WO2022021471A1 - 一种基于无线传感的农业灌溉水质检测系统及其检测方法 - Google Patents
一种基于无线传感的农业灌溉水质检测系统及其检测方法 Download PDFInfo
- Publication number
- WO2022021471A1 WO2022021471A1 PCT/CN2020/107881 CN2020107881W WO2022021471A1 WO 2022021471 A1 WO2022021471 A1 WO 2022021471A1 CN 2020107881 W CN2020107881 W CN 2020107881W WO 2022021471 A1 WO2022021471 A1 WO 2022021471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- resistor
- signal
- water quality
- pin
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9046—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
Definitions
- the invention relates to the technical field of water quality detection, in particular to a wireless sensing-based agricultural irrigation water quality detection system and a detection method thereof.
- the wireless signal transmission is to transmit the detection signal of water quality by the transmission of electromagnetic waves.
- the wireless signal passes through the water source environment, the signal will be reduced, resulting in unstable data transmission and small transmission range. Improve the water quality testing system.
- An agricultural irrigation water quality detection system based on wireless sensing is provided to solve the above problems.
- the phase detection module is used to convert the input signals of the pre-amplifier and the post-amplifier into a DC voltage output, reduce the influence of the signal amplitude change on the output phase voltage value, and improve the linearity of the output;
- a signal amplification module for amplifying the detection signal fed back by the phase detection module
- a wireless transmitter module for remote transmission of wireless water quality detection signals and control of signal transmission range
- the pre-filtering and amplifying module includes a resistor R9, a resistor R10, an operational amplifier U3, a capacitor C14, a resistor R11, a resistor R17, an inductor L6, and a resistor R16, wherein one end of the resistor R17 is respectively connected to the signal input Terminal INT, one end of resistor R11, one end of capacitor C14, and pin 2 of operational amplifier U3 are connected; the other end of the resistor R11 is connected to the other end of capacitor C14, the ground wire GND, and pin 4 of operational amplifier U3; the operational amplifier U3 leads Pin 3 is respectively connected with one end of the resistor R9 and one end of the resistor R10; the other end of the resistor R9 is connected with the ground wire GND; the other end of the resistor R10 is respectively connected with one end of the inductor L6, one end of the resistor R16, and the operational amplifier U3 pin 6; The other end of the inductor L6 is connected
- the post differential amplifier module includes a driver U2, a resistor R12, a resistor R13, a resistor R14, a resistor R15, a capacitor C15, and a capacitor C16, wherein the pin 8 of the driver U2 is connected to the other end of the resistor R16
- the pin 7 of the driver U2 is respectively connected with one end of the resistor R15 and one end of the capacitor C15; the other end of the capacitor C15 is connected with the ground wire GND;
- the pin 6 of the driver U2 is respectively connected with one end of the resistor R14 and one end of the resistor R13;
- the pin 5 of the driver U2 is respectively connected with the other end of the resistor R13 and one end of the resistor R12; the pin 4 and the pin 2 of the driver U2 are respectively connected with the other end of the resistor R12 and the ground wire GND;
- the pin 1 of the driver U2 is connected with the resistor R17 The other end is connected; the other end of the resistor R15 is connected
- the phase detection module includes a capacitor C13, a resistor R7, a resistor R8, a capacitor C12, and a detector U1, wherein the pin 3 of the detector U1 is connected to the ground wire GND; the detector U1 leads Pin 2 is connected to one end of the capacitor C13; the other end of the capacitor C13 is connected to the ground wire GND; the pin 10 of the detector U1 is respectively connected to one end of the resistor R7 and one end of the resistor R8; the other end of the resistor R8 is respectively connected to the detector U1
- the pin 12 is connected to the pin 13 and the other end of the resistor R14; the pin 14 of the detector U1 is connected to one end of the capacitor C12; the other end of the capacitor C12 is connected to the ground wire GND.
- the signal amplification module includes a capacitor C11, a capacitor C8, a transistor Q4, a resistor R6, a resistor R5, a capacitor C10, and an inductor L5, wherein one end of the capacitor C11 is connected to the pin 6 of the detector U1;
- the other end of the capacitor C11 is respectively connected with the collector terminal of the transistor Q4, the positive terminal of the capacitor C8, and one end of the resistor R5;
- the other end of the resistor R5 is respectively connected with the base terminal of the transistor Q4, one end of the resistor R6, and one end of the capacitor C10;
- the transistor Q4 emits The extremes are respectively connected to the negative terminal of the capacitor C8, the other end of the resistor R6, and the ground wire GND;
- the other end of the capacitor C10 is connected to one end of the inductor L5.
- the wireless transmission module includes a capacitor C1, a capacitor C2, an inductor L1, an inductor L2, a resistor R1, a crystal oscillator X1, a capacitor C4, a transistor Q2, a transistor Q1, and a capacitor C3, wherein the capacitor C1 One end is respectively connected to one end of capacitor C2, one end of inductor L1, the other end of resistor R15, pin 7 of operational amplifier U3, one end of capacitor C16, and pin 1 of detector U1; the other end of capacitor C1 is respectively connected to the other end of capacitor C2, the ground wire GND connection; the other end of the inductor L1 is respectively connected to one end of the inductor L2, one end of the resistor R1, the pin 1 of the crystal oscillator X1, and the positive terminal of the capacitor C4; the negative terminal of the capacitor C4 is respectively connected to the emitter terminal of the transistor Q1 and the collector of the transistor Q2.
- the terminal is connected to the extreme; the emitter terminal of the transistor Q2 is connected to the ground wire GND; the base terminal of the transistor Q1 is respectively connected to the other end of the resistor R1 and the pin 2 of the crystal oscillator X1; the base terminal of the transistor Q2 is connected to the other end of the inductor L5; The collector terminal of the transistor Q1 is respectively connected with one end of the capacitor C3 and the other end of the inductor L2; the other end of the capacitor C3 is connected with the transmitting terminal T1.
- the wireless receiving module includes a capacitor C9, a capacitor C5, a resistor R2, a transistor Q3, an inductor L4, a capacitor C6, a resistor R4, a capacitor C7, a resistor R3, an inductor L3, and a trimming capacitor VC1, wherein the One end of the capacitor C9 is connected to the receiving terminal T2; the other end of the capacitor C9 is connected to the emitter terminal of the transistor Q3 and one end of the inductor L4 respectively; the base terminal of the transistor Q3 is respectively connected to the negative terminal of the capacitor C5 and one end of the resistor R2; the positive terminal of the capacitor C5 is connected.
- the terminals are respectively connected to the other end of the resistor R2, one end of the inductor L3, one end of the trimming capacitor VC1, one end of the resistor R3, the positive end of the capacitor C6, and one end of the resistor R4; the collector end of the transistor Q3 is connected to the other end of the inductor L3 and the other end of the trimming capacitor VC1 respectively.
- the other end of the inductance L4 is respectively connected with the negative terminal of the capacitor C6, the negative terminal of the capacitor C7 and the ground wire GND; the positive terminal of the capacitor C7 is respectively connected with the other end of the resistance R4 and the pin 7 of the detector U1; One end is respectively connected to one end of capacitor C1, one end of capacitor C2, one end of inductor L1, the other end of resistor R15, pin 7 of operational amplifier U3, one end of capacitor C16, and pin 1 of detector U1.
- the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are electrolytic capacitors; the transistor Q1, the transistor Q2, and the transistor Q3 ,
- the model of the transistor Q4 is NPN;
- the model of the detector U1 is AD8302;
- the model of the driver U2 is AD8130.
- a kind of detection method of the agricultural irrigation water quality detection system based on wireless sensor is characterized in that following steps:
- Step 1 Build an electromagnetic induction module.
- the electromagnetic detection method which is different from the electrode measurement method, because no electrodes are used, the pollution of water quality is reduced, and the data parameters of water quality detection are fed back in real time;
- Electromagnetic induction is the phase change of the original magnetic field caused by the influence of the eddy current inside the measured object, and then has an approximate linear relationship with the electrical conductivity of the measured object, and then establishes a non-contact water quality detection system, using pre-filtering Amplify to realize conductivity measurement of biological tissue; use electromagnetic induction technology to design electromagnetic induction water quality detection system, and then improve the anti-interference ability of water quality detection system according to electromagnetic induction;
- Step 2 Process the acquired electromagnetic field water quality detection signal through the pre-filtering amplifying circuit and the post-differential amplifying circuit, and finally transmit the water quality detection signal to the phase detection module through the single-wire transmission line, and then obtain the phase change information through signal amplification and wireless Signal transmission, thereby realizing wireless transmission of water quality detection signals;
- Step 3 Amplify the weak electromagnetic induction signal of the measured water quality, adjust the external resistance, control the amplification factor of the amplifier, maintain the differential form of the signal, avoid the interference signal from being integrated into the main signal, and ensure the accuracy of the water quality detection signal;
- Step 4 Receive the differential signal of the pre-filtering and amplifying module, and then convert the differential signal into a single-ended signal for output, which is convenient for the diagnosis and quick response of the phase detection module;
- Step 5 Convert the transmission signals of the pre-filter amplifying module and the post-differential amplifying module, and convert the two input signals into DC voltage output, thereby reducing the influence of signal amplitude changes on the output phase voltage value and improving the linearity of the output.
- Step 6 Amplify the transmitted water quality detection signal, thereby expanding the transmission range of the signal, and amplify and adjust the weak transmission signal to reduce the phenomenon of attenuation of electromagnetic waves in wireless transmission;
- Step 7 maintaining the amplification frequency of the water quality detection signal, and then controlling the wireless transmission and transmission range of the water quality detection signal, so as to ensure the stability of the signal within the transmission range of the wireless signal;
- Step 8 Re-establish the intermediate voltage value of the phase detection input and output by receiving the remote control command, so as to process the detection signal, so that the detection signal can be transmitted in an orderly manner, ensure the stability of the wireless transmission signal, and eliminate the integration of the interference signal.
- the invention designs an agricultural irrigation water quality detection system based on wireless sensing and a detection method thereof.
- the direct digital frequency synthesis technology is combined with filtering and amplification to realize the generation method of the sine signal, and the detection coil detects the detection method.
- the signal is processed to make it meet the requirements of phase detection, the phase detection module is designed through the linear relationship between the phase difference of the detector and the voltage, and the digital frequency synthesis technology is used to generate a sinusoidal excitation source.
- the signal is filtered and amplified to increase the reliability of the water quality detection system, and the data exchange and control of remote detection is realized through wireless transmission. It can measure the difference in conductivity of the effluent samples to determine the type of water quality.
- the signal amplification method is used to amplify and adjust the water quality inspection signal and the output signal, thereby improving the wireless signal transmission range.
- the electromagnetic detection method can reduce the water quality. pollution, so as to feed back the data parameters of water quality detection in real time.
- Fig. 1 is a structural block diagram of the present invention.
- Fig. 2 is the distribution diagram of the agricultural irrigation water quality detection system of the present invention.
- FIG. 3 is a circuit diagram of a pre-filter amplifying module of the present invention.
- FIG. 4 is a circuit diagram of a post differential amplifier module of the present invention.
- FIG. 5 is a circuit diagram of a signal amplifying module of the present invention.
- FIG. 6 is a circuit diagram of a wireless transmitting module of the present invention.
- FIG. 7 is a circuit diagram of a wireless receiving module of the present invention.
- a wireless sensing-based agricultural irrigation water quality detection system includes:
- the phase detection module is used to convert the input signals of the pre-amplifier and the post-amplifier into a DC voltage output, reduce the influence of the signal amplitude change on the output phase voltage value, and improve the linearity of the output;
- a signal amplification module for amplifying the detection signal fed back by the phase detection module
- a wireless transmitter module for remote transmission of wireless water quality detection signals and control of signal transmission range
- the pre-filtering and amplifying module includes a resistor R9, a resistor R10, an operational amplifier U3, a capacitor C14, a resistor R11, a resistor R17, an inductor L6, and a resistor R16.
- one end of the resistor R17 in the pre-filtering and amplifying module is respectively connected to the signal input end INT, one end of the resistor R11, one end of the capacitor C14, and pin 2 of the operational amplifier U3; the other end of the resistor R11 are respectively connected with the other end of the capacitor C14, the ground wire GND, and the pin 4 of the operational amplifier U3; the pin 3 of the operational amplifier U3 is respectively connected with one end of the resistor R9 and one end of the resistor R10; the other end of the resistor R9 is connected with the ground wire GND; The other end of the resistor R10 is respectively connected to one end of the inductor L6, one end of the resistor R16, and the pin 6 of the operational amplifier U3; the other end of the inductor L6 is connected to the ground wire GND.
- the post differential amplifier module includes a driver U2, a resistor R12, a resistor R13, a resistor R14, a resistor R15, a capacitor C15, and a capacitor C16.
- the driver U2 pin 8 is connected to the other end of the resistor R16; the driver U2 pin 7 is respectively connected to one end of the resistor R15 and one end of the capacitor C15; the The other end of the capacitor C15 is connected to the ground wire GND; the pin 6 of the driver U2 is respectively connected to one end of the resistor R14 and one end of the resistor R13; the pin 5 of the driver U2 is respectively connected to the other end of the resistor R13 and one end of the resistor R12; the driver Pin 4 and pin 2 of U2 are respectively connected to the other end of the resistor R12 and the ground wire GND; the other end of the resistor R17 of the pin 1 of the driver U2 is connected to the other end of the resistor R15; the other end of the resistor R15 is respectively connected to the pin 7 of the operational amplifier U3 and the capacitor C16 One end is connected; the other end of the capacitor C16 is connected to the ground wire GND.
- the phase detection module includes a capacitor C13, a resistor R7, a resistor R8, a capacitor C12, and a detector U1.
- the pin 3 of the detector U1 is connected to the ground wire GND; the pin 2 of the detector U1 is connected to one end of the capacitor C13; the other end of the capacitor C13 is connected to the ground
- the line GND is connected; the pin 10 of the detector U1 is respectively connected with one end of the resistor R7 and one end of the resistor R8; the other end of the resistor R8 is respectively connected with the pin 12 and pin 13 of the detector U1 and the other end of the resistor R14; the The pin 14 of the detector U1 is connected to one end of the capacitor C12; the other end of the capacitor C12 is connected to the ground wire GND.
- the signal amplification module includes a capacitor C11 , a capacitor C8 , a transistor Q4 , a resistor R6 , a resistor R5 , a capacitor C10 , and an inductor L5 .
- one end of the capacitor C11 in the signal amplification module is connected to the pin 6 of the detector U1; the other end of the capacitor C11 is respectively connected to the collector terminal of the transistor Q4 and the capacitor C8
- the positive terminal and one end of the resistor R5 are connected; the other end of the resistor R5 is respectively connected with the base terminal of the transistor Q4, one end of the resistor R6, and one end of the capacitor C10; the emitter terminal of the transistor Q4 is respectively connected with the negative terminal of the capacitor C8, the other end of the resistor R6, and the ground wire GND connection; the other end of the capacitor C10 is connected to one end of the inductor L5.
- the wireless transmitting module includes a capacitor C1, a capacitor C2, an inductor L1, an inductor L2, a resistor R1, a crystal oscillator X1, a capacitor C4, a transistor Q2, a transistor Q1, and a capacitor C3 .
- one end of the capacitor C1 in the wireless transmitting module is respectively connected with one end of the capacitor C2, one end of the inductor L1, the other end of the resistor R15, the pin 7 of the operational amplifier U3, one end of the capacitor C16, and the pin of the detector U1.
- the other end of the capacitor C1 is respectively connected to the other end of the capacitor C2 and the ground wire GND; the other end of the inductor L1 is respectively connected to one end of the inductor L2, one end of the resistor R1, pin 1 of the crystal oscillator X1, and the positive end of the capacitor C4
- the negative terminal of the capacitor C4 is respectively connected with the emitter terminal of the transistor Q1 and the collector terminal of the transistor Q2; the emitter terminal of the transistor Q2 is connected with the ground wire GND; the base terminal of the transistor Q1 is respectively connected with the other end of the resistance R1, the crystal oscillator X1 Pin 2 is connected; the base terminal of the transistor Q2 is connected to the other end of the inductor L5; the collector terminal of the transistor Q1 is respectively connected to one end of the capacitor C3 and the other end of the inductor L2; the other end of the capacitor C3 is connected to the transmitting terminal T1.
- the wireless receiving module includes a capacitor C9, a capacitor C5, a resistor R2, a transistor Q3, an inductor L4, a capacitor C6, a resistor R4, a capacitor C7, a resistor R3, an inductor L3, a trimmer Capacitor VC1.
- one end of the capacitor C9 in the wireless receiving module is connected to the receiving end T2; the other end of the capacitor C9 is connected to the emitter terminal of the transistor Q3 and one end of the inductor L4 respectively; the base terminal of the transistor Q3 is respectively It is connected with the negative terminal of capacitor C5 and one end of resistor R2; the positive terminal of said capacitor C5 is respectively connected with the other end of resistor R2, one end of inductor L3, one end of fine-tuning capacitor VC1, one end of resistor R3, one end of capacitor C6 and one end of resistor R4; it is transistor Q3
- the collector terminal is respectively connected with the other end of the inductor L3 and the other end of the trimming capacitor VC1; the other end of the inductor L4 is respectively connected with the negative terminal of the capacitor C6, the negative terminal of the capacitor C7 and the ground wire GND; the positive terminal of the capacitor C7 is respectively connected with the resistor R4 The other end is connected to the pin 7 of the detector U1; the
- the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are electrolytic capacitors; the transistor Q1, the transistor Q2, and the transistor Q3 ,
- the model of the transistor Q4 is NPN; the model of the detector U1 is AD8302; the model of the driver U2 is AD8130.
- a kind of detection method of the agricultural irrigation water quality detection system based on wireless sensor is characterized in that following steps:
- Step 1 Build an electromagnetic induction module.
- the electromagnetic detection method which is different from the electrode measurement method, because no electrodes are used, the pollution of water quality is reduced, and the data parameters of water quality detection are fed back in real time;
- Electromagnetic induction is the phase change of the original magnetic field caused by the influence of the eddy current inside the measured object, and then has an approximate linear relationship with the electrical conductivity of the measured object, and then establishes a non-contact water quality detection system, using pre-filtering Amplify to realize conductivity measurement of biological tissue; use electromagnetic induction technology to design electromagnetic induction water quality detection system, and then improve the anti-interference ability of water quality detection system according to electromagnetic induction;
- Step 2 Process the acquired electromagnetic field water quality detection signal through the pre-filtering amplifying circuit and the post-differential amplifying circuit, and finally transmit the water quality detection signal to the phase detection module through the single-wire transmission line, and then obtain the phase change information through signal amplification and wireless Signal transmission, thereby realizing wireless transmission of water quality detection signals;
- Step 3 Amplify the weak electromagnetic induction signal of the measured water quality, adjust the external resistance, control the amplification factor of the amplifier, maintain the differential form of the signal, avoid the interference signal from being integrated into the main signal, and ensure the accuracy of the water quality detection signal;
- Step 4 Receive the differential signal of the pre-filtering and amplifying module, and then convert the differential signal into a single-ended signal for output, which is convenient for the diagnosis and quick response of the phase detection module;
- Step 5 Convert the transmission signals of the pre-filter amplifying module and the post-differential amplifying module, and convert the two input signals into DC voltage output, thereby reducing the influence of signal amplitude changes on the output phase voltage value and improving the linearity of the output.
- Step 6 Amplify the transmitted water quality detection signal, thereby expanding the transmission range of the signal, and amplify and adjust the weak transmission signal to reduce the phenomenon of attenuation of electromagnetic waves in wireless transmission;
- Step 7 maintaining the amplification frequency of the water quality detection signal, and then controlling the wireless transmission and transmission range of the water quality detection signal, so as to ensure the stability of the signal within the transmission range of the wireless signal;
- Step 8 Re-establish the intermediate voltage value of the phase detection input and output by receiving the remote control command, so as to process the detection signal, so that the detection signal can be transmitted in an orderly manner, ensure the stability of the wireless transmission signal, and eliminate the integration of the interference signal.
- the present invention has the following advantages: in the face of the unstable input voltage that occurs during the operation of the pre-filter amplifier module, by connecting the inductance L6 in series at the pin 6 of the operational amplifier U3, the inductance L6 can stabilize the current and suppress the electromagnetic wave interference,
- the post differential amplifier module adopts the grounding method of capacitor C15 to filter the interference signal during the conversion process of driver U2, thereby reducing the accumulation of interference sources, and then through the double grounding method of capacitor C13 and capacitor C12 in the phase detection module , to improve the response speed of the detection data and reduce the influence of signal amplitude changes on the output phase voltage value, while the capacitor C11 in the signal amplification module is used to pass AC and DC, and the transistor Q4 controls the transmission of the feedback signal of the phase detection module and the detection of the reception.
- the signal is amplified, and then the inductance L1 and the inductance L2 and the transistor Q1 in the wireless transmission module are used to keep the transmission signal stable, so as to keep the transmission signal in a stable output state, while the capacitor C5 in the wireless reception module stores the obtained electrical energy. , so as to ensure the response of the transistor Q3 and reduce the delay, so that the detection signal is processed by means of pre-signal filtering and post-signal amplification, so that the detection signal is transmitted in an orderly manner, ensuring the stability of the wireless transmission signal, and eliminating the integration of interference signals. .
Landscapes
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Amplifiers (AREA)
Abstract
一种基于无线传感的农业灌溉水质检测系统及其检测方法,其中,检测系统包括:前置滤波放大模块、后置差分放大模块、相位检测模块、信号放大模块、无线发射模块、无线接收模块,前置滤波放大模块管理微弱的磁感应信号,控制放大器的放大倍数;后置差分放大模块将差分信号转化成单端信号输出;进一步通过相位检测模块将两路输入信号转换为直流电压输出;信号放大模块针对发射信号进行放大操作;无线发射模块控制水质检测信号的发射范围;无线接收模块接收远程控制指令,设定相位检测输入与输出的中间电压值,从而对检测信号的处理,使检测信号有序的传输,保障无线传输信号的稳定,消除干扰信号的融入。
Description
本发明涉及一种水质检测技术领域,尤其是一种基于无线传感的农业灌溉水质检测系统及其检测方法。
随着生活水平的不断提高,人们对食品健康也提出了较高要求,农业种植也不断改善产品的质量,从而确保农副产品对身体所需能量进行补给,而农业种植中水质的好坏直接影响着水稻、小麦、水产养殖的产量和品质。
而水质的好坏无法直观的判断,从而需要检测仪器对水质进行检测。
随着水质检测设备的出现,进而对重要的水质和水源进行检测保护,从而能够准确判断出水质的品质,而水质的实时监测和调控是水稻、小麦、水产养殖等过程中的关键环节,是保证水产品品质的重要措施。
而传统的水质检测采用电极式测量法,从而需要对水质进行紧密接触,而长时间时间与水源接触会造成水质污染,而一些具有腐蚀的水源会降低水质检测系统的使用寿命,从而无法长时间的对灌溉水源进行检测,而无线信号传输是采用电磁波的发射方式传输水质的检测信号,而无线信号经过水源环境时会出现信号消减的现象,进而造成数据传输不稳定以及传输范围小,进而需要提升水质检测系统。
提供一种基于无线传感的农业灌溉水质检测系统,以解决上述问题。
用于管理微弱的磁感应信号,调节外端电阻,控制放大器的放大倍数,保持信号差分形式,避免干扰信号融入主信号的前置滤波放大模块;
用于将前置滤波放大模块反馈的差分信号转化成单端信号输出,通过后置差分放大提高水质检测信号传输中的稳定,便于进行相位检测的后置差分放大模块;
用于将前置和后置放大两路输入信号转换为直流电压输出,减小信号幅度变化对输出相位电压值的影响,提高输出的线性度的相位检测模块;
用于对相位检测模块反馈的检测信号进行放大操作的信号放大模块;
用于远程传输无线水质检测信号,控制信号传输范围的无线发射模块;
用于接收远程控制指令,设定相位检测模块输入和输出中间电压值,从而对水质检测系统进行远程调节的无线接收模块。
根据本发明的一个方面,所述前置滤波放大模块包括电阻R9、电阻R10、运算放大器U3、电容C14、电阻R11、电阻R17、电感L6、电阻R16,其中所述电阻R17一端分别与信号输入端INT、电阻R11一端、电容C14一端、运算放大器U3引脚2连接;所述电阻R11另一端分别与电容C14另一端、地线GND、运算放大器U3引脚4连接;所述运算放大器U3引脚3分别与电阻R9一端、电阻R10一端连接;所述电阻R9另一端与地线GND连接;所述电阻R10另一端分别与电感L6一端、电阻R16一端、运算放大器U3引脚6连接;所述电感L6另一端与地线GND连接。
根据本发明的一个方面,所述后置差分放大模块包括驱动器U2、电阻R12、电阻R13、电阻R14、电阻R15、电容C15、电容C16,其中所述驱动器U2引脚8与电阻R16另一端连接;所述驱动器U2引脚7分别与电阻R15一端、电容C15一端连接;所述电容C15另一端与地线GND连接;所述驱动器U2引脚6分别与电阻R14一端、电阻R13一端连接;所述驱动器U2引脚5分别与电阻R13另一端、电阻R12一端连接;所述驱动器U2引脚4和引脚2分别与电阻R12另一端、地线GND连接;所述驱动器U2引脚1电阻R17另一端连接;所述电阻R15另一端分别与运算放大器U3引脚7、电容C16一端连接;所述电容C16另一端与地线GND连接。
根据本发明的一个方面,所述相位检测模块包括电容C13、电阻R7、电阻R8、电容C12、检测器U1,其中所述检测器U1引脚3与地线GND连接;所述检测器U1引脚2与电容C13一端连接;所述电容C13另一端与地线GND连接;所述检测器U1引脚10分别与电阻R7一端、电阻R8一端连接;所述电阻R8另一端分别与检测器U1引脚12和引脚13、电阻R14另一端连接;所述检测器U1引脚14与电容C12一端连接;所述电容C12另一端与地线GND连接。
根据本发明的一个方面,所述信号放大模块包括电容C11、电容C8、三极管Q4、电阻R6、电阻R5、电容C10、电感L5,其中所述电容C11一端与检测器U1引脚6连接;所述电容C11另一端分别与三极管Q4集电极端、电容C8正极端、电阻R5一端连接;所述电阻R5另一端分别与三极管Q4基极端、电阻R6一端、电容C10一端连接;所述三极管Q4发射极端分别与电容C8负极端、电阻R6另一端、地线GND连接;所述电容C10另一端与电感L5一端连接。
根据本发明的一个方面,所述无线发射模块包括电容C1、电容C2、电感L1、电感L2、电阻R1、晶体振荡器X1、电容C4、三极管Q2、三极管Q1、电容C3,其中所述电容C1一端分别与电容C2一端、电感L1一端、电阻R15另一端、运算放大器U3引脚7、电容C16一端、检测器U1引脚1连接;所述电容C1另一端分别与电容C2另一端、地线GND连接;所述电感L1另一端分别与电感L2一端、电阻R1一端、晶体振荡器X1引脚1、电容C4正极端连接;所述电容C4负极端分别与三极管Q1发射极端、三极管Q2集电极端连接;所述三极管Q2发射极端与地线GND连接;所述三极管Q1基极端分别与电阻R1另一端、晶体振荡器X1引脚2连接;所述三极管Q2基极端与电感L5另一端连接;所述三极管Q1集电极端分别与电容C3一端、电感L2另一端连接;所述电容C3另一端与发射端T1连接。
根据本发明的一个方面,所述无线接收模块包括电容C9、电容C5、电阻R2、三极管Q3、电感L4、电容C6、电阻R4、电容C7、电阻R3、电感L3、微调电容VC1,其中所述电容C9一端与接收端T2连接;所述电容C9另一端分别与三极管Q3发射极端、电感L4一端连接;所述三极管Q3基极端分别与电容C5负极端、电阻R2一端连接;所述电容C5正极端分别与电阻R2另一端、电感L3一端、微调电容VC1一端、电阻R3一端、电容C6正极端、电阻R4一端连接;是三极管Q3集电极端分别与电感L3另一端、微调电容VC1另一端连接;所述电感L4另一端分别与电容C6负极端、电容C7负极端、地线GND连接;所述电容C7正极端分别与电阻R4另一端、检测器U1引脚7连接;所述电阻R3另一端分别与电容C1一端、电容C2一端、电感L1一端、电阻R15另一端、运算放大器U3引脚7、电容C16一端、检测器U1引脚1连接。
根据本发明的一个方面,所述电容C4、所述电容C5、所述电容C6、所述电容C7、所述电容C8型号为电解电容;所述三极管Q1、所述三极管Q2、所述三极管Q3、所述三极管Q4型号均为NPN;所述检测器U1型号为AD8302;所述驱动器U2型号为AD8130。
根据本发明的一个方面,一种基于无线传感的农业灌溉水质检测系统的检测方法,其特征在于以下步骤:
步骤1、构建电磁感应模块,根据电磁式检测方法不同于电极式测量法,因不使用电极,进而减少水质的污染,从而实时反馈水质检测的数据参数;
步骤1-1、电磁感应是由被测物内部涡流的影响,导致的原磁场相位变化,进而与被测物电导率呈近似线性关系,进而建立了非接触式水质检测系统,利用前置滤波放大,实现对生物组织的电导率测量;利用电磁感应技术设计电磁感应水质检测系统,进而根据电磁感应,提高水质检测系统的抗干扰能力;
步骤2、通过前置滤波放大电路和后置差分放大电路处理获取的电磁场水质检测信号,最后再将水质检测信号通过单线传输线路传递给相位检测模块,进而得出相位变化信息通过信号放大和无线信号传输,进而实现水质检测信号的无线传输;
步骤3、对被测水质的微弱电磁感应信号进行放大、调节外端电阻,控制放大器的放大倍数,保持信号差分形式,避免干扰信号融入主信号,保证水质检测信号的精准;
步骤4、接收前置滤波放大模块的差分信号,进而将差分信号转化成单端信号输出,便于进行相位检测模块的诊断和快速响应;
步骤5、对前置滤波放大模块和后置差分放大模块的传输信号进行转换,将两路输入信号转换成直流电压输出,进而减小信号幅度变化对输出相位电压值的影响,提高输出的线性度;
步骤6、对传输的水质检测信号进行信号放大,从而扩大信号的传输范围,并对微弱的传输信号进行放大调整,减少无线传输电磁波出现消减现象;
步骤7、保持水质检测信号的放大频率,进而控制水质检测信号的无线传输以及传输范围,保证无线信号发射范围内信号的稳定;
步骤8、以接收远程控制指令,重新建立相位检测输入与输出的中间电压值,从而对检测信号的处理,使检测信号有序的传输,保障无线传输信号的稳定,消除干扰信号的融入。
本发明设计一种基于无线传感的农业灌溉水质检测系统及其检测方法,通过采用涡流检测方式,利用直接数字频率合成技术结合滤波和放大实现了正弦信号的产生方式,并对检测线圈检测出的信号进行一定的处理,使其满足鉴相要求,通过检测器相位差与电压之间的线性关系设计相位检测模块,利用数字频率合成技术产生正弦激励源,基于检测器,并对系统中的信号进行滤波、放大增加水质检测系统的可靠性,通过无线传输实现远程检测的数据的交换和控制,最后通对不同种水质检测信息进行对比运算,进而判断出检测数据,而磁感应式水质检测,能够测量出水样本的电导率差异,从而判别出水质的类别,另外,采用信号放大方式对水质检信号以及输出信号进行放大调节,进而提高无线信号发射范围,而采用电磁式检测方法能够减少水质的污染,从而实时反馈水质检测的数据参数。
图1是本发明的结构框图。
图2是本发明的农业灌溉水质检测系统分布图。
图3是本发明的前置滤波放大模块电路图。
图4是本发明的后置差分放大模块电路图。
图5是本发明的信号放大模块电路图。
图6是本发明的无线发射模块电路图。
图7是本发明的无线接收模块电路图。
如图1所示,在该实施例中,一种基于无线传感的农业灌溉水质检测系统,包括:
用于管理微弱的磁感应信号,调节外端电阻,控制放大器的放大倍数,保持信号差分形式,避免干扰信号融入主信号的前置滤波放大模块;
用于将前置滤波放大模块反馈的差分信号转化成单端信号输出,通过后置差分放大提高水质检测信号传输中的稳定,便于进行相位检测的后置差分放大模块;
用于将前置和后置放大两路输入信号转换为直流电压输出,减小信号幅度变化对输出相位电压值的影响,提高输出的线性度的相位检测模块;
用于对相位检测模块反馈的检测信号进行放大操作的信号放大模块;
用于远程传输无线水质检测信号,控制信号传输范围的无线发射模块;
用于接收远程控制指令,设定相位检测模块输入和输出中间电压值,从而对水质检测系统进行远程调节的无线接收模块。
在进一步的实施例中,如图3所示,所述前置滤波放大模块包括电阻R9、电阻R10、运算放大器U3、电容C14、电阻R11、电阻R17、电感L6、电阻R16。
在更进一步的实施例中,所述前置滤波放大模块中所述电阻R17一端分别与信号输入端INT、电阻R11一端、电容C14一端、运算放大器U3引脚2连接;所述电阻R11另一端分别与电容C14另一端、地线GND、运算放大器U3引脚4连接;所述运算放大器U3引脚3分别与电阻R9一端、电阻R10一端连接;所述电阻R9另一端与地线GND连接;所述电阻R10另一端分别与电感L6一端、电阻R16一端、运算放大器U3引脚6连接;所述电感L6另一端与地线GND连接。
在进一步的实施例中,如图4所示,所述后置差分放大模块包括驱动器U2、电阻R12、电阻R13、电阻R14、电阻R15、电容C15、电容C16。
在更进一步的实施例中,所述后置差分放大模块中所述驱动器U2引脚8与电阻R16另一端连接;所述驱动器U2引脚7分别与电阻R15一端、电容C15一端连接;所述电容C15另一端与地线GND连接;所述驱动器U2引脚6分别与电阻R14一端、电阻R13一端连接;所述驱动器U2引脚5分别与电阻R13另一端、电阻R12一端连接;所述驱动器U2引脚4和引脚2分别与电阻R12另一端、地线GND连接;所述驱动器U2引脚1电阻R17另一端连接;所述电阻R15另一端分别与运算放大器U3引脚7、电容C16一端连接;所述电容C16另一端与地线GND连接。
在进一步的实施例中,如图2所示,所述相位检测模块包括电容C13、电阻R7、电阻R8、电容C12、检测器U1。
在更进一步的实施例中,所述相位检测模块中所述检测器U1引脚3与地线GND连接;所述检测器U1引脚2与电容C13一端连接;所述电容C13另一端与地线GND连接;所述检测器U1引脚10分别与电阻R7一端、电阻R8一端连接;所述电阻R8另一端分别与检测器U1引脚12和引脚13、电阻R14另一端连接;所述检测器U1引脚14与电容C12一端连接;所述电容C12另一端与地线GND连接。
在进一步的实施例中,如图3所示,所述信号放大模块包括电容C11、电容C8、三极管Q4、电阻R6、电阻R5、电容C10、电感L5。
在更进一步的实施例中,如图5所示,所述信号放大模块中所述电容C11一端与检测器U1引脚6连接;所述电容C11另一端分别与三极管Q4集电极端、电容C8正极端、电阻R5一端连接;所述电阻R5另一端分别与三极管Q4基极端、电阻R6一端、电容C10一端连接;所述三极管Q4发射极端分别与电容C8负极端、电阻R6另一端、地线GND连接;所述电容C10另一端与电感L5一端连接。
在进一步的实施例中,如图6所示,所述无线发射模块包括电容C1、电容C2、电感L1、电感L2、电阻R1、晶体振荡器X1、电容C4、三极管Q2、三极管Q1、电容C3。
在更进一步的实施例中,所述无线发射模块中所述电容C1一端分别与电容C2一端、电感L1一端、电阻R15另一端、运算放大器U3引脚7、电容C16一端、检测器U1引脚1连接;所述电容C1另一端分别与电容C2另一端、地线GND连接;所述电感L1另一端分别与电感L2一端、电阻R1一端、晶体振荡器X1引脚1、电容C4正极端连接;所述电容C4负极端分别与三极管Q1发射极端、三极管Q2集电极端连接;所述三极管Q2发射极端与地线GND连接;所述三极管Q1基极端分别与电阻R1另一端、晶体振荡器X1引脚2连接;所述三极管Q2基极端与电感L5另一端连接;所述三极管Q1集电极端分别与电容C3一端、电感L2另一端连接;所述电容C3另一端与发射端T1连接。
在进一步的实施例中,如图7所示,所述无线接收模块包括电容C9、电容C5、电阻R2、三极管Q3、电感L4、电容C6、电阻R4、电容C7、电阻R3、电感L3、微调电容VC1。
在更进一步的实施例中,所述无线接收模块中所述电容C9一端与接收端T2连接;所述电容C9另一端分别与三极管Q3发射极端、电感L4一端连接;所述三极管Q3基极端分别与电容C5负极端、电阻R2一端连接;所述电容C5正极端分别与电阻R2另一端、电感L3一端、微调电容VC1一端、电阻R3一端、电容C6正极端、电阻R4一端连接;是三极管Q3集电极端分别与电感L3另一端、微调电容VC1另一端连接;所述电感L4另一端分别与电容C6负极端、电容C7负极端、地线GND连接;所述电容C7正极端分别与电阻R4另一端、检测器U1引脚7连接;所述电阻R3另一端分别与电容C1一端、电容C2一端、电感L1一端、电阻R15另一端、运算放大器U3引脚7、电容C16一端、检测器U1引脚1连接。
在进一步的实施例中,所述电容C4、所述电容C5、所述电容C6、所述电容C7、所述电容C8型号为电解电容;所述三极管Q1、所述三极管Q2、所述三极管Q3、所述三极管Q4型号均为NPN;所述检测器U1型号为AD8302;所述驱动器U2型号为AD8130。
在进一步的实施例中,一种基于无线传感的农业灌溉水质检测系统的检测方法,其特征在于以下步骤:
步骤1、构建电磁感应模块,根据电磁式检测方法不同于电极式测量法,因不使用电极,进而减少水质的污染,从而实时反馈水质检测的数据参数;
步骤1-1、电磁感应是由被测物内部涡流的影响,导致的原磁场相位变化,进而与被测物电导率呈近似线性关系,进而建立了非接触式水质检测系统,利用前置滤波放大,实现对生物组织的电导率测量;利用电磁感应技术设计电磁感应水质检测系统,进而根据电磁感应,提高水质检测系统的抗干扰能力;
步骤2、通过前置滤波放大电路和后置差分放大电路处理获取的电磁场水质检测信号,最后再将水质检测信号通过单线传输线路传递给相位检测模块,进而得出相位变化信息通过信号放大和无线信号传输,进而实现水质检测信号的无线传输;
步骤3、对被测水质的微弱电磁感应信号进行放大、调节外端电阻,控制放大器的放大倍数,保持信号差分形式,避免干扰信号融入主信号,保证水质检测信号的精准;
步骤4、接收前置滤波放大模块的差分信号,进而将差分信号转化成单端信号输出,便于进行相位检测模块的诊断和快速响应;
步骤5、对前置滤波放大模块和后置差分放大模块的传输信号进行转换,将两路输入信号转换成直流电压输出,进而减小信号幅度变化对输出相位电压值的影响,提高输出的线性度;
步骤6、对传输的水质检测信号进行信号放大,从而扩大信号的传输范围,并对微弱的传输信号进行放大调整,减少无线传输电磁波出现消减现象;
步骤7、保持水质检测信号的放大频率,进而控制水质检测信号的无线传输以及传输范围,保证无线信号发射范围内信号的稳定;
步骤8、以接收远程控制指令,重新建立相位检测输入与输出的中间电压值,从而对检测信号的处理,使检测信号有序的传输,保障无线传输信号的稳定,消除干扰信号的融入。
总之,本发明具有以下优点:面对前置滤波放大模块运行时出现的输入电压不稳定现象,通过再运算放大器U3引脚6处串接电感L6,而电感L6可以稳定电流以及抑制电磁波干扰,而后置差分放大模块中采用电容C15接地的方式,将驱动器U2转换过程中的干扰信号进行过滤,进而减少干扰源的堆积,再通过相位检测模块中的电容C13和电容C12的双组接地的方式,来提高检测数据的响应速度,减小信号幅度变化对输出相位电压值的影响,而信号放大模块中电容C11用于通交隔直,三极管Q4控制相位检测模块反馈信号的传输以及对接收检测信号的放大,再通过无线发射模块中的电感L1和电感L2以及三极管Q1来保持发射信号的平稳,进而使发射信号保持在稳定的输出状态,而无线接收模块中电容C5对获取的电能进行储存,从而保障三极管Q3的响应,减少延时,从而采用前置信号滤波后置信号放大的方式对检测信号进行处理,使检测信号有序的传输,保障无线传输信号的稳定,消除干扰信号的融入。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
Claims (8)
- 一种基于无线传感的农业灌溉水质检测系统,其特征在于,包括以下模块:用于管理微弱的磁感应信号,调节外端电阻,控制放大器的放大倍数,保持信号差分形式,避免干扰信号融入主信号的前置滤波放大模块;用于将前置滤波放大模块反馈的差分信号转化成单端信号输出,通过后置差分放大提高水质检测信号传输中的稳定,便于进行相位检测的后置差分放大模块;用于将前置和后置放大两路输入信号转换为直流电压输出,减小信号幅度变化对输出相位电压值的影响,提高输出的线性度的相位检测模块;用于对相位检测模块反馈的检测信号进行放大操作的信号放大模块;用于远程传输无线水质检测信号,控制信号传输范围的无线发射模块;用于接收远程控制指令,设定相位检测模块输入和输出中间电压值,从而对水质检测系统进行远程调节的无线接收模块。
- 根据权利要求1所述的一种基于无线传感的农业灌溉水质检测系统,其特征在于,所述前置滤波放大模块包括电阻R9、电阻R10、运算放大器U3、电容C14、电阻R11、电阻R17、电感L6、电阻R16,其中所述电阻R17一端分别与信号输入端INT、电阻R11一端、电容C14一端、运算放大器U3引脚2连接;所述电阻R11另一端分别与电容C14另一端、地线GND、运算放大器U3引脚4连接;所述运算放大器U3引脚3分别与电阻R9一端、电阻R10一端连接;所述电阻R9另一端与地线GND连接;所述电阻R10另一端分别与电感L6一端、电阻R16一端、运算放大器U3引脚6连接;所述电感L6另一端与地线GND连接。
- 根据权利要求1所述的一种基于无线传感的农业灌溉水质检测系统,其特征在于,所述后置差分放大模块包括驱动器U2、电阻R12、电阻R13、电阻R14、电阻R15、电容C15、电容C16,其中所述驱动器U2引脚8与电阻R16另一端连接;所述驱动器U2引脚7分别与电阻R15一端、电容C15一端连接;所述电容C15另一端与地线GND连接;所述驱动器U2引脚6分别与电阻R14一端、电阻R13一端连接;所述驱动器U2引脚5分别与电阻R13另一端、电阻R12一端连接;所述驱动器U2引脚4和引脚2分别与电阻R12另一端、地线GND连接;所述驱动器U2引脚1电阻R17另一端连接;所述电阻R15另一端分别与运算放大器U3引脚7、电容C16一端连接;所述电容C16另一端与地线GND连接。
- 根据权利要求1所述的一种基于无线传感的农业灌溉水质检测系统,其特征在于,所述相位检测模块包括电容C13、电阻R7、电阻R8、电容C12、检测器U1,其中所述检测器U1引脚3与地线GND连接;所述检测器U1引脚2与电容C13一端连接;所述电容C13另一端与地线GND连接;所述检测器U1引脚10分别与电阻R7一端、电阻R8一端连接;所述电阻R8另一端分别与检测器U1引脚12和引脚13、电阻R14另一端连接;所述检测器U1引脚14与电容C12一端连接;所述电容C12另一端与地线GND连接。
- 根据权利要求1所述的一种基于无线传感的农业灌溉水质检测系统,其特征在于,所述信号放大模块包括电容C11、电容C8、三极管Q4、电阻R6、电阻R5、电容C10、电感L5,其中所述电容C11一端与检测器U1引脚6连接;所述电容C11另一端分别与三极管Q4集电极端、电容C8正极端、电阻R5一端连接;所述电阻R5另一端分别与三极管Q4基极端、电阻R6一端、电容C10一端连接;所述三极管Q4发射极端分别与电容C8负极端、电阻R6另一端、地线GND连接;所述电容C10另一端与电感L5一端连接。
- 根据权利要求1所述的一种基于无线传感的农业灌溉水质检测系统,其特征在于,所述无线发射模块包括电容C1、电容C2、电感L1、电感L2、电阻R1、晶体振荡器X1、电容C4、三极管Q2、三极管Q1、电容C3,其中所述电容C1一端分别与电容C2一端、电感L1一端、电阻R15另一端、运算放大器U3引脚7、电容C16一端、检测器U1引脚1连接;所述电容C1另一端分别与电容C2另一端、地线GND连接;所述电感L1另一端分别与电感L2一端、电阻R1一端、晶体振荡器X1引脚1、电容C4正极端连接;所述电容C4负极端分别与三极管Q1发射极端、三极管Q2集电极端连接;所述三极管Q2发射极端与地线GND连接;所述三极管Q1基极端分别与电阻R1另一端、晶体振荡器X1引脚2连接;所述三极管Q2基极端与电感L5另一端连接;所述三极管Q1集电极端分别与电容C3一端、电感L2另一端连接;所述电容C3另一端与发射端T1连接。
- 根据权利要求1所述的一种基于无线传感的农业灌溉水质检测系统,其特征在于,所述无线接收模块包括电容C9、电容C5、电阻R2、三极管Q3、电感L4、电容C6、电阻R4、电容C7、电阻R3、电感L3、微调电容VC1,其中所述电容C9一端与接收端T2连接;所述电容C9另一端分别与三极管Q3发射极端、电感L4一端连接;所述三极管Q3基极端分别与电容C5负极端、电阻R2一端连接;所述电容C5正极端分别与电阻R2另一端、电感L3一端、微调电容VC1一端、电阻R3一端、电容C6正极端、电阻R4一端连接;是三极管Q3集电极端分别与电感L3另一端、微调电容VC1另一端连接;所述电感L4另一端分别与电容C6负极端、电容C7负极端、地线GND连接;所述电容C7正极端分别与电阻R4另一端、检测器U1引脚7连接;所述电阻R3另一端分别与电容C1一端、电容C2一端、电感L1一端、电阻R15另一端、运算放大器U3引脚7、电容C16一端、检测器U1引脚1连接。
- 一种基于无线传感的农业灌溉水质检测系统的检测方法,其特征在于以下步骤:步骤1、构建电磁感应模块,根据电磁式检测方法不同于电极式测量法,因不使用电极,进而减少水质的污染,从而实时反馈水质检测的数据参数;步骤1-1、电磁感应是由被测物内部涡流的影响,导致的原磁场相位变化,进而与被测物电导率呈近似线性关系,进而建立了非接触式水质检测系统,利用前置滤波放大,实现对生物组织的电导率测量;利用电磁感应技术设计电磁感应水质检测系统,进而根据电磁感应,提高水质检测系统的抗干扰能力;步骤2、通过前置滤波放大电路和后置差分放大电路处理获取的电磁场水质检测信号,最后再将水质检测信号通过单线传输线路传递给相位检测模块,进而得出相位变化信息通过信号放大和无线信号传输,进而实现水质检测信号的无线传输;步骤3、对被测水质的微弱电磁感应信号进行放大、调节外端电阻,控制放大器的放大倍数,保持信号差分形式,避免干扰信号融入主信号,保证水质检测信号的精准;步骤4、接收前置滤波放大模块的差分信号,进而将差分信号转化成单端信号输出,便于进行相位检测模块的诊断和快速响应;步骤5、对前置滤波放大模块和后置差分放大模块的传输信号进行转换,将两路输入信号转换成直流电压输出,进而减小信号幅度变化对输出相位电压值的影响,提高输出的线性度;步骤6、对传输的水质检测信号进行信号放大,从而扩大信号的传输范围,并对微弱的传输信号进行放大调整,减少无线传输电磁波出现消减现象;步骤7、保持水质检测信号的放大频率,进而控制水质检测信号的无线传输以及传输范围,保证无线信号发射范围内信号的稳定;步骤8、以接收远程控制指令,重新建立相位检测输入与输出的中间电压值,从而对检测信号的处理,使检测信号有序的传输,保障无线传输信号的稳定,消除干扰信号的融入。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010751894.3 | 2020-07-30 | ||
CN202010751894.3A CN111912901A (zh) | 2020-07-30 | 2020-07-30 | 一种基于无线传感的农业灌溉水质检测系统及其检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022021471A1 true WO2022021471A1 (zh) | 2022-02-03 |
Family
ID=73286407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/107881 WO2022021471A1 (zh) | 2020-07-30 | 2020-08-07 | 一种基于无线传感的农业灌溉水质检测系统及其检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111912901A (zh) |
WO (1) | WO2022021471A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117134715A (zh) * | 2023-10-26 | 2023-11-28 | 苏州仁正智探科技有限公司 | 一种感应式油液磨屑微小信号两级放大处理系统及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112683953B (zh) * | 2021-01-14 | 2022-11-25 | 东莞理工学院 | 基于物联网人工湿地微污染水质检测传感器及检测装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005017113A (ja) * | 2003-06-26 | 2005-01-20 | Shimadzu Corp | 水質分析装置 |
CN1928540A (zh) * | 2006-09-27 | 2007-03-14 | 浙江大学 | 一种便携式智能水质电导检测装置 |
CN110849915A (zh) * | 2019-12-18 | 2020-02-28 | 上海硕物天成信息科技有限公司 | 一种土壤水分传感装置 |
-
2020
- 2020-07-30 CN CN202010751894.3A patent/CN111912901A/zh not_active Withdrawn
- 2020-08-07 WO PCT/CN2020/107881 patent/WO2022021471A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005017113A (ja) * | 2003-06-26 | 2005-01-20 | Shimadzu Corp | 水質分析装置 |
CN1928540A (zh) * | 2006-09-27 | 2007-03-14 | 浙江大学 | 一种便携式智能水质电导检测装置 |
CN110849915A (zh) * | 2019-12-18 | 2020-02-28 | 上海硕物天成信息科技有限公司 | 一种土壤水分传感装置 |
Non-Patent Citations (2)
Title |
---|
KE LI , LIU JING , DU QIANG: "Study on Water-quality Conductivity Measuring System Based on Magnetic Induction Tomography", FOREIGN ELECTRONIC MEASUREMENT TECHNOLOGY, vol. 35, no. 2, 15 February 2016 (2016-02-15), pages 70 - 76, XP055892247, DOI: 10.19652/j.cnki.femt.2016.02.009 * |
LIU, JING: "Study on Non-Contact Measurement Method and System for Water Conductivity", CHINA MASTER’S THESES FULL-TEXT DATABASE, 15 June 2016 (2016-06-15), pages 1 - 67, XP055892244 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117134715A (zh) * | 2023-10-26 | 2023-11-28 | 苏州仁正智探科技有限公司 | 一种感应式油液磨屑微小信号两级放大处理系统及方法 |
CN117134715B (zh) * | 2023-10-26 | 2024-01-26 | 苏州仁正智探科技有限公司 | 一种感应式油液磨屑微小信号两级放大处理系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111912901A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022021471A1 (zh) | 一种基于无线传感的农业灌溉水质检测系统及其检测方法 | |
CN110233633A (zh) | 一种基于物联网的计算机数据传输系统 | |
CN102116757A (zh) | 一种液体电导率测量系统及测量方法 | |
CN201966889U (zh) | 变电站侵入波记录装置频响特性优化积分器 | |
CN111756377A (zh) | 一种信号采集电路及增益自适应变换的信号采样方法 | |
CN108169805A (zh) | 布料检测装置及其应用的红外传感器 | |
CN208892553U (zh) | 无线体温测量装置 | |
CN213843115U (zh) | 一种基于衰减法的超声波发射与接收电路 | |
CN102116756B (zh) | 一种基于单片机的液体电导率测量方法 | |
CN110266291A (zh) | 一种基于物联网的工业控制系统 | |
CN214681664U (zh) | 一种液体抗氧剂反应釜温控装置 | |
CN108650000B (zh) | 一种自动提高无线传输中e类放大器效率的电路及系统 | |
CN110849915B (zh) | 一种土壤水分传感装置 | |
CN205375113U (zh) | 一种工业自动化智能监控预警系统 | |
CN209157099U (zh) | 真空加压铸造机熔铸温度测量装置 | |
CN202486194U (zh) | 一种基于罗氏线圈的电流传感器 | |
CN210513276U (zh) | 一种超声波液体流量测量系统 | |
CN209803582U (zh) | 一种智能开关插座控制系统 | |
CN211149232U (zh) | 一种工程结构健康监测数据采集处理系统 | |
CN108879612B (zh) | 冲压机器人的电机散热设备用功率调节电路 | |
CN211978012U (zh) | 一种低电导率电磁流量计转换器电路 | |
CN210487857U (zh) | 一种基于大数据的故障信息挖掘系统 | |
CN210514461U (zh) | 一种手持式变压器直流电阻测试仪 | |
CN108019199B (zh) | 一种用于阵列感应的发射电路 | |
CN202748402U (zh) | 抗干扰电压变送器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20946546 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20946546 Country of ref document: EP Kind code of ref document: A1 |