WO2022021833A1 - 一种带微织构的燃料电池质子交换膜及其加工方法 - Google Patents

一种带微织构的燃料电池质子交换膜及其加工方法 Download PDF

Info

Publication number
WO2022021833A1
WO2022021833A1 PCT/CN2021/075283 CN2021075283W WO2022021833A1 WO 2022021833 A1 WO2022021833 A1 WO 2022021833A1 CN 2021075283 W CN2021075283 W CN 2021075283W WO 2022021833 A1 WO2022021833 A1 WO 2022021833A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
convex composite
concave
proton exchange
textures
Prior art date
Application number
PCT/CN2021/075283
Other languages
English (en)
French (fr)
Inventor
尹必峰
董非
贾和坤
解玄
许晟
陈鑫
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010745281.9A external-priority patent/CN111864244B/zh
Priority claimed from CN202010743936.9A external-priority patent/CN111799491B/zh
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US18/012,658 priority Critical patent/US20230253595A1/en
Priority to GB2111207.3A priority patent/GB2597846B/en
Priority to CH70142/21A priority patent/CH717791B1/de
Publication of WO2022021833A1 publication Critical patent/WO2022021833A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1065Polymeric electrolyte materials characterised by the form, e.g. perforated or wave-shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of fuel cells, in particular to a fuel cell proton exchange membrane with micro-texture and a processing method thereof.
  • PEMFC Proton exchange membrane fuel cell
  • the membrane electrode is the core structural component of the proton exchange membrane fuel cell, and the proton exchange membrane is one of the core components of the membrane electrode.
  • the two surfaces of the proton exchange membrane are also the places where the catalytic reaction occurs and are in direct contact with the catalyst. Therefore, the proton exchange membrane must have the characteristics of high chemical stability, high proton conductivity, good compactness, and high mechanical strength.
  • the proton exchange membrane is located between the yin and yang catalyst layers and is in direct contact with the catalyst.
  • patterned membranes have become a research hotspot today.
  • the patterned membrane can greatly increase the surface area of the proton exchange membrane.
  • the catalyst utilization rate will be greatly improved and the reaction rate will be accelerated.
  • the use of patterned proton exchange membranes can greatly improve various properties of proton exchange membranes.
  • the cathode side of the proton exchange membrane will continue to generate water with the operation of the battery. If the water cannot be discharged in time, flooding will occur, and the water will cover the membrane surface, blocking the reaction, thereby reducing the battery reaction efficiency. When the water is insufficient, the proton conductivity will decrease, resulting in poor battery performance. Therefore, proton exchange membranes also need to have features for optimal water management.
  • the current proton exchange membrane fuel cells basically use precious metal platinum as the active component of the catalyst, and the price of metal platinum is very expensive, which seriously affects the research progress of proton exchange membrane fuel cells. Therefore, improving the utilization rate of platinum catalysts and studying proton exchange membranes with ultra-low platinum loadings have important implications for the development of proton exchange membranes. Improving the catalyst utilization can not only reduce the platinum loading to reduce the cost of the proton exchange membrane, but also improve the catalytic reaction efficiency and improve the battery performance.
  • the Chinese patent discloses a method of spraying a layer of polymer electrolyte on both sides of the proton exchange membrane to change the microstructure of the interface between the electrolyte membrane and the electrode; in the process of electrode preparation, the key components of the electrode are made along the Oriented and arranged in the same direction, thereby increasing the three-phase reaction interface and improving the utilization rate of the catalyst.
  • the Chinese patent discloses that the carbon support (XC-72) is activated in a CO2 atmosphere before use, and the specific steps include: (1) The carbon support (XC-72) is placed in a flowing CO2 atmosphere and heated to 350- Activation treatment at 900°C for 1-12 hours; (2) Pt is supported on the carbon support activated by the above steps by precipitation method, thereby obtaining a Pt/C catalyst.
  • the proton exchange membrane fuel cell electrode catalyst made of the Pt/C catalyst obtained in this patent has high electrocatalytic activity.
  • the above patents help to increase the three-phase reaction interface and improve catalyst utilization, but the operation is too complicated and time-consuming, which is not conducive to large-scale commercial production.
  • the present invention provides a fuel cell proton exchange membrane with a micro-texture and a processing method thereof.
  • a concave-convex composite texture is formed on the cathode surface of the proton exchange membrane.
  • a concave-convex composite texture is formed. patterned film. It can not only increase the surface area of the cathode surface of the proton exchange membrane, but also enable the carbon base to be embedded in the larger pit structure, and the platinum base to be embedded on the carbon base and make it in the smaller micro pits, so that the carbon support
  • the platinum catalyst is stably attached to the surface of the membrane, which increases the activation area of the catalyst, thereby improving the utilization rate of the catalyst.
  • the concave-convex composite texture is distributed on the membrane surface with a gradient of inner density and outer sparseness, which can make the reaction more sufficient and efficient.
  • these concave-convex composite textures also serve to optimize water management.
  • the invention has a simple manufacturing process and is suitable for commercial production.
  • the present invention achieves the above technical purpose through the following technical means.
  • a fuel cell proton exchange membrane with micro-texture is characterized in that the cathode surface of the fuel cell proton exchange membrane distributes several concave-convex composite textures according to a gradient of inner density and outer sparseness.
  • concave-convex composite textures are in the shape of petals, and the concave-convex composite texture includes pits and protrusions, a circle of protrusions is arranged at the edge of the pits, and the inner surface of the pits is evenly distributed with several semi-ellipsoid microstructures. pits.
  • a plurality of the concave-convex composite textures are annularly distributed on the cathode surface; the cathode surface is divided into a central area a, a middle area b and a peripheral area c according to the spacing of adjacent concave-convex composite textures, and in each In the region, the spacing between any adjacent concave-convex composite textures is gradually increased from the inside to the outside; the spacing S 1 between adjacent concave-convex composite textures in the central region a is 50-250 ⁇ m; in the middle region b The distance S 2 between adjacent concave-convex composite textures is 250-450 ⁇ m; the distance S 3 between adjacent concave-convex composite textures in the peripheral region c is 450-600 ⁇ m.
  • the height of the protrusion h 1 5-120 ⁇ m
  • the concave-convex composite texture accounts for 35% to 65% of the total surface area of the cathode.
  • the height of the protrusion h 1 5-100 ⁇ m
  • the concave-convex composite texture accounts for 30% to 60% of the total surface area of the cathode.
  • the inner surface of the pit is divided into several parallel layers, and any one of the parallel layers is evenly distributed with several semi-ellipsoidal micro-pits in the circumferential direction; the center of the semi-ellipsoid micro-pits on the adjacent parallel layers reaches the The angle between the pit centers is 16-24°; the long axis of the semi-ellipsoid micro-pits is 2-12 ⁇ m, the short-axis length of the semi-ellipsoid micro-pits is 1-10 ⁇ m, and the semi-ellipsoid micro-pits have a short axis length of 1-10 ⁇ m.
  • the depth h 2 of the micro-pits is 1-10 ⁇ m, and the distance between the adjacent semi-ellipsoid micro-pits between each layer is 1-12 ⁇ m.
  • the concave-convex composite texture includes a first protrusion, a second micro-protrusion and a micro-dimple, a circle of second micro-protrusions is arranged around the first protrusion, and the cross-section of the first protrusion is The area is larger than the cross-sectional area of the second micro-protrusion; a micro-pit is provided between the first protrusion and the second micro-protrusion, and the wall surface of the micro-pit is respectively connected with the wall surface of the first protrusion and the second micro-pit.
  • the walls of the two microprotrusions are tangent.
  • first protrusions are hemispherical protrusions
  • second micro-protrusions are a ring of annular protrusions with a semi-circular cross section
  • micro-pits are a ring of annular pits with a semi-circular cross-section.
  • a plurality of the concave-convex composite textures are distributed on the cathode surface in a rectangular shape; the cathode surface is divided into a central area a, a middle area b and a peripheral area c according to the spacing of adjacent concave-convex composite textures, and in each In the region, the spacing between any adjacent concave-convex composite textures is gradually increased from the inside to the outside; the spacing S 1 between adjacent concave-convex composite textures in the central region a is 50-250 ⁇ m; in the middle region b The distance S 2 between adjacent concave-convex composite textures is 250-450 ⁇ m; the distance S 3 between adjacent concave-convex composite textures in the peripheral region c is 450-600 ⁇ m.
  • the first protrusion radius r 1 10-280 ⁇ m
  • the first protrusion height h 3 10-280 ⁇ m
  • the micro-pit radius r 2 5-140 ⁇ m
  • the micro-pit depth h 4 5-140 ⁇ m
  • the radius of the second microprotrusions r 3 5-140 ⁇ m
  • the height of the second micro-protrusions h 5 5-140 ⁇ m; 40% to 70%.
  • the first protrusion radius r 1 10-300 ⁇ m
  • the first protrusion height h 3 10-300 ⁇ m
  • the micro-pit radius r 2 5-160 ⁇ m
  • the micro-pit depth h 4 5-160 ⁇ m
  • the radius of the second microprotrusions r 3 5-160 ⁇ m
  • the height of the second micro-protrusions h 5 5-160 ⁇ m; 35% to 70%.
  • a processing method of a fuel cell proton exchange membrane with microtexture comprising the following steps:
  • the surface of the cathode is directly processed by the laser, so that the surface of the cathode is partially vaporized to form several petal-shaped concave-convex composite textures;
  • Deburring is performed using ultrasonic cleaning or glow cleaning or sputter cleaning.
  • the specific parameters of the laser processing are: the divergence angle is less than 0.5mrad, the output beam quality M ⁇ 1.3, the spot diameter is not more than 3mm, the wavelength is 1064nm, the power is 1-25W, the single-pulse energy is 1-100 ⁇ J, and the pulse width It is 1 to 100ps, and the repetition frequency is 1 to 10MHz.
  • a processing method of a fuel cell proton exchange membrane with microtexture comprising the following steps:
  • the first stamping die with pits and protrusions is processed by plasma etching or ultrafast laser, and the first stamping die is deburred by ultrasonic cleaning and glow cleaning;
  • a second stamping die with semi-ellipsoid micro-pits is processed by plasma etching or ultrafast laser, and the second stamping die is deburred by ultrasonic cleaning and glow cleaning;
  • the semi-ellipsoid micro-dimples on the surface of the cathode are machined by a second punching die.
  • the micro-textured fuel cell proton exchange membrane of the present invention has a petaloid concave-convex composite texture on the cathode surface of the proton exchange membrane, which can greatly increase the three-phase reaction interface, improve catalyst utilization, and improve reaction efficiency.
  • micro-textured fuel cell proton exchange membrane of the present invention can make the carbon-supported platinum catalyst embedded in the structure through the petal-shaped concave-convex composite texture, and effectively increase its catalytic active area, which is conducive to improving catalyst utilization.
  • the fuel cell proton exchange membrane with micro-texture of the present invention has three regions with different spacings through the petal-shaped concave-convex composite texture, and the spacing of two adjacent concave-convex composite textures in each region is
  • the gradient distribution of inner density and outer sparseness conforms to the gradient distribution characteristics of the catalyst, which can make the catalytic reaction more sufficient and efficient.
  • the petal-shaped concave-convex composite texture can play a certain water storage function, and when the dynamic balance of water changes, this structure can play a certain ease. to improve water management.
  • the proton exchange membrane of the fuel cell with micro-texture according to the present invention can improve part of its performance only by changing the micro-morphology of the proton exchange membrane, which can reduce the thickness and quality of the membrane.
  • the existence of the first protrusions and the second microprotrusions can effectively prevent the random movement of the catalytic particles, and the coupling existence of the protrusions and the pits can force Catalytic particles are embedded at the bottom of these structures, so as to regulate the catalytic particles and effectively increase their catalytic active area, which is beneficial to improve the utilization rate of catalysts, improve the efficiency of electrocatalytic reaction, and improve the performance of fuel cells.
  • the fuel cell proton exchange membrane with micro-texture of the present invention has a closed curved surface inside the micro-pit structure, which can function as a micro-reservoir, thereby optimizing water management.
  • the fuel cell proton exchange membrane with micro-texture according to the present invention can improve part of its performance only by changing the micro-morphology of the proton exchange membrane, and can reduce the thickness and quality of the membrane.
  • the processing method of the fuel cell proton exchange membrane with micro-texture according to the present invention has a simple processing process, and only needs to create a petal-shaped concave-convex composite texture on the cathode surface of the proton exchange membrane, thereby greatly increasing the three-phase reaction interface. It is easy to implement and can be commercialized on a large scale.
  • FIG. 1 is a perspective view of Embodiment 1 of the micro-textured fuel cell proton exchange membrane according to the present invention.
  • FIG. 2 is a plan view of Example 1.
  • FIG. 3 is an area division diagram of three different pitches in Embodiment 1.
  • FIG. 3 is an area division diagram of three different pitches in Embodiment 1.
  • FIG. 4 is a perspective view of Embodiment 2 of the fuel cell proton exchange membrane with microtexture according to the present invention.
  • FIG. 5 is a plan view of Example 2.
  • FIG. 6 is an area division diagram of three different pitches in Embodiment 2.
  • FIG. 6 is an area division diagram of three different pitches in Embodiment 2.
  • FIG. 7 is a cross-sectional view of the concave-convex composite texture.
  • Fig. 8 is an enlarged schematic view of Fig. 7 1.
  • FIG. 9 is a comparison diagram of polarization curves of the prior art and Embodiment 1 and Embodiment 2 of the present invention.
  • FIG. 10 is a perspective view of Embodiment 3 of the fuel cell proton exchange membrane with microtexture according to the present invention.
  • FIG. 11 is a top view of Embodiment 3 of the present invention.
  • FIG. 12 is a perspective view of Example 4 of the fuel cell proton exchange membrane with microtexture according to the present invention.
  • FIG. 13 is a top view of Embodiment 4 of the present invention.
  • Figure 14 is an enlarged schematic view of the concave-convex composite texture at I.
  • Figure 15 is a cross-sectional view of a concave-convex composite texture.
  • FIG. 16 is a partial enlarged view of FIG. 15 .
  • Example 17 is a graph comparing the polarization curves of the prior art flat film and Example 3 and Example 4 of the present invention.
  • Example 18 is a graph comparing the current density of the flat membrane of the prior art and the cathode surface of the proton exchange membrane of Example 1 and Example 3 of the present invention when the voltage is 0.4V.
  • 19 is a comparison diagram of the water mass fraction on the cathode surface of the proton exchange membrane of the prior art and the embodiment 1 and the embodiment 3 of the present invention when the voltage is 0.7V.
  • Figure 20 is a graph comparing the O 2 mass fraction on the cathode surface of the flat membrane of the prior art and the proton exchange membrane of Example 1 and Example 3 of the present invention when the voltage is 0.7V.
  • 1-proton exchange membrane 2-cathode surface; 3-concave-convex composite texture; 4-pits; 5-protrusions; 6-semi-ellipsoid micro-pits; 7-first protrusions; 8-micro-pits; 9-Second microprotrusions; a-central region; b-intermediate region; c-peripheral region.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • installed e.g., it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • the proton exchange membrane 1 is a perfluorosulfonic acid type proton exchange membrane, with a length of 50 mm, a width of 50 mm, and a thickness of 50 mm. is 150 ⁇ m.
  • the cathode surface 2 of the proton exchange membrane distributes several petal-shaped concave-convex composite textures 3 according to a gradient of inner density and outer sparseness.
  • a circle of protrusions 5 is formed, and several semi-ellipsoidal micro-pits 6 are evenly distributed on the inner surface of the pit 4 .
  • the pit 4 may be a hemispherical pit, and the pit 4 may also be a circular hole, the bottom of which is a hemispherical surface tangent to the cylindrical surface of the circular hole.
  • the protrusion 5 may be a hemispherical protrusion, and the protrusion 5 may also be a cylinder, and the top of the cylinder is a hemisphere tangent to the cylindrical surface.
  • a plurality of the concave-convex composite textures 3 are annularly distributed on the cathode surface 2, and the cathode surface 2 is divided into a central area a, a middle area b and a peripheral area c according to the spacing between adjacent concave-convex composite textures 3, and in the In each area, the spacing of any adjacent concave-convex composite texture 3 is gradually increased from the inside to the outside; as shown in FIG. 2 .
  • These concave-convex composite textures 3 can greatly increase the three-phase reaction interface, increase the active area of the carbon-supported platinum catalyst, effectively improve the utilization rate of the catalyst, and can also play a certain water storage function. When the dynamic balance of water changes, This structure can provide some mitigation and thus optimize water management.
  • the inner surface of the pit 4 is divided into 5 parallel layers, and any of the parallel layers is evenly distributed with several semi-ellipsoid micro-pits 6 in the circumferential direction; the center of the semi-ellipsoid micro-pits 6 on the adjacent parallel layers is The angle between the centers of the pits 4 is 20°; the long axis length of the semi-ellipsoid micro-pits 6 is 8 ⁇ m, the short-axis length of the semi-ellipsoid micro-pits 6 is 6 ⁇ m, and the semi-ellipsoid micro-pits 6 are 6 ⁇ m long.
  • the processing method of the micro-textured fuel cell proton exchange membrane described in Example 1 is a direct laser processing method, and the cathode surface 2 is directly processed by a laser, so that the cathode surface 2 is partially vaporized to form several petal-shaped Concave-convex composite texture 3;
  • ultrasonic cleaning, glow cleaning and sputtering cleaning are used for deburring treatment, thereby obtaining a fuel cell proton exchange membrane with microtexture.
  • the proton exchange membrane 1 is a perfluorosulfonic acid type proton exchange membrane, with a length of 50 mm, a width of 50 mm, and a thickness of 50 mm. is 150 ⁇ m.
  • the cathode surface 2 of the proton exchange membrane distributes several petal-shaped concave-convex composite textures 3 according to a gradient of inner density and outer sparseness.
  • a circle of protrusions 5 is formed, and several semi-ellipsoidal micro-pits 6 are evenly distributed on the inner surface of the pit 4 .
  • the pit 4 may be a hemispherical pit, and the pit 4 may also be a circular hole, the bottom of which is a hemispherical surface tangent to the cylindrical surface of the circular hole.
  • a plurality of the concave-convex composite textures 3 are distributed on the cathode surface 2 in a rectangular shape; the cathode surface 2 is divided into a central area a, a middle area b and a peripheral area c according to the spacing between adjacent concave-convex composite textures 3, and in the In each region, the spacing between any adjacent concave-convex composite textures 3 is gradually increased from the inside to the outside; the spacing S 1 between adjacent concave-convex composite textures 3 in the central region a is 70-200 ⁇ m;
  • the inner surface of the pit 4 is divided into 5 parallel layers, and any of the parallel layers is evenly distributed with several semi-ellipsoid micro-pits 6 in the circumferential direction; the center of the semi-ellipsoid micro-pits 6 on the adjacent parallel layers reaches the The angle between the centers of the pits 4 is 20°; the long axis length of the semi-ellipsoid micro-pits 6 is 8 ⁇ m, the short-axis length of the semi-ellipsoid micro-pits 6 is 6 ⁇ m, and the semi-ellipsoid micro-pits 6 are 6 ⁇ m long.
  • the semi-ellipsoidal micro-dimples 6 on the cathode surface 2 are processed by a second stamping die.
  • FIG. 9 is a comparison diagram of polarization curves of a flat film in the prior art and Embodiment 1 and Embodiment 2 of the present invention under the same conditions.
  • Embodiment 1 and Embodiment 2 of the present invention are more
  • the flat film obtained with the same voltage has higher current density, and the current density obtained in Example 2 is higher than that obtained in Example 1. It can be seen that the proton exchange membrane of fuel cell with micro-texture according to the present invention is indeed effective for improving the performance of fuel cell.
  • the fuel cell proton exchange membrane with micro-texture As shown in Figure 10, Figure 11, Figure 15 and Figure 16, the fuel cell proton exchange membrane with micro-texture according to the present invention, the proton exchange membrane is a perfluorosulfonic acid type proton exchange membrane, the length is 60mm. The width is 60mm and the thickness is 150 ⁇ m.
  • the cathode surface 2 of the proton exchange membrane of the fuel cell has a plurality of concave-convex composite textures 3 distributed in a gradient of inner density and outer sparseness.
  • a circle of second micro-protrusions 9 is arranged around the first protrusion 7, and the cross-sectional area of the first protrusion 7 is larger than the cross-sectional area of the second micro-protrusion 9;
  • Micro-pits 8 are provided between the second micro-protrusions 9 , and the wall surfaces of the micro-pits 8 are tangent to the wall surfaces of the first protrusions 7 and the wall surfaces of the second micro-protrusions 9 respectively.
  • the first protrusions 7 are hemispherical protrusions
  • the second microprotrusions 9 are annular protrusions with a semicircular cross section
  • the micropits 8 are annular grooves with a semicircular cross section. .
  • these concave-convex composite textures 3 can greatly increase the specific surface area of the membrane, and the existence of the first protrusions 7 and the second microprotrusions 9 can effectively prevent the random movement of catalytic particles, protrusions and pits
  • the existence of the coupling can force the catalytic particles to be embedded at the bottom of these structures, which can play the role of regulating the catalytic particles, thereby improving the catalyst utilization.
  • the bottom of the micro-pit 8 is a closed curved surface, which can function as a micro-storage pool, thereby optimizing water management.
  • the processing method of the proton exchange membrane of the fuel cell with the concave-convex composite microstructure is a molding method, and the specific steps are: first, use ion etching or ultrafast laser processing on the mold to have a corresponding texture, and then map it onto the membrane, and then The structure is deburred by ultrasonic cleaning, glow cleaning and sputtering cleaning, thereby obtaining a fuel cell proton exchange membrane with a concave-convex composite microstructure.
  • the proton exchange membrane of the fuel cell with micro-texture As shown in Fig. 12, Fig. 13, Fig. 15 and Fig. 16, the proton exchange membrane of the fuel cell with micro-texture according to the present invention, the proton exchange membrane is a perfluorosulfonic acid type proton exchange membrane, the length is 60mm, The width is 60mm and the thickness is 150 ⁇ m.
  • the cathode surface 2 of the proton exchange membrane of the fuel cell has a plurality of concave-convex composite textures 3 distributed in a gradient of inner density and outer sparseness.
  • a circle of second micro-protrusions 9 is arranged around the first protrusion 7, and the cross-sectional area of the first protrusion 7 is larger than the cross-sectional area of the second micro-protrusion 9;
  • Micro-pits 8 are provided between the second micro-protrusions 9 , and the wall surfaces of the micro-pits 8 are tangent to the wall surfaces of the first protrusions 7 and the wall surfaces of the second micro-protrusions 9 respectively.
  • the first protrusions 7 are hemispherical protrusions
  • the second microprotrusions 9 are annular protrusions with a semicircular cross section
  • the micropits 8 are annular grooves with a semicircular cross section. .
  • these concave-convex composite textures 3 can greatly increase the specific surface area of the membrane, and the presence of the first protrusions 7 and the second microprotrusions 9 can effectively prevent the random movement of catalytic particles, protrusions and pits
  • the existence of the coupling can force the catalytic particles to be embedded at the bottom of these structures, which can play the role of regulating the catalytic particles, thereby improving the catalyst utilization.
  • the bottom of the micro-pit 8 is a closed curved surface, which can function as a micro-water storage tank, thereby optimizing water management.
  • the processing method of the micro-textured fuel cell proton exchange membrane described in Example 3 and Example 4 is a molding method, and the specific steps are: first, use ion etching or ultrafast laser processing on the mold to have a corresponding texture. , and then mapped onto the membrane, and then deburred the structure by ultrasonic cleaning, glow cleaning and sputtering cleaning to obtain a fuel cell proton exchange membrane with a concave-convex composite microstructure.
  • FIG. 17 is a comparison diagram of the polarization curves of the flat film of the prior art and the embodiment 3 and embodiment 4 of the present invention under the same conditions. It can be seen from the figure that the embodiment 3 and embodiment 4 of the present invention are more The current density of the flat film obtained under the same voltage is higher, and the current density obtained in Example 3 is higher than that obtained in Example 4, indicating that the effect of the square-distributed micropattern structure is better. It can be seen that the proton exchange membrane of fuel cell with micro-texture according to the present invention is indeed effective for improving the performance of fuel cell.
  • Example 18 is a graph comparing the current density of the flat membrane of the prior art and the cathode surface of the proton exchange membrane of Example 1 and Example 3 of the present invention when the voltage is 0.4V. It can be seen from the figure that the current densities generated by the first and third embodiments of the present invention under the same voltage are higher than those of the prior art flat film, and the current densities generated by the first and third embodiments are similar .
  • FIG. 19 is a graph comparing the water mass fraction on the cathode surface of the flat membrane of the prior art and the proton exchange membrane of Example 1 and Example 3 of the present invention when the voltage is 0.7V. It can be seen from the figure that, under the same voltage, the water mass fraction on the cathode surface of the membranes in Examples 1 and 3 of the present invention is higher than that of the flat membrane in the prior art, which shows that the microstructure membrane proposed by the present invention The pit structure in the membrane can indeed play a certain role in water storage, thereby enhancing the wettability of the membrane.
  • FIG. 20 is a graph comparing the O 2 mass fraction on the cathode surface of the flat membrane of the prior art and the proton exchange membrane of Example 1 and Example 3 of the present invention when the voltage is 0.7V. It can be seen from the figure that under the same voltage, the oxygen mass fraction on the cathode surface of the membranes in Example 1 and Example 3 of the present invention is slightly lower than that of the flat membrane, which indicates that the microstructured membrane proposed in the present invention can accelerate the consumption of oxygen. , thereby improving the reaction efficiency.

Abstract

本发明提供了一种带微织构的燃料电池质子交换膜及其加工方法,所述燃料电池质子交换膜的阴极表面按内密外疏梯度分布若干凹凸复合织构。若干凹凸复合织构呈花瓣状,所述凹凸复合织构包括凹坑和凸起,所述凹坑边缘处设有一圈凸起,所述凹坑的内表面均布若干半椭球微凹坑。根据相邻凹凸复合织构的间距将所述阴极表面划分为中心区域、中间区域和外围区域,且在每个区域内,任一相邻凹凸复合织构的间距均是由内向外梯度递增。本发明凹凸复合织构可有效增大质子交换膜阴极表面的表面积,有助于催化剂与反应气体充分接触,提高反应效率;还能使碳担载铂催化剂稳定镶嵌在此结构内,并提高催化剂活性面积,从而提高催化剂利用率。

Description

一种带微织构的燃料电池质子交换膜及其加工方法 技术领域
本发明涉及燃料电池领域,具体涉及一种带微织构的燃料电池质子交换膜及其加工方法。
背景技术
随着环境污染问题越来越严重,燃料电池因其转化效率高无污染的特点获得了国内外的关注。质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)是燃料电池广泛应用的一种,PEMFC以能量转化效率高、运行可靠性高、环境无污染、运动部件少、无噪音等优势而被认为是替代传统化石能源最有前景的绿色能源转化装置。
膜电极是质子交换膜燃料电池的核心结构部件,质子交换膜是膜电极的核心组成部件之一,其具有传导质子、隔绝氢气和氧气、防止气体在阴极流道与阳极流道间混合反应的作用,同时,质子交换膜两表面还是催化反应发生的场所,与催化剂直接接触,因此,质子交换膜必须具有高化学稳定性、高质子传导率、致密性好、机械强度高等特点。
质子交换膜处于阴阳两催化剂层之间,并直接与催化剂接触,其表面微观形貌结构对催化剂利用率、导电率、质子传导等具有重要影响。随着对质子交换膜的深入研究,图案化膜已成为当今研究热点。图案化膜可以大大增加质子交换膜的表面积,当特定图案尺寸与催化剂尺寸相匹配时,将大大提高催化剂利用率,加快反应速率,图案化膜还具有提高质子传导率、导电率,降低阻抗,使膜厚度变薄等优点。采用图案化质子交换膜可以大大提高质子交换膜的各种性能。
同时,质子交换膜阴极侧还会随着电池的运行而不断产生水,若水不能及时排出,将产生水淹现象,水覆盖在膜表面,阻断反应的发生,从而降低电池反应效率。而当水不足时,则会使得质子传导率下降,引起电池性能变差。因此,质子交换膜还需具有优化水管理的特点。
目前的质子交换膜燃料电池基本都是使用贵金属铂作为催化剂的活性组分,而金属铂的价格非常昂贵,这严重影响了对质子交换膜燃料电池的研究进程。因此,提高铂催化剂的利用率和研究超低铂载量的质子交换膜,对质子交换膜的发展具有重要影响。提高催化剂利用率不仅可以降低铂载量从而使得质子交换膜的成本降低还将提高催化反应效率使得电池性能得到改善提高。
随着对图案化质子交换膜的研究,很多研究者通过对膜表面微观结构进行改变,从而得到了具有超低铂载量、催化剂利用率高效、质子传导率高、三相反应界面大以及成本低等优点的质子交换膜。中国专利公开了一种通过在质子交换膜两侧喷涂一层聚合物电解质,从而 改变电解质膜和电极界面微观结构;电极制备过程中通过使用负压,外加电场等手段使电极的关键组分沿同一方向定向排列,从而增大三相反应界面,提高催化剂利用率。中国专利公开了将碳载体(XC-72)在使用前在CO 2气氛中活化处理,具体步骤包括:(1)将碳载体(XC-72)置于流动的CO 2气氛中加热到350—900℃活化处理1—12小时;(2)用沉淀法把Pt负载到经上述步骤活化的碳载体上,从而得到Pt/C催化剂。该专利所得到的Pt/C催化剂制成的质子交换膜燃料电池电极催化剂具有很高的电催化活性。以上专利有助有增大三相反应界面和提高催化剂利用率,但操作过于复杂,耗时较长,不利于大规模商业化的生产。
发明内容
针对现有技术中存在的不足,本发明提供了一种带微织构的燃料电池质子交换膜及其加工方法,通过对质子交换膜阴极表面设计凹凸复合织构,形成一种凹凸复合织构的图案化膜。不仅可以增大质子交换膜阴极表面的表面积,还能使碳基镶嵌在较大的凹坑结构里,铂基镶嵌在碳基上并使其在较小的微凹坑内,从而使得碳担载铂催化剂稳定附着于膜表面,增大了催化剂的活化面积,以此提高催化剂利用率。同时,凹凸复合织构是内密外疏梯度分布在膜表面上的,可以使得反应更加充分和高效。此外,这些凹凸复合织构还能起到优化水管理的作用。本发明加工制造过程简单,适于商业化生产。
本发明是通过以下技术手段实现上述技术目的的。
一种带微织构的燃料电池质子交换膜,其特征在于,所述燃料电池质子交换膜的阴极表面按内密外疏梯度分布若干凹凸复合织构。
进一步,若干凹凸复合织构呈花瓣状,所述凹凸复合织构包括凹坑和凸起,所述凹坑边缘处设有一圈凸起,所述凹坑的内表面均布若干半椭球微凹坑。
进一步,若干所述凹凸复合织构环形分布在所述阴极表面上;根据相邻凹凸复合织构的间距将所述阴极表面划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构之间的间距S 1=50~250μm;在中间区域b内的相邻所述凹凸复合织构之间的间距S 2=250~450μm;在外围区域c内的相邻所述凹凸复合织构之间的距离S 3=450~600μm。
进一步,所述凹坑的半径R=20~200μm,所述凹坑的深度H=20~200μm;所述凸起半径r=5~120μm,所述凸起高度h 1=5~120μm;若干所述凹凸复合织构占所述阴极表面总面积的35%~65%。
进一步,若干所述凹凸复合织构矩形分布在所述阴极表面上;根据相邻凹凸复合织构的间距将所述阴极表面划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构之 间的间距S 1=50~200μm;在中间区域b内的相邻所述凹凸复合织构之间的间距S 2=200~400μm;在外围区域c内的相邻所述凹凸复合织构之间的距离S 3=400~600μm。
进一步,所述凹坑的半径R=20~200μm,所述凹坑的深度H=20~200μm;所述凸起半径r=5~100μm,所述凸起高度h 1=5~100μm;若干所述凹凸复合织构占所述阴极表面总面积的30%~60%。
进一步,所述凹坑的内表面划分若干平行层,任一所述平行层上周向均布若干半椭球微凹坑;相邻平行层上的所述半椭球微凹坑圆心到所述凹坑圆心之间的夹角为16~24°;所述半椭球微凹坑长轴长为2~12μm,所述半椭球微凹坑短轴长为1~10μm,所述半椭球微凹坑的深度h 2=1~10μm,每层之间相邻所述半椭球微凹坑之间的距离为1~12μm。
进一步,所述凹凸复合织构包括第一凸起、第二微凸起和微凹坑,所述第一凸起周围设有一圈第二微凸起,且所述第一凸起的横截面积大于第二微凸起的横截面积;所述第一凸起与第二微凸起之间设有微凹坑,且所述微凹坑的壁面分别与第一凸起的壁面和第二微凸起的壁面相切。
进一步,所述第一凸起为半球状体凸起,所述第二微凸起为一圈横截面为半圆的环形凸起,所述微凹坑一圈横截面为半圆的环形凹坑。
进一步,若干所述凹凸复合织构矩形分布在所述阴极表面上;根据相邻凹凸复合织构的间距将所述阴极表面划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构之间的间距S 1=50~250μm;在中间区域b内的相邻所述凹凸复合织构之间的间距S 2=250~450μm;在外围区域c内的相邻所述凹凸复合织构之间的距离S 3=450~600μm。
进一步,所述第一凸起半径r 1=10~280μm,所述第一凸起高度h 3=10~280μm;所述微凹坑半径r 2=5~140μm,所述微凹坑深度h 4=5~140μm;所述第二微凸起半径r 3=5~140μm,所述第二微凸起高度h 5=5~140μm;所述凹凸复合织构占所述阴极表面总表面积的40%~70%。
进一步,若干所述凹凸复合织构环形分布在所述阴极表面上;根据相邻凹凸复合织构的间距将所述阴极表面划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构之间的间距S 1=50~280μm;在中间区域b内的相邻所述凹凸复合织构之间的间距S 2=280~480μm;在外围区域c内的相邻所述凹凸复合织构之间的距离S 3=480~600μm。
进一步,所述第一凸起半径r 1=10~300μm,所述第一凸起高度h 3=10~300μm;所述微凹坑半径r 2=5~160μm,所述微凹坑深度h 4=5~160μm;所述第二微凸起半径r 3=5~160μm,所述第二微凸起高度h 5=5~160μm;所述凹凸复合织构占所述阴极表面总表面积的35%~70%。
一种带微织构的燃料电池质子交换膜的加工方法,包括如下步骤:
通过激光直接加工所述阴极表面,使所述阴极表面局部气化,形成若干花瓣状的凹凸复合织构;
利用超声清洗或辉光清洗或溅射清洗进行去毛刺处理。
进一步,所述激光加工的具体参数为:发散角小于0.5mrad,输出光束质量M≤1.3,光斑直径不大于3mm,波长为1064nm,功率为1~25W,单脉冲能量为1~100μJ,脉宽为1~100ps,重复频率为1~10MHz。
一种带微织构的燃料电池质子交换膜的加工方法,包括如下步骤:
利用等离子刻蚀法或超快激光加工出具有凹坑和凸起的第一冲压模具,利用超声清洗和辉光清洗对第一冲压模具进行去毛刺处理;
通过第一冲压模具加工所述阴极表面上的凹坑和凸起;
利用等离子刻蚀法或超快激光加工出具有半椭球微凹坑的第二冲压模具,利用超声清洗和辉光清洗对第二冲压模具进行去毛刺处理;
通过第二冲压模具加工所述阴极表面上的半椭球微凹坑。
本发明的有益效果在于:
1.本发明所述的带微织构的燃料电池质子交换膜,在质子交换膜阴极表面开设花瓣状凹凸复合织构,可大大增大三相反应界面,提高催化剂利用率,提高反应效率。
2.本发明所述的带微织构的燃料电池质子交换膜,通过花瓣状凹凸复合织构能够使得碳担载铂催化剂镶嵌在此结构内,并有效提高了其催化活性面积,有利于提高催化剂利用率。
3.本发明所述的带微织构的燃料电池质子交换膜,通过花瓣状凹凸复合织构具有三个不同间距的区域,且两相邻凹凸复合织构在每个区域内的间距均是内密外疏梯度分布的,符合催化剂的梯度分布特点,能够使得催化反应更加充分和高效。
4.本发明所述的带微织构的燃料电池质子交换膜,花瓣状凹凸复合织构可以起到一定的储水功能,当水的动态平衡发生改变时,此结构可起到一定的缓解作用,从而改善水的管理问题。
5.本发明所述的带微织构的燃料电池质子交换膜,仅在质子交换膜进行微观形貌的改变即可改善其部分性能,可使膜的厚度变薄、质量减轻。
6.本发明所述的带微织构的燃料电池质子交换膜,第一凸起和第二微凸起的存在可以有效阻止催化颗粒的无规则运动,凸起和凹坑的耦合存在可以迫使催化颗粒镶嵌在这些结构底部,从而起到调控催化颗粒的作用,并有效提高其催化活性面积,有利于提高催化剂利用率,提高电催化反应效率,改善燃料电池性能。
7.本发明所述的带微织构的燃料电池质子交换膜,微凹坑结构内部是封闭的曲面,可以 起到微储水池的功能,从而起到优化水管理的作用。
8.本发明所述的带微织构的燃料电池质子交换膜,仅在质子交换膜进行微观形貌的改变即可改善其部分性能,并可使膜的厚度变薄、质量减轻。
9.本发明所述的带微织构的燃料电池质子交换膜的加工方法,加工过程简单,仅需在质子交换膜阴极表面开设花瓣状凹凸复合织构,从而大大增大三相反应界面。易于实现,可进行大规模商业化生产。
附图说明
图1为本发明所述的带微织构的燃料电池质子交换膜的实施例1立体图。
图2为实施例1的俯视图。
图3为实施例1的三个不同间距的区域划分图。
图4为本发明所述的带微织构的燃料电池质子交换膜的实施例2立体图。
图5为实施例2的俯视图。
图6为实施例2的三个不同间距的区域划分图。
图7为所述凹凸复合织构的剖视图。
图8为图7①处放大示意图。
图9为现有技术与本发明的实施例1和实施例2的极化曲线对比图。
图10为本发明所述的带微织构的燃料电池质子交换膜的实施例3立体图。
图11为本发明所述的实施例3的俯视图。
图12为本发明所述的带微织构的燃料电池质子交换膜的实施例4立体图。
图13为本发明所述的实施例4的俯视图。
图14为Ⅰ处的凹凸复合织构的放大示意图。
图15为凹凸复合织构的横截面图。
图16为图15的局部放大图。
图17是现有技术的平板膜和本发明实施例3与实施例4的极化曲线比较图。
图18是现有技术的平板膜与本发明实施例1与实施例3质子交换膜阴极表面在电压为0.4V时的电流密度比较图。
图19是现有技术的平板膜与本发明实施例1与实施例3质子交换膜阴极表面在电压为0.7V时的水质量分数比较图。
图20是现有技术的平板膜与本发明实施例1与实施例3质子交换膜阴极表面在电压为0.7V时的O 2质量分数比较图。
图中:
1-质子交换膜;2-阴极表面;3-凹凸复合织构;4-凹坑;5-凸起;6-半椭球微凹坑;7-第 一凸起;8-微凹坑;9-第二微凸起;a-中心区域;b-中间区域;c-外围区域。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1、2、3所示,本发明所述的带微织构的燃料电池质子交换膜,所述质子交换膜1为全氟磺酸型质子交换膜,长度50mm,宽度为50mm,厚度为150μm。所述质子交换膜的阴极表面2按内密外疏梯度分布若干花瓣状的凹凸复合织构3,所述凹凸复合织构3包括凹坑4和凸起5,所述凹坑4边缘处设有一圈凸起5,所述凹坑4的内表面均布若干半椭球微凹坑6。所述凹坑4可以是半球形凹坑,凹坑4也可以是圆孔,其圆孔底部为与圆孔圆柱面相切的半球面。所述凸起5可以是半球形凸起,凸起5也可以是圆柱体,其圆柱体顶部为与圆柱面相切的半球体。若干所述凹凸复合织构3环形分布在所述阴极表面2上,根据相邻凹凸复合织构3的间距将所述阴极表面2划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构3的间距均是由内向外梯度递增;如图2所示。这些凹凸复合织构3能大大增大三相反应界面,提高碳担载铂催化剂活性面积,有效提高催化剂的利用 率,还可以起到一定的储水功能,当水的动态平衡发生改变时,此结构可起到一定的缓解作用,从而起到优化水管理的作用。
如图7和图8所示,在中心区域a内的相邻所述凹凸复合织构3之间的间距S 1=80~250μm;在中间区域b内的相邻所述凹凸复合织构3之间的间距S 2=250~400μm;在外围区域c内的相邻所述凹凸复合织构3之间的距离S 3=450~550μm。所述凹坑4的半径R=100μm,所述凹坑4的深度H=100μm;所述凸起5半径r=40μm,所述凸起5高度h 1=40μm;若干所述凹凸复合织构3占所述阴极表面2总面积的58.2%。所述凹坑4的内表面划分5个平行层,任一所述平行层上周向均布若干半椭球微凹坑6;相邻平行层上的所述半椭球微凹坑6圆心到所述凹坑4圆心之间的夹角为20°;所述半椭球微凹坑6长轴长为8μm,所述半椭球微凹坑6短轴长为6μm,所述半椭球微凹坑6的深度h 2=6μm,每层之间相邻所述半椭球微凹坑6之间的距离为6μm。
实施例1所述的带微织构的燃料电池质子交换膜的加工方法为直接激光加工法,通过激光直接加工所述阴极表面2,使所述阴极表面2局部气化,形成若干花瓣状的凹凸复合织构3;所述激光加工的具体参数为:发散角小于0.5mrad,输出光束质量M=1,光斑直径不大于3mm,波长为1064nm,功率为15W,单脉冲能量为80μJ,脉宽为80ps,重复频率为10MHz,加工完成后再利用超声清洗、辉光清洗及溅射清洗进行去毛刺处理,从而得到带微织构的燃料电池质子交换膜。
实施例2
如图4、5、6所示,本发明所述的带微织构的燃料电池质子交换膜,所述质子交换膜1为全氟磺酸型质子交换膜,长度50mm,宽度为50mm,厚度为150μm。所述质子交换膜的阴极表面2按内密外疏梯度分布若干花瓣状的凹凸复合织构3,所述凹凸复合织构3包括凹坑4和凸起5,所述凹坑4边缘处设有一圈凸起5,所述凹坑4的内表面均布若干半椭球微凹坑6。所述凹坑4可以是半球形凹坑,凹坑4也可以是圆孔,其圆孔底部为与圆孔圆柱面相切的半球面。若干所述凹凸复合织构3矩形分布在所述阴极表面2上;根据相邻凹凸复合织构3的间距将所述阴极表面2划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构3的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构3之间的间距S 1=70~200μm;在中间区域b内的相邻所述凹凸复合织构3之间的间距S 2=200~360μm;在外围区域c内的相邻所述凹凸复合织构3之间的距离S 3=400~560μm。所述凹坑4的半径R=120μm,所述凹坑4的深度H=120μm;所述凸起5半径r=50μm,所述凸起5高度h 1=50μm;若干所述凹凸复合织构3占所述阴极表面2总面积的54%。所述凹坑4的内表面划分5个平行层,任一所述平行层上周向均布若干半椭球微凹坑6;相邻平行层上 的所述半椭球微凹坑6圆心到所述凹坑4圆心之间的夹角为20°;所述半椭球微凹坑6长轴长为8μm,所述半椭球微凹坑6短轴长为6μm,所述半椭球微凹坑6的深度h 2=6μm,每层之间相邻所述半椭球微凹坑6之间的距离为6μm。
实施例2所述的带微织构的燃料电池质子交换膜的加工方法,包括如下步骤:
利用等离子刻蚀法或超快激光加工出具有凹坑4和凸起5的第一冲压模具,利用超声清洗和辉光清洗对第一冲压模具进行去毛刺处理;
通过第一冲压模具加工所述阴极表面2上的凹坑4和凸起5;
利用等离子刻蚀法或超快激光加工出具有半椭球微凹坑6的第二冲压模具,利用超声清洗和辉光清洗对第二冲压模具进行去毛刺处理;
通过第二冲压模具加工所述阴极表面2上的半椭球微凹坑6。
图9是在现有技术的平板膜与本发明实施例1和实施例2在相同情况下的极化曲线对比图,从图可看出,本发明实施例1和实施例2比现有技术的平板膜在同样电压下所获得的电流密度更高,并且实施例2的比实施例1所获得的电流密度更高。由此可看出,本发明所述的带微织构的燃料电池质子交换膜对于提高燃料电池性能确实是有效的。
实施例3:
如图10、图11、图15和图16所示,本发明所述的带微织构的燃料电池质子交换膜,所述质子交换膜为全氟磺酸型质子交换膜,长度为60mm.宽度为60mm,厚度为150μm。所述燃料电池质子交换膜的阴极表面2按内密外疏梯度分布若干凹凸复合织构3,所述凹凸复合织构3包括第一凸起7、第二微凸起9和微凹坑8,所述第一凸起7周围设有一圈第二微凸起9,且所述第一凸起7的横截面积大于第二微凸起9的横截面积;所述第一凸起7与第二微凸起9之间设有微凹坑8,且所述微凹坑8的壁面分别与第一凸起7的壁面和第二微凸起9的壁面相切。所述第一凸起7为半球状体凸起,所述第二微凸起9为一圈横截面为半圆的环形凸起,所述微凹坑8一圈横截面为半圆的环形凹坑。若干所述凹凸复合织构3矩形分布在所述阴极表面2上;根据相邻凹凸复合织构3的间距将所述阴极表面2划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构3的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构3之间的间距S 1=60~250μm;在中间区域b内的相邻所述凹凸复合织构3之间的间距S 2=280~420μm;在外围区域c内的相邻所述凹凸复合织构3之间的距离S 3=450~560μm。如图11所示,这些凹凸复合织构3可以大大增大膜的比表面积,第一凸起7和第二微凸起9的存在可以有效阻止催化颗粒的无规则运动,凸起和凹坑的耦合存在可以迫使催化颗粒镶嵌在这些结构底部,可以起到调控催化颗粒的作用,从而提高催化剂利用率。同时,在微凹坑8底部是封闭的曲面,可以起到微储水池的作用, 从而起到优化水管理的作用。
所述第一凸起7半径r 1=100μm,所述第一凸起7高度h 3=100μm;所述微凹坑8半径r 2=50μm,所述微凹坑8深度h 4=50μm;所述第二微凸起9半径r 3=50μm,所述第二微凸起9高度h 5=50μm;所述凹凸复合织构3占所述阴极表面2总表面积的62%。
所述凹凸复合微结构燃料电池质子交换膜的加工方法为模压法,其具体步骤为:首先在模具上采用离子刻蚀或超快激光加工出具有对应的纹理,再通过映射至膜上,然后通过超声清洗、辉光清洗及溅射清洗对此结构进行去毛刺处理,从而得到具有凹凸复合微结构的燃料电池质子交换膜。
实施例4:
如图12、图13、图15和图16所示,本发明所述的带微织构的燃料电池质子交换膜,所述质子交换膜为全氟磺酸型质子交换膜,长度为60mm,宽度为60mm,厚度为150μm。所述燃料电池质子交换膜的阴极表面2按内密外疏梯度分布若干凹凸复合织构3,所述凹凸复合织构3包括第一凸起7、第二微凸起9和微凹坑8,所述第一凸起7周围设有一圈第二微凸起9,且所述第一凸起7的横截面积大于第二微凸起9的横截面积;所述第一凸起7与第二微凸起9之间设有微凹坑8,且所述微凹坑8的壁面分别与第一凸起7的壁面和第二微凸起9的壁面相切。所述第一凸起7为半球状体凸起,所述第二微凸起9为一圈横截面为半圆的环形凸起,所述微凹坑8一圈横截面为半圆的环形凹坑。若干所述凹凸复合织构3环形分布在所述阴极表面2上;根据相邻凹凸复合织构3的间距将所述阴极表面2划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构3的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构3之间的间距S 1=60~280μm;在中间区域b内的相邻所述凹凸复合织构3之间的间距S 2=300~480μm;在外围区域c内的相邻所述凹凸复合织构3之间的距离S 3=480~600μm。如图13所示,这些凹凸复合织构3可以大大增大膜的比表面积,第一凸起7和第二微凸起9的存在可以有效阻止催化颗粒的无规则运动,凸起和凹坑的耦合存在可以迫使催化颗粒镶嵌在这些结构底部,可以起到调控催化颗粒的作用,从而提高催化剂利用率。同时,在微凹坑8底部是封闭的曲面,可以起到微储水池的作用,从而起到优化水管理的作用。
所述第一凸起7半径r 1=120μm,所述第一凸起7高度h 3=120μm;所述微凹坑8半径r 2=60μm,所述微凹坑8深度h 4=60μm;所述第二微凸起9半径r 3=60μm,所述第二微凸起9高度h 5=60μm;所述凹凸复合织构3占所述阴极表面2总表面积的60%。
实施例3和实施例4所述的带微织构的燃料电池质子交换膜的加工方法为模压法,其具体步骤为:首先在模具上采用离子刻蚀或超快激光加工出具有对应的纹理,再通过映射至膜 上,然后通过超声清洗、辉光清洗及溅射清洗对此结构进行去毛刺处理,从而得到具有凹凸复合微结构的燃料电池质子交换膜。
图17是在现有技术的平板膜与本发明实施例3和实施例4在相同情况下的极化曲线对比图,从图可看出,本发明实施例3和实施例4比现有技术的平板膜在同样电压下所获得的电流密度更高,并且实施例3的比实施例4所获得的电流密度更高,说明方形分布的微图案结构的效果更好。由此可看出,本发明所述的带微织构的燃料电池质子交换膜对于提高燃料电池性能确实是有效的。
图18是现有技术的平板膜与本发明实施例1和实施例3质子交换膜阴极表面在电压为0.4V时的电流密度比较图。从图中可以看出,本发明实施例1和实施例3在相同电压下所产生的电流密度要比现有技术的平板膜要高,实施例1和实施例3的所产生的电流密度相似。
图19是现有技术的平板膜与本发明实施例1和实施例3质子交换膜阴极表面在电压为0.7V时的水质量分数比较图。由图中可以看出,在相同电压下,本发明实施例1和实施例3膜阴极表面的水质量分数均要高于现有技术的平板膜,这说明,本发明所提出的微结构膜中的凹坑结构确实能够起到一定的储水作用,从而能够增强膜的湿润性。
图20是现有技术的平板膜与本发明实施例1和实施例3质子交换膜阴极表面在电压为0.7V时的O 2质量分数比较图。从图中可以看出,在相同电压下,本发明实施例1和实施例3膜阴极表面的氧气质量分数要略低于平板膜,这说明本发明所提出的微结构膜能够加快氧气的消耗,从而提高反应效率。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种带微织构的燃料电池质子交换膜,其特征在于,所述燃料电池质子交换膜(1)的阴极表面(2)按内密外疏梯度分布若干凹凸复合织构(3)。
  2. 根据权利要求1所述的带微织构的燃料电池质子交换膜,其特征在于,若干凹凸复合织构(3)呈花瓣状,所述凹凸复合织构(3)包括凹坑(4)和凸起(5),所述凹坑(4)边缘处设有一圈凸起(5),所述凹坑(4)的内表面均布若干半椭球微凹坑(6)。
  3. 根据权利要求2所述的带微织构的燃料电池质子交换膜,其特征在于,若干所述凹凸复合织构(3)环形分布在所述阴极表面(2)上;根据相邻凹凸复合织构(3)的间距将所述阴极表面(2)划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构(3)的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构(3)之间的间距S 1=50~250μm;在中间区域b内的相邻所述凹凸复合织构(3)之间的间距S 2=250~450μm;在外围区域c内的相邻所述凹凸复合织构(3)之间的距离S 3=450~600μm。
  4. 根据权利要求3所述的带微织构的燃料电池质子交换膜,其特征在于,所述凹坑(4)的半径R=20~200μm,所述凹坑(4)的深度H=20~200μm;所述凸起(5)半径r=5~120μm,所述凸起(5)高度h 1=5~120μm;若干所述凹凸复合织构(3)占所述阴极表面(2)总面积的35%~65%。
  5. 根据权利要求2所述的带微织构的燃料电池质子交换膜,其特征在于,若干所述凹凸复合织构(3)矩形分布在所述阴极表面(2)上;根据相邻凹凸复合织构(3)的间距将所述阴极表面(2)划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构(3)的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构(3)之间的间距S 1=50~200μm;在中间区域b内的相邻所述凹凸复合织构(3)之间的间距S 2=200~400μm;在外围区域c内的相邻所述凹凸复合织构(3)之间的距离S 3=400~600μm。
  6. 根据权利要求5所述的带微织构的燃料电池质子交换膜,其特征在于,所述凹坑(4)的半径R=20~200μm,所述凹坑(4)的深度H=20~200μm;所述凸起(5)半径r=5~100μm,所述凸起(5)高度h 1=5~100μm;若干所述凹凸复合织构(3)占所述阴极表面(2)总面积的30%~60%。
  7. 根据权利要求2-6任一项所述的带微织构的燃料电池质子交换膜,其特征在于,所述凹坑(4)的内表面划分若干平行层,任一所述平行层上周向均布若干半椭球微凹坑(6);相邻平行层上的所述半椭球微凹坑(6)圆心到所述凹坑(4)圆心之间的夹角为16~24°;所述半椭球微凹坑(6)长轴长为2~12μm,所述半椭球微凹坑(6)短轴长为1~10μm,所述半椭球微凹坑(6)的深度h 2=1~10μm,每层之间相邻所述半椭球微凹坑(6)之间的距离为1~12μm。
  8. 根据权利要求1所述的带微织构的燃料电池质子交换膜,其特征在于,所述凹凸复合织构(3)包括第一凸起(7)、第二微凸起(9)和微凹坑(8),所述第一凸起(7)周围设有一圈第二微凸起(9),且所述第一凸起(7)的横截面积大于第二微凸起(9)的横截面积;所述第一凸起(7)与第二微凸起(9)之间设有微凹坑(8),且所述微凹坑(8)的壁面分别与第一凸起(7)的壁面和第二微凸起(9)的壁面相切。
  9. 根据权利要求8所述的带微织构的燃料电池质子交换膜,其特征在于,所述第一凸起(7)为半球状体凸起,所述第二微凸起(9)为一圈横截面为半圆的环形凸起,所述微凹坑(8)一圈横截面为半圆的环形凹坑。
  10. 根据权利要求9所述的带微织构的燃料电池质子交换膜,其特征在于,若干所述凹凸复合织构(3)矩形分布在所述阴极表面(2)上;根据相邻凹凸复合织构(3)的间距将所述阴极表面(2)划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构(3)的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构(3)之间的间距S 1=50~250μm;在中间区域b内的相邻所述凹凸复合织构(3)之间的间距S 2=250~450μm;在外围区域c内的相邻所述凹凸复合织构(3)之间的距离S 3=450~600μm。
  11. 根据权利要求10所述的带微织构的燃料电池质子交换膜,其特征在于,所述第一凸起(7)半径r 1=10~280μm,所述第一凸起(7)高度h 3=10~280μm;所述微凹坑(8)半径r 2=5~140μm,所述微凹坑(8)深度h 4=5~140μm;所述第二微凸起(9)半径r 3=5~140μm,所述第二微凸起(9)高度h 5=5~140μm;所述凹凸复合织构(3)占所述阴极表面(2)总表面积的40%~70%。
  12. 根据权利要求9所述的带微织构的燃料电池质子交换膜,其特征在于,若干所述凹凸复合织构(3)环形分布在所述阴极表面(2)上;根据相邻凹凸复合织构(3)的间距将所述阴极表面(2)划分为中心区域a、中间区域b和外围区域c,且在每个区域内,任一相邻凹凸复合织构(3)的间距均是由内向外梯度递增;在中心区域a内的相邻所述凹凸复合织构(3)之间的间距S 1=50~280μm;在中间区域b内的相邻所述凹凸复合织构(3)之间的间距S 2=280~480μm;在外围区域c内的相邻所述凹凸复合织构(3)之间的距离S 3=480~600μm。
  13. 根据权利要求12所述的带微织构的燃料电池质子交换膜,其特征在于,所述第一凸起(7)半径r 1=10~300μm,所述第一凸起(7)高度h 3=10~300μm;所述微凹坑(8)半径r 2=5~160μm,所述微凹坑(8)深度h 4=5~160μm;所述第二微凸起(9)半径r 3=5~160μm,所述第二微凸起(9)高度h 5=5~160μm;所述凹凸复合织构(3)占所述阴极表面(2)总表面积的35%~70%。
  14. 一种根据权利要求2-6任一项所述的带微织构的燃料电池质子交换膜的加工方法, 其特征在于,包括如下步骤:
    通过激光直接加工所述阴极表面(2),使所述阴极表面(2)局部气化,形成若干花瓣状的凹凸复合织构(3);
    利用超声清洗或辉光清洗或溅射清洗进行去毛刺处理。
  15. 根据权利要求8所述的带微织构的燃料电池质子交换膜的加工方法,其特征在于,所述激光加工的具体参数为:发散角小于0.5mrad,输出光束质量M≤1.3,光斑直径不大于3mm,波长为1064nm,功率为1~25W,单脉冲能量为1~100μJ,脉宽为1~100ps,重复频率为1~10MHz。
  16. 一种根据权利要求2-6任一项所述的带微织构的燃料电池质子交换膜的加工方法,其特征在于,包括如下步骤:
    利用等离子刻蚀法或超快激光加工出具有凹坑(4)和凸起(5)的第一冲压模具,利用超声清洗和辉光清洗对第一冲压模具进行去毛刺处理;
    通过第一冲压模具加工所述阴极表面(2)上的凹坑(4)和凸起(5);
    利用等离子刻蚀法或超快激光加工出具有半椭球微凹坑(6)的第二冲压模具,利用超声清洗和辉光清洗对第二冲压模具进行去毛刺处理;
    通过第二冲压模具加工所述阴极表面(2)上的半椭球微凹坑(6)。
PCT/CN2021/075283 2020-07-29 2021-02-04 一种带微织构的燃料电池质子交换膜及其加工方法 WO2022021833A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/012,658 US20230253595A1 (en) 2020-07-29 2021-02-04 Microtextured proton exchange membrane for fuel cell and processing method thereof
GB2111207.3A GB2597846B (en) 2020-07-29 2021-02-04 Microtextured Proton Exchange membrane for Fuel Cell and Processing Method thereof
CH70142/21A CH717791B1 (de) 2020-07-29 2021-02-04 Brennstoffzellen-Protonenaustauschmembran mit einer Mikrotextur und zugehöriges Bearbeitungsverfahren.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010745281.9 2020-07-29
CN202010745281.9A CN111864244B (zh) 2020-07-29 2020-07-29 一种带微织构的燃料电池质子交换膜及其加工方法
CN202010743936.9A CN111799491B (zh) 2020-07-29 2020-07-29 一种基于凹凸复合微结构燃料电池质子交换膜
CN202010743936.9 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022021833A1 true WO2022021833A1 (zh) 2022-02-03

Family

ID=80037084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075283 WO2022021833A1 (zh) 2020-07-29 2021-02-04 一种带微织构的燃料电池质子交换膜及其加工方法

Country Status (1)

Country Link
WO (1) WO2022021833A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165906A (zh) * 2013-03-25 2013-06-19 南通百应能源有限公司 微观三维燃料电池膜电极
CN111463442A (zh) * 2020-04-13 2020-07-28 上海电气集团股份有限公司 催化剂层、燃料电池膜电极及其制备方法
CN111799491A (zh) * 2020-07-29 2020-10-20 江苏大学 一种基于凹凸复合微结构燃料电池质子交换膜
CN111864244A (zh) * 2020-07-29 2020-10-30 江苏大学 一种带微织构的燃料电池质子交换膜及其加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165906A (zh) * 2013-03-25 2013-06-19 南通百应能源有限公司 微观三维燃料电池膜电极
CN111463442A (zh) * 2020-04-13 2020-07-28 上海电气集团股份有限公司 催化剂层、燃料电池膜电极及其制备方法
CN111799491A (zh) * 2020-07-29 2020-10-20 江苏大学 一种基于凹凸复合微结构燃料电池质子交换膜
CN111864244A (zh) * 2020-07-29 2020-10-30 江苏大学 一种带微织构的燃料电池质子交换膜及其加工方法

Similar Documents

Publication Publication Date Title
CN111864244B (zh) 一种带微织构的燃料电池质子交换膜及其加工方法
CN111799491B (zh) 一种基于凹凸复合微结构燃料电池质子交换膜
CN110828842B (zh) 一种质子交换膜燃料电池双极板分配头
CN110492107A (zh) 一种制备锂电池多孔铜箔集电体的方法
CN112072134B (zh) 一种燃料电池用三维精细网格流场双极板与制备方法
WO2019210673A1 (zh) 一种有效抑制锂金属电池枝晶不可控生长的集流体、其制备方法及用途
CN109524684A (zh) 一种具有仿生自排水功能的燃料电池双极板及自排水方法
CN103165904B (zh) 一体式可再生燃料电池膜电极组合件及其制备方法
WO2022021833A1 (zh) 一种带微织构的燃料电池质子交换膜及其加工方法
CN110729497A (zh) 一种疏水性燃料电池双极板和方法
US20230253595A1 (en) Microtextured proton exchange membrane for fuel cell and processing method thereof
CN113823809A (zh) 一种燃料电池双极板的流场结构
CN107039658A (zh) 一种低成本批量生产金属极板的方法
CN107045950A (zh) 一种泡沫镍/石墨烯/二氧化钼三层结构电极材料的制备方法
JP5548474B2 (ja) 複合膜および燃料電池
CN210897480U (zh) 一种质子交换膜燃料电池金属双极板
CN110957501B (zh) 用于甲醇燃料电池的双面十字交错多孔流场板及制备方法
WO2022027944A1 (zh) 一种燃料电池气体扩散层结构及其加工方法
CN114864960B (zh) 一种金属气体扩散层及其制造方法与应用
WO2019210596A1 (zh) 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途
CN101459253B (zh) 一种大面积熔融碳酸盐燃料电池
CN216084950U (zh) 一种蛇形流场结构的质子交换膜燃料电池装置
CN219393427U (zh) 一种增强气体均匀性和排水性的燃料电池多孔金属流场板
CN210926195U (zh) 一种锂离子电池的正极结构
CN113013435B (zh) 一种质子交换膜燃料电池以生物血管为灵感的流道布局

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202111207

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210204

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849247

Country of ref document: EP

Kind code of ref document: A1