining the light in the wavelength range of 380 to 1200 nm without affecting the signal light propagating through the optical propagation part or the core of the optical fiber cord. It is a feature.

また本発明は、前記光ファイバコードにおいて、波長範囲380〜1200nm及び1300〜1700nmの少なくともいずれか1波長以上の光もしくは変調光を発する光源が接続されていることを特徴とするものである。   Further, the present invention is characterized in that in the optical fiber cord, a light source that emits light having a wavelength of at least one of a wavelength range of 380 to 1200 nm and 1300 to 1700 nm or modulated light is connected.

また本発明は、前記光ファイバコードにおいて、光ファイバコードを挟み込んで、光ファイバコードを湾曲させて波長範囲380〜1200nmの光のパワーもしくは変調信号を検出可能な心線対照器が設けられていることを特徴とするものである。   According to the present invention, in the optical fiber cord, a fiber optic cord is sandwiched, and the optical fiber cord is bent to provide a cord contrast device capable of detecting the power or modulation signal of light in the wavelength range of 380 to 1200 nm. It is characterized by this.

また本発明は、光伝搬部もしくはコアが複数の空孔で囲まれると共に空孔の間隙を波長範囲380〜1200nmの光が伝搬可能である光ファイバを用いた光ファイバコードの心線対照方法であって、前記光ファイバコードを湾曲させ、光ファイバを伝搬する光のうち、波長範囲380〜1200nmの光の少なくともいずれか1波長の光を漏光し、1200nmを超える波長の光を漏光しないようにして心線対照を行うことを特徴とする。   The present invention also relates to a method of contrasting an optical fiber cord using an optical fiber in which a light propagation part or core is surrounded by a plurality of holes and light in a wavelength range of 380 to 1200 nm can propagate through the gaps of the holes. The optical fiber cord is bent so that at least one of the wavelengths in the wavelength range of 380 to 1200 nm out of the light propagating through the optical fiber is leaked, and light having a wavelength exceeding 1200 nm is not leaked. It is characterized by performing a contrast control.

本発明の光ファイバコードは、優れた曲げ損失特性を得るため光の伝搬域(信号伝搬域)の外側に空孔を有する構造であり、空孔の間隙を可視域(380〜750nm)もしくは短波長側の近赤外域(750〜1200nm)の光が伝搬可能であり、さらに光ファイバを覆うUV被覆、強度保持材、コードの外被覆を透過することを特徴とする。   The optical fiber cord of the present invention has a structure in which holes are provided outside the light propagation region (signal propagation region) in order to obtain excellent bending loss characteristics, and the space between the holes is visible (380 to 750 nm) or short. It is characterized in that light in the near infrared region (750 to 1200 nm) on the wavelength side can propagate, and further passes through the UV coating covering the optical fiber, the strength holding material, and the outer coating of the cord.

通信信号光に中波長の近赤外光(1300〜1700nm)、対照光に短波長の近赤外光を用いる場合には、従来の対照光では困難であった通信状態における空孔型光ファイバの心線対照を可能にする。したがって曲げても通信に影響を与えることなく心線対照が可能となる。   When using near-infrared light (1300 to 1700 nm) for communication signal light and short-wavelength near-infrared light for control light, a holey optical fiber in a communication state that was difficult with conventional control light Allows for contrast control. Therefore, even if it bends, a core line contrast is possible without affecting communication.

さらに対照光に可視光を用いた場合には、心線対照器等を使用せず手で光ファイバコードを湾曲させるのみで視認にて心線対照が可能となる。光ファイバコードで発生した異常な曲げを目視で確認することも可能であり、配線の保守性の向上に繋がる。   Further, when visible light is used as the control light, the core wire can be visually confirmed only by bending the optical fiber cord by hand without using a core wire contrast device or the like. It is also possible to visually check for abnormal bending that has occurred in the optical fiber cord, which leads to improved maintainability of the wiring.

ファイバパラメータおよび対照光の波長を最適化することで光ファイバコード全体を光らせて対照することも可能である。さらに対照光に変調を付加することで、他の光ファイバコードとの判別が容易になる。本発明は、光設備の保守作業における作業の確実性、容易性を大幅に向上させると共に経済性にも大きく寄与する。   By optimizing the fiber parameters and the wavelength of the reference light, it is also possible to make the entire optical fiber cord shine for comparison. Further, by adding modulation to the reference light, it becomes easy to distinguish from other optical fiber cords. INDUSTRIAL APPLICABILITY The present invention greatly improves the certainty and ease of work in maintenance work of optical equipment and greatly contributes to economic efficiency.

本発明の第1の実施形態に係る光ファイバコードを示す断面図である。It is sectional drawing which shows the optical fiber cord which concerns on the 1st Embodiment of this invention. 従来の所内光配線設備を示す構成説明図である。It is structure explanatory drawing which shows the conventional in-house optical wiring installation. 本発明の第1の実施形態に係るHAF及びSMFの湾曲付与時におけるコア伝搬光の漏光量の波長依存性の一例を示す特性図である。It is a characteristic view which shows an example of the wavelength dependence of the light leakage amount of the core propagation light at the time of curve provision of HAF and SMF which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るHAFにおける波長650nmの可視光の漏光量および波長1550nmの光の曲げ損失の空孔の間隙の依存性の一例を示す特性図である。FIG. 6 is a characteristic diagram showing an example of dependency of a gap between holes on a leakage amount of visible light having a wavelength of 650 nm and a bending loss of light having a wavelength of 1550 nm in the HAF according to the first embodiment of the present invention. 本発明の第1の実施形態に係る1.1mm外径の光ファイバコードのUV被覆、ケブラ、コード外被覆の透過損失の波長依存性の一例を示す特性図である。It is a characteristic view which shows an example of the wavelength dependence of the transmission loss of UV coating of a 1.1 mm outer diameter optical fiber cord concerning the 1st Embodiment of this invention, a Kevlar, and a cord outer coating. 本発明の第1の実施形態に係る1.1mm外径の光ファイバコードについて波長650nmの可視光の漏光パワーおよび曲げ損失の曲げ直径依存性の一例を示す特性図である。It is a characteristic view which shows an example of the bending diameter dependence of the leakage power of visible light with a wavelength of 650 nm, and bending loss about the 1.1 mm outer diameter optical fiber cord which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る1.1mm外径の光ファイバコードについて漏光パワーのコード長依存性の一例を示す特性図である。It is a characteristic view which shows an example of the cord length dependence of light leakage power about the optical fiber cord of 1.1 mm outer diameter which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光ファイバコードを示す断面図及び光ファイバコードの心線対照方法を示す構成説明図である。It is sectional drawing which shows the optical fiber cord which concerns on the 2nd Embodiment of this invention, and a structure explanatory drawing which shows the core wire contrast method of an optical fiber cord. 本発明の第2の実施形態に係る漏光パワーのコード長依存性の一例を示す特性図である。It is a characteristic view which shows an example of the code length dependence of the light leakage power which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光ファイバコードを示す断面図及び光ファイバコードの心線対照方法を示す構成説明図である。It is sectional drawing which shows the optical fiber cord which concerns on the 3rd Embodiment of this invention, and a structure explanatory drawing which shows the core wire contrast method of an optical fiber cord. 本発明の第3の実施形態に係る漏光パワーのコード長依存性の一例を示す特性図である。It is a characteristic view which shows an example of the code length dependence of the light leakage power which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る光ファイバコードの心線対照方法を示す構成説明図である。It is composition explanatory drawing which shows the optical fiber cord core line contrast method which concerns on the 4th Embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。
[第1の実施形態]
図1は本発明の第1の実施形態に係る光ファイバコードを示し、(a)縦断面図、(b)は横断面図である。図1(a),(b)において、中心軸部にコア21が設けられ、光伝搬部(信号伝搬部)であるコア21の周囲には空孔層22が同軸的に設けられると共に空孔層22には6つの空孔23がコア21を中心として円環状に配列されて設けられてHAF(ホールアシストファイバ)が構成される。
Hereinafter, embodiments of the present invention will be described in detail.
[First embodiment]
1A and 1B show an optical fiber cord according to a first embodiment of the present invention, in which FIG. 1A is a longitudinal sectional view and FIG. 1B is a transverse sectional view. In FIGS. 1A and 1B, a core 21 is provided at the central shaft portion, and a hole layer 22 is provided coaxially around the core 21, which is an optical propagation portion (signal propagation portion). The layer 22 is provided with six holes 23 arranged in an annular shape around the core 21 to constitute a HAF (Hall Assist Fiber).

空孔層22の周囲には紫外光照射による硬化性の樹脂よりなるUV被覆24が設けられ、UV被覆24の周囲にはケブラ25が設けられると共にコード外被覆26が設けられる。ケブラ25はコードの強度保持材としての機能があり、材料としてはアラミド繊維等が用いられる。コード外被覆26は難燃性に優れ、曲げ癖がつきにくく、滑りがよいノンハロゲンポリマや難燃性のポリオレフィン等がある。   A UV coating 24 made of a curable resin by ultraviolet light irradiation is provided around the hole layer 22, and a Kevlar 25 and a cord outer coating 26 are provided around the UV coating 24. The Kevlar 25 functions as a cord strength retaining material, and an aramid fiber or the like is used as the material. The cord outer coating 26 has non-halogen polymer, flame retardant polyolefin, and the like that are excellent in flame retardancy, are not easily bent and have good sliding properties.

空孔23の間隙は可視域(380〜750nm)もしくは短波長側の近赤外域(750〜1200nm)の光が伝搬可能であり、さらにUV被覆24、ケブラ25、及びコード外被覆26よりなる被覆部材は光が断面方向に通過する場合の総計の透過率が380〜1200nmの波長範囲で0.1%以上70%以下である。   The gap of the air holes 23 is capable of propagating light in the visible region (380 to 750 nm) or near-infrared region (750 to 1200 nm) on the short wavelength side, and further includes a coating made of a UV coating 24, a Kevlar 25, and an outer cord coating 26. The total transmittance of the member when light passes in the cross-sectional direction is 0.1% or more and 70% or less in the wavelength range of 380 to 1200 nm.

図1中、27は通信光であり、28は可視光(650nm)である。
すなわち、通信光として中波長域の近赤外光(1300〜1700nm)および対照光として可視光(380〜750nm)もしくは短波長域の近赤外光(750〜1200nm)を光ファイバコードのコア21の片端より入力し、光ファイバコードに例えば半径5mmで湾曲を加えると、対照光の可視光(380〜750nm)もしくは短波長域の近赤外光(750〜1200nm)は空孔23の間隙に比べて波長が大幅に短いため空孔23の間隙を縫ってHAF外縁部側へ漏光し、UV被覆24を透過し、ケブラ25を通過し、コード外被覆26を透過して光ファイバコードの外へ放射される。
In FIG. 1, 27 is communication light, and 28 is visible light (650 nm).
That is, near-infrared light (1300 to 1700 nm) in the middle wavelength region as communication light and visible light (380 to 750 nm) or near-infrared light (750 to 1200 nm) in the short wavelength region as control light, the core 21 of the optical fiber cord. When the optical fiber cord is curved with a radius of 5 mm, for example, the visible light (380 to 750 nm) of the control light or the near infrared light (750 to 1200 nm) in the short wavelength region is inserted into the gap of the hole 23. Since the wavelength is much shorter than that, the gap between the holes 23 is sewn and leaks to the outer edge of the HAF, passes through the UV coating 24, passes through the Kevlar 25, passes through the cord outer coating 26, and passes outside the optical fiber cord. To be emitted.

一方、波長が1200nmを超える通信光である中波長域の近赤外光(1300〜1700nm)は、空孔23の間隙と比較して十分に波長は短くないので、6つの空孔23の中心部へ閉じ込められ、光ファイバコードに例えば半径5mmで湾曲を加えても外部へ放射(漏光)されない。   On the other hand, the mid-wavelength near-infrared light (1300 to 1700 nm), which is communication light having a wavelength exceeding 1200 nm, is not sufficiently short in wavelength compared to the gaps of the holes 23, so Even if the optical fiber cord is bent with a radius of, for example, 5 mm, it is not radiated to the outside (light leakage).

したがって、光ファイバコードを例えば半径5mmで湾曲させても通信に影響を与えることなく心線対照が可能となる。さらに対照光に可視光を用いた場合には、心線対照器等を使用せず手で光ファイバコードを湾曲させるのみで視認にて心線対照が可能となる。光ファイバコードで発生した異常な曲げを目視で確認することも可能であり、配線の保守性の向上に繋がる。   Therefore, even if the optical fiber cord is bent with a radius of, for example, 5 mm, the cords can be compared without affecting the communication. Further, when visible light is used as the control light, the core wire can be visually confirmed only by bending the optical fiber cord by hand without using a core wire contrast device or the like. It is also possible to visually check for abnormal bending that has occurred in the optical fiber cord, which leads to improved maintainability of the wiring.

尚、HAFのファイバパラメータおよび対照光の波長を最適化することで光ファイバコード全体を光らせて対照することも可能である。さらに対照光に変調を付加することで、他の光ファイバコードとの判別が容易になる。   It is also possible to make the entire optical fiber cord shine by optimizing the HAF fiber parameters and the wavelength of the reference light. Further, by adding modulation to the reference light, it becomes easy to distinguish from other optical fiber cords.

また、光ファイバコードにおいて、UV被覆24、ケブラ25、及びコード外被覆26の少なくともいずれかに波長範囲380〜1200nmの光を散乱させる粒子を含有するようにしてもよい。   In the optical fiber cord, at least one of the UV coating 24, the Kevlar 25, and the outer cord coating 26 may contain particles that scatter light in the wavelength range of 380 to 1200 nm.

さらに、光ファイバコードにおいて、波長範囲380〜1200nmの光を光ファイバコードの光伝搬部もしくコアに結合する光結合器を設けてもよく、また、光ファイバコードの光伝搬部もしくコアを伝搬する信号光に影響を与えずに波長範囲380〜1200nmの光を合波する光結合器を設けてもよい。   Further, in the optical fiber cord, an optical coupler that couples light having a wavelength range of 380 to 1200 nm to the optical propagation portion or core of the optical fiber cord may be provided, and the optical propagation portion or core of the optical fiber cord may be provided. You may provide the optical coupler which combines the light of wavelength range 380-1200 nm, without affecting the signal light to propagate.

また、光ファイバコードに、波長範囲380〜1200nm及び1300〜1700nmの少なくともいずれか1波長以上の光もしくは変調光を発する光源を接続するようにしてもよい。   Further, a light source that emits light or modulated light having at least one wavelength in the wavelength range of 380 to 1200 nm and 1300 to 1700 nm may be connected to the optical fiber cord.

また、光ファイバコードを挟み込んで、光ファイバコードを湾曲させて波長範囲380〜1200nmの光のパワーもしくは変調信号が検出可能な心線対照器を設けてもよい。   Further, an optical fiber cord may be sandwiched between the optical fiber cords to bend the optical fiber cord so as to detect a power or modulation signal of light having a wavelength range of 380 to 1200 nm.

図3(a)に半径5mmで1回転湾曲させた場合のHAFのコア伝搬光の漏光量の波長依存性を表し、図3(b)に半径5mmで1回転湾曲させた場合のSMFのコア伝搬光の漏光量の波長依存性を表す。ここでは光ファイバ素線で測定し、UV被覆の吸収損失を引いた値である。また比較のため従来のシングルモードファイバ(SMF)の漏光スペクトルも測定した。図から分かるようにHAFでは波長1200nmから短波長側に行くに従い、急激に漏光量が増加している。一方、SMFは長波長側に行くに従い損失が増加しており、HAFとは対称的な変化を示している。SMFでは対照光を通信波長の長波長側に設定し、光ファイバコードを湾曲されることで心線対照が可能となるが、本発明の一実施形態のHAFでは対照光を通信波長の短波長に設定し、光ファイバコードを湾曲させて漏光することで、通信状態での心線対照が可能となる。   Fig. 3 (a) shows the wavelength dependence of the amount of leakage light of the HAF core propagating light when it is curved once with a radius of 5 mm, and Fig. 3 (b) shows the SMF core when curved once with a radius of 5 mm. This represents the wavelength dependence of the amount of leakage of propagating light. Here, it is a value obtained by measuring with an optical fiber and subtracting the absorption loss of the UV coating. For comparison, the leakage spectrum of a conventional single mode fiber (SMF) was also measured. As can be seen from the figure, in the HAF, the amount of light leakage increases rapidly as it goes from the wavelength of 1200 nm to the short wavelength side. On the other hand, the loss of SMF increases as it goes to the longer wavelength side, and shows a symmetric change with HAF. In SMF, the control light is set to the long wavelength side of the communication wavelength, and the optical fiber cord is bent, so that the optical fiber cord can be controlled. In the HAF of one embodiment of the present invention, the control light is set to the short wavelength of the communication wavelength. By setting the optical fiber cord to bend and leaking light by bending the optical fiber cord, it is possible to control the cords in the communication state.

図4に図3で用いたHAFを半径5mm(R5)で1回転巻いて湾曲させた場合における波長650nmの可視光の漏光量および波長1550nmの曲げ損失の空孔の間隙の依存性を示す。図4から分かるように、空孔の間隙を大きくしていくと波長650nmの可視光の漏光量が増加し始め、ある程度のところで飽和する。さらに空孔の間隙を増加させていくと波長1550nmの曲げ損失が増加し始める。したがって空孔の間隙の大きさは2つの量が増加し始める間隙値の間に設定するのが望ましい。また可視光の透過量が大きい場合にはファイバ長手方向における光減衰が急となるため、長距離を伝搬させたい場合は空孔の間隙を小さくすることで対応できる。しかし、その場合は漏光量が小さくなるので視認性が悪くなる場合がある。   FIG. 4 shows the dependence of the leakage amount of visible light having a wavelength of 650 nm and the bending loss of a wavelength of 1550 nm on the gap of the hole when the HAF used in FIG. 3 is bent with a radius of 5 mm (R5). As can be seen from FIG. 4, when the gap between the holes is increased, the amount of visible light leakage having a wavelength of 650 nm starts to increase and saturates at a certain point. As the void gap increases further, the bending loss at the wavelength of 1550 nm begins to increase. Therefore, it is desirable to set the size of the void gap between the gap values at which the two quantities begin to increase. Further, when the amount of visible light transmitted is large, the light attenuation in the longitudinal direction of the fiber is abrupt. Therefore, when it is desired to propagate a long distance, it can be dealt with by reducing the gap between the holes. However, in that case, the leakage light quantity becomes small, and the visibility may deteriorate.

図5に1.1mm外径の光ファイバコードのUV被覆、ケブラ、コード外被覆の透過損失の波長依存性を示す。いずれの透過率もファイバ断面方向に透過する透過距離で算出しており、本実施形態の場合、UV被覆:190μm, ケブラ:20μm, 外被覆:170μmの透過距離であった。またケブラについては繊維状になっているため、ケブラを通過する部分と空気層を透過する部分の両方を合わせた透過率となっている。図5から分かるように波長650nm付近で総計7dB程度の損失が発生した(被覆部材の中で最も透過損失が低いUV被覆では650nmで1.7dBの透過損失(70%程度の透過率)であった)。   FIG. 5 shows the wavelength dependence of the transmission loss of the UV coating, Kevlar, and cord outer coating of the 1.1 mm outer diameter optical fiber cord. All the transmittances are calculated as transmission distances transmitted in the fiber cross-sectional direction. In this embodiment, the UV coating was 190 μm, the Kevlar was 20 μm, and the outer coating was 170 μm. Further, since the Kevlar is in the form of a fiber, the transmittance is obtained by combining both the portion that passes through the Kevlar and the portion that passes through the air layer. As can be seen from FIG. 5, a loss of about 7 dB in total occurred near the wavelength of 650 nm (the UV transmission with the lowest transmission loss among the coating members had a transmission loss of 1.7 dB at 650 nm (a transmittance of about 70%)). ).

図6は、図5で用いた光ファイバコードについて、光パワー3mW, 波長650nmの可視光(LD光源使用)と光パワー1mW, 波長1550nmの通信光を入力した場合の波長650nmの漏光パワーの曲げ直径および曲げ損失依存性(1回転巻き)を表した図である。室内の照明(500lx)がある場所で視認可能な光パワーは1μWであった(したがって、一般的なファイバ導通チェック用の光源のパワーが1mW付近であるので、被覆部材の透過率は0.1%以上が必要であると考えられる)。図6から分かるように曲げ直径8mm以下で視認可能な光パワーが得られる一方、通信光には全く曲げ損失が発生していない。したがって通信に影響せずに、視認による心線対照が可能であることが分かる。   6 shows the bending of the leakage power of 650 nm when the optical fiber cord used in FIG. 5 is inputted with visible light (using an LD light source) of 3 mW and wavelength of 650 nm and communication light of 1 mW and wavelength of 1550 nm. It is a figure showing a diameter and bending loss dependence (1 rotation winding). The optical power that can be seen in a place with indoor lighting (500 lx) was 1 μW (thus, the power of the light source for general fiber continuity check is around 1 mW, so the transmittance of the covering member is 0.1% or more. Is considered necessary). As can be seen from FIG. 6, a visible optical power can be obtained with a bending diameter of 8 mm or less, while no bending loss occurs in the communication light. Therefore, it can be seen that the optical fiber can be visually checked without affecting the communication.

さらに図7に漏光パワーのコード長(心線対照を行う光ファイバコードの入力端からの位置)依存性を示す。曲げ直径5mm以上で50m以上の視認可能なコード長を達成しており、光所内配線設備の架間ケーブル等にも応用可能である。   Further, FIG. 7 shows the dependency of the light leakage power on the cord length (position from the input end of the optical fiber cord for performing the core line comparison). The cable has a bending diameter of 5mm or more and a visible cord length of 50m or more. It can be applied to cables between cables in optical facilities.

また本実施形態(図3〜図6等)で示した数値は、1例であり、本発明の適用範囲はこの範囲に限定されるものではない。また光源についてはLDの他に、He-Neレーザ、Tiサファイアレーザ、アルゴンレーザ、LED、色素レーザ、ファイバラマンレーザ、ファイバレーザ等が使用可能である。また光結合器については、ファイバカプラのほかに、誘電体多層タイプ、空間結合、光導波路等を利用可能である。   Moreover, the numerical value shown in this embodiment (FIGS. 3-6 etc.) is an example, and the application range of this invention is not limited to this range. As the light source, in addition to the LD, a He-Ne laser, a Ti sapphire laser, an argon laser, an LED, a dye laser, a fiber Raman laser, a fiber laser, or the like can be used. As for the optical coupler, in addition to the fiber coupler, a dielectric multilayer type, a spatial coupling, an optical waveguide, and the like can be used.

[第2の実施形態]
図8(a)に本発明の第2の実施形態に係る光ファイバコードおよびそれに接続される光源、および光結合器の構成を示し、図8(b)に本発明の第2の実施形態に係る光ファイバコードの横断面図を示す。図8(a)に示すように、PCFを用いた光ファイバコード31には光結合部(ファイバカプラ)32が接続される。光結合器部32は複数の光コネクタ(または融着部)33及び可視光源(波長550nm)34より構成され、光ファイバコード31は光コネクタ(または融着部)33から所定のコード長の位置に漏光用の湾曲付与部35が設けられる。
[Second Embodiment]
FIG. 8A shows the configuration of the optical fiber cord according to the second embodiment of the present invention, the light source connected thereto, and the optical coupler, and FIG. 8B shows the configuration of the second embodiment of the present invention. The cross-sectional view of such an optical fiber cord is shown. As shown in FIG. 8A, an optical coupling portion (fiber coupler) 32 is connected to an optical fiber cord 31 using PCF. The optical coupler unit 32 includes a plurality of optical connectors (or fused portions) 33 and a visible light source (wavelength 550 nm) 34, and the optical fiber cord 31 is located at a predetermined code length from the optical connector (or fused portion) 33. Is provided with a bending portion 35 for light leakage.

光ファイバコード31は図8(b)に示すように、空孔23が8孔の2重環状に配置されたPCFである以外は図1の構成と同一であり、同一符号を付してその説明を省略する。また光結合器部32はファイバタイプの光カプラ、可視光源34は波長550nmのレーザーダイオードで光ファイバコードへの入力パワーは3mWであった。各種材料の特性および各種波長の湾曲付与時の漏光特性等は第1の実施形態に準じる。   As shown in FIG. 8B, the optical fiber cord 31 is the same as the configuration in FIG. 1 except that the air holes 23 are PCFs arranged in a double ring with 8 holes. Description is omitted. The optical coupler 32 was a fiber type optical coupler, the visible light source 34 was a laser diode having a wavelength of 550 nm, and the input power to the optical fiber cord was 3 mW. The characteristics of various materials and the light leakage characteristics at the time of imparting curvature of various wavelengths are the same as those in the first embodiment.

図9に漏光パワーのコード長(心線対照を行う光ファイバコードの入力端からの位置)依存性である。漏光パワーは湾曲位置での最大受光パワーである。湾曲は1回転巻きで4mmφ, 5mmφ, 8mmφで行った。図9ら分かるように4mmφ時コード長50m以上でも室内照明下で視認による心線対照が可能であることが分かる。また散乱体として光ファイバのクラッド内にファイバのホストガラスより屈折率の高いガラス(Geドープ, 粒子系:2μm)を混入させた場合には5dB、UV被覆内に7×7×1μmのアルミ片を混入した場合には3dB, コード外被覆内に7×7×1μmのアルミ片を混入した場合には3.5dB、室内照明下で視認可能な受光レベルがそれぞれ下がった。散乱体があることである程度散乱光が集光したためと考えられる。   FIG. 9 shows the dependency of the light leakage power on the cord length (position from the input end of the optical fiber cord for performing the core line contrast). The light leakage power is the maximum light receiving power at the curved position. The bending was performed at 4 mmφ, 5 mmφ, and 8 mmφ with one turn. As can be seen from FIG. 9, even when the cord length is 4 mφ and the cord length is 50 m or more, it is possible to contrast the cores by visual recognition under room lighting. In addition, when glass with a refractive index higher than the host glass of the fiber (Ge-doped, particle system: 2 μm) is mixed in the optical fiber cladding as a scatterer, it is 5 dB, and a 7 × 7 × 1 μm aluminum piece in the UV coating. The light reception level that can be seen under room lighting has decreased by 3 dB when mixed with aluminum and 3.5 dB when mixed with 7 x 7 x 1 µm aluminum pieces in the outer sheath of the cord. This is probably because scattered light was collected to some extent due to the presence of the scatterer.

また本実施形態で示した数値(図9,散乱体のサイズ等)は、1例であり、本発明の適用範囲はこの範囲に限定されるものではない。また光源についてはLDの他に、He-Neレーザ、Tiサファイアレーザ、アルゴンレーザ、LED、色素レーザ、ファイバラマンレーザ、ファイバレーザ等が使用可能である。また光結合器については、ファイバカプラのほかに、誘電体多層タイプ、空間結合、光導波路等が利用可能である。また散乱物質としては各種金属(金、白金、アルミ、ニッケル合金等)、各種ガラス(燐、鉛、アルミ、亜鉛添加ガラス等)、ガラスのひずみを用いたもの等がある。   The numerical values shown in this embodiment (FIG. 9, scatterer size, etc.) are only examples, and the scope of application of the present invention is not limited to this range. As the light source, in addition to the LD, a He-Ne laser, a Ti sapphire laser, an argon laser, an LED, a dye laser, a fiber Raman laser, a fiber laser, or the like can be used. As the optical coupler, in addition to the fiber coupler, a dielectric multilayer type, a spatial coupling, an optical waveguide, and the like can be used. Examples of the scattering material include various metals (gold, platinum, aluminum, nickel alloy, etc.), various glasses (phosphorus, lead, aluminum, zinc-added glass, etc.), and those using strain of glass.

[第3の実施形態]
図10(a)に本発明の第3の実施形態に係る光ファイバコードおよびそれに接続される光源、および光結合器の構成を示し、図10(b)に本発明の第3の実施形態に係る光ファイバコードの横断面図を示す。図10(a)に示すように、HAFを用いた光ファイバコード41には光結合器部(ファイバカプラ)42が接続される。光結合器部42は複数の光コネクタ(または融着部)43及び近赤外光源(波長1000nm)44より構成され、光ファイバコード41は光コネクタ(または融着部)43から所定のコード長の位置に漏光用の湾曲付与部45が設けられる。湾曲付与部45には心線対照器46が設けられる。
[Third embodiment]
FIG. 10A shows the configuration of an optical fiber cord according to the third embodiment of the present invention, a light source connected thereto, and an optical coupler, and FIG. 10B shows the configuration of the third embodiment of the present invention. The cross-sectional view of such an optical fiber cord is shown. As shown in FIG. 10A, an optical coupler unit (fiber coupler) 42 is connected to an optical fiber cord 41 using HAF. The optical coupler unit 42 includes a plurality of optical connectors (or fused portions) 43 and a near-infrared light source (wavelength 1000 nm) 44. The optical fiber cord 41 has a predetermined cord length from the optical connector (or fused portion) 43. The bend imparting part 45 for light leakage is provided at the position. The bend imparting unit 45 is provided with a core wire contrast device 46.

光ファイバコード41は図10(b)に示すように、対照光が近赤外光47である以外は図1の構成と同一であり、同一符号を付してその説明を省略する。また光結合器部42はファイバタイプの光カプラ、近赤外光源44は周波数270Hzで変調された波長1000nmのレーザーダイオードで光ファイバコードへの平均入力パワーは2mWであった。各種材料の特性および各種波長の湾曲付与時の漏光特性等は第3の実施形態に準じ、湾曲時の漏光は可視光と同様に、中波長域の近赤外光(通信光)が漏光しない場合でも短波長の近赤外光が漏光する。   As shown in FIG. 10B, the optical fiber cord 41 is the same as the configuration in FIG. 1 except that the reference light is near-infrared light 47, and the description is omitted with the same reference numerals. The optical coupler 42 is a fiber type optical coupler, the near infrared light source 44 is a laser diode with a wavelength of 1000 nm modulated at a frequency of 270 Hz, and the average input power to the optical fiber cord is 2 mW. The characteristics of various materials and the light leakage characteristics at the time of bending of various wavelengths are the same as in the third embodiment, and the light leakage at the time of bending does not leak near-infrared light (communication light) in the mid-wavelength range, similar to visible light. Even in the case, near-infrared light having a short wavelength leaks.

図11に漏光パワーのコード長(心線対照を行う光ファイバコードの入力端からの位置)依存性である。漏光パワーは湾曲位置での最大受光パワーである。湾曲は1回転巻きで4mmφ, 5mmφ, 8mmφで行った。心線対照器は波長1100nmの光を光パワー0.1μWまで受光可能なものを使用した。図から分かるようにコード長:500mでも受光可能であった。また本実施形態では対照光に変調が加えられているため、省電力化、対照確度、外部光の影響の回避に大きく寄与している。   FIG. 11 shows the dependency of the light leakage power on the cord length (position from the input end of the optical fiber cord for performing the core line contrast). The light leakage power is the maximum light receiving power at the curved position. The bending was performed at 4 mmφ, 5 mmφ, and 8 mmφ with one turn. A cord contrast device capable of receiving light with a wavelength of 1100 nm up to an optical power of 0.1 μW was used. As can be seen from the figure, light can be received even with a cord length of 500 m. Further, in the present embodiment, since the reference light is modulated, it greatly contributes to power saving, control accuracy, and avoidance of the influence of external light.

また本実施形態で示した数値は、1例であり、本発明の適用範囲はこの範囲に限定されるものではない。また光源についてはLDの他に、He-Neレーザ、Tiサファイアレーザ、アルゴンレーザ、LED、色素レーザ、ファイバラマンレーザ、ファイバレーザ等が使用可能である。また光結合器については、ファイバカプラのほかに、誘電体多層タイプ、空間系結合、光導波路等が利用可能である。   Moreover, the numerical value shown by this embodiment is an example, and the application range of this invention is not limited to this range. As the light source, in addition to the LD, a He-Ne laser, a Ti sapphire laser, an argon laser, an LED, a dye laser, a fiber Raman laser, a fiber laser, or the like can be used. As the optical coupler, in addition to the fiber coupler, a dielectric multilayer type, a spatial coupling, an optical waveguide, and the like can be used.

また複数波長の漏洩光を用いる事でその曲げ損失の比から、ある程度正確な曲げ半径を推定することも可能である。また対照光の変調に関しては、信号に様々な情報を添付し、それを心線対照器でモニタすることで作業指示等の様々な応用が可能である。   It is also possible to estimate the bending radius to some extent accurately from the bending loss ratio by using leaked light having a plurality of wavelengths. As for the modulation of the control light, various applications such as work instructions can be made by attaching various information to the signal and monitoring it with a cord contrast device.

[第4の実施形態]
図12は、本発明の第4の実施形態に係る光ファイバコード、それに接続される光源、光結合器、心線対照器の構成を示す。図12に示すように、通信局の所内に配線されるHAFを用いた光ファイバコード51には光結合器部(ファイバカプラ)52が接続される。光結合部52は複数の光コネクタ(または融着部)53及び2波長光源(波長650nm+1650nm)54より構成され、光ファイバコード51は光コネクタ(または融着部)53から所定のコード長の位置に漏光用の湾曲付与部55が設けられる。光ファイバコード51の通信局の所内と所外の境界側端部には光コネクタ(または融着部)56によりSMFを用いた光ファイバコード57が接続される。光ファイバコード57の通信局の所外には湾曲付与部58が設けられ、湾曲付与部58には心線対照器59が設けられる。
[Fourth Embodiment]
FIG. 12 shows a configuration of an optical fiber cord, a light source connected to the optical fiber cord, an optical coupler, and a core contrast device according to the fourth embodiment of the present invention. As shown in FIG. 12, an optical coupler unit (fiber coupler) 52 is connected to an optical fiber cord 51 using HAF wired in a communication station. The optical coupling unit 52 includes a plurality of optical connectors (or fused portions) 53 and a two-wavelength light source (wavelength 650 nm + 1650 nm) 54, and the optical fiber cord 51 is positioned at a predetermined code length from the optical connector (or fused portion) 53. Is provided with a bending portion 55 for light leakage. An optical fiber cord 57 using SMF is connected by an optical connector (or fused portion) 56 to the end of the optical fiber cord 51 inside and outside the communication station. A bend imparting portion 58 is provided outside the communication station of the optical fiber cord 57, and a core wire contrast device 59 is provided in the bend imparting portion 58.

光結合器はファイバタイプの光カプラ、光源は波長650nmの連続光(光パワー3mW)を発生する光源と周波数270Hzで変調された波長1650nmの変調光を発生する光源を合波した2波長の光源であった。本実施形態は、光ファイバコード51までの部分を所内の設備とし、所外伝送路として光ファイバコード57を後端に接続する場合を想定し、2波長(所内用650nm、所外用:1650nm)の光源を入力し、それぞれの光ファイバコードで心線対照を可能にした。所内側のHAF光ファイバコード51は入力端より5mの位置で曲げ直径4mm時に光パワー5μW、所外側のSMF光ファイバコード57は入力端より5kmの地点で通常の心線対照を用いて光パワー8μWを受光し、2波長の光源を用いる事で所内・所外を同時に心線対照可能であることを示した。   The optical coupler is a fiber type optical coupler, and the light source is a two-wavelength light source that combines a light source that generates continuous light with a wavelength of 650 nm (optical power 3 mW) and a light source that generates modulated light with a wavelength of 1650 nm modulated at a frequency of 270 Hz. Met. In the present embodiment, assuming that the portion up to the optical fiber cord 51 is an in-house facility and the optical fiber cord 57 is connected to the rear end as an outside transmission line, two wavelengths (inside use 650 nm, outside use: 1650 nm) The optical fiber cords were input and the optical fiber cords could be used to control the cords. The inside HAF optical fiber cord 51 is 5 m from the input end at a bending diameter of 4 mm and the optical power is 5 μW, and the outside SMF optical fiber cord 57 is 5 km from the input end using a normal optical fiber contrast. 8 μW was received, and it was shown that the inside and outside of the center can be simultaneously controlled by using a two-wavelength light source.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

21…コア、22…空孔層、23…空孔、24…UV被覆、25…ケブラ、26…コード外被覆。   21 ... Core, 22 ... Hole layer, 23 ... Hole, 24 ... UV coating, 25 ... Kevlar, 26 ... Outer cord coating.

Claims (10)

光伝搬部もしくはコアが複数の空孔で囲まれると共に空孔の間隙を波長範囲380〜1200nmの光が伝搬可能である光ファイバを用いた光ファイバコードであって、
前記光ファイバを覆うように被覆部材が設けられ、
被覆部材として380〜1200nmの波長範囲の光が通過する被覆部材を用いることを特徴とする光ファイバコード。
An optical fiber cord using an optical fiber in which the light propagation part or core is surrounded by a plurality of holes and light in the wavelength range of 380 to 1200 nm can propagate through the gaps between the holes,
A covering member is provided so as to cover the optical fiber,
An optical fiber cord, wherein a covering member that allows light in a wavelength range of 380 to 1200 nm to pass through is used as the covering member.
請求項1に記載の光ファイバコードにおいて、
被覆部材として、被覆部材を光が断面方向に通過する場合の透過率が380〜1200nmの波長範囲で0.1%以上70%以下である被覆部材を用いること、
被覆部材として、UV被覆、強度保持材、コード外被覆の少なくとも1つ以上より構成される被覆部材を用いることを特徴とする光ファイバコード。
The optical fiber cord according to claim 1,
As the covering member, using a covering member that has a transmittance of 0.1% or more and 70% or less in a wavelength range of 380 to 1200 nm when light passes through the covering member in the cross-sectional direction,
An optical fiber cord comprising a covering member comprising at least one of a UV coating, a strength retaining material, and an outer coating of the cord as the covering member.
請求項2に記載の光ファイバコードにおいて、
UV被覆、強度保持材、コード外被覆の少なくともいずれかに波長範囲380〜1200nmの光を散乱させる粒子を含有することを特徴とする光ファイバコード。
The optical fiber cord according to claim 2,
An optical fiber cord comprising particles that scatter light having a wavelength range of 380 to 1200 nm in at least one of a UV coating, a strength-holding material, and an outer coating.
請求項1、2又は3に記載の光ファイバコードにおいて、
光ファイバコードを湾曲させた場合に、光ファイバを伝搬する光のうち、波長範囲380〜1200nmの光の少なくともいずれか1波長の光を漏光し、1200nmを超える波長の光を漏光しないことを特徴とする光ファイバコード。
In the optical fiber cord according to claim 1, 2, or 3,
When the optical fiber cord is bent, at least one of the light in the wavelength range of 380 to 1200 nm among the light propagating through the optical fiber is leaked, and the light having a wavelength exceeding 1200 nm is not leaked. An optical fiber cord.
請求項4に記載の光ファイバコードにおいて、
光ファイバコードを半径5mmで湾曲させた場合に、光ファイバを伝搬する光のうち、波長範囲380〜1200nmの光の少なくともいずれか1波長の光を漏光し、1200nmを超える波長の光を漏光しないことを特徴とする光ファイバコード。
The optical fiber cord according to claim 4, wherein
When the optical fiber cord is bent with a radius of 5 mm, at least one of the light in the wavelength range of 380 to 1200 nm out of the light propagating through the optical fiber is leaked, and the light with a wavelength exceeding 1200 nm is not leaked. An optical fiber cord characterized by that.
請求項4又は5に記載の光ファイバコードにおいて、
波長範囲380〜1200nmの光を光ファイバコードの光伝搬部もしくコアに結合する光結合器を具備することを特徴とする光ファイバコード。
The optical fiber cord according to claim 4 or 5,
An optical fiber cord comprising an optical coupler that couples light having a wavelength range of 380 to 1200 nm to a light propagation portion or a core of the optical fiber cord.
請求項6に記載の光ファイバコードにおいて、
光ファイバコードの光伝搬部もしくコアを伝搬する信号光に影響を与えずに波長範囲380〜1200nmの光を合波する光結合器を有することを特徴とする光ファイバコード。
The optical fiber cord according to claim 6, wherein
An optical fiber cord comprising an optical coupler that multiplexes light having a wavelength range of 380 to 1200 nm without affecting signal light propagating through a light propagation portion or core of the optical fiber cord.
請求項6又は7に記載の光ファイバコードにおいて、
波長範囲380〜1200nm及び1300〜1700nmの少なくともいずれか1波長以上の光もしくは変調光を発する光源が接続されていることを特徴とする光ファイバコード。
The optical fiber cord according to claim 6 or 7,
An optical fiber cord, wherein a light source that emits light having a wavelength of 380 to 1200 nm and 1300 to 1700 nm or more or modulated light is connected.
請求項1乃至8のいずれかに記載の光ファイバコードにおいて、
光ファイバコードを挟み込んで、光ファイバコードを湾曲させて波長範囲380〜1200nmの光のパワーもしくは変調信号を検出可能な心線対照器が設けられていることを特徴とする光ファイバコード。
The optical fiber cord according to any one of claims 1 to 8,
An optical fiber cord, characterized in that a fiber optic cord is provided, and a fiber optic cord is provided to bend the optical fiber cord to detect a power or modulation signal of light having a wavelength range of 380 to 1200 nm.
光伝搬部もしくはコアが複数の空孔で囲まれると共に空孔の間隙を波長範囲380〜1200nmの光が伝搬可能である光ファイバを用いた光ファイバコードの心線対照方法であって、
前記光ファイバコードを湾曲させ、光ファイバを伝搬する光のうち、波長範囲380〜1200nmの光の少なくともいずれか1波長の光を漏光し、1200nmを超える波長の光を漏光しないようにして心線対照を行うことを特徴とする光ファイバコードの心線対照方法。
An optical fiber cord core-line contrast method using an optical fiber in which a light propagation part or core is surrounded by a plurality of holes and light in a wavelength range of 380 to 1200 nm can propagate through the gaps of the holes,
The optical fiber cord is bent and at least one of the wavelengths in the wavelength range of 380 to 1200 nm out of the light propagating through the optical fiber is leaked, and the light having a wavelength exceeding 1200 nm is not leaked. A method for contrasting optical fiber cords, comprising: performing contrast.
JP2009129407A 2009-05-28 2009-05-28 OPTICAL FIBER CORD AND CORE CONTROL METHOD Expired - Fee Related JP5117443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129407A JP5117443B2 (en) 2009-05-28 2009-05-28 OPTICAL FIBER CORD AND CORE CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129407A JP5117443B2 (en) 2009-05-28 2009-05-28 OPTICAL FIBER CORD AND CORE CONTROL METHOD

Publications (2)

Publication Number Publication Date
JP2010276862A true JP2010276862A (en) 2010-12-09
JP5117443B2 JP5117443B2 (en) 2013-01-16

Family

ID=43423885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129407A Expired - Fee Related JP5117443B2 (en) 2009-05-28 2009-05-28 OPTICAL FIBER CORD AND CORE CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP5117443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024336A1 (en) * 2020-07-31 2022-02-03 日本電信電話株式会社 Optical fiber and solar transmission system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065894A (en) * 2001-08-28 2003-03-05 Nippon Telegraph & Telephone East Corp Optical fiber pair identification method and device
JP2004240296A (en) * 2003-02-07 2004-08-26 Kansai Electric Power Co Inc:The Tool for specifying coated optical fiber and method for identifying coated optical fiber
JP2005070332A (en) * 2003-08-22 2005-03-17 Fujikura Ltd Coated optical fiber, coated optical fiber tape, and discrimination method of coated optical fiber
JP2006308828A (en) * 2005-04-28 2006-11-09 Swcc Showa Device Technology Co Ltd Optical fiber
JP2007108642A (en) * 2005-10-11 2007-04-26 Furukawa Electric Co Ltd:The Optical fiber and optical transmission medium
JP2007147872A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cord reel
JP2008015338A (en) * 2006-07-07 2008-01-24 Hitachi Cable Ltd Optical fiber cord and method of removing its coating
JP2008051735A (en) * 2006-08-28 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Optical detection device for cable core referencing
JP2009025531A (en) * 2007-07-19 2009-02-05 Furukawa Electric Co Ltd:The Holey fiber and method for manufacturing holey fiber
JP2009204490A (en) * 2008-02-28 2009-09-10 Fujikura Ltd Coated optical fiber comparison method and coated optical fiber comparison device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065894A (en) * 2001-08-28 2003-03-05 Nippon Telegraph & Telephone East Corp Optical fiber pair identification method and device
JP2004240296A (en) * 2003-02-07 2004-08-26 Kansai Electric Power Co Inc:The Tool for specifying coated optical fiber and method for identifying coated optical fiber
JP2005070332A (en) * 2003-08-22 2005-03-17 Fujikura Ltd Coated optical fiber, coated optical fiber tape, and discrimination method of coated optical fiber
JP2006308828A (en) * 2005-04-28 2006-11-09 Swcc Showa Device Technology Co Ltd Optical fiber
JP2007108642A (en) * 2005-10-11 2007-04-26 Furukawa Electric Co Ltd:The Optical fiber and optical transmission medium
JP2007147872A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cord reel
JP2008015338A (en) * 2006-07-07 2008-01-24 Hitachi Cable Ltd Optical fiber cord and method of removing its coating
JP2008051735A (en) * 2006-08-28 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Optical detection device for cable core referencing
JP2009025531A (en) * 2007-07-19 2009-02-05 Furukawa Electric Co Ltd:The Holey fiber and method for manufacturing holey fiber
JP2009204490A (en) * 2008-02-28 2009-09-10 Fujikura Ltd Coated optical fiber comparison method and coated optical fiber comparison device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024336A1 (en) * 2020-07-31 2022-02-03 日本電信電話株式会社 Optical fiber and solar transmission system
JP7435789B2 (en) 2020-07-31 2024-02-21 日本電信電話株式会社 Optical fiber and solar transmission system

Also Published As

Publication number Publication date
JP5117443B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
RU2727854C2 (en) Low-loss at bends optical fiber
CN102385102B (en) There is the optic module of the accessibility of improvement
EP2344911B1 (en) Reduced-diameter optical fiber
US20140363134A1 (en) Optical fiber cable assembly comprising optical tracer fiber
CN104360434B (en) Single mode fiber with ultralow-attenuation large effective area
US20080310807A1 (en) Optical fiber and optical-fiber transmission line
KR101835249B1 (en) Small bending radius single-mode optical fiber with compatibility
CN105026969A (en) Ultra-high power fiber laser system with multimode-multimode fiber combiner
Hirano et al. Aeff-enlarged pure-silica-core fiber having ring-core profile
JP5117443B2 (en) OPTICAL FIBER CORD AND CORE CONTROL METHOD
Uddin et al. Performance analysis of different loss mechanisms in optical fiber communication
JP5085571B2 (en) Optical fiber cord and its insertion / extraction tool
Hayashi Multi-core optical fibers realizing high-density/-capacity transmissions
CN101663604A (en) Optical fiber with large effective area
Hogari et al. Novel optical fiber cables with ultrahigh density
Warier The ABCs of fiber optic communication
JP5183508B2 (en) Control light coupler
Baoping et al. Optical fiber cables
Islam et al. Study of Attenuation and Bending Losses in Signal Transmission Over Step Index Multimode PMMA Fibers
Ari et al. Electrical power over fiber optics
CN112564781B (en) Optical fiber grating line tracker
Ma et al. Cord identification technique for ultra-low bending loss fibers using higher order modes of visible light
Ma et al. Cord identification technique using higher order guiding modes of visible light for ultra-low bending loss fibers
HAYASHI et al. 125-µm-Cladding 8-Core Fiber for Short-Reach Optical Interconnects
JP5271824B2 (en) Optical jumper unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees