WO2023226029A1 - 一种控制信道资源的指示方法、终端设备和网络设备 - Google Patents

一种控制信道资源的指示方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023226029A1
WO2023226029A1 PCT/CN2022/095739 CN2022095739W WO2023226029A1 WO 2023226029 A1 WO2023226029 A1 WO 2023226029A1 CN 2022095739 W CN2022095739 W CN 2022095739W WO 2023226029 A1 WO2023226029 A1 WO 2023226029A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
ssb
coreset
terminal device
information field
Prior art date
Application number
PCT/CN2022/095739
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/095739 priority Critical patent/WO2023226029A1/zh
Publication of WO2023226029A1 publication Critical patent/WO2023226029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communications, and more specifically, to a control channel resource indication method, terminal equipment, and network equipment.
  • the NR system is mainly designed to support (eMBB, Enhanced Mobile Broadband) services, and its main technology is to meet the needs of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB Enhanced Mobile Broadband
  • service types such as sensor networks, video surveillance, wearables, etc.
  • Terminals that support these services have reduced capabilities compared to terminals that support eMBB, such as reduced bandwidth support, relaxation of processing time, reduction of the number of antennas, relaxation of the maximum modulation order, etc. It is necessary to target these services and corresponding low capabilities
  • the terminal optimizes the NR system.
  • This type of terminal equipment can be referred to as a reduced capability (RedCap, Reduced Capability) terminal equipment, that is, RedCap user equipment (UE,).
  • RedCap Reduced Capability
  • UE RedCap user equipment
  • Embodiments of the present application provide a method for indicating channel control resources, which enables a first type terminal device to determine control channel resources.
  • This embodiment of the present application provides a method for indicating channel control resources, including:
  • the first type terminal equipment receives a synchronization signal block (SSB), the SSB carries a first indication, and the first indication is used to indicate that the SSB carries first information for determining the control channel resources of the first type terminal equipment.
  • SSB synchronization signal block
  • the embodiment of the present application provides an information indication method, including:
  • the network device sends an SSB, where the SSB carries a first indication, where the first indication is used to instruct the SSB to carry first information used to determine the control channel resources of the first type of terminal equipment.
  • An embodiment of the present application provides a terminal device, including:
  • the first receiving module is configured to receive an SSB, where the SSB carries a first indication, and the first indication is used to instruct the SSB to carry first information used to determine the control channel resources of the terminal device.
  • This embodiment of the present application provides a network device, including:
  • a sending module configured to send an SSB, where the SSB carries a first indication, and the first indication is used to instruct the SSB to carry first information used to determine the control channel resources of the first type of terminal equipment.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the above-mentioned method for indicating control channel resources.
  • An embodiment of the present application provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device executes the above-mentioned method for indicating control channel resources.
  • An embodiment of the present application provides a chip for implementing the above method for indicating control channel resources.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned method for indicating control channel resources.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, it causes the device to perform the above method for indicating control channel resources.
  • An embodiment of the present application provides a computer program product, which includes computer program instructions.
  • the computer program instructions cause a computer to execute the above method for indicating control channel resources.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to execute the above method for indicating control channel resources.
  • the first indication is carried in the SSB to indicate that the SSB carries the first information domain used to determine the control information resources of the first type terminal equipment, thereby enabling the first type terminal equipment to determine the control channel. resource.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the frequency domain position determination of CORESET#0.
  • Figure 3 is a schematic flowchart of a method 300 for indicating control channel resources according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a method 400 for indicating control channel resources according to an embodiment of the present application.
  • Figure 5 is a schematic flowchart of a method 500 for indicating control channel resources according to an embodiment of the present application.
  • Figure 6 is a schematic block diagram of a terminal device 600 according to an embodiment of the present application.
  • Figure 7 is a schematic block diagram of a terminal device 700 according to an embodiment of the present application.
  • Figure 8 is a schematic block diagram of a network device 800 according to an embodiment of the present application.
  • Figure 9 is a schematic block diagram of a communication device 900 according to an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a chip 1000 according to an embodiment of the present application.
  • Figure 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA)Network scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiment of the present application can also be applied to licensed spectrum , among which, licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • Figure 1 illustrates a communication system 100.
  • the communication system includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110 , and the coverage of each network device 110 may include other numbers of terminal devices 120 , which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as Mobility Management Entity (MME), Access and Mobility Management Function (AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks used to communicate with access network equipment.
  • the access network equipment can be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or authorized auxiliary access long-term evolution (LAA- Evolutionary base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also known as "small base station"), pico base station, access point (access point, AP), Transmission point (TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbre
  • the communication equipment may include network equipment and terminal equipment with communication functions.
  • the network equipment and terminal equipment may be specific equipment in the embodiments of the present application, which will not be described again here; the communication equipment also It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • the UE attempts to search for SSB through the possible time-frequency positions of the defined synchronization signal block (SSB, Synchronization Signal/PBCH Block), and obtains time and frequency synchronization, radio frame timing and physical data through the detected SSB.
  • Cell identification ID, Identification
  • the UE can also determine the physical downlink sharing of the scheduled bearer System Information Block 1 (SIB1, System Information Block Type 1) through the Master Information Block (MIB) carried in the Physical Broadcast Channel (PBCH) in the SSB.
  • SIB1 System Information Block 1
  • MIB Master Information Block
  • the control resource set (CORESET, Control Resource Set) and search space (Search Space) information of the physical downlink control channel (Type0-PDCCH, Type0-Physical Downlink Control Channel) of the channel (PDSCH, Physical Downlink Shared Channel), including CORESET #0 and Search Space#0 information.
  • CORESET Control Resource Set
  • Search Space Search Space
  • the bits carried by the PBCH in the SSB include the MIB from the higher layer, totaling A bits. and 8 bits from layer 1,
  • the A-bit MIB information includes: 6-bit system frame number (SFN, System Frame Number) information, 1-bit subcarrier spacing information, 4-bit SSB subcarrier offset (ssb-SubcarrierOffset) information, and demodulation reference Signal (DMRS, Demodulation Reference Signal) related information, 8-bit PDCCH resource (pdcch-ConfigSIB1) scheduling SIB information, 1 idle bit, etc.
  • SFN System Frame Number
  • SSB subcarrier offset SSB subcarrier offset
  • DMRS Demodulation Reference Signal
  • PDCCH resource pdcch-ConfigSIB1 scheduling SIB information, 1 idle bit, etc.
  • the PDCCH that schedules the SIB may also be called Type0-PDCCH.
  • the ssb-SubcarrierOffset information field carried by PBCH includes 4 bits, which are used to determine the subcarrier offset between the physical resource block (PRB) grid between the channel or signal of the synchronization signal block and the non-synchronization signal block. Shift parameter k SSB .
  • the offset includes 0 to 11 or 0 to 23 subcarriers.
  • the ssb-SubcarrierOffset information field corresponds to the lowest 4 bits of parameter k SSB .
  • the 4 most significant bits (MSB, Most Significant Bit) of the pdcch-ConfigSIB1 information field carried by PBCH can be called the CORESET#0 information field, and the information in the CORESET#0 information field can be called CORESET#0 information, thereby determining CORESET# 0.
  • the mapping table between the bandwidth, number of symbols, and frequency domain position contained in CORESET#0 and CORESET#0 information has been defined. The determination of different tables is related to the subcarrier spacing of SSB and PDCCH and the minimum channel bandwidth of the frequency band, as shown in Table 1.
  • Mapping table SCS of SSB SCS of PDCCH Minimum channel bandwidth 13-1 15KHz 15KHz 5MHz/10MHz 13-2 15KHz 30KHz 5MHz/10MHz 13-3 30KHz 15KHz 5MHz/10MHz 13-4 30KHz 30KHz 5MHz/10MHz 13-5 30KHz 15KHz 40MHz 13-6 30KHz 30KHz 40MHz 13-7 120KHz 60KHz - 13-8 120KHz 120KHz - 13-9 240KHz 60KHz - 13-10 240KHz 120KHz -
  • the UE first determines the mapping table to be used based on factors such as the subcarrier spacing of SSB and PDCCH, the minimum channel bandwidth of the frequency band, and then determines the corresponding mapping table in the table based on the 4-bit information in the CORESET#0 information field (i.e., CORESET#0 information).
  • CORESET#0 information The number of RBs and symbols contained in CORESET#0.
  • the 4-bit CORESET#0 information indicates one of the rows in the table, which corresponds to the configuration of the number of RBs and symbols contained in CORESET#0, the multiplexing pattern, and the offset of the starting frequency position of CORESET#0 compared to the starting frequency position of the SSB
  • the number of RBs summarizes the currently defined configuration parameters of CORESET#0, including multiplexing pattern, bandwidth, number of symbols, and the number of RBs by which the frequency domain position of CORESET#0 is offset from the frequency domain position of SSB.
  • the subcarrier offset between the RB of CORESET#0 and the RB of SSB must also be determined. shift.
  • NR introduces the design of synchronization grid and channel grid. This flexibility results in that the Common Resource Block (CRB) where CORESET#0 is located is not necessarily aligned with the RB of the SSB.
  • the subcarrier offset k between them is indicated by the SSB through the information carried by the PBCH.
  • the range of k SSB is 0-23, and for FR2, the range of k SSB is 0-11 .
  • the number of RBs that are offset from the frequency domain position of CORESET#0 and SSB is defined as the number of RBs that overlap with CORESET# from the lowest RB in the frequency domain of CORESET#0 to the subcarrier 0 of the lowest RB in the frequency domain of SSB.
  • Figure 2 is CORESET# Schematic diagram of determining the frequency domain position of 0.
  • the RB offset between SSB and CORESET#0 is 2
  • k SSB is 23.
  • the bandwidth supported by RedCap UE in FR1 is reduced to 5MHz.
  • the reduction in the bandwidth supported by the UE cannot meet part of the bandwidth supported by the existing SSB and CORESET#0, and thus cannot receive the existing SSB and CORESET#0, which has an impact on the initial access of the RedCap UE.
  • the frequency domain resource of SSB is 20 RBs.
  • SSB adopts 15KHz subcarrier spacing, its bandwidth is 3.6MHz.
  • the bandwidth of CORESET#0 can be configured as 24, 48, or 96 RBs.
  • Type 0 PDCCH uses 15KHz subcarrier spacing, 24 RBs correspond to 4.32MHz. Therefore, for RedCap UE, if the supported bandwidth is only 5MHz, it can only normally receive SSB using 15KHz subcarrier spacing, and Type 0 PDCCH using 24 RBs and 15KHz subcarrier spacing. In other words, only in this configuration can RedCap UE implement the initial access process.
  • the CORESET#0 configuration that CORESET#0 information can indicate is shown in Table 3.
  • the bandwidth of CORESET#0 is 24 RBs
  • the frequency domain offset between CORESET#0 and SSB can be 0, 2, or 4 RBs.
  • the 4-bit least significant bit (MSB, Least Significant Bit) of the pdcch-ConfigSIB1 information field carried by PBCH can be called the Search Space#0 information field, and the information in the Search Space#0 information field can be called Search Space#0 information, so Determine the Type0-PDCCH monitoring timing according to the mapping table.
  • the determination of different tables is related to the reuse pattern, subcarrier spacing and frequency band range, as shown in Table 4.
  • Table 4 Mapping table of Type0-PDCCH monitoring timing and Search Space #0 information
  • the UE first determines the table to be used based on factors such as the multiplexing pattern, subcarrier spacing, and frequency band range, and then determines the corresponding Type0- Parameters of PDCCH monitoring timing.
  • the 4-bit Search Space#0 information indicates one of the rows in the table, which corresponds to a Type0-PDCCH listening opportunity parameter. Taking mapping table 13-11 as an example, the mapping table between Type0-PDCCH monitoring timing and Search Space#0 information is shown in Table 5:
  • Table 5 Mapping table of Type0-PDCCH monitoring timing and Search Space #0 information, multiplexing pattern 1, FR1
  • the length of the ssb-SubcarrierOffset information field is 4 bits and is used to indicate the value k SSB of the subcarrier offset between SSB and CORESET#0.
  • the range of the subcarrier offset includes 0 ⁇ 23 and 0 ⁇ 11 subcarriers. They are represented using 5 bits (ssb-SubcarrierOffset information field and 1 physical layer signaling bit in MIB) and 4 bits respectively, and correspond to the frequency ranges of FR1 and FR2 respectively.
  • k SSB 0 ⁇ 23 (in the case of FR1) or 0 ⁇ 11 (in the case of FR2), it means that the UE can obtain the CORESET#0 configuration information through the CORESET#0 information field of the MIB.
  • k SSB When under FR1, k SSB >23, or under FR2, k SSB >11, it means that there is no CORESET#0 information in the MIB. At this time, the value of k SSB and the values of the CORESET#0 and SearchSpace#0 information fields jointly determine the frequency domain location of another SSB.
  • the MIB carried by this SSB contains CORESET#0 configuration information. Since the pdcch-ConfigSIB1 information field contains the 4-bit CORESET#0 and 4-bit SearchSpace#0 information fields, by indicating the offset of the synchronization grid corresponding to the target SSB and the current SSB, the positions of 256 synchronization grids can be indicated. Combined with different values of k SSB , the positions of N*256 synchronization grids can be indicated, as shown in Tables 6 and 7.
  • k SSB and CORESET#0, SearchSpace#0 jointly indicate the GSCN of the synchronization grid corresponding to the target SSB compared to the GSCN of the synchronization grid corresponding to the current SSB.
  • the indication range of Table 6 includes -768...-1,1...768, and the indication range of Table 7 includes -256...-1,1...256.
  • k SSB 30 in Table 6 is a reserved value
  • first-type terminal equipment such as RedCap UE
  • traditional UEs the embodiments of this application refer to UEs that are different from the first-type terminal equipment as traditional UEs
  • the synchronization grid is effective for cell searches of different types of terminal equipment (such as RedCap UE and traditional UE), so that the RedCap UE cannot know the third parameter used to determine the control channel resources carried in the SSB.
  • a piece of information such as CORESET#0 information and/or Search Space#0 information field
  • traditional UEs will also treat the CORESET#0 information and/or Search Space#0 information field for RedCap UEs carried in the SSB as their own CORESET#0 information.
  • the embodiment of the present application proposes a method for indicating control channel resources, which enables a first type terminal device to determine whether the SSB is an SSB for the first type terminal device, such as determining whether the SSB carries the information used to determine the first type terminal device.
  • Control channel resource information can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the first type terminal equipment receives an SSB, where the SSB carries a first indication.
  • the first indication is used to indicate that the SSB carries first information used to determine the control channel resources of the first type terminal equipment.
  • the first information may be carried in the first information field carried by the SSB.
  • the first type of terminal device is a RedCap UE.
  • the above-mentioned first information may include CORESET#0 information and/or Search Space#0 information carried by SSB (such as CORESET#0 information and/or Search Space#0 information in the pdcch-ConfigSIB1 information field carried by PBCH in SSB Search Space#0 information).
  • the first information may be carried by the first information field.
  • the first information may be carried by all or part of the bits in the CORESET#0 information field in the pdcch-ConfigSIB1 information field, that is, the first information field carrying CORESET#0 information may Including all or part of the bits in the CORESET#0 information field in the pdcch-ConfigSIB1 information field.
  • the first information can be carried by all or part of the bits in the Search Space#0 information field in the pdcch-ConfigSIB1 information field, that is, the first bit that carries the Search Space#0 information
  • the information field may include all or part of the bits in the Search Space#0 information field in the pdcch-ConfigSIB1 information field.
  • embodiments of the present disclosure can carry a first indication in the SSB, so that the RedCap UE that receives the SSB can know that the SSB carries the control channel resource used to determine the RedCap UE.
  • the first information for example, enables the RedCap UE that receives the SSB to know that the CORESET#0 information and/or Search Space#0 information carried in the SSB is information for the RedCap UE, so that the RedCap UE can further use the information carried in the SSB to CORESET#0 information and/or Search Space#0 information to determine the control channel resources.
  • the legacy UE that receives the SSB can know that the SSB does not carry the first information used to determine the control channel resources of the legacy UE, and the legacy UE will not receive the system message. , thus not accessing the corresponding cell.
  • the RedCap UE that receives the SSB can know that the SSB does not carry the first information used to determine the control channel resources of the RedCap UE, and the RedCap UE will not receive the system message. , thus not accessing the corresponding cell.
  • the legacy UE that receives the SSB can know that the CORESET#0 information and/or the Search Space#0 information carried in the SSB is information for the legacy UE, so that the legacy UE can further use the CORESET#0 information carried in the SSB. information and/or Search Space#0 information to determine the control channel resources.
  • the first indication is carried by the CORESET#0 information field in the pdcch-ConfigSIB1 information field carried by the SSB, and the value of the CORESET#0 information field is the first reserved value.
  • CORESET #0 information 15 is a reserved value, that is, if the CORESET #0 information in the SSB has a value of 15, this value is meaningless to traditional UEs.
  • the above-mentioned first reserved value may be 15.
  • the traditional UE When a traditional UE receives an SSB with a CORESET#0 information value of 15, since this value does not have corresponding CORESET#0 configuration information, the traditional UE will not receive system messages after receiving the SSB, and thus will not Access the corresponding cell.
  • the RedCap UE can determine the CORESET#0 configuration information corresponding to the value of the CORESET#0 information.
  • the CORESET#0 configuration information may be a predefined configuration. For example, when the bandwidth of CORESET#0 is 24 RBs, the RB offset between CORESET#0 and SSB may be 0, 2, or 4 RBs. That is, the predefined configuration information may be one of the first six configurations in the existing mapping table shown in Table 3.
  • CORESET#0 information 15 is only valid for RedCap UEs and is invalid for traditional UEs.
  • the RedCap UE and the legacy UE do not share the SSB or the configuration of CORESET#0, and thus can receive system messages for the two UEs respectively.
  • CORESET#0 information 14 or 15 are reserved values, that is, if the CORESET#0 information in the SSB has a value of 14 or 15, this value is meaningless to legacy UEs.
  • the above-mentioned first reserved value may be 14 or 15.
  • a traditional UE receives an SSB with a CORESET#0 information value of 14 or 15, since this value does not have corresponding CORESET#0 configuration information, the traditional UE will not receive system messages after receiving the SSB, thus The corresponding cell will not be accessed.
  • the RedCap UE can determine the CORESET#0 configuration information corresponding to the value of the CORESET#0 information.
  • CORESET#0 information 14 or 15 is only valid for RedCap UE and is invalid for traditional UE. .
  • the RedCap UE and the legacy UE do not share the SSB or the configuration of CORESET#0, and thus can receive system messages for the two UEs respectively.
  • CORESET#0 information 9 to 15 are reserved values, that is, if the value of CORESET#0 information in the SSB is any value from 9 to 15, this value is meaningless to traditional UEs.
  • the above-mentioned first reserved value may be 9, 10, 11, 12, 13, 14 or 15.
  • the legacy UE receives an SSB whose CORESET#0 information value is 9, 10, 11, 12, 13, 14, or 15, since there is no corresponding CORESET#0 configuration information for this value, the legacy UE receives the SSB Afterwards, system messages will not be received, and the corresponding cell will not be accessed.
  • the RedCap UE can determine the CORESET#0 configuration information corresponding to the value of the CORESET#0 information.
  • CORESET#0 information 9, 10, 11, 12, 13, 14 or 15 is only for RedCap UE Valid, but invalid for traditional UE.
  • the RedCap UE and the legacy UE do not share the SSB or the configuration of CORESET#0, and thus can receive system messages for the two UEs respectively.
  • the first indication is carried by the ssb-SubcarrierOffset information field carried by the SSB.
  • the ssb-SubcarrierOffset information field can determine the subcarrier offset parameter k SSB , and the value of the k SSB is the th 2 reserved values. It should be noted that when the frequency range is FR1, k SSB is determined by the value of the ssb-SubcarrierOffset information field and another physical layer signaling bit.
  • the second reserved value is 30;
  • the second reserved value is 14.
  • the RedCap UE can determine the CORESET#0 information and/or Search Space carried by the SSB #0 information is information for RedCap UE, that is, CORESET#0 information and/or Search Space#0 information is valid information for RedCap UE, thereby obtaining CORESET#0 configuration information and/or Search Space#0 configuration for RedCap UE. information to receive Type0-PDCCH.
  • Figure 4 is a schematic diagram of a method 400 for indicating control channel resources according to an embodiment of the present application.
  • the first type terminal equipment after the first type terminal equipment receives the SSB carrying the first indication, it can know based on the first indication that the PBCH in the SSB carries the first information used to determine the control channel resources of the first type terminal equipment. domain, the first type terminal equipment can use the first information domain in the SSB to determine the control channel resources of the first type terminal equipment; and further use the control channel resources to receive the PDCCH.
  • the legacy UE receives the SSB carrying the first indication, since the first indication has no substantial meaning to the legacy UE, the legacy UE will not perform any processing on the SSB, but will continue to search for other SSBs.
  • the embodiments of the present application may redefine the mapping relationship between the CORESET#0 information field and CORESET#0 configuration information for the first type of terminal equipment (such as RedCap UE), and/or redefine the mapping relationship for the first type of terminal equipment (such as RedCap UE).
  • CORESET#0 configuration information can be optimized for the first type of terminal equipment (such as RedCap UE), such as adding information related to Type0 PDCCH repeated transmission and CORESET aggregation.
  • the configuration information of SearchSpace#0 can also be optimized for the first type of terminal equipment (such as RedCap UE) to better support Type0 PDCCH repeated transmission or CORESET aggregation.
  • determining the control channel resources of the first type of terminal device may include:
  • the CORESET#0 configuration information corresponding to the first type terminal device is determined using the CORESET#0 information field in the first information field and the mapping relationship between the CORESET#0 information and the CORESET#0 configuration information for the first type terminal device.
  • searchSpace#0 information field in the first information field and the mapping relationship between the SearchSpace#0 information and the SearchSpace#0 configuration information for the first type of terminal device use the SearchSpace#0 information field in the first information field and the mapping relationship between the SearchSpace#0 information and the SearchSpace#0 configuration information for the first type of terminal device to determine the SearchSpace#0 configuration information corresponding to the first type of terminal device.
  • RedCap UE for RedCap UE, the embodiment of this application can use part of the information in the MIB carried by the SSB or the special value of the information determined by the MIB (such as CORESET#0 information, k SSB ) to indicate that the SSB carries the information used to determine The first information of the control channel resources of the RedCap UE (including but not limited to CORESET#0 configuration information and/or Search Space#0 information).
  • the embodiment of this application can use part of the information in the MIB carried by the SSB or the special value of the information determined by the MIB (such as CORESET#0 information, k SSB ) to indicate that the SSB carries the information used to determine The first information of the control channel resources of the RedCap UE (including but not limited to CORESET#0 configuration information and/or Search Space#0 information).
  • Example 1 Indicate the CORESET#0 configuration information of the RedCap UE through the reserved value of the CORESET#0 information in the MIB information.
  • the current CORESET#0 bandwidth can only meet the requirement of less than 5MHz with 24 RBs at 15KHz subcarrier spacing, when the network needs to configure CORESET#0 with a larger number of RBs for traditional UEs in the cell, it will cause the RedCap UE to be unable to The system message of the cell is successfully received, so the cell cannot be accessed. If the network configures the bandwidth of CORESET#0 to 24 RBs, although it can meet the bandwidth of RedCap UE, this method limits the flexibility of the CORESET#0 configuration of traditional UEs and will also cause the performance of traditional UEs to receive Type0 PDCCH to decrease because Type0 PDCCH cannot be sent using a larger aggregation level.
  • one method is to indicate CORESET#0 for RedCap UE and legacy UE respectively.
  • the current frequency domain location of the SSB is located on the defined synchronization grid.
  • This synchronization grid is valid for the cell search of both RedCap UE and traditional UE, making it impossible for the RedCap UE to know whether the CORESET#0 information carried in the SSB It is the information corresponding to RedCap UE.
  • the traditional UE will also regard the CORESET#0 information corresponding to the RedCap UE carried in the SSB as its own CORESET#0 information.
  • the CORESET#0 configuration information in the mapping table between the CORESET#0 information field and CORESET#0 configuration information is retained. That is, for traditional UEs, the CORESET#0 configuration information corresponding to the CORESET#0 information is not defined.
  • the reserved value (such as 15) in CORESET#0 information can be used to indicate that the SSB corresponds to RedCap UE, that is, the MIB information carried in the SSB is MIB information corresponding to RedCap UE.
  • the legacy UE receives the CORESET#0 information, which is a reserved value, since the CORESET#0 information does not correspond to the CORESET#0 configuration information, the legacy UE will not receive system messages and will not access the corresponding cell. .
  • the RedCap UE determines the CORESET#0 configuration information corresponding to the value of the CORESET#0 information.
  • the configuration information of CORESET#0 may be predefined configuration information. For example, when the bandwidth of CORESET#0 is 24 RBs, the RB offset between CORESET#0 and SSB may be 0, 2, or 4 RBs. That is, the predefined configuration information can be one of the first six configurations in the existing mapping table.
  • mapping relationship (or mapping table) between CORESET#0 information and CORESET#0 configuration information for RedCap UE is shown in Table 8.
  • Table 9 is the mapping table for this newly defined CORESET#0 information and CORESET#0 configuration information for RedCap UE.
  • CORESET#0 information 0 ⁇ 5 is a CORESET considered valid by both RedCap UE and traditional UE. #0 information value.
  • Tables 8 and 9 are only examples of mapping tables for CORESET#0 information and CORESET#0 configuration information of RedCap UEs.
  • the embodiment of this application is for the mapping of newly defined CORESET#0 information and CORESET#0 configuration information of RedCap UEs.
  • There are no restrictions on the specific content of the form. For example, when CORESET#0 information 15, it may also be indicated that the number of RBs included in CORESET#0 in the CORESET#0 configuration information is another value, such as 25 RBs.
  • mapping table of the existing CORESET#0 information and CORESET#0 configuration information is shown in Table 10.
  • the number of RBs contained in COORESET#0 all exceeds 5MHz.
  • the mapping table for CORESET#0 information and CORESET#0 configuration information for RedCap UE can be newly defined.
  • the number of RBs contained in CORESET#0 can be reduced to meet the 5MHz bandwidth limit, such as 11 or 12 RBs. .
  • the reserved value (i.e. 14 or 15) in the CORESET#0 information is used to indicate that the SSB corresponds to the RedCap UE, and the MIB information carried in the SSB It is the MIB information corresponding to RedCap UE.
  • the legacy UE receives that the CORESET#0 information is a reserved value, since there is no corresponding CORESET#0 information, the system message will not be received and the corresponding cell will not be accessed.
  • the RedCap UE determines the CORESET# corresponding to the value of the CORESET#0 information. 0 configuration information.
  • a newly defined mapping table for CORESET#0 information and CORESET#0 configuration information for RedCap UE is shown in Table 11.
  • the subcarrier spacing of SSB can also be 30kHz.
  • RedCap UE can use multiple reception methods to decode PBCH.
  • the mapping table of the existing CORESET#0 information and CORESET#0 configuration information is shown in Table 12.
  • a newly defined mapping table for CORESET#0 information and CORESET#0 configuration information for RedCap UE is shown in the following table.
  • RedCap UE in the mapping table between CORESET#0 information and CORESET#0 configuration information, when the CORESET#0 information is a reserved value, the indicated CORESET is essentially in accordance with the existing mapping table for traditional UEs.
  • the bandwidth of #0 configuration information exceeds the bandwidth supported by RedCap UE.
  • the CORESET#0 bandwidth can also be allowed to exceed 5MHz.
  • the RedCap UE needs to receive multiple CORESET#0 multiple times to achieve PDCCH reception.
  • the above method can still be used in this case, except that in the newly defined mapping table for CORESET#0 information and CORESET#0 configuration information for RedCap UE, the bandwidth corresponding to the number of RBs in the effective CORESET#0 configuration information is allowed to exceed 5MHz.
  • Example 2 The reserved value of the subcarrier offset parameter k SSB corresponds to the first information field in the MIB indicating the configuration information of CORESET#0 of the RedCap UE.
  • the first indication is Instructing the SSB to carry first information used to determine the control channel resources of the RedCap UE.
  • the mapping relationship between the CORESET#0 information field and the CORESET#0 configuration information, and/or the mapping relationship between the SearchSpace#0 information field and the configuration information of SearchSpace#0 may be redefined for the RedCap UE.
  • the mapping relationship between the newly defined CORESET#0 information field and CORESET#0 configuration information when the subcarrier spacing included in the PDCCH is 15KHz, in the CORESET#0 configuration information
  • the number of RBs contained in CORESET#0 may be 24 or 25; when the subcarrier spacing contained in the PDCCH is 30KHz, the number of RBs contained in CORESET#0 in the CORESET#0 configuration information may be 11 or 12.
  • the configuration information of CORESET#0 can be optimized for RedCap UE, such as adding information related to repeated transmission of Type0 PDCCH and CORESET aggregation.
  • the configuration information of SearchSpace#0 can also be optimized for RedCap UE to better support Type0 PDCCH repeated transmission or CORESET aggregation. For details, please refer to Example 3.
  • CORESET#0 for RedCap UE can be redefined.
  • the configuration parameter table is not affected or restricted by the existing CORESET#0 configuration parameter table for traditional UE.
  • the value of the CORESET#0 information field in SSB can be any value from 0 to 15, and different values correspond to different CORESET#0 configuration information.
  • the CORESET#0 configuration information can also be optimized for RedCap UE.
  • the subcarrier offset parameter k SSB is determined as a reserved value to indicate that the SSB is the SSB for the RedCap UE, and the original function of the subcarrier offset parameter k SSB is to indicate the subcarrier offset information; Then, the subcarrier offset information can be indicated in a predefined manner or through other information in the MIB information.
  • the subcarrier offset information is jointly encoded with the CORESET#0 or SearchSpace#0 information.
  • the CORESET#0 or SearchSpace#0 information indicates the CORESET#0 or SearchSpace#0 configuration information and also indicates the subcarrier offset information.
  • the indication is provided through some bits of the CORESET#0 or SearchSpace#0 information field.
  • the 4-bit CORESET#0 and 4-bit SearchSpace#0 information fields are reduced to one or more bits (such as 2 bits) respectively.
  • the saved bits Information used to indicate subcarrier offset information.
  • Example 3 The SearchSpace#0 information in the MIB information indicates the configuration information of the corresponding Type0 PDCCH listening opportunity of the RedCap UE.
  • CORESET#0 information value 0 ⁇ 14 (or 0 ⁇ 13, or 0 ⁇ 8), or k SSB under FR1 ⁇ 24, and k SSB under FR2 ⁇ 12, determine based on the existing SearchSpace#0 information and Type0 PDCCH
  • the mapping table of the configuration information of the listening time interprets the SearchSpace#0 information, and obtains the configuration information of the Type0 PDCCH listening time.
  • Table 14 is only an example of the mapping table between Type0-PDCCH monitoring timing and SearchSpace#0 information proposed in this example.
  • the embodiment of this application does not provide a mapping table for Type0-PDCCH monitoring timing and SearchSpace#0 information. Make restrictions.
  • the embodiment of this application can meet the transmission needs of Type0-PDCCH for RedCap UE by redefining the mapping table between Type0 PDCCH monitoring timing and SearchSpace#0 information for RedCap UE. For example, due to the smaller supported bandwidth, the coverage performance of Type0 PDCCH decreases, and repeated transmission can be used to enhance coverage.
  • the configuration information of Type0 PDCCH monitoring timing can be optimized in a targeted manner to meet the needs of Type0 PDCCH repeated transmission.
  • the aggregation of multiple CORESET#0 can form a CORESET containing more time-frequency resources for the transmission of Type0 PDCCH, and can also improve the coverage performance of Type0 PDCCH.
  • the redefinition of the monitoring timing configuration information of Type0 PDCCH can better support the aggregation of CORESET#0.
  • the embodiment of the present application can add information such as the number of repeated transmissions or the aggregation number of CORESET#0 in the mapping table between Type0-PDCCH monitoring timing and SearchSpace#0 information.
  • Figure 5 is a schematic flowchart of a method 500 for indicating control channel resources according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the network device sends an SSB, where the SSB carries a first indication.
  • the first indication is used to instruct the SSB to carry first information used to determine the control channel resources of the first type of terminal equipment.
  • the first type of terminal device may be a RedCap UE.
  • the network device may carry the first information used to determine the control channel resources of the first type terminal equipment in the SSB, and carry the first indication in the SSB to indicate that the SSB carries the control used to determine the first type terminal equipment.
  • the first information of the channel resource in this way, the RedCap UE that searches for the SSB carrying the first indication can know that the SSB is the SSB for the RedCap UE.
  • the network device may also not carry the first information in the SSB for the legacy UE. In this way, the legacy UE that searches for the SSB that does not carry the first indication can know that the SSB is the SSB for the legacy UE, that is, the SSB is for the legacy UE.
  • the SSB carries the first information used to determine the control channel resources of the legacy UE.
  • the first indication is carried by the CORESET#0 information field of the SSB bearer.
  • the value of the CORESET#0 information field is the first reserved value.
  • the first reserved value is 15; or,
  • the first reserved value is 14 or 15; or,
  • the first reserved value is 9, 10, 11, 12, 13, 14 or 15.
  • the first indication is carried by the ssb-SubcarrierOffset information field carried by the SSB, and the ssb-SubcarrierOffset information field is used to determine the subcarrier offset parameter.
  • the value of the subcarrier offset parameter (k SSB ) is the second reserved value.
  • the second reserved value is 30; when the frequency range is FR2, the second reserved value is 14.
  • the first information is carried by a first information field, and the first information field includes at least one of the following:
  • the first information may be used for the first type terminal device to determine control channel resources.
  • the embodiments of the present application can redefine the mapping relationship between the new CORESET#0 information field and CORESET#0 configuration information, and/or the Search Space#0 information field and Search Space for the first type of terminal device. #0Mapping relationship between configuration information.
  • CORESET#0 configuration information can be optimized for the first type of terminal equipment (such as RedCap UE), such as adding information related to Type0 PDCCH repeated transmission and CORESET aggregation.
  • the configuration information of SearchSpace#0 can also be optimized for the first type of terminal equipment (such as RedCap UE) to better support Type0 PDCCH repeated transmission or CORESET aggregation.
  • the network device execution method 500 in this embodiment please refer to the relevant description of the network device such as the base station in the above-mentioned method 300. For the sake of brevity, details will not be described again.
  • FIG. 6 is a schematic block diagram of a terminal device 600 according to an embodiment of the present application.
  • the terminal device 600 may include:
  • the first receiving module 610 is configured to receive an SSB, which carries a first indication.
  • the first indication is used to indicate that the SSB carries first information for determining the control channel resources of the terminal device.
  • the first indication is carried by the CORESET#0 information field carried by the SSB.
  • the value of the CORESET#0 information field is the first reserved value.
  • the first reserved value is 15; or,
  • the first reserved value is 14 or 15; or,
  • the first reserved value is 9, 10, 11, 12, 13, 14 or 15.
  • the first indication is carried by the subcarrier offset information field of the SSB carried by the SSB, and the subcarrier offset information field of the SSB is used to determine the subcarrier offset parameter.
  • the value of the subcarrier offset parameter is a second reserved value.
  • the second reserved value is 30;
  • this second reserved value is 14.
  • the first information is carried by a first information field, and the first information field includes at least one of the following:
  • Figure 7 is a schematic block diagram of a terminal device 700 according to an embodiment of the present application. As shown in Figure 7, in one implementation, the terminal device also includes:
  • Determining module 720 configured to use the first information to determine the control channel resources of the terminal device
  • the second receiving module 730 is configured to use the control channel resources to receive the PDCCH.
  • the determining module 720 is used to:
  • the determination module 720 is configured to determine the CORESET #0 information in the first information and the mapping relationship between the CORESET #0 information and the CORESET #0 configuration information for the first type of terminal device. CORESET#0 configuration information corresponding to the first type of terminal device.
  • the determination module 720 is configured to determine the SearchSpace#0 information in the first information and the mapping relationship between the SearchSpace#0 information and the SearchSpace#0 configuration information for the first type of terminal device. SearchSpace#0 configuration information corresponding to the first type of terminal device.
  • the terminal device includes a reduced capability RedCap terminal device.
  • the terminal device 600 and the terminal device 700 in the embodiment of the present application can implement the corresponding functions of the first type of terminal device in the foregoing method embodiment.
  • functions, implementation methods and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal device 600 and the terminal device 700 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • each module (sub-module, unit or component, etc.) in the terminal device 600 and the terminal device 700 in the embodiment of the application can be implemented by different modules (sub-module, unit or component, etc.), or Can be implemented by the same module (submodule, unit or component, etc.).
  • FIG. 8 is a schematic block diagram of a network device 800 according to an embodiment of the present application.
  • the network device 800 may include:
  • the sending module 810 is configured to send an SSB, where the SSB carries a first indication, and the first indication is used to indicate that the SSB carries first information used to determine the control channel resources of the first type of terminal equipment.
  • the first indication is carried by the CORESET#0 information field carried by the SSB.
  • the value of the CORESET#0 information field is the first reserved value.
  • the first reserved value is 15; or,
  • the first reserved value is 14 or 15; or,
  • the first reserved value is 9, 10, 11, 12, 13, 14 or 15.
  • the first indication is carried by the subcarrier offset information field of the SSB carried by the SSB, and the subcarrier offset information field of the SSB is used to determine the subcarrier offset parameter.
  • the value of the subcarrier offset parameter is a second reserved value.
  • the second reserved value is 30;
  • this second reserved value is 14.
  • the first information is carried by a first information field, and the first information field includes at least one of the following:
  • the first type of terminal device includes a reduced-capability RedCap terminal device.
  • the network device 800 in the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the network device 800 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the network device 800 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same Module (submodule, unit or component, etc.) implementation.
  • Figure 9 is a schematic structural diagram of a communication device 900 according to an embodiment of the present application.
  • the communication device 900 includes a processor 910, and the processor 910 can call and run a computer program from the memory, so that the communication device 900 implements the method in the embodiment of the present application.
  • communication device 900 may also include memory 920.
  • the processor 910 can call and run the computer program from the memory 920, so that the communication device 900 implements the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated into the processor 910 .
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, the communication device 900 may send information or data to other devices, or receive information sent by other devices. information or data.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may be a network device according to the embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, the communication device 900 will not be mentioned here. Again.
  • the communication device 900 can be a terminal device in the embodiment of the present application, and the communication device 900 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
  • FIG 10 is a schematic structural diagram of a chip 1000 according to an embodiment of the present application.
  • the chip 1000 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 1000 may also include memory 1020.
  • the processor 1010 can call and run the computer program from the memory 1020 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated into the processor 1010.
  • the chip 1000 may also include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1000 may also include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, they will not be described again. .
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • the chips used in network equipment and terminal equipment can be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application.
  • the communication system 1100 includes a terminal device 1110 and a network device 1120.
  • the terminal device 1110 is configured to receive an SSB, where the SSB carries a first indication, and the first indication is used to indicate that the SSB carries first information for determining control channel resources of the first type of terminal device.
  • the network device 1120 is configured to send an SSB, where the SSB carries a first indication, and the first indication is used to indicate that the SSB carries first information used to determine the control channel resources of the first type of terminal equipment.
  • the terminal device 1110 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1120 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no further details will be given here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种控制信道资源的指示方法、终端设备和网络设备,其中方法包括:第一类型终端设备接收同步信号块(SSB),该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。本申请能够使第一类型终端设备能够确定控制信道资源。

Description

一种控制信道资源的指示方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种控制信道资源的指示方法、终端设备和网络设备。
背景技术
NR系统主要是为了支持(eMBB,Enhanced Mobile Broadband)业务而设计的,其主要技术是为了满足高速率、高频谱效率、大带宽的需要。实际上,除了eMBB,还存在多种不同的业务类型,例如传感器网络、视频监控、可穿戴等,它们在速率、带宽、功耗、成本等方面与eMBB业务有着不同的需求。支持这些业务的终端相比支持eMBB的终端的能力是降低的,如支持的带宽减小、处理时间的放松、天线数减少、最大调制阶数的放松等;需要针对这些业务和相应的低能力终端对NR系统进行优化,这类终端设备可以简称为能力减低的(RedCap,Reduced Capability)终端设备,即RedCap用户设备(UE,)。初始接入过程中,RedCap UE等不同于传统UE的终端设备如何确定控制信道资源,成为需要解决的技术问题。
发明内容
本申请实施例提供一种信道控制资源的指示方法,能够使第一类型终端设备确定控制信道资源。
本申请实施例提供一种信道控制资源的指示方法,包括:
第一类型终端设备接收同步信号块(SSB),该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定该第一类型终端设备的控制信道资源的第一信息。
本申请实施例提供一种信息指示方法,包括:
网络设备发送SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
本申请实施例提供一种终端设备,包括:
第一接收模块,用于接收SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定该终端设备的控制信道资源的第一信息。
本申请实施例提供一种网络设备,包括:
发送模块,用于发送SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的控制信道资源的指示方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的控制信道资源的指示方法。
本申请实施例提供一种芯片,用于实现上述的控制信道资源的指示方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的控制信道资源的指示方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的控制信道资源的指示方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的控制信道资源的指示方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的控制信道资源的指示方法。
本申请实施例,通过在SSB中携带第一指示,用于指示该SSB承载了用于确定第一类型终端设备的控制信息资源的第一信息域,从而使第一类型终端设备能够确定控制信道资源。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是CORESET#0的频域位置确定示意图。
图3是根据本申请一实施例的控制信道资源的指示方法300的示意性流程图。
图4是根据本申请一实施例的控制信道资源的指示方法400的示意图。
图5是根据本申请一实施例的控制信道资源的指示方法500的示意性流程图。
图6是根据本申请一实施例的终端设备600的示意性框图。
图7是根据本申请一实施例的终端设备700的示意性框图。
图8是根据本申请一实施例的网络设备800的示意性框图。
图9是根据本申请实施例的通信设备900示意性框图。
图10是根据本申请实施例的芯片1000的示意性框图。
图11是根据本申请实施例的通信系统1100的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一种实施方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种实施方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。在一种实施方式中,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
在一种实施方式中,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在初始接入过程中,UE通过定义的同步信号块(SSB,Synchronization Signal/PBCH Block)的可能的时频位置,尝试搜索SSB,通过检测到的SSB获得时间和频率同步、无线帧定时以及物理小区标识(ID,Identification)。进一步UE还可通过SSB中的物理广播信道(PBCH,Physical Broadcast Channel)中携带的主信息块(MIB,Master Information Block)确定调度承载系统信息块1(SIB1,System Information Block Type1)的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)的物理下行控制信道(Type0-PDCCH,Type0-Physical Downlink Control Channel)的控制资源集合(CORESET,Control Resource Set)和搜索空间(Search Space)信息,其中包括了CORESET#0和Search Space#0信息。
SSB中的PBCH承载的比特包括来自高层的MIB,共A比特,
Figure PCTCN2022095739-appb-000001
和来自层1的8比特,
Figure PCTCN2022095739-appb-000002
其中A比特的MIB信息包括:6比特的系统帧号(SFN,System Frame Number)信息、1比特的子载波间隔信息、4比特的SSB的子载波偏移(ssb-SubcarrierOffset) 信息、解调参考信号(DMRS,Demodulation Reference Signal)相关信息、8比特的调度SIB的PDCCH的资源(pdcch-ConfigSIB1)信息、1个空闲比特等。调度SIB的PDCCH也可以称为Type0-PDCCH。
其中,PBCH承载的ssb-SubcarrierOffset信息域包括4比特,用于确定同步信号块与非同步信号块的信道或信号之间的物理资源块(PRB,Physical Resource Block)栅格之间的子载波偏移参数k SSB,该偏移包括0~11或者0~23个子载波,ssb-SubcarrierOffset信息域对应于参数k SSB的最低4位。
1、调度SIB的PDCCH的资源(pdcch-ConfigSIB1)信息域中的CORESET#0信息域:
PBCH承载的pdcch-ConfigSIB1信息域的4比特最高有效位(MSB,Most Significant Bit)可以称为CORESET#0信息域,CORESET#0信息域中的信息可以称为CORESET#0信息,从而确定CORESET#0。目前已定义了CORESET#0包含的带宽、符号数以及频域位置与CORESET#0信息的映射表格。不同表格的确定与SSB和PDCCH的子载波间隔、频带的最小信道带宽有关,如表1所示。
表1——CORESET#0映射表格
映射表格 SSB的SCS PDCCH的SCS 最小信道带宽
13-1 15KHz 15KHz 5MHz/10MHz
13-2 15KHz 30KHz 5MHz/10MHz
13-3 30KHz 15KHz 5MHz/10MHz
13-4 30KHz 30KHz 5MHz/10MHz
13-5 30KHz 15KHz 40MHz
13-6 30KHz 30KHz 40MHz
13-7 120KHz 60KHz -
13-8 120KHz 120KHz -
13-9 240KHz 60KHz -
13-10 240KHz 120KHz -
UE首先基于SSB和PDCCH的子载波间隔、频带的最小信道带宽等因素确定所使用的映射表格,再根据CORESET#0信息域中的4比特信息(即CORESET#0信息)确定该表格中对应的CORESET#0包含的RB和符号数。4比特CORESET#0信息指示表格中的其中一个行,该行对应配置CORESET#0包含的RB和符号数、复用图样以及CORESET#0的起始频率位置相比SSB的起始频率位置偏移的RB个数。表2总结了目前定义的CORESET#0的配置参数,包括复用图样、带宽、符号数以及CORESET#0的频域位置相比SSB的频域位置偏移的RB个数。
表2——CORESET#0的配置参数
Figure PCTCN2022095739-appb-000003
Figure PCTCN2022095739-appb-000004
要确定CORESET#0的频域位置,除了根据与SSB的频域位置偏移的资源块(RB,Resource Block)个数,还要确定CORESET#0的RB与SSB的RB之间的子载波偏移。为了运营商的灵活部署,NR引入同步栅格和信道栅格的设计。这种灵活性造成了CORESET#0所在的公共资源块(Common Resource Block,CRB)与SSB的RB并不一定是对齐的,它们之间的子载波偏移k SSB通过PBCH承载的信息进行指示。同时,考虑到SSB和CORESET#0采用的子载波间隔的不同组合,对于频段范围1(FR1,Frequency range 1),k SSB的范围为0-23,对于FR2,k SSB的范围为0-11。CORESET#0与SSB的频域位置偏移的RB数,定义为从CORESET#0的频域上位置最低的RB到与SSB的频域上位置最低的RB的子载波0重叠的、与CORESET#0的子载波间隔相同的CRB之间的偏移RB数。以SSB和CORESET#0的复用图样1为例,当SSB和CORESET#0的子载波间隔分别为15kHz和30kHz时,它们之间的频域偏移如图2所示,图2是CORESET#0的频域位置确定示意图。图2中,SSB和CORESET#0之间的RB偏移为2,k SSB为23。
在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)标准中,对于RedCap UE在FR1支持的带宽缩小到5MHz。UE支持带宽的减少无法满足现有的SSB和CORESET#0支持的带宽中的部分带宽,从而无法接收现有的SSB和CORESET#0,对于RedCap UE的初始接入产生影响。
SSB的频域资源为20个RB,当SSB采用15KHz子载波间隔时,其带宽为3.6MHz。对于CORESET#0的带宽,可以配置为24、48、96个RB。当Type 0 PDCCH采用15KHz子载波间隔时,24个RB对应4.32MHz。因此,对于RedCap UE,其支持的带宽如果只有5MHz,只可以正常接收采用15KHz子载波间隔的SSB,和采用24个RB和15KHz子载波间隔的Type 0 PDCCH。也就是说,只有在这种配置下,RedCap UE才可以实现初始接入过程。
在SSB和PDCCH的子载波间隔均为15kHz下,CORESET#0信息可以指示的CORESET#0的配置如表3所示。其中,当CORESET#0的带宽为24个RB时,CORESET#0和SSB之间的频域偏移可以是0、2、4个RB。
表3
Figure PCTCN2022095739-appb-000005
2、调度SIB的PDCCH的资源(pdcch-ConfigSIB1)信息域中的Search Space#0信息域:
PBCH承载的pdcch-ConfigSIB1信息域的4比特最低有效位(MSB,Least Significant Bit)可以称为Search Space#0信息域,Search Space#0信息域中的信息可以称为Search Space#0信息,从而根据映射表格确定Type0-PDCCH监听时机。不同表格的确定与复用图样、子载波间隔和频带范围有关,如表4所示。
表4——Type0-PDCCH监听时机与Search Space#0信息的映射表格
映射表格 SSB的SCS PDCCH的SCS 复用图样 频带范围
13-11 - - 1 FR1
13-12 - - 1 FR2
13-13 120KHz 60KHz 2 -
13-14 240KHz 120KHz 2 -
13-15 120KHz 120KHz 3 -
UE首先基于复用图样、子载波间隔和频带范围等因素确定所使用的表格,再根据Search Space#0信息域中的4比特信息(即Search Space#0信息)确定该表格中对应的Type0-PDCCH监听时机的参数。4比特Search Space#0信息指示表格中的其中一个行,该行对应一种Type0-PDCCH监听时机的参数。以映射表格13-11为例,Type0-PDCCH监听时机与Search Space#0信息的映射表格如表5所示:
表5——Type0-PDCCH监听时机与Search Space#0信息的映射表格,复用图样1,FR1
Figure PCTCN2022095739-appb-000006
3、SSB的子载波偏移(ssb-SubcarrierOffset)信息域
ssb-SubcarrierOffset信息域的长度为4比特,用于指示SSB与CORESET#0之间的子载波偏移的取值k SSB,该子载波偏移的范围包括0~23和0~11个子载波,分别使用5比特(MIB中的ssb-SubcarrierOffset信息域和1个物理层信令比特)和4比特表示,并且分别对应频率范围为FR1和FR2。当k SSB=0~23(FR1的情况下)或0~11(FR2的情况下)时,表示UE可以通过MIB的CORESET#0信息域获得CORESET#0配置信息。当在FR1下,k SSB>23,或者在FR2下,k SSB>11,表示MIB中不存在CORESET#0信息。此时,k SSB的取值和CORESET#0、SearchSpace#0信息域的取值共同确定另一个SSB的频域位置,该SSB承载的MIB中包含CORESET#0配置信息。由于pdcch-ConfigSIB1信息域包含4比特CORESET#0和4比特SearchSpace#0信息域,通过指示目标SSB和当前SSB对应的同步栅格的偏移,可以指示256个同步栅格的位置。结合k SSB的不同取值,可以指示N*256个同步栅格的位置,如表6和表7所示。
对于FR1和FR2,分别根据表6和表7,通过k SSB和CORESET#0、SearchSpace#0联合指示目标SSB对应的同步栅格的(GSCN,)相比当前SSB对应的同步栅格的GSCN的偏移,通过公式
Figure PCTCN2022095739-appb-000007
得到目标SSB所在的同步栅格的GSCN。表6指示范围包括-768…-1,1…768,表7指示范围包括-256…-1,1…256。其中,表6中k SSB=30为保留值,表7中k SSB=14为保留值。
表6
Figure PCTCN2022095739-appb-000008
Figure PCTCN2022095739-appb-000009
表7
Figure PCTCN2022095739-appb-000010
基于以上分析,当RedCap UE支持5MHz带宽时,可支持的CORESET#0的配置是有限的。在这种情况下,需要重新考虑MIB信息中指示的CORESET#0的方式。
当系统中同时存在第一类型终端设备(如RedCap UE)和传统UE(本申请实施例将不同于第一类型终端设备的UE称为传统UE)时,由于目前SSB所在的频域位置位于定义的同步栅格上,该同步栅格对于不同类型的终端设备(如RedCap UE和传统UE)的小区搜索都是有效的,使得RedCap UE无法知道该SSB中承载的用于确定控制信道资源的第一信息(如CORESET#0信息和/或Search Space#0信息域)是否针对RedCap UE的信息。同时,传统UE也会将SSB中承载的针对RedCap UE的CORESET#0信息和/或Search Space#0信息域当作自己的CORESET#0信息。
本申请实施例提出一种控制信道资源的指示方法,能够使第一类型终端设备可以确定SSB是否为针对第一类型终端设备的SSB,如确定SSB中是否承载用于确定第一类型终端设备的控制信道资源的信息。图3是根据本申请一实施例的控制信道资源的指示方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310、第一类型终端设备接收SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定该第一类型终端设备的控制信道资源的第一信息。
其中,该第一信息可以携带在SSB承载的第一信息域中。
在一些实施方式中,该第一类型终端设备为RedCap UE。
在一些实施方式中,上述的第一信息可以包括SSB承载的CORESET#0信息和/或Search Space#0信息(如SSB中的PBCH承载的pdcch-ConfigSIB1信息域中的CORESET#0信息和/或Search Space#0信息)。
第一信息可以由第一信息域携带。对于第一信息是CORESET#0信息的情况,该第一信息可以由pdcch-ConfigSIB1信息域中的CORESET#0信息域中的全部或部分比特携带,即携带CORESET#0信息的第一信息域可以包括pdcch-ConfigSIB1信息域中的CORESET#0信息域中的全部或部分比特。对于第一信息是Search Space#0信息的情况,该第一信息可以由pdcch-ConfigSIB1信息域中的Search Space#0信息域中的全部或部分比特携带,即携带Search Space#0信息的第一信息域可以包括pdcch-ConfigSIB1信息域中的Search Space#0信息域中的全部或部分比特。
以第一类型终端设备是RedCap UE为例,本公开实施例可以通过在SSB中携带第一指示,使接收到该SSB的RedCap UE能够知道该SSB承载了用于确定RedCap UE的控制信道资源的第一信息,例如使接收到该SSB的RedCap UE能够知道该SSB中承载的CORESET#0信息和/或Search Space#0信息是针对RedCap UE的信息,从而该RedCap UE可以进一步根据该SSB中承载的CORESET#0信息和/或Search Space#0信息来确定控制信道资源。同时,如果在SSB中携带了第一指示,则接收到该SSB的传统UE能够知道该SSB没有承载用于确定传统UE的控制信道资源的第一信息,则传统UE不会进行系统消息的接收,从而不会接入对应的小区。
又如,如果SSB中没有携带第一指示,则接收到该SSB的RedCap UE能够知道该SSB没有承载 用于确定RedCap UE的控制信道资源的第一信息,则RedCap UE不会进行系统消息的接收,从而不会接入对应的小区。相反,接收到该SSB的传统UE能够知道该SSB中承载的CORESET#0信息和/或Search Space#0信息是针对传统UE的信息,从而该传统UE可以进一步根据该SSB中承载的CORESET#0信息和/或Search Space#0信息来确定控制信道资源。
在相关技术中,SSB中的PBCH承载的CORESET#0信息=15、通过SSB中的PBCH承载的MIB信息中的ssb-SubcarrierOffset信息所确定的子载波偏移参数k SSB=30(FR1情况下)和k SSB=14(FR2情况下)为保留值,也就是说,CORESET#0信息=15、k SSB=30(FR1情况下)和k SSB=14(FR2情况下)对于传统UE是无效值,其不对应有效的配置信息。基于此,本申请实施例可以将CORESET#0信息=15、k SSB=30(FR1情况下)和/或k SSB=14(FR2情况下)作为第一指示,如果SSB中携带该第一指示,则表示该SSB中承载了用于确定RedCap UE的控制信道资源的第一信息。
例如,在一种实施方式中,第一指示由SSB承载的pdcch-ConfigSIB1信息域中的CORESET#0信息域携带,并且该CORESET#0信息域的取值为第一保留值。
(1)具体地,以现有技术中SSB和PDCCH的子载波间隔均为15kHz的情况下、CORESET#0信息与CORESET#0配置信息的映射关系(又称映射表格,为前述表3)为例,其中CORESET#0信息=15为保留值,即,如果SSB中的CORESET#0信息取值为15,则该取值对于传统UE来说无意义。
那么,在一些实施方式中,上述第一保留值可以为15。传统UE在接收到CORESET#0信息取值为15的SSB时,由于该取值没有对应的CORESET#0配置信息,因此传统UE在接收到该SSB之后不会进行系统消息的接收,从而不会接入对应的小区。
相反,如果SSB中的CORESET#0信息取值为15,则RedCap UE可以确定该CORESET#0信息的取值对应的CORESET#0配置信息。具体地,该CORESET#0配置信息可以为预定义的配置,如CORESET#0的带宽为24个RB时,CORESET#0和SSB之间的RB偏移可以是0、2、4个RB。即预定义的配置信息可以是表3所示的现有的映射表格中的前6种配置中的一种。
可见,在SSB和PDCCH的子载波间隔均为15kHz的情况下,采用这种方式,CORESET#0信息=15仅对RedCap UE有效,对于传统UE来说是无效的。这种情况下,RedCap UE和传统UE不共享SSB、也不共享CORESET#0的配置,进而可以分别接收针对这两种UE的系统消息。
(2)具体地,以现有技术中SSB的子载波间隔均为15kHz、PDCCH的子载波间隔为30kHz的情况下,CORESET#0信息与CORESET#0配置信息的映射关系中CORESET#0信息=14或15为保留值,即,如果SSB中的CORESET#0信息取值为14或15,则该取值对于传统UE来说无意义。
那么,在一些实施方式中,上述第一保留值可以为14或15。传统UE在接收到CORESET#0信息取值为14或15的SSB时,由于该取值没有对应的CORESET#0配置信息,因此传统UE在接收到该SSB之后不会进行系统消息的接收,从而不会接入对应的小区。
相反,如果SSB中的CORESET#0信息取值为14或15,则RedCap UE可以确定该CORESET#0信息的取值对应的CORESET#0配置信息。
可见,在SSB的子载波间隔均为15kHz、PDCCH的子载波间隔为30kHz的情况下,采用这种方式,CORESET#0信息=14或15仅对RedCap UE有效,对于传统UE来说是无效的。这种情况下,RedCap UE和传统UE不共享SSB、也不共享CORESET#0的配置,进而可以分别接收针对这两种UE的系统消息。
(3)具体地,以现有技术中SSB的子载波间隔均为30kHz、PDCCH的子载波间隔为15kHz的情况下,CORESET#0信息与CORESET#0配置信息的映射关系中CORESET#0信息=9至15为保留值,即,如果SSB中的CORESET#0信息取值为9至15中的任意值,则该取值对于传统UE来说无意义。
那么,在一些实施方式中,上述第一保留值可以为9、10、11、12、13、14或15。传统UE在接收到CORESET#0信息取值为9、10、11、12、13、14或15的SSB时,由于该取值没有对应的CORESET#0配置信息,因此传统UE在接收到该SSB之后不会进行系统消息的接收,从而不会接入对应的小区。
相反,如果SSB中的CORESET#0信息取值为9至15中的任意值,则RedCap UE可以确定该CORESET#0信息的取值对应的CORESET#0配置信息。
可见,在SSB的子载波间隔均为30kHz、PDCCH的子载波间隔为15kHz的情况下,采用这种方式,CORESET#0信息=9、10、11、12、13、14或15仅对RedCap UE有效,对于传统UE来说是无效的。这种情况下,RedCap UE和传统UE不共享SSB、也不共享CORESET#0的配置,进而可以分别接收针对这两种UE的系统消息。
又如,在另一种实施方式中,第一指示由SSB承载的ssb-SubcarrierOffset信息域携带,该ssb-SubcarrierOffset信息域能够确定子载波偏移参数k SSB,并且该k SSB的取值为第二保留值。需要说明的是,在频率范围为FR1的情况下,k SSB由ssb-SubcarrierOffset信息域的取值和另外1个物理层信令比 特确定。
其中,在频率范围为FR1的情况下,第二保留值为30;
在频率范围为FR2的情况下,第二保留值为14。
回看上述表6和表7,如果k SSB的取值为30(FR1情况下)或14(FR2情况下),则该取值对于传统UE来说无意义,因此传统UE在接收到该SSB之后不会进行系统消息的接收,从而不会接入对应的小区。
相反,如果采用SSB中的ssb-SubcarrierOffset信息域确定出的k SSB=30(FR1情况下)或14(FR2情况下),则RedCap UE可以确定该SSB承载的CORESET#0信息和/或Search Space#0信息是针对RedCap UE的信息,即CORESET#0信息和/或Search Space#0信息为针对RedCap UE的有效信息,从而获得针对RedCap UE的CORESET#0配置信息和/或Search Space#0配置信息,从而接收Type0-PDCCH。
图4是根据本申请一实施例的控制信道资源的指示方法400的示意图。如图4所示,第一类型终端设备接收到携带第一指示的SSB之后,根据该第一指示能够知道SSB中的PBCH承载了用于确定第一类型终端设备的控制信道资源的第一信息域,则第一类型终端设备可以利用该SSB中的第一信息域,确定第一类型终端设备的控制信道资源;并进一步利用该控制信道资源进行PDCCH的接收。
相反,如果传统UE接收到携带第一指示的SSB,由于该第一指示对传统UE而言无实质意义,则传统UE不会对针对该SSB做任何处理,而是会继续搜索其他SSB。
在一些实施方式中,本申请实施例可以重新定义针对第一类型终端设备(如RedCap UE)的CORESET#0信息域和CORESET#0配置信息之间的映射关系、和/或重新定义针对第一类型终端设备(如RedCap UE)的Search Space#0信息域和Search Space#0配置信息之间的映射关系。这样,CORESET#0配置信息可以针对第一类型终端设备(如RedCap UE)进行优化,例如增加与Type0 PDCCH的重复传输、CORESET聚合相关的信息。同样,SearchSpace#0的配置信息也可以针对第一类型终端设备(如RedCap UE)进行优化,更好的支持Type0 PDCCH的重复传输或CORESET聚合。
相应地,在一些实施例中,确定第一类型终端设备的控制信道资源可以包括:
利用第一信息域中的CORESET#0信息域以及针对第一类型终端设备的CORESET#0信息与CORESET#0配置信息的映射关系,确定第一类型终端设备对应的CORESET#0配置信息。
或者,利用第一信息域中的SearchSpace#0信息域以及针对第一类型终端设备的SearchSpace#0信息与SearchSpace#0配置信息的映射关系,确定第一类型终端设备对应的SearchSpace#0配置信息。
可见,本申请实施例针对RedCap UE,可以通过SSB携带的MIB中的部分信息或采用MIB确定的信息(如CORESET#0信息、k SSB)的特殊取值,指示该SSB中承载了用于确定RedCap UE的控制信道资源的第一信息(包括但不限于CORESET#0配置信息和/或Search Space#0信息)。同时,由于MIB中部分信息或采用MIB确定的信息的特殊取值对应传统UE来说是无效的,从而避免了该SSB被传统UE和RedCap UE接收后,解读出不同的CORESET#0配置信息和/或Search Space#0配置信息,造成UE接收Type0 PDCCH失败。
示例1:通过MIB信息中的CORESET#0信息的保留取值指示RedCap UE的CORESET#0的配置信息。
由于当前的CORESET#0带宽只有在15KHz子载波间隔下24个RB的情况下才能满足小于5MHz,当网络需要为小区内的传统UE配置更大RB数的CORESET#0时,会造成RedCap UE不能成功接收该小区的系统消息,从而无法接入该小区。如果网络配置CORESET#0的带宽为24个RB,虽然可以满足RedCap UE的带宽,但该方法限制了传统UE的CORESET#0配置的灵活性,也会造成传统UE接收Type0PDCCH的性能下降,因为Type0 PDCCH不能采用更大的聚合级别来发送。
为了解决上述问题,一种方法是将针对RedCap UE和传统UE的CORESET#0的分别进行指示。但是,目前SSB所在的频域位置位于定义的同步栅格上,该同步栅格对于RedCap UE和传统UE的小区搜索都是有效的,使得RedCap UE无法知道该SSB中承载的CORESET#0信息是否为RedCap UE对应的信息。同时,传统UE也会将SSB中承载的RedCap UE对应的CORESET#0信息当做自己的CORESET#0信息。
在SSB和PDCCH的子载波间隔均为15kHz的情况下,CORESET#0信息取值=15时,CORESET#0信息域和CORESET#0配置信息的映射表格中的CORESET#0配置信息是保留的,即对于传统UE来说,该CORESET#0信息对应的CORESET#0配置信息是没有定义的。
鉴于此,为了区分针对RedCap UE和传统UE的SSB,在一些实施例中,可以利用CORESET#0信息中保留值(如15),指示该SSB对应RedCap UE,即该SSB中携带的MIB信息是对应RedCap UE的MIB信息。当传统UE收到该CORESET#0信息为该保留值时,由于该CORESET#0信息没有对应 CORESET#0配置信息的,因此传统UE不会进行系统消息的接收,从而不会接入对应的小区。
具体的,对于SSB和PDCCH的子载波间隔均为15kHz下,当CORESET#0信息取值=15,RedCap UE则确定该CORESET#0信息的取值对应的CORESET#0的配置信息。该CORESET#0的配置信息可以为预定义的配置信息,如CORESET#0的带宽为24个RB时,CORESET#0和SSB之间的RB偏移可以是0、2、4个RB。即预定义的配置信息可以是现有的映射表格中的前6种配置中的一种。
因此,具体的,新定义的针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射关系(或称为映射表格)如表8所示。
表8
Figure PCTCN2022095739-appb-000011
如表8所示,新定义的针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格中只有CORESET#0信息=15对于RedCap UE来说是有效的;而现有技术中的针对传统UE的CORESET#0信息和CORESET#0配置信息的映射表格中CORESET#0信息=0~14对于传统UE来说是有效的。这种情况下,RedCap UE和传统UE不再共享SSB,也不共享CORESET#0的配置,进而可以分别接收针对两种UE的系统消息。
在另一些实施方式中,CORESET#0信息=0~5或15对于RedCap UE来说是有效的,CORESET#0信息=6~14为保留值。表9为这种新定义的针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格,这种情况下,CORESET#0信息=0~5为RedCap UE和传统UE都认为有效的CORESET#0信息取值。
表9
Figure PCTCN2022095739-appb-000012
Figure PCTCN2022095739-appb-000013
表8和表9仅是针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格的示例,本申请实施例对于新定义的RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格的具体内容不做限制。例如,当CORESET#0信息=15时,还可以指示CORESET#0配置信息中CORESET#0包含的RB数量为其他值,如包含25个RB。
在SSB的子载波间隔为15kHz、PDCCH的子载波间隔为30kHz的情况下,现有的CORESET#0信息和CORESET#0配置信息的映射表格如10表所示。
表10
Figure PCTCN2022095739-appb-000014
由上表所知,COORESET#0包含的RB数全部超过了5MHz。对于RedCap UE来说,可以新定义针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格,其中CORESET#0包含的RB数可以降低到满足5MHz的带宽限制,如11或12个RB。
类似的,为了区分针对RedCap UE和传统UE的CORESET#0信息,本实施例中,利用CORESET#0信息中保留值(即14或15),指示该SSB对应RedCap UE,SSB中携带的MIB信息是对应RedCap UE的MIB信息。当传统UE收到该CORESET#0信息为保留值时,由于没有对应的CORESET#0信息,则不会进行系统消息的接收,从而不会接入对应的小区。
具体的,对于SSB的子载波间隔均为15kHz,PDCCH的子载波间隔为30kHz下,当CORESET#0信息取值=14或15时,RedCap UE确定该CORESET#0信息的取值对应的CORESET#0的配置信息。例如CORESET#0信息取值=14和15分别对应RedCap UE的CORESET#0的配置信息。例如,一种新定义的针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格如表11所示。
表11
Figure PCTCN2022095739-appb-000015
Figure PCTCN2022095739-appb-000016
进一步的,SSB的子载波间隔还可以采用30kHz,此时虽然SSB的带宽超过了5MHz,RedCap UE可以采用多次接收的方式来解码PBCH。当SSB的子载波间隔为30kHz、PDCCH的子载波间隔为15kHz的情况下,现有的CORESET#0信息和CORESET#0配置信息的映射表格如表12所示。
表12
Figure PCTCN2022095739-appb-000017
类似的,当CORESET#0信息取值为保留值时,RedCap UE则确定该CORESET#0信息的取值对应的CORESET#0的配置信息。例如CORESET#0信息取值=9至15分别对应RedCap UE的CORESET#0的配置信息。例如,一种新定义的针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格如下表所示。
表13
Figure PCTCN2022095739-appb-000018
Figure PCTCN2022095739-appb-000019
上述方法中,对于RedCap UE,CORESET#0信息与CORESET#0配置信息的映射表格中,当CORESET#0信息为保留值时,实质上按照现有的针对传统UE的映射表格,所指示的CORESET#0配置信息的带宽超过了RedCap UE支持的带宽。此时可以认为对于RedCap UE,CORESET#0信息为保留值时表示不支持具有5MHz带宽能力的RedCap UE的接入。
进一步的,CORESET#0带宽也可以允许超过5MHz,此时RedCap UE需要在多个CORESET#0多次接收来实现PDCCH的接收。但是上述方法仍然可以在此情况下使用,只是新定义的针对RedCap UE的CORESET#0信息和CORESET#0配置信息的映射表格中,有效的CORESET#0配置信息中的RB数对应的带宽允许超过5MHz。
示例2:子载波偏移参数k SSB的保留取值,对应MIB中的第一信息域指示RedCap UE的CORESET#0的配置信息。
回看表6和表7,对于传统UE来说,k SSB=30(FR1情况下)和k SSB=14(FR2情况下)为保留值。因此,本示例中可以将k SSB=30(FR1情况下)和k SSB=14(FR2情况下)作为第一指示(如SSB承载的ssb-SubcarrierOffset信息)确定出的值,该第一指示用于指示SSB承载用于确定RedCap UE的控制信道资源的第一信息。
对于传统UE,FR1下k SSB=30为保留值,FR2下k SSB=14为保留值。因此当收到SSB后,确定k SSB的取值为保留值时,传统UE可以确定当前SSB承载的MIB中不存在CORESET#0信息。但是不能确定存在CORESET#0信息的目标SSB的频域位置。传统UE会继续搜索其他SSB,不会根据MIB中的CORESET#0和SearchSpace#0进行Type0 PDCCH的接收。
对于RedCap UE,可以利用FR1下k SSB=30,FR2下k SSB=14,来确定MIB中的CORESET#0和SearchSpace#0为针对RedCap UE的有效信息,从而获得针对RedCap UE的CORESET#0配置信息和SearchSpace#0配置信息,从而接收Type0 PDCCH。CORESET#0信息域和CORESET#0配置信息之间的映射关系、和/或SearchSpace#0信息域和SearchSpace#0的配置信息之间的映射关系可以针对RedCap UE重新定义。其中,新定义的CORESET#0信息域和CORESET#0配置信息之间的映射关系中,如示例1中提到的,在PDCCH包含的子载波间隔为15KHz的情况下,CORESET#0配置信息中CORESET#0包含的RB数目可以为24或25;在PDCCH包含的子载波间隔为30KHz的情况下,CORESET#0配置信息中CORESET#0包含的RB数目可以为11或12。并且,CORESET#0的配置信息可以针对RedCap UE进行优化,例如增加与Type0 PDCCH的重复传输、CORESET聚合相关的信息。同样,SearchSpace#0的配置信息也可以针对RedCap UE进行优化,更好的支持Type0 PDCCH的重复传输或CORESET聚合。具体可以参加示例3。
由于本示例中采用FR1下k SSB=30,FR2下k SSB=14来指示MIB中的CORESET#0和SearchSpace#0为针对RedCap UE的有效信息,因此可以重新定义针对RedCap UE的CORESET#0的配置参数表格,而不受已有针对传统UE的CORESET#0的配置参数表格的影响或限制。例如,SSB中的CORESET#0信息域的取值可以为0~15中的任意值,不同的取值对应不同的CORESET#0配置信息。另外,CORESET#0配置信息还可以针对RedCap UE进行优化,例如在CORESET#0配置信息中增加Type0PDCCH重复传输的次数、或者CORESET聚合的个数等相关信息,以便更好地支持Type0 PDCCH的重复传输或CORESET聚合。本申请对针对RedCap UE的CORESET#0信息域和CORESET#0配置信息之间的映射关系(如CORESET#0的配置参数表格)的具体内容不做限制。
另外,由于本示例中采用将子载波偏移参数k SSB确定为保留值的方式来指示SSB是针对RedCap UE的SSB,而子载波偏移参数k SSB原本的作用是指示子载波偏移信息;那么,子载波偏移信息可以采用预定义的方式指示,或者通过MIB信息中的其他信息指示。例如,子载波偏移信息与CORESET#0或SearchSpace#0信息进行联合编码,CORESET#0或SearchSpace#0信息指示CORESET#0或SearchSpace#0配置信息的同时,也指示了子载波偏移信息。再例如,通过CORESET#0或SearchSpace#0信息域的部分比特进行指示。这需要对CORESET#0或SearchSpace#0信息域进行重新定义,如4比特的CORESET#0和4比特的SearchSpace#0信息域分别减少为一个或多个比特(如2比特),节省出的比特信息用于指示子载波偏移信息。
示例3:MIB信息中的SearchSpace#0信息指示RedCap UE的对应的Type0 PDCCH监听时机的配置信息。
由于在示例1-2中,可以通过CORESET#0信息取值=15(或者14或15、或者9至15中的任意值)、或者通过FR1下k SSB=30,FR2下k SSB=14,确定MIB中指示的CORESET#0信息只针对RedCap UE。因此,MIB信息中的SearchSpace#0信息所指示的Type0 PDCCH监听时机的配置信息也可以针对RedCap UE重新定义,如重新定义SearchSpace#0信息与Type0 PDCCH监听时机的配置信息的映射表格。
具体的,当CORESET#0信息取值=15(或者14或15、或者9至15中的任意值)、或者通过FR1下k SSB=30,FR2下k SSB=14,确定根据RedCap UE对应的SearchSpace#0信息与Type0 PDCCH监听时机的配置信息的映射表格,对SearchSpace#0信息解读,获取Type0 PDCCH监听时机的配置信息。
当CORESET#0信息取值=0~14(或者0~13、或者0~8),或者FR1下k SSB<24,FR2下k SSB<12,确定根据现有的SearchSpace#0信息与Type0 PDCCH监听时机的配置信息的映射表格,对SearchSpace#0信息解读,获取Type0 PDCCH监听时机的配置信息。
新定义的针对RedCap UE的Type0-PDCCH监听时机与SearchSpace#0信息的映射表格可以如表14所示:
表14
Figure PCTCN2022095739-appb-000020
需要说明的是,表14仅是本示例提出的Type0-PDCCH监听时机与SearchSpace#0信息的映射表格的一种示例,本申请实施例对于Type0-PDCCH监听时机与SearchSpace#0信息的映射表格不做限制。本申请实施例通过重新定义针对RedCap UE的Type0 PDCCH监听时机与SearchSpace#0信息的映射表格,可以满足针对RedCap UE的Type0-PDCCH的传输需要。例如,由于支持的带宽的变小,Type0 PDCCH的覆盖性能下降,可以采用重复传输的方式增强覆盖。为了支持Type0 PDCCH的重复传输,Type0 PDCCH监听时机的配置信息可以有针对性的进行优化,以满足Type0 PDCCH重复传输的需要。再例如,采用多个CORESET#0的聚合的方式可以形成包含更多时频资源的CORESET用于Type0 PDCCH的传输,也可以提高Type0 PDCCH的覆盖性能。Type0 PDCCH的监听时机配置信息的重新定义,可以更好的支持CORESET#0的聚合。例如,本申请实施例可以在Type0-PDCCH监听时机与SearchSpace#0信息的映射表格中增加重复传输的次数、或者增加CORESET#0的聚合个数等信息。
图5是根据本申请一实施例的控制信道资源的指示方法500的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S510、网络设备发送SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
在一些实施方式中,该第一类型终端设备可以为RedCap UE。
网络设备可以在SSB中携带用于确定第一类型终端设备的控制信道资源的第一信息,并在该SSB中携带第一指示,以指示该SSB承载了用于确定第一类型终端设备的控制信道资源的第一信息;这样, 搜索到该携带的第一指示的SSB的RedCap UE就能够知道该SSB是针对RedCap UE的SSB。并且,网络设备还可以在针对传统UE的SSB中不携带该第一信息,这样,搜索到该不携带的第一指示的SSB的传统UE就能够知道该SSB是针对传统UE的SSB,即该SSB中承载了用于确定传统UE的控制信道资源的第一信息。
在一些实施方式中,该第一指示由SSB承载的CORESET#0信息域携带。
例如,该CORESET#0信息域的取值为第一保留值。
例如,该第一保留值为15;或者,
该第一保留值为14或15;或者,
该第一保留值为9、10、11、12、13、14或15。
在一些实施方式中,该第一指示由SSB承载的ssb-SubcarrierOffset信息域携带,该ssb-SubcarrierOffset信息域用于确定子载波偏移参数。
例如,该子载波偏移参数(k SSB)的值为第二保留值。
例如,在频率范围为FR1的情况下,该第二保留值为30;在频率范围为FR2的情况下,该第二保留值为14。
在一些实施方式中,第一信息由第一信息域携带,第一信息域包括以下至少一项:
CORESET#0信息域的全部或部分比特;
SearchSpace#0信息域的全部或部分比特。
第一信息可以用于供第一类型终端设备确定控制信道资源。在一些实施方式中,本申请实施例可以针对第一类型终端设备重新定义新的CORESET#0信息域和CORESET#0配置信息之间的映射关系、和/或Search Space#0信息域和Search Space#0配置信息之间的映射关系。这样,CORESET#0配置信息可以针对第一类型终端设备(如RedCap UE)进行优化,例如增加与Type0 PDCCH的重复传输、CORESET聚合相关的信息。同样,SearchSpace#0的配置信息也可以针对第一类型终端设备(如RedCap UE)进行优化,更好的支持Type0 PDCCH的重复传输或CORESET聚合。
本实施例的网络设备执行方法500的具体示例可以参见上述方法300的中关于网络设备例如基站的相关描述,为了简洁,在此不再赘述。
图6是根据本申请一实施例的终端设备600的示意性框图。该终端设备600可以包括:
第一接收模块610,用于接收SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定该终端设备的控制信道资源的第一信息
在一种实施方式中,该第一指示由该SSB承载的CORESET#0信息域携带。
在一种实施方式中,该CORESET#0信息域的取值为第一保留值。
在一种实施方式中,该第一保留值为15;或者,
该第一保留值为14或15;或者,
该第一保留值为9、10、11、12、13、14或15。
在一种实施方式中,该第一指示由该SSB承载的SSB的子载波偏移信息域携带,该SSB的子载波偏移信息域用于确定子载波偏移参数。
在一种实施方式中,该子载波偏移参数的值为第二保留值。
在一种实施方式中,在频率范围为FR1的情况下,该第二保留值为30;
在频率范围为FR2的情况下,该第二保留值为14。
在一种实施方式中,该第一信息由第一信息域携带,该第一信息域包括以下至少一项:
CORESET#0信息域的全部或部分比特;
SearchSpace#0信息域的全部或部分比特。
图7是根据本申请一实施例的终端设备700的示意性框图。如图7所示,在一种实施方式中,该终端设备还包括:
确定模块720,用于利用该第一信息,确定该终端设备的控制信道资源;
第二接收模块730,用于利用该控制信道资源进行PDCCH的接收。
在一种实施方式中,该确定模块720用于:
确定该终端设备对应的CORESET#0配置信息,和/或,
确定该终端设备对应的SearchSpace#0配置信息。
在一种实施方式中,该确定模块720用于,利用该第一信息中的CORESET#0信息以及针对该第一类型终端设备的CORESET#0信息与CORESET#0配置信息的映射关系,确定该第一类型终端设备对应的CORESET#0配置信息。
在一种实施方式中,该确定模块720用于,利用该第一信息中的SearchSpace#0信息以及针对该第 一类型终端设备的SearchSpace#0信息与SearchSpace#0配置信息的映射关系,确定该第一类型终端设备对应的SearchSpace#0配置信息。
在一种实施方式中,该终端设备包括能力降低的RedCap终端设备。本申请实施例的终端设备600和终端设备700能够实现前述的方法实施例中的第一类型终端设备的对应功能。该终端设备600和终端设备700中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备600和终端设备700中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图8是根据本申请一实施例的网络设备800的示意性框图。该网络设备800可以包括:
发送模块810,用于发送SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
在一种实施方式中,该第一指示由该SSB承载的CORESET#0信息域携带。
在一种实施方式中,该CORESET#0信息域的取值为第一保留值。
在一种实施方式中,该第一保留值为15;或者,
该第一保留值为14或15;或者,
该第一保留值为9、10、11、12、13、14或15。
在一种实施方式中,该第一指示由该SSB承载的SSB的子载波偏移信息域携带,该SSB的子载波偏移信息域用于确定子载波偏移参数。
在一种实施方式中,该子载波偏移参数的值为第二保留值。
在一种实施方式中,在频率范围为FR1的情况下,该第二保留值为30;
在频率范围为FR2的情况下,该第二保留值为14。
在一种实施方式中,该第一信息由第一信息域携带,该第一信息域包括以下至少一项:
CORESET#0信息域的全部或部分比特;
SearchSpace#0信息域的全部或部分比特。
在一种实施方式中,该第一类型终端设备包括能力降低的RedCap终端设备。
本申请实施例的网络设备800能够实现前述的方法实施例中的网络设备的对应功能。该网络设备800中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备800中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图9是根据本申请实施例的通信设备900示意性结构图。该通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以使通信设备900实现本申请实施例中的方法。
在一种实施方式中,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以使通信设备900实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
在一种实施方式中,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
在一种实施方式中,该通信设备900可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该通信设备900可为本申请实施例的终端设备,并且该通信设备900可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是根据本申请实施例的芯片1000的示意性结构图。该芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种实施方式中,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
在一种实施方式中,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种实施方式中,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种实施方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图11是根据本申请实施例的通信系统1100的示意性框图。该通信系统1100包括终端设备1110和网络设备1120。
其中,终端设备1110用于接收SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
网络设备1120用于发送SSB,该SSB携带第一指示,该第一指示用于指示该SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
其中,该终端设备1110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (55)

  1. 一种控制信道资源的指示方法,包括:
    第一类型终端设备接收同步信号块SSB,所述SSB携带第一指示,所述第一指示用于指示所述SSB承载用于确定所述第一类型终端设备的控制信道资源的第一信息。
  2. 根据权利要求1所述的方法,其中,所述第一指示由所述SSB承载的控制资源集合CORESET#0信息域携带。
  3. 根据权利要求2所述的方法,其中,所述CORESET#0信息域的取值为第一保留值。
  4. 根据权利要求3所述的方法,其中,
    所述第一保留值为15;或者,
    所述第一保留值为14或15;或者,
    所述第一保留值为9、10、11、12、13、14或15。
  5. 根据权利要求1所述的方法,其中,所述第一指示由所述SSB承载的SSB的子载波偏移信息域携带,所述SSB的子载波偏移信息域用于确定子载波偏移参数。
  6. 根据权利要求5所述的方法,其中,所述子载波偏移参数的值为第二保留值。
  7. 根据权利要求6所述的方法,其中,
    在频率范围为FR1的情况下,所述第二保留值为30;
    在频率范围为FR2的情况下,所述第二保留值为14。
  8. 根据权利要求1-7中任一所述的方法,其中,所述第一信息由第一信息域携带,所述第一信息域包括以下至少一项:
    CORESET#0信息域的全部或部分比特;
    搜索空间SearchSpace#0信息域的全部或部分比特。
  9. 根据权利要求1-8中任一所述的方法,还包括:
    所述第一类型终端设备利用所述第一信息,确定所述第一类型终端设备的控制信道资源;
    所述第一类型终端设备利用所述控制信道资源进行PDCCH的接收。
  10. 根据权利要求9所述的方法,其中,所述确定所述第一类型终端设备的控制信道资源,包括:
    确定所述第一类型终端设备对应的CORESET#0配置信息,和/或,
    确定所述第一类型终端设备对应的SearchSpace#0配置信息。
  11. 根据权利要求10所述的方法,其中,所述确定所述第一类型终端设备对应的CORESET#0的配置信息,包括:
    利用所述第一信息中的CORESET#0信息以及针对所述第一类型终端设备的CORESET#0信息与CORESET#0配置信息的映射关系,确定所述第一类型终端设备对应的CORESET#0配置信息。
  12. 根据权利要求10所述的方法,其中,所述确定所述第一类型终端设备对应的SearchSpace#0配置信息,包括:
    利用所述第一信息域的SearchSpace#0信息以及针对所述第一类型终端设备的SearchSpace#0信息与SearchSpace#0配置信息的映射关系,确定所述第一类型终端设备对应的SearchSpace#0配置信息。
  13. 根据权利要求1-12中任一所述的方法,其中,所述第一类型终端设备包括能力降低的RedCap终端设备。
  14. 一种信息指示方法,包括:
    网络设备发送SSB,所述SSB携带第一指示,所述第一指示用于指示所述SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
  15. 根据权利要求14所述的方法,其中,所述第一指示由所述SSB承载的CORESET#0信息域携带。
  16. 根据权利要求15所述的方法,其中,所述CORESET#0信息域的取值为第一保留值。
  17. 根据权利要求16所述的方法,其中,
    所述第一保留值为15,或者,
    所述第一保留值为14或15;或者,
    所述第一保留值为9、10、11、12、13、14或15。
  18. 根据权利要求14所述的方法,其中,所述第一指示由所述SSB承载的SSB的子载波偏移信息域携带,所述SSB的子载波偏移信息域用于确定子载波偏移参数。
  19. 根据权利要求18所述的方法,其中,所述子载波偏移参数的值为第二保留值。
  20. 根据权利要求19所述的方法,其中,
    在频率范围为FR1的情况下,所述第二保留值为30;
    在频率范围为FR2的情况下,所述第二保留值为14。
  21. 根据权利要求14-20中任一所述的方法,其中,所述第一信息由第一信息域携带,所述第一信息域包括以下至少一项:
    CORESET#0信息域的全部或部分比特;
    SearchSpace#0信息域的全部或部分比特。
  22. 根据权利要求14-21中任一所述的方法,其中,所述第一类型终端设备包括能力降低的RedCap终端设备。
  23. 一种终端设备,包括:
    第一接收模块,用于接收SSB,所述SSB携带第一指示,所述第一指示用于指示所述SSB承载用于确定所述终端设备的控制信道资源的第一信息。
  24. 根据权利要求23所述的终端设备,其中,所述第一指示由所述SSB承载的控制资源集合CORESET#0信息域携带。
  25. 根据权利要求24所述的终端设备,其中,所述CORESET#0信息域的取值为第一保留值。
  26. 根据权利要求25所述的终端设备,其中,
    所述第一保留值为15;或者,
    所述第一保留值为14或15;或者,
    所述第一保留值为9、10、11、12、13、14或15。
  27. 根据权利要求1所述的终端设备,其中,所述第一指示由所述SSB承载的SSB的子载波偏移信息域携带,所述SSB的子载波偏移信息域用于确定子载波偏移参数。
  28. 根据权利要求27所述的终端设备,其中,所述子载波偏移参数的值为第二保留值。
  29. 根据权利要求28所述的终端设备,其中,
    在频率范围为FR1的情况下,所述第二保留值为30;
    在频率范围为FR2的情况下,所述第二保留值为14。
  30. 根据权利要求23-29中任一所述的终端设备,其中,所述第一信息由第一信息域携带,所述第一信息域包括以下至少一项:
    CORESET#0信息域的全部或部分比特;
    SearchSpace#0信息域的全部或部分比特。
  31. 根据权利要求23-30中任一所述的终端设备,还包括:
    确定模块,用于利用所述第一信息,确定所述终端设备的控制信道资源;
    第二接收模块,用于利用所述控制信道资源进行PDCCH的接收。
  32. 根据权利要求31所述的终端设备,其中,所述确定模块用于:
    确定所述终端设备对应的CORESET#0配置信息,和/或,
    确定所述终端设备对应的SearchSpace#0配置信息。
  33. 根据权利要求32所述的终端设备,其中,所述确定模块用于,利用所述第一信息中的CORESET#0信息以及针对所述第一类型终端设备的CORESET#0信息与CORESET#0配置信息的映射关系,确定所述第一类型终端设备对应的CORESET#0配置信息。
  34. 根据权利要求32所述的终端设备,其中,所述确定模块用于,利用所述第一信息中的SearchSpace#0信息以及针对所述第一类型终端设备的SearchSpace#0信息与SearchSpace#0配置信息的映射关系,确定所述第一类型终端设备对应的SearchSpace#0配置信息。
  35. 根据权利要求23-34中任一所述的终端设备,其中,所述终端设备包括能力降低的RedCap终端设备。
  36. 一种网络设备,包括:
    发送模块,用于发送SSB,所述SSB携带第一指示,所述第一指示用于指示所述SSB承载用于确定第一类型终端设备的控制信道资源的第一信息。
  37. 根据权利要求36所述的网络设备,其中,所述第一指示由所述SSB承载的CORESET#0信息域携带。
  38. 根据权利要求37所述的网络设备,其中,所述CORESET#0信息域的取值为第一保留值。
  39. 根据权利要求38所述的网络设备,其中,
    所述第一保留值为15;或者,
    所述第一保留值为14或15;或者,
    所述第一保留值为9、10、11、12、13、14或15。
  40. 根据权利要求36所述的网络设备,其中,所述第一指示由所述SSB承载的SSB的子载波偏移信息域携带,所述SSB的子载波偏移信息域用于确定子载波偏移参数。
  41. 根据权利要求40所述的网络设备,其中,所述子载波偏移参数的值为第二保留值。
  42. 根据权利要求41所述的网络设备,其中,
    在频率范围为FR1的情况下,所述第二保留值为30;
    在频率范围为FR2的情况下,所述第二保留值为14。
  43. 根据权利要求36-42中任一所述的网络设备,其中,所述第一信息由第一信息域携带,所述第一信息域包括以下至少一项:
    CORESET#0信息域的全部或部分比特;
    SearchSpace#0信息域的全部或部分比特。
  44. 根据权利要求36-43中任一所述的网络设备,其中,所述第一类型终端设备包括能力降低的RedCap终端设备。
  45. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至13中任一项所述的方法。
  46. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述网络设备执行如权利要求14至22中任一项所述的方法。
  47. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  48. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求14至22中任一项所述的方法。
  49. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至13中任一项所述的方法。
  50. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求14至22中任一项所述的方法。
  51. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  52. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求14至22中任一项所述的方法。
  53. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  54. 一种计算机程序,所述计算机程序使得计算机执行如权利要求14至22中任一项所述的方法。
  55. 一种通信系统,包括:
    终端设备,用于执行如权利要求1至13中任一项所述的方法;
    网络设备,用于执行如权利要求14至22中任一项所述的方法。
PCT/CN2022/095739 2022-05-27 2022-05-27 一种控制信道资源的指示方法、终端设备和网络设备 WO2023226029A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095739 WO2023226029A1 (zh) 2022-05-27 2022-05-27 一种控制信道资源的指示方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095739 WO2023226029A1 (zh) 2022-05-27 2022-05-27 一种控制信道资源的指示方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023226029A1 true WO2023226029A1 (zh) 2023-11-30

Family

ID=88918156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095739 WO2023226029A1 (zh) 2022-05-27 2022-05-27 一种控制信道资源的指示方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023226029A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163857A1 (zh) * 2020-02-17 2021-08-26 北京小米移动软件有限公司 配置信息确定方法、装置及计算机可读存储介质
CN114071688A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种同步信号块的传输方法和通信装置
CN114286418A (zh) * 2020-09-27 2022-04-05 华为技术有限公司 接入网络设备的方法及装置
WO2022078726A1 (en) * 2020-10-16 2022-04-21 Sony Group Corporation Control channel for reduced capability device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163857A1 (zh) * 2020-02-17 2021-08-26 北京小米移动软件有限公司 配置信息确定方法、装置及计算机可读存储介质
CN114071688A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种同步信号块的传输方法和通信装置
CN114286418A (zh) * 2020-09-27 2022-04-05 华为技术有限公司 接入网络设备的方法及装置
WO2022078726A1 (en) * 2020-10-16 2022-04-21 Sony Group Corporation Control channel for reduced capability device

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
US20230069882A1 (en) Method for configuring sidelink feedback resource, terminal device, and network device
US20230179374A1 (en) Channel transmission method, terminal device, and network device
US20210298092A1 (en) Communications method and apparatus, and computer-readable storage medium
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2022067692A1 (zh) 侧行链路的传输方法和终端
US20220394503A1 (en) Wireless communication method and device
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2023226029A1 (zh) 一种控制信道资源的指示方法、终端设备和网络设备
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2022141309A1 (zh) 授权配置方法、终端设备和网络设备
WO2022126637A1 (zh) 资源确定方法、终端设备和网络设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2022094935A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197154A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024055243A1 (zh) 侧行通信方法和终端设备
WO2023050355A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022147681A1 (zh) 辅助路由方法、终端设备和网络设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
WO2023060559A1 (zh) 无线通信的方法和终端设备
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022126521A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943227

Country of ref document: EP

Kind code of ref document: A1