WO2022022157A1 - 一种直调直检光调制器自动偏压控制装置和方法 - Google Patents

一种直调直检光调制器自动偏压控制装置和方法 Download PDF

Info

Publication number
WO2022022157A1
WO2022022157A1 PCT/CN2021/101052 CN2021101052W WO2022022157A1 WO 2022022157 A1 WO2022022157 A1 WO 2022022157A1 CN 2021101052 W CN2021101052 W CN 2021101052W WO 2022022157 A1 WO2022022157 A1 WO 2022022157A1
Authority
WO
WIPO (PCT)
Prior art keywords
direct
phase
automatic bias
modulator
control device
Prior art date
Application number
PCT/CN2021/101052
Other languages
English (en)
French (fr)
Inventor
余胜
曹权
Original Assignee
烽火通信科技股份有限公司
武汉飞思灵微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司, 武汉飞思灵微电子技术有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2022022157A1 publication Critical patent/WO2022022157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Definitions

  • the invention belongs to the technical field of optical communication, and more particularly, relates to an automatic bias voltage control device and method for a direct-adjustment and direct-detection optical modulator.
  • the direct adjustment and direct detection technology is widely used in medium and short distance transmission systems such as access network and data center interconnection due to its low cost and simple system.
  • the cost and power consumption of traditional discrete optical devices are gradually unable to meet the increasingly high cost and power consumption requirements of optical communication systems. Therefore, miniaturized and compact optical devices developed by semiconductor technology are gradually Recognized and accepted by the market, the application volume is increasing, among which silicon photonics and IIIV compound semiconductor technology are typical representatives.
  • Mach-Zehnder modulators As the medium for electro-optical conversion, and Mach-Zehnder modulators need to stabilize the static phase difference between the two modulation arms at ⁇ /2 or 3 ⁇ /2. Only when the position is adjusted can the optimal direct adjustment and direct inspection effect be achieved. In order to achieve this effect, it is necessary to design a set of devices and control methods to control the bias voltage of the modulator phase control and lock the static phase difference of the above two modulation arms.
  • phase response characteristics of the phase control unit of the modulator are linear; this condition is true for traditional lithium niobate modulators, because lithium niobate materials are based on linear
  • the electro-optic effect realizes phase control, while the phase response based on semiconductor materials is often nonlinear.
  • silicon optical modulators often use thermo-optic phase shifters. type of device.
  • the present invention provides an automatic bias voltage control device and method for a direct-adjustment and direct-detection optical modulator. locking, and has a high locking accuracy.
  • an automatic bias voltage control device for a direct-adjusted and direct-detection optical modulator.
  • the functional materials of each component of the device may be based on lithium niobate, silicon-based, or group IIIV compound semiconductors and other substrates.
  • the two independent phase controllers are respectively located in two different modulation arms, or the two independent phase controllers are located in the same modulation arm.
  • the output end of the Mach-Zehnder modulator is a 2 ⁇ 1 beam combiner, and a coupled beam splitter is connected behind the 2 ⁇ 1 beam combiner, and the coupled beam splitter splits the main A portion of the light from the channel is sent to the monitoring detector.
  • the output end of the Mach-Zehnder modulator is a 2 ⁇ 2 beam splitter, one beam split of the 2 ⁇ 2 beam splitter is the main output channel, and the other beam split is output to all the monitoring detectors.
  • the automatic bias voltage control device for the direct-adjustment and direct-detection photonic modulator is constructed with discrete components, or each device of the automatic bias control device for the direct-adjustment and direct-detection photonic modulator is integrated on the same substrate.
  • pilot signals of different frequencies are respectively superimposed on the DC voltages of the two independent phase controllers, and the pilot frequencies are f 1 and f 2 respectively. 1 - f 2
  • the component is stabilized at the position of the minimum amplitude value or the phase jump point. At this time, the working state of the modulator can be stabilized at the optimal operating point.
  • the pilot signal is a sine wave or a cosine wave, or a waveform with odd symmetry characteristics.
  • or f 1 +f 2 in the monitoring detector is analyzed, specifically: intensity detection, or simultaneous detection of amplitude and phase.
  • an automatic bias control method based on the automatic bias control device of the above-mentioned direct-adjustment and direct-detection light modulator comprising:
  • DC voltages V DC1 and V DC2 are loaded on the first phase controller and the second phase controller respectively, and pilot signals with frequencies f 1 and f 2 are loaded on the first phase controller and the second phase controller respectively V dither1 and V dither2 ;
  • Fix V DC1 take ⁇ u 1 as the voltage step, scan V DC2 from small to large to ensure that the optical phase change of this path is greater than ⁇ , and record
  • the selection of the locking strategy according to the position of the locking voltage includes:
  • the locking effect of the automatic bias voltage control scheme of the direct-adjustment and direct-detection optical modulator provided by the present invention has nothing to do with the linearity of the phase controller, and can be adapted to traditional lithium niobate modulators and semiconductor substrates.
  • modulators such as those based on silicon or IIIV materials;
  • Fig. 1 is the first embodiment of the modulator automatic bias control device in the present invention
  • Fig. 2 is the second embodiment of the modulator automatic bias control device in the present invention.
  • Fig. 3 is the third embodiment of the modulator automatic bias control device in the present invention.
  • Figure 5(a) is the locking effect curve of the lithium niobate modulator locked by the traditional second derivative method
  • Fig. 5(b) is the locking effect curve that utilizes the method of the present invention to lock the lithium niobate modulator
  • Fig. 6(a) is the locking effect curve of the silicon light modulator locked by the traditional second-order derivative method
  • Fig. 6(b) is the locking effect curve of locking the silicon light modulator by the method of the present invention.
  • FIG. 7 is an illustration of a sample flow for automatic bias stabilization using the above method in the present invention.
  • the embodiment of the present invention provides an automatic bias voltage control device for a direct-adjustment and direct-detection optical modulator.
  • the phase controllers and the high-speed phase shift in the modulator are loaded with independent phase control signals to control the static phase difference between the two modulation arms; at the same time, a monitoring detector is used to monitor the output optical power.
  • an embodiment of the present invention provides an automatic bias voltage control device for a direct-adjustment and direct-detection optical modulator, which uses a modulator input port 1-1, an input side 1 ⁇ 2 beam splitter 2, and two modulation arms. And the output side 2 ⁇ 1 beam combiner 3 forms a Mach-Zehnder modulator structure.
  • phase control unit 6 is added to the two modulation arms for controlling the static phase difference between the two modulation arms. More specifically, the phase control unit 6 is provided with independent phase controllers on the upper and lower modulation arms respectively, which are respectively the first phase controller 6-1 and the second phase controller 6-2, and the first phase controller 6-1. and the second phase controller 6-2 can be independently controlled through independent first phase controller voltage control ports 1-5 and second phase controller voltage control ports 1-6, respectively. 3.
  • the output light is split into a small part (split ratio 1-20%) through a coupling beam splitter 4 and sent to the monitoring detector 5.
  • the output current signal of 5 is output to the following detection circuit through signal output ports 1-7. Most of the light from the modulator is output through the modulator output ports 1-2.
  • the embodiment of the present invention provides another automatic bias voltage control device for a direct-adjustment and direct-detection light modulator.
  • the difference from FIG. 1 is that two independent phase controllers (the first phase controller 6- 1 and the second phase controller 6-2) are located on the same modulation arm.
  • an embodiment of the present invention also provides an automatic bias voltage control device for a direct-adjustment and direct-detection optical modulator.
  • the difference from FIG. 1 is that the 2 ⁇ 1 beam combiner on the output side can use a 2 ⁇ 2
  • the beam splitter 7 is replaced, and there is no need to use the coupling beam splitter 4 to split light, but one split beam of 7 is directly connected to the monitoring detector 5, and the other split beam of 7 is output through the output port 1-2.
  • the above-mentioned automatic bias control device for the direct-adjustment and direct-detection optical modulator is built with discrete components, or each device of the automatic bias control device for the direct-adjustment and direct-detection optical modulator is integrated on the same substrate;
  • each component of the above automatic bias control device may be based on lithium niobate, silicon-based, or group IIIV compound semiconductor and other substrates.
  • the voltage input ports 1-5 of the first phase controller are added
  • the first DC bias V DC1 and the pilot signal with the frequency of the first frequency f 1 are added to the voltage input ports 1-6 of the second phase controller with the second DC bias V DC2 and the frequency is the second frequency f 2
  • the pilot signal, the modulated light is detected by the monitoring detector 5, and the signal is output through the signal output ports 1-7.
  • the current signal is converted into a voltage signal through the cross-group amplifying circuit, and then passed through the filter (the filter).
  • An analog filter or a digital filter can be used to extract the signal at the frequency components
  • the pilot signal may be a sine wave or a cosine wave, or a waveform with odd symmetry characteristics, such as a square wave, a triangular wave and other signals.
  • phase response of the modulator high-speed phase shifter can be expressed as a linear relationship with the high-speed voltage signal where V ⁇ is the modulation half-wave voltage, and for the phase controller, its phase response can be represented by a dedicated function ⁇ (V), for the lithium niobate modulator, ⁇ (V) is a linear function of the voltage, for Semiconductor-type modulators ⁇ (V) are often complex nonlinear functions, such as phase shifters using thermo-optic effects, and this relationship is a square relationship.
  • the intensity P 1 of the output signal of the Mach-Zehnder modulator can be expressed as:
  • V RF represents the high-speed modulation voltage
  • V DC1 is the DC voltage of the first phase shift arm
  • V DC2 is the DC voltage of the second phase shift arm
  • V dither1 is the first phase shift arm.
  • the pilot signal on the phase shift arm, V dither2 is the pilot signal on the second phase shift arm.
  • V dither1 and V dither2 be sinusoidal signals of frequency formula f 1 and f 2 respectively, and the amplitudes are a dither1 and a dither2 respectively .
  • this scheme can be achieved Effect. So there are:
  • V dither1 a dither1 sin(2 ⁇ f 1 t) (2)
  • V dither2 a dither2 sin(2 ⁇ f 2 t) (3)
  • the monitoring detector output signal S 1 can be expressed as:
  • R represents the responsivity of the monitoring detector.
  • the detection signal is
  • generalized Taylor expansion of formula (5) about V dither1 and V dither2 is carried out, and (2) and (3) are combined with Enter the result of Taylor expansion, then the signal amplitude at each frequency component can be obtained.
  • the relationship between the signal light intensity and each voltage based on the traditional pilot scheme is also given here.
  • This scheme has only one control port and one pilot signal.
  • the DC voltage of the phase control unit is V DC
  • the corresponding pilot signal voltage is V dither .
  • the output power of the modulator is:
  • V dither is a sinusoidal signal with frequency f 0 and amplitude a 0 :
  • V dither a 0 sin(2 ⁇ f 0 t) (11)
  • the locking signal is often based on the second-order derivative of the locking signal to detect the second-order derivative of the signal, which is related to the multiplied frequency component a 2f0 of the pilot frequency in the output signal, namely:
  • the second derivative can be expressed as:
  • the former is used to describe the characteristics of phase controllers using linear electro-optic effects such as lithium niobate substrates
  • the latter is often used to describe the characteristics of phase controllers using thermo-optic effects, such as silicon optical modulators.
  • the phase response is linear
  • the locking effect can be achieved based on the traditional second derivative and the solution of the present invention
  • the detection signal is zero when ⁇ /2 or 3 ⁇ /2, and the sign jumps.
  • the phase response is nonlinear
  • the locking effect cannot be achieved based on the traditional solution, that is, the detection signal is not zero when ⁇ /2 or 3 ⁇ /2, but the solution of the present invention can still achieve the locking effect.
  • the difference between the sum frequency and the difference frequency is only the opposite sign.
  • the first step is to load DC on the first phase controller (specifically, the voltage control ports 1-5 of the first phase controller) and the second phase controller (specifically, the voltage control ports 1-6 of the second phase controller), respectively.
  • voltages V DC1 and V DC2 , and pilot signals V dither1 and V dither2 with frequencies f 1 and f 2 are loaded on the first phase controller and the second phase controller, respectively.
  • the second step is to fix V DC1 , take ⁇ u 1 as the voltage step, scan V DC2 from small to large (here is just an example, it is also possible to fix V DC2 to scan V DC1 ) to ensure that the optical phase change of this path is greater than ⁇ , and record the monitoring and detection at the same time is the magnitude and phase of the component at
  • the third step is to record the voltage value when the monitoring signal reaches a minimum value and the phase jumps, and record the characteristics according to the phase jump.
  • the voltage point from positive to negative phase is recorded as V -
  • the phase from negative to positive Voltage points are recorded as V + .

Abstract

本发明公开了一种直调直检光调制器自动偏压控制装置,在马赫曾德尔调制器内存在两个独立的相位控制器,所述相位控制器与调制器内的高速相移器串联;分别在两个相位控制器上加载独立的相位控制信号用来控制两个调制臂之间的静态相位差;同时有一个监测探测器用来监测输出光功率的大小。本发明提供的直调直检光调制器自动偏压控制方案的锁定效果同相位控制器的线性度无关,能适应于传统地铌酸锂型调制器,也能适用于半导体基材的调制器,比如硅基或者ⅢⅤ族材料的调制器;本发明提供的直调直检光调制器自动偏压控制方案的锁定精度受激光器光功率的稳定性以及探测器响应度一致性的影响不大,锁定精度高。本发明还提供了相应的自动偏压控制方法。

Description

一种直调直检光调制器自动偏压控制装置和方法 技术领域
本发明属于光通信技术领域,更具体地,涉及一种直调直检光调制器自动偏压控制装置和方法。
背景技术
在光通信领域中,直调直检技术由于其成本低廉,系统简单,被广泛应用到接入网、数据中心互联等中短距的传输系统中。随着通信速率不断攀升,传统分立的光器件在成本和功耗上逐渐适应不了光通信系统越来越高的成本和功耗的要求,因此以半导体工艺拓展开的小型化紧凑型光器件逐渐被市场认可和接受,应用量不断加大,其中硅光、ⅢⅤ族复合半导体技术是典型的代表。高质量的直调直检系统,往往会采用马赫曾德尔调制器作为电光转换的媒介,而马赫曾德尔调制器需要将两个调制臂的静态相位差稳定在在π/2或者3π/2的位置时,才能达到最优的直调直检效果。为了达到这个效果,需要设计一套装置和控制方法来控制调制器相位控制的偏压,锁定上述两个调制臂的静态相位差。
关于偏压控制,传统基于铌酸锂调制器已经有了一些的方案:
一种方案是采用探测绝对光功率的方式,但是该方式的准确性会受到激光器光功率的稳定性和探测器响应度一致性的影响;
另一种方案是在调制器上的控制单元增加导频信号,获取导频信号相关的一阶导和二阶导信息,例如CN106209252A,CN122034C等专利中所涉及到方案。然而这种方案要达到它的锁定效果,前提条件是调制器的相位控制单元的相位响应特性是线性的;这个条件在传统铌酸锂调制器上是成立的,因为铌酸锂材料是基于线性电光效应实现相位控制的,而基于半导体 材料的相位响应往往是非线性的,例如硅光调制器往往采用热光相移器,其相位响应同电压大致呈平方关系,所以它并不能推广到这些紧凑型的器件上。
因此,需要有一套能够同时适用于各类材料体系的直调直检光调制器自动偏压控制方案。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种直调直检光调制器自动偏压控制装置和方法,其目的在于,能够广泛适用于各种材料的马赫曾德尔调制器的锁定,并且具有较高的锁定精度。
按照本发明的一个方面,提供了一种直调直检光调制器自动偏压控制装置,在马赫曾德尔调制器内存在两个独立的相位控制器,所述相位控制器与调制器内的高速相移器串联;分别在两个相位控制器上加载独立的相位控制信号用来控制两个调制臂之间的静态相位差;同时有一个监测探测器用来监测输出光功率的大小。
本发明的一个实施例中,所述装置各个部件的功能材料可以基于铌酸锂,硅基,或ⅢⅤ族复合半导体等基材。
本发明的一个实施例中,所述两个独立的相位控制器分别位于两个不同的调制臂,或者两个独立的相位控制器位于同一个调制臂。
本发明的一个实施例中,所述马赫曾德尔调制器的输出端为2×1合束器,所述2×1合束器后连接一个耦合分束器,该耦合分束器分出主通道的一部分光并送到所述监测探测器。
本发明的一个实施例中,所述马赫曾德尔调制器的输出端为2×2分束器,所述2×2分束器的一个分束为主输出通道,另外一个分束输出到所述监测探测器。
本发明的一个实施例中,所述直调直检光调制器自动偏压控制装置采用分立器件搭建,或者直调直检光调制器自动偏压控制装置的各器件集成 在同一基材上。
本发明的一个实施例中,在上述两个独立的相位控制器的直流电压上分别叠加上不同频率的导频信号,导频频率分别为f 1和f 2,通过解析监测探测器中|f 1-f 2|或者f 1+f 2处频率分量的信号,并通过控制两个独立相位控制器上的直流电压的大小,使得|f 1-f 2|或者f 1+f 2处的频率分量稳定在幅度最小值或者相位跳变点的位置,此时,调制器的工作状态即可以稳定在最佳工作点。
本发明的一个实施例中,所述导频信号是正弦波或余弦波,或者是具有奇对称特性的波形。
本发明的一个实施例中,通过解析监测探测器中|f 1-f 2|或者f 1+f 2处频率分量的信号,具体为:采用强度探测,或者幅度和相位同时探测。
按照本发明的另一方面,还提供了一种基于上述直调直检光调制器自动偏压控制装置的自动偏压控制方法,包括:
在第一相位控制器和第二相位控制器上分别加载直流电压V DC1和V DC2,并且在第一相位控制器和第二相位控制器上分别加载频率为f 1和f 2的导频信号V dither1和V dither2
固定V DC1,以Δu 1为电压步进,从小到大扫描V DC2,保证该路的光学相位变化大于π,同时记录监测探测器输出信号中|f 1-f 2|或者是f 1+f 2分量处的幅度和相位;
记录监测信号达到极小值并且相位发生跳变时候的电压值,并根据相位跳变的情况记录特征,相位由正到负的电压点记录为V -,相位由负到正的电压点记录为V +
设定锁定的步进电压为Δu 2,然后根据锁定电压的位置选择锁定策略。
本发明的一个实施例中,所述根据锁定电压的位置选择锁定策略,包括:
如果将电压锁定在V -附近,则令V DC2=V -,同时监测输出信号中|f 1-f 2|或者是f 1+f 2频率分量处的相位,如果相位为正,则V DC2=V DC2+Δu 2,反之则 V DC2=V DC2-Δu 2;如果将电压锁定在V +附近,则令V DC2=V +,同时监测输出信号中|f 1-f 2|或者是f 1+f 2频率分量处的相位,如果相位为正,则V DC2=V DC2-Δu 2,反之则V DC2=V DC2+Δu 2
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有如下有益效果:
(1)本发明提供的直调直检光调制器自动偏压控制方案的锁定效果同相位控制器的线性度无关,能适应于传统地铌酸锂型调制器,也能适用于半导体基材的调制器,比如硅基或者ⅢⅤ族材料的调制器;
(2)本发明提供的直调直检光调制器自动偏压控制方案的锁定精度受激光器光功率的稳定性以及探测器响应度一致性的影响不大,锁定精度高。
附图说明
图1是本发明中调制器自动偏压控制装置的第一种实施例;
图2是本发明中调制器自动偏压控制装置的第二种实施例;
图3是本发明中调制器自动偏压控制装置的第三种实施例;
图4是本发明中利用上述装置,对调制器自动偏压控制的方法说明;
图5(a)是利用传统二阶导数的方法锁定铌酸锂调制器的锁定效果曲线;
图5(b)是利用本发明方法锁定铌酸锂调制器的锁定效果曲线;
图6(a)是利用传统二阶导数的方法锁定硅光调制器的锁定效果曲线;
图6(b)是利用本发明方法锁定硅光调制器的锁定效果曲线;
图7是本发明中利用上述方法进行自动偏压稳定的样例流程说明;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-调制器自动偏压控制装置;2-输入侧1×2分束器;
3-输出侧2×1合束器;4-光耦合分束器;
5-监测探测器;6-相位控制单元;
7-输出侧2×2光分束器;
1-1-调制器输入端口;1-2-调制器输出端口;
1-3-正向高速差分输入口;1-4-反向高速差分输入口;
1-5-第一相位控制器电压控制端口;1-6-第二相位控制器电压控制端口;
1-7-监测探测器信号输出端口;6-1-第一相位控制器;
6-2-第二相位控制器。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
本发明实施例提供了一种直调直检光调制器自动偏压控制装置,在马赫曾德尔调制器内存在两个独立的相位控制器,所述相位控制器与调制器内的高速相移器串联;分别在两个相位控制器上加载独立的相位控制信号用来控制两个调制臂之间的静态相位差;同时有一个监测探测器用来监测输出光功率的大小。
实施例2
如图1所示,本发明实施例提供了一种直调直检光调制器自动偏压控制装置,通过调制器输入端口1-1、输入侧1×2分束器2、两个调制臂和输出侧2×1合束器3形成马赫曾德尔调制器结构。
在两个调制臂上除了高速相移器以外,还增加相位控制单元6,用于控制两个调制臂之间的静态相位差。更具体地,相位控制单元6在上下两个调制臂分别设置独立的相位控制器,分别为第一相位控制器6-1和第二相位控制器6-2,第一相位控制器6-1和第二相位控制器6-2可以分别通过独立 的第一相位控制器电压控制端口1-5和第二相位控制器电压控制端口1-6进行独立控制。3输出的光再通过一个耦合分束器4分出小部分(分光比1~20%)给到监测探测器5,5的输出电流信号通过信号输出端口1-7输出到后面的检测电路。调制器大部分的光通过调制器输出端口1-2输出。
实施例3
如图2所示,本发明实施例提供了另一种直调直检光调制器自动偏压控制装置,与图1不同的是,两个独立的相位控制器(第一相位控制器6-1和第二相位控制器6-2)位于同一调制臂上。
实施例4
如图3所示,本发明实施例还提供了一种直调直检光调制器自动偏压控制装置,同图1不同的是,输出侧的2×1合束器可以采用2×2的分束器7代替,并且无需再用耦合分束器4分光,而直接将7的一个分束与监测探测器5相连,而将7的另一个分束通过输出端口1-2输出。
可选地,上述直调直检光调制器自动偏压控制装置采用分立器件搭建,或者直调直检光调制器自动偏压控制装置的各器件集成在同一基材上;
可选地,上述自动偏压控制装置所各个部件的功能材料可以是基于铌酸锂,硅基,或ⅢⅤ族复合半导体等基材。
上述自动偏压控制装置的原理如图4所示,调制器在工作时,激光器通过1-1端口将直流光输入到调制器,调制信号通过高速差分输入端口1-3和1-4加载到调制器上对直流光进行调制,在两个独立的相位控制器电压输入端口均加上独立的直流偏置和导频信号,具体地,在第一相位控制器电压输入端口1-5加上第一直流偏置V DC1和频率为第一频率f 1的导频信号,在第二相位控制器电压输入端口1-6加上第二直流偏置V DC2和频率为第二频率f 2的导频信号,调制后的光,被监测探测器5探测,并通过信号输出端 口1-7输出信号,先通过跨组放大电路将电流信号转换成电压信号,然后通过滤波器(该滤波器可以模拟滤波器或者是数字滤波器)提取信号中位于|f 1-f 2|或者是f 1+f 2频率分量的信号,并监测它们的幅值和相位。控制直流偏置V DC1或V DC2,使得|f 1-f 2|或者是f 1+f 2分量处的信号保持在幅度最小值或者相位发生跳变的点,此时调制器的两臂的光学相位偏置则正好偏置在π/2或者3π/2的位置。
通过解析监测探测器中|f 1-f 2|或者f 1+f 2处频率分量的信号,具体为:采用强度探测,或者幅度和相位同时探测。
所述导频信号可以是正弦波或余弦波,或者是具有奇对称特性的波形,例如方波,三角波等信号。
实施例5
为了从原理上说明本发明专利的有效性、有益效果和工作过程,下面对调制器工作点的稳定过程进行数学推导:
如图1,图2和图3中所示,调制器高速相移器的相位响应可以表示成同高速电压信号线性关系
Figure PCTCN2021101052-appb-000001
其中V π为调制半波电压,而对于相位控制器,其相位响应可以用一个专用函数Φ(V)来表示,对于铌酸锂调制器,Φ(V)是关于电压的一个线性函数,对半导体类型的调制器Φ(V)往往是较为复杂的非线性函数,比如说采用热光效应的相移器,这个关系是平方关系。
基于上述设定,马赫曾德尔调制器的输出信号的强度P 1可以表示为:
Figure PCTCN2021101052-appb-000002
这里P in表示的是调制器输入光功率,V RF表示的是高速调制电压,V DC1为第一相移臂的直流电压,V DC2为第二相移臂的直流电压,V dither1为第一相移臂上的导频信号,V dither2为第二相移臂上的导频信号。要注意的是,为了表达的简单,整个推导中忽略了光损耗。
式(1)中的
Figure PCTCN2021101052-appb-000003
分别代表图1和图2中的实施例情况。在图1的实施例中,由于两个相位控制器分别位于调制器的两臂,调制器的静态相位差为两个相位控制器对应的相移值相减;在图2的实施例中,由于两个相位控制器位于调制器的同一干涉臂,调制器的静态相位差为两个相位控制器对应的相移值相加。后面的推导会采用同样的表达方式,其意义相同。
我们令V dither1和V dither2分别为频率式f 1和f 2的正弦信号,幅度分别为a dither1和a dither2,实际上在具体实施中,只要采用具有奇对称特性的周期信号都可以达到本方案效果。因此有:
V dither1=a dither1sin(2πf 1t)                                       (2)
V dither2=a dither2sin(2πf 2t)                                       (3)
将(1)式进一步展开可以知道:
Figure PCTCN2021101052-appb-000004
由于监测探测器输出是光信号的低频变化分量,所以其输出信号是高速信号V RF相关项关于时间的平均,于是监测探测器输出信号S 1可以表示为:
Figure PCTCN2021101052-appb-000005
这里的R表示的是监测探测器的响应度。
本方案中探测信号为|f 1-f 2|或者是f 1+f 2处的分量,将(5)式关于V dither1和V dither2进行广义泰勒展开,并将(2)和(3)带入泰勒展开的结果,于是可以得到各个频率分量处的信号幅度。
其中频率分量位于|f 1-f 2|处的信号幅度为:
Figure PCTCN2021101052-appb-000006
其中频率分量位于f 1+f 2处的信号幅度为:
Figure PCTCN2021101052-appb-000007
通过式(6)和式(7)可以看到,|f 1-f 2|和f 1+f 2处的信号幅度大小相同,符号相反,且都正比于S 1关于V DC1和V DC2的偏导。更具体地,该偏导数可以表示为:
Figure PCTCN2021101052-appb-000008
从(10)式可以看出,可以看到只要满足
Figure PCTCN2021101052-appb-000009
则监测信号就为零,而此时相对应地是,两个臂的静态相位差
Figure PCTCN2021101052-appb-000010
刚好是π/2或者3π/2,为最佳相位偏置地位置。
从上面地推导还可以得出,|f 1-f 2|或者是f 1+f 2均可作为相位锁定地指征信号,他们之间的区别只是信号相位刚好相反而已,实际应用中,可根据需要选择频率点。
作为对比,这里也给出了基于传统导频方案的信号光强度同各个电压的关系。该方案只有一个控制端口,和一种导频信号,其相位控制单元的直流电压为V DC,,对应导频信号电压为V dither,这种情况下,调制器输出的功率为:
Figure PCTCN2021101052-appb-000011
同样的原理,可以得出监测探测器的输出信号S 2为:
Figure PCTCN2021101052-appb-000012
其中V dither为频率是f 0,幅度为a 0的正弦信号:
V dither=a 0sin(2πf 0t)                      (11)
传统方案中,锁定信号往往基于锁定信号的二阶导数探测信号的二阶导数,其同输出信号中导频的倍频分量a 2f0相关,即:
Figure PCTCN2021101052-appb-000013
其中,二阶导数可以表示为:
Figure PCTCN2021101052-appb-000014
可以看到(13)中包含了相位控制器响应函数的二阶导数项,只要二阶导不为零,即相位响应非线性的情况时,当cos(Φ(V DC))=0,即相位偏置Φ(V DC)为π/2或者3π/2时,监测信号不为零,所以该监测信号不能作为调制器锁定的指征。
为了更直观的理解上述数学过程,我们仿真计算了两种情况,第一种情况相位控制器响应函数是Φ(V)=V,第二种情况相位控制器响应函数为Φ(V)=V 2的情况,前者用于描述铌酸锂基材等利用线性电光效应的相位控制器的特性,后者常常用于描述利用热光效应的相位控制器的特性,比如说硅光调制器。
在第一种相位响应的情况下,为了模拟传统基于单一变量二阶导数的方法效果,我们假设初始V DC=0,然后在上面叠加一个频率为50Hz,幅度为0.025π的导频信号。我们根据(10)计算出监测探测器中频率为100Hz处的信号幅度来表征二阶导数(13)的强度,扫描V DC,并绘制出100Hz处信号幅度同相位偏置Φ(V DC)的关系如图5(a)所示。采用本发明方案时,初始设定V DC1=1同时V DC2=1,然后在上面叠加一个频率为50Hz和60Hz,幅度为0.025π的导频信号,我们根据(5)计算出监测探测器中频率为10Hz和110Hz处的信号幅度,扫描V DC1,并绘制出10Hz和110Hz处的信号幅度同相位偏置Φ(V DC1)-Φ(V DC2)的关系,结果如图5(b)所示。
可以看到,在相位响应为线性的情况下,基于传统二阶导数和本发明方案都能达到锁定效果,检测信号在π/2或者3π/2的时候为零,且符号发生跳变。
在第二种相位响应的情况下,基于同样的仿真条件和计算方法,我们计算了传统基于单一变量二阶导数的方案和本发明方案的检测信号幅度,结果分别绘制在图6(a)和图6(b)中。
可以看到,在相位响应为非线性的情况下,基于传统方案无法达到锁定效果,即检测信号在π/2或者3π/2的时候不为零,而采用本发明方案依然能够达到锁定效果。合频和差频的差异仅仅是符号相反而已。
上述推导和计算结果说明了本发明方案的有效性,同时说明相对传统方案,本发明方案的锁定效果不依赖相位控制器的线性度,应用更为广泛。
实施例6
在图5(b)和图6(b)中值得注意到的是,在利用本发明方案进行调制器状态锁定的时候,检测信号的幅度的符号在锁定点附近会发生正负跳变,这也就意味着,检测信号的相位在此处发生180度跳变,因此,我们可以通过检测信号的相位来判断锁定点应该移动的方向。我们定义幅度为正的时候为正相位,符号为负的时候为负相位,利用这个特性,我们提出了一种示例性的锁定流程,如图7所示。整个锁定过程可以采用如下步骤:
第一步,在第一相位控制器(具体为第一相位控制器电压控制端口1-5)和第二相位控制器(具体为第二相位控制器电压控制端口1-6)上分别加载直流电压V DC1和V DC2,并且在第一相位控制器和第二相位控制器上分别加载频率为f 1和f 2的导频信号V dither1和V dither2
第二步,固定V DC1,以Δu 1为电压步进,从小到大扫描V DC2(这里只是举例,固定V DC2扫描V DC1亦可)保证该路的光学相位变化大于π,同时记录监测探测器输出信号中|f 1-f 2|或者是f 1+f 2处的分量的幅度和相位。
第三步,记录监测信号达到极小值并且相位发生跳变时候的电压值,并根据相位跳变的情况记录特征,相位由正到负的电压点记录为V -,相位由负到正的电压点记录为V +
第四步,设定锁定的步进电压为Δu 2,然后根据锁定电压的位置选择锁定策略:如果将电压锁定在V -附近,则令V DC2=V -,同时监测输出信号中|f 1-f 2|或者是f 1+f 2频率分量处的相位,如果相位为正,则V DC2=V DC2+Δu 2,反之则V DC2=V DC2-Δu 2;如果将电压锁定在V +附近,则令V DC2=V +,同时监测输出信号中|f 1-f 2|或者是f 1+f 2频率分量处的相位,如果相位为正,则V DC2=V DC2-Δu 2,反之则V DC2=V DC2+Δu 2
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种直调直检光调制器自动偏压控制装置,其特征在于,在马赫曾德尔调制器内存在两个独立的相位控制器,所述相位控制器与调制器内的高速相移器串联;分别在两个相位控制器上加载独立的相位控制信号用来控制两个调制臂之间的静态相位差;同时有一个监测探测器用来监测输出光功率的大小。
  2. 如权利要求1所述的直调直检光调制器自动偏压控制装置,其特征在于,所述装置各个部件的功能材料可以基于铌酸锂,硅基,或ⅢⅤ族复合半导体等基材。
  3. 如权利要求1或2所述的直调直检光调制器自动偏压控制装置,其特征在于,所述两个独立的相位控制器分别位于两个不同的调制臂,或者两个独立的相位控制器位于同一个调制臂。
  4. 如权利要求1或2所述的直调直检光调制器自动偏压控制装置,其特征在于,所述马赫曾德尔调制器的输出端为2×1合束器,所述2×1合束器后连接一个耦合分束器,该耦合分束器分出主通道的一部分光并送到所述监测探测器。
  5. 如权利要求1或2所述的直调直检光调制器自动偏压控制装置,其特征在于,所述马赫曾德尔调制器的输出端为2×2分束器,所述2×2分束器的一个分束为主输出通道,另外一个分束输出到所述监测探测器。
  6. 如权利要求1或2所述的直调直检光调制器自动偏压控制装置,其特征在于,所述直调直检光调制器自动偏压控制装置采用分立器件搭建,或者直调直检光调制器自动偏压控制装置的各器件集成在同一基材上。
  7. 如权利要求1或2所述的直调直检光调制器自动偏压控制装置,其特征在于,在上述两个独立的相位控制器的直流电压上分别叠加上不同频率的导频信号,导频频率分别为f 1和f 2,通过解析监测探测器中|f 1-f 2|或者 f 1+f 2处频率分量的信号,并通过控制两个独立相位控制器上的直流电压的大小,使得|f 1-f 2|或者f 1+f 2处的频率分量稳定在幅度最小值或者相位跳变点的位置,此时,调制器的工作状态即可以稳定在最佳工作点。
  8. 如权利要求7所述的直调直检光调制器自动偏压控制装置,其特征在于,所述导频信号是正弦波或余弦波,或者是具有奇对称特性的波形。
  9. 如权利要求7所述的直调直检光调制器自动偏压控制装置,其特征在于,通过解析监测探测器中|f 1-f 2|或者f 1+f 2处频率分量的信号,具体为:采用强度探测,或者幅度和相位同时探测。
  10. 基于权利要求1-9任一项所述直调直检光调制器自动偏压控制装置的自动偏压控制方法,其特征在于,包括:
    在第一相位控制器和第二相位控制器上分别加载直流电压V DC1和V DC2,并且在第一相位控制器和第二相位控制器上分别加载频率为f 1和f 2的导频信号V dither1和V dither2
    固定V DC1,以Δu 1为电压步进,从小到大扫描V DC2,保证该路的光学相位变化大于π,同时记录监测探测器输出信号中|f 1-f 2|或者是f 1+f 2分量处的幅度和相位;
    记录监测信号达到极小值并且相位发生跳变时候的电压值,并根据相位跳变的情况记录特征,相位由正到负的电压点记录为V -,相位由负到正的电压点记录为V +
    设定锁定的步进电压为Δu 2,然后根据锁定电压的位置选择锁定策略。
  11. 如权利要求10所述的自动偏压控制方法,其特征在于,所述根据锁定电压的位置选择锁定策略,包括:
    如果将电压锁定在V -附近,则令V DC2=V -,同时监测输出信号中|f 1-f 2|或者是f 1+f 2频率分量处的相位,如果相位为正,则V DC2=V DC2+Δu 2,反之则V DC2=V DC2-Δu 2;如果将电压锁定在V +附近,则令V DC2=V +,同时监测输出信号中|f 1-f 2|或者是f 1+f 2频率分量处的相位,如果相位为正,则V DC2=V DC2-Δu 2, 反之则V DC2=V DC2+Δu 2
PCT/CN2021/101052 2020-07-25 2021-06-18 一种直调直检光调制器自动偏压控制装置和方法 WO2022022157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010726755.5A CN111929929B (zh) 2020-07-25 2020-07-25 一种直调直检光调制器自动偏压控制装置和方法
CN202010726755.5 2020-07-25

Publications (1)

Publication Number Publication Date
WO2022022157A1 true WO2022022157A1 (zh) 2022-02-03

Family

ID=73315747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101052 WO2022022157A1 (zh) 2020-07-25 2021-06-18 一种直调直检光调制器自动偏压控制装置和方法

Country Status (2)

Country Link
CN (1) CN111929929B (zh)
WO (1) WO2022022157A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929929B (zh) * 2020-07-25 2023-04-14 烽火通信科技股份有限公司 一种直调直检光调制器自动偏压控制装置和方法
CN116500812A (zh) * 2022-01-18 2023-07-28 苏州旭创科技有限公司 硅基光调制器控制芯片及硅基光调制器的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197639A (ja) * 2007-01-15 2008-08-28 Fujitsu Ltd 光送信装置およびその制御方法
JP2014010188A (ja) * 2012-06-27 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> マッハツェンダ光変調器を用いた光強度変調装置
US20160065310A1 (en) * 2014-08-28 2016-03-03 Fujitsu Optical Components Limited Optical communication apparatus and method of controlling optical modulator
CN111064523A (zh) * 2019-11-22 2020-04-24 北京邮电大学 光电调制器偏置点自动控制方法及装置
CN111929929A (zh) * 2020-07-25 2020-11-13 烽火通信科技股份有限公司 一种直调直检光调制器自动偏压控制装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544467B2 (ja) * 2005-09-29 2010-09-15 住友大阪セメント株式会社 光変調器
JP5946312B2 (ja) * 2011-05-23 2016-07-06 日本オクラロ株式会社 光出力モジュール、光送受信機、及び光伝送システム
CN103728740B (zh) * 2012-10-11 2016-09-07 北京大学 一种马赫-曾德尔电光外调制器的偏置控制方法及系统
EP2782270A1 (en) * 2013-03-20 2014-09-24 Xieon Networks S.à.r.l. Optical IQ modulator control
JP2017026989A (ja) * 2015-07-28 2017-02-02 富士通オプティカルコンポーネンツ株式会社 光送信機、及び光変調器の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197639A (ja) * 2007-01-15 2008-08-28 Fujitsu Ltd 光送信装置およびその制御方法
JP2014010188A (ja) * 2012-06-27 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> マッハツェンダ光変調器を用いた光強度変調装置
US20160065310A1 (en) * 2014-08-28 2016-03-03 Fujitsu Optical Components Limited Optical communication apparatus and method of controlling optical modulator
CN111064523A (zh) * 2019-11-22 2020-04-24 北京邮电大学 光电调制器偏置点自动控制方法及装置
CN111929929A (zh) * 2020-07-25 2020-11-13 烽火通信科技股份有限公司 一种直调直检光调制器自动偏压控制装置和方法

Also Published As

Publication number Publication date
CN111929929B (zh) 2023-04-14
CN111929929A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022022157A1 (zh) 一种直调直检光调制器自动偏压控制装置和方法
CN110632388B (zh) 一种基于混频的光电探测器频响测量方法及装置
CN108306689B (zh) 基于三导频的双平行马赫-曾德尔调制器(dpmzm)的任意点自动偏压控制方法
CN110017967B (zh) 一种基于相位比较的电光强度调制器啁啾参数测试方法
JP6379091B2 (ja) Rf信号の監視及び制御のための回路のモノリシック集積化のための方法及びシステム
KR102559579B1 (ko) 광 변조기 및 이를 이용하는 데이터 처리 시스템
WO1994028455A1 (en) An electro-optic modulator having gated-dither bias control
JP5817879B2 (ja) 外部変調器を制御する装置および方法
CN104459360A (zh) 基于微波光子混频技术的微波源相位噪声测试方法及装置
CN103728740A (zh) 一种马赫-曾德尔电光外调制器的偏置控制方法及系统
CN111277325B (zh) 一种基于偏振调制器的测量范围可调的瞬时频率测量方法和系统
US20180173077A1 (en) Non-blocking mach-zehnder modulator arm imbalance monitoring and control through tones
CN110535527B (zh) 相干光接收机的频谱响应测量方法及装置
Voges et al. Optical phase and amplitude measurement by single sideband homodyne detection
Yi et al. A PM-based approach for Doppler frequency shift measurement and direction discrimination
JP3441169B2 (ja) 同期型信号検出装置
CN110596918A (zh) 调制器的偏置工作点的控制方法及装置
Huang et al. Photonic frequency down conversion approach to measure microwave signal angle of arrival
JP2011075913A (ja) 光変調器のバイアス制御方法
CN113341222A (zh) 基于双音调制的光电探测器频响测量方法及装置
US8983305B2 (en) Method and apparatus for controlling phase delay offset point of modulator
Zhuo et al. Photonic Doppler frequency shift measurement without ambiguity based on cascade modulation
Burns et al. Multi-octave operation of low-biased modulators by balanced detection
CN211579977U (zh) 快速锁定电光强度调制器最小偏置点的系统
Bui et al. Improving opto-electronic oscillator stability by controlling the electro-optic modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850872

Country of ref document: EP

Kind code of ref document: A1