WO2022021031A1 - 信道传输方法、终端设备和网络设备 - Google Patents

信道传输方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022021031A1
WO2022021031A1 PCT/CN2020/104981 CN2020104981W WO2022021031A1 WO 2022021031 A1 WO2022021031 A1 WO 2022021031A1 CN 2020104981 W CN2020104981 W CN 2020104981W WO 2022021031 A1 WO2022021031 A1 WO 2022021031A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
terminal device
bwp
initial
coreset
Prior art date
Application number
PCT/CN2020/104981
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/104981 priority Critical patent/WO2022021031A1/zh
Priority to CN202080104891.9A priority patent/CN116210315A/zh
Priority to EP20946975.8A priority patent/EP4192150A1/en
Publication of WO2022021031A1 publication Critical patent/WO2022021031A1/zh
Priority to US18/089,248 priority patent/US20230179374A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more particularly, to a channel transmission method, terminal equipment and network equipment.
  • MTC Machine-Type Communication, machine type communication
  • eMTC LTE enhanced MTC, MTC based on LTE evolution
  • NB-IoT Narrow Band
  • 3GPP 3rd Generation Partnership Project
  • MTC/eMTC and NB-IoT terminals The cost of MTC/eMTC and NB-IoT terminals is low, the price is cheap, it supports ultra-low power consumption, and supports deep and wide coverage scenarios. Therefore, it is conducive to the rapid popularization of the Internet of Things technology in the early stage of development.
  • these technologies also have limitations in some application scenarios. Since MTC/eMTC and NB-IoT support some applications with low data rates and high transmission delays, in some IoT scenarios that require relatively high rates, such as smart security In the video surveillance, industrial applications requiring relatively low latency, it cannot be applied. However, if a new wireless (New Radio, NR) terminal is directly used, the cost is relatively high because the design indicators of the NR terminal, such as transmission rate, transmission delay, etc., far exceed the actual requirements of these scenarios.
  • New Radio, NR New Radio
  • a NR MTC terminal type can be designed that not only supports medium transmission rate, medium delay requirements, but also has low cost.
  • 3GPP calls this type of NR MTC terminal RedCap (Reduced Capability NR Devices, reduced capability NR) terminals.
  • the bandwidth supported by RedCap terminals is relatively narrow. However, if the bandwidth supported by the terminal is relatively narrow, the channel may not be fully received.
  • the embodiments of the present application provide a channel transmission method, a terminal device, and a network device, which can enable the terminal device to receive a common channel more completely.
  • An embodiment of the present application provides a channel transmission method, including:
  • the terminal device determines the initial downlink DL bandwidth part BWP based on the control resource set CORESET 0 or the synchronization signal block SSB;
  • the terminal device receives the common channel based on the initial DL BWP;
  • the bandwidth of the initial DL BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • the embodiment of the present application also provides a channel transmission method, including:
  • the terminal device determines the frequency range of the common channel transmission based on the control resource set CORESET 0 or the synchronization signal block SSB;
  • the terminal device receives the common channel based on the frequency range transmitted by the common channel.
  • the embodiment of the present application also provides a channel transmission method, including:
  • the network device sends the common channel to the terminal device based on the initial downlink DL bandwidth part BWP;
  • the initial DL BWP is determined based on the control resource set CORESET 0 or the synchronization signal block SSB, and the bandwidth of the initial DL BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • the embodiment of the present application also provides a channel transmission method, including:
  • the network device sends the common channel to the terminal device based on the frequency range of the common channel transmission
  • the frequency range of the common channel transmission is determined based on the control resource set CORESET 0 or the synchronization signal block SSB.
  • An embodiment of the present application provides a terminal device, including:
  • a first determining unit configured to determine the initial downlink DL bandwidth part BWP based on the control resource set CORESET 0 or the synchronization signal block SSB;
  • a receiving unit for receiving a common channel based on the initial DL BWP
  • the bandwidth of the initial DL BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • the embodiment of the present application also provides a terminal device, including:
  • a second determining unit configured to determine the frequency range of the common channel transmission based on the control resource set CORESET 0 or the synchronization signal block SSB;
  • the second receiving unit is configured to receive the common channel based on the frequency range transmitted by the common channel.
  • An embodiment of the present application provides a network device, including:
  • a first sending unit configured to send the common channel to the terminal device based on the initial downlink DL bandwidth part BWP;
  • the initial DL BWP is determined based on the control resource set CORESET 0 or the synchronization signal block SSB, and the bandwidth of the initial DL BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • the embodiment of the present application also provides a network device, including:
  • a second sending unit configured to send the common channel to the terminal device based on the frequency range of the common channel transmission
  • the frequency range of the common channel transmission is determined based on the control resource set CORESET 0 or the synchronization signal block SSB.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so that the terminal device executes the above-mentioned channel transmission method.
  • An embodiment of the present application provides a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so that the network device executes the above-mentioned channel transmission method.
  • An embodiment of the present application provides a chip for implementing the above channel transmission method.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned channel transmission method.
  • An embodiment of the present application provides a computer-readable storage medium for storing a computer program, and when the computer program is executed by a device, the device enables the device to execute the above-mentioned channel transmission method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned channel transmission method.
  • the embodiments of the present application provide a computer program, which, when running on a computer, enables the computer to execute the above-mentioned channel transmission method.
  • CORESET 0 or SSB is used to determine the initial DL BWP of the terminal device, so that the terminal device can completely receive the common channel in the initial DL BWP.
  • CORESET 0 or SSB is used to determine the frequency range of the common channel transmission can also make the terminal equipment receive the common channel completely.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of determining the initial DL BWP based on CORESET 0.
  • FIG. 3 is a schematic diagram showing that the bandwidth of the RedCap terminal is smaller than the bandwidth of CORESET0.
  • FIG. 4 is a schematic flowchart of a channel transmission method according to an embodiment of the present application.
  • Fig. 5a is a schematic flowchart of a channel transmission method according to another embodiment of the present application.
  • FIG. 5b is a schematic diagram of misalignment of reception in a channel transmission method according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a channel transmission method according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a channel transmission method according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of determining the starting frequency of the receiving bandwidth of the RedCap terminal.
  • FIG. 9 is a schematic diagram of determining the termination frequency point of the receiving bandwidth of the RedCap terminal.
  • FIG. 10 is a schematic diagram of determining the center frequency of the receiving bandwidth of the RedCap terminal.
  • 11 is a schematic diagram of determining the initial DL BWP of the RedCap terminal based on the initial PRB of CORESET 0.
  • 12 is a schematic diagram of determining the initial DL BWP of the RedCap terminal based on the termination PRB of CORESET 0.
  • 13 is a schematic diagram of determining the initial DL BWP of the terminal based on the SSB center frequency point.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 exemplarily shows a communication system 100 .
  • the communication system includes one network device 110 and two terminal devices 120 .
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which are not limited in this embodiment of the present application.
  • the communication system 100 may further include a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF) and other network entities, to which the embodiments of the present application Not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system further includes a plurality of core networks for communicating with the access network equipment.
  • the access network equipment may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (authorized auxiliary access long-term evolution, LAA-
  • the evolved base station (evolutional node B, may be referred to as eNB or e-NodeB for short) in the LTE) system is a macro base station, a micro base station (also called a "small base station"), a pico base station, an access point (AP), Transmission site (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device and a terminal device with a communication function, and the network device and the terminal device may be specific devices in this embodiment of the application, which will not be repeated here; It may include other devices in the communication system, for example, other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • NR terminals need to support at least 2 receiving channels, and NR terminals in some frequency bands need to support 4 receiving channels; each receiving channel includes receiving antenna, filter, PA (PowerAmplifier, power amplifier), AD (Analog Digital, Analog to digital) samplers and other components. Therefore, reducing the number of radio frequency channels that NR terminals need to be equipped with will significantly reduce terminal costs. By reducing the terminal with two RF channels to one RF channel, the cost of the chip module can be reduced by about 1/3. Therefore, the RedCap terminal can be equipped with a smaller number of antennas to reduce the cost of the terminal.
  • PA PowerAmplifier, power amplifier
  • AD Analog Digital, Analog to digital
  • a normal NR terminal needs to support a wider transmission bandwidth, for example, an FR1 terminal needs to support a maximum bandwidth of 100MHz.
  • the RedCap terminal can support a smaller terminal bandwidth.
  • the terminal can only support a terminal bandwidth of 5MHz, 10MHz or 20MHz.
  • the terminal needs to support a maximum bandwidth of 400MHz.
  • the RedCap terminal can support a smaller terminal bandwidth, such as a bandwidth of 100MHz.
  • the RedCap terminal may also have some other features, such as supporting a lower peak rate, supporting a looser processing delay, and a larger processing delay.
  • both the system bandwidth and the terminal bandwidth may reach hundreds of MHz or even several GHz to support high-speed mobile data transmission.
  • a large bandwidth is not required all the time.
  • the terminal only needs to use a relatively small working bandwidth, for example, a bandwidth of 10 MHz is sufficient.
  • BWP bandwidth part
  • the bandwidth part can be a part of the system bandwidth (cell carrier bandwidth), for example, the system bandwidth is 100MHz, and the terminal can use a bandwidth less than 100MHz, such as 20MHz and 50MHz, to transmit data within the system bandwidth.
  • an NR terminal can be configured with up to 4 BWPs by high-layer signaling, and different BWPs can have different bandwidth sizes, different frequency positions, and different subcarrier spacings.
  • the network can make the terminal switch between multiple BWPs according to the service requirements of the terminal. For example, when a higher service rate is transmitted, a BWP with a larger bandwidth is used, and when a service data rate is transmitted at a lower rate, a BWP with a smaller bandwidth is used.
  • the bandwidth of the BWP configured by the network to the terminal needs to be less than or equal to the maximum bandwidth that the terminal can support.
  • the method for determining the NR initial (initial) downlink (Downlink, DL) BWP is as follows:
  • the procedures related to the initial access of the NR terminal are performed in the NR initial DL BWP.
  • the terminal reads the system information, receives the paging message, and the related downlink control channel PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel), data channel PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel) in the random access process. reception, etc.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the terminal determines the initial DL based on the RMSI (Remaining Minimum System Information) CORESET (control-resource set, control resource set) (that is, the terminal monitors and schedules the PDCCH CORESET where the PDCCH carrying the RMSI PDSCH is located) BWP.
  • RMSI Remaining Minimum System Information
  • the bandwidth size and bandwidth position of the initial DL BWP are exactly the same as the bandwidth size and bandwidth position occupied by the RMSI CORESET.
  • the subcarrier spacing of the initial DL BWP is also exactly the same as that of the RMSI CORESET.
  • the configuration information of the RMSI CORESET is indicated in the NR PBCH. It should be pointed out that RMSI CORESET is also called CORESET 0 in the standard.
  • the bandwidth size of the RMSI CORESET can be configured as 24, 48 or 96 PRBs (Physical Resource Blocks). As shown in Figure 2, it is a schematic diagram of determining the initial DL BWP based on CORESET 0.
  • the network device can signal a new initial DL BWP to the terminal configuration, but the bandwidth of the new initial DL BWP needs to include the bandwidth of the initial DL BWP before the initial access is completed, and both The subcarrier spacing is exactly the same.
  • the bandwidth supported by the RedCap terminal is relatively narrow.
  • the bandwidth of the RedCap terminal that FR1 may support is 10MHz, 20MHz, and so on.
  • the bandwidth of the RedCap terminal is 10MHz, it may not be able to completely receive the control channel and data channel of the scheduled RMSI. As shown in Figure 3, the bandwidth of the RedCap terminal is smaller than that of CORESET0.
  • the bandwidth of the RedCap terminal is 20MHz, the control channel and data channel of the scheduled RMSI can be completely received.
  • the bandwidths of RedCap terminals that FR2 may support are 50MHz and 100MHz.
  • the bandwidth of the RedCap terminal is 50MHz, it cannot fully receive the SS/PBCH Block (synchronization signal, broadcast channel block).
  • the bandwidth of the RedCap terminal is 50MHz, the control channel and data channel of the scheduled RMSI cannot be completely received.
  • the bandwidth of the RedCap terminal is 100MHz, the control channel and data channel of the scheduled RMSI can be completely received.
  • the embodiment of the present application proposes a channel transmission method, which can be used for transmission of a common data channel, and can optimize the transmission of the aforementioned common channel to the terminal when the terminal bandwidth is smaller than the bandwidth of the RMSI CORESET.
  • FIG. 4 is a schematic flowchart of a channel transmission method 200 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device determines the initial downlink (DL) bandwidth part (BWP) based on the control resource set (CORESET 0) or the synchronization signal block (SSB);
  • the terminal device receives the common channel based on the initial DL BWP; wherein, the bandwidth of the initial DL BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • CORESET includes a set of physical resource sets consisting of multiple RBs in the frequency domain and 1, 2 or 3 OFDM symbols in the time domain.
  • CORESET 0 is also known as RMSI CORESET.
  • the configuration information of the RMSI CORESET can be indicated in the NR PBCH (Physical Broadcast Channel, Physical Broadcast Channel).
  • the bandwidth size of the RMSI CORESET can be configured as eg 24, 48 or 96 PRBs.
  • the SSB may also be referred to as a synchronization signal and a PBCH block (Synchronization Signal and PBCH block).
  • a synchronization signal and a PBCH block Synchronization Signal and PBCH block
  • the common channel may include a channel carrying paging, RAR, OSI, RMSI, and the like. These common channels can be scheduled in the initial DL BWP of the terminal device.
  • the initial DL BWP may be an initial DL BWP dedicated to the RedCap terminal, which is different from the initial DL BWP of the NR terminal.
  • the terminal device may be a RedCap terminal, capable of supporting a medium transmission rate and a medium delay requirement.
  • the maximum bandwidth supported by the RedCap terminal is relatively narrow, for example, it can be 10MHz, 20MHz, and so on.
  • the initial DL BWP determined by the RedCap terminal based on CORESET 0 or SSB is less than or equal to the maximum bandwidth supported by the RedCap terminal.
  • the maximum initial DL BWP bandwidth can be 52PRB (with a subcarrier spacing of 15KHz) or 24PRB (with a subcarrier spacing of 30KHz).
  • the terminal device determines the initial DL BWP of the terminal device based on CORESET 0 or SSB, and makes the initial DL BWP less than or equal to the maximum bandwidth supported by the terminal device, and the terminal device can completely receive the common channel.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the terminal device can completely receive the common channel scheduled in the bandwidth of the initial DL BWP.
  • determining the initial DL BWP based on CORESET 0 or SSB includes: when the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0, the terminal device is based on CORESET 0 or SSB. , to determine the initial DL BWP.
  • the initial DL BWP is determined by at least one of the following frequency reference points: the starting frequency point of the initial DL BWP; the ending frequency point of the initial DL BWP; the center frequency point of the initial DL BWP .
  • the bandwidth between the starting frequency point of the initial DL BWP and the ending frequency point of the initial DL BWP may be determined as the initial DL BWP.
  • a segment of bandwidth starting from the starting frequency point can be determined as the initial DL BWP.
  • a segment of bandwidth to the end of the termination frequency can be determined as the initial DL BWP.
  • the bandwidth before and after the center frequency can be determined as the initial DL BWP.
  • the above-mentioned bandwidth may be 52 PRB (with a sub-carrier spacing of 15 KHz) or 24 PRB (with a sub-carrier spacing of 30 KHz).
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency of the initial DL BWP is the PRB with the lowest frequency of CORESET 0 or SSB, for example, the starting frequency of the initial DL BWP is the subcarrier with the lowest frequency in the PRB with the lowest frequency;
  • the termination frequency of the initial DL BWP is the PRB with the highest frequency of CORESET 0 or SSB, for example, the termination frequency of the initial DL BWP is the subcarrier with the highest frequency in the PRB with the highest frequency;
  • the center frequency of the initial DL BWP is CORESET 0 or the center frequency of SSB.
  • the frequency reference point is received from a network device or acquired through a protocol agreement.
  • the manner of carrying the frequency reference point includes at least one of the following: MIB (Master Information Block, master information block) in PBCH; RMSI such as SIB (System Information Block, system information block) 1 ; RRC (Radio Resource Control, Radio Resource Control) dedicated signaling.
  • MIB Master Information Block, master information block
  • RMSI such as SIB (System Information Block, system information block) 1
  • RRC Radio Resource Control, Radio Resource Control
  • the terminal device receives the above-mentioned PBCH, RMSI or RRC dedicated signaling from the network device.
  • the frequency reference point used to determine the initial DL BWP is obtained from PBCH, RMSI or RRC dedicated signaling. Then, the initial DL BWP is determined based on the frequency reference point.
  • the bandwidth of the initial DL BWP is used to transmit at least one of the following information: other system information OSI, random access response RAR, paging .
  • CORESET 0 or SSB is used to determine the initial DL BWP of the terminal device, so that the terminal device can completely receive the common channel of the initial access process in its dedicated initial DL BWP, such as RMSI, OSI, paging, RAR, etc. messages on the PDCCH and or PDSCH, thus avoiding performance degradation.
  • the method of determining the frequency position of the SSB further enables the terminal device to receive the SSB and its initial DL BWP at the same time, avoiding the frequency hopping of the terminal.
  • FIG. 5a is a schematic flowchart of a channel transmission method 300 according to another embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the same terms in this embodiment and the method 200 have the same meanings, and are not repeated here.
  • the method includes at least some of the following.
  • the terminal device determines the frequency range of the common channel transmission based on the control resource set CORESET 0 or the synchronization signal block SSB;
  • the terminal device receives the common channel based on the frequency range transmitted by the common channel.
  • the bandwidth corresponding to the frequency range of the common channel transmission is less than or equal to the maximum bandwidth supported by the terminal device.
  • the terminal device can completely receive the common channel in the frequency range of the common channel transmission.
  • the RedCap terminal determines the frequency range of the common channel transmission based on CORESET 0 or SSB, which is also beneficial for the RedCap terminal to accurately receive the common channel and avoid receiving misalignment.
  • a situation where the reception is misaligned includes: the common channel is scheduled in the upper half of the traditional initial DL BWP, but the RedCap terminal receives in the lower half of the initial DL BWP. RedCap terminals can only receive a small number of common channels.
  • the maximum bandwidth supported by the RedCap terminal is 10MHz, and the bandwidth corresponding to the frequency range of the common channel transmission is 20MHz. If the RedCap terminal determines the frequency range of the common channel transmission based on CORESET 0 or SSB, the starting frequency point of the common channel transmission can be obtained, and the RedCap terminal can start to receive the common channel from the starting frequency point of the common channel transmission. In this way, the bandwidth corresponding to the common channel received by the RedCap terminal is about 10 MHz. In the case of misaligned reception, the bandwidth corresponding to the common channel received by the RedCap terminal may only be 2MHz.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the frequency range of common channel transmission is determined, including:
  • the terminal equipment determines the frequency range of common channel transmission based on CORESET 0 or SSB.
  • the frequency range of the common channel transmission includes the frequency range of the physical downlink shared channel PDSCH transmission.
  • the frequency range of PDSCH transmission is determined by at least one of the following frequency reference points: the start frequency point of the frequency range of PDSCH transmission; the end frequency point of the frequency range of PDSCH transmission; PDSCH transmission the center frequency of the frequency range.
  • the bandwidth between the starting frequency point and the ending frequency point of the frequency range of PDSCH transmission may be determined as the frequency range of PDSCH transmission.
  • a segment of bandwidth starting from the starting frequency point may be determined as the frequency range of PDSCH transmission.
  • a segment of bandwidth ending with the termination frequency point may be determined as the frequency range of PDSCH transmission.
  • the bandwidth before and after the center frequency can be determined as the frequency range of PDSCH transmission.
  • the above-mentioned bandwidth may be 52PRB (with a subcarrier spacing of 15KHz) or 24PRB (with a subcarrier spacing of 30KHz).
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency of the frequency range of PDSCH transmission is the physical resource block PRB with the lowest frequency in the control resource set CORESET 0 or the synchronization signal block SSB.
  • the starting frequency of the frequency range of PDSCH transmission is the lowest frequency among the PRBs with the lowest frequency. subcarrier;
  • the termination frequency of the frequency range of PDSCH transmission is the PRB with the highest frequency of CORESET 0 or SSB, for example, the termination frequency of the frequency range of PDSCH transmission is the subcarrier with the highest frequency in the PRB with the highest frequency;
  • the center frequency of the frequency range of PDSCH transmission is CORESET 0 or the center frequency of SSB.
  • the frequency reference point is received from a network device or acquired through a protocol agreement.
  • the manner of carrying the frequency reference point includes at least one of the following: the master information block MIB in the physical broadcast channel PBCH; the remaining minimum system information RMSI; and the RRC dedicated signaling for radio resource control.
  • the manner of indicating the low frequency side or the high frequency side may also be used to determine the frequency range of PDSCH transmission.
  • the frequency range of PDSCH transmission may be indicated to be on the low frequency side or the high frequency side of the initial DL BWP of the CORESET 0 or NR terminal. For example, if the frequency range indicated for PDSCH transmission is on the low-frequency side of CORESET 0, a bandwidth starting from a PRB with a lower frequency of CORESET 0 is used as the frequency range for PDSCH transmission.
  • the frequency range indicated for PDSCH transmission is located on the high frequency side of the initial DL BWP of the NR terminal, a segment of bandwidth ending with a PRB with a higher frequency of the initial DL BWP of the NR terminal is used as the frequency range of PDSCH transmission.
  • the PDSCH is scheduled within the frequency range of PDSCH transmission.
  • the PDSCH is used to carry at least one of the following information: RMSI, other system information OSI, random access response RAR, and paging.
  • the terminal device receives the above-mentioned PBCH, RMSI or RRC dedicated signaling from the network device.
  • the frequency reference points used to determine the frequency range of PDSCH transmission are obtained from PBCH, RMSI or RRC dedicated signaling. Then, the frequency range for PDSCH transmission is determined based on the frequency reference point.
  • the terminal device is a reduced capability (RedCap) terminal
  • the (PDCCH) received by the RedCap terminal and the new wireless NR terminal uses a different system message Radio Network Temporary Identifier (SI-RNTI), using Scrambling with different scrambling codes, or with different Downlink Control Indication (DCI).
  • SI-RNTI Radio Network Temporary Identifier
  • the terminal device is a RedCap terminal, and the RedCap terminal and the NR terminal share the PDCCH CORESET configuration.
  • CORESET 0 or SSB is used to determine the frequency range of the common channel transmission, so that the terminal device can completely receive the common channel and avoid the loss of reception performance. It is beneficial to align the common channel received by the terminal device with the frequency range transmitted by the common channel, and to receive the common channel more accurately.
  • the transmission frequency range of the terminal device is related to the location of the SSB, and the terminal device can also completely receive the SSB at the same time. SSB, avoiding frequency hopping for the terminal to receive SSB.
  • FIG. 6 is a schematic flowchart of a channel transmission method 400 according to another embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the network device sends a common channel to the terminal device based on the initial downlink DL bandwidth part BWP; wherein, the initial DL BWP is determined based on the control resource set CORESET 0 or the synchronization signal block SSB, and the bandwidth of the initial DL BWP is less than or equal to the The maximum bandwidth supported by the end device.
  • the network device can determine the initial DL BWP of a certain terminal device based on CORESET 0 or SSB, and then can send a common channel to the terminal device at the initial DL BWP.
  • the terminal device may receive the common channel based on the initial DL BWP.
  • the terminal device may be a RedCap terminal.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the initial DL BWP is determined by at least one of the following frequency reference points: the starting frequency of the initial DL BWP; the ending frequency of the initial DL BWP; and the center frequency of the initial DL BWP.
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency of the initial DL BWP is CORESET 0 or the PRB with the lowest frequency of SSB;
  • the termination frequency of the initial DL BWP is CORESET 0 or the PRB with the highest frequency of SSB;
  • the center frequency of the initial DL BWP is CORESET 0 or the center frequency of SSB.
  • the manner of bearing the frequency reference point includes at least one of the following: MIB in PBCH; RMSI; and RRC dedicated signaling.
  • the bandwidth of the initial DL BWP is used to transmit at least one of the following information: other system information OSI, random access response RAR, paging .
  • FIG. 7 is a schematic flowchart of a channel transmission method 500 according to another embodiment of the present application.
  • the network device sends the common channel to the terminal device based on the frequency range of the common channel transmission; wherein, the frequency range of the common channel transmission is determined based on the control resource set CORESET 0 or the synchronization signal block SSB.
  • the bandwidth corresponding to the frequency range of the common channel transmission is less than or equal to the maximum bandwidth supported by the terminal device.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the frequency range of the common channel transmission includes the frequency range of the physical downlink shared channel PDSCH transmission.
  • the frequency range of PDSCH transmission is determined by at least one of the following frequency reference points: the start frequency point of the frequency range of PDSCH transmission; the end frequency point of the frequency range of PDSCH transmission; PDSCH transmission the center frequency of the frequency range.
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency point of the frequency range of PDSCH transmission is the physical resource block PRB with the lowest frequency of the control resource set CORESET 0 or the synchronization signal block SSB;
  • the termination frequency of the frequency range of PDSCH transmission is CORESET 0 or the PRB with the highest frequency of SSB;
  • the center frequency of the frequency range of PDSCH transmission is CORESET 0 or the center frequency of SSB.
  • the PDSCH is scheduled within the frequency range of PDSCH transmission.
  • the manner of bearing the frequency reference point includes at least one of the following: MIB in PBCH; RMSI; and RRC dedicated signaling.
  • the PDSCH is used to carry at least one of the following information: RMSI, other system information OSI, random access response RAR, and paging.
  • the network device execution method 500 in this embodiment reference may be made to the relevant description of the network device such as the base station in the foregoing method 300, which is not repeated here for brevity.
  • the frequency range of the PDCCH and/or PDSCH related to the common channel of the RedCap terminal may be determined based on the frequency position of CORESET 0 or the SSB; or the initial DL BWP dedicated to the RedCap terminal may be determined.
  • the reception bandwidth or the bandwidth of the initial DL BWP is determined based on the bandwidth of the RedCap terminal. In this way, the terminal can completely receive the relevant common channel.
  • the terminal can receive a part of the bandwidth of the RMSI CORESET.
  • the terminal can choose to receive a part of the bandwidth of any part of the RMSI CORESET (10MHz terminal bandwidth, remove the guard bands on both sides of the 10MHz bandwidth, the actual receiving bandwidth will be less than 10MHz, for example, for the 15KHz subcarrier spacing, the corresponding number of PRBs is 52 ).
  • the terminal Since the PDCCH adopts channel coding, it is possible to correctly detect the PDCCH even if the terminal does not have the complete received PDCCH CORESET bandwidth, but the PDCCH detection performance is caused by the reduction in the number of PDCCH REs (Resource Elements) that can be received. decline.
  • the terminal may not be able to fully receive the bandwidth of the above-mentioned channels when receiving the RMSI PDSCH, RAR, paging PDCCH or PDSCH, but the terminal can still Correct channel reception is achieved by receiving part of the bandwidth of the above-mentioned channels.
  • Example 1 The network notifies the frequency range of the RMSI PDSCH
  • An example of an optimized method includes that the network notifies the terminal or pre-agrees the frequency range of the channel to be received, such as the frequency receiving location.
  • the RMSI PDCCH is detected in the received partial RMSI PDCCH CORESET bandwidth in the manner implemented by the aforementioned UE.
  • information related to the frequency range for receiving RMSI PDSCH can be pre-agreed or notified by the network, such as the frequency start point (or start frequency point) of RMSI PDSCH scheduling, and the frequency end point (or called start frequency point) of RMSI PDSCH scheduling. is the termination frequency point) or the frequency center frequency point (or called the center frequency point) of the RMSI PDSCH scheduling.
  • the RMSI PDSCH can be scheduled within a range of frequency bands from the starting point of the frequency (the bandwidth supported by the RedCap terminal, such as 10MHz), and the starting point of the frequency can be CORESET 0 or the PRB with the lowest frequency of SSB.
  • the starting frequency may be the PRB with the lowest frequency of CORESET 0.
  • the RMSI PDSCH can also be scheduled within a range of frequency bands that ends at the end point of the frequency (the bandwidth supported by the RedCap terminal, such as 10MHz), and the start point of the frequency can be CORESET 0 or the PRB with the highest frequency of SSB, as shown in the figure.
  • 9 is a schematic diagram of determining the termination frequency of the receiving bandwidth of the RedCap terminal, and the starting point of the frequency can be the PRB with the highest frequency of CORESET 0.
  • the center frequency of the frequency scheduled by RMSI PDSCH can also be the center frequency of CORESET 0 or SSB.
  • the schematic diagram of determining the center frequency of the receiving bandwidth of the RedCap terminal, the center frequency of the frequency scheduled by RMSI PDSCH can be is the center frequency of SSB.
  • the frequency start point or frequency end point is not necessarily the frequency start point or frequency end point of the actual transmission of PDSCH, but the frequency range from the frequency start point or to the frequency end point
  • the scheduling is performed within the range of the frequency band that ends at the end of the schedule.
  • the role of the frequency center frequency point of the RMSI PDSCH scheduling may include: scheduling of the RMSI PDSCH can be performed within a frequency range with the frequency center frequency point of the RMSI PDSCH scheduling as the center frequency point.
  • the above-mentioned frequency range generally needs to be smaller than the bandwidth supported by the RedCap terminal.
  • the RMSI PDSCH can be specially sent for the RedCap terminal (that is, the special RMSI PDSCH is sent separately for the RedCap UE; in addition, its RMSI PDSCH is also sent to the NR terminal), or it can be the NR terminal and the RedCap terminal. Terminal shared. If it is the former, since both the RedCap terminal and the traditional NR terminal receive the PDCCH of the scheduled RMSI in the same RMSI CORESET, but the RMSI PDSCH of the two are different, the PDCCH of the scheduled RMSI sent to the RedCap terminal and the traditional NR terminal needs to be distinguished.
  • the PDCCHs of the two can use different SI-RNTIs (the PDCCH for the RedCap terminal uses a second SI-RNTI that is different from the existing SI-RNTI, denoted as SI-RNTI_2); or scrambling with different scrambling codes; Or use a bit of DCI to indicate (for example, the value of this bit is 0, it is the PDCCH for NR terminals, when the value of this bit is 1, it is the PDCCH for RedCap terminals), this bit can be the PDCCH of the existing scheduling RMSI A reserved bit in DCI.
  • RMSI carries SIB1
  • other PDCCH CORESETs related to common channels such as OSI, paging, and RAR can be configured in the SIB, so it can be ensured that the PDCCH CORESETs of these common channels do not exceed the supported bandwidth (such as 10MHz) of the RedCap terminal.
  • the terminal can completely receive the RMSI PDSCH, avoiding the loss of reception performance.
  • the receiving position of the terminal is related to the position of the SSB, and the terminal can also receive the SSB completely at the same time. For example, if the center frequency of the receiving bandwidth of the terminal is the center frequency of the SSB, the terminal can receive the SSB completely, avoiding the terminal being Receive frequency hopping for SSB.
  • Example 2 The network notifies the frequency range of RMSI, OSI, RAR, PDSCH for paging
  • Example 2 This example is similar to Example 1, the frequency range information of PDSCH carrying RMSI, OSI, RAR, paging, etc. in the initial access process can be notified to the terminal by the network or pre-agreed in a manner similar to that in Example 1.
  • the frequency ranges of these channels may be the same or different; or different for different terminals, but the same for the same terminal.
  • the RedCap terminals in the cell may be divided into several groups, and different groups notify different frequency ranges.
  • the PDCCH that schedules RMSI, OSI, RAR, and paging can also be received in the manner implemented by the aforementioned terminal.
  • the RedCap terminal can share the configuration of the relevant PDCCH CORESET with the NR terminal, saving network signaling.
  • the initial DL BWP is determined by the bandwidth size of the RMSI CORESET and its location.
  • a Redcap UE with a small bandwidth such as 10MHz
  • directly using the initial DL BWP determined by the RMSI CORESET will bring about the problem that the common channel cannot be fully received.
  • an example of another approach includes: RedCap terminals use their dedicated initial DL BWP.
  • the initial DL BWP dedicated to RedCap is also determined by the frequency location of the RMSI CORESET or the frequency location of the SSB.
  • the start or end point or the center frequency point of the frequency location of the initial DL BWP dedicated to the RedCap terminal may be pre-agreed, or notified by the network.
  • the start point, end point or center frequency point of the frequency position of the initial DL BWP dedicated to the RedCap terminal is an agreed frequency position in the RMSI CORESET or SSB.
  • the starting point of the frequency position of the initial DL BWP dedicated to the RedCap terminal is the PRB with the lowest frequency position of the RMSI CORESET or SSB.
  • the initial DL BWP of the RedCap terminal is determined based on the initial PRB of CORESET 0.
  • the starting point of the frequency location of the initial DL BWP dedicated to the RedCap terminal may be PRB 0 (initial PRB) of the RMSI CORESET.
  • the end point of the frequency position of the initial DL BWP dedicated to the RedCap terminal is the PRB with the highest frequency position of the RMSI CORESET or SSB.
  • a schematic diagram of determining the initial DL BWP of the RedCap terminal based on the termination PRB of CORESET 0, the termination point of the frequency location of the initial DL BWP dedicated to the RedCap terminal may be the termination frequency point of the RMSI CORESET.
  • the center frequency point of the frequency position of the initial DL BWP dedicated to the RedCap terminal is the center frequency point of the RMSI CORESET or SSB.
  • the schematic diagram of determining the initial DL BWP of the RedCap terminal based on the SSB center frequency point, the center frequency point of the frequency location of the initial DL BWP dedicated to the RedCap terminal may be the center frequency point of the SSB.
  • MIB PBCH
  • SIB1 RMSI
  • the bandwidth of the initial DL BWP dedicated to the RedCap terminal may be preset or notified by the network.
  • the bandwidth of the initial DL BWP is smaller than the bandwidth supported by the RedCap terminal.
  • the maximum initial DL BWP bandwidth is 52PRB (with a subcarrier spacing of 15KHz) or 24PRB (with a subcarrier spacing of 30KHz).
  • MIB PBCH
  • SIB1 RMSI
  • the initial DL BWP dedicated to RedCap is used for receiving OSI, RAR, paging, etc., but not for receiving RMSI.
  • CORESET 0 or SSB is used to determine the initial DL BWP dedicated to the RedCap UE, so that the RedCap terminal can completely receive the PDCCH of the RMSI, OSI, paging, RAR and other messages of the initial access process in its dedicated initial DL BWP and or PDSCH, so as to avoid the performance degradation caused by the existing method.
  • the method of determining the frequency position of the SSB further enables the terminal to receive the SSB and its initial DL BWP at the same time, avoiding the frequency hopping of the terminal.
  • FIG. 14 is a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • the terminal device 900 may include:
  • a first determining unit 910 configured to determine the initial downlink DL bandwidth part BWP based on the control resource set CORESET 0 or the synchronization signal block SSB;
  • a first receiving unit 920 configured to receive a common channel based on the initial DL BWP
  • the bandwidth of the initial DL BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the first determining unit is further configured to determine the initial DL BWP based on CORESET 0 or SSB when the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the initial DL BWP is determined by at least one of the following frequency reference points: the starting frequency of the initial DL BWP; the ending frequency of the initial DL BWP; and the center frequency of the initial DL BWP.
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency of the initial DL BWP is CORESET 0 or the PRB with the lowest frequency of SSB;
  • the termination frequency of the initial DL BWP is CORESET 0 or the PRB with the highest frequency of SSB;
  • the center frequency of the initial DL BWP is CORESET 0 or the center frequency of SSB.
  • the frequency reference point is received from a network device or acquired through a protocol agreement.
  • the manner of bearing the frequency reference point includes at least one of the following: MIB in PBCH; RMSI; and RRC dedicated signaling.
  • the bandwidth of the initial DL BWP is used to transmit at least one of the following information: other system information OSI, random access response RAR, paging .
  • the terminal device may be a RedCap terminal.
  • the terminal device 900 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • each module (sub-module, unit, or component, etc.) in the terminal device 900 reference may be made to the corresponding descriptions in the foregoing method embodiments, which will not be repeated here.
  • the functions described by each module (submodule, unit, or component, etc.) in the terminal device 900 of the application embodiment may be implemented by different modules (submodule, unit, or component, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 15 is a schematic block diagram of a terminal device 1000 according to another embodiment of the present application.
  • the terminal device 1000 may include:
  • the second determining unit 1010 is configured to determine the frequency range of the common channel transmission based on the control resource set CORESET 0 or the synchronization signal block SSB;
  • the second receiving unit 1020 is configured to receive the common channel based on the frequency range transmitted by the common channel.
  • the bandwidth corresponding to the frequency range of the common channel transmission is less than or equal to the maximum bandwidth supported by the terminal device.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the second determining unit 1010 is further configured to determine the frequency range of the common channel transmission based on CORESET 0 or SSB when the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET0.
  • the frequency range of the common channel transmission includes the frequency range of the physical downlink shared channel PDSCH transmission.
  • the frequency range of the PDSCH transmission is determined by at least one of the following frequency reference points: the starting frequency point of the frequency range of PDSCH transmission; the termination frequency point of the frequency range of PDSCH transmission; PDSCH The center frequency of the transmitted frequency range.
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency point of the frequency range of PDSCH transmission is the physical resource block PRB with the lowest frequency of the control resource set CORESET 0 or the synchronization signal block SSB;
  • the termination frequency of the frequency range of PDSCH transmission is CORESET 0 or the PRB with the highest frequency of SSB;
  • the center frequency of the frequency range of PDSCH transmission is CORESET 0 or the center frequency of SSB.
  • the frequency reference point is received from a network device or acquired through a protocol agreement.
  • the manner of bearing the frequency reference point includes at least one of the following: MIB in PBCH; RMSI; and RRC dedicated signaling.
  • the PDSCH is scheduled within the frequency range of PDSCH transmission.
  • the PDSCH is used to carry at least one of the following information: RMSI, other system information OSI, random access response RAR, and paging.
  • the terminal device is a RedCap terminal
  • the PDCCH received by the RedCap terminal and the new wireless NR terminal uses a different system message wireless network temporary identifier SI-RNTI, uses different scrambling codes for scramble, or uses different scrambling codes.
  • SI-RNTI system message wireless network temporary identifier
  • the terminal device is a RedCap terminal, and the RedCap terminal and the NR terminal share the PDCCH CORESET configuration.
  • the terminal device 1000 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • each module (sub-module, unit, or component, etc.) in the terminal device 1000 reference may be made to the corresponding descriptions in the foregoing method embodiments, which are not repeated here.
  • the functions described by the various modules (submodules, units, or components, etc.) in the terminal device 1000 of the application embodiments may be implemented by different modules (submodules, units, or components, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 16 is a schematic block diagram of a network device 1100 according to an embodiment of the present application.
  • the network device 1100 may include:
  • the first sending unit 1110 is configured to send a common channel to the terminal device based on the initial downlink DL bandwidth part BWP; wherein the initial DL BWP is determined based on the control resource set CORESET 0 or the synchronization signal block SSB, and the bandwidth of the initial DL BWP is determined based on the control resource set CORESET 0 or the synchronization signal block SSB. Less than or equal to the maximum bandwidth supported by the end device.
  • the terminal device may be a RedCap terminal.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the initial DL BWP is determined by at least one of the following frequency reference points: the starting frequency point of the initial DL BWP; the ending frequency point of the initial DL BWP; the center frequency point of the initial DL BWP .
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency of the initial DL BWP is CORESET 0 or the PRB with the lowest frequency of SSB;
  • the termination frequency of the initial DL BWP is CORESET 0 or the PRB with the highest frequency of SSB;
  • the center frequency of the initial DL BWP is CORESET 0 or the center frequency of SSB.
  • the manner of bearing the frequency reference point includes at least one of the following: MIB in PBCH; RMSI; RRC dedicated signaling.
  • the bandwidth of the initial DL BWP is used to transmit at least one of the following information: other system information OSI, random access response RAR, paging.
  • the network device 1100 in this embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • each module (sub-module, unit, or component, etc.) in the network device 1100 reference may be made to the corresponding descriptions in the above method embodiments, which are not repeated here.
  • the functions described by the various modules (submodules, units or components, etc.) in the network device 1100 of the application embodiments may be implemented by different modules (submodules, units or components, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 17 is a schematic block diagram of a network device 1200 according to another embodiment of the present application.
  • the network device 1200 may include:
  • the second sending unit 1210 is configured to send the common channel to the terminal device based on the frequency range of the common channel transmission; wherein, the frequency range of the common channel transmission is determined based on the control resource set CORESET 0 or the synchronization signal block SSB.
  • the terminal device may be a RedCap terminal.
  • the bandwidth corresponding to the frequency range of the common channel transmission is less than or equal to the maximum bandwidth supported by the terminal device.
  • the maximum bandwidth supported by the terminal device is less than the bandwidth of CORESET 0.
  • the frequency range of the common channel transmission includes the frequency range of the physical downlink shared channel PDSCH transmission.
  • the frequency range of PDSCH transmission is determined by at least one of the following frequency reference points: the start frequency point of the frequency range of PDSCH transmission; the end frequency point of the frequency range of PDSCH transmission; PDSCH transmission the center frequency of the frequency range.
  • a manner for determining the frequency reference point includes at least one of the following:
  • the starting frequency point of the frequency range of PDSCH transmission is the physical resource block PRB with the lowest frequency of the control resource set CORESET 0 or the synchronization signal block SSB;
  • the termination frequency of the frequency range of PDSCH transmission is CORESET 0 or the PRB with the highest frequency of SSB;
  • the center frequency of the frequency range of PDSCH transmission is CORESET 0 or the center frequency of SSB.
  • the PDSCH is scheduled within the frequency range of PDSCH transmission.
  • the manner of bearing the frequency reference point includes at least one of the following: MIB in PBCH; RMSI; RRC dedicated signaling.
  • the PDSCH is used to carry at least one of the following information: RMSI, other system information OSI, random access response RAR, and paging.
  • the network device 1200 in this embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • each module (submodule, unit, or component, etc.) in the network device 1200 reference may be made to the corresponding descriptions in the foregoing method embodiments, which are not repeated here.
  • the functions described by the various modules (submodules, units, or components, etc.) in the network device 1200 of the application embodiments may be implemented by different modules (submodules, units, or components, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 18 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so that the communication device 600 implements the methods in the embodiments of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620, so that the communication device 600 implements the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be the network device of this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 600 may be a terminal device in this embodiment of the present application, and the communication device 600 may implement corresponding processes implemented by the terminal device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 19 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiments of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • Chips applied to network equipment and terminal equipment can be the same chip or different chips.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 20 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 is configured to determine the initial downlink DL bandwidth part BWP based on the control resource set CORESET 0 or the synchronization signal block SSB; based on the initial DL BWP, receive the common channel; wherein, the bandwidth of the initial DL BWP Less than or equal to the maximum bandwidth supported by the end device.
  • the network device 820 is configured to send a common channel to the terminal device based on the initial downlink DL bandwidth part BWP; wherein, the initial DL BWP is determined based on the control resource set CORESET 0 or the synchronization signal block SSB, and the bandwidth of the initial DL BWP is less than or equal to the terminal device The maximum bandwidth supported.
  • the terminal device 810 is configured to determine the frequency range of the common channel transmission based on the control resource set CORESET 0 or the synchronization signal block SSB; and receive the common channel based on the frequency range of the common channel transmission.
  • the network device 820 is configured to send the common channel to the terminal device based on the frequency range of the common channel transmission; wherein the frequency range of the common channel transmission is determined based on the control resource set CORESET0 or the synchronization signal block SSB.
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)), and the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种信道传输方法、终端设备和网络设备。该信道传输方法包括:终端设备基于控制资源集CORESET 0或同步信号块SSB,确定初始下行DL带宽部分BWP;终端设备基于该初始DL BWP,接收公共信道;其中,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。本申请实施例,采用CORESET 0或SSB确定终端设备的初始DL BWP,使得终端设备可以在该初始DL BWP中完整接收公共信道。

Description

信道传输方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种信道传输方法、终端设备和网络设备。
背景技术
在无线通信技术的不断演进与助力下,物联网(Internet of Things,IoT)技术飞速发展。如3GPP(3rd Generation Partnership Project第三代移动通信标准化组织)组织推动发展的MTC(Machine-Type Communication,机器类型通信)/eMTC(LTE enhanced MTC,基于LTE演进的MTC),NB-IoT(Narrow Band Internet of Things,窄带物联网)系列标准成为5G massive(海量)MTC技术的候选技术标准。这些技术标准有望在智能家居、智慧城市、智慧工厂、远程监测、智慧交通等人们生产与生活的方方面面发挥巨大作用。MTC/eMTC和NB-IoT终端的成本较低,价格便宜、支持超低功耗、支持深广大覆盖场景等技术优势。因此有利于物联网技术的发展初期的快速普及。然而这些技术也具有一些应用场景的限制,由于MTC/eMTC和NB-IoT支持一些低数据速率、较高传输时延的应用,因此在一些需要具有相对较高速率的物联网场景,如智能安防中的视频监控、要求相对较低时延工业应用,则不能应用。而如果直接采用新无线(New Radio,NR)终端,由于NR终端的设计指标,如传输速率、传输时延等方面有远超过这些场景的实际需求,则成本上相对较高。
为了完善5G massive MTC场景的终端体系,可以设计一种既支持中等传输速率、中等时延要求,同时具有较低成本的NR MTC终端类型,目前3GPP称这种NR MTC类型的终端为RedCap(Reduced Capability NR Devices,缩减能力的NR)终端。RedCap终端所支持的带宽相对较窄。但是,如果终端所支持的带宽相对较窄,可能无法完整地接收信道。
发明内容
本申请实施例提供一种信道传输方法、终端设备和网络设备,可以使得终端设备更加完整地接收公共信道。
本申请实施例提供一种信道传输方法,包括:
终端设备基于控制资源集CORESET 0或同步信号块SSB,确定初始下行DL带宽部分BWP;
终端设备基于该初始DL BWP,接收公共信道;
其中,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。
本申请实施例还提供一种信道传输方法,包括:
终端设备基于控制资源集CORESET 0或同步信号块SSB,确定公共信道传输的频率范围;
终端设备基于该公共信道传输的频率范围,接收公共信道。
本申请实施例还提供一种信道传输方法,包括:
网络设备基于初始下行DL带宽部分BWP,向终端设备发送公共信道;
其中,该初始DL BWP是基于控制资源集CORESET 0或同步信号块SSB确定的,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。
本申请实施例还提供一种信道传输方法,包括:
网络设备基于公共信道传输的频率范围,向终端设备发送公共信道;
其中,该公共信道传输的频率范围是基于控制资源集CORESET 0或同步信号块SSB确定的。
本申请实施例提供一种终端设备,包括:
第一确定单元,用于基于控制资源集CORESET 0或同步信号块SSB,确定初始下行DL带宽部分BWP;
接收单元,用于基于该初始DL BWP,接收公共信道;
其中,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。
本申请实施例还提供一种终端设备,包括:
第二确定单元,用于基于控制资源集CORESET 0或同步信号块SSB,确定公共信道传输的频率范围;
第二接收单元,用于基于该公共信道传输的频率范围,接收公共信道。
本申请实施例提供一种网络设备,包括:
第一发送单元,用于基于初始下行DL带宽部分BWP,向终端设备发送公共信道;
其中,该初始DL BWP是基于控制资源集CORESET 0或同步信号块SSB确定的,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。
本申请实施例还提供一种网络设备,包括:
第二发送单元,用于基于公共信道传输的频率范围,向终端设备发送公共信道;
其中,该公共信道传输的频率范围是基于控制资源集CORESET 0或同步信号块SSB确定的。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的信道传输方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的信道传输方法。
本申请实施例提供一种芯片,用于实现上述的信道传输方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信道传输方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的信道传输方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信道传输方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的信道传输方法。
本申请实施例,采用CORESET 0或SSB确定终端设备的初始DL BWP,使得终端设备可以在该初始DL BWP中完整接收公共信道。采用CORESET 0或SSB确定公共信道传输的频率范围,也可以使得终端设备完整地接收公共信道。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是基于CORESET 0确定初始DL BWP的示意图。
图3是RedCap终端带宽小于CORESET0的带宽的示意图。
图4是根据本申请一实施例的信道传输方法的示意性流程图。
图5a是根据本申请另一实施例的信道传输方法的示意性流程图。
图5b是根据本申请另一实施例的信道传输方法中接收对不齐的示意图。
图6是根据本申请另一实施例的信道传输方法的示意性流程图。
图7是根据本申请另一实施例的信道传输方法的示意性流程图。
图8是确定RedCap终端接收带宽的起始频点的示意图。
图9是确定RedCap终端接收带宽的终止频点的示意图。
图10是确定RedCap终端接收带宽的中心频点的示意图。
图11是基于CORESET 0的起始PRB确定RedCap终端的初始DL BWP的示意图。
图12是基于CORESET 0的终止PRB确定RedCap终端的初始DL BWP的示意图。
图13是基于SSB中心频点确定终端的初始DL BWP的示意图。
图14是根据本申请一实施例的终端设备的示意性框图。
图15是根据本申请另一实施例的终端设备的示意性框图。
图16是根据本申请一实施例的网络设备的示意性框图。
图17是根据本申请另一实施例的网络设备的示意性框图。
图18是根据本申请实施例的通信设备示意性框图。
图19是根据本申请实施例的芯片的示意性框图。
图20是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智 能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。可选地,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
目前NR的终端至少需要支持2个接收通道,某些频段上的NR终端需要支持4个接收通道;每一个接收通道包含接收天线、滤波器、PA(PowerAmplifier,功率放大器),AD(Analog Digital,模数)采样器等元器件。因此,减少NR终端需要配备的射频通道数目将可显著降低终端成本。将具有两个射频通道的终端缩减为一个射频通道,则芯片模组的成本可降低约1/3。因此RedCap终端可以装配较少的天线数目用于降低终端的成本。
另一方面,正常NR终端需要支持较宽的传输带宽,如FR1终端需要支持最大100MHz的带宽。为降低RedCap终端的成本以及降低RedCap终端的功耗,RedCap终端可以支持较小的终端带宽,例如在FR1,终端可以仅支持5MHz、10MHz或20MHz的终端带宽。再如,在FR2,终端需要支持最大400MHz的带宽。为降低RedCap终端的成本以及降低RedCap终端的功耗,RedCap终端可以支持较小的终端带宽,如100MHz的带宽。
另外,RedCap终端还可能具有一些其他的特点,例如支持较低的峰值速率,支持较宽松的处理时延,较大的处理时延等。
NR系统中,系统带宽与终端带宽可能都会达到数百MHz甚至数GHz的带宽以支持高速移动数据传输。但在实际数据传输时,并非时时刻刻都需要如此大的带宽。例如,在仅需支持低数据速率传输的工作场景时(如社交软件聊天),终端仅需要采用较小的工作带宽,例如10MHz的带宽就已经足够。为了灵活支持上述不同场景的不同带宽需求,5G引入了带宽部分(BWP,bandwidth part)的概念。带宽部分可以是系统带宽(小区载波带宽)的一部分,例如系统带宽为100MHz,终端可以采用小于100MHz的带宽,例如20MHz、50MHz的带宽部分在系统带宽内部进行数据传输。例如,NR终端可以被高层信令配置最多4个BWP,不同的BWP可以具有不同的带宽大小、不同的频率位置以及不同的子载波间隔。网络可以根据终端的业务需求使得终端在多个BWP之间进行切换,例如较高业务速率传输时,使用较大带宽的BWP,较小的业务数据速率传输时使用较小带宽的BWP。网络向终端配置的BWP的带宽大小需要小于或等于终端所能支持的最大的带宽。
NR初始(initial)下行(Downlink,DL)BWP的确定方法如下:
NR终端的初始接入相关的过程在NR初始DL BWP中进行的。例如,终端读取系统信息,接收寻呼消息,随机接入过程中相关的下行控制信道PDCCH(Physical Downlink Control Channel,物理下行控制信道)、数据信道PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的接收等。在初始接入完成之前,终端基于RMSI(Remaining Minimum System Information,剩余最小系统信息)CORESET(control-resource set,控制资源集)(即终端监听调度承载RMSI PDSCH的PDCCH所在的PDCCH CORESET)确定初始DL BWP。例如,初始DL BWP的带宽大小与带宽位置与RMSI CORESET所占用的带宽大小与带宽位置完全一致。初始DL BWP的子载波间隔也与RMSI CORESET的子载波间隔完全一致。RMSI CORESET的配置信息是在NR PBCH中指示的。需要指出的是,RMSI CORESET在标准上又称为CORESET 0。RMSI CORESET的带宽大小可以被配置为24、48或96个PRB(Physical Resource Block,物理资源块)。如图2所示,是基于CORESET 0确定初始DL BWP的示意图。
在初始接入完成之后,可选地,网络设备可以向终端配置信令新的初始DL BWP,但新的初始DL BWP的带宽需要包含初始接入完成之前的初始DL BWP的带宽,且二者的子载波间隔完全一致。
RedCap终端所支持的带宽相对较窄,如FR1可能支持的RedCap终端的带宽为10MHz、20MHz等。对于FR1,10MHz或20MHz的RedCap终端均可以正常接收SS/PBCH Block(同步信号、广播信道块)。这是由于SS/PBCH Block占用20个PRB,而FR1SS/PBCH Block的子载波间隔为15KHz或30KHz。因此SS/PBCH Block占用的带宽最大为20(PRB)*12(子载波)*30KHz=7.2MHz。
当RedCap终端的带宽为10MHz时,却可能无法完整接收调度RMSI的控制信道和数据信道。如图3所示,RedCap终端带宽小于CORESET0的带宽。当RMSI CORESET的子载波间隔为15KHz时,RMSI CORESET最多可配置为96个PRB;或,当RMSI CORESET的子载波间隔为30KHz时,RMSI CORESET 最多可配置为48个PRB。因此RMSI CORESET的最大可能带宽为96(PRB)*12(子载波)*15KHz=48(PRB)*12(子载波)*30KHz=17.28MHz。当RedCap终端的带宽为20MHz时,可以完整接收调度RMSI的控制信道和数据信道。
再例如,由于降低成本的需要,FR2可能支持的RedCap终端的带宽为50MHz、100MHz。类似的,当RedCap终端的带宽为100MHz时,可以正常接收SS/PBCH Block(同步信号、广播信道块)。这是由于SS/PBCH Block占用20个PRB,而FR2SS/PBCH Block的子载波间隔为120KHz或240KHz,因此SS/PBCH Block占用的带宽最大为20(PRB)*12(子载波)*240KHz=57.6MHz。但当RedCap终端的带宽为50MHz时,却不能完整接收SS/PBCH Block(同步信号、广播信道块)。
此外,当RedCap终端的带宽为50MHz时,也无法完整接收调度RMSI的控制信道和数据信道。这是由于,当RMSI CORESET的子载波间隔为60KHz时,RMSI CORESET最多可配置为96个PRB;或,当RMSI CORESET的子载波间隔为120KHz时,RMSI CORESET最多可配置为48个PRB。因此RMSI CORESET的最大可能带宽为96(PRB)*12(子载波)*60KHz=48(PRB)*12(子载波)*120KHz=69.12MHz。当RedCap终端的带宽为100MHz时,可以完整接收调度RMSI的控制信道和数据信道。
对于无法完整接收调度RMSI的控制信道和数据信道的终端,在初始接入过程中的其他公共信道,如寻呼、RAR(Random Access Response,随机接入响应)、OSI(other system information,其他系统信息)等,由于是在由RMSI CORESET的带宽所确定的初始DL BWP中调度,如果终端带宽太窄,终端也可能无法完整接收这些信道。
本申请实施例提出了信道传输方法,可以用于公共数据信道的传输,能够优化当终端带宽小于RMSI CORESET的带宽时,向终端传输前述公共信道。
图4是根据本申请一实施例的信道传输方法200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、终端设备基于控制资源集(CORESET 0)或同步信号块(SSB),确定初始下行(DL)带宽部分(BWP);
S220、终端设备基于该初始DL BWP,接收公共信道;其中,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。
示例性地,在5G NR中,CORESET包括一组物理资源集合,由频域上多个RB和时域上的1、2或3个OFDM符号组成。CORESET 0又称为RMSI CORESET。RMSI CORESET的配置信息可以在NR PBCH(Physical Broadcast Channel,物理广播信道)中指示。RMSI CORESET的带宽大小可以被配置为例如24、48或96个PRB。
示例性地,SSB也可以称为同步信号和PBCH块(Synchronization Signal and PBCH block)。
示例性地,公共信道可以包括传输寻呼、RAR、OSI、RMSI等的信道。这些公共信道可以在终端设备的初始DL BWP中调度。该初始DL BWP可以为RedCap终端专用的初始DL BWP,与NR终端的初始DL BWP有所不同。
示例性地,终端设备可以为RedCap终端,能够支持中等传输速率、中等时延要求。RedCap终端支持的最大带宽相对较窄,例如可以为10MHz、20MHz等。RedCap终端基于CORESET 0或SSB确定的初始DL BWP小于或等于RedCap终端支持的最大带宽。例如,对于支持10MHz的RedCap终端,最大的初始DL BWP的带宽可以为52PRB(子载波间隔为15KHz)或24PRB(子载波间隔为30KHz)等。
在本实施例中,终端设备基于CORESET 0或SSB,确定该终端设备的初始DL BWP,并使得该初始DL BWP小于或等于终端设备所支持的最大带宽,终端设备能够完整地接收公共信道。
可选地,在本申请实施例中,该终端设备所支持的最大带宽小于CORESET 0的带宽。
由于该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽,因此终端设备能够完整地接收在初始DL BWP的带宽中调度的公共信道。
可选地,在本申请实施例中,基于CORESET 0或SSB,确定初始DL BWP,包括:在该终端设备所支持的最大带宽小于CORESET 0的带宽的情况下,该终端设备基于CORESET 0或SSB,确定初始DL BWP。
可选地,在本申请实施例中,该初始DL BWP由以下频率参考点的至少之一确定:初始DL BWP的起始频点;初始DL BWP的终止频点;初始DL BWP的中心频点。
例如,可以将初始DL BWP的起始频点和初始DL BWP的终止频点之间的带宽确定为初始DL BWP。
再如,根据初始DL BWP的起始频点,可以将从起始频点开始的一段带宽确定为初始DL BWP。根据初始DL BWP的终止频点,可以将到终止频点结束的一段带宽确定为初始DL BWP。根据初始DL BWP的中心频点,可以将中心频点前后的带宽确定为初始DL BWP。例如,对于支持10MHz的RedCap终端,上述一段带宽可以为52PRB(子载波间隔为15KHz)或24PRB(子载波间隔为30KHz)等。
可选地,在本申请实施例中,频率参考点的确定方式包括以下至少之一:
初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB,例如初始DL BWP的起始频点为频率最低的PRB中频率最低的子载波;
初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB,例如初始DL BWP的终止频点为频率最高的PRB中频率最高的子载波;
初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
可选地,在本申请实施例中,频率参考点是从网络设备接收的或通过协议约定获取的。
可选地,在本申请实施例中,承载频率参考点的方式包括以下至少之一:PBCH中的MIB(Master Information Block,主信息块);RMSI例如SIB(System Information Block,系统信息块)1;RRC(Radio Resource Control,无线资源控制)专用信令。例如,终端设备从网络设备接收上述的PBCH、RMSI或RRC专用信令。从PBCH、RMSI或RRC专用信令中获取用于确定初始DL BWP的频率参考点。然后,基于频率参考点确定初始DL BWP。
可选地,在本申请实施例中,在通过RMSI承载频率参考点的情况下,初始DL BWP的带宽用于传输以下信息的至少之一:其他系统信息OSI、随机接入响应RAR、寻呼。
在本实施例中,采用CORESET 0或SSB确定终端设备的初始DL BWP,使得终端设备可以在其专用的初始DL BWP中完整接收初始接入过程的公共信道例如RMSI、OSI、寻呼、RAR等消息的PDCCH和或PDSCH,从而避免性能下降。采用SSB频率位置确定的方式,进一步使得终端设备可以同时接收SSB和其初始DL BWP,避免了终端的跳频。
图5a是根据本申请另一实施例的信道传输方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。本实施例与方法200中相同的术语具有相同的含义,在此不赘述。该方法包括以下内容的至少部分内容。
S310、终端设备基于控制资源集CORESET 0或同步信号块SSB,确定公共信道传输的频率范围;
S320、终端设备基于该公共信道传输的频率范围,接收公共信道。
可选地,在本申请实施例中,公共信道传输的频率范围所对应的带宽小于或等于终端设备所支持的最大带宽。这样,终端设备可以在该公共信道传输的频率范围完整地接收公共信道。此外,如果公共信道传输的频率范围所对应的带宽大于RedCap终端所支持的最大带宽,RedCap终端基于CORESET 0或SSB确定公共信道传输的频率范围,也有利于RedCap终端准确地接收公共信道,避免接收对不齐的情况。
例如,如图5b所示,一种接收对不齐的情况包括:公共信道在传统的初始DL BWP的上半部分调度,但是RedCap终端在初始DL BWP的下半部分接收。RedCap终端只能接收到少部分公共信道。
再如,RedCap终端所支持的最大带宽为10MHz,如果公共信道传输的频率范围所对应的带宽为20MHz。如果RedCap终端基于CORESET 0或SSB确定公共信道传输的频率范围,可以得到公共信道传输的起始频点,RedCap终端可以从公共信道传输的起始频点开始接收公共信道。这样,RedCap终端收到的公共信道所对应的带宽为约10MHz。而接收对不齐的情况下RedCap终端收到的公共信道所对应的带宽可能只有 2MHz。
可选地,在本申请实施例中,终端设备所支持的最大带宽小于CORESET 0的带宽。
可选地,在本申请实施例中,基于CORESET 0或SSB,确定公共信道传输的频率范围,包括:
在终端设备所支持的最大带宽小于CORESET 0的带宽的情况下,终端设备基于CORESET 0或SSB,确定公共信道传输的频率范围。
可选地,在本申请实施例中,公共信道传输的频率范围包括物理下行共享信道PDSCH传输的频率范围。
可选地,在本申请实施例中,PDSCH传输的频率范围由以下频率参考点的至少之一确定:PDSCH传输的频率范围的起始频点;PDSCH传输的频率范围的终止频点;PDSCH传输的频率范围的中心频点。
例如,可以将PDSCH传输的频率范围的起始频点和终止频点之间的带宽确定为PDSCH传输的频率范围。再如,根据PDSCH传输的频率范围的起始频点,可以将从起始频点开始的一段带宽确定为PDSCH传输的频率范围。根据PDSCH传输的频率范围的终止频点,可以将到终止频点结束的一段带宽确定为PDSCH传输的频率范围。根据PDSCH传输的频率范围的中心频点,可以将中心频点前后的带宽确定为PDSCH传输的频率范围。例如,对于10MHz的RedCap终端,上述一段带宽可以为52PRB(子载波间隔为15KHz)或24PRB(子载波间隔为30KHz)。
可选地,在本申请实施例中,频率参考点的确定方式包括以下至少之一:
PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB,例如PDSCH传输的频率范围的起始频点为频率最低的PRB中频率最低的子载波;
PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB,例如PDSCH传输的频率范围的终止频点为频率最高的PRB中频率最高的子载波;
PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
可选地,在本申请实施例中,频率参考点是从网络设备接收的或通过协议约定获取的。
可选地,在本申请实施例中,承载频率参考点的方式包括以下至少之一:物理广播信道PBCH中的主信息块MIB;剩余最小系统信息RMSI;无线资源控制RRC专用信令。
可选地,除了采用指示频率参考点来确定PDSCH传输的频率范围的方式之外,还可以采用指示低频率侧或高频率侧的方式来确定PDSCH传输的频率范围。具体地,可以指示PDSCH传输的频率范围位于CORESET 0或NR终端的初始DL BWP的低频率侧或高频率侧。例如,如果指示PDSCH传输的频率范围位于CORESET 0的低频率侧,则将从CORESET 0的频率较低的PRB开始的一段带宽作为PDSCH传输的频率范围。再如,如果指示PDSCH传输的频率范围位于NR终端的初始DL BWP的高频率侧,则将到NR终端的初始DL BWP的频率较高的PRB结束的一段带宽作为PDSCH传输的频率范围。
可选地,在本申请实施例中,PDSCH被调度在PDSCH传输的频率范围内。
可选地,在本申请实施例中,PDSCH用于承载以下信息的至少之一:RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。例如,终端设备从网络设备接收上述的PBCH、RMSI或RRC专用信令。从PBCH、RMSI或RRC专用信令中获取用于确定PDSCH传输的频率范围的频率参考点。然后,基于频率参考点确定PDSCH传输的频率范围。
可选地,在本申请实施例中,终端设备为缩减能力的(RedCap)终端,RedCap终端与新无线NR终端接收的(PDCCH)使用不同的系统消息无线网络临时标识(SI-RNTI),使用不同的扰码加扰,或带有不同的下行控制指示(DCI)。
可选地,在本申请实施例中,终端设备为RedCap终端,RedCap终端与NR终端共享PDCCH CORESET配置。
在本实施例中,采用CORESET 0或SSB确定公共信道传输的频率范围,可以使得终端设备完整接收公共信道,避免的接收性能的损失。有利于使得终端设备接收的公共信道与公共信道传输的频率范围对齐,更加准确地接收公共信道。另外,约定终端设备的传输的频率范围与SSB的位置相关,也可以使得终端设 备同时完整接收SSB,例如,若终端设备接收带宽的中心频点为SSB的中心频点,则终端设备可以完整接收SSB,避免了终端为接收SSB的跳频。
图6是根据本申请另一实施例的信道传输方法400的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S410、网络设备基于初始下行DL带宽部分BWP,向终端设备发送公共信道;其中,该初始DL BWP是基于控制资源集CORESET 0或同步信号块SSB确定的,该初始DL BWP的带宽小于或等于该终端设备所支持的最大带宽。例如,网络设备基于CORESET 0或SSB可以确定某个终端设备的初始DL BWP,进而可以在该初始DL BWP向该终端设备发送公共信道。终端设备可以基于该初始DL BWP接收该公共信道。示例性地,该终端设备可以是RedCap终端。
可选地,在本申请实施例中,终端设备所支持的最大带宽小于CORESET 0的带宽。
可选地,在本申请实施例中,初始DL BWP由以下频率参考点的至少之一确定:初始DL BWP的起始频点;初始DL BWP的终止频点;初始DL BWP的中心频点。
可选地,在本申请实施例中,频率参考点的确定方式包括以下至少之一:
初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB;
初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB;
初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
可选地,在本申请实施例中,承载频率参考点的方式包括以下至少之一:PBCH中的MIB;RMSI;RRC专用信令。
可选地,在本申请实施例中,在通过RMSI承载频率参考点的情况下,初始DL BWP的带宽用于传输以下信息的至少之一:其他系统信息OSI、随机接入响应RAR、寻呼。
本实施例的网络设备执行方法400的具体示例可以参见上述方法200的中关于网络设备例如基站的相关描述,为了简洁,在此不再赘述。
图7是根据本申请另一实施例的信道传输方法500的示意性流程图。
S510、网络设备基于公共信道传输的频率范围,向终端设备发送公共信道;其中,该公共信道传输的频率范围是基于控制资源集CORESET 0或同步信号块SSB确定的。
可选地,在本申请实施例中,公共信道传输的频率范围所对应的带宽小于或等于终端设备所支持的最大带宽。
可选地,在本申请实施例中,终端设备所支持的最大带宽小于CORESET 0的带宽。
可选地,在本申请实施例中,公共信道传输的频率范围包括物理下行共享信道PDSCH传输的频率范围。
可选地,在本申请实施例中,PDSCH传输的频率范围由以下频率参考点的至少之一确定:PDSCH传输的频率范围的起始频点;PDSCH传输的频率范围的终止频点;PDSCH传输的频率范围的中心频点。
可选地,在本申请实施例中,频率参考点的确定方式包括以下至少之一:
PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB;
PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB;
PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
可选地,在本申请实施例中,PDSCH被调度在PDSCH传输的频率范围内。
可选地,在本申请实施例中,承载频率参考点的方式包括以下至少之一:PBCH中的MIB;RMSI;RRC专用信令。
可选地,在本申请实施例中,PDSCH用于承载以下信息的至少之一:RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。
本实施例的网络设备执行方法500的具体示例可以参见上述方法300的中关于网络设备例如基站的相 关描述,为了简洁,在此不再赘述。
以下采用几个示例说明本申请的信道传输方法。
在本申请实施例中,可以基于CORESET 0或SSB的频率位置确定RedCap终端公共信道相关的PDCCH和或PDSCH的频率范围;或确定RedCap终端专用的初始DL BWP。基于RedCap终端的带宽确定接收带宽或初始DL BWP的带宽。这样,使得终端可以完整接收相关的公共信道。
一种方式是通过UE实现来解决完整接收相关的公共信道的问题。以FR1为例,当RedCap终端的带宽为10MHz,且当RMSI CORESET的带宽为17.28MHz时,虽然终端的带宽不能完整覆盖RMSI CORESET的带宽,但终端可以接收RMSI CORESET的一部分带宽。例如终端可以选择接收任意一部分RMSI CORESET的一部分带宽(10MHz的终端带宽,去掉10MHz带宽内两侧的保护带,实际接收带宽会小于10MHz,如对15KHz的子载波间隔,对应的PRB数目为52个)。由于PDCCH采用了信道编码,因此即使终端没有完整的接收PDCCH CORESET带宽,也是有可能正确检测到PDCCH,只是由于可接收到的PDCCH RE(Resource Element,资源元素)数目的减少,导致PDCCH的检测性能下降。类似地,在基于RMSI CORESET确定的初始(initial)DL BWP内,终端在接收RMSI的PDSCH、RAR、寻呼(paging)的PDCCH或PDSCH,也有可能不能完整接收上述信道的带宽,但终端依然可通过接收上述信道的部分带宽实现正确的信道接收。
但是,依赖终端实现的方式,是以牺牲终端的接收性能为代价的。下面进一步提出几种优化的示例:
示例1:网络通知RMSI PDSCH的频率范围
一种优化的方法的示例包括,网络通知终端或预先约定待接收信道的频率范围例如频率接收位置。例如,对于RMSI的接收,RMSI PDCCH采用前述UE实现的方式在接收到的部分RMSI PDCCH CORESET带宽中检测。但对于RMSI PDSCH,可预先约定或由网络通知接收RMSI PDSCH的频率范围相关的信息,例如RMSI PDSCH调度的频率起始点(或称为起始频点)、RMSI PDSCH调度的频率终止点(或称为终止频点)或RMSI PDSCH调度的频率中心频点(或称为中心频点)。
例如,RMSI PDSCH可以在从该频率起始点开始的一段频段范围内调度(RedCap终端可支持的带宽,如10MHz),该频率起始点可以为CORESET 0或SSB的频率最低的PRB。如图8所示的确定RedCap终端接收带宽的起始频点的示意图,该频率起始点可以为CORESET 0频率最低的PRB。
再如,RMSI PDSCH也可以在至该频率终止点结束的一段频段范围内调度(RedCap终端可支持的带宽,如10MHz),该频率起始点可以为CORESET 0或SSB的频率最高的PRB,如图9所示的确定RedCap终端接收带宽的终止频点的示意图,该频率起始点可以为CORESET 0频率最高的PRB。
再如,RMSI PDSCH调度的频率中心频点也可以为CORESET 0或SSB的中心频点,如图10所示的确定RedCap终端接收带宽的中心频点的示意图,RMSI PDSCH调度的频率中心频点可为SSB的中心频点。
这里需要指出的是,该频率起始点或频率终止点不一定是PDSCH的实际传输的频率起始点或频率终止点,而是从该频率起始点开始的该一段频段范围内或至该频率终止点的结束的该一段频段范围内调度进行调度。该RMSI PDSCH调度的频率中心频点的作用可以包括:以该RMSI PDSCH调度的频率中心频点为中心频点的一段频率范围内可以进行RMSI PDSCH的调度。上述的一段频率范围一般需要小于RedCap终端可支持的带宽。
需要指出的是,该RMSI PDSCH可以是针对RedCap终端专门发送的(即针对RedCap UE单独发送了其专门的RMSI PDSCH;另外,也对NR终端发送了其RMSI PDSCH),也可以是NR终端和RedCap终端共享的。若是前者,由于RedCap终端与传统NR终端均在相同的RMSI CORESET中接收调度RMSI的PDCCH,但二者的RMSI PDSCH不同,因此,向RedCap终端与向传统NR终端发送的调度RMSI的PDCCH需要区分。具体地,二者的PDCCH可以使用不同的SI-RNTI(针对RedCap终端的PDCCH使用不同于现有SI-RNTI的第二SI-RNTI,记为SI-RNTI_2);或不同的扰码加扰;或采用DCI的一个比特进行指示(例如该比特取值为0,为针对NR终端的PDCCH,当该比特取值为1,为针对RedCap终端的PDCCH),该 比特可以为现有调度RMSI的PDCCH DCI中的一个保留(Reserved)比特位。
由于RMSI中携带SIB1,SIB中可以配置其他OSI、寻呼、RAR等公共信道相关的PDCCH CORESET,因此可以保证这些公共信道的PDCCH CORESET不超过RedCap终端可支持带宽(如10MHz)。
在本示例中,通过通知或预先约定RMSI PDSCH的频率范围相关的信息,并且限制RMSI PDSCH的带宽小于等于RedCap终端可支持的带宽大小,可以使得终端完整接收RMSI PDSCH,避免的接收性能的损失。另外,约定终端的接收位置与SSB的位置相关,也可以使得终端同时完整接收SSB,例如,若终端接收带宽的中心频点为SSB的中心频点,则终端可以完整接收SSB,避免了终端为接收SSB的跳频。
示例2:网络通知RMSI、OSI、RAR、寻呼的PDSCH的频率范围
该示例类似于示例1,初始接入过程中承载RMSI、OSI、RAR、寻呼等的PDSCH的频率范围信息,可以采用类似示例1中的方式由网络通知终端或预先约定。这些信道的频率范围可以是相同的,也可以是不同的;或者对于不同的终端是不同的,但对应同一个终端是相同的。例如可以将小区内的RedCap终端划分为若干组,不同的组通知不同的频率范围。
对于调度RMSI、OSI、RAR、寻呼的PDCCH,也可以采用前述终端实现的方式来接收。这样,RedCap终端可以与NR终端共享相关PDCCH CORESET的配置,节省网络信令。
示例3:RedCap UE专用的初始DL BWP
对于NR终端,初始DL BWP是由RMSI CORESET的带宽大小及其位置确定的。对于小带宽(如10MHz)的Redcap UE,直接使用由RMSI CORESET所确定的初始DL BWP,会带来不能完整接收公共信道的问题。因此,另一种方法的示例包括:RedCap终端使用其专用的初始DL BWP。RedCap专用的初始DL BWP也由RMSI CORESET的频率位置或SSB的频率位置确定。
RedCap终端专用的初始DL BWP的频率位置的起点或终点或中心频点可以预先约定,或,由网络通知的。RedCap终端专用的初始DL BWP的频率位置的起始点、终止点或中心频点为RMSI CORESET或SSB中一个约定的频率位置。
例如,RedCap终端专用的初始DL BWP的频率位置的起点为RMSI CORESET或SSB的频率位置最低的PRB。如图11所示的基于CORESET 0的起始PRB确定RedCap终端的初始DL BWP的示意图,RedCap终端专用的初始DL BWP的频率位置的起点可以为RMSI CORESET的PRB 0(起始PRB)。
再如,RedCap终端专用的初始DL BWP的频率位置的终点为RMSI CORESET或SSB的频率位置最高的PRB。如图12所示的基于CORESET 0的终止PRB确定RedCap终端的初始DL BWP的示意图,RedCap终端专用的初始DL BWP的频率位置的终止点可以为RMSI CORESET的终止频点。
再如,RedCap终端专用的初始DL BWP的频率位置的中心频点为RMSI CORESET或SSB的中心频点。如图13所示的基于SSB中心频点确定RedCap终端的初始DL BWP的示意图,RedCap终端专用的初始DL BWP的频率位置的中心频点可以为SSB的中心频点。
当采用网络通知的方式时,可以在PBCH(MIB)中通知,或者在RMSI(SIB1)通知。
RedCap终端专用的初始DL BWP的带宽可以为预设的或由网络通知的。例如,该初始DL BWP的带宽小于RedCap终端支持的带宽,对于10MHz的RedCap UE,最大的初始DL BWP的带宽为52PRB(子载波间隔为15KHz)或24PRB(子载波间隔为30KHz)。当采用网络通知的方式时,可以在PBCH(MIB)中通知,或者在RMSI(SIB1)通知。当采用通知的方式,且相关配置信息在RMSI(SIB1)通知时,该RedCap专用的初始DL BWP用于OSI、RAR、寻呼(paging)等的接收,而不用于RMSI的接收。
在本示例中,采用CORESET 0或SSB确定RedCap UE专用的初始DL BWP,使得RedCap终端可以在其专用的初始DL BWP中完整接收初始接入过程的RMSI、OSI、寻呼、RAR等消息的PDCCH和或PDSCH,从而避免采用现有方式带来的性能下降。采用SSB频率位置确定的方式,进一步使得终端可以同时接收SSB和其初始DL BWP,避免了终端的跳频。
图14是根据本申请一实施例的终端设备900的示意性框图。该终端设备900可以包括:
第一确定单元910,用于基于控制资源集CORESET 0或同步信号块SSB,确定初始下行DL带宽部分BWP;
第一接收单元920,用于基于该初始DL BWP,接收公共信道;
其中,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。
可选地,在本申请实施例中,该终端设备所支持的最大带宽小于CORESET 0的带宽。
可选地,在本申请实施例中,第一确定单元还用于在该终端设备所支持的最大带宽小于CORESET 0的带宽的情况下,该终端设备基于CORESET 0或SSB,确定初始DL BWP。
可选地,在本申请实施例中,初始DL BWP由以下频率参考点的至少之一确定:初始DL BWP的起始频点;初始DL BWP的终止频点;初始DL BWP的中心频点。
可选地,在本申请实施例中,频率参考点的确定方式包括以下至少之一:
初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB;
初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB;
初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
可选地,在本申请实施例中,该频率参考点是从网络设备接收的或通过协议约定获取的。
可选地,在本申请实施例中,承载该频率参考点的方式包括以下至少之一:PBCH中的MIB;RMSI;RRC专用信令。
可选地,在本申请实施例中,在通过RMSI承载频率参考点的情况下,初始DL BWP的带宽用于传输以下信息的至少之一:其他系统信息OSI、随机接入响应RAR、寻呼。
示例性地,该终端设备可以是RedCap终端。
本申请实施例的终端设备900能够实现前述的方法实施例中的终端设备的对应功能。该终端设备900中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备900中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图15是根据本申请另一实施例的终端设备1000的示意性框图。该终端设备1000可以包括:
第二确定单元1010,用于基于控制资源集CORESET 0或同步信号块SSB,确定公共信道传输的频率范围;
第二接收单元1020,用于基于该公共信道传输的频率范围,接收公共信道。
可选地,该公共信道传输的频率范围所对应的带宽小于或等于该终端设备所支持的最大带宽。
可选地,在本申请实施例中,该终端设备所支持的最大带宽小于CORESET 0的带宽。
可选地,在本申请实施例中,第二确定单元1010还用于在该终端设备所支持的最大带宽小于CORESET0的带宽的情况下,基于CORESET 0或SSB,确定公共信道传输的频率范围。
可选地,在本申请实施例中,公共信道传输的频率范围包括物理下行共享信道PDSCH传输的频率范围。
可选地,在本申请实施例中,该PDSCH传输的频率范围由以下频率参考点的至少之一确定:PDSCH传输的频率范围的起始频点;PDSCH传输的频率范围的终止频点;PDSCH传输的频率范围的中心频点。
可选地,在本申请实施例中,该频率参考点的确定方式包括以下至少之一:
PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB;
PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB;
PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
可选地,在本申请实施例中,该频率参考点是从网络设备接收的或通过协议约定获取的。
可选地,在本申请实施例中,承载该频率参考点的方式包括以下至少之一:PBCH中的MIB;RMSI; RRC专用信令。
可选地,在本申请实施例中,PDSCH被调度在PDSCH传输的频率范围内。
可选地,在本申请实施例中,PDSCH用于承载以下信息的至少之一:RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。
可选地,在本申请实施例中,终端设备为RedCap终端,RedCap终端与新无线NR终端接收的PDCCH使用不同的系统消息无线网络临时标识SI-RNTI,使用不同的扰码加扰,或带有不同的下行控制指示DCI。
可选地,终端设备为RedCap终端,RedCap终端与NR终端共享PDCCH CORESET配置。
本申请实施例的终端设备1000能够实现前述的方法实施例中的终端设备的对应功能。该终端设备1000中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备1000中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图16是根据本申请一实施例的网络设备1100的示意性框图。该网络设备1100可以包括:
第一发送单元1110,用于基于初始下行DL带宽部分BWP,向终端设备发送公共信道;其中,该初始DL BWP是基于控制资源集CORESET 0或同步信号块SSB确定的,该初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。示例性地,该终端设备可以是RedCap终端。
可选地,在本申请实施例中,终端设备所支持的最大带宽小于CORESET 0的带宽。
可选地,在本申请实施例中,该初始DL BWP由以下频率参考点的至少之一确定:初始DL BWP的起始频点;初始DL BWP的终止频点;初始DL BWP的中心频点。
可选地,在本申请实施例中,该频率参考点的确定方式包括以下至少之一:
初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB;
初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB;
初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
可选地,承载该频率参考点的方式包括以下至少之一:PBCH中的MIB;RMSI;RRC专用信令。
可选地,在本申请实施例中,在通过RMSI承载该频率参考点的情况下,该初始DL BWP的带宽用于传输以下信息的至少之一:其他系统信息OSI、随机接入响应RAR、寻呼。
本申请实施例的网络设备1100能够实现前述的方法实施例中的网络设备的对应功能。该网络设备1100中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备1100中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图17是根据本申请另一实施例的网络设备1200的示意性框图。该网络设备1200可以包括:
第二发送单元1210,用于基于公共信道传输的频率范围,向终端设备发送公共信道;其中,该公共信道传输的频率范围是基于控制资源集CORESET 0或同步信号块SSB确定的。示例性地,该终端设备可以是RedCap终端。
可选地,在本申请实施例中,该公共信道传输的频率范围所对应的带宽小于或等于终端设备所支持的最大带宽。
可选地,在本申请实施例中,该终端设备所支持的最大带宽小于CORESET 0的带宽。
可选地,在本申请实施例中,公共信道传输的频率范围包括物理下行共享信道PDSCH传输的频率范围。
可选地,在本申请实施例中,PDSCH传输的频率范围由以下频率参考点的至少之一确定:PDSCH传输的频率范围的起始频点;PDSCH传输的频率范围的终止频点;PDSCH传输的频率范围的中心频点。
可选地,在本申请实施例中,该频率参考点的确定方式包括以下至少之一:
PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB;
PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB;
PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
可选地,在本申请实施例中,PDSCH被调度在PDSCH传输的频率范围内。
可选地,承载该频率参考点的方式包括以下至少之一:PBCH中的MIB;RMSI;RRC专用信令。
可选地,在本申请实施例中,PDSCH用于承载以下信息的至少之一:RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。
本申请实施例的网络设备1200能够实现前述的方法实施例中的网络设备的对应功能。该网络设备1200中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备1200中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图18是根据本申请实施例的通信设备600示意性结构图。该通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。
可选地,如图18所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图18所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图19是根据本申请实施例的芯片700的示意性结构图。该芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图19所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC) 或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图20是根据本申请实施例的通信系统800的示意性框图。该通信系统800包括终端设备810和网络设备820。在一种可能的实施方式中,终端设备810用于基于控制资源集CORESET 0或同步信号块SSB,确定初始下行DL带宽部分BWP;基于初始DL BWP,接收公共信道;其中,初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。网络设备820用于基于初始下行DL带宽部分BWP,向终端设备发送公共信道;其中,初始DL BWP是基于控制资源集CORESET 0或同步信号块SSB确定的,初始DL BWP的带宽小于或等于终端设备所支持的最大带宽。
在一种可能的实施方式中,终端设备810用于基于控制资源集CORESET 0或同步信号块SSB,确定公共信道传输的频率范围;基于公共信道传输的频率范围,接收公共信道。网络设备820用于基于公共信道传输的频率范围,向终端设备发送公共信道;其中,公共信道传输的频率范围是基于控制资源集CORESET0或同步信号块SSB确定的。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (82)

  1. 一种信道传输方法,包括:
    终端设备基于控制资源集CORESET 0或同步信号块SSB,确定初始下行DL带宽部分BWP;
    所述终端设备基于所述初始DL BWP,接收公共信道;
    其中,初始DL BWP的带宽小于或等于所述终端设备所支持的最大带宽。
  2. 根据权利要求1所述的方法,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  3. 根据权利要求1或2所述的方法,其中,基于CORESET 0或SSB,确定初始DL BWP,包括:
    在所述终端设备所支持的最大带宽小于CORESET 0的带宽的情况下,所述终端设备基于CORESET 0或SSB,确定初始DL BWP。
  4. 根据权利要求1至3中任一项所述的方法,所述初始DL BWP由以下频率参考点的至少之一确定:
    初始DL BWP的起始频点;
    初始DL BWP的终止频点;
    初始DL BWP的中心频点。
  5. 根据权利要求4所述的方法,其中,所述频率参考点的确定方式包括以下至少之一:
    所述初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB;
    所述初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB;
    所述初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
  6. 根据权利要求4或5所述的方法,其中,所述频率参考点是从网络设备接收的或通过协议约定获取的。
  7. 根据权利要求4至6中任一项所述的方法,其中,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  8. 根据权利要求7所述的方法,其中,在通过所述RMSI承载所述频率参考点的情况下,所述初始DL BWP的带宽用于传输以下信息的至少之一:
    其他系统信息OSI、随机接入响应RAR、寻呼。
  9. 一种信道传输方法,包括:
    终端设备基于控制资源集CORESET 0或同步信号块SSB,确定公共信道传输的频率范围;
    所述终端设备基于所述公共信道传输的频率范围,接收所述公共信道。
  10. 根据权利要求9所述的方法,其中,所述公共信道传输的频率范围所对应的带宽小于或等于所述终端设备所支持的最大带宽。
  11. 根据权利要求9或10所述的方法,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  12. 根据权利要求9至11中任一项所述的方法,其中,基于CORESET 0或SSB,确定公共信道传输的频率范围,包括:
    在所述终端设备所支持的最大带宽小于CORESET 0的带宽的情况下,所述终端设备基于CORESET 0或SSB,确定公共信道传输的频率范围。
  13. 根据权利要求9至11中任一项所述的方法,其中,所述公共信道传输的频率范围包括物理下行共享信道PDSCH传输的频率范围。
  14. 根据权利要求13所述的方法,其中,所述PDSCH传输的频率范围由以下频率参考点的至少之一确定:
    PDSCH传输的频率范围的起始频点;
    PDSCH传输的频率范围的终止频点;
    PDSCH传输的频率范围的中心频点。
  15. 根据权利要求14所述的方法,其中,所述频率参考点的确定方式包括以下至少之一:
    PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB;
    PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB;
    PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
  16. 根据权利要求14或15所述的方法,其中,所述频率参考点是从网络设备接收的或通过协议约定获取的。
  17. 根据权利要求14至16中任一项所述的方法,其中,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  18. 根据权利要求13至15中任一项所述的方法,其中,所述PDSCH被调度在所述PDSCH传输的频率范围内。
  19. 根据权利要求13至18中任一项所述的方法,其中,所述PDSCH用于承载以下信息的至少之一:
    RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。
  20. 根据权利要求9至19中任一项所述的方法,其中,所述终端设备为缩减能力的RedCap终端,所述RedCap终端与新无线NR终端接收的PDCCH使用不同的系统消息无线网络临时标识SI-RNTI,使用不同的扰码加扰,或带有不同的下行控制指示DCI。
  21. 根据权利要求9至20中任一项所述的方法,其中,所述终端设备为RedCap终端,所述RedCap终端与NR终端共享PDCCH CORESET配置。
  22. 一种信道传输方法,包括:
    网络设备基于初始下行DL带宽部分BWP,向终端设备发送公共信道;
    其中,所述初始DL BWP是基于控制资源集CORESET 0或同步信号块SSB确定的,所述初始DL BWP的带宽小于或等于所述终端设备所支持的最大带宽。
  23. 根据权利要求22所述的方法,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  24. 根据权利要求22或23所述的方法,所述初始DL BWP由以下频率参考点的至少之一确定:
    初始DL BWP的起始频点;
    初始DL BWP的终止频点;
    初始DL BWP的中心频点。
  25. 根据权利要求24所述的方法,其中,所述频率参考点的确定方式包括以下至少之一:
    所述初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB;
    所述初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB;
    所述初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
  26. 根据权利要求25所述的方法,其中,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  27. 根据权利要求26所述的方法,其中,在通过所述RMSI承载所述频率参考点的情况下,所述初始DL BWP的带宽用于传输以下信息的至少之一:
    其他系统信息OSI、随机接入响应RAR、寻呼。
  28. 一种信道传输方法,包括:
    网络设备基于公共信道传输的频率范围,向终端设备发送公共信道;
    其中,所述公共信道传输的频率范围是基于控制资源集CORESET 0或同步信号块SSB确定的。
  29. 根据权利要求28所述的方法,其中,所述公共信道传输的频率范围所对应的带宽小于或等于所述终端设备所支持的最大带宽。
  30. 根据权利要求28或29所述的方法,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  31. 根据权利要求28至30中任一项所述的方法,其中,所述公共信道传输的频率范围包括物理下行共享信道PDSCH传输的频率范围。
  32. 根据权利要求31所述的方法,其中,所述PDSCH传输的频率范围由以下频率参考点的至少之一确定:
    PDSCH传输的频率范围的起始频点;
    PDSCH传输的频率范围的终止频点;
    PDSCH传输的频率范围的中心频点。
  33. 根据权利要求32所述的方法,其中,所述频率参考点的确定方式包括以下至少之一:
    PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB;
    PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB;
    PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
  34. 根据权利要求31至33中任一项所述的方法,其中,所述PDSCH被调度在所述PDSCH传输的频率范围内。
  35. 根据权利要求34所述的方法,其中,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  36. 根据权利要求31至35中任一项所述的方法,其中,所述PDSCH用于承载以下信息的至少之一:
    RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。
  37. 一种终端设备,包括:
    第一确定单元,用于基于控制资源集CORESET 0或同步信号块SSB,确定初始下行DL带宽部分BWP;
    接收单元,用于基于所述初始DL BWP,接收公共信道;
    其中,初始DL BWP的带宽小于或等于所述终端设备所支持的最大带宽。
  38. 根据权利要求37所述的终端设备,其特征在于,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  39. 根据权利要求37或38所述的终端设备,其特征在于,所述第一确定单元还用于在所述终端设备所支持的最大带宽小于CORESET 0的带宽的情况下,所述终端设备基于CORESET 0或SSB,确定初始DL BWP。
  40. 根据权利要求37至39中任一项所述的终端设备,其特征在于,所述初始DL BWP由以下频率参考点的至少之一确定:
    初始DL BWP的起始频点;
    初始DL BWP的终止频点;
    初始DL BWP的中心频点。
  41. 根据权利要求40所述的终端设备,其特征在于,其中,所述频率参考点的确定方式包括以下至少之一:
    所述初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB;
    所述初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB;
    所述初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
  42. 根据权利要求40或41所述的终端设备,其特征在于,其中,所述频率参考点是从网络设备接收的或通过协议约定获取的。
  43. 根据权利要求40至42中任一项所述的终端设备,其特征在于,其中,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  44. 根据权利要求43所述的终端设备,其特征在于,其中,在通过所述RMSI承载所述频率参考点的情况下,所述初始DL BWP的带宽用于传输以下信息的至少之一:
    其他系统信息OSI、随机接入响应RAR、寻呼。
  45. 一种终端设备,包括:
    第二确定单元,用于基于控制资源集CORESET 0或同步信号块SSB,确定公共信道传输的频率范围;
    第二接收单元,用于基于所述公共信道传输的频率范围,接收所述公共信道。
  46. 根据权利要求45所述的终端设备,其特征在于,其中,所述公共信道传输的频率范围所对应的带宽小于或等于所述终端设备所支持的最大带宽。
  47. 根据权利要求45或46所述的终端设备,其特征在于,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  48. 根据权利要求45至47中任一项所述的终端设备,其特征在于,其中,所述第二确定单元还用于在所述终端设备所支持的最大带宽小于CORESET 0的带宽的情况下,基于CORESET 0或SSB,确定公共信道传输的频率范围。
  49. 根据权利要求45至47中任一项所述的终端设备,其特征在于,其中,所述公共信道传输的频率范围包括物理下行共享信道PDSCH传输的频率范围。
  50. 根据权利要求49所述的终端设备,其特征在于,其中,所述PDSCH传输的频率范围由以下频率参考点的至少之一确定:
    PDSCH传输的频率范围的起始频点;
    PDSCH传输的频率范围的终止频点;
    PDSCH传输的频率范围的中心频点。
  51. 根据权利要求50所述的终端设备,其特征在于,其中,所述频率参考点的确定方式包括以下至少之一:
    PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB;
    PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB;
    PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
  52. 根据权利要求50或51所述的终端设备,其特征在于,其中,所述频率参考点是从网络设备接收的或通过协议约定获取的。
  53. 根据权利要求50至52中任一项所述的终端设备,其特征在于,其中,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  54. 根据权利要求49至51中任一项所述的终端设备,其特征在于,其中,所述PDSCH被调度在所述PDSCH传输的频率范围内。
  55. 根据权利要求49至54中任一项所述的终端设备,其特征在于,其中,所述PDSCH用于承载以下信息的至少之一:RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。
  56. 根据权利要求45至55中任一项所述的终端设备,其特征在于,其中,所述终端设备为缩减能力的RedCap终端,所述RedCap终端与新无线NR终端接收的PDCCH使用不同的系统消息无线网络临时标识SI-RNTI,使用不同的扰码加扰,或带有不同的下行控制指示DCI。
  57. 根据权利要求45至56中任一项所述的终端设备,其特征在于,其中,所述终端设备为RedCap终端,所述RedCap终端与NR终端共享PDCCH CORESET配置。
  58. 一种网络设备,包括:
    第一发送单元,用于基于初始下行DL带宽部分BWP,向终端设备发送公共信道;
    其中,所述初始DL BWP是基于控制资源集CORESET 0或同步信号块SSB确定的,所述初始DL BWP的带宽小于或等于所述终端设备所支持的最大带宽。
  59. 根据权利要求58所述的网络设备,其特征在于,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  60. 根据权利要求58或59所述的网络设备,其特征在于,所述初始DL BWP由以下频率参考点的至少之一确定:
    初始DL BWP的起始频点;
    初始DL BWP的终止频点;
    初始DL BWP的中心频点。
  61. 根据权利要求60所述的网络设备,其特征在于,其中,所述频率参考点的确定方式包括以下至少之一:
    所述初始DL BWP的起始频点为CORESET 0或SSB的频率最低的PRB;
    所述初始DL BWP的终止频点为CORESET 0或SSB的频率最高的PRB;
    所述初始DL BWP的中心频点为CORESET 0或SSB的中心频点。
  62. 根据权利要求61所述的网络设备,其特征在于,其中,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  63. 根据权利要求62所述的网络设备,其特征在于,其中,在通过所述RMSI承载所述频率参考点的情况下,所述初始DL BWP的带宽用于传输以下信息的至少之一:
    其他系统信息OSI、随机接入响应RAR、寻呼。
  64. 一种网络设备,包括:
    第二发送单元,用于基于公共信道传输的频率范围,向终端设备发送公共信道;
    其中,所述公共信道传输的频率范围是基于控制资源集CORESET 0或同步信号块SSB确定的。
  65. 根据权利要求64所述的网络设备,其特征在于,其中,所述公共信道传输的频率范围所对应的带宽小于或等于所述终端设备所支持的最大带宽。
  66. 根据权利要求64或65所述的网络设备,其特征在于,其中,所述终端设备所支持的最大带宽小于CORESET 0的带宽。
  67. 根据权利要求64或66所述的网络设备,其特征在于,其中,所述公共信道传输的频率范围包括物 理下行共享信道PDSCH传输的频率范围。
  68. 根据权利要求67所述的网络设备,其特征在于,其中,所述PDSCH传输的频率范围由以下频率参考点的至少之一确定:
    PDSCH传输的频率范围的起始频点;
    PDSCH传输的频率范围的终止频点;
    PDSCH传输的频率范围的中心频点。
  69. 根据权利要求68所述的网络设备,其特征在于,其中,所述频率参考点的确定方式包括以下至少之一:
    PDSCH传输的频率范围的起始频点为控制资源集CORESET 0或同步信号块SSB的频率最低的物理资源块PRB;
    PDSCH传输的频率范围的终止频点为CORESET 0或SSB的频率最高的PRB;
    PDSCH传输的频率范围的中心频点为CORESET 0或SSB的中心频点。
  70. 根据权利要求67或69所述的网络设备,其特征在于,其中,所述PDSCH被调度在所述PDSCH传输的频率范围内。
  71. 根据权利要求70所述的网络设备,其特征在于,承载所述频率参考点的方式包括以下至少之一:
    物理广播信道PBCH中的主信息块MIB;
    剩余最小系统信息RMSI;
    无线资源控制RRC专用信令。
  72. 根据权利要求67或71所述的网络设备,其特征在于,其中,所述PDSCH用于承载以下信息的至少之一:RMSI、其他系统信息OSI、随机接入响应RAR、寻呼。
  73. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至21中任一项所述的方法。
  74. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求22至36中任一项所述的方法。
  75. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  76. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求22至36中任一项所述的方法。
  77. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至21中任一项所述的方法。
  78. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求22至36中任一项所述的方法。
  79. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  80. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求22至36中任一项所述的方法。
  81. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  82. 一种计算机程序,所述计算机程序使得计算机执行如权利要求22至36中任一项所述的方法。
PCT/CN2020/104981 2020-07-27 2020-07-27 信道传输方法、终端设备和网络设备 WO2022021031A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/104981 WO2022021031A1 (zh) 2020-07-27 2020-07-27 信道传输方法、终端设备和网络设备
CN202080104891.9A CN116210315A (zh) 2020-07-27 2020-07-27 信道传输方法、终端设备和网络设备
EP20946975.8A EP4192150A1 (en) 2020-07-27 2020-07-27 Channel transmission method, terminal device, and network device
US18/089,248 US20230179374A1 (en) 2020-07-27 2022-12-27 Channel transmission method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/104981 WO2022021031A1 (zh) 2020-07-27 2020-07-27 信道传输方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/089,248 Continuation US20230179374A1 (en) 2020-07-27 2022-12-27 Channel transmission method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022021031A1 true WO2022021031A1 (zh) 2022-02-03

Family

ID=80037996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104981 WO2022021031A1 (zh) 2020-07-27 2020-07-27 信道传输方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230179374A1 (zh)
EP (1) EP4192150A1 (zh)
CN (1) CN116210315A (zh)
WO (1) WO2022021031A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726794A (zh) * 2022-04-14 2022-07-08 深圳市优克联新技术有限公司 一种网络通道的提供方法、装置、设备和可读存储介质
WO2023165340A1 (zh) * 2022-03-02 2023-09-07 华为技术有限公司 一种通信方法及装置
WO2023246583A1 (zh) * 2022-06-21 2023-12-28 维沃移动通信有限公司 频域资源确定方法、终端及网络侧设备
WO2024055174A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 部分带宽的确定方法、配置方法、装置、介质及程序产品
CN114726794B (zh) * 2022-04-14 2024-06-04 深圳市优克联新技术有限公司 一种网络通道的提供方法、装置、设备和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475361A (zh) * 2019-08-16 2019-11-19 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端
CN110875808A (zh) * 2018-08-30 2020-03-10 维沃移动通信有限公司 系统信息传输方法、网络设备及终端
US10666480B2 (en) * 2017-11-16 2020-05-26 Ofinno, Llc Bandwidth part slot format indication
CN111406422A (zh) * 2017-11-28 2020-07-10 高通股份有限公司 用于使用带宽部分在系统中提供系统信息更新的技术和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666480B2 (en) * 2017-11-16 2020-05-26 Ofinno, Llc Bandwidth part slot format indication
CN111406422A (zh) * 2017-11-28 2020-07-10 高通股份有限公司 用于使用带宽部分在系统中提供系统信息更新的技术和装置
CN110875808A (zh) * 2018-08-30 2020-03-10 维沃移动通信有限公司 系统信息传输方法、网络设备及终端
CN110475361A (zh) * 2019-08-16 2019-11-19 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Discussion on DRS in NR-U", 3GPP DRAFT; R1-1912571, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820093 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165340A1 (zh) * 2022-03-02 2023-09-07 华为技术有限公司 一种通信方法及装置
CN114726794A (zh) * 2022-04-14 2022-07-08 深圳市优克联新技术有限公司 一种网络通道的提供方法、装置、设备和可读存储介质
CN114726794B (zh) * 2022-04-14 2024-06-04 深圳市优克联新技术有限公司 一种网络通道的提供方法、装置、设备和可读存储介质
WO2023246583A1 (zh) * 2022-06-21 2023-12-28 维沃移动通信有限公司 频域资源确定方法、终端及网络侧设备
WO2024055174A1 (zh) * 2022-09-13 2024-03-21 北京小米移动软件有限公司 部分带宽的确定方法、配置方法、装置、介质及程序产品

Also Published As

Publication number Publication date
EP4192150A1 (en) 2023-06-07
US20230179374A1 (en) 2023-06-08
CN116210315A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
WO2022021031A1 (zh) 信道传输方法、终端设备和网络设备
US20220303961A1 (en) Physical channel monitoring method and terminal device
US20230247557A1 (en) Sidelink transmission method and terminal
EP4161185A1 (en) Wireless communication method and terminal device
WO2020258051A1 (zh) 小区接入的方法和设备
CN113228712B (zh) 一种组播通信方法及相关设备
WO2019192451A1 (zh) 通信方法和通信装置
WO2019191963A1 (zh) 发送上行信道、接收上行信道的方法和设备
WO2022126637A1 (zh) 资源确定方法、终端设备和网络设备
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
CN115103393B (zh) 物理信道监测方法和终端设备
WO2021189366A1 (zh) 物理信道监测方法和终端设备
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2023050355A1 (zh) 无线通信的方法、终端设备和网络设备
US20230379882A1 (en) Paging method and terminal device
RU2810204C1 (ru) Способ отслеживания физического канала и терминальное устройство
WO2023050146A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022077509A1 (zh) 控制信道的传输方法、终端设备和网络设备
WO2023201489A1 (zh) 通信方法、终端设备和网络设备
WO2022094935A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022061493A1 (zh) 资源确定方法、终端设备和网络设备
WO2022082678A1 (zh) 辅小区激活方法、终端设备和网络设备
WO2023226029A1 (zh) 一种控制信道资源的指示方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020946975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020946975

Country of ref document: EP

Effective date: 20230227