WO2022021048A1 - 光模块及保护倒换方法 - Google Patents

光模块及保护倒换方法 Download PDF

Info

Publication number
WO2022021048A1
WO2022021048A1 PCT/CN2020/105076 CN2020105076W WO2022021048A1 WO 2022021048 A1 WO2022021048 A1 WO 2022021048A1 CN 2020105076 W CN2020105076 W CN 2020105076W WO 2022021048 A1 WO2022021048 A1 WO 2022021048A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
signal
pin
qsfp
protection switching
Prior art date
Application number
PCT/CN2020/105076
Other languages
English (en)
French (fr)
Inventor
张星
齐鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/105076 priority Critical patent/WO2022021048A1/zh
Priority to CN202080100875.2A priority patent/CN115606116A/zh
Publication of WO2022021048A1 publication Critical patent/WO2022021048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems

Definitions

  • the present application relates to communication technologies, and in particular, to an optical module and a protection switching method.
  • Quad Small Form-factor Pluggable-Double Density (QSFP-DD) package module has gradually become a mainstream package module .
  • protection switching is a very important function.
  • the current QSFP-DD package module cannot achieve protection switching, resulting in the inability to guarantee the network stability of the QSFP-DD optical module in the transmission network application.
  • Embodiments of the present application provide an optical module and a protection switching method, so as to improve the network stability of the QSFP-DD optical module in transmission network applications.
  • an embodiment of the present application provides an optical module, including: a first pin and a second pin, wherein,
  • the optical module is used to send a first signal to a first device through the first pin, and the first signal in this application is used to indicate the working state of the optical module.
  • the first device and the optical module The first device may be a device using an optical module; in a possible implementation manner, if the first signal indicates that the optical module is in an abnormal working state, the optical module is also used to The two pins receive a second signal from the first device, wherein the second signal is used to instruct the optical module to be turned off.
  • the first signal is sent to the first device through the first pin, so that the current working state of the optical module can be notified to the first device in time, so as to trigger the optical module to perform protection switching, and the optical module can pass the second pin.
  • Receive the second signal from the first device so as to shut down the optical module, so as to effectively realize the protection switching when the optical module is abnormal, so that the QSFP-DD optical module can realize the protection switching, thus ensuring the QSFP-DD optical module.
  • the first signal is used to indicate whether the channel of the optical module works normally
  • the second signal is used to instruct the optical module to turn off the laser.
  • the first signal is used to indicate whether the channel of the optical module is working normally, so that the first device can quickly and efficiently determine the working state of the optical module; and the first device instructs the optical module to turn off the laser through the second signal, which can effectively realize Protection switching.
  • the first signal if the first signal is at a high level, the first signal instructs at least one channel of the optical module to generate a signal loss alarm, and instructs the first device to perform protection switching .
  • the first signal indicates that each channel of the optical module is working normally.
  • the indication of the working state of the optical module can be implemented simply and efficiently.
  • the second signal is at a high level, and the second signal instructs the optical module to turn off the laser.
  • the optical module can be simply and efficiently instructed to turn off the laser, so that the abnormal optical module can stop working, and the optical module in normal state can be switched to work to realize protection switching.
  • the optical module is further configured to receive a third signal from the first device through the second pin, where the third signal is used to instruct the optical module to be turned on;
  • the third signal is a low level, and the third signal instructs the optical module to turn on the laser.
  • the optical module can also receive the third signal sent by the first device through the second pin, so that when the optical module returns to normal, the standard optical module can be turned on quickly, so as to switch back to the optical module in this application. module.
  • the first signal is a received signal loss alarm RX_LOS signal
  • the second signal is a TX_DIS signal that the transmitter turns off
  • the third signal is a TX_DIS signal.
  • the optical module is a four-channel small form-factor pluggable dual-density interface QSFP-DD optical module.
  • the first pin is the reserved pin 66 of the QSFP-DD optical module
  • the second pin is the reserved pin 46 of the QSFP-DD optical module.
  • the first pin is the reserved pin 46 of the QSFP-DD optical module
  • the second pin is the reserved pin 66 of the QSFP-DD optical module.
  • an embodiment of the present application provides a protection switching method, which is applied to the optical module described in the first aspect, and the method includes:
  • the optical module sends a first signal to the first device through the first pin according to the working state of the channel of the optical module, where the first signal is used to indicate the working state of the optical module, and the first device is connected to the first device. the optical module connection;
  • the optical module receives a second signal from the first device through the second pin, and the second signal is used to indicate that the optical module is turned on or off.
  • the first signal is used to indicate whether the channel of the optical module works normally
  • the second signal is used to instruct the optical module to turn off the laser.
  • the first signal if the first signal is at a high level, the first signal instructs at least one channel of the optical module to generate a signal loss alarm, and instructs the first device to perform protection switching .
  • the first signal indicates that each channel of the optical module is working normally.
  • the second signal is at a high level, and the second signal instructs the optical module to turn off the laser.
  • the method further includes:
  • the optical module receives a third signal from the first device through the second pin, and the third signal is used to instruct the optical module to be turned on;
  • the third signal is a low level, and the third signal instructs the optical module to turn on the laser.
  • the first signal is a received signal loss alarm RX_LOS signal
  • the second signal is a TX_DIS signal that the transmitter turns off
  • the third signal is a TX_DIS signal.
  • the optical module is a QSFP-DD optical module.
  • the first pin is the reserved pin 66 of the QSFP-DD optical module
  • the second pin is the reserved pin 46 of the QSFP-DD optical module.
  • the first pin is the reserved pin 46 of the QSFP-DD optical module
  • the second pin is the reserved pin 66 of the QSFP-DD optical module.
  • an embodiment of the present application provides a protection switching device, which is applied to the optical module described in the first aspect, and the device includes:
  • a sending module used for the optical module to send a first signal to a first device through a first pin according to the working state of the channel of the optical module, where the first signal is used to indicate the working state of the optical module, the the first device is connected to the optical module;
  • the optical module receives a second signal from the first device through the second pin, and the second signal is used to indicate the The optical module is turned on or off.
  • the first signal is used to indicate whether the channel of the optical module works normally
  • the second signal is used to instruct the optical module to turn off the laser.
  • the first signal if the first signal is at a high level, the first signal instructs at least one channel of the optical module to generate a signal loss alarm, and instructs the first device to perform protection switching .
  • the first signal indicates that each channel of the optical module is working normally.
  • the second signal is at a high level, and the second signal instructs the optical module to turn off the laser.
  • the receiving module is further configured to:
  • the optical module receives a third signal from the first device through the second pin, and the third signal is used to instruct the optical module to be turned on;
  • the third signal is a low level, and the third signal instructs the optical module to turn on the laser.
  • the first signal is a received signal loss alarm RX_LOS signal
  • the second signal is a TX_DIS signal that the transmitter turns off
  • the third signal is a TX_DIS signal.
  • the optical module is a QSFP-DD optical module.
  • the first pin is the reserved pin 66 of the QSFP-DD optical module
  • the second pin is the reserved pin 46 of the QSFP-DD optical module.
  • the first pin is the reserved pin 46 of the QSFP-DD optical module
  • the second pin is the reserved pin 66 of the QSFP-DD optical module.
  • an embodiment of the present application provides a protection switching device, which is characterized by comprising a memory and a processor, wherein the memory stores computer program instructions, and the processor executes the computer program instructions to execute the above second aspect and The method of any of the various possible embodiments of the second aspect.
  • an embodiment of the present application provides a computer storage medium, which is characterized in that it includes computer instructions, and when the computer instructions are executed by a processor, the above second aspect and various possible implementations of the second aspect are implemented. any of the methods.
  • an embodiment of the present application provides a computer program product, characterized in that, when the computer program product runs on a processor, any of the various possible implementation manners of the second aspect and the first aspect can be implemented. Methods.
  • Embodiments of the present application provide an optical module and a protection switching method.
  • the optical module includes: a first pin and a second pin, wherein the optical module is used to send a first signal to a first device through the first pin, and the first pin is used for sending a first signal to a first device.
  • a signal is used to indicate the working state of the optical module, and the first device is connected to the optical module; if the first signal indicates that the working state of the optical module is abnormal, the optical module is also used to receive a second signal from the first device through the second pin, The second signal is used to instruct the optical module to turn off.
  • the first signal is sent to the first device through the first pin, so that the current working state of the optical module can be notified to the first device in time to trigger the optical module to perform protection switching, and the optical module can receive from the first device through the second pin
  • the second signal is used to turn off the optical module to effectively implement protection switching when the optical module is abnormal, so that the QSFP-DD optical module can achieve protection switching, thus ensuring that the QSFP-DD optical module is used in transmission network applications. network stability.
  • FIG. 1 is a schematic structural diagram of an optical module provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of pins from a top view angle of a QSFP-DD optical module provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of pins from a bottom perspective of a QSFP-DD optical module provided by an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a protection switching apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a protection switching device according to an embodiment of the present application.
  • Optical communication is a communication method in which light waves are used as carriers.
  • the optical module is an optoelectronic device that performs photoelectric conversion and electro-optical conversion.
  • the transmitting end of the optical module can convert electrical signals into optical signals, and the receiving end of the optical module can convert optical signals into electrical signals.
  • Optical modules are classified according to the package form, the common ones are Small Form-factor Pluggable (SFP), SFP+, Small Form Factor (SFF) and so on.
  • the optical module may include, for example, a Quad Small Form-factor Pluggable (QSFP), and the QSFP optical module has four channels, and the transmission rate can reach 40 Gbps.
  • QSFP Quad Small Form-factor Pluggable
  • QSFP28 optical module is also known as 100G optical module
  • QSFP28 optical module is an important part of 100G network, mainly used in 100G Ethernet applications, using four 25Gbit/s transmission channels to transmit data.
  • QSFP-DD optical module is a high-speed pluggable module package, which can achieve forward compatibility and backward compatibility with QSFP, and can be compatible with existing QSFP28 optical modules, of which QSFP-DD optical modules use 8 channels Electrical interface, the rate of each channel can reach 25Gbit/s, 50Gbit/s or 100Gbit/s and above, and the transmission rate can reach 200-800Gbps (or even higher).
  • Protection switching The process of switching from a working path channel to a protection path channel, or switching from an active device to a standby device, is called protection switching.
  • the protection switching technology can effectively ensure the reliability of the network.
  • the gold finger is the golden conductive contact of the memory stick, such as between the memory stick and the memory slot, between the graphics card and the graphics card slot, etc. All signals are transmitted through the golden finger. It is composed of many golden conductive contacts, which are called “gold fingers” because of the gold-plated surface and the conductive contacts arranged like fingers.
  • QSFP-DD package modules In the field of optical communication, with the improvement of optical signal transmission capacity requirements, QSFP-DD package modules have gradually become the mainstream package of pluggable modules.
  • the QSFP-DD module Compared with the traditional C Form-factor Pluggable (CFP)/CFP2 package module, the QSFP-DD module has a smaller package size, which is conducive to the high-density use of the single board and improves the overall transmission capacity of the single board.
  • CFP C Form-factor Pluggable
  • the number of electrical port channels of a single QSFP-DD module is doubled, and a single module can transmit higher rates of 200GE/400GE or even 800GE.
  • the following describes the protection switching in optical communication.
  • the optical fiber in the transmission line is abnormal, for example, the optical cable is broken due to external force or human error, such as the wrong pull of the optical connector, the connection of the transmission network will be interrupted. , thereby causing network paralysis.
  • the implementation of the protection switching on the optical module is generally to trigger the opening of the protection switching through the first signal, wherein the first signal may be, for example, a Receive Loss of Signal Alarm (RX_LOS, RX_LOS). )Signal.
  • RX_LOS Receive Loss of Signal Alarm
  • RX_LOS Receive Loss of Signal Alarm
  • the laser can be turned off by the second signal to realize the switching of the backup link or the backup module, and finally realize the protection switching function, wherein the second signal can be, for example, a Transmitter Disable (TX_DIS) signal.
  • TX_DIS Transmitter Disable
  • the current QSFP-DD optical module lacks diagnostic pins and control pins for protection switching, and lacks corresponding software solutions, so that the QSFP-DD optical module cannot achieve protection switching, reducing the The functionality of the QSFP-DD optical module in the transmission network application is improved, so that the QSFP-DD package module cannot guarantee the stability of the network.
  • the present application proposes the following technical concept: in the definition of the existing pins of the golden finger of the QSFP-DD optical module, select some of the pins as the diagnostic pins and Control pins, so that the QSFP-DD optical module can realize protection switching, which effectively ensures the network stability of the QSFP-DD optical module in the transmission network application.
  • FIG. 1 is a schematic structural diagram of an optical module provided by an embodiment of the present application:
  • the optical module is connected to the first device.
  • the optical module and the first device may be connected through an Inter-Integrated Circuit (I 2 C) bus.
  • I 2 C Inter-Integrated Circuit
  • the first device is a device that applies an optical module.
  • the first device may be a switch, or the first device may be any device that applies an optical module.
  • the specific implementation of the first device You can choose according to actual needs.
  • the single board signal of the first device is input to the optical module through the electrical signal sending port, and the optical module converts the electrical signal of the first device into an optical signal and sends it out through the optical signal sending port; and the optical module can be received through the optical signal receiving port The received optical signal is converted into an electrical signal, and then sent to the first device through the electrical signal sending port of the optical module, so as to realize the transmission of information.
  • the optical module can be connected with an optical fiber, thereby realizing the reception and transmission of optical signals.
  • the possible implementation manners of each device inside the optical module are introduced below:
  • CDR The function of the clock and data recovery chip (Clock and Data Recovery, CDR) is to extract the clock signal from the input signal and find out the phase relationship between the clock signal and the data, which is simply to recover the clock. At the same time, CDR can also compensate for the loss of signals on traces and connectors.
  • ODSP optical digital signal processing chip (Optical Digital Signal Processing, ODSP), or part of the CDR chip may also be an OSDP chip.
  • LDD Laser Diode Driver
  • CDR and LDD are integrated on the same chip.
  • TOSA Transmitting Optical Sub-Assembley
  • TOSA Transmitting Optical Sub-Assembley
  • electrical/optical conversion mainly including laser, monitoring photodiode (MPD), thermoelectric cooler (Thermo Electric Cooler, TEC), isolator, Multiplexer (Mux), coupling lens and other devices.
  • MPD monitoring photodiode
  • TEC thermoelectric cooler
  • Mux Multiplexer
  • ROSA Resceiving Optical Sub-Assembley
  • APD Avalanche Photon Diode
  • DeMux demultiplexer
  • coupling components etc.
  • TIA Transimpedance amplifier
  • ROSA converts the optical signal into a current signal
  • TIA processes the current signal into a voltage signal of a certain amplitude.
  • TIA can be simply understood as a large resistance.
  • LA Because the output amplitude of TIA will change with the change of the received optical power, the function of the limiting amplifier (Limiting Amplifier, LA) is to process the changed output amplitude into an electrical signal of equal amplitude, which is provided to the CDR and decision circuit. stable voltage signal. In high-speed modules, LA is usually integrated with TIA or CDR.
  • MCU The Micro Control Unit (MCU) is responsible for the operation of the underlying software, the digital diagnostic monitoring (DDM) function monitoring related to the optical module, and some specific functions.
  • DDM monitoring mainly realizes real-time monitoring of five analog signals of temperature, voltage, current, received power, and transmit power, and judges the working status of the optical module through these parameters, which is convenient for the maintenance of optical communication links.
  • the following introduces the pins of the QSFP-DD optical module.
  • the upward side of the QSFP-DD optical module can be understood as the top and the downward side.
  • One side can be understood as the top, and the QSFP-DD optical module can include two sides, the top and the bottom, wherein the top and the bottom respectively include a plurality of pins.
  • FIG. 2 is a schematic diagram of the pins of the QSFP-DD optical module provided by the embodiment of the application from the top view
  • FIG. 3 is the implementation of the application.
  • the pin diagram of the bottom view of the QSFP-DD optical module provided by the example.
  • the left side in Figure 2 is the module side, and the right side is the edge of the module card, that is, the host side.
  • the pins of the QSFP-DD optical module include pins 58 to 76. , the meaning of each pin can be referred to the relevant description in the prior art, which will not be repeated here.
  • the QSFP-DD optical module can be compatible with the QSFP28 optical module, so the pins of the QSFP-DD optical module are actually added on the basis of the original pins of the QSFP28 optical module, so the top view It also includes the pins of the traditional QSFP28 optical module, specifically pins 20 to 38, and the meaning of each pin is also not repeated here.
  • the left side in Figure 3 is the edge of the module card, that is, the host side, and the right side is the module side.
  • the pins of the QSFP-DD optical module include pins 39 to 57. , the meaning of each pin can be referred to the relevant description in the prior art, which will not be repeated here.
  • the bottom view also includes the pins of the traditional QSFP28 optical module, specifically pin 1 to pin 19, and the meaning of each pin is also not repeated here.
  • the optical module includes a first pin and a second pin.
  • the optical module is used to send a first signal to the first device through the first pin, the first signal is used to indicate the working state of the optical module, and the first device is connected to the optical module;
  • the optical module is further used to receive a second signal from the first device through the second pin, and the second signal is used to instruct the optical module to be turned off.
  • the optical module may be a QSFP-DD optical module.
  • the first pin may be, for example, a reserved pin of the QSFP-DD optical module; or, the first pin may be Any functional pin of the QSFP-DD optical module can be used to indicate the working state of the optical module through the first pin by multiplexing the functional pins.
  • the first device is connected to the optical module, then the first device can receive the first signal, and determine the working state of the optical module according to the first signal.
  • the first signal can indicate that the working state of the optical module is abnormal, then the first device can be triggered to perform protection switching; or the first signal can indicate that the working state of the optical module is normal, the first device can determine that protection switching is not required, so the first signal in this embodiment can be used as an interrupt signal for the first device to quickly notify The working state of the current optical device of the first device.
  • the optical module when the first signal indicates that the working state of the optical module is abnormal, can also receive a second signal from the first device through a second pin, wherein the second pin can be, for example, a QSFP-DD optical module.
  • the reserved pins of the module; or, the second pin can be any functional pin of the QSFP-DD optical module, and by multiplexing the functional pins, the optical module can be instructed to turn on or off through the second pin.
  • the second signal may instruct the optical module to be turned off, and the first device may send a signal indicating that the laser is turned on to the standby optical module, indicating that the standby laser is turned on, thereby realizing the transition from the main optical module to the standby optical module.
  • the switching of optical modules effectively realizes protection switching.
  • the optical module when the working state of the optical module returns to normal from abnormality, can also receive a third signal from the first device through the second pin, where the third signal can indicate the laser of the optical module Open, so that when the main optical module returns to normal, it can be switched back to the main optical module to work in time.
  • the first signal is sent to the first device through the first pin, so that the current working state of the optical module can be notified to the first device in time, so as to trigger the optical module to perform protection switching, and the optical module can pass
  • the second pin receives the second signal from the first device, thereby turning off the optical module, so as to effectively implement protection switching when the optical module is abnormal, so that the QSFP-DD optical module can achieve protection switching, thus ensuring that the QSFP -The stability of the DD optical module in the transmission network application.
  • the first signal in the present application is used to indicate whether the channel of the optical module is working normally, and in a possible implementation manner, the first signal is the RX_LOS signal;
  • the second signal in this application is used to instruct the optical module to turn on the laser or turn off the laser.
  • the second signal is a TX_DIS signal
  • the third signal in this application can also be a TX_DIS signal.
  • the first pin and the second pin may be reserved pins of the QSFP-DD optical module. Referring to FIG. 2 and FIG. 3 , it can be determined that the pin 66 of the QSFP-DD optical module It is a reserved pin, and the pin 46 of the QSFP-DD optical module is a reserved pin.
  • the first pin is the reserved pin 66 of the QSFP-DD optical module
  • the second pin is the reserved pin 46 of the QSFP-DD optical module
  • the first pin is the reserved pin 46 of the QSFP-DD optical module
  • the second pin is the reserved pin 66 of the QSFP-DD optical module.
  • which of the first pin and the second pin is the reserved pin can be selected according to actual requirements, as long as the first pin and the second pin are different reserved pins.
  • RX_LOS signal A possible implementation of the first signal RX_LOS signal is described below, where the RX_LOS signal may be at a high level, or the RX_LOS signal may also be at a low level:
  • the RX_LOS signal instructs at least one channel of the optical module to generate a signal loss alarm, and at this time, the RX_LOS signal can trigger the first device to perform protection switching.
  • the RX_LOS signal indicates that each channel of the optical module is working normally, and the first device does not need to perform protection switching at this time.
  • the RX_LOS signal may be an interrupt signal for the first device, which can quickly inform the first device that a signal loss alarm has occurred in the receiver of the current optical module, so as to notify the first device to execute the active/standby operation.
  • Switching tasks, where the RX_LOS reporting time can be controlled within x milliseconds, where x is an integer greater than or equal to 1.
  • the TX_DIS signal When the TX_DIS signal is the second signal, the TX_DIS signal may be at a high level, and the TX_DIS signal of the second signal may instruct the optical module to close the originating ends of all media channels. For example, the optical module can be instructed to turn off the laser.
  • the TX_DIS signal when the TX_DIS signal is the third signal, the TX_DIS signal in this embodiment can be a low level, then the TX_DIS signal of the third signal can instruct the optical module to open the origin of all media channels, for example, can instruct the optical module to turn on the laser.
  • the TX_DIS signal can be an interrupt signal for the optical module central control (MCU), so as to realize the rapid on/off operation of the laser, and the operation time can be controlled in the order of x milliseconds.
  • MCU optical module central control
  • the second pin needs to be used together with the software Tx Disable function defined by the Page 10h Byte 130 register in the Content Management Interoperability Services (CMIS) standard protocol, wherein the Tx Disable function It is used to instruct to turn on the laser or turn off the laser from the software level, and the TX_DIS signal (the third signal or the second signal) in this embodiment is used to instruct to turn on the laser or turn off the laser from the hardware level.
  • CMIS Content Management Interoperability Services
  • the QSFP-DD optical module can turn on the originating end of the medium channel
  • the QSFP-DD optical module needs to perform the action of shutting down the originating end of the medium channel.
  • the stability of the laser state and the correctness of adjustment can be effectively guaranteed.
  • a first byte can be selected in the memory map register of the QSFP-DD optical module, wherein the first bit of the first byte can be used to indicate the state of the second pin,
  • the first bit can be any bit in the first byte, that is to say, the TX_DIS signal can be indicated by any bit in the first byte, so that the second tube can be determined by querying the first bit. condition of the feet.
  • the first bit of the first byte is correspondingly adjusted in the same way. For example, if the second signal output by the second pin is a high level, then The first bit of the first byte can be set to a high level; or, for example, if the third signal output by the second pin is a low level, the first bit of the first byte can be set to a low level, In order to ensure that the user can correctly query the state of the second pin according to the first one.
  • the optical module provided by the embodiment of the present application uses the reserved pins of the QSFP-DD optical module as the first pin and the second pin, so that the optical module can send the RX_LOS signal, and the optical module can receive the TX_DIS signal, so that the QSFP can be used in the QSFP.
  • the protection shutdown of the QSFP-DD optical module is effectively realized.
  • the existing functional pins of the QSFP-DD optical module can be multiplexed by configuring the newly defined extension register to realize the protection switching of the QSFP-DD optical module.
  • the following describes the multiplexing.
  • the implementation of function pins is introduced:
  • the first pin in this application can be pin 28 (INTL pin), and the pin 28 "INTL” of the QSFP-DD optical module is multiplexed into a pin with "RX_LOS" function; and the first pin in this application
  • the two pins can be pin 31 (LPMode pin), that is, the pin 31 "LPMode” of the QSFP-DD optical module can be multiplexed into a pin with a "TX_DIS" function.
  • the pin 28 is an output pin that supports multiplexing, and the multiplexing is the IntL function and the RX_LOS function.
  • the first signal output by pin 28 is an open-collector output, which should be pulled to Vcc on the single board of the first device.
  • pin 28 is configured as an IntL function pin by default. If the pin 28 supports multiplexing configuration, the pin 28 can be configured as an RX_LOS function pin or an IntL function pin through the management interface.
  • pin 28 When pin 28 is configured as an IntL function pin, when the IntL signal output of pin 28 is low, it means that the state of the optical module has changed, which may be an operation error of the optical module, or a key state output to the host system .
  • pin 28 is configured as an RX_LOS function pin, if the RX_LOS signal is high, the RX_LOS signal indicates that at least one channel of the optical module generates a signal loss alarm, and the RX_LOS signal can trigger the first device to perform protection switching.
  • the RX_LOS signal indicates that each channel of the optical module is working normally, and the first device does not need to perform protection switching at this time.
  • the pin 31 is a multiplexed control input pin, and the multiplexed function is the LPMode function and the TX_DIS function.
  • the pin 31 is defined as the LPMode function pin by default. If the pin 31 supports the multiplexing configuration, the pin 31 can be configured as the TX_DIS function pin or the LPMode function pin through the management interface. The implementation of the functional configuration can be carried out in the low power consumption mode of the QSFP-DD optical module.
  • the pin 31 is configured as an LPMode function pin, the pin 31 is used to control the power consumption mode (high power consumption/low power consumption) of the optical module.
  • the pin 31 is configured as a TX_DIS function pin, the pin 31 is used to control turning on or off the laser of the optical module.
  • the optical module provided by the embodiment of the present application sends a first signal to the first device through the first pin to trigger the optical module to perform protection switching, and can receive the second signal from the first device through the second pin signal, so as to turn off the optical module, so that the QSFP-DD optical module can realize protection switching, thus ensuring the network stability of the QSFP-DD optical module in the transmission network application.
  • the present application also provides a protection switching method, which is applied to the optical module described above.
  • the following describes the protection switching method provided by the application with reference to FIG. 4 , which is an embodiment of the present application. Provides a flow chart of the protection switching method.
  • the method includes:
  • the optical module sends a first signal to a first device through a first pin according to the working state of the channel of the optical module.
  • the first signal is used to indicate the working state of the optical module, and the first device is connected to the optical module.
  • the optical module can determine its own working state, and send a first signal to the first device through the first pin, so as to inform the first device of its current working state in time.
  • the optical module when it determines that its working state is abnormal, it can send a high level to the first device through the first pin to instruct at least one channel of the optical module to generate a signal loss alarm.
  • the first signal can trigger the first device to perform protection switching.
  • the optical module when it determines that its working state is normal, it can send a low level to the first device through the first pin to indicate that each channel of the optical module is working normally. A device does not need to perform protection switching.
  • the optical module receives a second signal from the first device through the second pin, and the second signal is used to instruct the optical module to be turned off.
  • the optical module can also receive the second signal from the first device through the second pin.
  • the first device performs a protection switching operation, then The second signal may be at a high level to indicate that the optical module is turned off.
  • the optical module can also receive a third signal from the first device through the second pin, wherein the third signal can be low level to indicate that the optical module is turned on, so as to realize the working The optical module switches back to the current optical module.
  • the protection switching method provided by the embodiment of the present application includes: an optical module sends a first signal to a first device through a first pin according to the working state of a channel of the optical module, where the first signal is used to indicate the working state of the optical module; A device is connected to the optical module; if the first signal indicates that the working state of the optical module is abnormal, the optical module receives a second signal from the first device through the second pin, and the second signal is used to instruct the optical module to be turned on or off.
  • the first signal is sent to the first device through the first pin, so that the current working state of the optical module can be notified to the first device in time to trigger the optical module to perform protection switching, and the optical module can receive from the first device through the second pin
  • the second signal is used to turn off the optical module to effectively implement protection switching when the optical module is abnormal, so that the QSFP-DD optical module can achieve protection switching, thus ensuring that the QSFP-DD optical module is used in transmission network applications. network stability.
  • the optical module in this application may be a QSFP-DD optical module
  • the first pin and the second pin may be reserved pins, or the first pin and the second pin may be Multiplexed functional pins
  • the first signal may be the RX_LOS signal
  • the second signal may be the TX_DIS signal
  • the third signal may be the TX_DIS signal
  • FIG. 5 is a schematic structural diagram of a protection switching apparatus according to an embodiment of the present application.
  • the apparatus 50 can be applied to the optical modules introduced in the foregoing embodiments, and the apparatus 50 includes: a sending module 501 and a receiving module 502 .
  • the sending module 501 is used for the optical module to send a first signal to a first device through a first pin according to the working state of the channel of the optical module, where the first signal is used to indicate the working state of the optical module , the first device is connected to the optical module;
  • the receiving module 502 is configured to receive a second signal from the first device through the second pin if the first signal indicates that the working state of the optical module is abnormal, the second signal is used to indicate The optical module is turned on or off.
  • the first signal is used to indicate whether the channel of the optical module works normally
  • the second signal is used to instruct the optical module to turn off the laser.
  • the first signal if the first signal is at a high level, the first signal instructs at least one channel of the optical module to generate a signal loss alarm, and instructs the first device to perform protection switching .
  • the first signal indicates that each channel of the optical module is working normally.
  • the second signal is at a high level, and the second signal instructs the optical module to turn off the laser.
  • the receiving module 502 is further configured to:
  • the optical module receives a third signal from the first device through the second pin, and the third signal is used to instruct the optical module to be turned on;
  • the third signal is a low level, and the third signal instructs the optical module to turn on the laser.
  • the first signal is a received signal loss alarm RX_LOS signal
  • the second signal is a TX_DIS signal that the transmitter turns off
  • the third signal is a TX_DIS signal.
  • the optical module is a QSFP-DD optical module.
  • the first pin is the reserved pin 66 of the QSFP-DD optical module
  • the second pin is the reserved pin 46 of the QSFP-DD optical module.
  • the first pin is the reserved pin 46 of the QSFP-DD optical module
  • the second pin is the reserved pin 66 of the QSFP-DD optical module.
  • the software or firmware includes, but is not limited to, computer program instructions or code, and can be executed by a hardware processor.
  • the hardware includes, but is not limited to, various types of integrated circuits, such as a central processing unit (CPU), a digital signal processor (DSP), a field programmable gate array (FPGA), or an application specific integrated circuit (ASIC).
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • FIG. 6 is a schematic diagram of a hardware structure of a protection switching device provided by an embodiment of the present application. As shown in FIG. 6 , the protection switching device 60 may be used to execute the protection switching method described in the above-mentioned embodiments.
  • the protection switching device 60 includes: a processor 801 and memory 802; wherein
  • a memory 802 for storing computer-executed instructions
  • the processor 801 is configured to execute the computer-executed instructions stored in the memory, so as to implement each step performed by the protection switching method in the foregoing embodiment. For details, refer to the relevant descriptions in the foregoing method embodiments.
  • the memory 802 may be independent or integrated with the processor 801 .
  • the in-vehicle computing device further includes a bus 803 for connecting the memory 802 and the processor 801 .
  • the above-mentioned processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) )Wait.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • Embodiments of the present application further provide a computer storage medium, including computer instructions, when the computer instructions are executed by a processor, the above protection switching method performed by the protection switching device is implemented.
  • An embodiment of the present application provides a computer program product, which, when the computer program product runs on a processor, implements the protection switching method performed by the protection switching device as described above.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the above method embodiments are executed; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • the term “comprising” and its modifications may refer to non-limiting inclusion; the term “or” and its modifications may refer to “and/or”.
  • the terms “first”, “second” and the like in the embodiments of the present application are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence.
  • "a plurality of” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/" generally indicates that the associated objects are an "or” relationship.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种光模块及保护倒换方法,该光模块包括:第一管脚以及第二管脚,其中,光模块用于通过第一管脚向第一设备发送第一信号,第一信号用于指示光模块的工作状态,第一设备与光模块连接;若第一信号指示光模块的工作状态异常,光模块还用于通过第二管脚从第一设备接收第二信号,第二信号用于指示光模块关断。通过第一管脚向第一设备发送第一信号,从而可以及时告知第一设备当前光模块的工作状态,以触发光模块进行保护倒换,并且光模块可以通过第二管脚从第一设备接收第二信号,从而进行光模块的关断,以有效的实现QSFP-DD光模块的保护倒换,从而保证了QSFP-DD光模块在传输网应用中网络的稳定性。

Description

光模块及保护倒换方法 技术领域
本申请涉及通信技术,尤其涉及一种光模块及保护倒换方法。
背景技术
在光通信领域,随着光信号传输容量要求的提高,四通道小型可插拔双密度接口(Quad Small Form-factor Pluggable-Double Density,QSFP-DD)封装模块逐渐成为了一种主流的封装模块。
目前,在传输网应用领域,保护倒换是一个非常重要的功能,例如对于光通信来说,当传输网络的连接中断时,需要通过备用光纤或者备用光模块实现保护倒换,以保证网络的稳定性,然而目前的QSFP-DD封装模块无法实现保护倒换,从而导致无法保证QSFP-DD光模块在传输网应用中网络的稳定性。
发明内容
本申请实施例提供一种光模块及保护倒换方法,以提升QSFP-DD光模块在传输网应用中网络的稳定性。
第一方面,本申请实施例提供一种光模块,包括:第一管脚以及第二管脚,其中,
所述光模块用于通过所述第一管脚向第一设备发送第一信号,本申请中的第一信号用于指示所述光模块的工作状态,所述第一设备与所述光模块连接,第一设备可以为应用光模块的设备;在一种可能的实现方式中,若所述第一信号指示所述光模块的工作状态异常,则所述光模块还用于通过所述第二管脚从所述第一设备接收第二信号,其中第二信号用于指示所述光模块关断。
在上述过程中,通过第一管脚向第一设备发送第一信号,从而可以及时告知第一设备当前光模块的工作状态,以触发光模块进行保护倒换,并且光模块可以通过第二管脚从第一设备接收第二信号,从而进行光模块的关断,以有效的实现在光模块发生异常时进行保护倒换,使得QSFP-DD光模块可以实现保护倒换,从而保证了QSFP-DD光模块在传输网应用中网络的稳定性。
在一种可能的实施方式中,所述第一信号用于指示所述光模块的通道是否正常工作,所述第二信号用于指示所述光模块关闭激光器。
其中,用第一信号指示光模块的通道是否正常工作,从而可以使得第一设备快速高效的确定光模块的工作状态;以及第一设备通过第二信号指示光模块关闭激光器,从而可以有效的实现保护倒换。
在一种可能的实施方式中,若所述第一信号为高电平,则所述第一信号指示所述光模块的至少一个通道产生信号丢失告警,并指示所述第一设备进行保护倒换。
在一种可能的实施方式中,若所述第一信号为低电平,则所述第一信号指示所述 光模块的各个通道均正常工作。
其中,通过设置第一信号为高电平或者低电平,从而可以简单高效的实现对光模块的工作状态的指示。
在一种可能的实施方式中,所述第二信号为高电平,所述第二信号指示所述光模块关闭激光器。
其中,通过设置第二信号为高电平,从而可以简单高效的指示光模块关闭激光器,以实现发生异常的光模块停止工作,切换到状态正常的光模块进行工作,以实现保护倒换。
在一种可能的实施方式中,所述光模块还用于通过所述第二管脚从所述第一设备接收第三信号,所述第三信号用于指示所述光模块打开;
其中,所述第三信号为低电平,所述第三信号指示所述光模块打开激光器。
在上述实现中,光模块还可以通过第二管脚接收第一设备发送的第三信号,从而可以在光模块恢复正常的时候,快速的制式光模块打开,以实现切换回本申请中的光模块。
在一种可能的实施方式中,所述第一信号为接收信号丢失告警RX_LOS信号,所述第二信号为发端关断TX_DIS信号,所述第三信号为TX_DIS信号。
其中,通过将实现保护倒换的信号作为本申请中的信号,从而可以实现和现有的保护倒换机制的有效兼容。
在一种可能的实施方式中,所述光模块为四通道小型可插拔双密度接口QSFP-DD光模块。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚66,所述第二管脚为所述QSFP-DD光模块的保留管脚46。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚46,所述第二管脚为所述QSFP-DD光模块的保留管脚66。
在上述过程中,通过将QSFP-DD光模块的保留管脚作为本申请中的第一管脚和第二管脚,从而可以降低对QSFP-DD光模块的保护倒换的设计复杂性。
第二方面,本申请实施例提供一种保护倒换方法,应用于上述第一方面所述的光模块,所述方法包括:
光模块根据所述光模块的通道的工作状态,通过第一管脚向第一设备发送第一信号,所述第一信号用于指示所述光模块的工作状态,所述第一设备与所述光模块连接;
若所述第一信号指示所述光模块的工作状态异常,所述光模块通过第二管脚从所述第一设备接收第二信号,所述第二信号用于指示所述光模块打开或者关断。
在一种可能的实施方式中,所述第一信号用于指示所述光模块的通道是否正常工作,所述第二信号用于指示所述光模块关闭激光器。
在一种可能的实施方式中,若所述第一信号为高电平,则所述第一信号指示所述光模块的至少一个通道产生信号丢失告警,并指示所述第一设备进行保护倒换。
在一种可能的实施方式中,若所述第一信号为低电平,则所述第一信号指示所述光模块的各个通道均正常工作。
在一种可能的实施方式中,所述第二信号为高电平,所述第二信号指示所述光模 块关闭激光器。
在一种可能的实施方式中,所述方法还包括:
所述光模块通过所述第二管脚从所述第一设备接收第三信号,所述第三信号用于指示所述光模块打开;
其中,所述第三信号为低电平,所述第三信号指示所述光模块打开激光器。
在一种可能的实施方式中,所述第一信号为接收信号丢失告警RX_LOS信号,所述第二信号为发端关断TX_DIS信号,所述第三信号为TX_DIS信号。
在一种可能的实施方式中,所述光模块为QSFP-DD光模块。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚66,所述第二管脚为所述QSFP-DD光模块的保留管脚46。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚46,所述第二管脚为所述QSFP-DD光模块的保留管脚66。
第三方面,本申请实施例提供一种保护倒换装置,应用于上述第一方面所述的光模块,所述装置包括:
发送模块,用于光模块根据所述光模块的通道的工作状态,通过第一管脚向第一设备发送第一信号,所述第一信号用于指示所述光模块的工作状态,所述第一设备与所述光模块连接;
接收模块,用于若所述第一信号指示所述光模块的工作状态异常,所述光模块通过第二管脚从所述第一设备接收第二信号,所述第二信号用于指示所述光模块打开或者关断。
在一种可能的实施方式中,所述第一信号用于指示所述光模块的通道是否正常工作,所述第二信号用于指示所述光模块关闭激光器。
在一种可能的实施方式中,若所述第一信号为高电平,则所述第一信号指示所述光模块的至少一个通道产生信号丢失告警,并指示所述第一设备进行保护倒换。
在一种可能的实施方式中,若所述第一信号为低电平,则所述第一信号指示所述光模块的各个通道均正常工作。
在一种可能的实施方式中,所述第二信号为高电平,所述第二信号指示所述光模块关闭激光器。
在一种可能的实施方式中,所述接收模块还用于:
所述光模块通过所述第二管脚从所述第一设备接收第三信号,所述第三信号用于指示所述光模块打开;
其中,所述第三信号为低电平,所述第三信号指示所述光模块打开激光器。
在一种可能的实施方式中,所述第一信号为接收信号丢失告警RX_LOS信号,所述第二信号为发端关断TX_DIS信号,所述第三信号为TX_DIS信号。
在一种可能的实施方式中,所述光模块为QSFP-DD光模块。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚66,所述第二管脚为所述QSFP-DD光模块的保留管脚46。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚46,所述第二管脚为所述QSFP-DD光模块的保留管脚66。
第四方面,本申请实施例提供一种保护倒换设备,其特征在于,包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行如上第二方面以及第二方面各种可能的实施方式中任一的方法。
第五方面,本申请实施例提供一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,实现如上第二方面以及第二方面各种可能的实施方式中任一的方法。
第六方面,本申请实施例提供一种计算机程序产品,其特征在于,当所述计算机程序产品在处理器上运行时,实现如上第二方面以及第额方面各种可能的实施方式中任一的方法。
本申请实施例提供一种光模块及保护倒换方法,该光模块包括:第一管脚以及第二管脚,其中,光模块用于通过第一管脚向第一设备发送第一信号,第一信号用于指示光模块的工作状态,第一设备与光模块连接;若第一信号指示光模块的工作状态异常,光模块还用于通过第二管脚从第一设备接收第二信号,第二信号用于指示光模块关断。通过第一管脚向第一设备发送第一信号,从而可以及时告知第一设备当前光模块的工作状态,以触发光模块进行保护倒换,并且光模块可以通过第二管脚从第一设备接收第二信号,从而进行光模块的关断,以有效的实现在光模块发生异常时进行保护倒换,使得QSFP-DD光模块可以实现保护倒换,从而保证了QSFP-DD光模块在传输网应用中网络的稳定性。
附图说明
图1为本申请实施例提供的光模块的结构示意图;
图2为本申请实施例提供的QSFP-DD光模块的顶部视角的管脚示意图;
图3为本申请实施例提供的QSFP-DD光模块的底部视角的管脚示意图;
图4为本申请实施例提供的保护倒换方法的流程图;
图5为本申请一实施例提供的保护倒换装置的结构示意图;
图6为本申请实施例提供的保护倒换设备的硬件结构示意图。
具体实施方式
为了更好的理解本申请,首先对本申请所涉及的相关概念进行介绍:
光通信:光通信是以光波为载波的通信方式。
光模块:光模块是进行光电转换和电光转换的光电子器件,其中,光模块的发送端可以把电信号转换为光信号,光模块的接收端可以把光信号转换为电信号。光模块按照封装形式分类,常见的有小型可插拔接口(Small Form-factor Pluggable,SFP),SFP+,小封装技术(Small Form Factor,SFF)等。
其中,光模块例如可以包括四通道小型可插拔接口(Quad Small Form-factor Pluggable,QSFP),QSFP光模块具备四个通道,传输速率可达40Gbps。
以及,QSFP28光模块又被称为100G光模块,QSFP28光模块是100G网络的重要组成部分,主要用在100G以太网的应用,采用四个25Gbit/s的传输通道传输数据。
以及,QSFP-DD光模块是一种高速可插拔模块的封装,其可以实现对QSFP的前向兼容和后向兼容,可以兼容现有的QSFP28光模块,其中QSFP-DD光模块采用8通道电器接口,每个通道的速率可以达到25Gbit/s、50Gbit/s或者100Gbit/s及以上,传输速率可达200~800Gbps(甚至更高)。
保护倒换:从工作路径信道倒换到保护路径信道,或从主用设备倒换到备用设备的过程,称为保护倒换,其中保护倒换技术可以有效保证网络的可靠性。
金手指:金手指是内存条的金黄色导电触片,例如内存条上与内存插槽之间、显卡与显卡插槽之间等,所有的信号都是通过金手指进行传送的,金手指由众多金黄色的导电触片组成,因其表面镀金而且导电触片排列如手指状,所以称为“金手指”。
在上述介绍的相关概念的基础上,下面对本申请所涉及的背景技术进行进一步的详细介绍:
在光通信领域,随着光信号传输容量要求的提高,QSFP-DD封装模块逐渐成为可插拔模块的主流封装。
相对传统C外形可插拔(C Form-factor Pluggable,CFP)/CFP2封装模块,QSFP-DD模块封装尺寸更小,有利于实现单板高密度使用,提高单板整体传输容量。
相对于QSFP28模块,QSFP-DD单个模块的电口通道数量增加一倍,可以实现单一模块传输200GE/400GE甚至800GE的更高速率。
基于上述介绍的内容,下面对光通信中的保护倒换进行介绍,当传输线路中光纤发生异常,例如光缆因外力断裂或人为操作失误如光连接头的误拔,会导致传输网络的连接中断,从而引起网络瘫痪。
因此需要通过备用光纤通道或备用光模块实现保护倒换,当发生连接中断后迅速切换到备用链路或备用模块上,以提高网络的稳定性。
在一种可能的实现方式中,保护倒换在光模块上的实现,一般是通过第一信号来触发保护倒换的开启,其中,第一信号例如可以为接收信号丢失告警(Receive Lossof Signal Alarm,RX_LOS)信号。
以及,可以通过第二信号来关闭激光器,以实现备用链路或备用模块的切换,最终实现保护倒换功能,其中,第二信号例如可以为发端关断(Transmitter Disable,TX_DIS)信号。
然而,在现有标准协议下,目前的QSFP-DD光模块缺少用于保护倒换的诊断管脚和控制管脚,以及缺少对应的软件方案,因此导致QSFP-DD光模块无法实现保护倒换,降低了QSFP-DD光模块在传输网应用中的功能性,从而导致QSFP-DD封装模块无法保证网络的稳定性。
基于现有技术中的问题,本申请提出了如下技术构思:在QSFP-DD光模块的金手指的现有管脚的定义,从中选择部分管脚,作为用于实现保护倒换的诊断管脚和控制管脚,从而使得QSFP-DD光模块可以实现保护倒换,有效保证了QSFP-DD光模块在传输网应用中网络的稳定性。
下面结合图1对光模块的结构进行介绍,图1为本申请实施例提供的光模块的结构示意图:
如图1所示,光模块与第一设备连接,在一种可能的实现方式中,光模块和第一 设备可以通过互集成电路(Inter-Integrated Circuit,I 2C)总线连接。
在本实施例中,第一设备是应用光模块的设备,例如第一设备可以为交换机,或者第一设备可以为任意的应用光模块的设备,在实际实现过程中,第一设备的具体实现可以根据实际需求进行选择。
其中,第一设备单板信号通过电信号发送口输入光模块,光模块将第一设备的电信号转换为光信号,并通过光信号发送口发送出去;以及光模块可以通过光信号接收口接收光信号,并将接收的光信号转换为电信号,再通过光模块的电信号发送口发送给第一设备,从而实现信息的传输。
在一种可能的实现方式中,光模块可以与光纤连接,从而实现光信号的接收和发送,下面对光模块内部的各个器件的可能的实现方式进行介绍:
CDR:时钟数据恢复芯片(Clock and Data Recovery,CDR)的作用是在输入信号中提取时钟信号,并找出时钟信号和数据之间的相位关系,简单说就是恢复时钟。同时,CDR还可以补偿信号在走线、连接器上的损失。
ODSP:光学数字信号处理芯片(Optical Digital Signal Processing,ODSP),或者,CDR芯片的部分还可以为OSDP芯片。
LDD:激光二极管驱动器(Laser Diode Driver,LDD)用于将CDR的输出信号,转换成对应的调制信号,驱动光模块的激光器发光,其中,不同类型的激光器需要选择不同类型的LDD芯片。在短距的多模光模块中(例如100G SR4),一般来说CDR和LDD是集成在同一个芯片上的。
TOSA:光发射组件(Transmitting Optical Sub-Assembley,TOSA)用于实现电/光转换,主要包括激光器、监控光电二极管(Monitoring photodiode,MPD)、热电冷却器(Thermo Electric Cooler,TEC)、隔离器、复用器(Mux)、耦合透镜等器件。
ROSA:光接收组件(Resceiving Optical Sub-Assembley,ROSA)用于实现光/电转换,主要包括雪崩光电二极管(Avalanche Photon Diode,APD)、解复用器(DeMux)、耦合组件等。
TIA:跨阻放大器(Transimpedance amplifier,TIA)用于配合ROSA使用,ROSA将光信号转换为电流信号,TIA将电流信号处理成一定幅值的电压信号,可以将TIA简单的理解为一个大电阻。
LA:因为TIA输出幅值会随着接收光功率的变化而改变,限幅放大器(Limiting Amplifier,LA)的作用就是将变化的输出幅值处理成等幅的电信号,给CDR和判决电路提供稳定的电压信号。在高速模块中,LA通常和TIA或CDR集成在一起。
MCU:微控制单元(Micro Control Unit,MCU)负责底层软件的运行、光模块相关的数字诊断监视(Digital diagnostic monitoring,DDM)功能监控及一些特定的功能。其中,DDM监控主要实现对温度、电压、电流、接收功率、发送功率5个模拟量的信号进行实时监测,通过这些参数判断光模块的工作状况,便于光通信链路的维护。
在上述介绍的内容的基础上,下面对QSFP-DD光模块的管脚进行介绍,将一个QSFP-DD光模块平置,QSFP-DD光模块朝上的一面可以理解为顶部,朝下的一面可以理解为顶部,则QSFP-DD光模块可以包括顶部和底部两个面,其中顶部和底部分别包括 多个管脚。
下面结合图2和图3对本申请中的QSFP-DD光模块的管脚进行介绍,图2为本申请实施例提供的QSFP-DD光模块的顶部视角的管脚示意图,图3为本申请实施例提供的QSFP-DD光模块的底部视角的管脚示意图。
如图2所示,图2中的左侧为模块侧,右侧为模块卡边缘,也就是主机侧,从顶部视角来看,QSFP-DD光模块的管脚包括管脚58~管脚76,其中各个管脚的含义可以参照现有技术中的相关说明,此处对此不进行赘述。
可以理解的是,QSFP-DD光模块可以实现对QSFP28光模块的兼容,因此QSFP-DD光模块的管脚实际上是在QSFP28光模块原有的管脚的基础上增加的,因此顶部视角中还包括传统的QSFP28光模块的管脚,具体为管脚20~管脚38,此处对各个管脚的含义同样不进行赘述。
如图3所示,图3中的左侧为模块卡边缘,也就是主机侧,右侧为模块侧,从底部视角来看,QSFP-DD光模块的管脚包括管脚39~管脚57,其中各个管脚的含义可以参照现有技术中的相关说明,此处对此不进行赘述。
同样的,底部视角中还包括传统的QSFP28光模块的管脚,具体为管脚1~管脚19,此处对各个管脚的含义同样不进行赘述。
在上述介绍的光模块的结构和管脚的基础上,下面结合具体的实施例对本申请所提供的光模块进行详细说明:
在本实施例中,光模块包括第一管脚以及第二管脚。
其中,光模块用于通过第一管脚向第一设备发送第一信号,第一信号用于指示光模块的工作状态,第一设备与光模块连接;
若第一信号指示光模块的工作状态异常,光模块还用于通过第二管脚从第一设备接收第二信号,第二信号用于指示光模块者关断。
在本实施例中,光模块可以为QSFP-DD光模块,在一种可能的实现方式中,第一管脚例如可以为QSFP-DD光模块的保留管脚;或者,第一管脚可以为QSFP-DD光模块的任一个功能管脚,通过对功能管脚进行复用,从而实现通过第一管脚指示光模块的工作状态。
第一设备与光模块连接,则第一设备可以接收第一信号,并根据第一信号确定光模块的工作状态,例如第一信号可以指示光模块的工作状态异常,则可以触发第一设备进行保护倒换;或者第一信号可以指示光模块的工作状态正常,则第一设备可以确定无需进行保护倒换,因此本实施例中的第一信号对于第一设备而言可以作为中断信号,以快速告知第一设备当前光设备的工作状态。
以及本实施例中,在第一信号指示光模块的工作状态异常时,光模块还可以通过第二管脚从第一设备接收第二信号,其中,第二管脚例如可以为QSFP-DD光模块的保留管脚;或者,第二管脚可以为QSFP-DD光模块的任一个功能管脚,通过对功能管脚进行复用,从而实现通过第二管脚指示光模块打开或者关断。
在一种可能的实现方式中,第二信号可以指示光模块关断,并且第一设备可以向备用的光模块发送指示激光器打开的信号,指示备用的激光器打开,从而实现从主光模块到备用光模块的切换,有效实现了保护倒换。
在另一种可能的实现方式中,当光模块的工作状态从异常恢复正常时,光模块还可以通过第二管脚从第一设备接收第三信号,其中第三信号可以指示光模块的激光器打开,从而实现在主光模块恢复正常的时候,及时的切换回主光模块进行工作。
本申请实施例提供的光模块,通过第一管脚向第一设备发送第一信号,从而可以及时告知第一设备当前光模块的工作状态,以触发光模块进行保护倒换,并且光模块可以通过第二管脚从第一设备接收第二信号,从而进行光模块的关断,以有效的实现在光模块发生异常时进行保护倒换,使得QSFP-DD光模块可以实现保护倒换,从而保证了QSFP-DD光模块在传输网应用中网络的稳定性。
在上述实施例的基础上,本申请中的第一信号用于指示光模块的通道是否正常工作,在一种可能的实现方式中,第一信号为RX_LOS信号;
以及本申请中的第二信号用于指示光模块打开激光器或者关闭激光器,在一种可能的实现方式中,第二信号为TX_DIS信号,以及本申请中的第三信号同样可以为TX_DIS信号。
下面以第一信号为RX_LOS信号,第二信号和第三信号均为TX_DIS信号为例,对本申请中的光模块实现保护倒换的实现方式进行进一步的详细介绍:
在一种可能的实现方式中,第一管脚和第二管脚可以为QSFP-DD光模块的保留管脚,参见图2和图3可以确定的是,QSFP-DD光模块的管脚66为保留(Reserved)管脚,以及QSFP-DD光模块的管脚46为保留(Reserved)管脚。
则例如第一管脚为QSFP-DD光模块的保留管脚66,第二管脚为QSFP-DD光模块的保留管脚46;
或者,第一管脚为QSFP-DD光模块的保留管脚46,第二管脚为QSFP-DD光模块的保留管脚66。
在实际实现过程中,第一管脚和第二管脚具体为哪一个保留管脚,可以根据实际需求进行选择,只要第一管脚和第二管脚是不同的保留管脚即可。
下面对第一信号RX_LOS信号的可能的实现方式进行说明,其中,RX_LOS信号可以为高电平,或者RX_LOS信号还可以为低电平:
若RX_LOS信号为高电平,则RX_LOS信号指示光模块的至少一个通道产生信号丢失告警,此时RX_LOS信号可以触发第一设备进行保护倒换。
若RX_LOS信号为低电平,则RX_LOS信号指示光模块的各个通道均正常工作,此时第一设备无需进行保护倒换。
因此在本实施例中,RX_LOS信号对于第一设备而言可以是一个中断信号,可以快速地告知第一设备,当前光模块的接收机已经发生了信号丢失告警,从而通知第一设备执行主备切换任务,其中,RX_LOS上报时间可以控制在x毫秒以内,x为大于等于1的整数。
下面对TX_DIS信号的可能的实现方式进行说明,其中,当TX_DIS信号为第二信号时,TX_DIS信号可以为高电平,则第二信号的TX_DIS信号可以指示光模块关闭所有介质通道的发端,例如可以指示光模块关闭激光器。
以及,当TX_DIS信号为第三信号时,本实施例中的TX_DIS信号可以为低电平,则第三信号的TX_DIS信号可以指示光模块打开所有介质通道的发端,例如可以指示光 模块打开激光器。
因此在本实施例中,TX_DIS信号对于光模块中控(MCU)而言可以是一个中断信号,以实现快速的打开/关闭激光器操作,其操作时间可以控制在x毫秒量级。
在一种可能的实现方式中,第二管脚需要配合内容管理互操作性服务标准协议(Content Management Interoperability Services,CMIS)中Page 10h Byte 130寄存器定义的软件Tx Disable功能一起使用,其中Tx Disable功能用于从软件层面指示打开激光器或者关闭激光器,而本实施例中的TX_DIS信号(第三信号或者第二信号)用于从硬件层面指示打开激光器或者关闭激光器。
例如,当TX_DIS信号(第三信号)和Tx Disable功能均指示打开激光器时,QSFP-DD光模块才能打开介质通道的发端;
否则,只要TX_DIS信号(第二信号)和Tx Disable功能中的任一个指示指示关闭激光器时,则QSFP-DD光模块就需要执行介质通道的发端关断动作。
通过TX_DIS信号和Tx Disable功能的协同配合,可以有效保证激光器状态的稳定性和调整的正确性。
在另一种可能的实现方式中,可以在QSFP-DD光模块的内存映射寄存器中选择一个第一字节,其中,第一字节的第一位可以用于指示第二管脚的状态,其中第一位可以为第一字节中的任一个bit,也就是说可以通过第一字节中的任意一个bit指示TX_DIS信号,以便于用于可以通过查询第一位,从而确定第二管脚的状态。
在可能的实现方式中,当第二管脚的状态发生变化时,对应的对第一字节的第一位进行相同的调整,例如第二管脚输出的第二信号为高电平,则可以将第一字节的第一位设置为高电平;或者,例如第二管脚输出的第三信号为低电平,则可以将第一字节的第一位设置为低电平,以保证用户可以根据第一位正确的查询到第二管脚的状态。
本申请实施例提供的光模块,通过将QSFP-DD光模块的保留管脚作为第一管脚和第二管脚,以实现光模块发送RX_LOS信号,以及光模块接收TX_DIS信号,从而可以在QSFP-DD光模块的现有管脚的基础上,有效的实现QSFP-DD光模块的保护关断。
在另一种可能的实现方式中,可以通过配置新增定义的扩展寄存器,复用QSFP-DD光模块现有的功能管脚,以实现QSFP-DD光模块的保护倒换,下面对复用功能管脚的实现方式进行介绍:
例如本申请中的第一管脚可以为管脚28(INTL管脚),将QSFP-DD光模块的管脚28“INTL”复用成”RX_LOS”功能的管脚;以及本申请中的第二管脚可以为管脚31(LPMode管脚),即可以将QSFP-DD光模块的管脚31“LPMode”复用成“TX_DIS”功能的管脚。
首先以第一管脚为管脚28,对第一管脚的复用进行说明:
在本实施例中,管脚28是一个支持复用的输出管脚,复用的是IntL功能和RX_LOS功能。
其中,管脚28输出的第一信号是开集输出,应该在第一设备的单板上拉到Vcc。在QSFP-DD光模块上电或复位后,管脚28默认被配置为IntL功能管脚。如果管脚28支持复用配置,则管脚28可以通过管理接口配置为RX_LOS功能管脚或者IntL功能管脚。
当管脚28配置为IntL功能管脚时,当管脚28的IntL信号输出为低时,表示光模块状态发生了变化,可能是光模块操作错误,或者输出给主机(host)系统的关键状态。
如果管脚28被配置为RX_LOS功能管脚,若RX_LOS信号为高电平,则RX_LOS信号指示光模块的至少一个通道产生信号丢失告警,此时RX_LOS信号可以触发第一设备进行保护倒换。
若RX_LOS信号为低电平,则RX_LOS信号指示光模块的各个通道均正常工作,此时第一设备无需进行保护倒换。
其次以第二管脚为管脚31,对第一管脚的复用进行说明:
在本实施例中,管脚31是一个复用的控制输入管脚,复用的是LPMode功能和TX_DIS功能。
在QSFP-DD光模块上电或复位后,管脚31默认定义为LPMode功能管脚,若管脚31支持复用配置,则管脚31可通过管理接口配置为TX_DIS功能管脚或者LPMode功能管脚,其中功能配置的实现可以在QSFP-DD光模块低功耗模式下进行。
当管脚31被配置为LPMode功能管脚时,管脚31用于控制光模块的功耗模式(高功耗/低功耗)。
当管脚31被配置为TX_DIS功能管脚时,管脚31用于控制光模块的激光器的打开或关断。
例如当管脚31置位,则光模块的激光器所有通道输出都应关断。当管脚31解除置位,激光器需要根据“QSFP-DD-CMIS-rev4p0”管理接口协议中所定义的Tx Disable功能的寄存器(Page 10h BYTE 130)的定义决定是否打开,其中Tx Disable功能在上述实施例中已经进行了介绍,此处不再赘述。
综上所述,本申请实施例提供的光模块,通过第一管脚向第一设备发送第一信号,以触发光模块进行保护倒换,并且可以通过第二管脚从第一设备接收第二信号,从而进行光模块的关断,以使得QSFP-DD光模块可以实现保护倒换,从而保证了QSFP-DD光模块在传输网应用中网络的稳定性。
在上述介绍的光模块的基础上,本申请还提供了一种保护倒换方法,应用于上述介绍的光模块,下面结合图4对申请提供的保护倒换方法进行说明,图4为本申请实施例提供的保护倒换方法的流程图。
如图4所示,该方法包括:
S401、光模块根据所述光模块的通道的工作状态,通过第一管脚向第一设备发送第一信号,第一信号用于指示光模块的工作状态,第一设备与光模块连接。
在本实施例中,光模块可以确定自身的工作状态,并通过第一管脚向第一设备发送第一信号,以及时告知第一设备当前自身的工作状态。
在一种可能的实现方式中,光模块在确定自身工作状态异常的时候,可以通过第一管脚向第一设备发送高电平,以指示光模块的至少一个通道产生信号丢失告警,此时第一信号可以触发第一设备进行保护倒换。
在另一种可能的实现方式中,光模块在确定自身工作状态正常的时候,可以通过第一管脚向第一设备发送低电平,以指示光模块的各个通道均正常工作,此时第一设 备无需进行保护倒换。
S402、若第一信号指示光模块的工作状态异常,光模块通过第二管脚从第一设备接收第二信号,第二信号用于指示光模块关断。
以及在本实施例中,若第一信号指示光模块的工作状态异常,则光模块还可以通过第二管脚接收来自于第一设备的第二信号,例如第一设备执行保护倒换操作,则第二信号可以为高电平,以指示光模块关断。
或者在另一种可能的实现方式中,光模块还可以通过第二管脚从第一设备接收第三信号,其中第三信号可以为低电平,以指示光模块打开,以实现将工作的光模块切换回当前的光模块。
本申请实施例提供的保护倒换方法,包括:光模块根据光模块的通道的工作状态,通过第一管脚向第一设备发送第一信号,第一信号用于指示光模块的工作状态,第一设备与光模块连接;若第一信号指示光模块的工作状态异常,光模块通过第二管脚从第一设备接收第二信号,第二信号用于指示光模块打开或者关断。通过第一管脚向第一设备发送第一信号,从而可以及时告知第一设备当前光模块的工作状态,以触发光模块进行保护倒换,并且光模块可以通过第二管脚从第一设备接收第二信号,从而进行光模块的关断,以有效的实现在光模块发生异常时进行保护倒换,使得QSFP-DD光模块可以实现保护倒换,从而保证了QSFP-DD光模块在传输网应用中网络的稳定性。
在一种可能的实现方式中,本申请中的光模块可以为QSFP-DD光模块,第一管脚和第二管脚可以为保留管脚,或者第一管脚和第二管脚可以为复用的功能管脚,以及第一信号可以为RX_LOS信号,第二信号可以为TX_DIS信号,第三信号可以为TX_DIS信号,其各种可能的实现方式与上述光模块的实施例中介绍的类似,此处不再赘述。
图5为本申请一实施例提供的保护倒换装置的结构示意图。如图5所示,装置50可应用于上述实施例介绍的光模块,装置50包括:发送模块501和接收模块502。
其中,发送模块501,用于光模块根据所述光模块的通道的工作状态,通过第一管脚向第一设备发送第一信号,所述第一信号用于指示所述光模块的工作状态,所述第一设备与所述光模块连接;
接收模块502,用于若所述第一信号指示所述光模块的工作状态异常,所述光模块通过第二管脚从所述第一设备接收第二信号,所述第二信号用于指示所述光模块打开或者关断。
在一种可能的实施方式中,所述第一信号用于指示所述光模块的通道是否正常工作,所述第二信号用于指示所述光模块关闭激光器。
在一种可能的实施方式中,若所述第一信号为高电平,则所述第一信号指示所述光模块的至少一个通道产生信号丢失告警,并指示所述第一设备进行保护倒换。
在一种可能的实施方式中,若所述第一信号为低电平,则所述第一信号指示所述光模块的各个通道均正常工作。
在一种可能的实施方式中,所述第二信号为高电平,所述第二信号指示所述光模块关闭激光器。
在一种可能的实施方式中,所述接收模块502还用于:
所述光模块通过所述第二管脚从所述第一设备接收第三信号,所述第三信号用于 指示所述光模块打开;
其中,所述第三信号为低电平,所述第三信号指示所述光模块打开激光器。
在一种可能的实施方式中,所述第一信号为接收信号丢失告警RX_LOS信号,所述第二信号为发端关断TX_DIS信号,所述第三信号为TX_DIS信号。
在一种可能的实施方式中,所述光模块为QSFP-DD光模块。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚66,所述第二管脚为所述QSFP-DD光模块的保留管脚46。
在一种可能的实施方式中,所述第一管脚为所述QSFP-DD光模块的保留管脚46,所述第二管脚为所述QSFP-DD光模块的保留管脚66。
本实施例提供的装置,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
图5中的各个模块的只一个或多个可以软件、硬件、固件或其结合实现。所述软件或固件包括但不限于计算机程序指令或代码,并可以被硬件处理器所执行。所述硬件包括但不限于各类集成电路,如中央处理单元(CPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)或专用集成电路(ASIC)。
图6为本申请实施例提供的保护倒换设备的硬件结构示意图,如图6所示,保护倒换设备60可用于执行上述实施例所描述的保护倒换方法,保护倒换设备60包括:处理器801以及存储器802;其中
存储器802,用于存储计算机执行指令;
处理器801,用于执行存储器存储的计算机执行指令,以实现上述实施例中保护倒换方法所执行的各个步骤。具体可以参见前述方法实施例中的相关描述。
可选地,存储器802既可以是独立的,也可以跟处理器801集成在一起。
当存储器802独立设置时,该车载计算装置还包括总线803,用于连接所述存储器802和处理器801。
可选的,上述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的业务处理方法实施例中的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机存储介质,包括计算机指令,当所述计算机指令在被处理器运行时,实现如上保护倒换设备所执行的保护倒换方法。
本申请实施例提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,实现如上保护倒换设备所执行的保护倒换方法。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。
在本申请实施例中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请实施例中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种光模块,其特征在于,包括:第一管脚以及第二管脚,其中,
    所述光模块用于通过所述第一管脚向第一设备发送第一信号,所述第一信号用于指示所述光模块的工作状态,所述第一设备与所述光模块连接;
    若所述第一信号指示所述光模块的工作状态异常,所述光模块还用于通过所述第二管脚从所述第一设备接收第二信号,所述第二信号用于指示所述光模块关断。
  2. 根据权利要求1所述的光模块,其特征在于,所述第一信号用于指示所述光模块的通道是否正常工作,所述第二信号用于指示所述光模块关闭激光器。
  3. 根据权利要求2所述的光模块,其特征在于,若所述第一信号为高电平,则所述第一信号指示所述光模块的至少一个通道产生信号丢失告警,并指示所述第一设备进行保护倒换。
  4. 根据权利要求2所述的光模块,其特征在于,若所述第一信号为低电平,则所述第一信号指示所述光模块的各个通道均正常工作。
  5. 根据权利要求2所述的光模块,其特征在于,所述第二信号为高电平,所述第二信号指示所述光模块关闭激光器。
  6. 根据权利要求2所述的光模块,其特征在于,所述光模块还用于通过所述第二管脚从所述第一设备接收第三信号,所述第三信号用于指示所述光模块打开;
    其中,所述第三信号为低电平,所述第三信号指示所述光模块打开激光器。
  7. 根据权利要求1-6任一项所述的光模块,其特征在于,所述第一信号为接收信号丢失告警RX_LOS信号,所述第二信号为发端关断TX_DIS信号,所述第三信号为TX_DIS信号。
  8. 根据权利要求1-7任一项所述的光模块,其特征在于,所述光模块为四通道小型可插拔双密度接口QSFP-DD光模块。
  9. 根据权利要求8所述的光模块,其特征在于,所述第一管脚为所述QSFP-DD光模块的保留管脚66,所述第二管脚为所述QSFP-DD光模块的保留管脚46。
  10. 根据权利要求8所述的光模块,其特征在于,所述第一管脚为所述QSFP-DD光模块的保留管脚46,所述第二管脚为所述QSFP-DD光模块的保留管脚66。
  11. 一种保护倒换方法,其特征在于,应用于权利要求1-10任一项所述的光模块,所述方法包括:
    光模块根据所述光模块的通道的工作状态,通过第一管脚向第一设备发送第一信号,所述第一信号用于指示所述光模块的工作状态,所述第一设备与所述光模块连接;
    若所述第一信号指示所述光模块的工作状态异常,所述光模块通过第二管脚从所述第一设备接收第二信号,所述第二信号用于指示所述光模块打开或者关断。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信号用于指示所述光模块的通道是否正常工作,所述第二信号用于指示所述光模块关闭激光器。
  13. 根据权利要求12所述的方法,其特征在于,若所述第一信号为高电平,则所述第一信号指示所述光模块的至少一个通道产生信号丢失告警,并指示所述第一设备进行保护倒换。
  14. 根据权利要求12所述的方法,其特征在于,若所述第一信号为低电平,则所述第一信号指示所述光模块的各个通道均正常工作。
  15. 根据权利要求12所述的方法,其特征在于,所述第二信号为高电平,所述第二信号指示所述光模块关闭激光器。
  16. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述光模块通过所述第二管脚从所述第一设备接收第三信号,所述第三信号用于指示所述光模块打开;
    其中,所述第三信号为低电平,所述第三信号指示所述光模块打开激光器。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述第一信号为接收信号丢失告警RX_LOS信号,所述第二信号为发端关断TX_DIS信号,所述第三信号为TX_DIS信号。
  18. 根据权利要求11-17任一项所述的方法,其特征在于,所述光模块为QSFP-DD光模块。
  19. 根据权利要求18所述的方法,其特征在于,所述第一管脚为所述QSFP-DD光模块的保留管脚66,所述第二管脚为所述QSFP-DD光模块的保留管脚46。
  20. 根据权利要求18所述的方法,其特征在于,所述第一管脚为所述QSFP-DD光模块的保留管脚46,所述第二管脚为所述QSFP-DD光模块的保留管脚66。
  21. 一种保护倒换装置,其特征在于,应用于权利要求1-10任一项所述的光模块,所述装置包括:
    发送模块,用于光模块根据所述光模块的通道的工作状态,通过第一管脚向第一设备发送第一信号,所述第一信号用于指示所述光模块的工作状态,所述第一设备与所述光模块连接;
    接收模块,用于若所述第一信号指示所述光模块的工作状态异常,所述光模块通过第二管脚从所述第一设备接收第二信号,所述第二信号用于指示所述光模块打开或者关断。
  22. 根据权利要求21所述的装置,其特征在于,所述第一信号用于指示所述光模块的通道是否正常工作,所述第二信号用于指示所述光模块关闭激光器。
  23. 根据权利要求22所述的装置,其特征在于,若所述第一信号为高电平,则所述第一信号指示所述光模块的至少一个通道产生信号丢失告警,并指示所述第一设备进行保护倒换。
  24. 根据权利要求22所述的装置,其特征在于,若所述第一信号为低电平,则所述第一信号指示所述光模块的各个通道均正常工作。
  25. 根据权利要求22所述的装置,其特征在于,所述第二信号为高电平,所述第二信号指示所述光模块关闭激光器。
  26. 根据权利要求22所述的装置,其特征在于,所述接收模块还用于:
    所述光模块通过所述第二管脚从所述第一设备接收第三信号,所述第三信号用于指示所述光模块打开;
    其中,所述第三信号为低电平,所述第三信号指示所述光模块打开激光器。
  27. 根据权利要求21-26任一项所述的装置,其特征在于,所述第一信号为接收 信号丢失告警RX_LOS信号,所述第二信号为发端关断TX_DIS信号,所述第三信号为TX_DIS信号。
  28. 根据权利要求21-27任一项所述的装置,其特征在于,所述光模块为QSFP-DD光模块。
  29. 根据权利要求28所述的装置,其特征在于,所述第一管脚为所述QSFP-DD光模块的保留管脚66,所述第二管脚为所述QSFP-DD光模块的保留管脚46。
  30. 根据权利要求28所述的装置,其特征在于,所述第一管脚为所述QSFP-DD光模块的保留管脚46,所述第二管脚为所述QSFP-DD光模块的保留管脚66。
  31. 一种保护倒换设备,其特征在于,包括存储器和处理器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以执行权利要求11-20任一项所述的方法。
  32. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,实现如权利要求11-20任一项所述的方法。
PCT/CN2020/105076 2020-07-28 2020-07-28 光模块及保护倒换方法 WO2022021048A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/105076 WO2022021048A1 (zh) 2020-07-28 2020-07-28 光模块及保护倒换方法
CN202080100875.2A CN115606116A (zh) 2020-07-28 2020-07-28 光模块及保护倒换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105076 WO2022021048A1 (zh) 2020-07-28 2020-07-28 光模块及保护倒换方法

Publications (1)

Publication Number Publication Date
WO2022021048A1 true WO2022021048A1 (zh) 2022-02-03

Family

ID=80038052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105076 WO2022021048A1 (zh) 2020-07-28 2020-07-28 光模块及保护倒换方法

Country Status (2)

Country Link
CN (1) CN115606116A (zh)
WO (1) WO2022021048A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021803A (zh) * 2022-06-02 2022-09-06 中国电信股份有限公司 光通道保护方法、装置和系统
CN115189760A (zh) * 2022-06-07 2022-10-14 阿里巴巴(中国)有限公司 光模块监测方法、系统以及装置
CN116471507A (zh) * 2023-06-20 2023-07-21 苏州浪潮智能科技有限公司 交换机数据通信方法、装置、交换机和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201243290Y (zh) * 2008-07-21 2009-05-20 青岛海信宽带多媒体技术股份有限公司 插拔式以太无源光网络光收发一体模块
CN107294594A (zh) * 2017-07-03 2017-10-24 博为科技有限公司 一种无源光网络设备、切换方法及系统
CN109067454A (zh) * 2018-06-29 2018-12-21 烽火通信科技股份有限公司 一种实现光模块支持保护倒换功能的方法及系统
US20190007132A1 (en) * 2016-11-30 2019-01-03 Ciena Corporation Client protection switch in optical pluggable transceivers activated through fast electrical data squelch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201243290Y (zh) * 2008-07-21 2009-05-20 青岛海信宽带多媒体技术股份有限公司 插拔式以太无源光网络光收发一体模块
US20190007132A1 (en) * 2016-11-30 2019-01-03 Ciena Corporation Client protection switch in optical pluggable transceivers activated through fast electrical data squelch
CN107294594A (zh) * 2017-07-03 2017-10-24 博为科技有限公司 一种无源光网络设备、切换方法及系统
CN109067454A (zh) * 2018-06-29 2018-12-21 烽火通信科技股份有限公司 一种实现光模块支持保护倒换功能的方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021803A (zh) * 2022-06-02 2022-09-06 中国电信股份有限公司 光通道保护方法、装置和系统
CN115189760A (zh) * 2022-06-07 2022-10-14 阿里巴巴(中国)有限公司 光模块监测方法、系统以及装置
CN115189760B (zh) * 2022-06-07 2024-01-05 阿里巴巴(中国)有限公司 光模块监测方法、系统以及装置
CN116471507A (zh) * 2023-06-20 2023-07-21 苏州浪潮智能科技有限公司 交换机数据通信方法、装置、交换机和存储介质
CN116471507B (zh) * 2023-06-20 2023-09-12 苏州浪潮智能科技有限公司 交换机数据通信方法、装置、交换机和存储介质

Also Published As

Publication number Publication date
CN115606116A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2022021048A1 (zh) 光模块及保护倒换方法
US9619426B2 (en) Out-of-band signaling support over standard optical SFP
CN110445533B (zh) 一种双冗余光纤以太网传输系统
US8098993B2 (en) Method and apparatus for transporting computer bus protocols over an optical link
US7769297B2 (en) Driving multiple transceiver modules with a single SERDES transceiver chip
WO2021115454A1 (zh) 光电信号转换器、光驱动处理和接收模组及网络交互设备
KR20130124483A (ko) 전기-광 통신 링크
US20180152236A1 (en) Client protection switch in optical pluggable transceivers activated through fast electrical data squelch
US11888523B2 (en) USB and thunderbolt optical signal transceiver
WO2016058268A1 (zh) 一种用于光纤通道的高速光模块
US20210328674A1 (en) Optical communications apparatus, optical line termination, and optical communication processing method
US20160248534A1 (en) Method for processing optical signal, optical module and optical line terminal
WO2023125372A1 (en) Dynamically-switchable optical cable
US9294290B2 (en) Optical cable assemblies with low-speed data pass-through architecture and sleep mode operation
WO2020088507A1 (zh) 可插拔光源模块
CN117336639B (zh) 信号传输方法和设备,存储介质及电子设备
WO2021249270A1 (zh) 光电收发装置及其控制方法
EP2137906B1 (en) Communicating configuration information over standard interconnect link
CN107276675B (zh) 一种基于光纤远距离传输的usb3.0 hub
CN106877936B (zh) 一种sfp28光模块
WO2017004798A1 (en) A multifunctional laser diode driving circuit, a module comprising the same, and a method using the same
EP3602844A1 (en) High-density small form-factor pluggable module, housing, and system
CN107332619B (zh) 一种基于光纤远距离传输的usb3.1 hub
CN113364524B (zh) 一种数据接收方法及光模块
CN221081315U (zh) 一种千转百光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946608

Country of ref document: EP

Kind code of ref document: A1