WO2022021967A1 - 一种连杆弯曲度和扭曲度的高精度测量方法 - Google Patents

一种连杆弯曲度和扭曲度的高精度测量方法 Download PDF

Info

Publication number
WO2022021967A1
WO2022021967A1 PCT/CN2021/089779 CN2021089779W WO2022021967A1 WO 2022021967 A1 WO2022021967 A1 WO 2022021967A1 CN 2021089779 W CN2021089779 W CN 2021089779W WO 2022021967 A1 WO2022021967 A1 WO 2022021967A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting rod
big end
degree
cylindrical hole
probe
Prior art date
Application number
PCT/CN2021/089779
Other languages
English (en)
French (fr)
Inventor
钱晓明
楼佩煌
胡益伟
李泷杲
宋阳
黄鑫
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2022021967A1 publication Critical patent/WO2022021967A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties

Definitions

  • the invention relates to a high-precision measurement method for the bending degree and torsion degree of a connecting rod, which belongs to the application field of on-line measurement technology.
  • the connecting rod is one of the core components of the engine, and the processing quality of the connecting rod largely determines the overall performance of the engine.
  • the production volume of connecting rods is huge.
  • the daily output of a connecting rod manufacturer in Shanghai exceeds 100,000 pieces.
  • the online measurement of the precision parameters of the connecting rod must also meet the requirements of high precision and high cycle time, so as to match the production cycle of the connecting rod and comprehensively improve the production efficiency.
  • Due to the particularity of the working environment of the connecting rod the complexity of its structure and the accuracy of its processing quality requirements, there are many quality factors that need to be controlled in the traditional inspection process.
  • the labor intensity of the staff is heavy and the consistency is poor.
  • the measurement results are largely affected by some human factors that are difficult to control.
  • the traditional and general detection methods for the bending and twisting degree of connecting rods generally include the general measuring tool measurement method, the special measuring table measurement method and the photoelectric automation equipment measurement method. Visible reports, the document “Research on Comprehensive Measurement Method of Connecting Rod Geometric Parameters [Master's Thesis], Beijing, Beijing Jiaotong University, 2009” developed the measuring method of connecting rod geometric parameters, but the designed method cannot realize online measurement. Beats are limited.
  • the connecting rod measuring instrument designed in the Chinese utility model patent "Connecting Rod Measuring Instrument” with the application number "201820497837.5" is a traditional manual measuring device with limited measurement accuracy and consistency.
  • the present invention proposes a high-precision measurement method for the bending and torsion of the connecting rod, which can realize the high-precision measurement of the bending and torsion of the connecting rod.
  • the connecting rod has a large end and a small end, and a cylindrical hole is opened in the large end and the small end, and the following steps are included:
  • the coordinates of the center O 1 of the circle where T1-T4 is located can be fitted based on the least squares method.
  • the coordinates of the center O 2 of the circle where T5-T8 is located can be obtained,
  • the thickness of the target connecting rod is obtained according to the displacement of T17-T20 and the initial height, thereby obtaining the thickness deviation data, and substituting the thickness deviation data into step S4 for compensation, and finally, the compensated curvature and torsion are obtained.
  • Step S1 is specifically:
  • T1-T4 are on the same horizontal plane, and T5-T8 are on the other horizontal plane. These two horizontal planes are symmetrical up and down along the center of the cylindrical hole at the big end;
  • T9-T12 are on the same horizontal plane, and T13-T16 are on the other horizontal plane. These two horizontal planes are symmetrical up and down along the center of the cylindrical hole at the small end;
  • step S1 the eight high-precision displacement sensors arranged in the cylindrical hole at the big end all form an included angle of 45° with the X-axis or the Y-axis; while the eight high-precision displacement sensors arranged in the cylindrical hole at the small end are parallel to the X-axis or the Y-axis. Y axis.
  • step S2 the radius of the cylindrical hole at the big end of the connecting rod standard part is R 0 ,
  • D is the original distance between the probe inside the big end and the center of the big end in the undetected state, the probe will have a displacement during calibration, and the displacement is d 0 ;
  • step S4 When measuring the big end of the target connecting rod in step S4, set the displacement actually measured by the probe in the big end as d, then it can be obtained that the distance R between the probe and the position of the axis of the big end of the original connecting rod standard part is: :
  • the coordinate positions of T1-T8 can be obtained one by one;
  • the coordinate positions of T9-T16 can be obtained according to the displacement of each probe in the small end.
  • Step S5 is specifically:
  • the total offset of the axis of the big end of the target connecting rod can be obtained as:
  • the coordinates of O 3 and O 4 can be obtained, so as to obtain the offsets ⁇ x2 and ⁇ y2 of the axis x and y directions of the small end of the target connecting rod;
  • connecting rod bending and twisting the bending and twisting of connecting rod can be obtained as:
  • Step S6.2 is specifically as follows: set the positioning surface of the connecting rod as ac, where ab and fd are equal to the radius r of the cylindrical hole at the big end, af and cd are the thickness h of the connecting rod, and set the thickness deviation of the connecting rod measured by the probe in this direction is ⁇ h, then according to the triangle similarity principle, we can know that ⁇ abc and ⁇ cde are similar, we can get:
  • the beneficial effects of the invention are as follows: the problems of low measurement accuracy and poor consistency of the traditional connecting rod bending and twisting are solved; the measurement accuracy of the present invention is significantly improved with the help of the LVDT high-precision displacement sensor, so that the connecting rod bending and twisting are more accurate.
  • the invention can be integrated into the on-line measuring equipment of the connecting rod, realizes fully automatic measurement, can greatly improve the measuring efficiency of the connecting rod, and can match the production efficiency of the connecting rod today.
  • the present invention also provides a measurement compensation method, which can reduce the unexpected measurement error caused by the deviation of the thickness of the connecting rod to be measured, and further improve the measurement accuracy.
  • Figure 1 is a schematic diagram of the structure of the connecting rod
  • Figure 2 is a schematic sectional view of a connecting rod
  • Figure 3 is a schematic diagram of acquiring the coordinates of the probe
  • Fig. 4 is the schematic diagram when measuring the target connecting rod
  • FIG. 6 is a schematic diagram when step S6.2 is performed.
  • the connecting rod has a large end and a small end, and cylindrical holes are opened in the large end and the small end, including the following steps:
  • the measuring head Take the connecting rod standard part, put it into the connecting rod online measuring machine, and arrange LVDT (LineSr VSriSble DifferentiSl TrSnsformer linear variable differential transformer) at the big end and the small end of the connecting rod standard part.
  • LVDT LineSr VSriSble DifferentiSl TrSnsformer linear variable differential transformer
  • a precision displacement sensor one end of the high-precision displacement sensor has a measuring head, and the contact point between the measuring head and the object to be measured is a measuring point;
  • T1-T4 are on the same horizontal plane, and T5-T8 are on the other horizontal plane. These two horizontal planes are symmetrical up and down along the center of the cylindrical hole at the big end;
  • T9-T12 are on the same horizontal plane, T13-T16 are on the other horizontal plane, and these two horizontal planes are symmetrical up and down along the center of the cylindrical hole at the small end;
  • the coordinates of the center O 1 of the circle where T1-T4 is located can be fitted based on the least squares method.
  • the coordinates of the center O 2 of the circle where T5-T8 is located can be obtained,
  • step S6.2 According to the displacement of T17-T20 and the initial height, the thickness of the target connecting rod is obtained, thereby obtaining the thickness deviation data, and substituting the thickness deviation data into step S4 for compensation. Finally, the compensated bending is obtained after step S5 again. Therefore, the unexpected measurement error caused by the deviation of the thickness of the target connecting rod can be reduced, and the measurement accuracy can be further improved;
  • step S1 the eight high-precision displacement sensors arranged in the cylindrical hole at the large end all form an included angle of 45° with the X-axis or the Y-axis; while the eight high-precision displacement sensors arranged in the cylindrical hole at the small end are at an angle of 45°.
  • the displacement sensor is parallel to the X or Y axis.
  • the radius of the cylindrical hole at the big end of the connecting rod standard part in step S2 is R 0 ,
  • D is the original distance between the probe inside the big end and the center of the big end in the undetected state.
  • the probe will have a displacement, and the displacement is d 0 ; when the standard part of the connecting rod is calibrated , in the undetected state, the original distance between each probe and the center of the big end should be D, and the displacement of each probe should also be d 0 .
  • step S4 when measuring the big end of the target connecting rod in step S4, set the actual displacement measured by the probe in the big end as d, then the axis of the probe and the big end of the original connecting rod standard part can be obtained.
  • the distance R at the location is:
  • the coordinate positions of T1-T8 can be obtained one by one;
  • the coordinate positions of T9-T16 can be obtained according to the displacement of each probe in the small end.
  • Step S5 is specifically:
  • the total offset of the axis of the big end of the target connecting rod can be obtained as:
  • the coordinates of O 3 and O 4 can be obtained, so as to obtain the offsets ⁇ x2 and ⁇ y2 of the axis x and y directions of the small end of the target connecting rod;
  • connecting rod bending and twisting the bending and twisting of connecting rod can be obtained as:
  • step S6.2 is specifically: set the positioning surface of the connecting rod to be ac, where ab and fd are equal to the radius r of the cylindrical hole at the big end, af, cd are the thickness h of the connecting rod, and set the direction of the probe to measure
  • the thickness deviation of the obtained connecting rod is ⁇ h, then according to the triangle similarity principle, we can know that the triangle abc and the triangle cde are similar, that is, ⁇ abc and ⁇ cde are similar, we can get:
  • triangle ckT5 triangle cgT1
  • ⁇ cde ⁇ ckT5
  • ⁇ cgT1 ⁇ cgT1

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

一种连杆弯曲度和扭曲度的高精度测量方法,包括如下步骤:S1、布置测头;S2、获取测头坐标;S3、建立坐标系;S4、测量目标连杆;S5、计算目标连杆的弯曲度和扭曲度;S6、厚度偏差补偿。可以集成到连杆的在线测量装备之中,实现全自动化的测量,可以极大地提高连杆的测量效率,达到能够匹配如今连杆的生产效率。同时,还提供了一种测量补偿方法,可以减小被测连杆的厚度的偏差带来的预期之外的测量误差,进一步提高测量的精度。

Description

一种连杆弯曲度和扭曲度的高精度测量方法 技术领域
本发明涉及一种连杆弯曲度和扭曲度的高精度测量方法,其属于在线测量技术应用领域。
背景技术
连杆是发动机的核心部件之一,连杆加工质量很大程度上决定着发动机的整体性能。连杆的生产量巨大,如上海某连杆生厂企业日产量超过了10万件。为了满足全自动化生产线的要求,连杆精度参数的在线测量也必定需要满足高精度、高节拍的要求,从而能够匹配连杆的生产节拍,全面的提高生产效率。由于连杆工作环境的特殊性,以及其结构的复杂性和加工质量要求的精确性,在传统检测过程中需要掌控的质量因素很多。传统手工抽样检测方法中工作人员的劳动强度重、一致性差,测量结果与自动化测量技术相比在很大程度上受到一些很难掌控的人为因素的影响。
其中弯曲度与扭曲度是连杆两个重要的位置度指标。传统的通用的连杆弯曲度和扭曲度的检测方法大致有通用量具测量方法、专用测量台测量方法和光电自动化设备测量方法。可见的报道中,文献“连杆几何参数综合测量方法的研究[硕士学位论文],北京,北京交通大学,2009”研制的连杆几何参数的测量方法,所设计的方法无法实现在线测量,测量节拍有限。中国实用新型专利“连杆测量仪”,申请号为“201820497837.5”中设计的连杆测量仪为传统的手动测量装置,测量的精度和一致性有限。
因此,确有必要对于上述的连杆弯曲度和扭曲度的测量方法进行改变,以解决现有技术的不足。尤其是针对批量加工过程中,连杆出现肉眼不可见的弯曲与扭曲时,尤其需要对连杆的弯曲度与扭曲度进行高精度、且高效的测量,从而剔除出加工不合格的残次品。
发明内容
本发明针对以上问题,提出了一种可实现连杆弯曲度和扭曲度的高精度测量的连杆弯曲度和扭曲度的高精度测量方法。
本发明的技术方案为:所述连杆具有大端头和小端头,所述大头端以及小头端中均开设有圆柱孔,包括如下步骤:
S1、布置测头:取连杆标准件,在连杆标准件的大头端以及小头端布置高精度位移传感器;
S2、获取测头坐标:对连杆标准件进行标定,获得测头的位移零点,进行标定时,测头将会产生一段位移,根据位移量可以得到连杆标准件中大头端圆柱孔的半径以及小头端圆柱孔的半径;
S3、建立坐标系:以连杆标准件中大头端圆柱孔的中心O为坐标原点,连杆标准件的长度方向为X轴,连杆标准件中大头端圆柱孔的轴向为Z轴,垂直于XOZ平面的为Y轴,建立坐标系;
S4、测量目标连杆:使得所有高精度位移传感器的位置保持不变,移除连杆标准件,放上目标连杆,使得目标连杆的大头端以及小头端之内分别具有八个测点,进行测量,同样,测头将会产生一端位移,此时,可计算获得各个测点所处的坐标位置;
S5、计算目标连杆的弯曲度和扭曲度:
S5.1、得到T1-T4的坐标之后,基于最小二乘法可拟合出T1-T4所在圆的圆心O 1的坐标,同理,可得出T5-T8所在圆的圆心O 2的坐标、T9–T12所在圆的圆心O 3的坐标、T13–T16所在圆的圆心O 4的坐标;
S5.2、根据O 1、O 2、O 3、O 4在X方向以及Y方向上的总偏移量求得连杆的弯曲度和扭曲度;
S6、厚度偏差补偿:
S6.1、在目标连杆的大头端之外布置四个竖直设置的高精度位移传感器,并取压板压住目标连杆大头端的顶面,使得压板的底面上具有四个测点,分别为T17-T20;
S6.2、根据T17-T20的位移量以及初始高度得出目标连杆的厚度,从而得到厚度偏差数据,将厚度偏差数据代入步骤S4进行补偿,最终,得到补偿后的弯曲度和扭曲度。
步骤S1具体为:
S1.1、在大头端的圆柱孔中布置八个水平设置的高精度位移传感器,使得大头端的圆柱孔中具有八个测点,分别为T1-T8;
T1-T4同处于一个水平面上,T5-T8同处于另一个水平面上,这两个水平面沿大头端圆柱孔的中心上下对称;
S1.2、在小头端的圆柱孔中也布置八个水平设置的高精度位移传感器,使得小头端的圆柱孔中具有八个测点,分别为T9–T16;
T9–T12同处于一个水平面上,T13–T16同处于另一个水平面上,这两个水平面沿小头端圆柱孔的中心上下对称;
步骤S1中大头端的圆柱孔中布置的八个高精度位移传感器都与X轴或Y轴呈45°夹角;而小头端的圆柱孔中布置的八个高精度位移传感器则平行于X轴或Y轴。
以标定连杆的大头端为例,步骤S2中连杆标准件中大头端圆柱孔的半径为R 0
R 0=d 0+D        (1)
式中D为未检测状态下大头端之内的测头与大头端的中心之间的原始距离,标定时测头将会产生一段位移,该位移量为d 0
同理,可得出连杆标准件中小头端圆柱孔的半径。
步骤S4对目标连杆的大头端进行测量时,设大头端中测头实际测得的位移量为d,则可得该测头与原来连杆标准件大头端轴心所在位置的间距R为:
R=d+D          (2)
由(1)和(2)式,可得:
R=d-d 0+R 0=△d+R 0       (3)
则该测点的坐标为:
Figure PCTCN2021089779-appb-000001
从而可逐一得到T1-T8的坐标位置;
同理,可在对目标连杆的小头端进行测量时,根据小头端中各个测头的位移量,可以得出T9-T16的坐标位置。
步骤S5具体为:
根据最小二乘法拟合出T1-T4所在圆,得到所在圆的圆心O 1的坐标
Figure PCTCN2021089779-appb-000002
根据最小二乘法拟合出T5–T8所在圆,得到所在圆的圆心O 2的坐标
Figure PCTCN2021089779-appb-000003
计算目标连杆的大头端的轴心在x,y方向上的偏移量分别为:
Figure PCTCN2021089779-appb-000004
将其延伸到连杆厚度的范围,结合目标连杆的厚度C以及O 1、O 2在Z向上的间距B,可以得到目标连杆大头端轴心的总偏移为:
Figure PCTCN2021089779-appb-000005
同理,可得出O 3、O 4的坐标,从而得到目标连杆的小头端的轴心x,y方向上的偏移量Δx2、Δy2;
最后,根据连杆弯曲度和扭曲度的定义可以求得连杆的弯曲度和扭曲度分别为:
Figure PCTCN2021089779-appb-000006
式中S为目标连杆大头端与小头端的中心距。
步骤S6.2具体为:设连杆的定位面为ac,其中ab、fd等于大头端圆柱孔的半径r,af、cd为连杆厚度h,设该方向测头测得的连杆厚度偏差为Δh,则根据三角形相似原理,可以知道Δabc和Δcde相似,可以得到:
Figure PCTCN2021089779-appb-000007
Figure PCTCN2021089779-appb-000008
同理,由Δcde、ΔckT5、ΔcgT1相似,可以得到
Figure PCTCN2021089779-appb-000009
其中,T1c、T5c为连杆大头端测头离定位面确定的距离,设其长度为T1c=h1,T5c=h2。由式(8)、(9),代入得到由于连杆厚度误差造成测头T1和T5方向上的测量偏差Δd1、Δd5
Figure PCTCN2021089779-appb-000010
Figure PCTCN2021089779-appb-000011
同理可以计算得到其他各个测头方向上的测量偏差,将该结果与采集到的测头数据进行补偿,最终,得到补偿后的弯曲度和扭曲度,可以很好的减小连杆的厚度偏差所带来的的预期之外的数据采集偏差。
本发明的有益效果为:解决了传统连杆弯曲度和扭曲度测量精度低,一致性差的问 题;借助LVDT高精度位移传感器显著提升了本发明的测量精度,使得连杆弯曲度和扭曲度更为精准、也更为高效,尤其是针对连杆出现肉眼不可见的弯曲与扭曲时,可精准的剔除出加工不合格的残次品。本发明可以集成到连杆的在线测量装备之中,实现全自动化的测量,可以极大地提高连杆的测量效率,达到能够匹配如今连杆的生产效率。
同时,本发明中还提供了一种测量补偿方法,可以减小被测连杆的厚度的偏差带来的预期之外的测量误差,进一步提高测量的精度。
附图说明
图1是连杆的结构示意图,
图2是连杆的剖面示意图,
图3是获取测头坐标时的示意图,
图4是测量目标连杆时的示意图,
图5是测量目标连杆的厚度时的示意图,
图6是进行步骤S6.2时的示意图。
具体实施方式
为能清楚说明本专利的技术特点,下面通过具体实施方式,并结合其附图,对本专利进行详细阐述。
如图1-6所示,所述连杆具有大端头和小端头,所述大头端以及小头端中均开设有圆柱孔,包括如下步骤:
S1、布置测头:取连杆标准件,将其放入连杆在线测量机中,在连杆标准件的大头端以及小头端布置LVDT(LineSr VSriSble DifferentiSl TrSnsformer线性可变差动变压器)高精度位移传感器;所述高精度位移传感器的一端具有测头,测头与被测物体的接触点为测点;
S1.1、在大头端的圆柱孔中布置八个水平设置的高精度位移传感器,使得大头端的圆柱孔中具有八个测点,分别为T1-T8;
T1-T4同处于一个水平面上,T5-T8同处于另一个水平面上,这两个水平面沿大头端圆柱孔的中心上下对称;
S1.2、在小头端的圆柱孔中也布置八个水平设置的高精度位移传感器,使得小头端的圆柱孔中具有八个测点,分别为T9–T16;
T9–T12同处于一个水平面上,T13–T16同处于另一个水平面上,这两个水平面沿 小头端圆柱孔的中心上下对称;
S2、获取测头坐标:借助固定支架使得大头端中的八个高精度位移传感器以及小头端中的八个高精度位移传感器保持位置固定,对连杆标准件进行标定,获得测头的位移零点,进行标定时,测头将会产生一段位移,根据位移量可以得到连杆标准件中大头端圆柱孔的半径以及小头端圆柱孔的半径;
S3、建立坐标系:以连杆标准件中大头端圆柱孔的中心O为坐标原点,连杆标准件的长度方向为X轴,连杆标准件中大头端圆柱孔的轴向为Z轴,垂直于XOZ平面的为Y轴,建立坐标系;
S4、测量目标连杆:使得所有高精度位移传感器的位置保持不变,移除连杆标准件,放上目标连杆,使得目标连杆的大头端以及小头端之内分别具有八个测点,进行测量,同样,测头将会产生一端位移,此时,可计算获得各个测点所处的坐标位置;
S5、计算目标连杆的弯曲度和扭曲度:
S5.1、得到T1-T4的坐标之后,基于最小二乘法可拟合出T1-T4所在圆的圆心O 1的坐标,同理,可得出T5-T8所在圆的圆心O 2的坐标、T9–T12所在圆的圆心O 3的坐标、T13–T16所在圆的圆心O 4的坐标;
S5.2、根据O 1、O 2、O 3、O 4在X方向以及Y方向上的总偏移量求得连杆的弯曲度和扭曲度;
S6、厚度偏差补偿:
S6.1、在目标连杆的大头端之外布置四个竖直设置的高精度位移传感器,并取压板压住目标连杆大头端的顶面,使得压板的底面上具有四个测点,分别为T17-T20;
S6.2、根据T17-T20的位移量以及初始高度得出目标连杆的厚度,从而得到厚度偏差数据,将厚度偏差数据代入步骤S4进行补偿,最终,重新经过步骤S5之后得到补偿后的弯曲度和扭曲度;从而可以减小目标连杆的厚度的偏差带来的预期之外的测量误差,进一步提高测量的精度;
S7、若目标连杆补偿后的弯曲度或扭曲度超过预定值,则标记为残次品,并进行回收处理。
如图1-2所示,步骤S1中大头端的圆柱孔中布置的八个高精度位移传感器都与X轴或Y轴呈45°夹角;而小头端的圆柱孔中布置的八个高精度位移传感器则平行于X轴或Y轴。
以标定连杆的大头端为例,如图3所示,步骤S2中连杆标准件中大头端圆柱孔的半径为R 0
R 0=d 0+D        (1)
式中D为未检测状态下大头端之内的测头与大头端的中心之间的原始距离,标定时测头将会产生一段位移,该位移量为d 0;对连杆标准件进行标定时,未检测状态下各个测头与大头端的中心之间的原始距离都应为D,各个测头的位移量也都应为d 0
同理,可得出连杆标准件中小头端圆柱孔的半径。
实际使用时,由于同一批加工的连杆偏差通常不会过大,因此,可直接取用D接近R 0的高精度位移传感器。
如图4所示,步骤S4对目标连杆的大头端进行测量时,设大头端中测头实际测得的位移量为d,则可得该测头与原来连杆标准件大头端轴心所在位置的间距R为:
R=d+D         (2)
由(1)和(2)式,可得:
R=d-d 0+R 0=△d+R 0         (3)
则该测点的坐标为:
Figure PCTCN2021089779-appb-000012
从而可逐一得到T1-T8的坐标位置;
同理,可在对目标连杆的小头端进行测量时,根据小头端中各个测头的位移量,可以得出T9-T16的坐标位置。
步骤S5具体为:
根据最小二乘法拟合出T1-T4所在圆,得到所在圆的圆心O 1的坐标
Figure PCTCN2021089779-appb-000013
根据最小二乘法拟合出T5–T8所在圆,得到所在圆的圆心O 2的坐标
Figure PCTCN2021089779-appb-000014
计算目标连杆的大头端的轴心在x,y方向上的偏移量分别为:
Figure PCTCN2021089779-appb-000015
将其延伸到连杆厚度的范围,结合目标连杆的厚度C以及O 1、O 2在Z向上的间距B,可以得到目标连杆大头端轴心的总偏移为:
Figure PCTCN2021089779-appb-000016
同理,可得出O 3、O 4的坐标,从而得到目标连杆的小头端的轴心x,y方向上的偏移量Δx2、Δy2;
最后,根据连杆弯曲度和扭曲度的定义可以求得连杆的弯曲度和扭曲度分别为:
Figure PCTCN2021089779-appb-000017
式中S为目标连杆大头端与小头端的中心距。
如图6所示,步骤S6.2具体为:设连杆的定位面为ac,其中ab、fd等于大头端圆柱孔的半径r,af、cd为连杆厚度h,设该方向测头测得的连杆厚度偏差为Δh,则根据三角形相似原理,可以知道三角形abc和三角形cde,即Δabc和Δcde相似,可以得到:
Figure PCTCN2021089779-appb-000018
Figure PCTCN2021089779-appb-000019
同理,由三角形cde、三角形ckT5、三角形cgT1,即Δcde、ΔckT5、ΔcgT1相似,可以得到
Figure PCTCN2021089779-appb-000020
其中,T1c、T5c为连杆大头端测头离定位面确定的距离,设其长度为T1c=h1,T5c=h2。由式(8)、(9),代入得到由于连杆厚度误差造成测头T1和T5方向上的测量偏差Δd1、Δd5
Figure PCTCN2021089779-appb-000021
Figure PCTCN2021089779-appb-000022
同理可以计算得到其他各个测头方向上的测量偏差,将该结果与采集到的测头数据 进行补偿,最终,得到补偿后的弯曲度和扭曲度,可以很好的减小连杆的厚度偏差所带来的的预期之外的数据采集偏差。
本发明具体实施途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (6)

  1. 一种连杆弯曲度和扭曲度的高精度测量方法,其特征在于,所述连杆具有大端头和小端头,所述大头端以及小头端中均开设有圆柱孔,包括如下步骤:
    S1、布置测头:取连杆标准件,在连杆标准件的大头端以及小头端布置高精度位移传感器;
    S2、获取测头坐标:对连杆标准件进行标定,获得测头的位移零点,进行标定时,测头将会产生一段位移,根据位移量可以得到连杆标准件中大头端圆柱孔的半径以及小头端圆柱孔的半径;
    S3、建立坐标系:以连杆标准件中大头端圆柱孔的中心O为坐标原点,连杆标准件的长度方向为X轴,连杆标准件中大头端圆柱孔的轴向为Z轴,垂直于XOZ平面的为Y轴,建立坐标系;
    S4、测量目标连杆:使得所有高精度位移传感器的位置保持不变,移除连杆标准件,放上目标连杆,使得目标连杆的大头端以及小头端之内分别具有八个测点,进行测量,同样,测头将会产生一端位移,此时,可计算获得各个测点所处的坐标位置;
    S5、计算目标连杆的弯曲度和扭曲度:
    S5.1、得到T1-T4的坐标之后,基于最小二乘法可拟合出T1-T4所在圆的圆心O 1的坐标,同理,可得出T5-T8所在圆的圆心O 2的坐标、T9–T12所在圆的圆心O 3的坐标、T13–T16所在圆的圆心O 4的坐标;
    S5.2、根据O 1、O 2、O 3、O 4在X方向以及Y方向上的总偏移量求得连杆的弯曲度和扭曲度;
    S6、厚度偏差补偿:
    S6.1、在目标连杆的大头端之外布置四个竖直设置的高精度位移传感器,并取压板压住目标连杆大头端的顶面,使得压板的底面上具有四个测点,分别为T17-T20;
    S6.2、根据T17-T20的位移量以及初始高度得出目标连杆的厚度,从而得到厚度偏差数据,将厚度偏差数据代入步骤S4进行补偿,最终,得到补偿后的弯曲度和扭曲度。
  2. 根据权利要求1所述的一种连杆弯曲度和扭曲度的高精度测量方法,其特征在于,步骤S1具体为:
    S1.1、在大头端的圆柱孔中布置八个水平设置的高精度位移传感器,使得大头端的圆柱孔中具有八个测点,分别为T1-T8;
    T1-T4同处于一个水平面上,T5-T8同处于另一个水平面上,这两个水平面沿大头 端圆柱孔的中心上下对称;
    S1.2、在小头端的圆柱孔中也布置八个水平设置的高精度位移传感器,使得小头端的圆柱孔中具有八个测点,分别为T9–T16;
    T9–T12同处于一个水平面上,T13–T16同处于另一个水平面上,这两个水平面沿小头端圆柱孔的中心上下对称;
    步骤S1中大头端的圆柱孔中布置的八个高精度位移传感器都与X轴或Y轴呈45°夹角;而小头端的圆柱孔中布置的八个高精度位移传感器则平行于X轴或Y轴。
  3. 根据权利要求1所述的一种连杆弯曲度和扭曲度的高精度测量方法,其特征在于,以标定连杆的大头端为例,步骤S2中连杆标准件中大头端圆柱孔的半径为R 0
    R 0=d 0+D    (1)
    式中D为未检测状态下大头端之内的测头与大头端的中心之间的原始距离,标定时测头将会产生一段位移,该位移量为d 0
    同理,可得出连杆标准件中小头端圆柱孔的半径。
  4. 根据权利要求3所述的一种连杆弯曲度和扭曲度的高精度测量方法,其特征在于,步骤S4对目标连杆的大头端进行测量时,设大头端中测头实际测得的位移量为d,则可得该测头与原来连杆标准件大头端轴心所在位置的间距R为:
    R=d+D    (2)
    由(1)和(2)式,可得:
    R=d-d 0+R 0=△d+R 0    (3)
    则该测点的坐标为:
    Figure PCTCN2021089779-appb-100001
    从而可逐一得到T1-T8的坐标位置;
    同理,可在对目标连杆的小头端进行测量时,根据小头端中各个测头的位移量,可以得出T9-T16的坐标位置。
  5. 根据权利要求3所述的一种连杆弯曲度和扭曲度的高精度测量方法,其特征在于,步骤S5具体为:
    根据最小二乘法拟合出T1-T4所在圆,得到所在圆的圆心O 1的坐标
    Figure PCTCN2021089779-appb-100002
    根据最小二乘法拟合出T5–T8所在圆,得到所在圆的圆心O 2的坐标
    Figure PCTCN2021089779-appb-100003
    计算 目标连杆的大头端的轴心在x,y方向上的偏移量分别为:
    Figure PCTCN2021089779-appb-100004
    将其延伸到连杆厚度的范围,结合目标连杆的厚度C以及O 1、O 2在Z向上的间距B,可以得到目标连杆大头端轴心的总偏移为:
    Figure PCTCN2021089779-appb-100005
    同理,可得出O 3、O 4的坐标,从而得到目标连杆的小头端的轴心x,y方向上的偏移量Δx2、Δy2;
    最后,根据连杆弯曲度和扭曲度的定义可以求得连杆的弯曲度和扭曲度分别为:
    Figure PCTCN2021089779-appb-100006
    式中S为目标连杆大头端与小头端的中心距。
  6. 根据权利要求1所述的一种连杆弯曲度和扭曲度的高精度测量方法,其特征在于,步骤S6.2具体为:设连杆的定位面为ac,其中ab、fd等于大头端圆柱孔的半径r,af、cd为连杆厚度h,设该方向测头测得的连杆厚度偏差为Δh,则根据三角形相似原理,可以知道Δabc和Δcde相似,可以得到:
    Figure PCTCN2021089779-appb-100007
    de=(h·Δh-Δh 2)/r    (8)
    Figure PCTCN2021089779-appb-100008
    Figure PCTCN2021089779-appb-100009
    同理,由Δcde、ΔckT5、ΔcgT1相似,可以得到
    Figure PCTCN2021089779-appb-100010
    其中,T1c、T5c为连杆大头端测头离定位面确定的距离,设其长度为T1c=h1,T5c=h2。由式(8)、(9),代入得到由于连杆厚度误差造成测头T1和T5方向上的测量偏差Δd1、 Δd5
    Figure PCTCN2021089779-appb-100011
    Figure PCTCN2021089779-appb-100012
    同理可以计算得到其他各个测头方向上的测量偏差,将该结果与采集到的测头数据进行补偿,最终,得到补偿后的弯曲度和扭曲度,可以很好的减小连杆的厚度偏差所带来的的预期之外的数据采集偏差。
PCT/CN2021/089779 2020-07-30 2021-04-26 一种连杆弯曲度和扭曲度的高精度测量方法 WO2022021967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010753650.9 2020-07-30
CN202010753650.9A CN112344849B (zh) 2020-07-30 2020-07-30 一种连杆弯曲度和扭曲度的高精度测量方法

Publications (1)

Publication Number Publication Date
WO2022021967A1 true WO2022021967A1 (zh) 2022-02-03

Family

ID=74358291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089779 WO2022021967A1 (zh) 2020-07-30 2021-04-26 一种连杆弯曲度和扭曲度的高精度测量方法

Country Status (2)

Country Link
CN (1) CN112344849B (zh)
WO (1) WO2022021967A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752344A (zh) * 2022-11-15 2023-03-07 上海羿弓精密科技有限公司 一种rv减速器曲柄轴相位夹角的检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344849B (zh) * 2020-07-30 2021-12-21 南京航空航天大学 一种连杆弯曲度和扭曲度的高精度测量方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159577A (ja) * 1995-12-06 1997-06-20 Honda Motor Co Ltd 加工部品の通孔確認方法とその装置
CN102175208A (zh) * 2011-01-29 2011-09-07 中国民用航空飞行学院 活塞发动机连杆大小头孔平行度、扭曲度、中心距测量装置
CN107246839A (zh) * 2017-07-03 2017-10-13 西安爱生技术集团公司 一种小型无人机发动机连杆综合检测与工艺分析系统
CN107990805A (zh) * 2017-11-24 2018-05-04 常州中车柴油机零部件有限公司 发动机连杆长度、弯曲度、扭曲度检测装置及检测方法
CN108627134A (zh) * 2018-05-16 2018-10-09 大连大学 连杆类零件的大、小头孔轴线多截面x方向和y方向的空间变动均值法
CN108663009A (zh) * 2018-05-16 2018-10-16 大连大学 连杆类零件的给定方向相对基准要素轴线的平行度误差测量方法
CN110207568A (zh) * 2019-06-28 2019-09-06 庆铃汽车(集团)有限公司 用于检测连杆侧面及盖座面的位置精度的检测装置及方法
CN210036535U (zh) * 2019-07-26 2020-02-07 南阳市红阳车用配件有限公司 发动机连杆高度检具
CN110954044A (zh) * 2019-11-27 2020-04-03 广东四会实力连杆有限公司 一种连杆检测方法
CN112344849A (zh) * 2020-07-30 2021-02-09 南京航空航天大学 一种连杆弯曲度和扭曲度的高精度测量方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159577A (ja) * 1995-12-06 1997-06-20 Honda Motor Co Ltd 加工部品の通孔確認方法とその装置
CN102175208A (zh) * 2011-01-29 2011-09-07 中国民用航空飞行学院 活塞发动机连杆大小头孔平行度、扭曲度、中心距测量装置
CN107246839A (zh) * 2017-07-03 2017-10-13 西安爱生技术集团公司 一种小型无人机发动机连杆综合检测与工艺分析系统
CN107990805A (zh) * 2017-11-24 2018-05-04 常州中车柴油机零部件有限公司 发动机连杆长度、弯曲度、扭曲度检测装置及检测方法
CN108627134A (zh) * 2018-05-16 2018-10-09 大连大学 连杆类零件的大、小头孔轴线多截面x方向和y方向的空间变动均值法
CN108663009A (zh) * 2018-05-16 2018-10-16 大连大学 连杆类零件的给定方向相对基准要素轴线的平行度误差测量方法
CN110207568A (zh) * 2019-06-28 2019-09-06 庆铃汽车(集团)有限公司 用于检测连杆侧面及盖座面的位置精度的检测装置及方法
CN210036535U (zh) * 2019-07-26 2020-02-07 南阳市红阳车用配件有限公司 发动机连杆高度检具
CN110954044A (zh) * 2019-11-27 2020-04-03 广东四会实力连杆有限公司 一种连杆检测方法
CN112344849A (zh) * 2020-07-30 2021-02-09 南京航空航天大学 一种连杆弯曲度和扭曲度的高精度测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN GEKUN: "Integrated Measurement System of Engine Connecting Rod", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 10, 15 October 2008 (2008-10-15), CN , XP055890715, ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752344A (zh) * 2022-11-15 2023-03-07 上海羿弓精密科技有限公司 一种rv减速器曲柄轴相位夹角的检测方法
CN115752344B (zh) * 2022-11-15 2023-09-05 上海羿弓精密科技有限公司 一种rv减速器曲柄轴相位夹角的检测方法

Also Published As

Publication number Publication date
CN112344849A (zh) 2021-02-09
CN112344849B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2022021967A1 (zh) 一种连杆弯曲度和扭曲度的高精度测量方法
WO2022041986A1 (zh) 一种轴类工件在位非接触检测方法
CN107560583B (zh) 圆柱工件的轴心线校正方法及其分段截面的直径测量方法
CN102944163B (zh) 一种测量任意轴剖面环形燕尾槽轮廓度的装置及方法
WO2021128614A1 (zh) 一种基于特征线的弧面凸轮廓面误差测量与评定方法
CN105783842B (zh) 一种大螺距外螺纹加工表面形貌分布特性的检测方法
CN106181571B (zh) 大型数控滚齿机刀架重合度检测装置及检测与调整方法
CN109253710B (zh) 一种revo测头a轴零位误差标定方法
CN107101550B (zh) 一种斜孔位置尺寸测量方法
CN106500564A (zh) 一种大直径小弧段薄壁钣金零件检测方法
CN110006322B (zh) 一种机床两直线轴运动间的垂直度检测装置及方法
CN106644320B (zh) 一种滚珠丝杠弯曲挠度检测装置及其检测方法
CN107900781A (zh) 用于车床的接触式在线检测系统的标定装置和标定方法
CN113418449A (zh) 一种发动机叶片叶身与缘板测量装置及测量方法
CN113433301A (zh) 一种混凝土收缩变形测试装置及方法
CN114674222B (zh) 一种飞机复材部件与成型工装坐标系对齐方法
CN113500463B (zh) 一种异型封闭深腔天线罩型面拟合方法及系统
CN209197644U (zh) 一种用于测量大尺寸螺纹中径的测量装置
CN206756128U (zh) 一种关节臂测量力误差辨识装置
CN107478131A (zh) 圆柱体变焦凸轮螺旋槽加工精度检测方法
CN206627056U (zh) 一种测量轴类零件双键槽对称度的装置
CN206919811U (zh) 一种用于检测连杆毛坯锻造模错模量的工具
Feng et al. Universal Tool Microscope Computer Aided Measurement System Based on Machine Vision Technology.
CN107014331A (zh) 一种关节臂测量力误差辨识装置及误差辨识校正方法
CN116572118B (zh) 一种基于六维力传感器的磨头中心的定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848686

Country of ref document: EP

Kind code of ref document: A1