WO2022022653A1 - 一种网络连接方法、系统及相关装置 - Google Patents

一种网络连接方法、系统及相关装置 Download PDF

Info

Publication number
WO2022022653A1
WO2022022653A1 PCT/CN2021/109371 CN2021109371W WO2022022653A1 WO 2022022653 A1 WO2022022653 A1 WO 2022022653A1 CN 2021109371 W CN2021109371 W CN 2021109371W WO 2022022653 A1 WO2022022653 A1 WO 2022022653A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
network
network side
side device
link
Prior art date
Application number
PCT/CN2021/109371
Other languages
English (en)
French (fr)
Inventor
智钢
袁锴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/007,383 priority Critical patent/US20230276518A1/en
Priority to EP21851358.8A priority patent/EP4178312A4/en
Publication of WO2022022653A1 publication Critical patent/WO2022022653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a network connection method, system and related apparatus.
  • LTE introduced the concept of dual connectivity in the R12 standard, that is, the user equipment (UE) can simultaneously utilize the independent physical resources of two base stations for transmission in the radio resource control (radio resource control, RRC) connection state.
  • RRC radio resource control
  • LTE dual connectivity technology expands the application of carrier aggregation, which can effectively increase network capacity and improve network switching power and other capabilities.
  • the non-standalone (non-standalone) networking method will be the choice of most operators around the world. Way.
  • the NSA networking method is also called 4G-5G wireless access dual connectivity (EUTRN-NR dual connectivity, EN-DC), mainly involving 4G E-UTRAN access network (also known as LTE access network) and 5G new Random access technology (NR) access network (referred to as NR access network), so that the 5G network can be deployed with the help of the existing 4G LTE coverage to avoid the waste of network resources.
  • EUTRN-NR dual connectivity EN-DC
  • 4G E-UTRAN access network also known as LTE access network
  • NR new Random access technology
  • the UE can connect to the 4G base station (can be called eNB) and 5G base station (can be called En-gNB) at the same time.
  • Wireless transmission service Compared with the single access network operation mode (for example, only using 4G LTE technology to communicate), the dual access network operation mode of electronic equipment (for example, using 4G LTE technology and 5G technology communication at the same time) will lead to higher UE power consumption. big.
  • the LTE access network can ensure the networking requirements of electronic devices. For electronic devices such as smartphones, they often switch between scenarios with high network speed requirements and scenarios with low network speed requirements. If the LTE-NR dual-connection technology is still used, it will undoubtedly result in a waste of network resources and an increase in the power consumption of electronic devices. .
  • the present application provides a network connection method and related device, which can instruct the network side to quickly establish an NR link connection or release an NR link through fields such as overheating protection (overheating) or maximum secondary carrier (maxCC) in UE auxiliary information. road connection.
  • overheating overheating
  • maxCC maximum secondary carrier
  • the present application provides a network connection system, including: an electronic device and a network-side device; wherein, the electronic device is used for data interaction with the network-side device through a long-term evolution LTE link; the electronic device is also used for When the electronic device satisfies the first preset condition, it actively sends the first UE auxiliary information to the network side device; wherein, the UE auxiliary information of the first user equipment includes a first field, the number of sub-cell uplink auxiliary carriers carried in the first field reducedCCsUL is the first value or the first field does not carry any sub-cell, and the first value is greater than 0; the network side device is used to establish a new air interface NR link with the electronic device in response to the first UE auxiliary information; the electronic device, It is also used to perform data interaction with network-side equipment through the LTE link and the NR link at the same time.
  • the electronic device can trigger the network side to quickly establish or release the NR link connection with the electronic device by sending UE assistance information to the network side.
  • fields such as an overheating protection (overheating) field or a maximum secondary carrier (maxCC) in the UE assistance information may be used to instruct the network side to establish an NR link connection or release an NR link connection.
  • the network side is quickly triggered to release the NR SCG to reduce power consumption.
  • the electronic device can quickly trigger the network side to add an NR SCG to quickly restore the LTE-NR dual connection and improve the data transmission rate.
  • the first field is the overheating protection field.
  • the protocol type of the first UE assistance information can be the R16 version of the 3GPP technical protocol specification
  • the first field is the maximum secondary carrier number maxCC field.
  • the network-side device is further configured to activate N uplink secondary carriers of the electronic device in response to the first UE auxiliary information, where N is the first value; the electronic device is specifically configured to pass the LTE link The uplink primary carrier on the NR link and the N uplink secondary carriers on the NR link simultaneously send data to the network side equipment.
  • the electronic device is further configured to: before performing data interaction with the network side through the LTE link, simultaneously perform data interaction with the network side device through the LTE link and the NR link; Under the second preset condition, actively send the secondary cell group failure SCG failure signaling to the network side device; the network side device is also used to release the NR link with the electronic device in response to the SCG failure signaling; the electronic device is also used for After releasing the NR link, turn off the NR measurement.
  • the electronic device when the electronic device has established an LTE-NR dual connection, if the electronic device detects that the NR link needs to be released, the electronic device can trigger the network side to release the NR link by reporting the SCG failure signaling to the network side.
  • the electronic device can trigger the network side by reporting the first UE auxiliary information to the network side.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the first UE auxiliary information is non-0 or the overheating field does not carry any sub-cell. In this way, the electronic device can be switched from the LTE single connection to the LTE-NR dual connection in time, without interrupting the data service, reducing the risk of lost paging
  • the electronic device is further configured to: before performing data interaction with the network side through the LTE link, simultaneously perform data interaction with the network side device through the LTE link and the NR link; Under the second preset condition, the second UE auxiliary information is actively sent to the network side device, wherein the second UE auxiliary information includes an overlay field, and the number of uplink auxiliary carriers carried in the overlay field in the second UE auxiliary information
  • the reducedCCsUL sub-cell is: 0; the network side device is further configured to release the NR link with the electronic device in response to the second UE auxiliary information; the electronic device is further configured to close the NR measurement after releasing the NR link.
  • the electronic device when the electronic device has established the LTE-NR dual connection, if the electronic device detects that the NR link needs to be released, the electronic device can trigger the network side to release the NR link by reporting the auxiliary information of the second UE to the network side.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the auxiliary information of the second UE is 0.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the first UE auxiliary information is non-0 or the overheating field does not carry any sub-cell.
  • the electronic device can be switched from the LTE single connection to the LTE-NR dual connection in time, without interrupting the data service, and reducing the risk of lost paging.
  • the electronic device is further configured to: before performing data interaction with the network side through the LTE link, simultaneously perform data interaction with the network side device through the LTE link and the NR link; Under the second preset condition, actively send the second UE auxiliary information to the network side device, where the second UE auxiliary information includes a maxCC field, and the reducedCCsUL sub-cell carried in the maxCC field in the second UE auxiliary information is: 0; the network side device is further configured to release the NR link with the electronic device in response to the second UE auxiliary information.
  • the electronic device when the electronic device has established the LTE-NR dual connection, if the electronic device detects that the NR link needs to be released, the electronic device can trigger the network side to release the NR link by reporting the auxiliary information of the second UE to the network side.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the maxCC field in the auxiliary information of the second UE is 0.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the maxCC field in the first UE auxiliary information is non-0 or the maxCC field does not carry any sub-cell.
  • the electronic device can be switched from the LTE single connection to the LTE-NR dual connection in time, without interrupting the data service, and reducing the risk of lost paging.
  • the network side device is further configured to send a UE capability query request to the electronic device before receiving the first UE auxiliary information; the electronic device is further configured to send the UE capability query request in response to the UE capability query request
  • the capability information is sent to the network side device, wherein the UE capability information is used to indicate that the electronic device supports the overheating mechanism; the network side device is also used to send the network reconfiguration information to the electronic device after receiving the UE capability information, which is included in the network reconfiguration information.
  • Including overheating configuration information the electronic device is further configured to execute the configuration content in the overheating configuration information in response to the network reconfiguration information.
  • the electronic device is further configured to send radio resource control RRC connection release signaling to the network when detecting that the electronic device has no data service before actively sending the first UE auxiliary information to the network side device side device; the network side device is also used to disconnect the RRC connection from the electronic device in response to the RRC connection release signaling; the electronic device is also used when the electronic device satisfies the second preset condition and detects that the electronic device has data services , sending the RRC connection establishment signaling to the network side device; the network side device is also used to establish an RRC connection with the electronic device in response to the RRC connection establishment signaling; the electronic device is also used to close the NR measurement and send the second UE auxiliary
  • the information is sent to the network side device, wherein the reduced CCsUL sub-cell in the second UE auxiliary information is 0; the network side device is further configured to perform data interaction with the electronic device through the LTE link in response to the second UE auxiliary information.
  • the electronic device when the electronic device has disconnected the RRC connection from the network side, if the electronic device resumes establishing the RRC connection after detecting that the NR link is not needed, the electronic device can close the NR measurement and send the second UE auxiliary information to On the network side, instruct the network side to no longer trigger the establishment of the NR link.
  • the electronic device detects that the LTE-NR dual connection needs to be established, the electronic device can trigger the network side to quickly establish an NR link with the electronic device by reporting the first UE auxiliary information to the network side.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the first UE auxiliary information is non-0 or the overheating field does not carry any sub-cell.
  • the network side can no longer trigger the establishment of an NR link with the electronic device; when the electronic device detects the establishment of an LTE-NR dual connection, it can switch from LTE single connection to LTE-NR in time.
  • NR dual connection and will not interrupt data services, reducing the risk of lost paging.
  • the above-mentioned first preset condition may include any one of the following: 1. The screen of the electronic device is bright; 2. The screen of the electronic device is bright, and the data transmission rate between the electronic device and the device on the network side is greater than the first preset rate; 3. The electronic device is bright screen, and the size of the data packet to be transmitted by the electronic device is greater than the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the electronic device and the network side device The data transmission rate is greater than the second preset rate; 6. The screen of the electronic device is off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold, and so on.
  • the above-mentioned second preset condition may include any one of the following: 1. The screen of the electronic device is off; 2. The screen of the electronic device is on, and the data transmission rate between the electronic device and the network-side device is less than or equal to the first preset rate; 3. The electronic device The screen of the device is on, and the size of the data packet to be transmitted by the electronic device is less than or equal to the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the The data transmission rate of the network-side device is less than or equal to the second preset rate; 6. The screen of the electronic device is turned off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold.
  • the present application provides an electronic device, comprising: one or more processors; a computer storage medium, where the computer storage medium includes computer instructions, when one or more processors execute the computer instructions, the electronic device is made to execute the following Action: perform data interaction with the network side equipment through the long-term evolution LTE link; when the electronic equipment meets the first preset condition, actively send the first UE auxiliary information to the network side equipment; wherein, the first user equipment UE auxiliary information includes the first UE auxiliary information.
  • a field, the number of subcells carried in the first field, the number of uplink secondary carriers reducedCCsUL is the first value or the first field does not carry any subcells, and the first value is greater than 0; establish a new air interface NR link with the network side device; Data interaction with network side equipment is performed simultaneously through LTE link and NR link.
  • the electronic device can trigger the network side to quickly establish or release an NR link connection with the electronic device by sending UE assistance information to the network side.
  • fields such as an overheating protection (overheating) field or a maximum secondary carrier (maxCC) in the UE assistance information may be used to instruct the network side to establish an NR link connection or release an NR link connection.
  • the network side is quickly triggered to release the NR SCG to reduce power consumption.
  • the electronic device can quickly trigger the network side to add an NR SCG to quickly restore the LTE-NR dual connection and improve the data transmission rate.
  • the first field is the overheating protection field.
  • the protocol type of the first UE assistance information can be the R16 version of the 3GPP technical protocol specification
  • the first field is the maximum secondary carrier number maxCC field.
  • the electronic device performs data interaction with the network side device through the LTE link and the NR link at the same time, which specifically includes: the electronic device uses the uplink main carrier on the LTE link and the network side device on the NR link.
  • the N uplink secondary carriers activated by the device simultaneously send data to the network side device, where N is the first value.
  • the electronic device may simultaneously perform data interaction with the network side device through the LTE link and the NR link before performing data interaction with the network side through the LTE link.
  • the electronic device When the electronic device satisfies the second preset condition, the electronic device actively sends the secondary cell group failure SCG failure signaling to the network side device.
  • the electronic device and the network side device release the NR link and close the NR measurement.
  • the electronic device before performing data interaction with the network side through the LTE link, the electronic device simultaneously performs data interaction with the network side device through the LTE link and the NR link.
  • the electronic device satisfies the second preset condition, the electronic device actively sends the second UE auxiliary information to the network-side device, where the second UE auxiliary information includes an overheating field, and the uplink auxiliary carrier carried in the overlay field in the second UE auxiliary information
  • the number of reducedCCsUL subcells is zero.
  • the electronic device and the network side device release the NR link and close the NR measurement.
  • the electronic device before performing data interaction with the network side through the LTE link, the electronic device simultaneously performs data interaction with the network side device through the LTE link and the NR link.
  • the electronic device satisfies the second preset condition, the electronic device actively sends the second UE auxiliary information to the network side device, wherein the second UE auxiliary information includes a maxCC field, and the uplink auxiliary carrier carried in the maxCC field in the second UE auxiliary information
  • the number of reducedCCsUL subcells is zero.
  • the electronic device and the network side device release the NR link and close the NR measurement.
  • the electronic device before sending the first UE assistance information to the network side device, receives the UE capability query request sent by the network side device. In response to the UE capability query request, the electronic device sends UE capability information to the network-side device, where the UE capability information is used to indicate that the electronic device supports an overheating mechanism. The electronic device receives the network reconfiguration information sent by the network side device, and the network reconfiguration information includes the overlaying configuration information. The electronic device executes the configuration content in the overheating configuration information in response to the network reconfiguration information.
  • the electronic device before it actively sends the first UE auxiliary information to the network-side device, when it is detected that the electronic device has no data service, it sends a radio resource control RRC connection release signaling to the network-side device, and the RRC The connection release signaling is used to instruct the network side device to disconnect the RRC connection from the electronic device.
  • the electronic device disconnects the RRC connection from the network side device.
  • the electronic device satisfies the second preset condition and detects that the electronic device has data services
  • the electronic device sends an RRC connection establishment signaling to the network side device, and the RRC establishment signaling is used to instruct the network side device to establish an RRC connection with the electronic device.
  • the electronic device establishes an RRC connection with the network side device.
  • the electronic device turns off the NR measurement, and sends the second UE auxiliary information to the network side device, wherein the reduced CCsUL sub-cell in the second UE auxiliary information is 0.
  • the electronic device and the network side device perform data interaction through the LTE link.
  • the above-mentioned first preset condition may include any one of the following: 1. The screen of the electronic device is bright; 2. The screen of the electronic device is bright, and the data transmission rate between the electronic device and the network-side device is greater than the first preset rate; 3. The electronic device The screen of the device is on, and the size of the data packet to be transmitted by the electronic device is greater than the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the electronic device and the network side The data transmission rate of the device is greater than the second preset rate; 6. The screen of the electronic device is off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold, and so on.
  • the above-mentioned second preset condition may include any one of the following: 1. The screen of the electronic device is off; 2. The screen of the electronic device is on, and the data transmission rate between the electronic device and the network-side device is less than or equal to the first preset rate; 3. The electronic device The screen of the device is on, and the size of the data packet to be transmitted by the electronic device is less than or equal to the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the The data transmission rate of the network-side device is less than or equal to the second preset rate; 6. The screen of the electronic device is turned off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold.
  • the present application provides a chip system, applied to an electronic device, including: an application processor AP and a baseband processor BP; wherein,
  • the baseband processor is used for data interaction with the network side equipment through the long-term evolution LTE link;
  • the application processor is further configured to send the first instruction to the baseband processor when the electronic device satisfies the first preset condition;
  • the baseband processor is further configured to actively send the first UE auxiliary information to the network side device in response to the first instruction; wherein, the UE auxiliary information of the first user equipment includes a first field, and the sub-cell carried in the first field is uplink auxiliary
  • the number of carriers reducedCCsUL is the first value or the first field does not carry any sub-cell, and the first value is greater than 0;
  • the baseband processor is also used to establish a new air interface NR link with the network side equipment
  • the baseband processor is also used to perform data interaction with the network side equipment through the LTE link and the NR link at the same time.
  • the baseband processor can trigger the network side and the baseband processor to quickly establish or release the NR link connection by sending UE auxiliary information to the network side.
  • fields such as an overheating protection (overheating) field or a maximum secondary carrier (maxCC) in the UE assistance information may be used to instruct the network side to establish an NR link connection or release an NR link connection.
  • the baseband processor needs to release the NR connection in the case of LTE-NR dual connection, it quickly triggers the network side to release the NR SCG to reduce power consumption.
  • the baseband processor needs to establish an LTE-NR dual connection in the case of a single LTE connection, the baseband processor can quickly trigger the network side to add an NR SCG to quickly restore the LTE-NR dual connection and improve the data transmission rate.
  • the first field is the overheating protection field.
  • the protocol type of the first UE assistance information can be the R16 version of the 3GPP technical protocol specification
  • the first field is the maximum secondary carrier number maxCC field.
  • the baseband processor is specifically configured to simultaneously send data to the network side equipment through the uplink primary carrier on the LTE link and the N uplink secondary carriers activated by the network side equipment on the NR link, and N is the first value.
  • the baseband processor is further configured to perform data interaction with the network side device through the LTE link and the NR link at the same time before performing data interaction with the network side through the LTE link.
  • the application processor is further configured to send a second instruction to the baseband processor when the electronic device satisfies the second preset condition.
  • the baseband processor is further configured to actively send the secondary cell group failure SCG failure signaling to the network side device in response to the second instruction.
  • the baseband processor is also used to release the NR link with the network side device and close the NR measurement.
  • the baseband processor is further configured to perform data interaction with the network side device through the LTE link and the NR link at the same time before performing data interaction with the network side through the LTE link.
  • the application processor is further configured to send a second instruction to the baseband processor when the electronic device satisfies the second preset condition.
  • the baseband processor is further configured to actively send the second UE auxiliary information to the network side device in response to the second instruction, wherein the second UE auxiliary information includes an overheating field, and the uplink auxiliary carrier carried in the overlay field in the second UE auxiliary information
  • the number of reducedCCsUL subcells is zero.
  • the baseband processor releases the NR link with the network side equipment and closes the NR measurement.
  • the baseband processor is further configured to perform data interaction with the network side device simultaneously through the LTE link and the NR link before performing data interaction with the network side through the LTE link.
  • the application processor is further configured to send a second instruction to the baseband processor when the electronic device satisfies the second preset condition.
  • the baseband processor is further configured to actively send the second UE auxiliary information to the network side device in response to the second instruction, wherein the second UE auxiliary information includes a maxCC field, and the uplink auxiliary carrier carried in the maxCC field in the second UE auxiliary information
  • the number of reducedCCsUL subcells is zero.
  • the baseband processor releases the NR link with the network side equipment and closes the NR measurement.
  • the baseband processor is further configured to receive a UE capability query request sent by the network side device before sending the first UE assistance information to the network side device.
  • the baseband processor is further configured to send UE capability information to the network side device in response to the UE capability query request, where the UE capability information is used to indicate that the electronic device supports an overheating mechanism.
  • the baseband processor is further configured to receive network reconfiguration information sent by the network side device, where the network reconfiguration information includes overlaying configuration information.
  • the baseband processor is further configured to execute the configuration content in the overlaying configuration information in response to the network reconfiguration information.
  • the application processor is further configured to, before sending the first instruction to the baseband processor, send a third instruction to the baseband processor when it is detected that the electronic device has no data service.
  • the baseband processor is further configured to send radio resource control RRC connection release signaling to the network side device in response to the third instruction, where the RRC connection release signaling is used to instruct the network side device to disconnect the RRC connection from the electronic device.
  • the baseband processor is also used to disconnect the RRC connection from the network side device.
  • the application processor is further configured to send a second instruction to the baseband processor when the electronic device satisfies the second preset condition.
  • the application processor is further configured to send a fourth instruction to the baseband processor when detecting that the electronic device has data services.
  • the baseband processor is further configured to, in response to the fourth instruction, send an RRC connection establishment signaling to the network side device, where the RRC establishment signaling is used to instruct the network side device to establish an RRC connection with the electronic device.
  • the baseband processor is also used to establish an RRC connection with the network side device.
  • the baseband processor is further configured to turn off the NR measurement in response to the second instruction, and send the second UE auxiliary information to the network side device, wherein the reduced CCsUL sub-cell in the second UE auxiliary information is 0.
  • the baseband processor is also used for data interaction with the network side equipment through the LTE link.
  • the above-mentioned first preset condition may include any one of the following: 1. The screen of the electronic device is bright; 2. The screen of the electronic device is bright, and the data transmission rate between the electronic device and the network-side device is greater than the first preset rate; 3. The electronic device The screen of the device is on, and the size of the data packet to be transmitted by the electronic device is greater than the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the electronic device and the network side The data transmission rate of the device is greater than the second preset rate; 6. The screen of the electronic device is off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold, and so on.
  • the above-mentioned second preset condition may include any one of the following: 1. The screen of the electronic device is off; 2. The screen of the electronic device is on, and the data transmission rate between the electronic device and the network-side device is less than or equal to the first preset rate; 3. The electronic device The screen of the device is on, and the size of the data packet to be transmitted by the electronic device is less than or equal to the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the The data transmission rate of the network-side device is less than or equal to the second preset rate; 6. The screen of the electronic device is turned off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold.
  • the present application provides a network connection method, the method includes: an electronic device performs data interaction with a network side device through a long-term evolution LTE link; when the electronic device satisfies a first preset condition, actively sending the first UE The auxiliary information is sent to the network side device; wherein, the auxiliary information of the first user equipment UE includes a first field, and the number of sub-cells carried in the first field, the number of uplink secondary carriers reducedCCsUL, is the first value or the first field does not carry any sub-cells , the first value is greater than 0.
  • the electronic device establishes a new air interface NR link with the network side device.
  • the electronic device performs data interaction with the network side device through the LTE link and the NR link at the same time.
  • the electronic device can trigger the network side to quickly establish or release the NR link connection with the electronic device by sending UE assistance information to the network side.
  • fields such as an overheating protection (overheating) field or a maximum secondary carrier (maxCC) in the UE assistance information may be used to instruct the network side to establish an NR link connection or release an NR link connection.
  • the network side is quickly triggered to release the NR SCG to reduce power consumption.
  • the electronic device can quickly trigger the network side to add an NR SCG to quickly restore the LTE-NR dual connection and improve the data transmission rate.
  • the first field is the overheating protection field.
  • the protocol type of the first UE assistance information can be the R16 version of the 3GPP technical protocol specification
  • the first field is the maximum secondary carrier number maxCC field.
  • the electronic device performs data interaction with the network side device through the LTE link and the NR link at the same time, which specifically includes: the electronic device uses the uplink main carrier on the LTE link and the network side device on the NR link.
  • the N uplink secondary carriers activated by the device simultaneously send data to the network side device, where N is the first value.
  • the electronic device may simultaneously perform data interaction with the network side device through the LTE link and the NR link before performing data interaction with the network side through the LTE link.
  • the electronic device When the electronic device satisfies the second preset condition, the electronic device actively sends the secondary cell group failure SCG failure signaling to the network side device.
  • the electronic device and the network side device release the NR link and close the NR measurement.
  • the electronic device before performing data interaction with the network side through the LTE link, the electronic device simultaneously performs data interaction with the network side device through the LTE link and the NR link.
  • the electronic device satisfies the second preset condition, the electronic device actively sends the second UE auxiliary information to the network-side device, where the second UE auxiliary information includes an overheating field, and the uplink auxiliary carrier carried in the overlay field in the second UE auxiliary information
  • the number of reducedCCsUL subcells is zero.
  • the electronic device and the network side device release the NR link and close the NR measurement.
  • the electronic device before performing data interaction with the network side through the LTE link, the electronic device simultaneously performs data interaction with the network side device through the LTE link and the NR link.
  • the electronic device satisfies the second preset condition, the electronic device actively sends the second UE auxiliary information to the network side device, wherein the second UE auxiliary information includes a maxCC field, and the uplink auxiliary carrier carried in the maxCC field in the second UE auxiliary information
  • the number of reducedCCsUL subcells is zero.
  • the electronic device and the network side device release the NR link and close the NR measurement.
  • the electronic device before sending the first UE assistance information to the network side device, receives the UE capability query request sent by the network side device. In response to the UE capability query request, the electronic device sends UE capability information to the network-side device, where the UE capability information is used to indicate that the electronic device supports an overheating mechanism. The electronic device receives the network reconfiguration information sent by the network side device, and the network reconfiguration information includes the overlaying configuration information. The electronic device executes the configuration content in the overheating configuration information in response to the network reconfiguration information.
  • the electronic device before it actively sends the first UE auxiliary information to the network-side device, when it is detected that the electronic device has no data service, it sends a radio resource control RRC connection release signaling to the network-side device, and the RRC The connection release signaling is used to instruct the network side device to disconnect the RRC connection from the electronic device.
  • the electronic device disconnects the RRC connection from the network side device.
  • the electronic device satisfies the second preset condition and detects that the electronic device has data services
  • the electronic device sends an RRC connection establishment signaling to the network side device, and the RRC establishment signaling is used to instruct the network side device to establish an RRC connection with the electronic device.
  • the electronic device establishes an RRC connection with the network side device.
  • the electronic device turns off the NR measurement, and sends the second UE auxiliary information to the network side device, wherein the reduced CCsUL sub-cell in the second UE auxiliary information is 0.
  • the electronic device and the network side device perform data interaction through the LTE link.
  • the above-mentioned first preset condition may include any one of the following: 1. The screen of the electronic device is bright; 2. The screen of the electronic device is bright, and the data transmission rate between the electronic device and the network-side device is greater than the first preset rate; 3. The electronic device The screen of the device is on, and the size of the data packet to be transmitted by the electronic device is greater than the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the electronic device and the network side The data transmission rate of the device is greater than the second preset rate; 6. The screen of the electronic device is off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold, and so on.
  • the above-mentioned second preset condition may include any one of the following: 1. The screen of the electronic device is off; 2. The screen of the electronic device is on, and the data transmission rate between the electronic device and the network-side device is less than or equal to the first preset rate; 3. The electronic device The screen of the device is on, and the size of the data packet to be transmitted by the electronic device is less than or equal to the first preset threshold; 4. The device temperature of the electronic device is greater than or equal to the preset temperature threshold; 5. The screen of the electronic device is off, and the The data transmission rate of the network-side device is less than or equal to the second preset rate; 6. The screen of the electronic device is turned off, and the size of the data packet transmitted between the electronic device and the network-side device is greater than the second preset threshold.
  • the embodiments of the present application provide a computer storage medium, including computer instructions, when the computer instructions are executed on an electronic device, the electronic device is made to execute the network connection method in any of the possible implementations of any of the above aspects .
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, enables the computer to execute the network connection method in any possible implementation manner of any one of the foregoing aspects.
  • FIG. 1 is a schematic diagram of an EN-DC network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of interface protocol layered communication of an electronic device provided by an embodiment of the present application
  • FIG. 3 is a schematic communication diagram of a data bearer link on a UE side according to an embodiment of the present application
  • FIG. 4 is a schematic communication diagram of a data bearer link on a network side provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a triggering network to release an NR connection according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a triggering network to establish an NR connection according to an embodiment of the present application
  • FIG. 7 is a schematic flowchart of another triggering network to establish an NR connection according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a network configuration and reporting process of an overheating field in UE auxiliary information provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a network connection method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a network connection method provided by another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a network connection method provided by another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a network connection method provided by another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device according to an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a chip system according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as implying or implying relative importance or implying the number of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • FIG. 1 shows an EN-DC network architecture involved in this application.
  • the EN-DC network architecture includes a master base station MeNB (a base station in a 4G LTE access network), a secondary base station SgNB (a base station for 5G NR), an electronic device (which may be referred to as UE), a mobility management entity ( mobility management entity, MME) and serving gateway (serving-gateway, S-GW).
  • MeNB a base station in a 4G LTE access network
  • SgNB a base station for 5G NR
  • an electronic device which may be referred to as UE
  • MME mobility management entity
  • serving gateway serving-gateway
  • the base station (specifically, MeNB or SgNB) provides an air interface for the user, and the electronic device UE is wirelessly connected to the base station. Further, the base station is connected to the operator's core network by wire to realize business communication.
  • Electronic equipment UE refers to equipment that supports networking, which may include but not limited to mobile phones, tablet computers (table personal computers), personal digital assistants (personal digital assistants, PDAs), mobile Internet devices (mobile Internet devices, MID), Wearable devices and other devices that support and network communication.
  • networking may include but not limited to mobile phones, tablet computers (table personal computers), personal digital assistants (personal digital assistants, PDAs), mobile Internet devices (mobile Internet devices, MID), Wearable devices and other devices that support and network communication.
  • MME a network element belonging to the core network, is mainly responsible for providing signaling transmission, user authentication, and roaming management for NSA networking.
  • a serving gateway (S-GW) is mainly responsible for the processing of local network user data, such as routing or forwarding of packet data.
  • the master base station MeNB and the mobility management entity MME are connected through the S1-C interface, and the master base station MeNB and the serving gateway S-GW are connected through the S1-U interface.
  • the primary base station MeNB and the secondary base station SeNB may be connected through the X2 interface, and the secondary base station SeNB may also be connected with the S-GW through the S1-U interface according to actual service requirements.
  • the primary base station MeNB can generate an RRC message after coordinating with the secondary base station SeNB through the X2 interface, and then forward it to the UE to realize functions such as network system information broadcasting, handover, measurement configuration and measurement report reporting. Do limit.
  • FIG. 2 shows a schematic diagram of interface protocol layered communication of an electronic device provided by an embodiment of the present application.
  • the interface refers to the information exchange mode between different network elements, and the interface protocol used in the communication between different interfaces may be different.
  • the interface protocol of the wireless standard is divided into three layers: a physical layer (physical layer, PHY), a data link layer and a network layer.
  • the physical layer PHY is located at the bottom layer and is mainly responsible for handling modulation and demodulation, antenna mapping or other telecom physical layer functions.
  • the data link layer includes a packet data convergence protocol (packet date convergence protocol, PDCP) layer, a radio link control (radio link control, RLC) layer and a media access control (media access control, MAC) layer.
  • PDCP packet date convergence protocol
  • RLC radio link control
  • MAC media access control
  • the PDCP layer is mainly responsible for performing packet header compression to reduce the bit flow transmitted by the wireless interface.
  • the RLC layer is mainly responsible for processing such as segmentation and connection, and sequence control of high-level data.
  • the MAC layer is mainly responsible for hybrid automatic repeat request (HARQ) retransmission and uplink and downlink scheduling.
  • HARQ hybrid automatic repeat request
  • the LTE-NR dual-connectivity technology can specifically implement the carrier aggregation and separation at the L2 data link layer.
  • the carrier aggregation is specifically carried at the medium access control (Medium access control, MAC) layer separation
  • the bearer separation of dual connectivity is implemented at the packet data convergence protocol (PDCP) layer
  • the network layer includes a non-access stratum (NAS) and an RRC layer.
  • the non-access stratum NAS can be used to transmit user information or control information, such as the establishment and release of 4G/5G communication links or services, and mobility management information.
  • the protocol layer below the NAS layer may also be called an access stratum (AS).
  • the RRC layer supports various functional signaling protocols between the electronic equipment UE and the base station eNB, broadcasts system messages of the NAS layer and the AS layer, RRC connection establishment, maintenance and release, end-to-end radio bearers (such as the radio connection between the UE and the network side) Network access link) establishment, modification and release, mobility management including UE measurement report, cell handover and reselection and other functions.
  • the UE can communicate with the network side through the L3 network layer to implement operations such as establishment and release of 4G and 5G access networks, which will be described in detail below in this application.
  • the EN-DC networking technology defines a master cell group (MCG) and a secondary cell group (SCG), and according to the different data separation and forwarding methods, the data bearer is divided into three categories: MCG bearer , SCG bearer and split split bearer.
  • MCG master cell group
  • SCG secondary cell group
  • the primary cell group MCG refers to the cluster of cells where at least one primary base station MeNB of the 4G LTE access network is located
  • the secondary cell group refers to the cluster of cells where at least one 5G NR secondary base station SgNB is located.
  • FIG. 3 shows a schematic communication diagram of a data bearer link on a UE side provided in an embodiment of the present application.
  • the UE side can perceive three kinds of data bearers, namely: MCG bearer, SCG bearer, and split bearer.
  • MCG bearer means that data is routed from the S-GW of the core network to the main base station MeNB, and is directly forwarded by the MeNB to the UE.
  • SCG bearer means that data is routed from the S-GW of the core network to the secondary base station SeNB, and is directly forwarded by the SeNB to the UE.
  • Split bearer means that data is separated on the base station side, which can be forwarded by the primary base station MeNB or the secondary base station SeNB to the UE, or the primary base station MeNB or the secondary base station SeNB can simultaneously transmit data and provide services for the UE according to a preset separation ratio.
  • the communication link (also called the MCG link) used for data communication is: LTE PDCP/NR PDCP-LTE RLC-LTE MAC.
  • the communication link (also referred to as an SCG link) used for data communication is: NR PDCP-NR RLC-NR MAC.
  • the communication link (also called a Split link) used for data communication is: NR PDCP-LTE RLC-LTE MAC, or NR PDCP-NR RLC-LTE MAC.
  • the SCG link since the SCG link only uses the network resources of 5G NR, the SCG link can also be called an NR link.
  • the MCG link uses the network resources to 4G LTE, and the MCG link may also be referred to as an LTE link.
  • FIG. 4 shows a schematic communication diagram of a data bearer link on the network side provided in an embodiment of the present application.
  • MN master node
  • SCG bearer terminated by MN and separation terminated by MN Split bearer
  • secondary node secondary node, SN, may specifically refer to the secondary base station SeNB
  • the bearer terminated by the MN refers to the radio bearer of the PDCP layer in the primary base station MeNB, but not in the radio bearer of the secondary base station SeNB.
  • the SN-terminated bearer refers to the radio bearer of the PDCP layer in the secondary base station SeNB, but not in the radio bearer of the primary base station MeNB.
  • the communication link during data communication is: NR PDCP-LTE RLC-LTE MAC, or NR PDCP-NR RLC-NR MAC. It can be selected according to actual needs without limitation.
  • the communication links corresponding to various data bearers perceived by the network side are specifically shown in FIG. 4 , which will not be repeated here.
  • EN-DC is an important usage scenario.
  • the electronic device performs data communication through the two access network sides of LTE and NR, and sends and receives service data packets on the two access networks, which significantly improves user data experience.
  • EN-DC mode when electronic equipment works in LTE and NR modes at the same time, the related devices of the two modes need to work at the same time. Compared with single-mode operation, the power consumption of electronic equipment is higher, and it is easy to increase the temperature.
  • electronic devices can meet business needs in LTE, and power consumption needs to be prioritized to release NR connections.
  • the NR SCG also needs to be released for the protection of the electronic equipment and the user of the electronic equipment.
  • FIG. 5 shows a schematic flowchart of a triggering network to release an NR connection provided in the present application.
  • the electronic device UE may include an application processor AP, a NAS layer, and an RRC layer.
  • the RRC layer specifically includes LTE RRC (referred to as LRRC) and NR RRC (referred to as NRRC).
  • LTE RRC referred to as LRRC
  • NRRC NR RRC
  • the application processor AP of the electronic device detects that the NR SCG needs to be released, it can instruct the NAS layer to release the SCG.
  • the NAS layer may notify the RRC layer to release the access stratum (AS) resources of the NR.
  • AS access stratum
  • the RRC layer can send an SCG failure message to the network side device, and the SCG failure message can be used to notify the network side device to release the SCG.
  • the network side device can disconnect the NR link from the RRC layer of the electronic device.
  • the RRC layer can turn off NR measurement.
  • the RRC layer of the electronic device disconnects the NR link and closes the NR measurement, it can notify the NAS layer that the NR link is deleted and the LRRC connection is not released.
  • the network-side device can be triggered to release the NR SCG.
  • the abnormality indicators on the network-side will increase, and the network cannot determine the cause of the network abnormality.
  • there are situations in the live network where terminals report SCG failures and the network does not release SCGs.
  • the electronic device has released the NR SCG, but when the electronic device needs to use 5G services, the electronic device needs to restore the 5G connection as soon as possible to ensure the network speed requirements and user experience of the application.
  • FIG. 6 shows a schematic flowchart of a triggering network to establish an NR connection provided in the present application.
  • the process of establishing an NR connection by an electronic device may be as follows:
  • the electronic device can start high-traffic applications and perform high-traffic data interaction with the main base station MeNB.
  • the primary base station can determine that the electronic device needs to add the secondary base station SgNB according to the data flow information of the electronic device.
  • the primary base station can determine whether the addition interval of the secondary base station has timed out (for example, more than 60s).
  • the primary base station can send B1 event measurement signaling to the electronic device.
  • the electronic device can send a B1 event measurement report to the master base station when the signal of the neighboring cell of the different system is greater than the specified threshold.
  • the B1 event measurement report includes inter-system neighbor cells whose signals measured by the electronic device are greater than a specified threshold.
  • the main base station can select a suitable 5G neighbor cell for the electronic device based on the B1 event measurement report.
  • the primary base station After the primary base station selects a suitable 5G neighbor cell for the electronic device, it can send a secondary base station addition request to the secondary base station.
  • the secondary base station After receiving the secondary base station addition request sent by the primary base station, the secondary base station can return the secondary base station addition response to the primary base station.
  • the primary base station can send a secondary base station addition instruction to the electronic device.
  • the electronic device can add a 5G base station as a secondary base station according to the secondary base station addition instruction.
  • the electronic device needs to passively wait for the primary base station to start the NR SCG adding process.
  • the main base station starts the NR SCG addition periodically. Even if the electronic device has satisfied the addition conditions of the NR SCG, the main base station will not add the NR SCG to the electronic device until the next addition interval times out.
  • the NR SCG addition interval of the main base station can be 60s, and the electronic device will wait up to 60s to connect to the 5G network.
  • the electronic device triggers the main base station on the network side to release the NR SCG due to low traffic.
  • the electronic device After that, the electronic device starts the speed measurement application and starts to measure the speed of the mobile network, but since the NR SCG addition interval has not yet arrived, the main base station on the network side does not start the NR SCG addition process at this time, resulting in the electronic device speed measurement only at the LTE rate.
  • the video software of the electronic device uses the segment buffering mechanism to download the video from the network. For example, a 1 gigabyte (gigabyte, GB) video is divided into 5 data pieces for buffering, and each piece of data is buffered. The data volume of a slice is 200 megabytes (MB).
  • the electronic device After the electronic device completes the buffering of the first 200MB data piece, it will suspend buffering or small-flow buffering, so that the electronic device will release the NR SCG. After the first 200MB data piece is played, the electronic device will start to download the second 200MB. At this time, since the addition interval of NR SCG has not timed out, the main base station on the network side does not start the process of adding NR SCG, and the electronic device can only download it through the LTE network, and the network speed is not fast enough, which will cause the video playback to freeze. . Therefore, restoring the connection to the NR in the above-mentioned way will cause the electronic device to fail to connect to the 5G network in time when it needs to use the 5G network.
  • FIG. 7 shows another schematic flowchart of triggering the network to establish an NR connection provided in this application.
  • the process of establishing an NR connection by an electronic device may be as follows:
  • the electronic device determines that a secondary base station needs to be added.
  • the electronic device releases the RRC connection with the primary base station.
  • the electronic device triggers a service request process to the main base station.
  • the main base station establishes an RRC connection with the electronic device, and adds a secondary base station for the electronic device.
  • the electronic device needs to actively release the RRC connection locally, and then re-establish the RRC connection with the main base station, triggering the network configuration to add the NR SCG.
  • the electronic device releases the RRC connection locally, it will cause the electronic device to disconnect from the network within a certain period of time, and the application cannot obtain network data, causing the user to perceive the freeze, affecting the user experience, and may also lead to the loss of the electronic device. Call, and frequently triggering this process may also cause the network to think that the electronic device is abnormal, resulting in other compatibility problems.
  • the embodiment of the present application provides a network connection method, and the electronic device can trigger the network side to quickly establish or release the NR link connection with the electronic device by sending UE assistance information to the network side.
  • fields such as an overheating protection (overheating) field or a maximum secondary carrier (maxCC) in the UE assistance information may be used to instruct the network side to establish an NR link connection or release an NR link connection.
  • the network side is quickly triggered to release the NR SCG to reduce power consumption.
  • the electronic device can quickly trigger the network side to add an NR SCG to quickly restore the LTE-NR dual connection and improve the data transmission rate.
  • the electronic device can only use the LTE network to meet the network speed requirements. To reduce power consumption, it is necessary to release the NR link established with the network side.
  • the electronic device cannot meet the network speed requirements when it is only connected to the LTE network, and the electronic device needs to establish LTE-NR dual connection with the network side.
  • the low network speed application scenario may refer to the application scenario where the network demand of the electronic device is low, and specifically may refer to the low data transmission rate (referred to as the data transmission rate) of the electronic device, or the data packet that the electronic device needs to transmit. smaller application scenarios.
  • application scenarios with high network requirements for electronic devices can be referred to as high-speed network application scenarios.
  • the electronic device when the electronic device is in a low network speed application scenario, it may be said that the electronic device meets the first preset condition; when the electronic device is in a high network speed application scenario, it may be said that the electronic device meets the second preset condition condition.
  • the electronic device is in the off-screen state.
  • the screen state of an electronic device can be divided into a screen-on state and a screen-off state.
  • the screen-on state may specifically include a screen-on-unlock state and a screen-on-screen lock state.
  • the screen state of the electronic device may be specifically identified by a software program or a hardware detection method.
  • the electronic device can first determine the on-off state of the screen through the screen display value (isScreenOn) defined in the human-computer interaction (isInteractive) code under the power management (powermanager), for example, when isScreenOn is true, Indicates that the electronic device is in a bright-screen state; otherwise, it is determined that the electronic device is in an off-screen state.
  • the electronic device can detect whether the electronic device is further locked through the screen lock code (isScreenLocked), and if it is locked, it can be determined that the electronic device is in the screen-locked state.
  • the screen is in a screen-locked state; otherwise, it is determined that the electronic device is in a bright-screen state, specifically, the electronic device is in a bright-screen unlocked state.
  • the electronic device may determine the screen state of the electronic device through an Android broadcast message sent by its own system. Specifically, when the Android broadcast message is used to instruct the screen to turn on the screen, it can be determined that the electronic device is in a screen-on state; when it is used to instruct the screen to turn off the screen, it can be determined that the electronic device is in a screen-off state; when it is used to instruct the screen to lock the screen , it can be determined that the electronic device is in the locked screen state, etc.
  • the Android broadcast message is used to instruct the screen to turn on the screen, it can be determined that the electronic device is in a screen-on state; when it is used to instruct the screen to turn off the screen, it can be determined that the electronic device is in a screen-off state; when it is used to instruct the screen to lock the screen , it can be determined that the electronic device is in the locked screen state, etc.
  • the Android broadcast message is used to instruct the screen to turn on the screen, it can be determined that the electronic device is in a screen-on state
  • the electronic device When the electronic device is in the off-screen state, the electronic device usually does not send and receive data, or only maintains the necessary data packets to ensure that the application is in the wake-up state, such as heartbeat test packets or monitoring data packets, etc.
  • this type of data packets is periodic. and the size of the data packet is relatively small.
  • the electronic device can also support the running of background applications, but does not require high network speed. For example, a music application downloads and plays music from the network in the background. The electronic device can only be connected to the LTE network to meet the needs of the background application.
  • the electronic device is in a bright screen state and is running at a low network speed, that is, the data transmission rate of the electronic device is less than or equal to the preset rate.
  • the low network speed means that the data transmission rate of the electronic device is relatively small, for example, less than or equal to the preset rate.
  • the low network speed may specifically refer to a small transmission rate of uplink data of the electronic device, for example, less than or equal to the first preset rate; it may also refer to a small transmission rate of downlink data of the electronic device, for example, less than or equal to the first preset rate.
  • the second preset rate it may also mean that the transmission rate of all data including the uplink data and downlink data of the electronic device is relatively small, for example, less than or equal to the third preset rate.
  • the data transmission rate refers to the number of bits that the electronic device supports to transmit data per unit time, for example, 50 bits per second (bit/s).
  • the preset rate can be customized by the system, for example, customized according to the user's preference or actual needs, or a value obtained by statistics of a large amount of experimental data.
  • the first preset rate, the second preset rate, and the third preset rate involved in this application are all set by the system, and they may be the same or different, and are not limited.
  • the electronic device can enable the function of running low-speed applications or disable the function of running high-speed applications. Specifically, in order to meet the network usage requirements of low network speed, the electronic device can perform the following application function settings in the power saving mode: allowing low network speed applications to run or prohibiting high network speed applications from running, that is, enabling low network speed applications to run. feature or disable the ability to run high-speed applications. Understandably, after the function of running high-speed applications in the electronic device is disabled, only low-speed applications are allowed to run in the electronic device. Since the data transfer rate allowed in these low-speed applications is relatively small, the electronic device may determine that the electronic device is operating at a low-speed network at this time.
  • the sum of their data transmission rates is relatively small, for example, less than the preset rate, which can also meet the low-speed network requirements.
  • the electronic device is still determined. running at low speed.
  • the low network speed application refers to an application installed in the electronic device that requires a lower data transmission rate, for example, the transmission rate of the data to be transmitted in the application is required to be less than the fourth preset rate.
  • the low-speed application can be specifically set by the system, or can be set manually by the user, such as applications such as camera, phone, text message, and memo.
  • a high-speed application refers to an application installed in the electronic device that requires a higher data transmission rate, for example, the data transmission rate is required to be greater than or equal to the fifth preset rate.
  • the high-speed internet application can also be customized by the system, or customized by the user according to personal preferences, such as music applications and video applications.
  • the electronic device increases the time length judgment condition. Specifically, the electronic device can obtain the duration for which the data transmission rate of the electronic device is less than or equal to the preset rate, and when the duration is greater than or equal to a certain threshold (for example, 1 minute), etc., it can be determined that the electronic device is running at a low network speed. middle. Otherwise, it is still determined that the electronic device is not operating at a low network speed. That is, the identification condition of the electronic device being in a low network speed application scenario may specifically be: the electronic device is in a bright screen state, and the data transmission rate of the electronic device within a period of time is less than or equal to the preset rate.
  • a certain threshold for example, 1 minute
  • the electronic device and other devices exchange heartbeat packets to maintain a normal communication connection.
  • the electronic device when the electronic device does not perform service communication with other devices (such as a base station), that is, the electronic device does not need to transmit service data, in order to maintain the communication connection between the electronic device and other devices, usually the electronic device can periodically Send heartbeat packets to notify electronic devices to maintain communication with other devices.
  • the data transmission rate of the heartbeat packet is usually relatively small, such as several kb/s.
  • the size of the heartbeat packet is also relatively small, such as several kb.
  • the heartbeat packet can be an empty packet, that is, only the packet header and no service data are carried.
  • the third type is a scenario where the electronic device is running at a low network speed, such as a game scenario and a navigation scenario.
  • the electronic device is running a game application.
  • game applications only have higher requirements on the running rate of the application processor (AP) of the electronic device, and have lower requirements on the data transmission rate (ie, network rate) of the electronic device in comparison. Therefore, when the electronic device is in the game scene, it can be determined that the electronic device is running at a low network speed.
  • AP application processor
  • the electronic device is in a bright screen state, and the size of the data packet to be transmitted by the electronic device is less than or equal to the first preset threshold.
  • the electronic device can also consider the amount of data that the electronic device needs to transmit (that is, the size of the data packet to be transmitted).
  • the size of the data packets that the electronic device needs to transmit may specifically refer to the size of all data packets that the electronic device needs to transmit in the application (that is, the amount of data that needs to be transmitted), or the data packets that the electronic device needs to transmit per unit time. the size of.
  • the electronic device when the electronic device is in a bright screen state, if the size of the data packet to be transmitted by the electronic device is large, for example, larger than the first preset size threshold, the electronic device may consider that the current communication load of itself is relatively large, that is, all The amount of data packets or data to be transmitted is relatively large, and the network demand is relatively high. Accordingly, the electronic device may consider itself in a high-speed network application scenario. On the contrary, if the size of the data packet to be transmitted by the electronic device is small, the electronic device may consider that its own communication load is small, that is, the data packet or data volume to be transmitted is small, and the network demand is not high. The device can consider itself in a low-speed application scenario at this time.
  • the device temperature of the electronic device is greater than or equal to the preset temperature threshold.
  • the electronic device Regardless of whether the electronic device is on or off, when the device temperature of the electronic device is too high, for example, when the device temperature is greater than or equal to the preset temperature threshold, it is easy to cause a crash, disconnection, and serious damage to the electronic device.
  • Application processors, baseband processors and other devices of electronic equipment In order to reduce the temperature of the whole machine and protect the device itself, the electronic device needs to automatically close the running applications, for example, firstly close the applications with high power consumption and high network speed requirements, such as video applications, and then close the applications with low power consumption and high network speed. Less demanding applications, such as weather applications, calendar applications, etc.
  • the electronic device detects that the temperature of its entire machine is too high, it can be considered that the electronic device LRRC device has closed the application with high network speed requirements, that is, the high-speed network application in the electronic device is closed, and the electronic device is at a low network speed at this time. application scenarios.
  • the detection method of the device temperature of the electronic device is not limited.
  • the device temperature of the electronic device or a certain device on the electronic device such as application processor or baseband processor, etc.
  • the device temperature of an electronic device refers to the sum of the temperatures of all components in the entire electronic device when they are running. Since there is a certain error in the temperature acquisition of each component, the device temperature acquisition of the electronic device will also exist. The larger the error, the lower the accuracy or precision of its acquisition. Therefore, in practical applications, the device temperature of an electronic device can be replaced by the temperature of some core components in the electronic device, such as the temperature of the application processor (AP), the temperature of the system on chip (SOC), the temperature of the battery, and so on.
  • AP application processor
  • SOC system on chip
  • the application processor is the most important hardware for the overall performance of an electronic device, and its performance directly affects the overall performance of the electronic device. Therefore, the temperature of the application processor will be an important reflection temperature of the device temperature. Taking the temperature of the device as the temperature of the application processor as an example, the electronic device can enter its own input and output system (basic input output system, BIOS) to obtain the temperature of the application processor; or, the electronic device can run the temperature acquisition software of the application processor (e.g. Python script file, etc.) to get the temperature of the application processor. It is convenient to subsequently identify whether the application scenario in which the electronic device is located is a high network speed application scenario or a low network speed application scenario based on the temperature of the application processor, which will not be repeated here.
  • BIOS basic input output system
  • the electronic device is in an off-screen state and operates at a low network speed, that is, the data transmission rate of the electronic device is less than or equal to the second preset rate.
  • the electronic device supports the running of background applications, such as playing music.
  • the electronic device can perform the following application function settings: allow low-speed applications to run or prohibit high-speed applications from running, that is, enable the function of running low-speed applications or disable the running of high-speed applications. function. Understandably, after the function of running high-speed applications in the electronic device is disabled, only low-speed applications are allowed to run in the electronic device. Since the data transmission rate allowed in these low network speed applications is relatively small, at this time, the electronic device may determine that the electronic device is running at a low network speed, and the electronic device is in a low network speed application scenario.
  • the sum of their data transmission rates is relatively small, for example, less than the second preset rate, which can also meet the low-speed network requirements, and it is still determined at this time.
  • the electronic device is running at low internet speed.
  • the electronic device when the electronic device is in the off-screen state, the electronic device usually does not send and receive data, or only maintains the necessary data packets to ensure that the application is in the wake-up state, such as heartbeat test packets or monitoring data packets, etc.
  • this type of Data packets are sent and received periodically and the size of the data packets is relatively small.
  • the electronic device has low requirements on network parameters and the like, and the network demand is low, and it is considered that the electronic device is running at a low network speed, that is, it is in a low network speed application scenario.
  • the data transmission rate thereof usually becomes relatively slow, for example, the data transmission rate is lower than the preset rate. Therefore, without considering the recognition accuracy of the low network speed application scenario, when the electronic device detects that it is in an off-screen state, it can be directly considered that the electronic device is in the low network speed application scenario.
  • the electronic device is in an off-screen state, and the size of the data packet to be transmitted by the electronic device is less than or equal to the second preset threshold.
  • the electronic device When the screen is off, the electronic device also transmits and receives data, for example, the electronic device downloads data when the screen is off, and transmits heartbeat packets when the screen is off.
  • the electronic device In order to meet the network requirements of low network speed, in addition to the data transmission rate, the electronic device can also be identified from the dimension of the amount of data that the UE needs to transmit (ie, the size of the data packet to be transmitted).
  • the size of the data packet to be transmitted by the electronic device can be detected to determine whether the electronic device is in the low network speed application scenario.
  • the electronic device may consider that its own communication load is relatively large and the network demand is relatively high, and it is determined that the electronic device is not in a low network speed application scenario. On the contrary, it is considered that the communication load of the electronic device is small, and the network demand is low, and it is determined that the electronic device is in a low network speed application scenario.
  • a heartbeat packet mechanism is usually used to maintain the connection between the electronic device and the network side.
  • the electronic device may periodically send heartbeat packets to the network side to notify the electronic device that there is currently a communication connection with the network side, so as to maintain a long connection between the electronic device and the network side.
  • the network side can also return a response packet to the electronic device to notify the network side that there is a communication connection between the electronic device and the network side.
  • the size of the heartbeat packet is very small, usually several kilobytes, and it can also be an empty packet (ie, a data packet that does not carry any service data, but only carries a packet header).
  • the electronic device is obviously in a low-speed application scenario.
  • the electronic device turns off the 5G network communication function.
  • the electronic device may turn off the 5G network communication function in response to receiving the user's input operation.
  • the electronic device determines that it does not need to use the 5G network according to the user's needs.
  • the electronic device is in a low network speed application scenario.
  • FIG. 8 shows the network configuration of the overheating field in the UE assistance information and the UE assistance information reporting process of the electronic device.
  • the LTE access network (E-UTRAN) device may send a message to the electronic device.
  • Network reconfiguration information wherein the network reconfiguration information includes overheating protection configuration (overheating setup) information.
  • the overheating setup information can be as follows:
  • the candidate values of the time interval for overheating reporting by the electronic device indicated in the above overheating setup information can be 0, 0.5 seconds, 1 second, 2 seconds, 5 seconds, 10 seconds, 20 seconds, 30 seconds, 60 seconds, 90 seconds, 120 seconds seconds, 300 seconds, 600 seconds, or other alternatives (spare3, spare2, or spare1).
  • the overheating field carried in the UE auxiliary information reported by the electronic device is optional, and the electronic device may add the overheating field to the reported UE auxiliary information when necessary.
  • the overheating setup information may be based on the 3GPP R14 protocol version, but is not limited to the 3GPP R14 protocol version, and may also be based on other versions of the protocol (for example, 3GPP R15 protocol version, 3GPP R16 protocol version, etc.).
  • the electronic device on the UE side can complete the overheating setup with the LTE access network device, and the electronic device can report the UE Assistance Information (UE Assistance Information) that carries the overlay field.
  • UE Assistance Information UE Assistance Information
  • the information element content of the overheating field in the UE auxiliary information may be as follows:
  • the overheating field of the UE assistance information may include a transmission rate class (reducedUE-Category) information element and a maximum secondary carrier number (reducedMaxCCs) information element.
  • the transmission rate class information element may include a downlink transmission rate class (reducedUE-CategoryDL) sub-cell and an uplink transmission rate class (reducedUE-CategoryUL) sub-cell.
  • the value of the downlink transmission rate class (reducedUE-CategoryDL) sub-cell may be an integer from 0 to 19.
  • the value of the uplink transmission rate class (reducedUE-CategoryUL) sub-cell may be an integer from 0 to 21.
  • the maximum secondary carrier number (reducedMaxCCs) information element may include a downlink secondary carrier number (reducedCCsDL) sub-cell and an uplink secondary carrier number (reducedCCsUL) sub-cell.
  • the value of the sub-cell of the number of downlink secondary carriers (reducedCCsDL) may be an integer from 0 to 31, and the value of the sub-cell of the number of uplink secondary carriers (reducedCCsUL) may be an integer of 0 to 31.
  • the network side device can activate a uplink secondary carrier for the electronic device according to.
  • the electronic device may send data and send an uplink reference signal on a physical uplink shared channel (PUSCH) on the activated a uplink secondary carrier.
  • the electronic device may not send data or uplink reference signals on the physical uplink shared channel (PUSCH) on other inactive uplink secondary carriers.
  • PUSCH physical uplink shared channel
  • the overheating field may be based on the 3rd generation partner project (3GPP) R14 or R15 protocol version, but is not limited to the 3GPP R14 or R15 protocol version, and may also be based on other versions of the protocol of.
  • the overlaying field may only include the maximum number of secondary carriers (reducedMaxCCs) information element, and the maximum number of secondary carriers (reducedMaxCCs) information element may include the number of downlink secondary carriers (reducedCCsDL) sub-cell and the number of uplink secondary carriers (reducedCCsUL) subcell.
  • the overheating field may also include other cells.
  • the electronic device has disconnected the NR link and the single connection to the LTE access network device. If the electronic device detects that the LTE-NR dual connection needs to be established, the electronic device can report the first UE auxiliary information to On the network side, trigger the rapid establishment of an NR link between the network side and the electronic device. Wherein, the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the first UE auxiliary information is non-0 or the overheating field does not carry any sub-cell. In this way, the electronic device can be switched from the LTE single connection to the LTE-NR dual connection in time, without interrupting data services and without the risk of losing paging.
  • reducedCCsUL sub-cell uplink carrier number
  • FIG. 9 shows a schematic diagram of a network connection method provided by an embodiment of the present application.
  • an electronic equipment (UE) 100 may include an application processor (AP) 101 and a baseband processor (BP) 102, and the baseband processor 102 may include a modem.
  • the network side device 200 includes an LTE access network (E-UTRAN) device 201 and a 5G access network (NR) device 202 .
  • the LTE access network device 201 may refer to the MeNB in the foregoing embodiment
  • the 5G access network (NR) device 202 may refer to the SgNB in the foregoing embodiment.
  • the network connection method may include:
  • the LTE access network device 201 sends a UE capability query request to the baseband processor 102 of the electronic device 100 .
  • the baseband processor 102 sends UE capability information to the LTE access network device 201.
  • the UE capability information may be used to indicate that the electronic device 100 supports an overheating mechanism.
  • the LTE access network device 201 may send network reconfiguration information to the baseband processor 102, where the network reconfiguration information includes overheating setup information .
  • the LTE access network device 201 may determine that the electronic device 100 supports the overheat protection mechanism. Therefore, the LTE access network device 201 can send network reconfiguration information (for example, RRC connection reconfiguration (RRC connection reconfiguration) information) to the electronic device 100 on the signaling bearer SRB1 through a downlink dedicated control channel (download dedicated channel, DL_DCCH). Baseband processor 102 . After receiving the network reconfiguration information, the baseband processor 102 can acquire overheating setup information from the network reconfiguration information, and complete the overheating protection configuration.
  • RRC connection reconfiguration RRC connection reconfiguration
  • the baseband processor 102 After the baseband processor 102 completes the content in the network reconfiguration information, it can return the configuration completion information on the signaling bearer SRB1 through the uplink dedicated control channel (upload dedicated channel, UL_DCCH) (for example, RCC connection reconfiguration complete (RRC connection reconfiguration complete). ) information) to the LTE access network device 201.
  • uplink dedicated control channel upload dedicated channel, UL_DCCH
  • RCC connection reconfiguration complete RRC connection reconfiguration complete
  • the electronic device 100 may initiate an RRC connection re-establishment process, reconnect the RRC connection with the LTE access network device 201, and complete the process of re-establishing the RRC connection.
  • the above thermal protection configuration when the electronic device 100 cannot complete the overheating setup in the network reconfiguration information, the electronic device 100 may initiate an RRC connection re-establishment process, reconnect the RRC connection with the LTE access network device 201, and complete the process of re-establishing the RRC connection.
  • the application processor 101 may detect that the electronic device 100 needs to establish an LTE-NR dual connection.
  • the application processor 101 may send a first instruction to the baseband processor 102, where the first instruction may be used to instruct the baseband processor 102 to establish an NR link with the network side device.
  • the first instruction may be a private command message, such as an attention (attention, AT) command message; the first instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for establishing an NR link, or, for The at ⁇ errccap command message to restore the NR link.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the first instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for establishing an NR link, or, for The at ⁇ errccap command message to restore the NR link.
  • the baseband processor 102 may send the first UE assistance information to the LTE access network device 201 in response to the first instruction.
  • the first UE auxiliary information includes an overheating field, and the number of uplink carriers of sub-cells carried in the overheating field is non-zero or does not carry any sub-cells.
  • the overheating field of the first UE assistance information may include a transmission rate class (reducedUE-Category) information element and a maximum secondary carrier number (reducedMaxCCs) information element.
  • the transmission rate class information element may include a downlink transmission rate class (reducedUE-CategoryDL) sub-cell and an uplink transmission rate class (reducedUE-CategoryUL) sub-cell.
  • the maximum secondary carrier number (reducedMaxCCs) information element may include a downlink secondary carrier number (reducedCCsDL) sub-cell and an uplink secondary carrier number (reducedCCsUL) sub-cell.
  • the baseband processor 102 may set the sub-cell uplink carrier number (reducedCCsUL) in the overlaying field of the first UE auxiliary information to a first value, and the first value is not 0.
  • the baseband processor 102 may support two uplink secondary carriers, and after receiving the first instruction, the baseband processor 102 may set the number of uplink secondary carriers (reducedCCsUL) of the sub-cell in the overlaying field in the first UE assistance information to 2, and send the first UE assistance information to the LTE access network device 201 .
  • the baseband processor 102 may delete the sub-cell in the overheating field in the first UE auxiliary information (that is, the overheating field does not carry any sub-cell), and store the sub-cell in the overheating field in the first UE auxiliary information.
  • a UE assistance information is sent to the LTE access network device 201 .
  • the LTE access network device 201 may initiate a process of establishing an NR connection with the electronic device 100 .
  • the LTE access network 201 may parse from the auxiliary information of the first UE to determine that the number of sub-cell uplink auxiliary carriers (reducedCCsUL) carried in the overlaying field is different. If the value is 0, the LTE access network device 201 can initiate the process of establishing an NR connection between the 5G access network device and the electronic device 100 .
  • reducedCCsUL sub-cell uplink auxiliary carriers
  • the LTE access network 201 can parse out from the first UE auxiliary information that the overlaying field does not carry any sub-cell, then the LTE access network device 201 may initiate an NR link establishment process between the 5G access network device and the electronic device 100.
  • the LTE access network device 201 parses the sub-cell uplink secondary carrier number (reducedCCsUL) carried in the overlay field from the first UE auxiliary information is not 0 or does not carry any sub-cell in the overlay field
  • the LTE access network The network access device 201 may send measurement signaling (eg, B1 event measurement signaling) to the electronic device 100 .
  • the baseband processor 102 of the electronic device 100 may measure multiple 5G cells in response to the measurement signaling, and report to the LTE access network device 201 a measurement report (measurement report) of the 5G cell that meets the conditions (for example, a B1 event measurement report) .
  • the condition may be that the signal strength of the cell measured by the electronic device 100 meets a specified threshold, etc.
  • the LTE access network device 201 may send the measurement report of the 5G cell that meets the condition to the 5G access network device 202.
  • the 5G access network device 202 may configure a 5G cell for the electronic device 100 according to the measurement report, and send the 5G cell configuration information to the electronic device 100 through the LTE access network device 201 .
  • the 5G cell configuration information may be RRC connection reconfiguration (RRC connection reconfiguration) information, and the RRC connection reconfiguration information is used to configure the 5G cell accessed by the electronic device 100, and may also be recorded as NR SCG configuration (SCG configuration),
  • RRC connection reconfiguration RRC connection reconfiguration
  • SCG configuration NR SCG configuration
  • the electronic device when the electronic device has established an LTE-NR dual connection, if the electronic device detects that the NR link needs to be released, the electronic device can report the SCG failure signaling to the network side to trigger the network side to release the NR link.
  • the electronic device can trigger the network side by reporting the first UE auxiliary information to the network side.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the first UE auxiliary information is non-0 or the overheating field does not carry any sub-cell. In this way, the electronic device can be switched from the LTE single connection to the LTE-NR dual connection in time, without interrupting the data service, and reducing the risk of lost paging.
  • FIG. 10 shows a schematic diagram of a network connection method provided by another embodiment of the present application.
  • an electronic equipment (UE) 100 may include an application processor (AP) 101 and a baseband processor (BP) 102, and the baseband processor 102 may include a modem.
  • the network side device 200 includes an LTE access network (E-UTRAN) device 201 and a 5G access network (NR) device 202 .
  • the LTE access network device 201 may refer to the MeNB in the foregoing embodiment
  • the 5G access network (NR) device 202 may refer to the SgNB in the foregoing embodiment.
  • the network connection method may include:
  • the LTE access network device 201 sends a UE capability query request to the baseband processor 102 of the electronic device 100 .
  • the baseband processor 102 in response to the UE capability query request, sends UE capability information to the LTE access network device 201 .
  • the UE capability information may be used to indicate that the electronic device 100 supports an overheating mechanism.
  • the LTE access network device 201 may send network reconfiguration information to the baseband processor 102, where the network reconfiguration information includes overheating setup information .
  • step S903 for specific content, reference may be made to step S903 in the foregoing embodiment shown in FIG. 9 , and details are not repeated here.
  • the LTE access network device 201 initiates an NR link establishment process.
  • the LTE access network device 201 may actively initiate an NR link establishment process. For example, when the LTE access network device 201 determines that the addition interval of the NR SCG exceeds the specified time, the LTE access network device 201 may send measurement signaling (eg, B1 event measurement signaling) to the electronic device 100.
  • the baseband processor 102 of the electronic device 100 may measure the multiple 5G cells in response to the measurement signaling, and report to the LTE access network device 201 a measurement report (measurement report) of the 5G cell that meets the conditions (for example, a B1 event measurement report) ).
  • the condition may be that the signal strength of the cell measured by the electronic device 100 meets a specified threshold, etc.
  • the LTE access network device 201 may send the measurement report of the 5G cell that meets the condition to the 5G access network device 202.
  • the 5G access network device 202 may configure a 5G cell for the electronic device 100 according to the measurement report, and send the 5G cell configuration information to the electronic device 100 through the LTE access network device 201 .
  • the 5G cell configuration information may be RRC connection reconfiguration (RRC connection reconfiguration) information, and the RRC connection reconfiguration information is used to configure the 5G cell accessed by the electronic device 100, and may also be recorded as NR SCG configuration (SCG configuration),
  • RRC connection reconfiguration RRC connection reconfiguration
  • SCG configuration NR SCG configuration
  • the application processor 101 of the electronic device 100 detects that the electronic device 100 needs to release the NR link.
  • the application processor 101 may send a second instruction to the baseband processor 102, where the second instruction may be used to instruct the baseband processor 102 to release the NR link.
  • the second command may be a private command message, such as an attention (attention, AT) command message; the second command may also be a traditional command message, such as an at ⁇ syscfgex command message for removing the NR capability, or for releasing aterrccap command message for NR link.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the second command may also be a traditional command message, such as an at ⁇ syscfgex command message for removing the NR capability, or for releasing aterrccap command message for NR link.
  • the baseband processor 102 may, in response to the second instruction, send secondary cell group failure (SCG failure) signaling to the LTE access network device 201 to trigger the LTE access network device 201 to release the NR link.
  • SCG failure secondary cell group failure
  • the SCG failure signaling is specifically used to release the wireless resources occupied by the NR connection on the network side, such as each functional layer (such as NR PDCP, NR RLC, NR MAC and NR PHY) included in the SCG link used for NR connection communication. related wireless resources, etc.
  • each functional layer such as NR PDCP, NR RLC, NR MAC and NR PHY
  • the downlink receiving channel, frequency point, cell ID and other information can be released specifically.
  • the SCG failure signaling may be specified differently in different protocol versions.
  • it may be an SCGFailureInformation-r12-IEs signaling message, which includes parameters such as failure type failureType-r12.
  • the failure type includes any one or a combination of the following parameters: timer delay (that is, the delay for the UE and the network side to support data transmission), random access problem randomAccessProblem, the maximum number of RLC retransmissions rlc-MaxNumRetx ( The maximum number of times the RLC is allowed to retransmit the data packet), SCG link change failure scg-ChangeFailure (ie, SCG link switching is not supported), etc.
  • the LTE access network device 201 In response to the SCG failure signaling, the LTE access network device 201 initiates an NR link release process.
  • the LTE access network device 201 may respond to the received SCG failure signaling, instructing the 5G access network device 202 to release the wireless resources occupied by the electronic device 100 when accessing the 5G access network device 202, such as NR Connect the radio resources related to each functional layer (such as NR PDCP, NR RLC, NR MAC, and NR PHY) included in the SCG link used for communication.
  • the radio resources related to each functional layer such as NR PDCP, NR RLC, NR MAC, and NR PHY
  • the downlink receiving channel, frequency point, cell ID and other information can be released specifically.
  • the baseband processor 102 releases the NR link and closes the NR measurement.
  • the LTE access network device 201 may notify the baseband processor 102 of the electronic device 100 to release the radio resources occupied by the UE side when the NR link configuration is performed.
  • Resources such as releasing radio resources related to transmission function layers such as NR PDCP, NR RLC, NR MAC, and NR PHY, etc.
  • the relevant configuration parameters involved in the configuration of the NR connection on the network side can be released, such as parameters such as frequency and cell identity. .
  • the baseband processor 202 may not perform NR measurements.
  • the network side cannot receive the NR measurement report sent by the UE side.
  • the baseband processor 202 after the baseband processor 202 releases the NR link, the baseband processor 202 performs NR measurement, but does not report the NR measurement report to the LTE access device 202 .
  • the application processor 101 detects that the electronic device 100 needs to establish an LTE-NR dual connection.
  • the application processor 101 may send a first instruction to the baseband processor 102, where the first instruction may be used to instruct the baseband processor 102 to establish an NR link with a network side device.
  • the first instruction may be a private command message, such as an attention (attention, AT) command message; the first instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for establishing an NR link, or, for The at ⁇ errccap command message to restore the NR link.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the first instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for establishing an NR link, or, for The at ⁇ errccap command message to restore the NR link.
  • the baseband processor 102 may turn on NR measurement in response to the first instruction.
  • the baseband processor 102 may measure multiple 5G cells where the electronic device 100 is located in response to the first instruction.
  • the baseband processor 102 may send the first UE assistance information to the LTE access network device 201 .
  • the first UE auxiliary information includes an overheating field, and the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field is non-0 or does not carry any sub-cell.
  • step S906 in the aforementioned embodiment shown in FIG. 9 , which will not be repeated here.
  • the LTE access network device 201 may initiate a process of establishing an NR connection with the electronic device 100.
  • step S907 in the aforementioned embodiment shown in FIG. 9 , which will not be repeated here.
  • the electronic device when the electronic device has established an LTE-NR dual connection, if the electronic device detects that the NR link needs to be released, the electronic device can trigger the network side to release the auxiliary information by reporting the second UE auxiliary information to the network side.
  • NR link wherein, the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the auxiliary information of the second UE is 0.
  • the electronic device can trigger the network side by reporting the first UE auxiliary information to the network side. Quickly establish NR links with electronic devices.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the first UE auxiliary information is non-0 or the overheating field does not carry any sub-cell.
  • the electronic device can be switched from the LTE single connection to the LTE-NR dual connection in time, without interrupting the data service, and reducing the risk of lost paging.
  • FIG. 11 shows a schematic diagram of a network connection method provided by another embodiment of the present application.
  • an electronic equipment (UE) 100 may include an application processor (AP) 101 and a baseband processor (BP) 102, and the baseband processor 102 may include a modem.
  • the network side device 200 includes an LTE access network (E-UTRAN) device 201 and a 5G access network (NR) device 202 .
  • the LTE access network device 201 may refer to the MeNB in the foregoing embodiment
  • the 5G access network (NR) device 202 may refer to the SgNB in the foregoing embodiment.
  • an electronic equipment (UE) 100 may include an application processor (AP) 101 and a baseband processor (BP) 102, and the baseband processor 102 may include a modem.
  • the network side device 200 includes an LTE access network (E-UTRAN) device 201 and a 5G access network (NR) device 202 .
  • the LTE access network device 201 may refer to the MeNB in the foregoing embodiment
  • the 5G access network (NR) device 202 may refer to the SgNB in the foregoing embodiment.
  • the network connection method may include:
  • the LTE access network device 201 sends a UE capability query request to the baseband processor 102 of the electronic device 100 .
  • the baseband processor 102 in response to the UE capability query request, sends UE capability information to the LTE access network device 201 .
  • the UE capability information may be used to indicate that the electronic device 100 supports an overheating mechanism.
  • the LTE access network device 201 may send network reconfiguration information to the baseband processor 102, where the network reconfiguration information includes overheating setup information .
  • step S903 for specific content, reference may be made to step S903 in the foregoing embodiment shown in FIG. 9 , and details are not repeated here.
  • the LTE access network device 201 initiates an NR link establishment process.
  • step S1004 for specific content, reference may be made to step S1004 in the foregoing embodiment shown in FIG. 10 , and details are not repeated here.
  • the application processor 101 of the electronic device 100 detects that the NR link needs to be released.
  • the application processor 101 may send a second instruction to the baseband processor 102, where the second instruction may be used to instruct the baseband processor 102 to release the NR link.
  • the second command may be a private command message, such as an attention (attention, AT) command message; the second command may also be a traditional command message, such as an at ⁇ syscfgex command message for removing the NR capability, or for releasing aterrccap command message for NR link.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the second command may also be a traditional command message, such as an at ⁇ syscfgex command message for removing the NR capability, or for releasing aterrccap command message for NR link.
  • the baseband processor 102 may send the second UE assistance information to the LTE access network device 201 in response to the second instruction.
  • the sub-cell uplink secondary carrier number (reducedCCsUL) carried in the overheating field in the second UE auxiliary information is 0.
  • the overheating field of the second UE assistance information may include a transmission rate class (reducedUE-Category) information element and a maximum secondary carrier number (reducedMaxCCs) information element.
  • the transmission rate class information element may include a downlink transmission rate class (reducedUE-CategoryDL) sub-cell and an uplink transmission rate class (reducedUE-CategoryUL) sub-cell.
  • the maximum secondary carrier number (reducedMaxCCs) information element may include a downlink secondary carrier number (reducedCCsDL) sub-cell and an uplink secondary carrier number (reducedCCsUL) sub-cell.
  • the baseband processor 102 may set the sub-cell uplink secondary carrier number (reducedCCsUL) in the overlaying field of the first UE assistance information to 0. For example, even if the baseband processor 102 can support 2 uplink secondary carriers, after receiving the second instruction, the baseband processor 102 also sets the sub-cell uplink secondary carrier number (reducedCCsUL) in the overlaying field of the second UE assistance information to 0, and send the second UE assistance information to the LTE access network device 201.
  • the baseband processor 102 may set the sub-cell uplink secondary carrier number (reducedCCsUL) in the overlaying field of the first UE assistance information to 0. For example, even if the baseband processor 102 can support 2 uplink secondary carriers, after receiving the second instruction, the baseband processor 102 also sets the sub-cell uplink secondary carrier number (reducedCCsUL) in the overlaying field of the second UE assistance information to 0, and send the second UE assistance information to the LTE access network device 201.
  • the LTE access network device 201 may initiate an NR link release procedure in response to the second UE assistance information.
  • the LTE access network device 201 can parse the sub-cell uplink carrier number (reducedCCsUL) of the overlaying field from the second UE auxiliary information to be 0.
  • the LTE access network device 201 may send NR release signaling to the 5G access network device 202 in response to the received second assistance information.
  • the NR release signaling can be used to instruct the 5G access network device 202 to release the wireless resources occupied by the electronic device 100 when it accesses the 5G access network device 202, for example, various functional layers (such as various functional layers included in the SCG link used for NR connection communication) NR PDCP, NR RLC, NR MAC, and NR PHY) related radio resources, etc.
  • various functional layers such as various functional layers included in the SCG link used for NR connection communication
  • NR PDCP such as various functional layers included in the SCG link used for NR connection communication
  • NR RLC such as various functional layers included in the SCG link used for NR connection communication
  • NR MAC such as various functional layers included in the SCG link used for NR connection communication
  • NR PHY Taking the release of radio resources related to NR PHY as an example, the downlink receiving channel, frequency point, cell ID and other information can be released specifically.
  • the baseband processor 102 releases the NR link and closes the NR measurement.
  • the LTE access network device 201 may notify the baseband processor 102 of the electronic device 100 to release the radio resources occupied by the UE side when the NR link configuration is performed.
  • Resources such as releasing radio resources related to the transmission function layers such as NR PDCP, NR RLC, NR MAC, and NR PHY, etc.
  • the relevant configuration parameters involved in the configuration of the NR connection on the network side can be released, such as parameters such as frequency and cell identity .
  • the baseband processor 202 may not perform NR measurements.
  • the network side cannot receive the NR measurement report sent by the UE side.
  • the baseband processor 202 after the baseband processor 202 releases the NR link, the baseband processor 202 performs NR measurement, but does not report the NR measurement report to the LTE access device 202 .
  • the application processor 101 detects that the electronic device 100 needs to establish an LTE-NR dual connection.
  • the application processor 101 may send a first instruction to the baseband processor 102, where the first instruction may be used to instruct the baseband processor 102 to establish an NR chain with the network side device road.
  • the first command may be a private command message, such as an attention (attention, AT) command message; the first command may also be a traditional command message, such as an at ⁇ syscfgex command message for opening an NR connection, or for recovery at ⁇ errccap command for NR link, etc.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the first command may also be a traditional command message, such as an at ⁇ syscfgex command message for opening an NR connection, or for recovery at ⁇ errccap command for NR link, etc.
  • the baseband processor 102 may enable NR measurement.
  • the baseband processor 102 may measure multiple 5G cells where the electronic device 100 is located in response to the first instruction.
  • the baseband processor 102 may send the first UE assistance information to the LTE access network device 201.
  • the first UE auxiliary information includes an overheating field, and the sub-cell uplink secondary carrier number (reducedCCsUL) carried in the overheating field is non-0 or does not carry any sub-cell.
  • step S906 in the aforementioned embodiment shown in FIG. 9 , which will not be repeated here.
  • the LTE access network device 201 may initiate a process of establishing an NR connection with the electronic device 100.
  • step S907 in the embodiment shown in FIG. 9 , which will not be repeated here.
  • the electronic device when the electronic device has disconnected the RRC connection from the network side, if the electronic device detects that the NR link is not required and the electronic device resumes establishing the RRC connection, the electronic device can close the NR measurement and send the first 2.
  • the UE auxiliary information is sent to the network side, indicating that the network side will no longer trigger the establishment of the NR link.
  • the electronic device can trigger the network side to quickly establish an NR link with the electronic device by reporting the first UE auxiliary information to the network side.
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overheating field in the first UE auxiliary information is non-0 or the overheating field does not carry any sub-cell.
  • the network side can no longer trigger the establishment of an NR link with the electronic device; when the electronic device detects the establishment of an LTE-NR dual connection, it can switch from LTE single connection to LTE-NR in time.
  • NR dual connection and will not interrupt data services, reducing the risk of lost paging.
  • FIG. 12 shows a schematic diagram of a network connection method provided by another embodiment of the present application.
  • an electronic equipment (UE) 100 may include an application processor (AP) 101 and a baseband processor (BP) 102, and the baseband processor 102 may include a modem.
  • the network side device 200 includes an LTE access network (E-UTRAN) device 201 and a 5G access network (NR) device 202 .
  • the LTE access network device 201 may refer to the MeNB in the foregoing embodiment
  • the 5G access network (NR) device 202 may refer to the SgNB in the foregoing embodiment.
  • an electronic equipment (UE) 100 may include an application processor (AP) 101 and a baseband processor (BP) 102, and the baseband processor 102 may include a modem.
  • the network side device 200 includes an LTE access network (E-UTRAN) device 201 and a 5G access network (NR) device 202 .
  • the LTE access network device 201 may refer to the MeNB in the foregoing embodiment
  • the 5G access network (NR) device 202 may refer to the SgNB in the foregoing embodiment.
  • the network connection method may include:
  • the LTE access network device 201 sends a UE capability query request to the baseband processor 102 of the electronic device 100 .
  • the baseband processor 102 in response to the UE capability query request, sends UE capability information to the LTE access network device 201 .
  • the UE capability information may be used to indicate that the electronic device 100 supports an overheating mechanism.
  • the application processor 201 detects that the electronic device 100 has no data service.
  • the electronic device 100 without data service may include any of the following: 1.
  • the electronic device 100 has turned off the mobile data function; 2.
  • the electronic device 100 has no data service for a period of time (for example, 60s); 3.
  • On the electronic device 100 No running apps, etc.
  • the application processor 201 sends a third instruction to the baseband processor 102.
  • the third instruction is used to instruct the baseband processor 102 to disconnect the RRC connection from the network side device 200 .
  • the third instruction may be a private command message, such as an attention (attention, AT) command message; the third instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for disconnecting the RRC connection, or for example at ⁇ errccap command message to disconnect RRC connection, etc.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the third instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for disconnecting the RRC connection, or for example at ⁇ errccap command message to disconnect RRC connection, etc.
  • the electronic device 100 and the network side device 200 are in LTE-NR dual connection.
  • the electronic device 100 and the network-side device 200 are in an LTE single connection.
  • the baseband processor 102 triggers the disconnection of the RRC connection with the network side device 200 in response to the third instruction.
  • the network-side device 200 may trigger to release the RRC connection with the electronic device 100 .
  • the application processor 201 sends a third instruction to the baseband processor 102 when detecting that the electronic device 100 has no data service.
  • the baseband processor 102 may, in response to the third instruction, send an RRC release request to the network side device 200.
  • the network side device 200 After the network side device 200 receives the RRC release request, it may respond to the RRC release request and trigger the release of the connection between the network side device 200 and the electronic device 100. RRC connection.
  • the electronic device 100 After the baseband processor 102 disconnects the RRC connection from the network side device, the electronic device 100 enters an idle state.
  • the application processor 101 of the electronic device 100 detects that the NR link needs to be released.
  • the application processor 101 may send a second instruction to the baseband processor 102, where the second instruction may be used to instruct the baseband processor 102 to release the NR link.
  • the second command may be a private command message, such as an attention (attention, AT) command message; the second command may also be a traditional command message, such as an at ⁇ syscfgex command message for removing the NR capability, or for releasing at ⁇ errccap command messages for NR links, etc.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the second command may also be a traditional command message, such as an at ⁇ syscfgex command message for removing the NR capability, or for releasing at ⁇ errccap command messages for NR links, etc.
  • S1208 The application processor 201 detects that the electronic device 100 has data services.
  • the electronic device 100 without data service may include any of the following: 1.
  • the mobile data function is enabled on the electronic device 100; 2.
  • the mobile data function is enabled on the electronic device 100 and the electronic device 100 has no data service for a period of time (for example, 60s).
  • the mobile data function is enabled on the electronic device 100 and an application is running on the electronic device 100, and so on.
  • the application processor 201 when detecting that the electronic device 100 has no data service, the application processor 201 sends a fourth instruction to the baseband processor 102 .
  • the fourth instruction is used to instruct the baseband processor 102 to establish an RRC connection with the network side device 200 .
  • the fourth instruction may be a private command message, such as an attention (attention, AT) command message; the fourth instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for establishing an RRC connection, etc., or for example The at ⁇ errccap command message for establishing an RRC connection, etc.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the fourth instruction may also be a traditional command message, such as an at ⁇ syscfgex command message for establishing an RRC connection, etc., or for example The at ⁇ errccap command message for establishing an RRC connection, etc.
  • the baseband processor 102 establishes an RRC connection with the network side device 200 in response to the fourth instruction.
  • the baseband processor 102 After the baseband processor 102 establishes an RRC connection with the network side device 200, it can send network reconfiguration information to the baseband processor 102, wherein the network reconfiguration information includes overheating protection configuration (overheating setup) information.
  • the network reconfiguration information includes overheating protection configuration (overheating setup) information.
  • step S903 for specific content, reference may be made to step S903 in the foregoing embodiment shown in FIG. 9 , and details are not repeated here.
  • the baseband processor 102 may turn off the NR measurement, and send the second UE assistance information to the LTE access network device 201 .
  • the sub-cell uplink carrier number (reducedCCsUL) carried in the overlaying field in the second UE auxiliary information is 0.
  • the baseband processor 102 may close the NR measurement, and send the second UE assistance information to the LTE access network device 201 .
  • the overheating field of the second UE assistance information may include a transmission rate class (reducedUE-Category) information element and a maximum number of carriers (reducedMaxCCs) information element.
  • the transmission rate class information element may include a downlink transmission rate class (reducedUE-CategoryDL) sub-cell and an uplink transmission rate class (reducedUE-CategoryUL) sub-cell.
  • the maximum carrier count (reducedMaxCCs) cell may include a downlink carrier count (reducedCCsDL) subcell and an uplink carrier count (reducedCCsUL) subcell.
  • the baseband processor 102 may set the sub-cell uplink carrier number (reducedCCsUL) in the overlaying field in the first UE auxiliary information to 0. For example, even if the baseband processor 102 can measure the number of 2 uplink carriers, after receiving the second instruction, the baseband processor 102 also sets the subcell uplink carrier number (reducedCCsUL) in the overlaying field of the second UE auxiliary information to 0, and send the second UE assistance information to the LTE access network device 201.
  • the baseband processor 102 may set the sub-cell uplink carrier number (reducedCCsUL) in the overlaying field in the first UE auxiliary information to 0. For example, even if the baseband processor 102 can measure the number of 2 uplink carriers, after receiving the second instruction, the baseband processor 102 also sets the subcell uplink carrier number (reducedCCsUL) in the overlaying field of the second UE auxiliary information to 0, and send the second UE assistance information to the LTE access network device 201.
  • the LTE access network device 201 After receiving the second UE auxiliary information, the LTE access network device 201 does not initiate an NR link establishment process, and does not configure NR measurement for the electronic device 100.
  • the network-side device 200 After the network-side device 200 receives the second UE auxiliary information, it can no longer attempt to establish an NR link with the electronic device 100, which saves network resources and prevents the network-side device 200 from actively establishing an NR link with the electronic device 100.
  • the application processor 101 detects that the electronic device 100 needs to establish an LTE-NR dual connection.
  • the application processor 101 may send a first instruction to the baseband processor 102, where the first instruction may be used to instruct the baseband processor 102 to restore the NR link.
  • the first command may be a private command message, such as an attention (attention, AT) command message; the first command may also be a traditional command message, such as an at ⁇ syscfgex command message for opening an NR connection, for restoring the NR chain Route at ⁇ errccap command messages, etc.
  • an attention (attention, AT) command message such as an attention (attention, AT) command message
  • the first command may also be a traditional command message, such as an at ⁇ syscfgex command message for opening an NR connection, for restoring the NR chain Route at ⁇ errccap command messages, etc.
  • the baseband processor 102 may enable NR measurement.
  • the baseband processor 102 may measure multiple 5G cells where the electronic device 100 is located in response to the first instruction.
  • the baseband processor 102 may send the first UE assistance information to the LTE access network device 201.
  • the first UE auxiliary information includes an overheating field, and the sub-cell uplink secondary carrier number (reducedCCsUL) carried in the overheating field is non-0 or does not carry any sub-cell.
  • step S906 in the aforementioned embodiment shown in FIG. 9 , which will not be repeated here.
  • the LTE access network device 201 may initiate a process of establishing an NR connection with the electronic device 100.
  • step S907 in the embodiment shown in FIG. 9 , which will not be repeated here.
  • the baseband processor 102 may also instruct the network side device 200 to release the NR link or instruct the network side device 200 to establish an LTE-NR dual connection through other signaling.
  • the baseband processor 102 may further instruct the network side device 200 to release the NR link or instruct the network side device 200 to establish an LTE-NR dual connection through the maximum carrier (maxCC) field in the UE assistance information.
  • maxCC maximum carrier
  • the UE auxiliary information may be different in different protocol versions.
  • the information element content of the UE auxiliary information with the maxCC field may be as follows:
  • the above-mentioned UE assistance information may include a maximum number of secondary carriers (maxCC) field and other fields, for example, idc field, discontinuous reception (drx) field, maximum bandwidth (maxBW) field, maximum number of MIMO (maxMIMO) field, minSchedulingOffset field, release field, sl-UE-Assistance InformationNR field.
  • maxCC maximum number of secondary carriers
  • idc field discontinuous reception
  • maxBW maximum bandwidth
  • maxMIMO maximum number of MIMO
  • minSchedulingOffset field release field
  • sl-UE-Assistance InformationNR field sl-UE-Assistance InformationNR field.
  • the "preference" in the name of the maxCC field indicates that the maxCC field may be a preference setting on the UE side, and the network side does not have to accept the secondary carrier setting indicated by the maxCC field.
  • the network side may set corresponding secondary carriers for the UE side according to the number of secondary carriers indicated by the
  • the maxCC field of the UE assistance information may include a sub-cell of the number of downlink secondary carriers (reducedCCsDL) and a sub-cell of the number of uplink secondary carriers (reducedCCsUL).
  • the value of the sub-cell of the number of downlink secondary carriers (reducedCCsDL) may be an integer from 0 to 31, and the value of the sub-cell of the number of uplink secondary carriers (reducedCCsUL) may be an integer of 0 to 31.
  • the maxCC field may be based on the 3GPP R16 protocol version, but is not limited to the 3GPP R16 protocol version, and may also be based on other versions of the protocol.
  • the network side device can activate a uplink secondary carrier for the electronic device according to.
  • the electronic device may send data and send an uplink reference signal on a physical uplink shared channel (PUSCH) on the activated a uplink secondary carrier.
  • the electronic device may not send data or uplink reference signals on a physical uplink shared channel (PUSCH) on other inactive uplink secondary carriers.
  • PUSCH physical uplink shared channel
  • the application processor 101 may send a first instruction to the baseband processor 102, where the first instruction may be used to instruct the baseband processor 102 An NR link is established with the network side device 200 .
  • the baseband processor 102 may send the third UE assistance information to the network side device 200 in response to the first instruction.
  • the sub-cell uplink carrier number (reducedCCsUL) of the maxCC field in the third UE auxiliary information is non-0, or the third UE auxiliary information does not carry any sub-cells.
  • the application processor 101 may send a second instruction to the baseband processor 102, and the second instruction may be used to instruct the baseband processor 102 to release the communication with the network side device 200.
  • the baseband processor 102 may send the fourth UE assistance information to the network side device 200 in response to the second instruction.
  • the sub-cell uplink carrier number (reducedCCsUL) of the maxCC field in the fourth UE auxiliary information is 0.
  • the baseband processor 102 may further instruct the network side device 200 to release the NR link or instruct the network side device 200 to establish an LTE-NR dual connection by setting a special field in the UE assistance information.
  • the special field occupies one bit (bit).
  • the UE assistance information when the value of the special field in the UE assistance information is 1, the UE assistance information may be used to instruct the network side device 200 to establish an LTE-NR dual connection. When the value of the special field in the UE assistance information is 0, the UE assistance information may be used to instruct the network side device 200 to release the NR link.
  • the baseband processor 102 may further instruct the network side device 200 to release the NR link or instruct the network side device 200 to establish an LTE-NR dual connection through other RRC signaling.
  • FIG. 13 shows a schematic structural diagram of the electronic device 100 .
  • the electronic device 100 shown in FIG. 13 is only an example, and the electronic device 100 may have more or fewer components than those shown in FIG. 13, two or more components may be combined, or Different component configurations are possible.
  • the various components shown in Figure 13 may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, And a subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light.
  • a pressure sensor 180A a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light.
  • a pressure sensor 180A a pressure sensor 180A
  • a gyroscope sensor 180B an air pressure sensor 180C
  • a magnetic sensor 180D a magnetic sensor 180D
  • an acceleration sensor 180E a distance sensor 180F
  • a proximity light sensor 180G a fingerprint sensor 180H
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • graphics processor graphics processor
  • image signal processor image signal processor
  • ISP image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the charging management module 140 is used to receive charging input from the charger.
  • the wireless communication function of the electronic device 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the electronic device 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the electronic device 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100 .
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing the instructions stored in the internal memory 121 .
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal.
  • Speaker 170A also referred to as a "speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece” is used to convert audio electrical signals into sound signals.
  • the microphone 170C also called “microphone” or “microphone”, is used to convert sound signals into electrical signals.
  • the earphone jack 170D is used to connect wired earphones.
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals. In some embodiments, the pressure sensor 180A may be provided on the display screen 194 .
  • the gyro sensor 180B may be used to determine the motion attitude of the electronic device 100 .
  • the air pressure sensor 180C is used to measure air pressure.
  • the magnetic sensor 180D includes a Hall sensor.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes).
  • Distance sensor 180F for measuring distance.
  • the electronic device 100 can measure the distance through infrared or laser.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the temperature sensor 180J is used to detect the temperature.
  • Touch sensor 180K also called "touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the location where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the keys 190 include a power-on key, a volume key, and the like.
  • Motor 191 can generate vibrating cues.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card.
  • FIG. 14 shows a chip system 1400 provided by an embodiment of the present application, where the chip system 1400 may include an application processor (application processor, AP) 101 and a baseband processor (baseband processor, BP) 102 .
  • application processor application processor, AP
  • baseband processor baseband processor
  • the software that the application processor 101 supports to run includes an operating system, a user interface, and an application program.
  • the baseband processor 102 can be regarded as a wireless modem module, responsible for coordinating and controlling the communication between the baseband 102 and the baseband and 101, and the software it supports to run includes the communication control software for the baseband modem baseband modem, and the like.
  • the application processor 101 and the baseband processor 102 support the use of a preset interface technology to achieve mutual communication, and the interface technology can be customized for the system, for example, it includes but is not limited to serial peripheral interface (serial peripheral interface, SPI) ), universal asynchronous receiver/transmitter (UART), universal serial bus (USB), general purpose input/output (GPIO) and other interface technologies.
  • the application processor and the baseband processor can implement mutual communication transmission in the form of messages through control commands, so as to complete functions such as calls, short messages, and mobile Internet access.
  • the control command may include a traditional AT (attention) command, a mobile broadband interface model (mobile broadband interface model, MBIM) command, or other protocol commands that support mutual transmission between 101 and 102 .
  • the baseband processor 102 supports running protocol software related to the non-access NAS layer and the radio resource control RRC layer.
  • the application processor 101 supports communication with the NAS layer and the RRC layer in the baseband processor 102 .
  • the application processor 101 may use a traditional AT command to send a corresponding signaling message to the NAS layer to notify the NAS layer of information such as the application state or the device screen state currently known by the NAS layer.
  • the system-on-chip 1400 generally refers to a highly complex system-on-chip, such as an SOC chip. In actual deployment, it can be deployed inside the device or outside the device, and the device can be controlled through a wired connection or a wireless connection.
  • the device includes but is not limited to user equipment UE or terminal device, for example, it may specifically include a smart phone, mobile internet devices (mobile internet devices, MID), wearable smart devices or other devices that support network communication, etc.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium.
  • the computer-readable storage medium is executed on a processor, the flow of any of the method embodiments in FIG. 9 to FIG. 12 may be be realized.
  • the embodiments of the present application further provide a computer program product, and when the computer program product runs on a processor, the flow of any of the method embodiments in FIG. 9 to FIG. 12 can be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种网络连接方法、系统及相关装置。电子设备通过长期演进LTE链路与网络侧设备进行数据交互。当电子设备满足第一预设条件时,电子设备主动发送第一UE辅助信息至网络侧设备。其中,第一用户设备UE辅助信息包括第一字段,第一字段内携带的子信元上行辅载波数reducedCCsUL为第一值或者第一字段内不携带任何子信元,第一值大于0。网络侧设备响应于第一UE辅助信息,与电子设备建立新空口NR链路。电子设备通过LTE链路和NR链路同时与网络侧设备进行数据交互。可以快速触发网络侧添加NR链路,以快速恢复LTE-NR双连接,提高数据传输速率。

Description

一种网络连接方法、系统及相关装置
本申请要求于2020年07月31日提交中国专利局、申请号为202010761966.2、申请名称为“一种网络连接方法、系统及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种网络连接方法、系统及相关装置。
背景技术
LTE在R12标准中引入双连接的概念,即用户设备(user equipment,UE)在无线资源控制(radio resource control,RRC)连接状态下可同时利用两个基站独立的物理资源进行传输。LTE双连接技术拓展了载波聚合的应用,能有效提升网络容量,提高网络切换功率等能力。
在第五代移动通信网络(5th generation mobile networks,5G)的新空口(new radio,NR)网络部署初期,非独立组网(non-standalone)的组网方式将是全球大多数运营商选用的方式。
NSA组网方式也称为4G-5G无线接入双连接(EUTRN-NR dual connectivity,EN-DC),主要涉及4G的E-UTRAN接入网(也称为LTE接入网)和5G的新随机接入制式(new random access technology,NR)接入网(简称为NR接入网),从而使得5G网络在部署时可借助已有4G的LTE覆盖,避免网络资源的浪费。
在EN-DC组网方式中,UE可同时与4G基站(可称为eNB)和5G基站(可称为En-gNB)连接,在4G和5G的紧密互操作下获得高速率、低延迟的无线传输服务。相比于单接入网工作模式而言(例如仅利用4G的LTE技术通信),电子设备的双接入网工作模式(例如同时利用4G的LTE技术和5G技术通信)将导致UE功耗较大。且对于一些低用网需求的场景而言,LTE接入网即可保证电子设备的连网需求。对于智能手机等电子设备,会经常在高网速需求的场景和低网速需求的场景之间切换,如果仍采用LTE-NR双连接技术无疑会造成网络资源的浪费、电子设备功耗的增加。
发明内容
本申请提供了一种网络连接方法及相关装置,实现了可通过UE辅助信息中的过热保护(overheating)字段或最大辅载波(maxCC)等字段指示网络侧快速建立NR链路连接或释放NR链路连接。
第一方面,本申请提供了一种网络连接系统,包括:电子设备和网络侧设备;其中,电子设备,用于通过长期演进LTE链路与网络侧设备进行数据交互;电子设备,还用于当电子设备满足第一预设条件时,主动发送第一UE辅助信息至网络侧设备;其中,第一用户设备UE辅助信息包括第一字段,第一字段内携带的子信元上行辅载波数reducedCCsUL为第一值或者第一字段内不携带任何子信元,第一值大于0;网络侧设备,用于响应于第一UE辅助信息,与电子设备建立新空口NR链路;电子设备,还用于通过LTE链路和NR 链路同时与网络侧设备进行数据交互。
通过本申请提供的一种网络连接系统,电子设备可以通过向网络侧发送UE辅助信息,触发网络侧与电子设备快速建立NR链路连接或释放NR链路连接。具体可使用UE辅助信息中的过热保护(overheating)字段或最大辅载波(maxCC)等字段指示网络侧建立NR链路连接或释放NR链路连接。这样,电子设备在LTE-NR双连接情况下,需要释放NR连接时,快速触发网络侧释放NR SCG,以降低功耗。电子设备在单LTE连接情况下,需要建立LTE-NR双连接的时,电子设备可以快速触发网络侧添加NR SCG,以快速恢复LTE-NR双连接,提高数据传输速率。
其中,1、当第一UE辅助信息的协议版本可以为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,第一字段为过热保护overheating字段。2、当第一UE辅助信息的协议类型可以为3GPP技术协议规范R16版本,第一字段为最大辅载波数maxCC字段。
在一种可能的实现方式中,网络侧设备,还用于响应于第一UE辅助信息,激活电子设备的N个上行辅载波,N为第一值;电子设备,具体用于通过LTE链路上的上行主载波和NR链路上的N个上行辅载波同时发送数据给网络侧设备。
在一种可能的实现方式中,电子设备,还用于:在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互;当电子设备满足第二预设条件时,主动发送辅小区组失败SCG failure信令至网络侧设备;网络侧设备,还用于响应于SCG failure信令,与电子设备释放NR链路;电子设备,还用于在释放NR链路后,关闭NR测量。
这样,电子设备已经建立LTE-NR双连接的情况下,若电子设备检测到需要释放NR链路时,电子设备可以通过上报SCG failure信令给网络侧,触发网络侧释放NR链路。当已经断开了NR链路,与LTE接入网设备单连接后,若电子设备检测到需要建立LTE-NR双连接时,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为非0或者overheating字段不携带任何子信元。这样,可以及时让电子设备从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,减小了丢寻呼的风险
在一种可能的实现方式中,电子设备,还用于:在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互;当电子设备满足第二预设条件时,主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括overheating字段,第二UE辅助信息中overheating字段内携带的上行辅载波数reducedCCsUL子信元为0;网络侧设备,还用于响应于第二UE辅助信息,与电子设备释放NR链路;电子设备,还用于在释放NR链路后,关闭NR测量。
这样,电子设备已经建立LTE-NR双连接的情况下,若电子设备检测到需要释放NR链路时,电子设备可以通过上报第二UE辅助信息给网络侧,触发网络侧释放NR链路。 其中,第二UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为0。当已经断开了NR链路,与LTE接入网设备单连接后,若电子设备检测到需要建立LTE-NR双连接时,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为非0或者overheating字段不携带任何子信元。这样,可以及时让电子设备从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,减小了丢寻呼的风险。
在一种可能的实现方式中,电子设备,还用于:在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互;当电子设备满足第二预设条件时,主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括maxCC字段,第二UE辅助信息中maxCC字段内携带的上行辅载波数reducedCCsUL子信元为0;网络侧设备,还用于响应于第二UE辅助信息,与电子设备释放NR链路。
这样,电子设备已经建立LTE-NR双连接的情况下,若电子设备检测到需要释放NR链路时,电子设备可以通过上报第二UE辅助信息给网络侧,触发网络侧释放NR链路。其中,第二UE辅助信息中的maxCC字段携带的子信元上行载波数(reducedCCsUL)为0。当已经断开了NR链路,与LTE接入网设备单连接后,若电子设备检测到需要建立LTE-NR双连接时,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的maxCC字段携带的子信元上行载波数(reducedCCsUL)为非0或者maxCC字段不携带任何子信元。这样,可以及时让电子设备从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,减小了丢寻呼的风险。
在一种可能的实现方式中,网络侧设备,还用于在接收到第一UE辅助信息之前,发送UE能力查询请求至电子设备;电子设备,还用于响应于UE能力查询请求,发送UE能力信息给网络侧设备,其中,UE能力信息用于表征电子设备支持overheating机制;网络侧设备,还用于在接收到UE能力信息之后,发送网络重配置信息至电子设备,网络重配置信息中包括有overheating配置信息;电子设备,还用于响应于网络重配置信息,执行overheating配置信息中的配置内容。
在一种可能的实现方式中,电子设备,还用于在主动发送第一UE辅助信息至网络侧设备之前,当检测到电子设备无数据业务时,发送无线资源控制RRC连接释放信令至网络侧设备;网络侧设备,还用于响应于RRC连接释放信令,与电子设备断开RRC连接;电子设备,还用于当电子设备满足第二预设条件且检测到电子设备有数据业务时,发送RRC连接建立信令至网络侧设备;网络侧设备,还用于响应于RRC连接建立信令,与电子设备建立RRC连接;电子设备,还用于关闭NR测量,并发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息中reduced CCsUL子信元为0;网络侧设备,还用于响应于第二UE辅助信息,与电子设备通过LTE链路进行数据交互。
这样,电子设备已经与网络侧断开RRC连接的情况下,若电子设备检测到不需要NR链路之后,电子设备恢复建立RRC连接时,电子设备可以关闭NR测量并发送第二UE辅 助信息给网络侧,指示网络侧不再触发建立NR链路。之后,若电子设备检测到需要建立LTE-NR双连接,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为非0或者overheating字段不携带任何子信元。这样,可以在电子设备检测到释放NR链路时,让网络侧不再触发与电子设备建立NR链路;在电子设备检测到建立LTE-NR双连接时,及时从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,减小了丢寻呼的风险。
上述第一预设条件可以包括一下任一种:1、电子设备亮屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率大于第一预设速率;3、电子设备亮屏,且电子设备所需传输的数据包的大小大于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率大于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值,等等。
上述第二预设条件可以包括一下任一种:1、电子设备灭屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率小于或等于第一预设速率;3、电子设备亮屏,且电子设备所需传输的数据包的大小小于或等于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率小于等于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值。
第二方面,本申请提供了一种电子设备,包括:一个或多个处理器;计算机存储介质,计算机存储介质包括计算机指令,当一个或多个处理器执行计算机指令时,使得电子设备执行以下动作:通过长期演进LTE链路与网络侧设备进行数据交互;当电子设备满足第一预设条件时,主动发送第一UE辅助信息至网络侧设备;其中,第一用户设备UE辅助信息包括第一字段,第一字段内携带的子信元上行辅载波数reducedCCsUL为第一值或者第一字段内不携带任何子信元,第一值大于0;与网络侧设备建立新空口NR链路;通过LTE链路和NR链路同时与网络侧设备进行数据交互。
通过本申请提供的一种电子设备,电子设备可以通过向网络侧发送UE辅助信息,触发网络侧与电子设备快速建立NR链路连接或释放NR链路连接。具体可使用UE辅助信息中的过热保护(overheating)字段或最大辅载波(maxCC)等字段指示网络侧建立NR链路连接或释放NR链路连接。这样,电子设备在LTE-NR双连接情况下,需要释放NR连接时,快速触发网络侧释放NR SCG,以降低功耗。电子设备在单LTE连接情况下,需要建立LTE-NR双连接的时,电子设备可以快速触发网络侧添加NR SCG,以快速恢复LTE-NR双连接,提高数据传输速率。
其中,1、当第一UE辅助信息的协议版本可以为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,第一字段为过热保护overheating字段。2、当第一UE辅助信息的协议类型可以为3GPP技术协议规范R16版本,第一字段为最大辅载波数maxCC字段。
在一种可能的实现方式中,电子设备通过LTE链路和NR链路同时与网络侧设备进行数据交互,具体包括:电子设备通过LTE链路上的上行主载波和NR链路上被网络侧设备激活的N个上行辅载波同时发送数据给网络侧设备,N为第一值。
在一种可能的实现方式中,电子设备可以在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。当电子设备满足第二预设条件时,电子设备主动发送辅小区组失败SCG failure信令至网络侧设备。电子设备与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,电子设备在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。当电子设备满足第二预设条件时,电子设备主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括overheating字段,第二UE辅助信息中overheating字段内携带的上行辅载波数reducedCCsUL子信元为0。电子设备与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,电子设备在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。当电子设备满足第二预设条件时,电子设备主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括maxCC字段,第二UE辅助信息中maxCC字段内携带的上行辅载波数reducedCCsUL子信元为0。电子设备与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,电子设备在发送第一UE辅助信息至网络侧设备之前,接收到网络侧设备发送的UE能力查询请求。电子设备响应于UE能力查询请求,发送UE能力信息给网络侧设备,其中,UE能力信息用于表征电子设备支持overheating机制。电子设备接收到网络侧设备发送的网络重配置信息,网络重配置信息中包括有overheating配置信息。电子设备响应于网络重配置信息,执行overheating配置信息中的配置内容。
在一种可能的实现方式中,电子设备在主动发送第一UE辅助信息至网络侧设备之前,当检测到电子设备无数据业务时,发送无线资源控制RRC连接释放信令至网络侧设备,RRC连接释放信令用于指示网络侧设备与电子设备断开RRC连接。电子设备与网络侧设备断开RRC连接。当电子设备满足第二预设条件且检测到电子设备有数据业务时,电子设备发送RRC连接建立信令至网络侧设备,RRC建立信令用于指示网络侧设备与电子设备建立RRC连接。电子设备与网络侧设备建立RRC连接。电子设备关闭NR测量,并发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息中reduced CCsUL子信元为0。电子设备与网络侧设备通过LTE链路进行数据交互。
其中,上述第一预设条件可以包括一下任一种:1、电子设备亮屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率大于第一预设速率;3、电子设备亮屏,且电子设备所需传输的数据包的大小大于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率大于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值,等等。
上述第二预设条件可以包括一下任一种:1、电子设备灭屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率小于或等于第一预设速率;3、电子设备亮屏,且电子 设备所需传输的数据包的大小小于或等于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率小于等于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值。
第三方面,本申请提供了一种芯片系统,应用于电子设备,包括:应用处理器AP和基带处理器BP;其中,
基带处理器,用于通过长期演进LTE链路与网络侧设备进行数据交互;
应用处理器,还用于当电子设备满足第一预设条件时,发送第一指令至基带处理器;
基带处理器,还用于响应于第一指令,主动发送第一UE辅助信息至网络侧设备;其中,第一用户设备UE辅助信息包括第一字段,第一字段内携带的子信元上行辅载波数reducedCCsUL为第一值或者第一字段内不携带任何子信元,第一值大于0;
基带处理器,还用于与网络侧设备建立新空口NR链路;
基带处理器,还用于通过LTE链路和NR链路同时与网络侧设备进行数据交互。
通过本申请提供的一种芯片系统,基带处理器可以通过向网络侧发送UE辅助信息,触发网络侧与基带处理器快速建立NR链路连接或释放NR链路连接。具体可使用UE辅助信息中的过热保护(overheating)字段或最大辅载波(maxCC)等字段指示网络侧建立NR链路连接或释放NR链路连接。这样,基带处理器在LTE-NR双连接情况下,需要释放NR连接时,快速触发网络侧释放NR SCG,以降低功耗。基带处理器在单LTE连接情况下,需要建立LTE-NR双连接的时,基带处理器可以快速触发网络侧添加NR SCG,以快速恢复LTE-NR双连接,提高数据传输速率。
其中,1、当第一UE辅助信息的协议版本可以为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,第一字段为过热保护overheating字段。2、当第一UE辅助信息的协议类型可以为3GPP技术协议规范R16版本,第一字段为最大辅载波数maxCC字段。
在一种可能的实现方式中,基带处理器,具体用于通过LTE链路上的上行主载波和NR链路上被网络侧设备激活的N个上行辅载波同时发送数据给网络侧设备,N为第一值。
在一种可能的实现方式中,基带处理器,还用于在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。应用处理器,还用于当电子设备满足第二预设条件时,发送第二指令至基带处理器。基带处理器,还用于响应于第二指令,主动发送辅小区组失败SCG failure信令至网络侧设备。基带处理器,还用于与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,基带处理器,还用于在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。应用处理器,还用于当电子设备满足第二预设条件时,发送第二指令至基带处理器。基带处理器,还用于响应于第二指令,主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括overheating字段,第二UE辅助信息中overheating字段内携带的上行辅载波数reducedCCsUL子信元为0。基带处理器,与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,基带处理器,还用于在通过LTE链路与网络侧进行数据交 互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。应用处理器,还用于当电子设备满足第二预设条件时,发送第二指令至基带处理器。基带处理器,还用于响应于第二指令,主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括maxCC字段,第二UE辅助信息中maxCC字段内携带的上行辅载波数reducedCCsUL子信元为0。基带处理器,与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,基带处理器,还用于在发送第一UE辅助信息至网络侧设备之前,接收到网络侧设备发送的UE能力查询请求。基带处理器,还用于响应于UE能力查询请求,发送UE能力信息给网络侧设备,其中,UE能力信息用于表征电子设备支持overheating机制。基带处理器,还用于接收到网络侧设备发送的网络重配置信息,网络重配置信息中包括有overheating配置信息。基带处理器,还用于响应于网络重配置信息,执行overheating配置信息中的配置内容。
在一种可能的实现方式中,应用处理器,还用于在发送第一指令至基带处理器之前,当检测到电子设备无数据业务时,发送第三指令至基带处理器。基带处理器,还用于响应于第三指令,发送无线资源控制RRC连接释放信令至网络侧设备,RRC连接释放信令用于指示网络侧设备与电子设备断开RRC连接。基带处理器,还用于与网络侧设备断开RRC连接。应用处理器,还用于当电子设备满足第二预设条件,发送第二指令至基带处理器。应用处理器,还用于在检测到电子设备有数据业务时,发送第四指令至基带处理器。基带处理器,还用于响应于第四指令,发送RRC连接建立信令至网络侧设备,RRC建立信令用于指示网络侧设备与电子设备建立RRC连接。基带处理器,还用于与网络侧设备建立RRC连接。基带处理器,还用于响应于第二指令,关闭NR测量,并发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息中reduced CCsUL子信元为0。基带处理器,还用于与网络侧设备通过LTE链路进行数据交互。
其中,上述第一预设条件可以包括一下任一种:1、电子设备亮屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率大于第一预设速率;3、电子设备亮屏,且电子设备所需传输的数据包的大小大于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率大于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值,等等。
上述第二预设条件可以包括一下任一种:1、电子设备灭屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率小于或等于第一预设速率;3、电子设备亮屏,且电子设备所需传输的数据包的大小小于或等于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率小于等于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值。
第四方面,本申请提供了一种网络连接方法,该方法包括:电子设备通过长期演进LTE链路与网络侧设备进行数据交互;当电子设备满足第一预设条件时,主动发送第一UE辅助信息至网络侧设备;其中,第一用户设备UE辅助信息包括第一字段,第一字段内携带 的子信元上行辅载波数reducedCCsUL为第一值或者第一字段内不携带任何子信元,第一值大于0。电子设备与网络侧设备建立新空口NR链路。电子设备通过LTE链路和NR链路同时与网络侧设备进行数据交互。
通过本申请提供的一种网络连接方法,电子设备可以通过向网络侧发送UE辅助信息,触发网络侧与电子设备快速建立NR链路连接或释放NR链路连接。具体可使用UE辅助信息中的过热保护(overheating)字段或最大辅载波(maxCC)等字段指示网络侧建立NR链路连接或释放NR链路连接。这样,电子设备在LTE-NR双连接情况下,需要释放NR连接时,快速触发网络侧释放NR SCG,以降低功耗。电子设备在单LTE连接情况下,需要建立LTE-NR双连接的时,电子设备可以快速触发网络侧添加NR SCG,以快速恢复LTE-NR双连接,提高数据传输速率。
其中,1、当第一UE辅助信息的协议版本可以为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,第一字段为过热保护overheating字段。2、当第一UE辅助信息的协议类型可以为3GPP技术协议规范R16版本,第一字段为最大辅载波数maxCC字段。
在一种可能的实现方式中,电子设备通过LTE链路和NR链路同时与网络侧设备进行数据交互,具体包括:电子设备通过LTE链路上的上行主载波和NR链路上被网络侧设备激活的N个上行辅载波同时发送数据给网络侧设备,N为第一值。
在一种可能的实现方式中,电子设备可以在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。当电子设备满足第二预设条件时,电子设备主动发送辅小区组失败SCG failure信令至网络侧设备。电子设备与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,电子设备在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。当电子设备满足第二预设条件时,电子设备主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括overheating字段,第二UE辅助信息中overheating字段内携带的上行辅载波数reducedCCsUL子信元为0。电子设备与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,电子设备在通过LTE链路与网络侧进行数据交互之前,通过LTE链路和NR链路同时与网络侧设备进行数据交互。当电子设备满足第二预设条件时,电子设备主动发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息包括maxCC字段,第二UE辅助信息中maxCC字段内携带的上行辅载波数reducedCCsUL子信元为0。电子设备与网络侧设备释放NR链路,并关闭NR测量。
在一种可能的实现方式中,电子设备在发送第一UE辅助信息至网络侧设备之前,接收到网络侧设备发送的UE能力查询请求。电子设备响应于UE能力查询请求,发送UE能力信息给网络侧设备,其中,UE能力信息用于表征电子设备支持overheating机制。电子设备接收到网络侧设备发送的网络重配置信息,网络重配置信息中包括有overheating配置信息。电子设备响应于网络重配置信息,执行overheating配置信息中的配置内容。
在一种可能的实现方式中,电子设备在主动发送第一UE辅助信息至网络侧设备之前,当检测到电子设备无数据业务时,发送无线资源控制RRC连接释放信令至网络侧设备,RRC连接释放信令用于指示网络侧设备与电子设备断开RRC连接。电子设备与网络侧设 备断开RRC连接。当电子设备满足第二预设条件且检测到电子设备有数据业务时,电子设备发送RRC连接建立信令至网络侧设备,RRC建立信令用于指示网络侧设备与电子设备建立RRC连接。电子设备与网络侧设备建立RRC连接。电子设备关闭NR测量,并发送第二UE辅助信息至网络侧设备,其中,第二UE辅助信息中reduced CCsUL子信元为0。电子设备与网络侧设备通过LTE链路进行数据交互。
其中,上述第一预设条件可以包括一下任一种:1、电子设备亮屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率大于第一预设速率;3、电子设备亮屏,且电子设备所需传输的数据包的大小大于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率大于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值,等等。
上述第二预设条件可以包括一下任一种:1、电子设备灭屏;2、电子设备亮屏,且电子设备与网络侧设备的数据传输速率小于或等于第一预设速率;3、电子设备亮屏,且电子设备所需传输的数据包的大小小于或等于第一预设阈值;4、电子设备的设备温度大于或等于预设温度阈值;5、电子设备灭屏,且电子设备与网络侧设备的数据传输速率小于等于第二预设速率;6、电子设备灭屏,且电子设备与网络侧设备之间传输的数据包大小大于第二预设阈值。
第五方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述任一方面任一项可能的实现方式中的网络连接方法。
第六方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述任一方面任一项可能的实现方式中的网络连接方法。
附图说明
图1为本申请实施例提供的一种EN-DC网络架构示意图;
图2为本申请实施例提供的一种电子设备的接口协议分层通信示意图;
图3为本申请实施例提供的一种UE侧的数据承载链路的通信示意图;
图4为本申请实施例提供的一种网络侧的数据承载链路的通信示意图;
图5为本申请实施例提供的一种触发网络释放NR连接的流程示意图;
图6为本申请实施例提供的一种触发网络建立NR连接的流程示意图;
图7为本申请实施例提供的另一种触发网络建立NR连接的流程示意图;
图8为本申请实施例提供的UE辅助信息中overheating字段的网络配置和上报流程示意图;
图9为本申请实施例提供的一种网络连接方法的示意图;
图10为本申请另一实施例提供的一种网络连接方法的示意图;
图11为本申请另一实施例提供的一种网络连接方法的示意图;
图12为本申请另一实施例提供的一种网络连接方法的示意图;
图13为本申请实施例提供的一种电子设备的结构示意图;
图14为本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清除、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面介绍本申请涉及的一种EN-DC网络架构。
图1示出了本申请中涉及的一种EN-DC网络架构。
如图1所示,该EN-DC网络架构包括主基站MeNB(4G LTE接入网络中的基站)、辅基站SgNB(5G NR的基站)、电子设备(可称为UE)、移动管理实体(mobility management entity,MME)以及服务网关(serving-gateway,S-GW)。其中,主基站、辅基站和电子设备各自的数量并不做限定,这里以一个作为示例,并不构成限定。
基站(具体可为MeNB或SgNB),为用户提供空中接口,电子设备UE通过无线连接到基站。进一步基站通过有线连接到运营商的核心网,实现业务通信。
电子设备UE,指支持连网的设备,其可包括但不限于手机、平板电脑(table personal computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(mobile internet device,MID)、可穿戴式设备(wearable device)以及其他支持和网络通信的设备。
MME,属于核心网的网元,主要负责提供NSA组网的信令传输、用户鉴权和漫游管理等。
服务网关(serving gateway,S-GW),主要负责本地网络用户数据的处理,例如分组数据的路由或转发等。
如图1所示,主基站MeNB和移动管理实体MME之间通过S1-C接口连接,主基站MeNB和服务网关S-GW之间通过S1-U接口连接。主基站MeNB和辅基站SeNB之间可通过X2接口连接,辅基站SeNB还可根据实际业务需求通过S1-U接口与S-GW连接。在通信过程中,主基站MeNB通过X2接口与辅基站SeNB进行通信协调后可产生RRC消息,然后转发给UE,以实现网络系统信息的广播、切换、测量配置和测量报告的上报等功能,不做限定。
下面介绍本申请中涉及的电子设备的接口协议分层。
图2示出了本申请实施例提供的一种电子设备的接口协议分层通信示意图。在实际应用中,接口是指不同网元之间的信息交互方式,不同接口之间通信时采用的接口协议可不相同。目前,无线制式的接口协议分为三层:物理层(physical layer,PHY)、数据链路层和网络层。
如图2所示,物理层PHY位于最底层,主要负责处理调制解调、天线映射或其他电信物理层功能。
数据链路层包括分组数据汇聚协议(packet date convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层和媒体访问控制(mediaaccess control,MAC)层。其中,PDCP层主要负责执行包头压缩,以减少无线接口传输的比特流量。RLC层主要负责分段和连接、高层数据的顺序控制等处理。MAC层主要负责混合自动重传请求(hybrid automatic repeat request,HARQ)重传和上下行调度等。在实际应用中,LTE-NR双连接技术具体可在L2数据链路层实现载波聚合的承载和分离,具体如上文所述载波聚合具体承载在媒体访问控制(medium access control,MAC)层分离,双连接的承载分离位于分组数据汇聚协议(packet data convergence protocol,PDCP)层实现。
网络层包括非接入层(non-access stratum,NAS)和RRC层。其中,非接入层NAS可用于传输用户信息或控制信息,例如4G/5G通信链路或业务的建立、释放以及移动性管理信息等。NAS层以下的协议层也可称为接入层(access stratum,AS)。RRC层支持电子设备UE和基站eNB间多种功能的信令协议,广播NAS层和AS层的系统消息,RRC连接建立、保持和释放,端到端无线承载(例如UE到网络侧间无线接入网链路)的建立、修改和释放,包括UE测量报告、小区切换和重选等功能在内的移动管理等。在实际应用中,UE可通过L3网络层与网络侧通信,以实现4G和5G接入网的建立、释放等操作,具体在本申请下文进行详述。
下面介绍本申请中涉及的EN-DC组网技术中的用户面协议栈架构。
EN-DC组网技术中定义有主小区群(master cell group,MCG)和辅小区群(secondary cell group,SCG),并根据数据分离和转发方式不同,将数据承载分为三类:MCG承载、SCG承载和分离Split承载。其中,主小区群MCG是指至少一个4G LTE接入网的主基站MeNB所在小区的集群,辅小区群是指至少一个5G NR的辅基站SgNB所在小区的集群。
图3示出了本申请实施例中提供的UE侧的数据承载链路的通信示意图。
如图3所示,UE侧可以感知三种数据承载,分别为:MCG承载、SCG承载和分离(Split)承载。其中,MCG承载指数据从核心网的S-GW路由到主基站MeNB,并由MeNB直接转发给UE。SCG承载指数据从核心网的S-GW路由到辅基站SeNB,并由SeNB直接转发给UE。Split承载指数据在基站侧分离,可由主基站MeNB或辅基站SeNB向UE转发,也可由主基站MeNB或辅基站SeNB按预设的分离比例同时为UE传输数据,提供服务。
当UE感知数据承载为MCG承载时,数据通信时所用的通信链路(也可称MCG链路)为:LTE PDCP/NR PDCP-LTE RLC-LTE MAC。当UE感知数据承载为SCG承载时,数据通信时所用的通信链路(也可称为SCG链路)为:NR PDCP-NR RLC-NR MAC。当UE感知数据承载为Split承载时,数据通信时所用的通信链路(也可称为Split链路)为:NR  PDCP-LTE RLC-LTE MAC,或者NR PDCP-NR RLC-LTE MAC。其中,由于SCG链路仅使用到5G NR的网络资源,该SCG链路也可称为NR链路。MCG链路使用到4G LTE的网络资源,该MCG链路也可称为LTE链路。
图4示出了本申请实施例中提供的网络侧的数据承载链路的通信示意图。
如图4所示,网络侧感知数据承载的方式有6种,分别为:主节点(master node,MN,具体可指主基站MeNB)终止的MCG承载、MN终止的SCG承载、MN终止的分离Split承载、辅节点(secondary node,SN,具体可指辅基站SeNB)终止的MCG承载、SN终止的SCG承载和SN终止的分离Split承载。
其中,MN终止的承载是指PDCP层在主基站MeNB的无线承载,不在辅基站SeNB的无线承载。反之,SN终止的承载是指PDCP层在辅基站SeNB的无线承载,不在主基站MeNB的无线承载。当网络侧感知的数据承载为MN终止的MCG承载时,数据通信时的通信链路为:LTE PDCP/NR PDCP-LTE RLC-LTE MAC。当网络侧感知的数据承载为MN终止的Split承载时,数据通信时的通信链路为:NR PDCP-LTE RLC-LTE MAC,或者NR PDCP-NR RLC-NR MAC。具体可根据实际需求选择,不做限定。关于网络侧感知的各种数据承载对应的通信链路,具体如图4所示,这里不再赘述。
5G NSA组网下,EN-DC是一个重要的使用场景。电子设备通过LTE和NR两个接入网域网络侧进行数据通信,在两个接入网络发送和接收业务数据包,显著提升用户数据体验。在EN-DC模式,电子设备在LTE和NR制式同时工作时,两种制式相关器件需要同时工作,相比单模式工作,电子设备功耗较高,且容易促使温度升高。
在一些场景中,例如灭屏,或者应用低速率场景,或者无数据流量,或者开启省电模式等场景下,电子设备在LTE就可以满足业务需要,需要优先考虑功耗因素,释放NR连接。另外,由于电子设备温度过高,出于对电子设备和电子设备使用人的保护,也需要释放NR SCG。
图5示出了本申请中提供的一种触发网络释放NR连接的流程示意图。
如图5所示,电子设备UE可以包括应用处理器AP、NAS层、RRC层。其中,RRC层具体包括LTE RRC(简称为LRRC)和NR RRC(简称为NRRC)。电子设备释放NR SCG的过程可以如下:
1、电子设备的应用处理器AP在检测到需要释放NR SCG时,可以指示NAS层释放SCG。
2、NAS层可以通知RRC层释放NR的接入层(access stratum,AS)资源。
3、RRC层可以向网络侧设备发送SCG failure消息,该SCG failure消息可用于通知网络侧设备释放SCG。
4、网络侧设备接收到电子设备的RRC层发送的SCG failure消息之后,网络侧设备可以与电子设备的RRC层断开NR链路。RRC层可以关闭NR测量。
5、电子设备的RRC层在断开NR链路,关闭NR测量之后,可以通知NAS层该NR链路被删除,LRRC连接不释放。
通过上述电子设备上报SCG failure消息给网络侧设备的方式,可以触发网络侧设备释放NR SCG。但是,电子设备频繁上报SCG failure消息给网络侧设备,会导致网络侧异常指标升高,网络无法判断网络异常原因,同时现网也存在终端上报SCG failure,网络也不释放SCG的情况。
在一些场景中,电子设备已经释放了NR SCG,但电子设备需要使用5G业务时,电子设备需要尽快恢复建立5G连接,保证应用的网速需求和用户体验。
图6示出了本申请中提供的一种触发网络建立NR连接的流程示意图。
如图6所示,电子设备建立NR连接的过程可以如下:
1、电子设备可以启动大流量应用,并与主基站MeNB进行大流量的数据交互。
2、主基站可以根据电子设备的数据流量信息,确定出电子设备需要添加辅基站SgNB。
3、主基站可以判断辅基站添加间隔是否超时(例如超过60s)。
4、若辅基站添加间隔超时(例如超过60s),主基站可以发送B1事件测量信令给电子设备。
5、电子设备在接收到B1事件测量信令后,可以在异系统邻区信号大于指定门限时,发送B1事件测量报告给主基站。其中,B1事件测量报告中包括有电子设备测量到信号大于指定门限的异系统邻区。
6、主基站可以基于B1事件测量报告为电子设备选择出合适的5G邻区。
7、主基站在为电子设备选择出合适的5G邻区后,可以发送辅基站添加请求给辅基站。
8、辅基站接收到主基站发送的辅基站添加请求后,可以返回辅基站添加响应给主基站。
9、主基站可以发送辅基站添加指示给电子设备。
10、电子设备可以根据辅基站添加指示添加5G基站为辅基站。
通过上述方式建立NR连接时,电子设备需要被动等待主基站启动NR SCG添加流程。其中,主基站启动NR SCG添加时周期性的,即便电子设备已经满足NR SCG的添加条件,主基站也要等到下一个添加间隔超时以后才会为电子设备添加NR SCG。例如,主基站的NR SCG添加间隔可以为60s,电子设备最长会等待60s才能连接上5G网络。在一些可能的场景中,例如,电子设备由于小流量,触发网络侧的主基站释放了NR SCG。之后,电子设备开启测速应用开始测量移动网络速度,但是由于NR SCG添加间隔未到,网络侧的主基站此时不启动NR SCG添加流程,导致电子设备测速只有LTE速率。在其他一些可能的场景中,电子设备的视频软件采用分段缓冲机制从网络上下载视频,比如,一个1吉字节(gigabyte,GB)的视频分为5段数据片进行缓冲,每段数据片的数据量为200兆字节(megabytes,MB)。电子设备完成第一个200MB的数据片缓冲后,会暂停缓冲或小流量缓冲,从而电子设备会释放NR SCG,在第一个200MB的数据片播放完成后,电子设备才开始下载第二个200MB的数据片,此时,由于NR SCG的添加间隔还未超时,网络侧的主基站不启动NR SCG的添加流程,电子设备只能用LTE网络下载,网速不够快,会导致视频播放卡顿。因此,通过上述方式恢复连接NR,会导致电子设备在需要使用5G网络时,无法及时连接上5G网络。
图7示出了本申请中提供的另一种触发网络建立NR连接的流程示意图。
如图7所示,电子设备建立NR连接的过程可以如下:
1、电子设备的辅基站被释放。
2、电子设备确定需要添加辅基站。
3、电子设备释放与主基站之间的RRC连接。
4、电子设备向主基站触发服务请求流程。
5、主基站与电子设备建立RRC连接,并为电子设备添加辅基站。
在上述建立NR连接的方式中,电子设备需要主动本地释放RRC连接,再重新与主基站建立RRC连接,触发网络配置添加NR SCG。其中,在电子设备本地释放RRC连接之后,会造成一定时间段内,电子设备断开网络连接,应用无法获取网络数据,造成用户可感知的卡顿,影响用户体验,还可能导致电子设备丢失寻呼,并且频繁触发该过程还可能造成网络认为电子设备异常,导致其他兼容性问题发生。
因此,本申请实施例提供了一种网络连接方法,电子设备可以通过向网络侧发送UE辅助信息,触发网络侧与电子设备快速建立NR链路连接或释放NR链路连接。具体可使用UE辅助信息中的过热保护(overheating)字段或最大辅载波(maxCC)等字段指示网络侧建立NR链路连接或释放NR链路连接。这样,电子设备在LTE-NR双连接情况下,需要释放NR连接时,快速触发网络侧释放NR SCG,以降低功耗。电子设备在单LTE连接情况下,需要建立LTE-NR双连接的时,电子设备可以快速触发网络侧添加NR SCG,以快速恢复LTE-NR双连接,提高数据传输速率。
在低网速应用场景下,电子设备只使用LTE网络即可满足网速要求,为降低功耗,就需要释放与网络侧建立的NR链路。在高网速应用场景下,电子设备只是单连接至LTE网络时无法满足网速要求,电子设备需要与网络侧建立LTE-NR双连接。其中,低网速应用场景可以指电子设备的用网需求较低的应用场景,具体可指电子设备进行数据传输的速率(简称为数据传输速率)较小,或电子设备所需传输的数据包的大小较小的应用场景。反之,电子设备的用网需求较高的应用场景可称为高网速应用场景。
本申请实施例中,电子设备处于低网速应用场景时,可以称之为电子设备满足第一预设条件;电子设备处于高网速应用场景时,可以称之为电子设备满足第二预设条件。
示例性地下面给出如下几种可能的低网速应用场景:
1、电子设备处于灭屏状态。
本申请中,电子设备的屏幕状态可分为亮屏状态、灭屏状态。在实际应用中亮屏状态具体可以包括亮屏解锁状态和亮屏锁屏状态。
其中,电子设备的屏幕状态具体可通过软件程序或硬件检测方式识别。以软件程序检测方式为例,电子设备可通过电源管理(powermanager)下的人机交互(isInteractive)代码中定义的屏幕显示值(isScreenOn)先确定屏幕的亮灭状态,例如当isScreenOn为true时,表示电子设备处于亮屏状态;反之,确定电子设备处于灭屏状态。在确定到电子设备处于亮屏状态后,电子设备可再通过屏幕锁定代码(isScreenLocked)检测获知电子设备是否进 一步被锁定,如果锁定则可确定电子设备处于锁屏状态,具体地电子设备可处于亮屏锁屏状态;否则,确定电子设备处于亮屏状态,具体地电子设备处于亮屏解锁状态。
或者,电子设备可通过自身系统发送的安卓Android广播消息,确定电子设备的屏幕状态。具体地,当Android广播消息用于指示屏幕亮屏时,可确定电子设备处于亮屏状态;当用于指示屏幕灭屏时,可确定电子设备处于灭屏状态;当用于指示屏幕锁屏时,可确定电子设备处于锁屏状态等等。关于电子设备的屏幕状态的识别方式可有多种,本发明这里不做一一列举。
电子设备在灭屏状态下,电子设备通常没有数据收发,或者仅保持必要的保证应用程序处于唤醒状态的数据包,例如心跳测试包或者监听数据包等,通常这一类型的数据包是周期性的收发并且数据包的大小也比较小。在上述情况下,可以视为电子设备对网络参数等要求较低,用网需求较低,电子设备对网速的要求不高。在一些情况下,电子设备也可以支持后台应用的运行,但对网速的要求也不高,例如,音乐应用后台从网络下载音乐并播放。电子设备单连接至LTE网络就可以满足后台应用的需求。
2、电子设备处于亮屏状态,且低网速运行,即电子设备的数据传输速率小于或等于预设速率。
本申请中,低网速是指电子设备的数据传输速率较小,例如小于或等于预设速率。具体地,该低网速具体可指电子设备的上行数据的传输速率较小,例如小于或等于第一预设速率;也可指电子设备的下行数据的传输速率较小,例如小于或等于第二预设速率;还可指包括电子设备的上行数据和下行数据在内的所有数据的传输速率较小,例如小于或等于第三预设速率等。为方便描述,不论是上行数据的传输速率还是下行数据的传输速率,亦或是包括上行数据和下行数据在内的所有数据的传输速率,本申请均统称为数据的传输速率,简称为数据传输速率。该数据传输速率是指单位时间内电子设备支持传输数据的比特数,例如50比特每秒(bit/s)。
该预设速率可为系统自定义设置的,例如根据用户喜欢或实际需求自定义设置的,或者根据大量实验数据统计获得的数值等。本申请涉及的第一预设速率、第二预设速率以及第三预设速率均为系统自定义设置的,它们可以相同、也可不相同,不做限定。
在实际应用中,电子设备低网速运行的场景有很多,下面示例性给出三种。
第一种,电子设备可以开启低网速应用运行的功能或关闭高网速应用运行的功能。具体地,为满足低网速的用网需求,电子设备可在省电模式中进行如下应用的功能设置:允许低网速应用运行或禁止高网速应用运行,即开启低网速应用运行的功能或关闭高网速应用运行的功能。可理解地,在关闭电子设备中高网速应用运行的功能后,电子设备中只允许低网速应用运行。由于这些低网速应用中允许的数据传输速率较小,此时电子设备可确定电子设备处于低网速运行中。可选地,当电子设备中同时运行多个低网速应用时,它们的数据传输速率总和也比较小,例如小于预设速率,同样可满足低网速用网需求,此时仍确定电子设备处于低网速运行中。
其中,低网速应用是指电子设备中安装的对数据传输速率要求较低的应用,例如要求应用中待传输数据的传输速率小于第四预设速率等。该低网速应用具体可为系统自定义设 置的,也可为用户手工自定义设置的,例如照相机、电话、短信、备忘录等应用。
相应地,高网速应用是指电子设备中安装的对数据传输速率要求较高的应用,例如要求数据传输速率大于或等于第五预设速率。该高网速应用同样也可为系统自定义设置的,或用户根据个人偏好自定义设置的,例如音乐应用和视频应用等。
可选地,为排除电子设备是短暂低网速运行、或排除误判等情况,电子设备增加时长判断条件。具体地,电子设备可获取电子设备的数据传输速率小于或等于预设速率的持续时长,当该持续时长大于或等于一定阈值(例如1分钟)等,此时可确定电子设备处于低网速运行中。否则,仍然确定电子设备不处于低网速运行。即是,电子设备处于低网速应用场景的识别条件具体可为:电子设备处于亮屏状态下,且电子设备在一段时长内的数据传输速率均小于或等于预设速率。
第二种,电子设备和其他设备交互心跳包,以维持正常的通信连接。具体地,当电子设备不与其他设备(例如基站)进行业务通信时,即电子设备无需传输业务数据,为维持电子设备和其他设备之间的通信连接,通常电子设备可以周期性地向其他设备发送心跳包,以通知电子设备与其他设备保持通信连接。在实际应用中,该心跳包的数据传输速率通常比较小,例如几kb/s。该心跳包的大小也比较小,例如几kb。通常在不携带业务数据的情况下,该心跳包可为空包,即仅携带包头、不携带业务数据。
第三种,电子设备处于低网速运行的场景,例如游戏场景、导航场景。示例性地,在游戏场景中,电子设备正在运行游戏应用。在实际应用中,游戏应用仅对电子设备的应用处理器(AP)的运行速率要求较高,相比而言对电子设备的数据传输速率(即网络速率)要求较低。因此,当电子设备处于游戏场景中,可确定电子设备处于低网速运行中。
3、电子设备处于亮屏状态,且电子设备所需传输的数据包的大小小于或等于第一预设阈值。
在亮屏状态下,为满足低网速应用场景,电子设备除了从数据传输速率这一维度考虑外,还可从电子设备所需传输的数据量(即所需传输的数据包的大小)进行考虑。其中,电子设备所需传输数据包的大小具体可指应用中电子设备所需传输的所有数据包的大小(即所需传输的数据量),或者指单位时间内电子设备所需传输的数据包的大小。
具体地,在电子设备处于亮屏状态下,若电子设备所需传输的数据包的大小较大,例如大于第一预设大小阈值,则电子设备可认为当前自身的通信负载较大,即所需传输的数据包或数据量较大,用网需求较高,相应地电子设备可认为自身处于高网速应用场景。反之,若电子设备所需传输的数据包的大小较小,则电子设备可认为自身的通信负载较小,即所需传输的数据包或数据量较小,用网需求不高,相应地电子设备可认为自身此时处于低网速应用场景。
4、电子设备的设备温度大于或等于预设温度阈值。
无论在电子设备处于亮屏状态还是灭屏状态,当电子设备的设备温度过高,例如设备温度大于或等于预设温度阈值时,容易导致死机、断网,严重可以烧毁电子设备,具体可烧毁电子设备的应用处理器、基带处理器等器件。为降低整机温度、保护设备自身,电子 设备需自动关闭正在运行的应用,例如首先关闭功耗较高、网速要求较高的应用,如视频应用等,其次关闭功耗较低、网速要求较低的应用等,如天气应用、日历应用等。因此,当电子设备检测到自身整机温度过高,可认为电子设LRRC备当前已关闭网速要求较高的应用,即关闭电子设备中的高网速应用,此时电子设备处于低网速应用场景。
其中,电子设备的设备温度的检测方式并不做限定,例如当电子设备中安装有温度感应器时,可通过温度感应器检测并查看电子设备的设备温度或电子设备的上某个器件(例如应用处理器或基带处理器等)的温度。
在实际应用中,电子设备的设备温度是指整个电子设备中所有部件各自运行时的温度的总和,由于每个部件的温度获取均存在一定的误差,这样将导致电子设备的设备温度获取同样存在较大地误差,其获取的准确度或精确度较低。因此在实际应用中,电子设备的设备温度通可以电子设备中一些核心部件的温度替代,例如应用处理器(AP)的温度、片上系统芯片(system on chip,SOC)温度、电池温度等等。
例如,应用处理器(AP)作为电子设备的整机性能的最重要的硬件,其性能表现直接影响电子设备整机的性能,因此,应用处理器的温度将作为设备温度的一个重要体现温度。以设备温度为应用处理器的温度为例,电子设备可进入自身的输入输出系统(basic input output system,BIOS)中获取应用处理器的温度;或者,电子设备可运行应用处理器的温度获取软件(例如Python脚本文件等),以获取应用处理器的温度。便于后续基于该应用处理器的温度来识别电子设备所处的应用场景为高网速应用场景还是低网速应用场景,这里不再赘述。
5、电子设备处于灭屏状态,且低网速运行,即电子设备的数据传输速率小于或等于第二预设速率。
灭屏状态下,电子设备处于低网速运行的场景有多种,可以有如下两种。
第一种,灭屏状态下,电子设备支持后台应用的运行,例如播放音乐等。为满足低网速的用网需求,电子设备可以进行如下应用的功能设置:允许低网速应用运行或禁止高网速应用运行,即开启低网速应用运行的功能或关闭高网速应用运行的功能。可理解地,在关闭电子设备中高网速应用运行的功能后,电子设备中只允许低网速应用运行。由于这些低网速应用中允许的数据传输速率较小,此时电子设备可确定电子设备处于低网速运行中,电子设备处于低网速应用场景。可选地,当电子设备中同时运行多个低网速应用时,它们的数据传输速率总和也比较小,例如小于第二预设速率,同样可满足低网速用网需求,此时仍确定电子设备处于低网速运行中。
第二种,当电子设备处于灭屏状态时,电子设备通常没有数据收发,或者仅保持必要的保证应用程序处于唤醒状态的数据包,例如心跳测试包或者监听数据包等,通常这一类型的数据包是周期性的收发并且数据包的大小也比较小。在上述情况下,可以视为电子设备对网络参数等要求较低,用网需求较低,认为电子设备处于低网速运行,即处于低网速应用场景。
可选地,在电子设备灭屏后,其数据传输速率通常会变得比较缓慢,例如数据传输速 率小于预设速率。因此在不考虑低网速应用场景识别准确度的情况下,当电子设备检测到自身处于灭屏状态时,可直接认为电子设备处于低网速应用场景。
6、电子设备处于灭屏状态,且电子设备所需传输的数据包的大小小于或等于第二预设阈值。
灭屏状态下,电子设备同样存在数据的收发,例如电子设备灭屏下载数据、灭屏传输心跳包等。为满足低网速的用网需求,电子设备除了考虑数据传输速率外,还可从UE所需传输的数据量(即所需传输的数据包的大小)这一维度进行识别。
具体地,在电子设备处于灭屏状态下,为满足低网速应用场景的低用网需求,可检测电子设备所需传输的数据包的大小来确定电子设备是否处于低网速应用场景。具体的当电子设备所需传输的数据包的大小小于第二预设大小阈值,则电子设备可认为自身的通信负载较大,用网需求较高,确定电子设备不处于低网速应用场景。反之,认为电子设备的通信负载较小,用网需求较低,确定电子设备处于低网速应用场景。
举例来说,以低网速应用场景为交互心跳包的应用场景为例。在电子设备无需进行业务通信时,为了维持电子设备和网络侧间的通信连接,通常采用心跳包机制来实现电子设备和网络侧之间连接的维护。具体地,电子设备可周期性地向网络侧发送心跳包,以通知电子设备当前与网络侧存在通信连接,以保持电子设备和网络侧之间的长连接。相应地,网络侧接收该心跳包后,同样可向电子设备返回响应包,以通知网络侧获知电子设备与网络侧存在通信连接。在实际应用中,该心跳包的大小很小,通常为几kb,也可为空包(即不携带任何业务数据,仅携带包头的数据包)等。在该场景下,电子设备显然处于低网速应用场景。
7、电子设备关闭5G网络通信功能。
电子设备可以响应于接收到用户的输入操作,关闭5G网络通信功能。在该场景下,电子设备根据用户的需求,确定出无需使用5G网络。在该场景下,电子设备处于低网速应用场景。
图8示出了UE辅助信息中过热保护(overheating)字段的网络配置和电子设备的UE辅助信息上报流程。
如图8所示,UE侧的电子设备在与LTE接入网(E-UTRAN)设备进行RRC连接重配置(RRC connection reconfiguration)时,LTE接入网(E-UTRAN)设备可以向电子设备发送网络重配置信息,其中,该网络重配置信息中包括过热保护配置(overheating setup)信息。
其中,该overheating setup信息可以如下:
Figure PCTCN2021109371-appb-000001
Figure PCTCN2021109371-appb-000002
上述overheating setup信息中指示的电子设备进行overheating上报的时间间隔的候选值可以为0、0.5秒、1秒、2秒、5秒、10秒、20秒、30秒、60秒、90秒、120秒、300秒、600秒或者其他备选值(spare3、spare2或spare1)。其中,电子设备上报的UE辅助信息中携带overheating字段是可选的,电子设备有需要时可以在上报的UE辅助信息中加入overheating字段。
需要说明的是,该overheating setup信息可以是基于3GPP R14协议版本的,但不限于3GPP R14协议版本,还可以是基于其他版本协议的(例如,3GPP R15协议版本、3GPP R16协议版本等等)。
在网络配置完之后,UE侧中的电子设备可以在与LTE接入网设备完成overheating setup之后,电子设备就可以上报携带有overheating字段的UE辅助信息(UE Assistance Information)。其中,该UE辅助信息中overheating字段的信元内容可以如下:
Figure PCTCN2021109371-appb-000003
上述UE辅助信息的overheating字段可以包括传输速率等级(reducedUE-Category)信元和最大辅载波数(reducedMaxCCs)信元。其中,该传输速率等级信元可以包括下行传输速率等级(reducedUE-CategoryDL)子信元和上行传输速率等级(reducedUE-CategoryUL)子信元。其中,该下行传输速率等级(reducedUE-CategoryDL)子信元的取值可以为0至19的整数。该上行传输速率等级(reducedUE-CategoryUL)子信元的取值可以为0至21的整数。最大辅载波数(reducedMaxCCs)信元可以包括下行辅载波数(reducedCCsDL)子信元和上行辅载波数(reducedCCsUL)子信元。该下行辅载波数(reducedCCsDL)子信元的取值可以为0至31的整数,该上行辅载波数(reducedCCsUL)子信元的取值可以为0至31的整数。
当电子设备上报给网络侧设备的UE辅助信息中overheating字段该上行辅载波数(reducedCCsUL)子信元的值为a时,a大于等于0。网络侧设备可以根据为电子设备激活a条上行辅载波。电子设备可以在该激活的a条上行辅载波上的物理上行共享信道(physical uplink shared channel,PUSCH)发送数据,以及发送上行参考信号。电子设备可以在其他未被激活的上行辅载波上的物理上行共享信道(physical uplink shared channel,PUSCH)不 发送数据,不发送上行参考信号。
需要说明的是,该overheating字段可以是基于第三代合作伙伴计划(the 3rd generation partner project,3GPP)R14或R15协议版本的,但不限于3GPP R14或R15协议版本,还可以是基于其他版本协议的。在一些协议版本中,overheating字段可以只包括最大辅载波数(reducedMaxCCs)信元,最大辅载波数(reducedMaxCCs)信元可以包括下行辅载波数(reducedCCsDL)子信元和上行辅载波数(reducedCCsUL)子信元。在一些协议版本中,overheating字段还可以包括其他信元。
下面介绍本申请实施例中提供的一种网络连接方法。
在一些网络连接场景下,电子设备已经断开了NR链路与LTE接入网设备单连接,若电子设备检测到需要建立LTE-NR双连接时,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为非0或者overheating字段不携带任何子信元。这样,可以及时让电子设备从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,没有丢寻呼的风险。
图9示出了本申请实施例提供的一种网络连接方法的示意图。如图9所示,电子设备(UE)100可以包括应用处理器(AP)101和基带处理器(baseband processor,BP)102,该基带处理器102可以包括调制解调器(modem)。网络侧设备200包括LTE接入网(E-UTRAN)设备201、5G接入网(NR)设备202。其中,该LTE接入网设备201可以指上述实施例中的MeNB,5G接入网(NR)设备202可以指上述实施例中的SgNB。
如图9所示,该网络连接方法可以包括:
S901、LTE接入网设备201发送UE能力查询请求给电子设备100的基带处理器102。
S902、响应于该UE能力查询请求,基带处理器102发送UE能力信息给LTE接入网设备201。其中,该UE能力信息可用于指示该电子设备100支持过热保护(overheating)机制。
S903、LTE接入网设备201在接收到基带处理器102发送的UE能力信息之后,可以发送网络重配置信息给基带处理器102,其中,该网络重配置信息包括过热保护配置(overheating setup)信息。
具体的,LTE接入网设备201在接收到基带处理器102发送的UE能力信息之后,可以确定出电子设备100支持过热保护机制。因此,LTE接入网设备201可以通过下行专用控制信道(download dedicated channel,DL_DCCH)在信令承载SRB1上发送网络重配置信息(例如RRC连接重配置(RRC connection reconfiguration)信息)给电子设备100的基带处理器102。基带处理器102接收到该网络重配置信息后,可以从该网络重配置信息获取到overheating setup信息,并完成过热保护配置。基带处理器102在执行完成网络重配置信息中的内容后,可以通过上行专用控制信道(upload dedicated channel,UL_DCCH)在信令承载SRB1上返回配置完成信息(例如RCC连接配置完成(RRC connection  reconfiguration complete)信息)给LTE接入网设备201。
在一种可能的实现方式中,当电子设备100无法完成网络重配置信息中的overheating setup时,电子设备100可以发起RRC连接重建立过程,与LTE接入网设备201重新连接RRC连接,并完成上述过热保护配置。
S904、在完成过热保护配置后,应用处理器101可以检测到电子设备100需要建立LTE-NR双连接。
其中,电子设备100需要建立LTE-NR双连接的情况,可以参考前述实施例中针对高网速场景的描述,在此不再赘述。
S905、应用处理器101在检测到电子设备100需要建立NR链路时,可以发送第一指令给基带处理器102,该第一指令可用于指示基带处理器102与网络侧设备建立NR链路。
具体的,第一指令可以私有命令消息,例如注意(attention,AT)命令消息;该第一指令也可以是传统命令消息,例如用于建立NR链路的at^syscfgex命令消息,或者,用于恢复NR链路的at^errccap命令消息。
S906、基带处理器102可以响应于第一指令,向LTE接入网设备201发送第一UE辅助信息。其中,该第一UE辅助信息中包括有overheating字段,该overheating字段内携带的子信元上行载波数为非0或不携带任何子信元。
在一种可能的实现方式中,第一UE辅助信息的overheating字段可以包括传输速率等级(reducedUE-Category)信元和最大辅载波数(reducedMaxCCs)信元。其中,该传输速率等级信元可以包括下行传输速率等级(reducedUE-CategoryDL)子信元和上行传输速率等级(reducedUE-CategoryUL)子信元。最大辅载波数(reducedMaxCCs)信元可以包括下行辅载波数(reducedCCsDL)子信元和上行辅载波数(reducedCCsUL)子信元。基带处理器102在接收到第一指令后,可以将第一UE辅助信息中overheating字段的子信元上行载波数(reducedCCsUL)为设置为第一值,该第一值不为0。例如,基带处理器102可以支持2个上行辅载波,基带处理器102接收到第一指令后,可以将第一UE辅助信息中overheating字段的子信元上行辅载波数(reducedCCsUL)设置为2,并将第一UE辅助信息发送给LTE接入网设备201。
在一种可能的实现方式中,基带处理器102接收到第一指令后,可以将第一UE辅助信息中overheating字段的子信元删除(即overheating字段不携带任何子信元),并将第一UE辅助信息发送给LTE接入网设备201。
S907、LTE接入网设备201在接收到该第一UE辅助信息后,可以发起与电子设备100的NR连接建立流程。
在一种可能的实现方式中,LTE接入网201在接收到第一UE辅助信息后,可以从第一UE辅助信息中解析出overheating字段内携带的子信元上行辅载波数(reducedCCsUL)不为0,则LTE接入网设备201可以发起5G接入网设备与电子设备100的NR连接建立流程。
在一种可能的实现方式中,LTE接入网201在接收到第一UE辅助信息后,可以从第一UE辅助信息中解析出overheating字段内不携带任何子信元,则LTE接入网设备201可 以发起5G接入网设备与电子设备100的NR链路建立流程。
具体的,LTE接入网设备201从第一UE辅助信息中解析出overheating字段内携带的子信元上行辅载波数(reducedCCsUL)不为0或overheating字段内不携带任何子信元时,LTE接入网设备201可以发送测量信令(例如,B1事件测量信令)给电子设备100。电子设备100的基带处理器102可以响应于该测量信令,测量多个5G小区,向LTE接入网设备201上报满足条件的5G小区的测量报告(measurement report)(例如,B1事件测量报告)。例如,该条件可以是被电子设备100测量小区的信号强度满足指定门限等,LTE接入网设备201可以将满足条件的5G小区的测量报告发送给5G接入网设备202。5G接入网设备202可以根据该测量报告为电子设备100配置5G小区,通过LTE接入网设备201向电子设备100发送5G小区配置信息。例如,该5G小区配置信息可以是RRC连接重配置(RRC connection reconfiguration)信息,该RRC连接重配置信息用于配置电子设备100接入的5G小区,也可以记为NR SCG配置(SCG configuration),电子设备100可以根据该5G小区配置信息接入5G接入网设备202为电子设备100配置的5G小区,完成NR链路的建立。
下面介绍本申请另一实施例中提供的一种网络连接方法。
在一些网络连接场景下,电子设备已经建立LTE-NR双连接的情况下,若电子设备检测到需要释放NR链路时,电子设备可以通过上报SCG failure信令给网络侧,触发网络侧释放NR链路。当已经断开了NR链路,与LTE接入网设备单连接后,若电子设备检测到需要建立LTE-NR双连接时,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为非0或者overheating字段不携带任何子信元。这样,可以及时让电子设备从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,减小了丢寻呼的风险。
图10示出了本申请另一实施例提供的一种网络连接方法的示意图。如图10所示,电子设备(UE)100可以包括应用处理器(AP)101和基带处理器(baseband processor,BP)102,该基带处理器102可以包括调制解调器(modem)。网络侧设备200包括LTE接入网(E-UTRAN)设备201、5G接入网(NR)设备202。其中,该LTE接入网设备201可以指上述实施例中的MeNB,5G接入网(NR)设备202可以指上述实施例中的SgNB。
如图10所示,该网络连接方法可以包括:
S1001、LTE接入网设备201发送UE能力查询请求给电子设备100的基带处理器102。
S1002、响应于该UE能力查询请求,基带处理器102发送UE能力信息给LTE接入网设备201。其中,该UE能力信息可用于指示该电子设备100支持过热保护(overheating)机制。
S1003、LTE接入网设备201在接收到基带处理器102发送的UE能力信息之后,可以发送网络重配置信息给基带处理器102,其中,该网络重配置信息包括过热保护配置(overheating setup)信息。
具体内容,可以参考前述图9所示实施例中的步骤S903,在此不再赘述。
S1004、LTE接入网设备201发起NR链路建立流程。
其中,LTE接入网设备201可以主动发起NR链路建立流程。例如,LTE接入网设备201在判断NR SCG的添加间隔超过指定时间时,LTE接入网设备201可以发送测量信令(例如,B1事件测量信令)给电子设备100。电子设备100的基带处理器102可以响应于该测量信令,测量该多个5G小区,向LTE接入网设备201上报满足条件的5G小区的测量报告(measurement report)(例如,B1事件测量报告)。例如,该条件可以是被电子设备100测量小区的信号强度满足指定门限等,LTE接入网设备201可以将满足条件的5G小区的测量报告发送给5G接入网设备202。5G接入网设备202可以根据该测量报告为电子设备100配置5G小区,通过LTE接入网设备201向电子设备100发送5G小区配置信息。例如,该5G小区配置信息可以是RRC连接重配置(RRC connection reconfiguration)信息,该RRC连接重配置信息用于配置电子设备100接入的5G小区,也可以记为NR SCG配置(SCG configuration),电子设备100可以根据该5G小区配置信息接入5G接入网设备202为电子设备100配置的5G小区,完成NR链路的建立。
S1005、电子设备100的应用处理器101检测到电子设备100需要释放NR链路。
其中,电子设备100需要释放NR链路的情况,可以参考前述实施例中针对低网速场景的描述,在此不再赘述。
S1006、应用处理器101在检测到需要释放NR链路时,可以发送第二指令给基带处理器102,该第二指令可用于指示基带处理器102释放NR链路。
具体的,第二指令可以私有命令消息,例如注意(attention,AT)命令消息;该第二指令也可以是传统命令消息,例如用于去除NR能力的at^syscfgex命令消息,或者,用于释放NR链路的aterrccap命令消息。
S1007、基带处理器102可以响应于第二指令,向LTE接入网设备201发送辅小区群失败(SCG failure)信令,触发LTE接入网设备201释放NR链路。
其中,该SCG failure信令具体用于释放NR连接在网络侧所占的无线资源,例如NR连接通信所用SCG链路中包含的各功能层(如NR PDCP、NR RLC、NR MAC以及NR PHY)相关的无线资源等。以释放NR PHY相关的无线资源为例,具体可释放下行接收信道、频点、小区标识ID等信息。
该SCG failure信令在不同协议版本中的规定可不同,例如在R12协议版本中,其可为SCGFailureInformation-r12-IEs信令消息,其包括失败类型failureType-r12等参数。该失败类型包括以下中的任一项或多项参数的组合:定时器时延(即UE和网络侧支持数据传输的时延)、随机接入问题randomAccessProblem、RLC重传最大次数rlc-MaxNumRetx(允许RLC重传数据包的最大次数)、SCG链路变化失败scg-ChangeFailure(即不支持SCG链路的切换)等。
S1008、响应于SCG failure信令,LTE接入网设备201发起NR链路释放流程。
具体的,LTE接入网设备201可以响应于该接收到的SCG failure信令,指示5G接入网设备202释放该电子设备100接入5G接入网设备202时所占的无线资源,例如NR连接 通信所用SCG链路中包含的各功能层(如NR PDCP、NR RLC、NR MAC以及NR PHY)相关的无线资源等。以释放NR PHY相关的无线资源为例,具体可释放下行接收信道、频点、小区标识ID等信息。
S1009、基带处理器102释放NR链路,关闭NR测量。
具体的,在5G接入网设备202释放电子设备100所占的无线资源后,LTE接入网设备201可以通知电子设备100的基带处理器102释放NR链路配置时在UE侧所占的无线资源,例如释放NR PDCP、NR RLC、NR MAC以及NR PHY等传输功能层相关的无线资源等等,具体可释放NR连接在网络侧配置时涉及的相关配置参数,例如频点、小区标识等参数。
在基带处理器202释放NR链路后,基带处理器202可以不进行NR测量。相应地,网络侧无法接收到UE侧发送的该NR测量报告。
在一种可能的实现方式中,在基带处理器202释放NR链路后,基带处理器202进行NR测量,但是不上报NR测量报告给LTE接入设备202。
S1010、应用处理器101检测到电子设备100需要建立LTE-NR双连接。
其中,电子设备100需要建立LTE-NR双连接的情况,可以参考前述实施例中针对高网速场景的描述,在此不再赘述。
S1011、应用处理器101在检测到需要建立LTE-NR双连接时,可以发送第一指令给基带处理器102,该第一指令可用于指示基带处理器102与网络侧设备建立NR链路。
具体的,第一指令可以私有命令消息,例如注意(attention,AT)命令消息;该第一指令也可以是传统命令消息,例如用于建立NR链路的at^syscfgex命令消息,或者,用于恢复NR链路的at^errccap命令消息。
S1012、基带处理器102可以响应于第一指令,打开NR测量。
具体的,基带处理器102可以响应于第一指令,测量电子设备100所处的多个5G小区。
S1013、基带处理器102可以向LTE接入网设备201发送第一UE辅助信息。其中,该第一UE辅助信息中包括有overheating字段,该overheating字段内携带的子信元上行载波数(reducedCCsUL)为非0或不携带任何子信元。
具体内容,可以参考前述图9所示实施例中的步骤S906,在此不再赘述。
S1014、LTE接入网设备201在接收到该第一UE辅助信息后,可以发起与电子设备100的NR连接建立流程。
具体内容,可以参考前述图9所示实施例中的步骤S907,在此不再赘述。
在一些网络连接场景下,电子设备已经建立LTE-NR双连接的情况下,若电子设备检测到需要释放NR链路时,电子设备可以通过上报第二UE辅助信息给网络侧,触发网络侧释放NR链路。其中,第二UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为0。当已经断开了NR链路,与LTE接入网设备单连接后,若电子设 备检测到需要建立LTE-NR双连接时,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为非0或者overheating字段不携带任何子信元。这样,可以及时让电子设备从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,减小了丢寻呼的风险。
图11示出了本申请另一实施例提供的一种网络连接方法的示意图。如图11所示,电子设备(UE)100可以包括应用处理器(AP)101和基带处理器(baseband processor,BP)102,该基带处理器102可以包括调制解调器(modem)。网络侧设备200包括LTE接入网(E-UTRAN)设备201、5G接入网(NR)设备202。其中,该LTE接入网设备201可以指上述实施例中的MeNB,5G接入网(NR)设备202可以指上述实施例中的SgNB。
如图11所示,电子设备(UE)100可以包括应用处理器(AP)101和基带处理器(baseband processor,BP)102,该基带处理器102可以包括调制解调器(modem)。网络侧设备200包括LTE接入网(E-UTRAN)设备201、5G接入网(NR)设备202。其中,该LTE接入网设备201可以指上述实施例中的MeNB,5G接入网(NR)设备202可以指上述实施例中的SgNB。
如图11所示,该网络连接方法可以包括:
S1101、LTE接入网设备201发送UE能力查询请求给电子设备100的基带处理器102。
S1102、响应于该UE能力查询请求,基带处理器102发送UE能力信息给LTE接入网设备201。其中,该UE能力信息可用于指示该电子设备100支持过热保护(overheating)机制。
S1103、LTE接入网设备201在接收到基带处理器102发送的UE能力信息之后,可以发送网络重配置信息给基带处理器102,其中,该网络重配置信息包括过热保护配置(overheating setup)信息。
具体内容,可以参考前述图9所示实施例中的步骤S903,在此不再赘述。
S1104、LTE接入网设备201发起NR链路建立流程。
具体内容,可以参考前述图10所示实施例中的步骤S1004,在此不再赘述。
S1105、电子设备100的应用处理器101检测到需要释放NR链路。
其中,电子设备100需要释放NR链路的情况,可以参考前述实施例中针对低网速场景的描述,在此不再赘述。
S1106、应用处理器101在检测到需要释放NR链路时,可以发送第二指令给基带处理器102,该第二指令可用于指示基带处理器102释放NR链路。
具体的,第二指令可以私有命令消息,例如注意(attention,AT)命令消息;该第二指令也可以是传统命令消息,例如用于去除NR能力的at^syscfgex命令消息,或者,用于释放NR链路的aterrccap命令消息。
S1107、基带处理器102可以响应于第二指令,发送第二UE辅助信息给LTE接入网设备201。其中,该第二UE辅助信息中overheating字段内携带的子信元上行辅载波数 (reducedCCsUL)为0。
第二UE辅助信息的overheating字段可以包括传输速率等级(reducedUE-Category)信元和最大辅载波数(reducedMaxCCs)信元。其中,该传输速率等级信元可以包括下行传输速率等级(reducedUE-CategoryDL)子信元和上行传输速率等级(reducedUE-CategoryUL)子信元。最大辅载波数(reducedMaxCCs)信元可以包括下行辅载波数(reducedCCsDL)子信元和上行辅载波数(reducedCCsUL)子信元。基带处理器102在接收到第二指令后,可以将第一UE辅助信息中overheating字段的子信元上行辅载波数(reducedCCsUL)为设置为0。例如,即使基带处理器102可以支持2个上行辅载波,基带处理器102在接收到第二指令后,也将第二UE辅助信息中overheating字段的子信元上行辅载波数(reducedCCsUL)设置为0,并将第二UE辅助信息发送给LTE接入网设备201。
S1108、LTE接入网设备201可以响应于第二UE辅助信息,发起NR链路释放流程。
具体的,LTE接入网设备201在接收到电子设备100发送的第二UE辅助信息后,可以从第二UE辅助信息中解析出overheating字段的子信元上行载波数(reducedCCsUL)为0。LTE接入网设备201可以响应于该接收到的第二辅助信息,发送NR释放信令给5G接入网设备202。该NR释放信令可用于指示5G接入网设备202释放该电子设备100接入5G接入网设备202时所占的无线资源,例如NR连接通信所用SCG链路中包含的各功能层(如NR PDCP、NR RLC、NR MAC以及NR PHY)相关的无线资源等。以释放NR PHY相关的无线资源为例,具体可释放下行接收信道、频点、小区标识ID等信息。
S1109、基带处理器102释放NR链路,关闭NR测量。
具体的,在5G接入网设备202释放电子设备100所占的无线资源后,LTE接入网设备201可以通知电子设备100的基带处理器102释放NR链路配置时在UE侧所占的无线资源,例如释放NR PDCP、NR RLC、NR MAC以及NR PHY等传输功能层相关的无线资源等等,具体可释放NR连接在网络侧配置时涉及的相关配置参数,例如频点、小区标识等参数。
在基带处理器202释放NR链路后,基带处理器202可以不进行NR测量。相应地,网络侧无法接收到UE侧发送的该NR测量报告。
在一种可能的实现方式中,在基带处理器202释放NR链路后,基带处理器202进行NR测量,但是不上报NR测量报告给LTE接入设备202。
S1110、应用处理器101检测到电子设备100需要建立LTE-NR双连接。
其中,电子设备100需要建立LTE-NR双连接的情况,可以参考前述实施例中针对高网速场景的描述,在此不再赘述。
S1111、应用处理器101在检测到电子设备100需要建立LTE-NR双连接时,可以发送第一指令给基带处理器102,该第一指令可用于指示基带处理器102与网络侧设备建立NR链路。
具体的,第一指令可以私有命令消息,例如注意(attention,AT)命令消息;该第一指令也可以是传统命令消息,例如用于开启NR连接的at^syscfgex命令消息,或者,用于 恢复NR链路的at^errccap命令等。
S1112、基带处理器102可以打开NR测量。
具体的,基带处理器102可以响应于第一指令,测量电子设备100所处的多个5G小区。
S1113、基带处理器102可以向LTE接入网设备201发送第一UE辅助信息。其中,该第一UE辅助信息中包括有overheating字段,该overheating字段内携带的子信元上行辅载波数(reducedCCsUL)为非0或不携带任何子信元。
具体内容,可以参考前述图9所示实施例中的步骤S906,在此不再赘述。
S1114、LTE接入网设备201在接收到该第一UE辅助信息后,可以发起与电子设备100的NR连接建立流程。
具体内容,可以参考签署图9所示实施例中的步骤S907,在此不再赘述。
在一些网络连接场景下,电子设备已经与网络侧断开RRC连接的情况下,若电子设备检测到不需要NR链路之后,电子设备恢复建立RRC连接时,电子设备可以关闭NR测量并发送第二UE辅助信息给网络侧,指示网络侧不再触发建立NR链路。之后,若电子设备检测到需要建立LTE-NR双连接,电子设备可以通过上报第一UE辅助信息给网络侧,触发网络侧与电子设备快速建立NR链路。其中,第一UE辅助信息中的overheating字段携带的子信元上行载波数(reducedCCsUL)为非0或者overheating字段不携带任何子信元。这样,可以在电子设备检测到释放NR链路时,让网络侧不再触发与电子设备建立NR链路;在电子设备检测到建立LTE-NR双连接时,及时从LTE单连接切换为LTE-NR双连接,且不会中断数据业务,减小了丢寻呼的风险。
图12示出了本申请另一实施例提供的一种网络连接方法的示意图。如图12所示,电子设备(UE)100可以包括应用处理器(AP)101和基带处理器(baseband processor,BP)102,该基带处理器102可以包括调制解调器(modem)。网络侧设备200包括LTE接入网(E-UTRAN)设备201、5G接入网(NR)设备202。其中,该LTE接入网设备201可以指上述实施例中的MeNB,5G接入网(NR)设备202可以指上述实施例中的SgNB。
如图12所示,电子设备(UE)100可以包括应用处理器(AP)101和基带处理器(baseband processor,BP)102,该基带处理器102可以包括调制解调器(modem)。网络侧设备200包括LTE接入网(E-UTRAN)设备201、5G接入网(NR)设备202。其中,该LTE接入网设备201可以指上述实施例中的MeNB,5G接入网(NR)设备202可以指上述实施例中的SgNB。
如图12所示,该网络连接方法可以包括:
S1201、LTE接入网设备201发送UE能力查询请求给电子设备100的基带处理器102。
S1202、响应于该UE能力查询请求,基带处理器102发送UE能力信息给LTE接入网设备201。其中,该UE能力信息可用于指示该电子设备100支持过热保护(overheating)机制。
S1203、应用处理器201检测到电子设备100无数据业务。
其中,电子设备100无数据业务的可以包括如下任意一种:1、电子设备100关闭了移动数据功能;2、电子设备100在一段时间(例如60s)内无数据业务;3、电子设备100上无运行的应用,等等。
S1204、应用处理器201在检测到电子设备100无数据业务时,发送第三指令给基带处理器102。该第三指令用于指示基带处理器102与网络侧设备200断开RRC连接。
具体的,第三指令可以私有命令消息,例如注意(attention,AT)命令消息;该第三指令也可以是传统命令消息,例如用于断开RRC连接的at^syscfgex命令消息,又例如用于断开RRC连接的at^errccap命令消息等等。
在一种可能的情况下,在电子设备100释放RRC连接之前,电子设备100与网络侧设备200处于LTE-NR双连接。在另一种可能的情况下,在网络侧设备200与电子设备100释放RRC连接之前,电子设备100与网络侧设备200处于LTE单连接。
S1205、基带处理器102响应于第三指令,触发与网络侧设备200断开RRC连接。
在一种可能的实现方式中,网络侧设备200在检测到电子设备100无数据业务时,网络侧设备200可以触发与电子设备100释放RRC连接。
在一种可能的实现方式中,应用处理器201在检测到电子设备100无数据业务时,发送第三指令给基带处理器102。基带处理器102,可以响应于第三指令,向网络侧设备200发送RRC释放请求,网络侧设备200接收到RRC释放请求后,可以响应于该RRC释放请求,触发释放与电子设备100之间的RRC连接。
在基带处理器102与网络侧设备断开RRC连接后,电子设备100进入空闲(idle)态。
S1206、电子设备100的应用处理器101检测到需要释放NR链路。
其中,电子设备100需要释放NR链路的情况,可以参考前述实施例中针对低网速场景的描述,在此不再赘述。
S1207、应用处理器101在检测到需要释放NR链路时,可以发送第二指令给基带处理器102,该第二指令可用于指示基带处理器102释放NR链路。
具体的,第二指令可以私有命令消息,例如注意(attention,AT)命令消息;该第二指令也可以是传统命令消息,例如用于去除NR能力的at^syscfgex命令消息,或者,用于释放NR链路的at^errccap命令消息等。
S1208、应用处理器201检测到电子设备100有数据业务。
电子设备100无数据业务的可以包括如下任意一种:1、电子设备100开启了移动数据功能;2、电子设备100开启了移动数据功能且电子设备100在一段时间(例如60s)内无数据业务;3、电子设备100开启了移动数据功能且电子设备100上有正在运行的应用,等等。
S1209、应用处理器201在检测到电子设备100无数据业务时,发送第四指令给基带处理器102。该第四指令用于指示基带处理器102与网络侧设备200建立RRC连接。
具体的,第四指令可以私有命令消息,例如注意(attention,AT)命令消息;该第四 指令也可以是传统命令消息,例如用于建立RRC连接的at^syscfgex命令消息等,又例如用于建立RRC连接的at^errccap命令消息等。
S1210、基带处理器102响应于第四指令,与网络侧设备200建立RRC连接。
S1211、基带处理器102与网络侧设备200建立RRC连接后,可以发送网络重配置信息给基带处理器102,其中,该网络重配置信息包括过热保护配置(overheating setup)信息。
具体内容,可以参考前述图9所示实施例中的步骤S903,在此不再赘述。
S1212、基带处理器102可以关闭NR测量,并发送第二UE辅助信息给LTE接入网设备201。其中,该第二UE辅助信息中overheating字段内携带的子信元上行载波数(reducedCCsUL)为0。
由于,基带处理器102与网络侧设备200建立RRC连接之前,接收到了应用处理器101发送的第二指令,该第二指令用于指示基带处理器102释放NR链路。因此,基带处理器102在与网络侧设备200建立RRC连接后,可以关闭NR测量,并发送第二UE辅助信息给LTE接入网设备201。
第二UE辅助信息的overheating字段可以包括传输速率等级(reducedUE-Category)信元和最大载波数(reducedMaxCCs)信元。其中,该传输速率等级信元可以包括下行传输速率等级(reducedUE-CategoryDL)子信元和上行传输速率等级(reducedUE-CategoryUL)子信元。最大载波数(reducedMaxCCs)信元可以包括下行载波数(reducedCCsDL)子信元和上行载波数(reducedCCsUL)子信元。基带处理器102在接收到第二指令后,可以将第一UE辅助信息中overheating字段的子信元上行载波数(reducedCCsUL)为设置为0。例如,即使基带处理器102可以测量到2个上行载波数,基带处理器102在接收到第二指令后,也将第二UE辅助信息中overheating字段的子信元上行载波数(reducedCCsUL)设置为0,并将第二UE辅助信息发送给LTE接入网设备201。
S1213、LTE接入网设备201在接收到第二UE辅助信息后,不发起NR链路建立流程,不为电子设备100配置NR测量。
这样,网络侧设备200接收到第二UE辅助信息后,可以不再尝试与电子设备100建立NR链路,节约了网络资源,也防止了网络侧设备200主动与电子设备100建立NR链路。
S1214、应用处理器101检测到电子设备100需要建立LTE-NR双连接。
其中,电子设备100需要建立LTE-NR双连接的情况,可以参考前述实施例中针对高网速场景的描述,在此不再赘述。
S1215、应用处理器101在检测到电子设备100需要建立LTE-NR双连接时,可以发送第一指令给基带处理器102,该第一指令可用于指示基带处理器102恢复NR链路。
具体的,第一指令可以私有命令消息,例如注意(attention,AT)命令消息;该第一 指令也可以是传统命令消息,例如用于开启NR连接的at^syscfgex命令消息,用于恢复NR链路的at^errccap命令消息等。
S1216、基带处理器102可以打开NR测量。
具体的,基带处理器102可以响应于第一指令,测量电子设备100所处的多个5G小区。
S1217、基带处理器102可以向LTE接入网设备201发送第一UE辅助信息。其中,该第一UE辅助信息中包括有overheating字段,该overheating字段内携带的子信元上行辅载波数(reducedCCsUL)为非0或不携带任何子信元。
具体内容,可以参考前述图9所示实施例中的步骤S906,在此不再赘述。
S1218、LTE接入网设备201在接收到该第一UE辅助信息后,可以发起与电子设备100的NR连接建立流程。
具体内容,可以参考签署图9所示实施例中的步骤S907,在此不再赘述。
需要说明的是,在本申请的上述实施例中,基带处理器102还可以通过其他信令指示网络侧设备200释放NR链路或指示网络侧设备200建立LTE-NR双连接。
在一种可能的实现方式中,基带处理器102还可以通过UE辅助信息中最大载波(maxCC)字段指示网络侧设备200释放NR链路或指示网络侧设备200建立LTE-NR双连接。
其中,UE辅助信息在不同的协议版本中可以不同,例如,在R16协议版本中,该带有maxCC字段的UE辅助信息的信元内容可以如下:
Figure PCTCN2021109371-appb-000004
上述UE辅助信息中可以包括最大辅载波数(maxCC)字段和其他字段,例如,idc字段、非连续接收(drx)字段、最大带宽(maxBW)字段、最大MIMO数(maxMIMO)字段、minSchedulingOffset字段、release字段、sl-UE-Assistance InformationNR字段。其中,maxCC字段名称中的“preference”表示该maxCC字段可以是UE侧的偏好设置,网络侧不是必须得接受该maxCC字段指示的辅载波设置。例如,网络侧接收到该UE辅助信息后,可以按照maxCC字段所指示的辅载波数为UE侧设置相应的辅载波,也可以忽略该maxCC字段。
该UE辅助信息中overheating字段的信元内容可以如下:
Figure PCTCN2021109371-appb-000005
上述UE辅助信息的maxCC字段可以包括下行辅载波数(reducedCCsDL)子信元和上行辅载波数(reducedCCsUL)子信元。该下行辅载波数(reducedCCsDL)子信元的取值可以为0至31的整数,该上行辅载波数(reducedCCsUL)子信元的取值可以为0至31的整数。
需要说明的是,该maxCC字段可以是基于3GPP R16协议版本的,但不限于3GPP R16协议版本,还可以是基于其他版本协议的。
当电子设备上报给网络侧设备的UE辅助信息中maxCC字段该上行辅载波数(reducedCCsUL)子信元的值为a时,a大于等于0。网络侧设备可以根据为电子设备激活a条上行辅载波。电子设备可以在该激活的a条上行辅载波上的物理上行共享信道(physical uplink shared channel,PUSCH)发送数据,以及发送上行参考信号。电子设备可以在其他未被激活的上行辅载波上的物理上行共享信道(physical uplink shared channel,PUSCH)不发送数据,不发送上行参考信号。
示例性的,当应用处理器101在检测到电子设备100需要建立LTE-NR双连接时,应用处理器101可以发送第一指令给基带处理器102,该第一指令可用于指示基带处理器102与网络侧设备200建立NR链路。基带处理器102可以响应于该第一指令,向网络侧设备200发送第三UE辅助信息。其中,该第三UE辅助信息中maxCC字段的子信元上行载波数(reducedCCsUL)为非0,或者,该第三UE辅助信息中不携带任何子信元。
当应用处理器101在检测到电子设备100需要释放NR链路时,应用处理器101可以发送第二指令给基带处理器102,该第二指令可用于指示基带处理器102释放与网络侧设备200已建立的NR链路。基带处理器102可以响应于该第二指令,向网络侧设备200发送第四UE辅助信息。其中,该第四UE辅助信息中maxCC字段的子信元上行载波数(reducedCCsUL)为0。
在一种可能的实现方式中,基带处理器102还可以通过在UE辅助信息中设置一个特殊字段,指示网络侧设备200释放NR链路或指示网络侧设备200建立LTE-NR双连接。其中,该特殊字段占用一个比特(bit)位。
示例性的,当该UE辅助信息中该特殊字段的值为1时,该UE辅助信息可用于指示网络侧设备200建立LTE-NR双连接。当该UE辅助信息中该特殊字段的值为0时,该UE辅助信息可用于指示网络侧设备200释放NR链路。
在一种可能的实现方式中,基带处理器102还可以通过其他RRC信令,指示网络侧设备200释放NR链路或指示网络侧设备200建立LTE-NR双连接。
下面介绍本申请实施例中提供的一种电子设备100的结构示意图。
图13示出了电子设备100的结构示意图。
下面以电子设备100为例对实施例进行具体说明。应该理解的是,图13所示电子设备 100仅是一个范例,并且电子设备100可以具有比图13中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图13中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等中的一种或多种。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
充电管理模块140用于从充电器接收充电输入。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信 模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。耳机接口170D用于连接有线耳机。压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。陀螺仪传感器180B可以用于确定电子设备100的运动姿态。气压传感器180C用于测量气压。磁传感器180D包括霍尔传感器。加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。环境光传感器180L用于感知环境光亮度。指纹传感器180H用于采集指纹。温度传感器180J用于检测温度。触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。骨传导传感器180M 可以获取振动信号。按键190包括开机键,音量键等。马达191可以产生振动提示。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口195用于连接SIM卡。
图14示出了本申请实施例提供的一种芯片系统1400,其中该芯片系统1400可以包括应用处理器(application processor,AP)101和基带处理器(baseband processor,BP)102。
在实际应用中,通常应用处理器101支持运行的软件包括操作系统、用户界面以及应用程序等。基带处理器102可以视为一个无线调制解调modem模块,负责协调控制102与基站和101之间的通信,其支持运行的软件包括基带调制解调baseband modem的通信控制软件等。
应用处理器101和基带处理器102之间支持采用预设的接口技术实现相互通信,该接口技术可为系统自定义设置的,例如其包括但不限于串行外围设备接口(serial peripheral interface,SPI)、通用异步接收/发送装置(universal asynchronous receiver/transmitter,UART)、通用串行总线(universal serial bus,USB)、通用输入输出控制线(general purpose input/output,GPIO)等接口技术。具体地,应用处理器和基带处理器之间可通过控制命令以消息的格式实现相互间的通信传输,以完成通话、短消息、移动上网等功能。该控制命令可以包括传统AT(attention)命令、移动宽带接口模式(mobile broadband interface model,MBIM)命令或其他支持101和102相互传输的协议命令等。
基带处理器102支持运行非接入NAS层和无线资源控制RRC层相关的协议软件。在实际应用中,应用处理器101支持与基带处理器102中NAS层和RRC层的通信。例如,本申请中应用处理器101可采用传统AT命令向NAS层发送相应地信令消息,以通知NAS层当前101所获知的应用状态或设备屏幕状态等信息。
应用处理器101与基带处理器102在本申请实施例中各自执行的方法流程可以参考前述图9-图12所示方法实施例,在此不再赘述。
在实际应用中,芯片系统1400通常指一种高度复杂系统芯片,例如SOC芯片等。在实际部署时,其可部署在设备内部,也可部署在设备外部,通过有线连接或无线连接实现设备的控制。所述设备包括但不限于用户设备UE或终端设备,例如其具体可包括智能手机、移动互联网设备(mobile internet devices,MID)、穿戴式智能设备或其他支持网络通信的设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,图9-图12任一所述方法实施例的流程可得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,图9-图12任一所述方法实施例的流程可得以实现。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (40)

  1. 一种网络连接系统,其特征在于,包括:电子设备和网络侧设备;其中,
    所述电子设备,用于通过长期演进LTE链路与所述网络侧设备进行数据交互;
    所述电子设备,还用于当所述电子设备满足第一预设条件时,主动发送第一UE辅助信息至所述网络侧设备;其中,所述第一用户设备UE辅助信息包括第一字段,所述第一字段内携带的上行辅载波数reducedCCsUL子信元为第一值或者所述第一字段内不携带任何子信元,所述第一值大于0;
    所述网络侧设备,用于响应于所述第一UE辅助信息,与所述电子设备建立新空口NR链路;
    所述电子设备,还用于通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互。
  2. 根据权利要求1所述的系统,其特征在于,所述第一UE辅助信息的协议版本为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,所述第一字段为过热保护overheating字段。
  3. 根据权利要求1所述的系统,其特征在于,所述第一UE辅助信息的协议版本为第三代合作伙伴计划3GPP技术协议规范R16版本,所述第一字段为最大辅载波数maxCC字段。
  4. 根据权利要求1所述的系统,其特征在于,所述网络侧设备,还用于响应于所述第一UE辅助信息,激活所述电子设备的N个上行辅载波,N为所述第一值;
    所述电子设备,具体用于:
    通过所述LTE链路上的上行主载波和所述NR链路上的N个上行辅载波同时发送数据给所述网络侧设备。
  5. 根据权利要求1-4任一项所述的系统,其特征在于,所述电子设备,还用于:
    在通过所述LTE链路与所述网络侧设备进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    当所述电子设备满足第二预设条件时,主动发送辅小区组失败SCG failure信令至所述网络侧设备;
    所述网络侧设备,还用于响应于所述SCG failure信令,与所述电子设备释放所述NR链路;
    所述电子设备,还用于在释放所述NR链路后,关闭NR测量。
  6. 根据权利要求2所述的系统,其特征在于,所述电子设备,还用于:
    在通过所述LTE链路与所述网络侧进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    当所述电子设备满足第二预设条件时,主动发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息包括所述overheating字段,所述第二UE辅助信息中所述overheating字段内携带的上行辅载波数reducedCCsUL子信元为0;
    所述网络侧设备,还用于响应于所述第二UE辅助信息,与所述电子设备释放所述NR链路;
    所述电子设备,还用于在释放所述NR链路后,关闭NR测量。
  7. 根据权利要求3所述的系统,其特征在于,所述电子设备,还用于:
    在通过所述LTE链路与所述网络侧进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    当所述电子设备满足第二预设条件时,主动发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息包括所述maxCC字段,所述第二UE辅助信息中所述maxCC字段内携带的上行辅载波数reducedCCsUL子信元为0;
    所述网络侧设备,还用于响应于所述第二UE辅助信息,与所述电子设备释放所述NR链路。
  8. 根据权利要求2所述的系统,其特征在于,所述网络侧设备,还用于在接收到所述第一UE辅助信息之前,发送UE能力查询请求至所述电子设备;
    所述电子设备,还用于响应于所述UE能力查询请求,发送UE能力信息给所述网络侧设备,其中,所述UE能力信息用于表征所述电子设备支持overheating机制;
    所述网络侧设备,还用于在接收到所述UE能力信息之后,发送网络重配置信息至所述电子设备,所述网络重配置信息中包括有overheating配置信息;
    所述电子设备,还用于响应于所述网络重配置信息,执行所述overheating配置信息中的配置内容。
  9. 根据权利要求1所述的系统,其特征在于,所述电子设备,还用于在主动发送所述第一UE辅助信息至所述网络侧设备之前,当检测到所述电子设备无数据业务时,发送无线资源控制RRC连接释放信令至所述网络侧设备;
    所述网络侧设备,还用于响应于所述RRC连接释放信令,与所述电子设备断开RRC连接;
    所述电子设备,还用于当所述电子设备满足第二预设条件且检测到所述电子设备有数据业务时,发送RRC连接建立信令至所述网络侧设备;
    所述网络侧设备,还用于响应于所述RRC连接建立信令,与所述电子设备建立RRC连接;
    所述电子设备,还用于关闭NR测量,并发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息中所述reduced CCsUL子信元为0;
    所述网络侧设备,还用于响应于所述第二UE辅助信息,与所述电子设备通过所述LTE链路进行数据交互。
  10. 根据权利要求1所述的系统,其特征在于,所述第一预设条件包括:
    所述电子设备亮屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率大于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小大于第一预设阈值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率大于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  11. 根据权利要求5-7或9任一项所述的系统,其特征在于,所述第二预设条件包括:
    所述电子设备灭屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率小于或等于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小小于或等于第一预设阈值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率小于等于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  12. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    计算机存储介质,所述计算机存储介质包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备执行以下动作:
    通过长期演进LTE链路与网络侧设备进行数据交互;当所述电子设备满足第一预设条件时,主动发送第一UE辅助信息至所述网络侧设备;其中,所述第一用户设备UE辅助信息包括第一字段,所述第一字段内携带的上行辅载波数reducedCCsUL子信元为第一值或者所述第一字段内不携带任何子信元,所述第一值大于0;
    与所述网络侧设备建立新空口NR链路;
    通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互。
  13. 根据权利要求12所述的电子设备,其特征在于,所述第一UE辅助信息的协议版本为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,所述第一字段为过热保护overheating字段。
  14. 根据权利要求12所述的电子设备,其特征在于,所述第一UE辅助信息的协议版本为3GPP技术协议规范R16版本,所述第一字段为最大辅载波数maxCC字段。
  15. 根据权利要求12所述的电子设备,其特征在于,所述通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互,具体包括:
    通过所述LTE链路上的上行主载波和NR链路上被所述网络侧设备激活的N个上行辅载波同时发送数据给所述网络侧设备,N为所述第一值。
  16. 根据权利要求12-15任一项所述的电子设备,其特征在于,当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备还执行以下动作:
    在通过所述LTE链路与所述网络侧设备进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    当所述电子设备满足第二预设条件时,主动发送辅小区组失败SCG failure信令至所述网络侧设备;
    与所述网络侧设备释放所述NR链路,并关闭NR测量。
  17. 根据权利要求13所述的电子设备,其特征在于,当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备还执行以下动作:
    在通过所述LTE链路与所述网络侧进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    当所述电子设备满足第二预设条件时,主动发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息包括所述overheating字段,所述第二UE辅助信息中所述overheating字段内携带的上行辅载波数reducedCCsUL子信元为0;
    与所述网络侧设备释放所述NR链路,并关闭NR测量。
  18. 根据权利要求14所述的电子设备,其特征在于,当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备还执行以下动作:
    在通过所述LTE链路与所述网络侧进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    当所述电子设备满足第二预设条件时,主动发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息包括所述maxCC字段,所述第二UE辅助信息中所述maxCC字段内携带的上行辅载波数reducedCCsUL子信元为0;
    与所述网络侧设备释放所述NR链路,并关闭NR测量。
  19. 根据权利要求13所述的电子设备,其特征在于,当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备还执行以下动作:
    在发送所述第一UE辅助信息至所述网络侧设备之前,接收到所述网络侧设备发送的 UE能力查询请求;
    响应于所述UE能力查询请求,发送UE能力信息给所述网络侧设备,其中,所述UE能力信息用于表征所述电子设备支持overheating机制;
    接收到所述网络侧设备发送的网络重配置信息,所述网络重配置信息中包括有overheating配置信息;
    响应于所述网络重配置信息,执行所述overheating配置信息中的配置内容。
  20. 根据权利要求13所述的电子设备,其特征在于,当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备还执行以下动作:
    在主动发送所述第一UE辅助信息至所述网络侧设备之前,当检测到所述电子设备无数据业务时,发送无线资源控制RRC连接释放信令至所述网络侧设备,所述RRC连接释放信令用于指示所述网络侧设备与所述电子设备断开RRC连接;
    与所述网络侧设备断开所述RRC连接;
    当所述电子设备满足第二预设条件且检测到所述电子设备有数据业务时,发送RRC连接建立信令至所述网络侧设备,所述RRC建立信令用于指示所述网络侧设备与所述电子设备建立所述RRC连接;
    与所述网络侧设备建立所述RRC连接;
    关闭NR测量,并发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息中所述reduced CCsUL子信元为0;
    与所述网络侧设备通过所述LTE链路进行数据交互。
  21. 根据权利要求12所述的电子设备,其特征在于,所述第一预设条件包括:
    所述电子设备亮屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率大于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小大于第一预设阈值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率大于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  22. 根据权利要求16-18或20任一项所述的电子设备,其特征在于,所述第二预设条件包括:
    所述电子设备灭屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率小于或等于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小小于或等于第一预设阈 值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率小于等于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  23. 一种芯片系统,其特征在于,应用于电子设备,所述芯片系统包括:应用处理器AP和基带处理器BP;其中,
    所述基带处理器,用于通过长期演进LTE链路与网络侧设备进行数据交互;
    所述应用处理器,还用于当所述电子设备满足第一预设条件时,发送第一指令至所述基带处理器;
    所述基带处理器,还用于响应于所述第一指令,主动发送第一UE辅助信息至所述网络侧设备;其中,所述第一用户设备UE辅助信息包括第一字段,所述第一字段内携带的上行辅载波数reducedCCsUL子信元为第一值或者所述第一字段内不携带任何子信元,所述第一值大于0;
    所述基带处理器,还用于与所述网络侧设备建立新空口NR链路;
    所述基带处理器,还用于通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互。
  24. 根据权利要求23所述的芯片系统,其特征在于,所述第一UE辅助信息的协议版本为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,所述第一字段为过热保护overheating字段。
  25. 根据权利要求23所述的芯片系统,其特征在于,所述第一UE辅助信息的协议版本为3GPP技术协议规范R16版本,所述第一字段为最大辅载波数maxCC字段。
  26. 根据权利要求23的所述的芯片系统,其特征在于,所述基带处理器,具体用于通过所述LTE链路上的上行主载波和NR链路上被所述网络侧设备激活的N个上行辅载波同时发送数据给所述网络侧设备,N为所述第一值。
  27. 根据权利要求23-26任一项所述的芯片系统,其特征在于,所述基带处理器,还用于在通过所述LTE链路与所述网络侧进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    所述应用处理器,还用于当所述电子设备满足第二预设条件时,发送第二指令至所述基带处理器;
    所述基带处理器,还用于响应于所述第二指令,主动发送辅小区组失败SCG failure信令至所述网络侧设备;
    所述基带处理器,还用于与所述网络侧设备释放所述NR链路,并关闭NR测量。
  28. 根据权利要求24所述的芯片系统,其特征在于,所述基带处理器,还用于在通过所述LTE链路与所述网络侧进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    所述应用处理器,还用于当所述电子设备满足第二预设条件时,发送第二指令至所述基带处理器;
    所述基带处理器,还用于响应于所述第二指令,主动发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息包括所述overheating字段,所述第二UE辅助信息中所述overheating字段内携带的上行辅载波数reducedCCsUL子信元为0;
    所述基带处理器,与所述网络侧设备释放所述NR链路,并关闭NR测量。
  29. 根据权利要求25所述的芯片系统,其特征在于,所述基带处理器,还用于在通过所述LTE链路与所述网络侧进行数据交互之前,通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    所述应用处理器,还用于当所述电子设备满足第二预设条件时,发送第二指令至所述基带处理器;
    所述基带处理器,还用于响应于所述第二指令,主动发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息包括所述maxCC字段,所述第二UE辅助信息中所述maxCC字段内携带的上行辅载波数reducedCCsUL子信元为0;
    所述基带处理器,与所述网络侧设备释放所述NR链路,并关闭NR测量。
  30. 根据权利要求24所述的芯片系统,其特征在于,所述基带处理器,还用于在发送所述第一UE辅助信息至所述网络侧设备之前,接收到所述网络侧设备发送的UE能力查询请求;
    所述基带处理器,还用于响应于所述UE能力查询请求,发送UE能力信息给所述网络侧设备,其中,所述UE能力信息用于表征所述电子设备支持overheating机制;
    所述基带处理器,还用于接收到所述网络侧设备发送的网络重配置信息,所述网络重配置信息中包括有overheating配置信息;
    所述基带处理器,还用于响应于所述网络重配置信息,执行所述overheating配置信息中的配置内容。
  31. 根据权利要求24所述的芯片系统,其特征在于,所述应用处理器,还用于在发送所述第一指令至所述基带处理器之前,当检测到所述电子设备无数据业务时,发送第三指令至所述基带处理器;
    所述基带处理器,还用于响应于所述第三指令,发送无线资源控制RRC连接释放信令至所述网络侧设备,所述RRC连接释放信令用于指示所述网络侧设备与所述电子设备断开RRC连接;
    所述基带处理器,还用于与所述网络侧设备断开所述RRC连接;
    所述应用处理器,还用于当所述电子设备满足第二预设条件,发送第二指令至所述基带处理器;
    所述应用处理器,还用于在检测到所述电子设备有数据业务时,发送第四指令至所述基带处理器;
    所述基带处理器,还用于响应于所述第四指令,发送RRC连接建立信令至所述网络侧设备,所述RRC建立信令用于指示所述网络侧设备与所述电子设备建立所述RRC连接;
    所述基带处理器,还用于与所述网络侧设备建立所述RRC连接;
    所述基带处理器,还用于响应于所述第二指令,关闭NR测量,并发送第二UE辅助信息至所述网络侧设备,其中,所述第二UE辅助信息中所述reduced CCsUL子信元为0;
    所述基带处理器,还用于与所述网络侧设备通过所述LTE链路进行数据交互。
  32. 根据权利要求23所述的芯片系统,其特征在于,所述第一预设条件包括:
    所述电子设备亮屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率大于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小大于第一预设阈值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率大于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  33. 根据权利要求27-29或31任一项所述的芯片系统,其特征在于,所述第二预设条件包括:
    所述电子设备灭屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率小于或等于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小小于或等于第一预设阈值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率小于等于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  34. 一种网络连接方法,其特征在于,所述方法包括:
    电子设备通过长期演进LTE链路与网络侧设备进行数据交互;当所述电子设备满足第 一预设条件时,主动发送第一UE辅助信息至所述网络侧设备;其中,所述第一用户设备UE辅助信息包括第一字段,所述第一字段内携带的上行辅载波数reducedCCsUL子信元为第一值或者所述第一字段内不携带任何子信元,所述第一值大于0;
    所述电子设备与所述网络侧设备建立新空口NR链路;
    所述电子设备通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互。
  35. 根据权利要求34所述的方法,其特征在于,所述第一UE辅助信息的协议版本为第三代合作伙伴计划3GPP技术协议规范R14版本或R15版本,所述第一字段为过热保护overheating字段。
  36. 根据权利要求34所述的方法,其特征在于,所述第一UE辅助信息的协议版本为所述第一UE辅助信息的协议版本为3GPP技术协议规范R16版本,所述第一字段为最大辅载波数maxCC字段。
  37. 根据权利要求34-36任一项所述的方法,其特征在于,所述电子设备在通过所述LTE链路与所述网络侧设备进行数据交互之前,还包括:
    所述电子设备通过所述LTE链路和所述NR链路同时与所述网络侧设备进行数据交互;
    当所述电子设备满足第二预设条件时,所述电子设备主动发送辅小区组失败SCG failure信令至所述网络侧设备;
    所述电子设备与所述网络侧设备释放所述NR链路,关闭NR测量。
  38. 根据权利要求34所述的方法,其特征在于,所述第一预设条件包括:
    所述电子设备亮屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率大于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小大于第一预设阈值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率大于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  39. 根据权利要求34所述的方法,其特征在于,所述第二预设条件包括:
    所述电子设备亮屏;或,
    所述电子设备亮屏,且所述电子设备与所述网络侧设备的数据传输速率大于第一预设速率;或,
    所述电子设备亮屏,且所述电子设备所需传输的数据包的大小大于第一预设阈值;或,
    所述电子设备的设备温度大于或等于预设温度阈值;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备的数据传输速率大于第二预设速率;或,
    所述电子设备灭屏,且所述电子设备与所述网络侧设备之间传输的数据包大小大于第二预设阈值。
  40. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述终端设备执行如权利要求34至39中任一项所述的方法。
PCT/CN2021/109371 2020-07-31 2021-07-29 一种网络连接方法、系统及相关装置 WO2022022653A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/007,383 US20230276518A1 (en) 2020-07-31 2021-07-29 Network Connection Method, System, and Related Apparatus
EP21851358.8A EP4178312A4 (en) 2020-07-31 2021-07-29 METHOD AND SYSTEM FOR CONNECTING TO A NETWORK AND RELATED APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010761966.2 2020-07-31
CN202010761966.2A CN114071786A (zh) 2020-07-31 2020-07-31 一种网络连接方法、系统及相关装置

Publications (1)

Publication Number Publication Date
WO2022022653A1 true WO2022022653A1 (zh) 2022-02-03

Family

ID=80037652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109371 WO2022022653A1 (zh) 2020-07-31 2021-07-29 一种网络连接方法、系统及相关装置

Country Status (4)

Country Link
US (1) US20230276518A1 (zh)
EP (1) EP4178312A4 (zh)
CN (1) CN114071786A (zh)
WO (1) WO2022022653A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116963195A (zh) * 2022-04-15 2023-10-27 中兴通讯股份有限公司 实现条件切换的方法、电子设备、计算机可读介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753658A (zh) * 2008-10-31 2010-06-23 华为终端有限公司 调节终端温度的方法、温度调节装置及终端
CN101834644A (zh) * 2010-02-04 2010-09-15 华为终端有限公司 一种无线终端的辅天线状态控制方法及无线终端
WO2018130115A1 (zh) * 2017-01-13 2018-07-19 华为技术有限公司 一种调整无线资源配置的方法、装置及系统
CN110536348A (zh) * 2019-05-16 2019-12-03 Oppo广东移动通信有限公司 一种终端的功耗控制方法、装置及存储介质
CN111107579A (zh) * 2019-12-24 2020-05-05 Oppo广东移动通信有限公司 一种网络连接的控制方法、装置、终端及存储介质
US20200145927A1 (en) * 2018-11-02 2020-05-07 Apple Inc. Dynamic power reduction requests for wireless communications
WO2021030422A1 (en) * 2019-08-12 2021-02-18 Qualcomm Incorporated Innovative signaling approaches to network for overheating indication in new radio (nr) and multi-radio dual connectivity (mr-dc)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107306170B (zh) * 2016-04-18 2021-04-30 中兴通讯股份有限公司 一种上行辅助信息传输方法、装置及系统
US10993104B2 (en) * 2017-11-17 2021-04-27 Apple Inc. Temporary handling of wireless communication device capabilities
CN111050348B (zh) * 2018-10-11 2022-10-21 维沃移动通信有限公司 信息发送方法、接收方法、终端及辅基站
CN113039832B (zh) * 2018-11-22 2022-02-18 华为技术有限公司 一种异系统切换方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753658A (zh) * 2008-10-31 2010-06-23 华为终端有限公司 调节终端温度的方法、温度调节装置及终端
CN101834644A (zh) * 2010-02-04 2010-09-15 华为终端有限公司 一种无线终端的辅天线状态控制方法及无线终端
WO2018130115A1 (zh) * 2017-01-13 2018-07-19 华为技术有限公司 一种调整无线资源配置的方法、装置及系统
US20200145927A1 (en) * 2018-11-02 2020-05-07 Apple Inc. Dynamic power reduction requests for wireless communications
CN110536348A (zh) * 2019-05-16 2019-12-03 Oppo广东移动通信有限公司 一种终端的功耗控制方法、装置及存储介质
WO2021030422A1 (en) * 2019-08-12 2021-02-18 Qualcomm Incorporated Innovative signaling approaches to network for overheating indication in new radio (nr) and multi-radio dual connectivity (mr-dc)
CN111107579A (zh) * 2019-12-24 2020-05-05 Oppo广东移动通信有限公司 一种网络连接的控制方法、装置、终端及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Reporting UE Assistance Info to NR SN", 3GPP DRAFT; R2-2000255, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Elbonia; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051848893 *
See also references of EP4178312A4

Also Published As

Publication number Publication date
US20230276518A1 (en) 2023-08-31
CN114071786A (zh) 2022-02-18
EP4178312A4 (en) 2024-01-17
EP4178312A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2020182016A1 (zh) 网络连接的处理方法、相关设备及计算机存储介质
US10624146B2 (en) Radio link failure handling method, related device, and communications system
WO2021227615A1 (zh) 一种提升通话质量的方法及终端
WO2021223666A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2020147436A1 (zh) 上报能力信息的方法、设备及系统
WO2020147795A1 (zh) 一种无线通信方法及终端设备
KR20230105304A (ko) Cu-du 분리를 고려한 mt-sdt 지원
WO2022042264A1 (zh) 一种切换接入点的方法、装置及系统
CN113056037A (zh) 网络标识的显示方法、设备及系统
WO2022022653A1 (zh) 一种网络连接方法、系统及相关装置
CN105103629B (zh) 通信控制设备、通信控制方法和终端设备
WO2022111718A1 (zh) 一种射频通道的共享方法及相关装置
WO2021179973A1 (zh) 一种恢复双连接的方法及装置
CN117693969A (zh) 关闭小区的方法、终端设备、网络设备及存储介质
RU2782338C1 (ru) Способ обработки сетевого соединения, соответствующее устройство и компьютерный носитель
RU2805992C2 (ru) Способ обработки сетевого соединения, соответствующее устройство и компьютерный носитель
CN114650588B (zh) 网络连接的处理方法、相关设备及计算机存储介质
CN116761222B (zh) 切换基站的方法、终端设备及可读存储介质
WO2021098540A1 (zh) 终端设备和无线通信的方法
CN117202373A (zh) 通信方法、通信装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021851358

Country of ref document: EP

Effective date: 20230203

NENP Non-entry into the national phase

Ref country code: DE