WO2022019642A1 - Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same - Google Patents

Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same Download PDF

Info

Publication number
WO2022019642A1
WO2022019642A1 PCT/KR2021/009404 KR2021009404W WO2022019642A1 WO 2022019642 A1 WO2022019642 A1 WO 2022019642A1 KR 2021009404 W KR2021009404 W KR 2021009404W WO 2022019642 A1 WO2022019642 A1 WO 2022019642A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
solid polymer
solid
carbon atoms
group
Prior art date
Application number
PCT/KR2021/009404
Other languages
French (fr)
Korean (ko)
Inventor
강영구
김동욱
김도엽
석정돈
만 응우엔티엔
김현진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022019642A1 publication Critical patent/WO2022019642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid polymer electrolyte precursor composition, and more particularly, to a solid polymer electrolyte precursor composition for forming a solid polymer electrolyte usable in an all-solid battery, a solid polymer electrolyte formed therefrom, and an all-solid battery comprising the same it's about
  • the lithium ion secondary battery using a liquid electrolyte is mainly used.
  • a lithium ion secondary battery using a liquid electrolyte is generally separated by a separator in which a negative electrode and a positive electrode are formed of a polymer, and a liquid electrolyte is used as the electrolyte.
  • the electrolyte exists in a liquid state in the battery, the liquid electrolyte evaporates due to temperature changes depending on the usage environment of the battery to cause expansion of the battery, leakage of the liquid electrolyte by external impact, or damage to the separator
  • the negative electrode and the positive electrode may be short-circuited by the , and thus explosion and ignition of the battery may occur.
  • an All Solid State Battery is a battery in which all components of the battery are solid while including a negative electrode, a positive electrode, and a solid electrolyte, and does not contain liquid in the battery, so liquid evaporation or external shock due to temperature change It is safe from explosion and fire as there is no problem such as leakage.
  • the all-solid-state battery does not require a safety device to prevent leakage, explosion, or ignition that may occur in a lithium ion secondary battery using a liquid electrolyte, there is an advantage in that the weight and volume of the battery can be reduced. .
  • a polyethylene oxide (PEO)-based polymer electrolyte is known as one of the solid polymer electrolytes with the highest potential for commercialization. Since the PEO-based polymer electrolyte does not use a flammable solvent, the possibility of explosion due to ignition is low, and it exhibits high chemical and electrochemical stability. However, since the PEO-based polymer electrolyte has low oxidation voltage stability, it is difficult to apply a 4V-class high voltage cathode material such as LCO (LiCoO 2 ), NMC (LiNiMnCoO 2 ), NCA (LiNiCoAlO 2 ), etc. As a material, only LFP (LiFePO 4 ) with a low voltage is used limitedly.
  • LCO LiCoO 2
  • NMC LiNiMnCoO 2
  • NCA LiNiCoAlO 2
  • An object to be solved by the present invention is to provide a solid polymer electrolyte that can be applied to a high voltage cathode material in an all-solid-state battery.
  • an object of the present invention is to provide a solid polymer electrolyte precursor composition for forming the solid polymer electrolyte.
  • Another object of the present invention is to provide a solid polymer electrolyte that is formed from the solid polymer electrolyte precursor composition and can be applied to a high voltage cathode material when used in an all-solid-state battery.
  • Another object of the present invention is to provide an all-solid-state battery having excellent cycle life and capacity characteristics, including the solid polymer electrolyte and the high voltage cathode material.
  • the present invention provides a compound represented by the following formula (1);
  • a solid polymer electrolyte precursor composition comprising a plasticizer and a lithium salt is provided.
  • X 1 is -CR 1 R 2 - or -NR 7 -
  • X 2 is -CR 3 R 4 - or -NR 8 -
  • X 3 is -CR 5 R 6 - or -NR 9 -
  • X 1 At least one or more of to X 3 is -NR 7 -, -NR 8 - or -NR 9 -
  • R 1 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms.
  • an alkynyl group having 2 to 30 carbon atoms a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroalkyl group having 1 to 30 carbon atoms, or a heterocyclic group having 5 to 30 ring atoms, but at least one or more is an alkenyl group having 2 to 30 carbon atoms.
  • the present invention provides a cross-linkable polymer comprising a compound unit represented by Formula 1;
  • a solid polymer electrolyte comprising a plasticizer and a lithium salt is provided.
  • the present invention is a negative electrode; anode; and a solid polymer electrolyte interposed between the negative electrode and the positive electrode, wherein the solid polymer electrolyte comprises: a cross-linkable polymer including a compound unit represented by Formula 1; It provides an all-solid-state battery comprising a plasticizer and a lithium salt.
  • solid polymer electrolyte formed from the solid polymer electrolyte precursor composition according to the present invention is used as an electrolyte for an all-solid-state battery, a high-voltage cathode material can be applied, thereby improving cycle life and capacity characteristics of the all-solid-state battery.
  • FIG. 2 is a graph showing charge/discharge characteristic curves according to charge/discharge rates of all-solid-state batteries prepared in Examples 1 to 4 of the present invention.
  • FIG 3 is a graph showing the capacity retention rate according to the rate of the all-solid-state batteries prepared in Examples 1 to 4 of the present invention.
  • all solid state battery' used in the present invention refers to a battery in which all components of the battery are solid, and a liquid electrolyte secondary battery using a liquid electrolyte such as an electrolyte, and a polymer electrolyte instead of a separator It is distinguished from a gel polymer secondary battery that uses a liquid electrolyte while using it.
  • Solid State Polymer Electrolyte' used in the present invention refers to a solid electrolyte formed of a polymer, and a non-aqueous liquid electrolyte such as an electrolyte, and a non-aqueous liquid electrolyte by gelling the polymer. It is distinguished from the gel polymer electrolyte used.
  • the term 'alkyl group' may refer to a monovalent aliphatic saturated hydrocarbon, and linear alkyl groups such as methyl, ethyl, propyl and butyl and isopropyl, sec-butyl, ter It may mean including all branched alkyl groups such as tert-butyl and neopentyl.
  • alkenyl group' may mean a monovalent aliphatic unsaturated hydrocarbon including one or two or more double bonds.
  • the term 'alkynyl group' may mean a monovalent aliphatic unsaturated hydrocarbon including one or two or more triple bonds.
  • the term 'cycloalkyl group' may refer to a monovalent aliphatic saturated or unsaturated cyclic hydrocarbon.
  • the unsaturated cyclic hydrocarbon includes one or two or more unsaturated bonds in a ring structure formed from the hydrocarbon, but may mean a cyclic hydrocarbon other than an aromatic hydrocarbon.
  • the term 'aryl group' may mean a cyclic aromatic hydrocarbon, and also a monocyclic aromatic hydrocarbon in which one ring is formed, or a polycyclic aromatic hydrocarbon in which two or more rings are bonded. It may mean including all hydrocarbon).
  • the term 'heteroalkyl group' may mean including one or two or more heteroatoms, ie, atoms other than carbon and hydrogen, in a monovalent aliphatic saturated or unsaturated hydrocarbon.
  • the hetero atom may be an oxygen (O), nitrogen (N), or sulfur (S) atom.
  • the heteroalkyl group may mean including all of an alkoxy group, an amino group, and a sulfide group.
  • the term 'heterocyclic group' may mean including both a cycloalkyl group or an aryl group in which a carbon atom in a cycloalkyl group or an aryl group is substituted with one or more hetero atoms.
  • the hetero atom may be an oxygen (O), nitrogen (N), or sulfur (S) atom.
  • the number of ring atoms of the heterocyclic group may mean the number of atoms forming a ring including carbon and hetero atoms.
  • composition includes reaction products and decomposition products formed from materials of the composition, as well as mixtures of materials comprising the composition.
  • the present invention relates to an all-solid-state battery, and more particularly, to an all-solid-state lithium secondary battery using lithium ions.
  • the all-solid-state battery may include a negative electrode, a positive electrode, and a solid polymer electrolyte interposed between the negative electrode and the positive electrode.
  • the present invention provides a solid polymer electrolyte precursor composition for forming a solid polymer electrolyte.
  • a solid polymer electrolyte precursor composition for forming a solid polymer electrolyte includes a compound represented by the following Chemical Formula 1; It may include a plasticizer and a lithium salt.
  • X 1 is -CR 1 R 2 - or -NR 7 -
  • X 2 is -CR 3 R 4 - or -NR 8 -
  • X 3 is -CR 5 R 6 - or -NR 9 -However, at least one of X 1 to X 3 is -NR 7 -, -NR 8 - or -NR 9 -
  • R 1 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, and 2 carbon atoms.
  • the compound represented by Formula 1 is crosslinkable to form a polymer forming a semi-interpenetrating network together with a plasticizer when forming a solid polymer electrolyte from a solid polymer electrolyte precursor composition It may be a compound.
  • the solid polymer electrolyte is formed by including the compound represented by Formula 1 according to the present invention, the polymerization reaction can be simplified while preventing shrinkage, and a structurally homogeneous polymer network can be formed.
  • X 1 is -NR 7 -
  • X 2 is -NR 8 -
  • X 3 is -NR 9 -
  • R 7 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a hetero group having 1 to 30 carbon atoms
  • X 1 is -NR 7 -
  • X 2 is -NR 8 -
  • X 3 is -NR 9 -
  • R 7 to R 9 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a hetero group having 1 to 20 carbon atoms
  • X 1 is -NR 7 -
  • X 2 is -NR 8 -
  • X 3 is -NR 9 -
  • R 7 to R 9 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hetero group having 1 to 10 carbon atoms
  • X 1 is -NR 7 -
  • X 2 is -NR 8 -
  • X 3 is -NR 9 -
  • R 7 to R 9 are Each independently may be an alkenyl group having 2 to 30 carbon atoms, and as a more specific example, R 7 to R 9 may each independently be a vinyl group or an allyl group.
  • the compound represented by Formula 1 may be a compound represented by Formula 1-1 below.
  • the solid polymer electrolyte precursor composition may include a thiol-based crosslinking agent.
  • the crosslinkable polymer when the solid polymer electrolyte precursor composition includes a thiol-based crosslinking agent, when the crosslinkable polymer is formed from the compound represented by Formula 1, the crosslinkable polymer is formed by a crosslinking reaction between the compound represented by Formula 1 and the thiol-based crosslinking agent. can be formed.
  • the crosslinking reaction may be a thiol-ene crosslinking reaction between a double bond of an alkenyl group having 2 to 30 carbon atoms of the compound represented by Formula 1 and a thiol group of a thiol-based crosslinking agent.
  • the solid polymer electrolyte precursor composition includes a thiol-based crosslinking agent
  • the compound represented by Formula 1 forms a polymer forming a semi-interpenetrating network together with a plasticizer
  • the compound represented by Formula 1 and the thiol-based crosslinking agent may form a polymer forming a semi-interpenetrating network together with a plasticizer.
  • the polymerization reaction can be simplified while preventing shrinkage, and while forming a structurally homogeneous polymer network, oxygen sensitivity It has the effect of improving the oxidation voltage stability of the plasticizer by reducing the
  • the thiol-based crosslinking agent is 1,3-propanedithiol, 2,3-butanedithiol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, pentaerythritol tetrakis(3-mer) captopropionate), trimethylolpropane tris(3-mercaptopropionate), and 2,2'-(ethylenedioxy)diethanethiol may be at least one selected from the group consisting of, as a specific example, pentaerythritol tetrakis (3-mercaptopropionate).
  • the thiol-based crosslinking agent may be a thiol compound represented by the following formula (2).
  • each X is independently S or NR 10
  • R 10 is hydrogen or an alkyl group having 1 to 7 carbon atoms
  • n is each independently an integer selected from 1 to 12
  • Y is a single bond or a carbon number 1 to 7 may be an alkylene group.
  • R 10 is an alkyl group having 1 to 3 carbon atoms
  • n is an integer selected from 2 to 7
  • Y may be a single bond or an alkylene group having 1 to 3 carbon atoms.
  • the thiol compound represented by Formula 2 includes a triazine-based parent nucleus, a side chain including an ether group, and a thiol group formed at the end of the side chain, and the thiol compound is a solid comprising a thiol-based crosslinking agent.
  • the thiol compound represented by Formula 2 may be a compound represented by Formula 2-1 or Formula 2-2.
  • n is each independently an integer selected from 1 to 12, and Y may be a single bond or an alkylene group having 1 to 7 carbon atoms.
  • n is an integer selected from 2 to 10
  • Y may be a single bond or an alkylene group having 1 to 3 carbon atoms.
  • n may be an integer selected from 2 to 7
  • Y may be a single bond or an alkylene group having 1 to 3 carbon atoms.
  • the compound represented by Formula 1 and the thiol-based crosslinking agent may have a molar ratio of 10:1 to 1:10, 5:1 to 1:5, or 4:1 to 1:4. And, as a specific example, it may be 4:3 to 3:4.
  • the molar ratio may be determined such that the molar ratio of the crosslinking site of the compound represented by Formula 1 to the crosslinking site of the thiol-based crosslinking agent is 1:1.
  • the crosslinking agent composition including the compound represented by Formula 1 and the thiol-based crosslinking agent is 1 wt% to 30 wt%, 5 wt% to 5 wt% based on the total content of the solid polymer electrolyte precursor composition It may be 25 wt%, or 10 wt% to 20 wt%, and within this range, the oxidation voltage stability of the plasticizer is improved by reducing the oxygen sensitivity of the solid polymer electrolyte, and the ionic conductivity is sufficiently secured to charge and discharge the all-solid-state battery. There is an effect of improving capacity and efficiency.
  • the plasticizer may be an ion conductive plasticizer, and may be a polyether plasticizer exhibiting ion conductivity as a matrix for a lithium salt in a solid polymer electrolyte.
  • the plasticizer is polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl.
  • It may be at least one selected from the group consisting of ether, dibutyl ether-terminated polypropylene glycol/polyethylene glycol copolymer, and dibutyl ether-terminated polyethylene glycol/polypropylene glycol/polyethylene glycol block copolymer, and more specifically, polyethylene glycol It may be dimethyl ether.
  • the plasticizer may be included in an amount of 40 wt% to 80 wt%, 45 wt% to 75 wt%, or 50 wt% to 70 wt%, based on the total content of the solid polymer electrolyte precursor composition. and may be included in the same content in the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the solid polymer electrolyte is sufficiently secured, thereby improving the charge/discharge capacity and efficiency of the solid polymer electrolyte.
  • the lithium salt is a medium for transferring lithium ions in the solid polymer electrolyte, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoro Roantimonate (LiSbF 6 ), lithium hexafluoroacetate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ) , lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium difluoro(oxalato) borate (LiBF) 2 (C 2 O 4 )), lithium bis(
  • the lithium salt is included in an amount of 1 wt% to 40 wt%, 5 wt% to 35 wt%, or 10 wt% to 30 wt%, based on the total content of the solid polymer electrolyte precursor composition. and may be included in the same amount in the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the solid polymer electrolyte is sufficiently secured, thereby improving the charge/discharge capacity and efficiency of the solid polymer electrolyte. .
  • the solid polymer electrolyte precursor composition may include an electrolyte additive.
  • the electrolyte additive is to further improve the ionic conductivity of the solid polymer electrolyte, and may be at least one selected from the group consisting of a cyclic carbonate-based compound, a cyclic sulfur-based compound, and a nitrile-based compound.
  • the solid polymer electrolyte formed therefrom may include the electrolyte additive, and there is an effect of improving the charge/discharge capacity and efficiency of the all-solid-state battery.
  • the cyclic carbonate-based compound is vinylene carbonate (Vinylene Carbonate, VC), catechol carbonate (Catechol Carbonate, CC), fluoroethylene carbonate (Fluoro Ethylene Carbonate, FEC), or vinyl It may be ethylene carbonate (Vinyl Ethylene Carbonate, VEC), the cyclic sulfur-based compound may be propane sultone (PS) or glycol sulfite (Glycol Sulfite, GS), and the nitrile-based compound is succinonitrile ( Succinonitrile, SN) or adiponitrile (AN).
  • the electrolyte additive may be vinylene carbonate, fluoroethylene carbonate, or vinyl ethylene carbonate, and in this case, there is an effect of achieving excellent charge/discharge capacity and efficiency.
  • the electrolyte additive may be included in an amount of 0.1 wt% to 10 wt%, 1 wt% to 8 wt%, or 1 wt% to 5 wt%, based on the total content of the solid polymer electrolyte precursor composition. and while maintaining the solid characteristics of the all-solid-state battery within this range, there is an effect of improving the charge/discharge capacity and efficiency.
  • the solid polymer electrolyte precursor composition is a curing initiator for inducing a crosslinking reaction of the compound represented by Formula 1 or the crosslinking agent composition including the compound represented by Formula 1 and a thiol-based crosslinking agent may include.
  • the curable initiator may be a peroxide-based initiator or an azo-based initiator capable of providing radicals for initiating a crosslinking reaction from a crosslinkable functional group of the crosslinking agent.
  • the curing initiator is benzoyl peroxide, di-tert-butyl peroxide, di-tert-amyl peroxide, a-cumyl peroxyneodecanoate, a-cumyl peroxyneopeptanoate, t-amyl peroxide Oxyneodecanoate, di-(2-ethylhexyl) peroxy-dicarbonate, t-amyl peroxypivalate, t-butyl peroxypivalate, 2,5-dimethyl-2,5 bis(2-ethyl -hexanoylperoxy) hexane, dibenzoyl peroxide, t-amyl peroxy-2-ethy
  • the curing initiator is 0.01 parts by weight to 1.00 parts by weight based on 100 parts by weight of the crosslinking agent composition including the compound represented by Formula 1 or the compound represented by Formula 1 and the thiol-based crosslinking agent It may be included in parts by weight, 0.01 parts by weight to 0.50 parts by weight, or 0.01 parts by weight to 0.10 parts by weight.
  • the present invention provides a solid polymer electrolyte formed from the solid polymer electrolyte precursor composition.
  • the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition may be formed through a direct crosslinking reaction by thermal curing of the solid polymer electrolyte precursor composition.
  • crosslinkable polymers comprising compound units; It may include a plasticizer and a lithium salt.
  • the crosslinkable polymer when the solid polymer electrolyte precursor composition includes a thiol-based crosslinking agent, may include a thiol-based crosslinking agent unit.
  • the crosslinking polymer when a crosslinking polymer is formed by a crosslinking reaction from the compound represented by Formula 1 or a crosslinking agent composition including the compound represented by Formula 1 and the thiol-based crosslinking agent, the crosslinking The sexual polymer forms a semi-interpenetrating network together with the plasticizer, wherein the lithium salt of the solid polyelectrolyte precursor composition may be dispersed on the network.
  • the solid polymer electrolyte may be formed by including the components included in the solid polymer electrolyte precursor composition for forming the solid polymer electrolyte in the same amount, and the solid polymer electrolyte is used as an electrolyte for an all-solid-state battery.
  • the solid polymer electrolyte is used as an electrolyte for an all-solid-state battery.
  • the present invention provides an anode for an all-solid-state battery.
  • the anode for an all-solid-state battery may include a current collector and an anode active material layer formed on at least one surface of the current collector, and the anode active material layer may include an anode active material.
  • the anode for an all-solid-state battery includes a current collector and a negative active material layer formed on at least one surface of the current collector, and the negative active material layer includes a negative electrode active material and a first solid polymer electrolyte. It may be a composite negative electrode for an all-solid-state battery comprising.
  • the current collector is copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, etc., or aluminum-cadmium It may be an alloy.
  • the current collector may be surface roughened in order to improve the bonding force between the current collector and the negative electrode active material layer through an anchor effect.
  • the current collector may be in the form of a film, a sheet, a foil, a net, a porous body, a foam body, or a nonwoven body.
  • the anode active material layer formed on at least one surface of the current collector may exist in a form in which the anode active material is dispersed in the anode active material layer by a binder.
  • the negative active material may be a plurality of negative active material particles.
  • the binder may exist in the form of a continuous phase including a plurality of negative active material particles as a dispersed phase in the negative electrode active material layer.
  • the negative active material layer formed on at least one surface of the current collector may exist in a dispersed form in which the negative active material and the first solid polymer electrolyte are mixed with each other in the negative active material layer.
  • the negative active material may be a plurality of negative active material particles.
  • the first solid polymer electrolyte may exist in the form of a continuous phase including a plurality of negative active material particles as a dispersed phase in the negative electrode active material layer.
  • the first solid polymer electrolyte may exist in the form of covering all or part of the plurality of negative active material particles between pores formed by the plurality of negative active material particles in the negative electrode active material layer.
  • the negative active material may be a carbon-based material
  • the carbon-based material is crystalline carbon, amorphous carbon, or a mixture thereof capable of intercalation and deintercalation with lithium.
  • the crystalline carbon may be amorphous, plate-like, scale-like, spherical or fibrous natural graphite or artificial graphite
  • the amorphous carbon may be soft carbon, hard carbon, mesophase pitch-based carbon fiber, or calcined coke.
  • the carbon-based material may be a carbon-based material that can be used in a liquid electrolyte secondary battery using a liquid electrolyte such as an electrolyte.
  • the anode active material layer includes the anode active material and the first solid polymer electrolyte, it is possible to secure high charge/discharge capacity and efficiency of the battery only with the carbon-based material, and thus there is an effect of excellent productivity.
  • the negative active material is 50% to 90% by weight, 55% to 85% by weight, or 60% to 80% by weight based on the total content of the components of the negative active material layer. It may be included, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
  • the anode active material layer may include a binder for binding the anode active material to the anode active material layer.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethyl methacrylate, polyvinyl alcohol, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, It may be at least one selected from the group consisting of styrene butyrene rubber (SBR) and fluororubber, and a specific example may be polyvinylidene fluoride
  • the binder may be included in an amount of 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt%, based on the total content of the components of the negative electrode active material layer. In this range, there is an excellent effect of binding force of the negative electrode active material.
  • the first solid polymer electrolyte may include a binder, a plasticizer, and a lithium salt.
  • the first solid polymer electrolyte may be formed from the first solid polymer electrolyte precursor composition when the anode active material layer is formed by mixing the first solid polymer electrolyte precursor composition including the binder, the plasticizer and the lithium salt with the anode active material.
  • the first solid polymer electrolyte is 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt% based on the total content of the components of the negative electrode active material layer It may be included in weight %, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
  • the binder is for binding the negative active material as well as the first solid polymer electrolyte to each other in the negative active material layer, and is a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HEP), polyvinylidenefluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl blood It may be at least one selected from the group consisting of rolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butyrene rubber (SBR), and fluororubber. And, as a specific example, it may be polyvinylidene fluoride.
  • PVDF-co- HEP polyvinylidene fluor
  • the binder is used in an amount of 40 wt% to 80 wt%, 45 wt% to 75 wt%, or 50 wt% to 70 wt%, based on the total content of the first solid polymer electrolyte precursor composition. It may be included, and may be included in the same amount in the first solid polymer electrolyte formed from the first solid polymer electrolyte precursor composition, and within this range, the binding force of the first solid polymer electrolyte and the negative electrode active material is excellent.
  • the plasticizer may be an ion conductive plasticizer, and may be a polyether plasticizer exhibiting ion conductivity as a matrix for a lithium salt in the first solid polymer electrolyte.
  • the plasticizer is polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl.
  • It may be at least one selected from the group consisting of ether, dibutyl ether-terminated polypropylene glycol/polyethylene glycol copolymer, and dibutyl ether-terminated polyethylene glycol/polypropylene glycol/polyethylene glycol block copolymer, and more specifically, polyethylene glycol It may be dimethyl ether.
  • the plasticizer is 15% to 40% by weight, 20% to 35% by weight, or 25% to 35% by weight based on the total content of the first solid polymer electrolyte precursor composition.
  • the lithium salt is a medium for transferring lithium ions in the first solid polymer electrolyte, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium Hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacetonate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO) 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium difluoro (oxalato) borate (LiBF 2 (C 2 O 4 )), lithium bis(flufluoro (LiBF 2
  • the lithium salt is 1 wt% to 20 wt%, 3 wt% to 18 wt%, or 5 wt% to 15 wt%, based on the total content of the first solid polymer electrolyte precursor composition and may be included in the same amount in the first solid polymer electrolyte formed from the first solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the first solid polymer electrolyte is sufficiently secured to provide a charge/discharge capacity of the all-solid-state battery And there is an effect that the efficiency is improved.
  • the negative active material layer may further include a conductive material.
  • the conductive material is to further improve the conductivity of the negative electrode, graphite such as natural graphite, artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like; conductive fibers such as carbon fibers, metal fibers, and the like; metal powders such as carbon fluoride, aluminum, nickel powder and the like; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; And it may be at least one selected from the group consisting of polyphenylene derivatives.
  • the conductive material when the conductive material is included in the anode active material layer, the conductive material is 1 wt% to 15 wt%, 1 wt% to 10 wt%, based on the total content of the components of the anode active material layer %, or may be included in an amount of 5 wt% to 10 wt%, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
  • the anode active material layer of the anode for an all-solid-state battery may include an electrolyte additive.
  • the electrolyte additive may exist between pores formed by a plurality of negative active material particles in the negative electrode active material layer.
  • the electrolyte additive may be present dispersed in the first solid polymer electrolyte, or may be present in a mixed form with the first solid polymer electrolyte in a three-dimensional network structure formed by the first solid polymer electrolyte. .
  • the electrolyte additive is to further improve the ionic conductivity of the first solid polymer electrolyte, and is at least one selected from the group consisting of a cyclic carbonate-based compound, a cyclic sulfur-based compound, and a nitrile-based compound.
  • the negative electrode for an all-solid-state battery includes an electrolyte additive in the negative electrode active material layer, there is an effect of achieving sufficient charge/discharge capacity and efficiency in an all-solid-state battery while using a carbon-based material as the negative electrode active material.
  • the cyclic carbonate-based compound is vinylene carbonate (Vinylene Carbonate, VC), catechol carbonate (Catechol Carbonate, CC), fluoroethylene carbonate (Fluoro Ethylene Carbonate, FEC), or vinyl It may be ethylene carbonate (Vinyl Ethylene Carbonate, VEC), the cyclic sulfur-based compound may be propane sultone (PS) or glycol sulfite (Glycol Sulfite, GS), and the nitrile-based compound is succinonitrile ( Succinonitrile, SN) or adiponitrile (AN).
  • the electrolyte additive may be vinylene carbonate, fluoroethylene carbonate, or vinyl ethylene carbonate, and in this case, excellent charge/discharge capacity in an all-solid-state battery while using a carbon-based material as an anode active material And there is an effect that can achieve efficiency.
  • the electrolyte additive included in the negative electrode active material layer may be derived from the solid polymer electrolyte precursor composition.
  • the electrolyte additive is not included in the formation of the anode active material layer from the anode active material and the first solid polymer electrolyte precursor composition, and the electrolyte additive included in the solid polymer electrolyte is added to the anode active material layer after manufacturing the all-solid-state battery. It may be impregnated with and finally included in the negative electrode for an all-solid-state battery. Accordingly, the anode active material layer and the electrolyte additive included in the solid polymer electrolyte may be identical to each other.
  • the electrolyte additive is 0.01 parts by weight to 5 parts by weight, 0.01 parts by weight to 1 parts by weight, or 0.01 with respect to 100 parts by weight of the total content of the components of the negative electrode active material layer excluding the electrolyte additive. It may be included in an amount of from 0.1 parts by weight to 0.1 parts by weight, and while maintaining the solid characteristics of the all-solid-state battery within this range, there is an effect of improving the charge/discharge capacity and efficiency.
  • the anode for an all-solid-state battery is an anode used for an all-solid-state battery, it does not contain a liquid such as a solvent, and even if it is included, it may be included in a very small part in order to maintain the solid characteristics of the all-solid-state battery.
  • the negative electrode is impregnated in a liquid such as a solvent derived from a liquid electrolyte
  • a temperature change according to the usage environment of the battery particularly, a problem of evaporating the solvent at a high temperature may occur, and consequently, a liquid electrolyte using the liquid electrolyte
  • a secondary battery there is a problem that may cause the battery to expand due to the evaporated liquid electrolyte.
  • the present invention provides a positive electrode for an all-solid-state battery.
  • the positive electrode for an all-solid-state battery may include a current collector and a positive electrode active material layer formed on at least one surface of the current collector, and the positive electrode active material layer may include a positive electrode active material.
  • the positive electrode for an all-solid-state battery includes a current collector and a positive electrode active material layer formed on at least one surface of the current collector, and the positive electrode active material layer includes a positive electrode active material and a second solid polymer electrolyte. It may be a composite positive electrode for an all-solid-state battery including.
  • the current collector is copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, etc., or aluminum-cadmium It may be an alloy.
  • the current collector may be surface roughened in order to improve the bonding force between the current collector and the positive electrode active material layer through an anchor effect.
  • the current collector may be in the form of a film, a sheet, a foil, a net, a porous body, a foam body, or a nonwoven body.
  • the positive active material layer formed on at least one surface of the current collector may exist in a form in which the positive active material is dispersed in the positive electrode active material layer by a binder.
  • the positive active material may be a plurality of positive active material particles.
  • the binder may exist in the form of a continuous phase including a plurality of positive active material particles as a dispersed phase in the positive electrode active material layer.
  • the positive active material layer formed on at least one surface of the current collector may exist in a dispersed form in which the positive active material and the second solid polymer electrolyte are mixed with each other in the positive active material layer.
  • the positive active material may be a plurality of positive active material particles.
  • the second solid polymer electrolyte may exist in the form of a continuous phase including a plurality of positive electrode active material particles as a dispersed phase in the positive electrode active material layer.
  • the second solid polymer electrolyte may be present in the form of covering all or part of the plurality of positive active material particles between pores formed by the plurality of positive active material particles in the positive electrode active material layer.
  • the lithium metal oxide is one selected from the group consisting of LiCoO 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , and LiNi 0.8 Co 0.15 Al 0.05 O 2 . or more, and in this case, the all-solid-state battery may exhibit a high voltage.
  • the positive active material is 50% to 90% by weight, 55% to 85% by weight, or 60% to 80% by weight based on the total content of the components of the positive active material layer. It may be included, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
  • the positive active material layer may include a binder for binding the positive active material to the positive active material layer.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethyl methacrylate, polyvinyl alcohol, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, It may be at least one selected from the group consisting of styrene butyrene rubber (SBR) and fluororubber.
  • SBR styrene butyrene rubber
  • the binder may be included in an amount of 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt%, based on the total content of the components of the positive electrode active material layer. And within this range, there is an excellent effect of binding force of the positive electrode active material.
  • the second solid polymer electrolyte may include a binder, a plasticizer, and a lithium salt.
  • the second solid polymer electrolyte may be formed from the second solid polymer electrolyte precursor composition when the cathode active material layer is formed by mixing a second solid polymer electrolyte precursor composition including a binder, a plasticizer and a lithium salt with a cathode active material.
  • the second solid polymer electrolyte is 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt% based on the total content of the components of the positive electrode active material layer It may be included in weight %, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
  • the binder is for binding the positive active material as well as the second solid polymer electrolyte to each other in the positive active material layer, and is a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HEP), polyvinylidenefluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl blood It may be at least one selected from the group consisting of rolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butyrene rubber (SBR), and fluororubber. And, as a specific example, it may be polyvinylidene fluoride.
  • PVDF-co- HEP polyvinylidene fluor
  • the binder is used in an amount of 40 wt% to 80 wt%, 45 wt% to 75 wt%, or 50 wt% to 70 wt%, based on the total content of the second solid polymer electrolyte precursor composition. It may be included, and may be included in the same amount in the second solid polymer electrolyte formed from the second solid polymer electrolyte precursor composition, and within this range, the binding force of the second solid polymer electrolyte and the positive electrode active material is excellent.
  • the plasticizer may be an ion conductive plasticizer, and may be a polyether plasticizer exhibiting ion conductivity as a matrix for a lithium salt in the second solid polymer electrolyte.
  • the plasticizer is polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl.
  • It may be at least one selected from the group consisting of ether, dibutyl ether-terminated polypropylene glycol/polyethylene glycol copolymer, and dibutyl ether-terminated polyethylene glycol/polypropylene glycol/polyethylene glycol block copolymer, and more specifically, polyethylene glycol It may be dimethyl ether.
  • the plasticizer is 15% to 40% by weight, 20% to 35% by weight, or 25% to 35% by weight based on the total content of the second solid polymer electrolyte precursor composition.
  • the lithium salt is a medium for transferring lithium ions in the second solid polymer electrolyte, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium Hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacetonate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO) 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium difluoro (oxalato) borate (LiBF 2 (C 2 O 4 )), lithium bis(flufluoro (LiBF 2
  • the lithium salt is 1 wt% to 20 wt%, 3 wt% to 18 wt%, or 5 wt% to 15 wt%, based on the total content of the second solid polymer electrolyte precursor composition and may be included in the same amount in the second solid polymer electrolyte formed from the second solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the second solid polymer electrolyte is sufficiently secured to provide the charge/discharge capacity of the all-solid-state battery And there is an effect that the efficiency is improved.
  • the positive active material layer may further include a conductive material.
  • the conductive material is to further improve the conductivity of the anode, graphite such as natural graphite, artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like; conductive fibers such as carbon fibers, metal fibers, and the like; carbon-based conductive materials such as carbon nanotubes and graphene; metal powders such as carbon fluoride, aluminum, nickel powder and the like; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; And it may be at least one selected from the group consisting of polyphenylene derivatives.
  • the conductive material may include carbon black and a carbon-based conductive material at the same time, and in this case, a mixing ratio of the carbon-based conductive material and carbon black may be 1:5 to 1:60 based on weight, In this case, short-distance and long-distance electron paths can be effectively formed in the anode, and low-rate and high-rate discharge capacity are excellent compared to the case of using a single-component conductive material.
  • the conductive material when the conductive material is included in the positive electrode active material layer, the conductive material is 1% to 15% by weight, 1% to 10% by weight based on the total content of the components of the positive electrode active material layer. %, or may be included in an amount of 5 wt% to 10 wt%, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
  • the positive active material layer including the positive active material and the second solid polymer electrolyte may further include an electrolyte additive.
  • the electrolyte additive may be present between the pores formed by the plurality of positive electrode active material particles in the positive electrode active material layer.
  • the electrolyte additive may be present dispersed in the second solid polymer electrolyte, or may be present in a mixed form with the second solid polymer electrolyte in a three-dimensional network structure formed by the second solid polymer electrolyte. .
  • the electrolyte additive is to further improve the ionic conductivity of the second solid polymer electrolyte, and is at least one selected from the group consisting of a cyclic carbonate-based compound, a cyclic sulfur-based compound, and a nitrile-based compound.
  • the positive electrode for an all-solid-state battery includes an electrolyte additive in the positive electrode active material layer, there is an effect of achieving more excellent charge/discharge capacity and efficiency in the all-solid-state battery.
  • the cyclic carbonate-based compound is vinylene carbonate (Vinylene Carbonate, VC), catechol carbonate (Catechol Carbonate, CC), fluoroethylene carbonate (Fluoro Ethylene Carbonate, FEC), or vinyl It may be ethylene carbonate (Vinyl Ethylene Carbonate, VEC), the cyclic sulfur-based compound may be propane sultone (PS) or glycol sulfite (Glycol Sulfite, GS), and the nitrile-based compound is succinonitrile ( Succinonitrile, SN) or adiponitrile (AN).
  • the electrolyte additive may be vinylene carbonate, fluoroethylene carbonate, or vinyl ethylene carbonate, and in this case, the effect of achieving better charge/discharge capacity and efficiency in an all-solid-state battery there is
  • the electrolyte additive included in the positive electrode active material layer may be derived from the solid polymer electrolyte precursor composition.
  • the electrolyte additive is not included in the formation of the positive electrode active material layer from the positive electrode active material and the second solid polymer electrolyte precursor composition, and the electrolyte additive included in the solid polymer electrolyte is added to the positive electrode active material layer after the all-solid-state battery is manufactured. It may be impregnated with and finally included in the positive electrode for an all-solid-state battery. Accordingly, the electrolyte additives included in the positive electrode active material layer and the second solid polymer electrolyte may be identical to each other.
  • the electrolyte additive is 0.01 parts by weight to 5 parts by weight, 0.01 parts by weight to 1 parts by weight, or 0.01 with respect to 100 parts by weight of the total content of the components of the positive electrode active material layer excluding the electrolyte additive. It may be included in an amount of from 0.1 parts by weight to 0.1 parts by weight, and while maintaining the solid characteristics of the all-solid-state battery within this range, there is an effect of improving the charge/discharge capacity and efficiency.
  • the positive electrode for an all-solid-state battery is a positive electrode used in an all-solid-state battery, it does not contain a liquid such as a solvent, and even if it is included, it may be included in a very small part in order to maintain the solid characteristics of the all-solid-state battery.
  • the all-solid-state battery according to the present invention may include a negative electrode, a positive electrode, and a solid polymer electrolyte interposed between the negative electrode and the positive electrode, wherein the solid polymer electrolyte is a solid polymer electrolyte formed from the solid polymer electrolyte precursor composition described above.
  • the all-solid-state battery can exist in an all-solid state by including the solid polymer electrolyte, and the solid polymer electrolyte is an electrolyte in the all-solid-state battery and a separator for separating the anode and the cathode. roles can be performed at the same time.
  • the negative electrode and the positive electrode may be the negative electrode and the positive electrode for an all-solid-state battery described above.
  • the all-solid-state battery according to the present invention includes the solid polymer electrolyte, it is possible to use a positive electrode using a high-voltage positive electrode material by preventing a decrease in oxidation voltage stability while including a plasticizer.
  • the all-solid-state battery includes a negative electrode, a positive electrode, and a solid polymer electrolyte interposed between the negative electrode and the positive electrode, and the negative electrode includes a current collector and at least one surface of the current collector.
  • the negative active material layer includes a negative active material
  • the negative active material is a carbon-based material
  • the positive electrode includes a current collector, and a positive electrode active material layer formed on at least one surface of the current collector
  • the positive active material layer includes a positive active material
  • the solid polymer electrolyte may include a cross-linkable polymer including a compound unit represented by Formula 1; It may include a plasticizer and a lithium salt, and in this case, the cycle life and capacity characteristics of the all-solid-state battery are excellent.
  • the present invention provides a method for manufacturing an all-solid-state battery.
  • the all-solid-state battery manufacturing method includes the steps of preparing a negative electrode (S1); applying a solid polymer electrolyte precursor composition on the negative electrode (S2); Laminating a positive electrode on the applied solid polymer electrolyte precursor composition (S3); and thermally curing the electrode assembly on which the positive electrode is stacked (S4).
  • the step of preparing the negative electrode (S1) includes preparing a negative electrode slurry by mixing the negative electrode active material, the first solid polymer electrolyte and the solvent (S10); and coating the negative electrode slurry on the current collector and drying it to form a negative electrode active material layer (S20).
  • step (S10) is a step of preparing a negative electrode slurry for forming the negative electrode active material layer, and may be performed by mixing the negative electrode active material, the first solid polymer electrolyte, and the solvent.
  • the negative active material and the first solid polymer electrolyte may be the same as the negative active material and the first solid polymer electrolyte described in the negative electrode for an all-solid-state battery.
  • the first solid polymer electrolyte may be mixed into the negative electrode slurry in the form of the first solid polymer electrolyte precursor composition as described above.
  • the solvent is ethanol, methanol, propanol, butanol, isopropyl alcohol, dimethylformamide (DMF), acetone, tetrahydrofuran (Tetrahydrofuran, THF), toluene, dimethylacetamide and It may be at least one organic solvent selected from the group consisting of N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), and a specific example may be N-methyl-2-pyrrolidone.
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • the loading density of the negative electrode active material when preparing the negative electrode slurry, may be 1.0 mg/cm 2 to 10.0 mg/cm 2 , and within this range, sufficient charge/discharge capacity of the solid-state battery and It has the effect of securing efficiency.
  • the step (S20) is a step of forming the negative electrode active material layer by applying the negative electrode slurry prepared in the step (S10) on the current collector and drying it, and does not include an electrolyte additive. It may be a step of preparing a preliminary negative electrode for an all-solid-state battery.
  • the current collector may be the same as the current collector described in the negative electrode for an all-solid-state battery.
  • the negative electrode active material layer is formed through the step of applying and drying the negative electrode slurry on the current collector, and at the same time, the first solid polymer electrolyte mixed with the negative electrode slurry in the step (S10).
  • a first solid polymer electrolyte may be formed from the precursor composition.
  • the step (S2) is a step of applying a second solid polymer electrolyte precursor composition on the negative electrode prepared in the step (S1), specifically, the negative electrode active material layer formed in the step (S20). and the solid polymer electrolyte may not be formed from the solid polymer electrolyte precursor composition in step (S2).
  • the solid polymer electrolyte precursor composition may include an electrolyte additive in the same manner as described in the solid polymer electrolyte precursor composition, and the second solid polymer electrolyte precursor composition comprises: A thermal curing initiator for initiating a direct crosslinking reaction of the crosslinking agent by thermal curing in step (S4) performed later may be further included.
  • the thermal curing initiator may be a peroxide-based initiator or an azo-based initiator capable of providing radicals for initiating a crosslinking reaction from a crosslinkable functional group of the crosslinking agent.
  • the thermal curing initiator include benzoyl peroxide, di-tert-butyl peroxide, di-tert-amyl peroxide, a-cumyl peroxyneodecanoate, a-cumyl peroxyneopeptanoate, t-amyl Peroxyneodecanoate, di-(2-ethylhexyl) peroxy-dicarbonate, t-amyl peroxypivalate, t-butyl peroxypivalate, 2,5-dimethyl-2,5 bis(2- Ethyl-hexanoylperoxy) hexane, dibenzoyl peroxide, t-amyl peroxy-2-ethylhe
  • the step (S3) is a step of laminating a positive electrode on the solid polymer electrolyte precursor composition applied in the step (S2), and the 'cathode/solid polymer electrolyte An electrode assembly having a stacked structure of precursor composition/anode' may be formed.
  • the positive electrode may be a positive electrode manufactured independently of the time before or after the step (S1), specifically, the steps (S10) and (S20).
  • the positive electrode may be prepared by coating a positive electrode slurry containing a positive electrode active material on a current collector and drying the positive electrode active material layer to form a positive electrode active material layer.
  • the positive electrode is prepared by mixing a positive electrode active material, a second solid polymer electrolyte, and a solvent to prepare a positive electrode slurry (S100) and applying the positive electrode slurry on a current collector and drying to form a positive electrode active material layer It may be the one prepared in step S200.
  • step (S100) is a step of preparing a cathode slurry for forming a cathode active material layer, and may be performed by mixing a cathode active material, a second solid polymer electrolyte, and a solvent.
  • the positive active material and the second solid polymer electrolyte may be the same as the positive active material and the second solid polymer electrolyte described in the positive electrode for an all-solid-state battery.
  • the second solid polymer electrolyte may be mixed into the positive electrode slurry in the form of a second solid polymer electrolyte precursor composition as described above.
  • the solvent is ethanol, methanol, propanol, butanol, isopropyl alcohol, dimethylformamide (DMF), acetone, tetrahydrofuran (Tetrahydrofuran, THF), toluene, dimethylacetamide and It may be at least one organic solvent selected from the group consisting of N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), and a specific example may be N-methyl-2-pyrrolidone.
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • the loading density of the positive electrode active material is 1.0 mg/cm 2 to 10.0 mg/cm 2 , 3.0 mg/cm 2 to 8.0 mg/cm 2 , or 5.0 to 6.0 It may be mg/cm 2 , and within this range, there is an effect of securing sufficient charge/discharge capacity and efficiency of the all-solid-state battery.
  • the step (S200) is a step of applying the positive electrode slurry prepared in the step (S100) on the current collector and drying it to form a positive electrode active material layer, and does not include an electrolyte additive. It may be a step of preparing a preliminary positive electrode for an all-solid-state battery that is not used.
  • the current collector may be the same as the current collector described in the positive electrode for an all-solid-state battery.
  • the cathode active material layer is formed through the step of applying and drying the cathode slurry on the current collector, and at the same time, the second solid polymer electrolyte mixed with the cathode slurry in the step (S100).
  • a second solid polymer electrolyte may be formed from the precursor composition.
  • the 'cathode/solid polymer electrolyte precursor composition/anode' in which the stacking from the step (S3) to the positive electrode is completed. It may further include the step of sealing the electrode assembly having a stacked structure (S3-1). In this case, when the subsequent thermal curing of step (S4) is performed, even if the electrolyte additive included in the solid polymer electrolyte precursor composition is volatilized, it remains as a gas phase in the sealed electrode assembly, so that the electrolyte additive in the all-solid battery There is an effect that the content can be constantly controlled.
  • the sealing in step (S3-1) may be performed by accommodating the electrode assembly in the outer case of the all-solid-state battery and then sealing the outer case, in which case the outer case is cylindrical. , a square shape, a pouch type, etc. may be appropriately selected according to the type of use of the battery.
  • the step (S4) is a step of thermally curing the electrode assembly on which the positive electrode is stacked.
  • the solid polymer electrolyte precursor composition is a solid polymer through a direct crosslinking reaction by thermal curing. electrolytes can be formed.
  • the thermal curing in step (S4) is at a temperature of 50 °C to 150 °C, 60 °C to 140 °C, 70 °C to 130 °C, 80 °C to 120 °C, or 80 °C to 110 °C. can be carried out in
  • the thermal curing in step (S4) is a time of 10 minutes to 100 minutes, 10 minutes to 80 minutes, 10 minutes to 60 minutes, 10 minutes to 50 minutes, or 20 minutes to 40 minutes. can be carried out during
  • the solid polymer electrolyte corresponding to the all-solid-state battery electrolyte, the negative electrode active material layer of the negative electrode for an all-solid-state battery and/or the positive electrode active material layer of the positive electrode for an all-solid-state battery It is possible to effectively include the electrolyte additive, and by forming a solid polymer electrolyte between the negative electrode and the positive electrode by direct crosslinking, the interfacial resistance between the negative electrode and the positive electrode and the solid polymer electrolyte can be lowered, resulting in uniform performance of the all-solid-state battery It becomes possible to improve the charging/discharging capacity and efficiency while securing the .
  • the molar ratio of the compound represented by Formula 1-1 to the thiol-based crosslinking agent was 4:3, and the weight ratio of the plasticizer to the crosslinking agent composition including the compound represented by Formula 1-1 and the thiol-based crosslinking agent was 8:2,
  • the electrolyte additive was 5 parts by weight based on 100 parts by weight of the total amount of the crosslinking agent and the plasticizer, and the [EO]/[Li + ] ratio was 15.
  • the [EO]/[Li + ] ratio is for indicating the content of lithium salt in the solid polymer electrolyte precursor composition, and is a ratio of the number of repeating units of ethylene oxide to lithium ions.
  • a slurry was prepared by dissolving in 2-pyrrolidone (NMP) and stirring for 10 minutes. Next, the prepared slurry was applied to a thickness of 60 ⁇ m on an aluminum foil and dried at a temperature of 120° C. for 1 hour to prepare a positive electrode.
  • the polymer electrolyte contains 60.7 wt% of polyvinylidenefluoride (PVdF) as a polymer binder, poly(ethylene glycol) dimethyl ether as a plasticizer, PEGDME, number average molecular weight 500 g/mol) 30.34 and 8.96% by weight of lithium salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI).
  • PVdF polyvinylidenefluoride
  • PEGDME poly(ethylene glycol) dimethyl ether
  • the solid polymer electrolyte precursor composition prepared above was applied, and the composite positive electrode prepared above was laminated thereon to construct a battery. Thereafter, the battery was sealed so that oxygen did not come into contact with it, and then cured at a temperature of 90° C. for 30 minutes, and the solid polymer electrolyte precursor composition was converted into a solid polymer electrolyte to prepare an all-solid-state battery.
  • Example 1 it was carried out in the same manner as in Example 1, except that the same amount of LiNi 0.6 Mn 0.2 Co 0.2 O 2 instead of LiNi 0.8 Mn 0.1 Co 0.1 O 2 as the positive electrode active material was added.
  • Example 1 it was carried out in the same manner as in Example 1, except that the same amount of LiCoO 2 instead of LiNi 0.8 Mn 0.1 Co 0.1 O 2 as the positive electrode active material was input.
  • Example 1 it was carried out in the same manner as in Example 1, except that the same amount of LiNi 0.8 Co 0.15 Al 0.05 O 2 instead of LiNi 0.8 Mn 0.1 Co 0.1 O 2 as the positive electrode active material was added.
  • the ratio of the negative electrode capacity to the positive electrode capacity of the all-solid-state battery prepared in Example 1 was 1.02
  • the ratio of the negative electrode capacity to the positive electrode capacity of the all-solid-state battery prepared in Example 2 was 1.09
  • the ratio of the negative electrode capacity to the positive electrode capacity of the all-solid-state battery prepared in Example 3 was 1.05
  • the capacity ratio of the negative electrode (N/P ratio) was 1.07.
  • the all-solid-state battery prepared in Example 1 had a first cycle capacity of 137.2 mAh/g at 0.1 C, 0.2 C, 0.5 C, 1.0 C and 2.0 C showed capacities of 126.2 mAh/g, 57.4 mAh/g, 20.7 mAh/g and 10.5 mAh/g, respectively.
  • the capacity of 140.1 mAh/g was recovered.
  • the all-solid-state battery prepared in Example 2 exhibited a first cycle capacity of 128.7 mAh/g at 0.1 C, and 116.5 mAh/g and 59.7 mAh/g at 0.2 C, 0.5 C, 1.0 C and 2.0 C, respectively. , 22.2 mAh/g and 9.3 mAh/g capacities were shown. In addition, when the charge/discharge rate was returned to 0.1 C, the capacity of 121.6 mAh/g was recovered.
  • the all-solid-state battery prepared in Example 3 exhibited a first cycle capacity of 107.4 mAh/g at 0.1 C, and 90.0 mAh/g and 27.1 mAh/g at 0.2 C, 0.5 C, 1.0 C and 2.0 C, respectively. , 9.1 mAh/g and 2.7 mAh/g capacities were shown. In addition, when the charge/discharge rate was returned to 0.2 C, the capacity of 76.1 mAh/g was recovered.
  • the all-solid-state battery prepared in Example 4 exhibited a first cycle capacity of 107.5 mAh/g at 0.1 C, and 101.5 mAh/g and 30.6 mAh/g at 0.2 C, 0.5 C, 1.0 C and 2.0 C, respectively. , 14.9 mAh/g and 4.9 mAh/g capacities were shown. In addition, when the charge/discharge rate was returned to 0.1 C, the capacity of 123.7 mAh/g was recovered.
  • the all-solid-state battery according to the present invention exhibits excellent electrochemical reversibility with respect to charging and discharging when a high voltage cathode material is applied, and at the same time, it is possible to secure a discharge capacity.
  • Example 1 100.0% 92.0% 41.8% 15.0% 7.7%
  • Example 2 100.0% 90.5% 46.4% 17.3% 7.3%
  • Example 3 100.0% 83.7% 25.2% 8.5% 2.5%
  • Example 4 100.0% 94.4% 28.5% 13.9% 4.6%
  • the all-solid-state battery according to the present invention can implement a capacity retention rate of 80% or more even at 0.2 C when a high voltage cathode material is applied.

Abstract

The present invention relates to a solid polymer electrolyte precursor composition, and to: a solid polymer electrolyte precursor composition comprising a compound represented by chemical formula 1 (see description of the present invention), a plasticizer and a lithium salt; a solid polymer electrolyte formed therefrom; and an all-solid-state battery comprising same.

Description

고체 고분자 전해질 전구체 조성물, 고체 고분자 전해질 및 이를 포함하는 전고체 전지Solid polymer electrolyte precursor composition, solid polymer electrolyte, and all-solid battery comprising same
[관련출원과의 상호인용][Citation with related applications]
본 발명은 2020년 7월 22일에 출원된 한국 특허 출원 제10-2020-0091180호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.The present invention claims the benefit of priority based on Korean Patent Application No. 10-2020-0091180 filed on July 22, 2020, and includes all contents disclosed in the literature of the Korean patent application as a part of this specification.
[기술분야][Technical field]
본 발명은 고체 고분자 전해질 전구체 조성물에 관한 것으로서, 보다 상세하게는 전고체 전지에 이용할 수 있는 고체 고분자 전해질을 형성하기 위한 고체 고분자 전해질 전구체 조성물, 이로부터 형성된 고체 고분자 전해질 및 이를 포함하는 전고체 전지에 관한 것이다.The present invention relates to a solid polymer electrolyte precursor composition, and more particularly, to a solid polymer electrolyte precursor composition for forming a solid polymer electrolyte usable in an all-solid battery, a solid polymer electrolyte formed therefrom, and an all-solid battery comprising the same it's about
리튬 이온을 이용하는 이차 전지에 있어서, 종래에는 액체 전해질을 사용하는 리튬 이온 이차 전지가 주로 사용되고 있다. 액체 전해질을 사용하는 리튬 이온 이차 전지는 일반적으로 음극 및 양극이 고분자로 형성된 분리막에 의해 분리되고, 전해질로 액체 전해질을 이용한다. 그러나, 전해질이 전지 내 액체 상태로 존재하기 때문에, 전지의 사용 환경에 따른 온도 변화에 의해 액체 전해질이 증발하여 전지의 팽창을 유발하거나, 외부 충격에 의해 액체 전해질의 누액이 발생하거나, 분리막의 훼손에 의해 음극 및 양극이 단락될 수 있고, 이에 따라 전지의 폭발 및 발화 등이 발생할 수 있는 문제가 있다.In the secondary battery using lithium ion, conventionally, the lithium ion secondary battery using a liquid electrolyte is mainly used. A lithium ion secondary battery using a liquid electrolyte is generally separated by a separator in which a negative electrode and a positive electrode are formed of a polymer, and a liquid electrolyte is used as the electrolyte. However, since the electrolyte exists in a liquid state in the battery, the liquid electrolyte evaporates due to temperature changes depending on the usage environment of the battery to cause expansion of the battery, leakage of the liquid electrolyte by external impact, or damage to the separator There is a problem that the negative electrode and the positive electrode may be short-circuited by the , and thus explosion and ignition of the battery may occur.
반면, 전고체 전지(All Solid State Battery)는 음극, 양극 및 고체 전해질을 포함하면서, 전지의 모든 구성성분이 고체인 전지로서, 전지 내에 액체를 포함하지 않아 온도 변화에 따른 액체의 증발 또는 외부 충격에 의한 누액 등의 문제가 발생하지 않아, 폭발 및 발화 등으로부터 안전하다. 또한, 전고체 전지는 액체 전해질을 사용하는 리튬 이온 이차 전지에서 발생할 수 있는 누액이나, 폭발 및 발화 등을 방지하기 위한 안전 장치가 필요하지 않기 때문에, 전지의 무게 및 부피를 줄일 수 있는 장점이 있다.On the other hand, an All Solid State Battery is a battery in which all components of the battery are solid while including a negative electrode, a positive electrode, and a solid electrolyte, and does not contain liquid in the battery, so liquid evaporation or external shock due to temperature change It is safe from explosion and fire as there is no problem such as leakage. In addition, since the all-solid-state battery does not require a safety device to prevent leakage, explosion, or ignition that may occur in a lithium ion secondary battery using a liquid electrolyte, there is an advantage in that the weight and volume of the battery can be reduced. .
특히, 전고체 전지에 이용되는 고체 고분자 전해질로서 폴리에틸렌 옥사이드(polyethylene oxide, PEO)계 고분자 전해질이 상용화 가능성이 가장 높은 고체 고분자 전해질 중의 하나로 알려져 있다. PEO계 고분자 전해질은 가연성 용매를 사용하지 않아, 발화에 의한 폭발 가능성이 낮고, 높은 화학적 안정성과 전기화학적 안정성을 나타낸다. 그러나, PEO계 고분자 전해질은 산화 전압 안정성이 낮기 때문에, LCO(LiCoO2), NMC(LiNiMnCoO2), NCA(LiNiCoAlO2) 등과 같은 4V 급의 고전압 양극재를 적용하기 어려운 문제가 있고, 이에 따라 양극재로 전압이 낮은 LFP(LiFePO4)만이 제한적으로 이용되고 있다.In particular, as a solid polymer electrolyte used in an all-solid-state battery, a polyethylene oxide (PEO)-based polymer electrolyte is known as one of the solid polymer electrolytes with the highest potential for commercialization. Since the PEO-based polymer electrolyte does not use a flammable solvent, the possibility of explosion due to ignition is low, and it exhibits high chemical and electrochemical stability. However, since the PEO-based polymer electrolyte has low oxidation voltage stability, it is difficult to apply a 4V-class high voltage cathode material such as LCO (LiCoO 2 ), NMC (LiNiMnCoO 2 ), NCA (LiNiCoAlO 2 ), etc. As a material, only LFP (LiFePO 4 ) with a low voltage is used limitedly.
본 발명에서 해결하고자 하는 과제는 전고체 전지에 있어서, 고전압 양극재의 적용이 가능한 고체 고분자 전해질을 제공하는 것이다.An object to be solved by the present invention is to provide a solid polymer electrolyte that can be applied to a high voltage cathode material in an all-solid-state battery.
이에, 본 발명은 상기 고체 고분자 전해질을 형성하기 위한 고체 고분자 전해질 전구체 조성물을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a solid polymer electrolyte precursor composition for forming the solid polymer electrolyte.
또한, 본 발명은 상기 고체 고분자 전해질 전구체 조성물로부터 형성되어, 전고체 전지에 이용 시, 고전압 양극재의 적용이 가능한 고체 고분자 전해질을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a solid polymer electrolyte that is formed from the solid polymer electrolyte precursor composition and can be applied to a high voltage cathode material when used in an all-solid-state battery.
또한, 본 발명은 상기 고체 고분자 전해질 및 고전압 양극재를 포함하여 사이클 수명과 용량 특성이 우수한 전고체 전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide an all-solid-state battery having excellent cycle life and capacity characteristics, including the solid polymer electrolyte and the high voltage cathode material.
상기 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물; 가소제 및 리튬염을 포함하는 고체 고분자 전해질 전구체 조성물을 제공한다.In order to solve the above problems, the present invention provides a compound represented by the following formula (1); A solid polymer electrolyte precursor composition comprising a plasticizer and a lithium salt is provided.
[화학식 1][Formula 1]
Figure PCTKR2021009404-appb-I000001
Figure PCTKR2021009404-appb-I000001
상기 화학식 1에서,In Formula 1,
X1은 -CR1R2- 또는 -NR7-이고, X2는 -CR3R4- 또는 -NR8-이며, X3은 -CR5R6- 또는 -NR9-이되, X1 내지 X3 중 적어도 1개 이상은 -NR7-, -NR8- 또는 -NR9-이며, R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 30의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 30의 알케닐기이다.X 1 is -CR 1 R 2 - or -NR 7 -, X 2 is -CR 3 R 4 - or -NR 8 -, X 3 is -CR 5 R 6 - or -NR 9 -, wherein X 1 At least one or more of to X 3 is -NR 7 -, -NR 8 - or -NR 9 -, and R 1 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkenyl group having 2 to 30 carbon atoms. , an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroalkyl group having 1 to 30 carbon atoms, or a heterocyclic group having 5 to 30 ring atoms, but at least one or more is an alkenyl group having 2 to 30 carbon atoms.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물 단위를 포함하는 가교성 중합체; 가소제 및 리튬염을 포함하는 고체 고분자 전해질을 제공한다.In addition, the present invention provides a cross-linkable polymer comprising a compound unit represented by Formula 1; A solid polymer electrolyte comprising a plasticizer and a lithium salt is provided.
또한, 본 발명은 음극; 양극; 및 상기 음극 및 상기 양극 사이에 개재된 고체 고분자 전해질을 포함하고, 상기 고체 고분자 전해질은 상기 화학식 1로 표시되는 화합물 단위를 포함하는 가교성 중합체; 가소제 및 리튬염을 포함하는 것인 전고체 전지를 제공한다.In addition, the present invention is a negative electrode; anode; and a solid polymer electrolyte interposed between the negative electrode and the positive electrode, wherein the solid polymer electrolyte comprises: a cross-linkable polymer including a compound unit represented by Formula 1; It provides an all-solid-state battery comprising a plasticizer and a lithium salt.
본 발명에 따른 고체 고분자 전해질 전구체 조성물로부터 형성된 고체 고분자 전해질을 전고체 전지의 전해질로 이용하는 경우, 고전압 양극재의 적용이 가능하여 전고체 전지의 사이클 수명과 용량 특성을 향상시키는 효과가 있다.When the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition according to the present invention is used as an electrolyte for an all-solid-state battery, a high-voltage cathode material can be applied, thereby improving cycle life and capacity characteristics of the all-solid-state battery.
도 1은 본 발명의 실시예 1 내지 4에서 제조한 전고체 전지의 충방전 사이클에서 각 전류 밀도에 따른 방전 용량을 나타낸 그래프이다.1 is a graph showing the discharge capacity according to each current density in the charge/discharge cycle of all-solid-state batteries prepared in Examples 1 to 4 of the present invention.
도 2는 본 발명의 실시예 1 내지 4에서 제조한 전고체 전지의 충방전 속도에 따른 충방전 특성 곡선을 나타낸 그래프이다.2 is a graph showing charge/discharge characteristic curves according to charge/discharge rates of all-solid-state batteries prepared in Examples 1 to 4 of the present invention.
도 3은 본 발명의 실시예 1 내지 4에서 제조한 전고체 전지의 율속에 따른 용량 유지율을 나타낸 그래프이다.3 is a graph showing the capacity retention rate according to the rate of the all-solid-state batteries prepared in Examples 1 to 4 of the present invention.
도 4는 본 발명의 실시예 1 내지 4에서 제조한 전고체 전지의 사이클 수명에 따른 용량 유지율을 나타낸 그래프이다.4 is a graph showing the capacity retention rate according to the cycle life of the all-solid-state batteries prepared in Examples 1 to 4 of the present invention.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to help the understanding of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor may properly define the concept of the term in order to best describe his invention. Based on the principle that there is, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
본 발명에서 사용하는 용어는 별도로 정의하지 않는 한 하기와 같이 정의될 수 있다.Terms used in the present invention may be defined as follows unless otherwise defined.
본 발명에서 사용하는 용어 '전고체 전지(All Solid State Battery)'는 전지의 모든 구성성분이 고체인 전지를 의미하는 것으로, 전해액 등의 액체 전해질을 이용하는 액체 전해질 이차 전지, 및 분리막 대신 고분자 전해질을 이용하면서 액체 전해질을 함께 이용하는 겔 고분자 이차 전지와 구별된다.The term 'all solid state battery' used in the present invention refers to a battery in which all components of the battery are solid, and a liquid electrolyte secondary battery using a liquid electrolyte such as an electrolyte, and a polymer electrolyte instead of a separator It is distinguished from a gel polymer secondary battery that uses a liquid electrolyte while using it.
본 발명에서 사용하는 용어 '고체 고분자 전해질(Solid State Polymer Electrolyte)'은 고분자 화합물(polymer)로 형성된 고체 전해질을 의미하는 것으로, 전해액 등의 비수계 액체 전해질, 및 고분자에 비수계 액체 전해질을 겔화하여 이용하는 겔 고분자 전해질과 구별된다.The term 'Solid State Polymer Electrolyte' used in the present invention refers to a solid electrolyte formed of a polymer, and a non-aqueous liquid electrolyte such as an electrolyte, and a non-aqueous liquid electrolyte by gelling the polymer. It is distinguished from the gel polymer electrolyte used.
본 발명에서 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소를 의미할 수 있고, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함하는 의미일 수 있다.In the present invention, the term 'alkyl group' may refer to a monovalent aliphatic saturated hydrocarbon, and linear alkyl groups such as methyl, ethyl, propyl and butyl and isopropyl, sec-butyl, ter It may mean including all branched alkyl groups such as tert-butyl and neopentyl.
본 발명에서 용어 '알케닐기(alkenyl group)'는 이중 결합을 1개 또는 2개 이상 포함하는 1가의 지방족 불포화 탄화수소를 의미할 수 있다.In the present invention, the term 'alkenyl group' may mean a monovalent aliphatic unsaturated hydrocarbon including one or two or more double bonds.
본 발명에서 용어 '알카이닐기(alkynyl group)'는 삼중 결합을 1개 또는 2개 이상 포함하는 1가의 지방족 불포화 탄화수소를 의미할 수 있다.In the present invention, the term 'alkynyl group' may mean a monovalent aliphatic unsaturated hydrocarbon including one or two or more triple bonds.
본 발명에서 용어 '시클로알킬기(cycloalkyl group)'는 1가의 지방족 포화 또는 불포화 고리형 탄화수소를 의미할 수 있다. 여기서 불포화 고리형 탄화수소는 탄화수소로부터 형성된 고리 구조 내에 불포화 결합을 1개 또는 2개 이상 포함하지만, 방향족 탄화수소가 아닌 고리형 탄화수소를 의미할 수 있다.In the present invention, the term 'cycloalkyl group' may refer to a monovalent aliphatic saturated or unsaturated cyclic hydrocarbon. Here, the unsaturated cyclic hydrocarbon includes one or two or more unsaturated bonds in a ring structure formed from the hydrocarbon, but may mean a cyclic hydrocarbon other than an aromatic hydrocarbon.
본 발명에서 용어 '아릴기(aryl group)'는 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.In the present invention, the term 'aryl group' may mean a cyclic aromatic hydrocarbon, and also a monocyclic aromatic hydrocarbon in which one ring is formed, or a polycyclic aromatic hydrocarbon in which two or more rings are bonded. It may mean including all hydrocarbon).
본 발명에서 용어 '헤테로알킬기(heteroalkyl group)'는 1가의 지방족 포화 또는 불포화 탄화수소 내에, 탄소 및 수소 이외의 원자, 즉 헤테로 원자를 1개 또는 2개 이상 포함하는 것을 의미할 수 있다. 여기서, 상기 헤테로 원자는 산소(O), 질소(N) 및 황(S) 원자일 수 있다. 또한, 상기 헤테로알킬기는 알콕시기, 아미노기 및 설파이드기 등을 모두 포함하는 의미일 수 있다.In the present invention, the term 'heteroalkyl group' may mean including one or two or more heteroatoms, ie, atoms other than carbon and hydrogen, in a monovalent aliphatic saturated or unsaturated hydrocarbon. Here, the hetero atom may be an oxygen (O), nitrogen (N), or sulfur (S) atom. Also, the heteroalkyl group may mean including all of an alkoxy group, an amino group, and a sulfide group.
본 발명에서 용어 '헤테로고리기(heterocyclic group)'는 시클로알킬기 또는 아릴기 내의 탄소 원자가 1개 이상의 헤테로 원자로 치환된 시클로알킬기 또는 아릴기를 모두 포함하는 의미일 수 있다. 여기서, 상기 헤테로 원자는 산소(O), 질소(N) 및 황(S) 원자일 수 있다. 또한, 헤테로고리기의 고리 형성 원자수는 탄소 및 헤테로 원자를 포함하여 고리를 형성하는 원자의 수를 의미할 수 있다.In the present invention, the term 'heterocyclic group' may mean including both a cycloalkyl group or an aryl group in which a carbon atom in a cycloalkyl group or an aryl group is substituted with one or more hetero atoms. Here, the hetero atom may be an oxygen (O), nitrogen (N), or sulfur (S) atom. In addition, the number of ring atoms of the heterocyclic group may mean the number of atoms forming a ring including carbon and hetero atoms.
본 발명에서 사용하는 용어 '조성물'은 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.As used herein, the term 'composition' includes reaction products and decomposition products formed from materials of the composition, as well as mixtures of materials comprising the composition.
본 발명은 전(全)고체 전지(All Solid State Battery)에 관한 것으로서, 보다 상세하게는 리튬 이온을 이용하는 전고체 리튬 이차 전지(All Soild State Lithium Secondary Battery)를 제공한다. 본 발명의 일 실시예에 따르면, 상기 전고체 전지는 음극, 양극 및 상기 음극 및 상기 양극 사이에 개재된 고체 고분자 전해질을 포함하는 것일 수 있다. 이하, 본 발명의 전고체 전지의 각 구성에 대하여 상세하게 설명한다.The present invention relates to an all-solid-state battery, and more particularly, to an all-solid-state lithium secondary battery using lithium ions. According to an embodiment of the present invention, the all-solid-state battery may include a negative electrode, a positive electrode, and a solid polymer electrolyte interposed between the negative electrode and the positive electrode. Hereinafter, each configuration of the all-solid-state battery of the present invention will be described in detail.
고체 고분자 전해질solid polymer electrolyte
본 발명은 고체 고분자 전해질을 형성하기 위한 고체 고분자 전해질 전구체 조성물을 제공한다.The present invention provides a solid polymer electrolyte precursor composition for forming a solid polymer electrolyte.
본 발명의 일 실시예에 따르면, 고체 고분자 전해질을 형성하기 위한 고체 고분자 전해질 전구체 조성물은 하기 화학식 1로 표시되는 화합물; 가소제 및 리튬염을 포함하는 것일 수 있다.According to an embodiment of the present invention, a solid polymer electrolyte precursor composition for forming a solid polymer electrolyte includes a compound represented by the following Chemical Formula 1; It may include a plasticizer and a lithium salt.
[화학식 1][Formula 1]
Figure PCTKR2021009404-appb-I000002
Figure PCTKR2021009404-appb-I000002
상기 화학식 1에서, X1은 -CR1R2- 또는 -NR7-이고, X2는 -CR3R4- 또는 -NR8-이며, X3은 -CR5R6- 또는 -NR9-이되, X1 내지 X3 중 적어도 1개 이상은 -NR7-, -NR8- 또는 -NR9-이며, R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 30의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 30의 알케닐기이다.In Formula 1, X 1 is -CR 1 R 2 - or -NR 7 -, X 2 is -CR 3 R 4 - or -NR 8 -, and X 3 is -CR 5 R 6 - or -NR 9 -However, at least one of X 1 to X 3 is -NR 7 -, -NR 8 - or -NR 9 -, and R 1 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, and 2 carbon atoms. An alkenyl group having to 30, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a heteroalkyl group having 1 to 30 carbon atoms, or a heterocyclic group having 5 to 30 ring atoms. , at least one or more is an alkenyl group having 2 to 30 carbon atoms.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은, 고체 고분자 전해질 전구체 조성물로부터 고체 고분자 전해질을 형성할 때, 가소제와 함께 반-상호 침투 네트워크를 형성하는 중합체를 형성하기 위한 가교성 화합물일 수 있다. 본 발명에 따라 상기 화학식 1로 표시되는 화합물을 포함하여 고체 고분자 전해질을 형성하는 경우, 수축을 방지하면서도 중합 반응을 단순화할 수 있으며, 구조적으로 균질한 중합체 네트워크를 형성할 수 있다.According to an embodiment of the present invention, the compound represented by Formula 1 is crosslinkable to form a polymer forming a semi-interpenetrating network together with a plasticizer when forming a solid polymer electrolyte from a solid polymer electrolyte precursor composition It may be a compound. When the solid polymer electrolyte is formed by including the compound represented by Formula 1 according to the present invention, the polymerization reaction can be simplified while preventing shrinkage, and a structurally homogeneous polymer network can be formed.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 X1은 -NR7-이고, X2는 -NR8-이며, X3은 -NR9-이고, R7 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 30의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 30의 알케닐기인 것일 수 있다.According to an embodiment of the present invention, in the compound represented by Formula 1, X 1 is -NR 7 -, X 2 is -NR 8 -, X 3 is -NR 9 -, R 7 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a hetero group having 1 to 30 carbon atoms An alkyl group or a heterocyclic group having 5 to 30 ring atoms, at least one may be an alkenyl group having 2 to 30 carbon atoms.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 X1은 -NR7-이고, X2는 -NR8-이며, X3은 -NR9-이고, R7 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 2 내지 20의 알카이닐기, 탄소수 5 내지 20의 시클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 20의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 20의 알케닐기인 것일 수 있다.According to an embodiment of the present invention, in the compound represented by Formula 1, X 1 is -NR 7 -, X 2 is -NR 8 -, X 3 is -NR 9 -, R 7 to R 9 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a hetero group having 1 to 20 carbon atoms An alkyl group or a heterocyclic group having 5 to 20 ring atoms, at least one may be an alkenyl group having 2 to 20 carbon atoms.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 X1은 -NR7-이고, X2는 -NR8-이며, X3은 -NR9-이고, R7 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알카이닐기, 탄소수 5 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기, 탄소수 1 내지 10의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 10의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 10의 알케닐기인 것일 수 있다.According to an embodiment of the present invention, in the compound represented by Formula 1, X 1 is -NR 7 -, X 2 is -NR 8 -, X 3 is -NR 9 -, R 7 to R 9 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hetero group having 1 to 10 carbon atoms An alkyl group or a heterocyclic group having 5 to 10 ring atoms, at least one may be an alkenyl group having 2 to 10 carbon atoms.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 X1은 -NR7-이고, X2는 -NR8-이며, X3은 -NR9-이고, R7 내지 R9는 각각 독립적으로 탄소수 2 내지 30의 알케닐기인 것일 수 있고, 보다 구체적인 예로, R7 내지 R9는 각각 독립적으로 비닐기 또는 알릴기인 것일 수 있다.According to an embodiment of the present invention, in the compound represented by Formula 1, X 1 is -NR 7 -, X 2 is -NR 8 -, X 3 is -NR 9 -, R 7 to R 9 are Each independently may be an alkenyl group having 2 to 30 carbon atoms, and as a more specific example, R 7 to R 9 may each independently be a vinyl group or an allyl group.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 화합물일 수 있다.According to an embodiment of the present invention, the compound represented by Formula 1 may be a compound represented by Formula 1-1 below.
[화학식 1-1][Formula 1-1]
Figure PCTKR2021009404-appb-I000003
Figure PCTKR2021009404-appb-I000003
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질 전구체 조성물은 티올계 가교제를 포함하는 것일 수 있다. 상기 고체 고분자 전해질 전구체 조성물이 티올계 가교제를 포함하는 경우, 상기 화학식 1로 표시되는 화합물로부터 가교성 중합체의 형성 시, 가교성 중합체가 상기 화학식 1로 표시되는 화합물과 티올계 가교제의 가교 반응에 의해 형성될 수 있다. 구체적인 예로, 상기 가교 반응은 상기 화학식 1로 표시되는 화합물의 탄소수 2 내지 30의 알케닐기의 이중 결합과 티올계 가교제의 티올기의 티올-엔(thiol-ene)가교 반응일 수 있다.According to an embodiment of the present invention, the solid polymer electrolyte precursor composition may include a thiol-based crosslinking agent. When the solid polymer electrolyte precursor composition includes a thiol-based crosslinking agent, when the crosslinkable polymer is formed from the compound represented by Formula 1, the crosslinkable polymer is formed by a crosslinking reaction between the compound represented by Formula 1 and the thiol-based crosslinking agent. can be formed. As a specific example, the crosslinking reaction may be a thiol-ene crosslinking reaction between a double bond of an alkenyl group having 2 to 30 carbon atoms of the compound represented by Formula 1 and a thiol group of a thiol-based crosslinking agent.
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질 전구체 조성물이 티올계 가교제를 포함하는 경우, 상기 화학식 1로 표시되는 화합물이 가소제와 함께 반-상호 침투 네트워크를 형성하는 중합체를 형성할 때, 상기 가교 반응에 의해 상기 화학식 1로 표시되는 화합물 및 상기 티올계 가교제가 가소제와 함께 반-상호 침투 네트워크를 형성하는 중합체를 형성할 수 있다. 본 발명에 따라 상기 화학식 1로 표시되는 화합물 및 티올계 가교제를 포함하여 고체 고분자 전해질을 형성하는 경우, 수축을 방지하면서도 중합 반응을 단순화할 수 있으며, 구조적으로 균질한 중합체 네트워크를 형성하면서도, 산소 민감성을 저감시켜 가소제의 산화 전압 안정성을 향상시키는 효과가 있다.According to an embodiment of the present invention, when the solid polymer electrolyte precursor composition includes a thiol-based crosslinking agent, when the compound represented by Formula 1 forms a polymer forming a semi-interpenetrating network together with a plasticizer, the By the crosslinking reaction, the compound represented by Formula 1 and the thiol-based crosslinking agent may form a polymer forming a semi-interpenetrating network together with a plasticizer. In the case of forming a solid polymer electrolyte including the compound represented by Formula 1 and the thiol-based crosslinking agent according to the present invention, the polymerization reaction can be simplified while preventing shrinkage, and while forming a structurally homogeneous polymer network, oxygen sensitivity It has the effect of improving the oxidation voltage stability of the plasticizer by reducing the
본 발명의 일 실시예에 따르면, 상기 티올계 가교제는 1,3-프로판디티올, 2,3-부탄디티올, 2-머캅토프로피온산, 3-머캅토프로피온산, 펜타에리스리톨 테트라키스(3-머캅토프로피오네이트), 트리메틸올프로판 트리스(3-메르캅토프로피오네이트) 및 2,2'-(에틸렌디옥시)디에탄티올로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 펜타에리스리톨 테트라키스(3-머캅토프로피오네이트)일 수 있다.According to an embodiment of the present invention, the thiol-based crosslinking agent is 1,3-propanedithiol, 2,3-butanedithiol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, pentaerythritol tetrakis(3-mer) captopropionate), trimethylolpropane tris(3-mercaptopropionate), and 2,2'-(ethylenedioxy)diethanethiol may be at least one selected from the group consisting of, as a specific example, pentaerythritol tetrakis (3-mercaptopropionate).
또한, 본 발명의 일 실시예에 따르면, 상기 티올계 가교제는 하기 화학식 2로 표시되는 티올 화합물일 수 있다.In addition, according to an embodiment of the present invention, the thiol-based crosslinking agent may be a thiol compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2021009404-appb-I000004
Figure PCTKR2021009404-appb-I000004
상기 화학식 2에서, X는 각각 독립적으로 S 또는 NR10이고, R10은 수소 또는 탄소수 1 내지 7의 알킬기이고, n은 각각 독립적으로 1 내지 12에서 선택된 정수이며, Y는 단일 결합 또는 탄소수 1 내지 7의 알킬렌기일 수 있다.In Formula 2, each X is independently S or NR 10 , R 10 is hydrogen or an alkyl group having 1 to 7 carbon atoms, n is each independently an integer selected from 1 to 12, and Y is a single bond or a carbon number 1 to 7 may be an alkylene group.
구체적인 예로, 상기 화학식 2에서, R10은 탄소수 1 내지 3의 알킬기이고, n은 2 내지 7에서 선택된 정수이며, Y는 단일 결합 또는 탄소수 1 내지 3의 알킬렌기일 수 있다.As a specific example, in Formula 2, R 10 is an alkyl group having 1 to 3 carbon atoms, n is an integer selected from 2 to 7, and Y may be a single bond or an alkylene group having 1 to 3 carbon atoms.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 티올 화합물은 트리아진계 모핵, 에테르기를 포함하는 측쇄 및 상기 측쇄의 말단에 형성된 티올기를 포함하며, 상기 티올 화합물을 티올계 가교제로 포함하는 고체 고분자 전해질 전구체 조성물로부터 고체 고분자 전해질을 제조하는 경우, 이온 전도도가 뛰어난 장점이 있다. 이러한 이온 전도도의 장점에 의해, 초박막으로 형성이 가능하면서도 누액의 유출이 없으며, 높은 이온 전도도를 통해 고체 고분자 전해질을 상업화 할 수 있는 장점이 있다.According to an embodiment of the present invention, the thiol compound represented by Formula 2 includes a triazine-based parent nucleus, a side chain including an ether group, and a thiol group formed at the end of the side chain, and the thiol compound is a solid comprising a thiol-based crosslinking agent. In the case of preparing a solid polymer electrolyte from the polymer electrolyte precursor composition, there is an advantage of excellent ionic conductivity. Due to the advantages of such ionic conductivity, it is possible to form an ultra-thin film, but there is no leakage of leakage, and there is an advantage of commercializing a solid polymer electrolyte through high ionic conductivity.
본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 티올 화합물은 하기 화학식 2-1 또는 화학식 2-2로 표시되는 화합물일 수 있다.According to an embodiment of the present invention, the thiol compound represented by Formula 2 may be a compound represented by Formula 2-1 or Formula 2-2.
[화학식 2-1][Formula 2-1]
Figure PCTKR2021009404-appb-I000005
Figure PCTKR2021009404-appb-I000005
[화학식 2-2][Formula 2-2]
Figure PCTKR2021009404-appb-I000006
Figure PCTKR2021009404-appb-I000006
상기 화학식 2-1 및 2-2에서, n은 각각 독립적으로 1 내지 12에서 선택된 정수이며, Y는 단일 결합 또는 탄소수 1 내지 7의 알킬렌기일 수 있다.In Formulas 2-1 and 2-2, n is each independently an integer selected from 1 to 12, and Y may be a single bond or an alkylene group having 1 to 7 carbon atoms.
구체적인 예로, 상기 화학식 2-1 및 2-2에서, n은 2 내지 10에서 선택된 정수이며, Y는 단일 결합 또는 탄소수 1 내지 3의 알킬렌기일 수 있다.As a specific example, in Formulas 2-1 and 2-2, n is an integer selected from 2 to 10, and Y may be a single bond or an alkylene group having 1 to 3 carbon atoms.
보다 구체적인 예로, 상기 화학식 2-1 및 2-2에서, n은 2 내지 7에서 선택된 정수이며, Y는 단일 결합 또는 탄소수 1 내지 3의 알킬렌기일 수 있다.As a more specific example, in Formulas 2-1 and 2-2, n may be an integer selected from 2 to 7, and Y may be a single bond or an alkylene group having 1 to 3 carbon atoms.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물 및 상기 티올계 가교제는 몰비가 10:1 내지 1:10, 5:1 내지 1:5, 또는 4:1 내지 1:4일 수 있고, 구체적인 예로 4:3 내지 3:4일 수 있다. 상기 몰비는 상기 화학식 1로 표시되는 화합물의 가교 사이트와, 상기 티올계 가교제의 가교 사이트의 몰비가 1:1이 되도록 결정될 수 있다. 상기 화학식 1로 표시되는 화합물 및 상기 티올계 가교제는 몰비가 상기 범위 내인 경우, 고체 고분자 전해질의 형성 시, 수축을 방지하면서도 중합 반응을 단순화할 수 있으며, 구조적으로 균질한 중합체 네트워크를 형성할 수 있다.According to an embodiment of the present invention, the compound represented by Formula 1 and the thiol-based crosslinking agent may have a molar ratio of 10:1 to 1:10, 5:1 to 1:5, or 4:1 to 1:4. And, as a specific example, it may be 4:3 to 3:4. The molar ratio may be determined such that the molar ratio of the crosslinking site of the compound represented by Formula 1 to the crosslinking site of the thiol-based crosslinking agent is 1:1. When the molar ratio of the compound represented by Formula 1 and the thiol-based crosslinking agent is within the above range, it is possible to simplify the polymerization reaction while preventing shrinkage when forming a solid polymer electrolyte, and to form a structurally homogeneous polymer network. .
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물 및 상기 티올계 가교제를 포함하는 가교제 조성물은 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 1 중량% 내지 30 중량%, 5 중량% 내지 25 중량%, 또는 10 중량% 내지 20 중량%일 수 있고, 이 범위 내에서 고체 고분자 전해질의 산소 민감성을 저감시켜 가소제의 산화 전압 안정성을 향상시키면서, 이온전도도를 충분히 확보하여 전고체 전지의 충방전 용량 및 효율이 향상되는 효과가 있다.According to an embodiment of the present invention, the crosslinking agent composition including the compound represented by Formula 1 and the thiol-based crosslinking agent is 1 wt% to 30 wt%, 5 wt% to 5 wt% based on the total content of the solid polymer electrolyte precursor composition It may be 25 wt%, or 10 wt% to 20 wt%, and within this range, the oxidation voltage stability of the plasticizer is improved by reducing the oxygen sensitivity of the solid polymer electrolyte, and the ionic conductivity is sufficiently secured to charge and discharge the all-solid-state battery. There is an effect of improving capacity and efficiency.
본 발명의 일 실시예에 따르면, 상기 가소제는 이온전도성 가소제일 수 있고, 고체 고분자 전해질에 있어서 리튬염을 위한 매트릭스로서 이온전도성을 나타내는 폴리에테르계 가소제일 수 있다. 구체적인 예로, 상기 가소제는 폴리에틸렌글리콜 디메틸에테르, 폴리에틸렌글리콜 디에틸에테르, 폴리에틸렌글리콜 디프로필에테르, 폴리에틸렌글리콜 디부틸에테르, 폴리에틸렌글리콜 디글리시딜에테르, 폴리프로필렌글리콜 디메틸에테르, 폴리프로필렌글리콜 디글리시딜에테르, 디부틸에테르 말단의 폴리프로필렌글리콜/폴리에틸렌글리콜 공중합체 및 디부틸에테르 말단의 폴리에틸렌글리콜/폴리프로필렌글리콜/폴리에틸렌글리콜 블록 공중합체 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 구체적인 예로 폴리에틸렌글리콜 디메틸에티르일 수 있다.According to an embodiment of the present invention, the plasticizer may be an ion conductive plasticizer, and may be a polyether plasticizer exhibiting ion conductivity as a matrix for a lithium salt in a solid polymer electrolyte. As a specific example, the plasticizer is polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl. It may be at least one selected from the group consisting of ether, dibutyl ether-terminated polypropylene glycol/polyethylene glycol copolymer, and dibutyl ether-terminated polyethylene glycol/polypropylene glycol/polyethylene glycol block copolymer, and more specifically, polyethylene glycol It may be dimethyl ether.
본 발명의 일 실시예에 따르면, 상기 가소제는 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 40 중량% 내지 80 중량%, 45 중량% 내지 75 중량%, 또는 50 중량% 내지 70 중량%로 포함될 수 있고, 고체 고분자 전해질 전구체 조성물로부터 형성된 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 고체 고분자 전해질의 이온전도도를 충분히 확보하여 전고체 전지의 충방전 용량 및 효율이 향상되는 효과가 있다.According to an embodiment of the present invention, the plasticizer may be included in an amount of 40 wt% to 80 wt%, 45 wt% to 75 wt%, or 50 wt% to 70 wt%, based on the total content of the solid polymer electrolyte precursor composition. and may be included in the same content in the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the solid polymer electrolyte is sufficiently secured, thereby improving the charge/discharge capacity and efficiency of the solid polymer electrolyte.
본 발명의 일 실시예에 따르면, 상기 리튬염은 고체 고분자 전해질에 있어서 리튬 이온을 전달하기 위한 매개체로서, 리튬헥사플루오로포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬헥사플루오로안티모네이트(LiSbF6), 리튬헥사플루오로아세네이트(LiAsF6), 리튬디플루오로메탄설포네이트(LiC4F9SO3), 과염소산리튬(LiClO4), 리튬알루미네이트(LiAlO2), 리튬테트라클로로알루미네이트(LiAlCl4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C2O4)2), 리튬 디플루오로(옥살레이토) 보레이트(LiBF2(C2O4)), 리튬 비스(플루오로설포닐)이미드(LiN(FSO2)2, LiFSI) 및 리튬 비스(트리플루오로메탄설포닐)이미드(LiN(CF3SO2)2, LiTFSI) 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 리튬 비스(트리플루오로메탄설포닐)이미드(LiN(CF3SO2)2, LiTFSI)일 수 있다.According to an embodiment of the present invention, the lithium salt is a medium for transferring lithium ions in the solid polymer electrolyte, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoro Roantimonate (LiSbF 6 ), lithium hexafluoroacetate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO 2 ) , lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium difluoro(oxalato) borate (LiBF) 2 (C 2 O 4 )), lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 , LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO 2 ) 2 , LiTFSI) may be at least one selected from the group consisting of, and a specific example may be lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO 2 ) 2 , LiTFSI).
본 발명의 일 실시예에 따르면, 상기 리튬염은 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 1 중량% 내지 40 중량%, 5 중량% 내지 35 중량%, 또는 10 중량% 내지 30 중량%로 포함될 수 있고, 고체 고분자 전해질 전구체 조성물로부터 형성된 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 고체 고분자 전해질의 이온전도도를 충분히 확보하여 전고체 전지의 충방전 용량 및 효율이 향상되는 효과가 있다.According to an embodiment of the present invention, the lithium salt is included in an amount of 1 wt% to 40 wt%, 5 wt% to 35 wt%, or 10 wt% to 30 wt%, based on the total content of the solid polymer electrolyte precursor composition. and may be included in the same amount in the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the solid polymer electrolyte is sufficiently secured, thereby improving the charge/discharge capacity and efficiency of the solid polymer electrolyte. .
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질 전구체 조성물은 전해질 첨가제를 포함하는 것일 수 있다. 상기 전해질 첨가제는 고체 고분자 전해질의 이온전도도를 더욱 향상시키기 위한 것으로, 고리형 카보네이트계 화합물, 고리형 황계 화합물 및 니트릴계 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 본 발명에 따라, 고체 고분자 전해질 전구체 조성물에 전해질 첨가제를 포함하는 경우, 이로부터 형성된 고체 고분자 전해질이 전해질 첨가제를 포함할 수 있고, 전고체 전지의 충방전 용량 및 효율을 향상시키는 효과가 있다.According to an embodiment of the present invention, the solid polymer electrolyte precursor composition may include an electrolyte additive. The electrolyte additive is to further improve the ionic conductivity of the solid polymer electrolyte, and may be at least one selected from the group consisting of a cyclic carbonate-based compound, a cyclic sulfur-based compound, and a nitrile-based compound. According to the present invention, when the electrolyte additive is included in the solid polymer electrolyte precursor composition, the solid polymer electrolyte formed therefrom may include the electrolyte additive, and there is an effect of improving the charge/discharge capacity and efficiency of the all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 고리형 카보네이트계 화합물은 비닐렌 카보네이트(Vinylene Carbonate, VC), 카테콜 카보네이트(Catechol Carbonate, CC), 플루오로 에틸렌 카보네이트(Fluoro Ethylene Carbonate, FEC), 또는 비닐 에틸렌 카보네이트(Vinyl Ethylene Carbonate, VEC)일 수 있고, 상기 고리형 황계 화합물은 프로판 설톤(Propane Sultone, PS) 또는 글리콜 설파이트(Glycol Sulfite, GS)일 수 있으며, 상기 니트릴계 화합물은 숙시노니트릴(Succinonitrile, SN) 또는 아디포니트릴(Adiponitrile, AN)일 수 있다.According to an embodiment of the present invention, the cyclic carbonate-based compound is vinylene carbonate (Vinylene Carbonate, VC), catechol carbonate (Catechol Carbonate, CC), fluoroethylene carbonate (Fluoro Ethylene Carbonate, FEC), or vinyl It may be ethylene carbonate (Vinyl Ethylene Carbonate, VEC), the cyclic sulfur-based compound may be propane sultone (PS) or glycol sulfite (Glycol Sulfite, GS), and the nitrile-based compound is succinonitrile ( Succinonitrile, SN) or adiponitrile (AN).
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 비닐렌 카보네이트, 플루오로 에틸렌 카보네이트, 또는 비닐 에틸렌 카보네이트일 수 있고, 이 경우 우수한 충방전 용량 및 효율을 달성할 수 있는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive may be vinylene carbonate, fluoroethylene carbonate, or vinyl ethylene carbonate, and in this case, there is an effect of achieving excellent charge/discharge capacity and efficiency.
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 0.1 중량% 내지 10 중량%, 1 중량% 내지 8 중량%, 또는 1 중량% 내지 5 중량%로 포함될 수 있고, 이 범위 내에서 전고체 전지의 고체 특성은 유지하면서도, 충방전 용량 및 효율을 향상시키는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive may be included in an amount of 0.1 wt% to 10 wt%, 1 wt% to 8 wt%, or 1 wt% to 5 wt%, based on the total content of the solid polymer electrolyte precursor composition. and while maintaining the solid characteristics of the all-solid-state battery within this range, there is an effect of improving the charge/discharge capacity and efficiency.
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질 전구체 조성물은 상기 화학식 1로 표시되는 화합물, 또는 상기 화학식 1로 표시되는 화합물 및 티올계 가교제를 포함하는 가교제 조성물의 가교 반응을 유도하기 위한 경화성 개시제를 포함하는 것일 수 있다.According to an embodiment of the present invention, the solid polymer electrolyte precursor composition is a curing initiator for inducing a crosslinking reaction of the compound represented by Formula 1 or the crosslinking agent composition including the compound represented by Formula 1 and a thiol-based crosslinking agent may include.
본 발명의 일 실시예에 따르면, 상기 경화성 개시제는 가교제의 가교 가능한 관능기로부터 가교 반응을 개시하기 위한 라디칼을 제공할 수 있는 퍼옥시드계 개시제 또는 아조계 개시제일 수 있다. 구체적인 예로 상기 경화성 개시제는 벤조일 퍼옥시드, 디-tert-부틸 퍼옥시드, 디-tert-아밀 퍼옥시드, a-큐밀 퍼옥시네오데카노에이트, a-큐밀 퍼옥시네오펩타노에이트, t-아밀 퍼옥시네오데카노에이트, 디-(2-에틸헥실) 퍼옥시-디카보네이트, t-아밀 퍼옥시피발레이트, t-부틸 퍼옥시피발레이트, 2,5-디메틸-2,5 비스(2-에틸-헥사노일퍼옥시) 헥산, 디벤조일 퍼옥시드, t-아밀 퍼옥시-2-에틸헥사노에이트, t-부틸 퍼옥시-2-에틸헥사노에이트, 1,1-디-(t-아밀퍼옥시) 시클로헥산, 1,1-디-(t-부틸퍼옥시) 3,3,5-트리메틸 시클로헥산, 1,1-디-(t-부틸퍼옥시) 시클로헥산, t-부틸 퍼옥시아세테이트, t-부틸 퍼옥시벤조에이트, t-아밀 퍼옥시벤조에이트, 에틸 3,3-디-(t-아밀퍼옥시) 부티레이트 및 에틸 3,3-디-(t-부틸퍼옥시) 부티레이트 및 디큐밀 퍼옥시드 등의 퍼옥시드계 개시제; 또는 1,1'-아조비스(시클로헥산카보니트릴), 2,2'-아조비스(2-메틸프로피온아미딘) 디히드로클로라이드 및 4,4'-아조비스(4-시아노발레르산) 등의 아조계 개시제로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 구체적인 예로 t-부틸 퍼옥시피발레이트(t-butyl peroxypivalate, t-BPP)일 수 있다.According to an embodiment of the present invention, the curable initiator may be a peroxide-based initiator or an azo-based initiator capable of providing radicals for initiating a crosslinking reaction from a crosslinkable functional group of the crosslinking agent. Specifically, the curing initiator is benzoyl peroxide, di-tert-butyl peroxide, di-tert-amyl peroxide, a-cumyl peroxyneodecanoate, a-cumyl peroxyneopeptanoate, t-amyl peroxide Oxyneodecanoate, di-(2-ethylhexyl) peroxy-dicarbonate, t-amyl peroxypivalate, t-butyl peroxypivalate, 2,5-dimethyl-2,5 bis(2-ethyl -hexanoylperoxy) hexane, dibenzoyl peroxide, t-amyl peroxy-2-ethylhexanoate, t-butyl peroxy-2-ethylhexanoate, 1,1-di-(t-amylper oxy) cyclohexane, 1,1-di-(t-butylperoxy) 3,3,5-trimethyl cyclohexane, 1,1-di-(t-butylperoxy) cyclohexane, t-butyl peroxyacetate , t-butyl peroxybenzoate, t-amyl peroxybenzoate, ethyl 3,3-di-(t-amylperoxy) butyrate and ethyl 3,3-di-(t-butylperoxy) butyrate and diQ peroxide-based initiators such as wheat peroxide; or 1,1'-azobis(cyclohexanecarbonitrile), 2,2'-azobis(2-methylpropionamidine) dihydrochloride and 4,4'-azobis(4-cyanovaleric acid), etc. It may be at least one selected from the group consisting of azo-based initiators, and a more specific example may be t-butyl peroxypivalate (t-BPP).
본 발명의 일 실시예에 따르면, 상기 경화성 개시제는 상기 화학식 1로 표시되는 화합물, 또는 상기 화학식 1로 표시되는 화합물 및 상기 티올계 가교제를 포함하는 가교제 조성물 100 중량부에 대하여, 0.01 중량부 내지 1.00 중량부, 0.01 중량부 내지 0.50 중량부, 또는 0.01 중량부 내지 0.10 중량부로 포함될 수 있다.According to an embodiment of the present invention, the curing initiator is 0.01 parts by weight to 1.00 parts by weight based on 100 parts by weight of the crosslinking agent composition including the compound represented by Formula 1 or the compound represented by Formula 1 and the thiol-based crosslinking agent It may be included in parts by weight, 0.01 parts by weight to 0.50 parts by weight, or 0.01 parts by weight to 0.10 parts by weight.
또한, 본 발명은 상기 고체 고분자 전해질 전구체 조성물로부터 형성된 고체 고분자 전해질을 제공한다.In addition, the present invention provides a solid polymer electrolyte formed from the solid polymer electrolyte precursor composition.
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질 전구체 조성물로부터 형성된 고체 고분자 전해질은 상기 고체 고분자 전해질 전구체 조성물의 열 경화에 의한 직접 가교 반응을 통하여 형성된 것일 수 있고, 구체적인 예로 상기 화학식 1로 표시되는 화합물 단위를 포함하는 가교성 중합체; 가소제 및 리튬염을 포함하는 것일 수 있다.According to an embodiment of the present invention, the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition may be formed through a direct crosslinking reaction by thermal curing of the solid polymer electrolyte precursor composition. crosslinkable polymers comprising compound units; It may include a plasticizer and a lithium salt.
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질 전구체 조성물이 티올계 가교제를 포함하는 경우, 상기 가교성 중합체는 티올계 가교제 단위를 포함하는 것일 수 있다.According to an embodiment of the present invention, when the solid polymer electrolyte precursor composition includes a thiol-based crosslinking agent, the crosslinkable polymer may include a thiol-based crosslinking agent unit.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물, 또는 상기 화학식 1로 표시되는 화합물 및 상기 티올계 가교제를 포함하는 가교제 조성물로부터 가교 반응에 의해 가교성 중합체를 형성하는 경우, 상기 가교성 중합체는 가소제와 함께 반-상호 침투 네트워크를 형성하고, 이 때, 상기 고체 고분자 전해질 전구체 조성물의 리튬염은 상기 네트워크 상에 분산될 수 있다.According to an embodiment of the present invention, when a crosslinking polymer is formed by a crosslinking reaction from the compound represented by Formula 1 or a crosslinking agent composition including the compound represented by Formula 1 and the thiol-based crosslinking agent, the crosslinking The sexual polymer forms a semi-interpenetrating network together with the plasticizer, wherein the lithium salt of the solid polyelectrolyte precursor composition may be dispersed on the network.
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질은 상기 고체 고분자 전해질을 형성하기 위한 고체 고분자 전해질 전구체 조성물에 포함된 성분들을 동일한 함량으로 포함하여 형성된 것일 수 있고, 이를 전고체 전지의 전해질로 이용하는 경우, 고전압 양극재의 적용이 가능하여 전고체 전지의 사이클 수명과 용량 특성을 향상시키는 효과가 있다.According to an embodiment of the present invention, the solid polymer electrolyte may be formed by including the components included in the solid polymer electrolyte precursor composition for forming the solid polymer electrolyte in the same amount, and the solid polymer electrolyte is used as an electrolyte for an all-solid-state battery. In this case, it is possible to apply a high voltage cathode material, thereby improving the cycle life and capacity characteristics of the all-solid-state battery.
전고체 전지용 음극Anode for all-solid-state battery
본 발명은 전고체 전지용 음극을 제공한다.The present invention provides an anode for an all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 전고체 전지용 음극은 집전체, 및 상기 집전체의 적어도 일면에 형성된 음극 활물질층을 포함하고, 상기 음극 활물질층은 음극 활물질을 포함하는 것일 수 있다.According to an embodiment of the present invention, the anode for an all-solid-state battery may include a current collector and an anode active material layer formed on at least one surface of the current collector, and the anode active material layer may include an anode active material.
또한, 본 발명의 일 실시예에 따르면, 상기 전고체 전지용 음극은 집전체, 및 상기 집전체의 적어도 일면에 형성된 음극 활물질층을 포함하고, 상기 음극 활물질층은 음극 활물질 및 제1 고체 고분자 전해질을 포함하는 전고체 전지용 복합 음극일 수 있다.In addition, according to an embodiment of the present invention, the anode for an all-solid-state battery includes a current collector and a negative active material layer formed on at least one surface of the current collector, and the negative active material layer includes a negative electrode active material and a first solid polymer electrolyte. It may be a composite negative electrode for an all-solid-state battery comprising.
본 발명의 일 실시예에 따르면, 상기 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 표면이 탄소, 니켈, 티탄, 은 등으로 표면처리된 구리 또는 스테인레스 스틸, 또는 알루미늄-카드뮴 합금일 수 있다. 또한, 상기 집전체는 앵커 효과를 통하여 집전체와 음극 활물질층의 결합력을 향상시키기 위해 표면 조도화된 것일 수 있다. 또한, 상기 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 또는 부직포체 등의 형태일 수 있다.According to an embodiment of the present invention, the current collector is copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, etc., or aluminum-cadmium It may be an alloy. In addition, the current collector may be surface roughened in order to improve the bonding force between the current collector and the negative electrode active material layer through an anchor effect. In addition, the current collector may be in the form of a film, a sheet, a foil, a net, a porous body, a foam body, or a nonwoven body.
본 발명의 일 실시예에 따르면, 상기 집전체의 적어도 일면에 형성된 음극 활물질층은 음극 활물질이 바인더에 의해 음극 활물질층 내에 분산된 형태로 존재하는 것일 수 있다. 이 때, 상기 음극 활물질은 복수 개의 음극 활물질 입자일 수 있다. 구체적인 예로, 상기 바인더는 음극 활물질층 내에서 복수 개의 음극 활물질 입자를 분산상으로 포함하는 연속상의 형태로 존재할 수 있다.According to an embodiment of the present invention, the anode active material layer formed on at least one surface of the current collector may exist in a form in which the anode active material is dispersed in the anode active material layer by a binder. In this case, the negative active material may be a plurality of negative active material particles. As a specific example, the binder may exist in the form of a continuous phase including a plurality of negative active material particles as a dispersed phase in the negative electrode active material layer.
또한, 본 발명의 일 실시예에 따르면, 상기 집전체의 적어도 일면에 형성된 음극 활물질층은 음극 활물질 및 제1 고체 고분자 전해질이 음극 활물질층 내에 서로 혼합되어 분산된 형태로 존재하는 것일 수 있다. 이 때, 상기 음극 활물질은 복수 개의 음극 활물질 입자일 수 있다. 구체적인 예로, 상기 제1 고체 고분자 전해질은 음극 활물질층 내에서 복수 개의 음극 활물질 입자를 분산상으로 포함하는 연속상의 형태로 존재할 수 있다. 다른 구체적인 예로, 상기 제1 고체 고분자 전해질은 음극 활물질층 내에서 복수 개의 음극 활물질 입자에 의해 형성된 공극 사이에서 복수 개의 음극 활물질 입자의 전부 또는 일부를 피복하고 있는 형태로 존재할 수 있다.In addition, according to an embodiment of the present invention, the negative active material layer formed on at least one surface of the current collector may exist in a dispersed form in which the negative active material and the first solid polymer electrolyte are mixed with each other in the negative active material layer. In this case, the negative active material may be a plurality of negative active material particles. As a specific example, the first solid polymer electrolyte may exist in the form of a continuous phase including a plurality of negative active material particles as a dispersed phase in the negative electrode active material layer. As another specific example, the first solid polymer electrolyte may exist in the form of covering all or part of the plurality of negative active material particles between pores formed by the plurality of negative active material particles in the negative electrode active material layer.
본 발명의 일 실시예에 따르면, 상기 음극 활물질은 탄소계 재료일 수 있고, 구체적인 예로, 상기 탄소계 재료는 리튬과 인터칼레이션 및 디인터칼레이션이 가능한 결정질 탄소, 비정질 탄소 또는 이들의 혼합물인 것일 수 있다. 보다 구체적인 예로, 상기 결정질 탄소는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연일 수 있고, 상기 비정질 탄소는 소프트 카본, 하드 카본, 메소페이즈 피치계 탄소섬유, 또는 소성 코크스일 수 있다.According to an embodiment of the present invention, the negative active material may be a carbon-based material, and as a specific example, the carbon-based material is crystalline carbon, amorphous carbon, or a mixture thereof capable of intercalation and deintercalation with lithium. it could be As a more specific example, the crystalline carbon may be amorphous, plate-like, scale-like, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon, hard carbon, mesophase pitch-based carbon fiber, or calcined coke. can
여기서, 상기 탄소계 재료는 전해액 등의 액체 전해질을 이용하는 액체 전해질 이차 전지에서 이용될 수 있는 탄소계 재료일 수 있다. 본 발명에 따르면, 음극 활물질층이 음극 활물질 및 제1 고체 고분자 전해질을 포함함으로써 상기 탄소계 재료만으로도 전지의 높은 충방전 용량 및 효율을 확보하는 것이 가능하여 생산성이 뛰어난 효과가 있다.Here, the carbon-based material may be a carbon-based material that can be used in a liquid electrolyte secondary battery using a liquid electrolyte such as an electrolyte. According to the present invention, since the anode active material layer includes the anode active material and the first solid polymer electrolyte, it is possible to secure high charge/discharge capacity and efficiency of the battery only with the carbon-based material, and thus there is an effect of excellent productivity.
본 발명의 일 실시예에 따르면, 상기 음극 활물질은 음극 활물질층의 구성성분의 전체 함량에 대하여, 50 중량% 내지 90 중량%, 55 중량% 내지 85 중량%, 또는 60 중량% 내지 80 중량%로 포함될 수 있고, 이 범위 내에서 전고체 전지의 충방전 용량 및 효율이 우수한 효과가 있다.According to an embodiment of the present invention, the negative active material is 50% to 90% by weight, 55% to 85% by weight, or 60% to 80% by weight based on the total content of the components of the negative active material layer. It may be included, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층은 상기 음극 활물질을 음극 활물질층에 결착시키기 위한 바인더를 포함할 수 있다. 상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR) 및 불소 고무 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 폴리비닐리덴플루오라이드일 수 있다.According to an embodiment of the present invention, the anode active material layer may include a binder for binding the anode active material to the anode active material layer. The binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethyl methacrylate, polyvinyl alcohol, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, It may be at least one selected from the group consisting of styrene butyrene rubber (SBR) and fluororubber, and a specific example may be polyvinylidene fluoride.
본 발명의 일 실시예에 따르면, 상기 바인더는 음극 활물질층의 구성성분의 전체 함량에 대하여, 1 중량% 내지 40 중량%, 10 중량% 내지 35 중량%, 또는 15 중량% 내지 25 중량%로 포함될 수 있고, 이 범위 내에서 음극 활물질의 결착력이 우수한 효과가 있다.According to an embodiment of the present invention, the binder may be included in an amount of 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt%, based on the total content of the components of the negative electrode active material layer. In this range, there is an excellent effect of binding force of the negative electrode active material.
또한, 본 발명의 일 실시예에 따르면, 상기 제1 고체 고분자 전해질은 바인더, 가소제 및 리튬염을 포함하는 것일 수 있다. 구체적인 예로, 상기 제1 고체 고분자 전해질은 바인더, 가소제 및 리튬염을 포함하는 제1 고체 고분자 전해질 전구체 조성물을 음극 활물질과 혼합하여 음극 활물질층을 형성할 때, 제1 고체 고분자 전해질 전구체 조성물로부터 형성된 것일 수 있다.Also, according to an embodiment of the present invention, the first solid polymer electrolyte may include a binder, a plasticizer, and a lithium salt. As a specific example, the first solid polymer electrolyte may be formed from the first solid polymer electrolyte precursor composition when the anode active material layer is formed by mixing the first solid polymer electrolyte precursor composition including the binder, the plasticizer and the lithium salt with the anode active material. can
본 발명의 일 실시예에 따르면, 상기 제1 고체 고분자 전해질은 음극 활물질층의 구성성분의 전체 함량에 대하여, 1 중량% 내지 40 중량%, 10 중량% 내지 35 중량%, 또는 15 중량% 내지 25 중량%로 포함될 수 있고, 이 범위 내에서 전고체 전지의 충방전 용량 및 효율이 우수한 효과가 있다.According to an embodiment of the present invention, the first solid polymer electrolyte is 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt% based on the total content of the components of the negative electrode active material layer It may be included in weight %, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
본 발명의 일 실시예에 따르면, 상기 바인더는 제1 고체 고분자 전해질은 물론, 음극 활물질을 음극 활물질층에서 서로 결착시키기 위한 것으로, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR) 및 불소 고무 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 폴리비닐리덴플루오라이드일 수 있다.According to an embodiment of the present invention, the binder is for binding the negative active material as well as the first solid polymer electrolyte to each other in the negative active material layer, and is a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HEP), polyvinylidenefluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl blood It may be at least one selected from the group consisting of rolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butyrene rubber (SBR), and fluororubber. And, as a specific example, it may be polyvinylidene fluoride.
본 발명의 일 실시예에 따르면, 상기 바인더는 제1 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 40 중량% 내지 80 중량%, 45 중량% 내지 75 중량%, 또는 50 중량% 내지 70 중량%로 포함될 수 있고, 제1 고체 고분자 전해질 전구체 조성물로부터 형성된 제1 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 제1 고체 고분자 전해질 및 음극 활물질의 결착력이 우수한 효과가 있다.According to an embodiment of the present invention, the binder is used in an amount of 40 wt% to 80 wt%, 45 wt% to 75 wt%, or 50 wt% to 70 wt%, based on the total content of the first solid polymer electrolyte precursor composition. It may be included, and may be included in the same amount in the first solid polymer electrolyte formed from the first solid polymer electrolyte precursor composition, and within this range, the binding force of the first solid polymer electrolyte and the negative electrode active material is excellent.
본 발명의 일 실시예에 따르면, 상기 가소제는 이온전도성 가소제일 수 있고, 제1 고체 고분자 전해질에 있어서 리튬염을 위한 매트릭스로서 이온전도성을 나타내는 폴리에테르계 가소제일 수 있다. 구체적인 예로, 상기 가소제는 폴리에틸렌글리콜 디메틸에테르, 폴리에틸렌글리콜 디에틸에테르, 폴리에틸렌글리콜 디프로필에테르, 폴리에틸렌글리콜 디부틸에테르, 폴리에틸렌글리콜 디글리시딜에테르, 폴리프로필렌글리콜 디메틸에테르, 폴리프로필렌글리콜 디글리시딜에테르, 디부틸에테르 말단의 폴리프로필렌글리콜/폴리에틸렌글리콜 공중합체 및 디부틸에테르 말단의 폴리에틸렌글리콜/폴리프로필렌글리콜/폴리에틸렌글리콜 블록 공중합체 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 구체적인 예로 폴리에틸렌글리콜 디메틸에테르일 수 있다.According to an embodiment of the present invention, the plasticizer may be an ion conductive plasticizer, and may be a polyether plasticizer exhibiting ion conductivity as a matrix for a lithium salt in the first solid polymer electrolyte. As a specific example, the plasticizer is polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl. It may be at least one selected from the group consisting of ether, dibutyl ether-terminated polypropylene glycol/polyethylene glycol copolymer, and dibutyl ether-terminated polyethylene glycol/polypropylene glycol/polyethylene glycol block copolymer, and more specifically, polyethylene glycol It may be dimethyl ether.
본 발명의 일 실시예에 따르면, 상기 가소제는 제1 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 15 중량% 내지 40 중량%, 20 중량% 내지 35 중량%, 또는 25 중량% 내지 35 중량%로 포함될 수 있고, 제1 고체 고분자 전해질 전구체 조성물로부터 형성된 제1 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 제1 고체 고분자 전해질의 이온전도도를 충분히 확보하여 전고체 전지의 충방전 용량 및 효율이 향상되는 효과가 있다.According to an embodiment of the present invention, the plasticizer is 15% to 40% by weight, 20% to 35% by weight, or 25% to 35% by weight based on the total content of the first solid polymer electrolyte precursor composition. may be included, and may be included in the same amount in the first solid polymer electrolyte formed from the first solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the first solid polymer electrolyte is sufficiently secured to determine the charge/discharge capacity of the all-solid-state battery and It has the effect of improving the efficiency.
본 발명의 일 실시예에 따르면, 상기 리튬염은 제1 고체 고분자 전해질에 있어서 리튬 이온을 전달하기 위한 매개체로서, 리튬헥사플루오로포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬헥사플루오로안티모네이트(LiSbF6), 리튬헥사플루오로아세네이트(LiAsF6), 리튬디플루오로메탄설포네이트(LiC4F9SO3), 과염소산리튬(LiClO4), 리튬알루미네이트(LiAlO2), 리튬테트라클로로알루미네이트(LiAlCl4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C2O4)2), 리튬 디플루오로(옥살레이토) 보레이트(LiBF2(C2O4)), 리튬 비스(플루오로설포닐)이미드(LiN(FSO2)2, LiFSI) 및 리튬 비스(트리플루오로메탄설포닐)이미드(LiN(CF3SO2)2, LiTFSI) 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 리튬 비스(트리플루오로메탄설포닐)이미드(LiN(CF3SO2)2, LiTFSI) 수 있다.According to an embodiment of the present invention, the lithium salt is a medium for transferring lithium ions in the first solid polymer electrolyte, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium Hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacetonate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO) 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium difluoro (oxalato) borate (LiBF 2 (C 2 O 4 )), lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 , LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO) 2 ) 2 , LiTFSI), and the like may be at least one selected from the group consisting of, and a specific example may be lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO 2 ) 2 , LiTFSI).
본 발명의 일 실시예에 따르면, 상기 리튬염은 제1 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 1 중량% 내지 20 중량%, 3 중량% 내지 18 중량%, 또는 5 중량% 내지 15 중량%로 포함될 수 있고, 제1 고체 고분자 전해질 전구체 조성물로부터 형성된 제1 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 제1 고체 고분자 전해질의 이온전도도를 충분히 확보하여 전고체 전지의 충방전 용량 및 효율이 향상되는 효과가 있다.According to an embodiment of the present invention, the lithium salt is 1 wt% to 20 wt%, 3 wt% to 18 wt%, or 5 wt% to 15 wt%, based on the total content of the first solid polymer electrolyte precursor composition and may be included in the same amount in the first solid polymer electrolyte formed from the first solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the first solid polymer electrolyte is sufficiently secured to provide a charge/discharge capacity of the all-solid-state battery And there is an effect that the efficiency is improved.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층은 도전재를 더 포함하는 것일 수 있다. 상기 도전재는 음극에 도전성을 더욱 향상시키기 위한 것으로, 천연 흑연, 인조 흑연 등과 같은 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등과 같은 카본 블랙; 탄소 섬유, 금속 섬유 등과 같은 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등과 같은 금속 분말; 산화아연, 티탄산 칼륨 등과 같은 도전성 휘스커; 산화티탄 등과 같은 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 1종 이상일 수 있다.According to an embodiment of the present invention, the negative active material layer may further include a conductive material. The conductive material is to further improve the conductivity of the negative electrode, graphite such as natural graphite, artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like; conductive fibers such as carbon fibers, metal fibers, and the like; metal powders such as carbon fluoride, aluminum, nickel powder and the like; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; And it may be at least one selected from the group consisting of polyphenylene derivatives.
본 발명의 일 실시예에 따르면, 상기 도전재가 상기 음극 활물질층에 포함되는 경우, 상기 도전재는 음극 활물질층의 구성성분의 전체 함량에 대하여, 1 중량% 내지 15 중량%, 1 중량% 내지 10 중량%, 또는 5 중량% 내지 10 중량로 포함될 수 있고, 이 범위 내에서 전고체 전지의 충방전 용량 및 효율이 우수한 효과가 있다.According to an embodiment of the present invention, when the conductive material is included in the anode active material layer, the conductive material is 1 wt% to 15 wt%, 1 wt% to 10 wt%, based on the total content of the components of the anode active material layer %, or may be included in an amount of 5 wt% to 10 wt%, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
본 발명의 일 실시예에 따르면, 상기 전고체 전지용 음극의 음극 활물질층은 전해질 첨가제를 포함하는 것일 수 있다. 구체적인 예로, 상기 전해질 첨가제는 음극 활물질층 내에서 복수 개의 음극 활물질 입자에 의해 형성된 공극 사이에 존재할 수 있다. 다른 구체적인 예로, 상기 전해질 첨가제는 상기 제1 고체 고분자 전해질 중에 분산되어 존재할 수 있고, 또는 상기 제1 고체 고분자 전해질에 의하여 형성된 3차원 망목 구조 내에 제1 고체 고분자 전해질과 상호 혼합된 형태로 존재할 수 있다.According to an embodiment of the present invention, the anode active material layer of the anode for an all-solid-state battery may include an electrolyte additive. As a specific example, the electrolyte additive may exist between pores formed by a plurality of negative active material particles in the negative electrode active material layer. As another specific example, the electrolyte additive may be present dispersed in the first solid polymer electrolyte, or may be present in a mixed form with the first solid polymer electrolyte in a three-dimensional network structure formed by the first solid polymer electrolyte. .
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 제1 고체 고분자 전해질의 이온전도도를 더욱 향상시키기 위한 것으로, 고리형 카보네이트계 화합물, 고리형 황계 화합물 및 니트릴계 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 본 발명에 따라, 전고체 전지용 음극이 음극 활물질층 내에 전해질 첨가제를 포함하는 경우, 음극 활물질로 탄소계 재료를 이용하면서 전고체 전지에 있어서 충분한 충방전 용량 및 효율을 달성할 수 있는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive is to further improve the ionic conductivity of the first solid polymer electrolyte, and is at least one selected from the group consisting of a cyclic carbonate-based compound, a cyclic sulfur-based compound, and a nitrile-based compound. can According to the present invention, when the negative electrode for an all-solid-state battery includes an electrolyte additive in the negative electrode active material layer, there is an effect of achieving sufficient charge/discharge capacity and efficiency in an all-solid-state battery while using a carbon-based material as the negative electrode active material.
본 발명의 일 실시예에 따르면, 상기 고리형 카보네이트계 화합물은 비닐렌 카보네이트(Vinylene Carbonate, VC), 카테콜 카보네이트(Catechol Carbonate, CC), 플루오로 에틸렌 카보네이트(Fluoro Ethylene Carbonate, FEC), 또는 비닐 에틸렌 카보네이트(Vinyl Ethylene Carbonate, VEC)일 수 있고, 상기 고리형 황계 화합물은 프로판 설톤(Propane Sultone, PS) 또는 글리콜 설파이트(Glycol Sulfite, GS)일 수 있으며, 상기 니트릴계 화합물은 숙시노니트릴(Succinonitrile, SN) 또는 아디포니트릴(Adiponitrile, AN)일 수 있다.According to an embodiment of the present invention, the cyclic carbonate-based compound is vinylene carbonate (Vinylene Carbonate, VC), catechol carbonate (Catechol Carbonate, CC), fluoroethylene carbonate (Fluoro Ethylene Carbonate, FEC), or vinyl It may be ethylene carbonate (Vinyl Ethylene Carbonate, VEC), the cyclic sulfur-based compound may be propane sultone (PS) or glycol sulfite (Glycol Sulfite, GS), and the nitrile-based compound is succinonitrile ( Succinonitrile, SN) or adiponitrile (AN).
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 비닐렌 카보네이트, 플루오로 에틸렌 카보네이트, 또는 비닐 에틸렌 카보네이트일 수 있고, 이 경우 음극 활물질로 탄소계 재료를 이용하면서 전고체 전지에 있어서 우수한 충방전 용량 및 효율을 달성할 수 있는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive may be vinylene carbonate, fluoroethylene carbonate, or vinyl ethylene carbonate, and in this case, excellent charge/discharge capacity in an all-solid-state battery while using a carbon-based material as an anode active material And there is an effect that can achieve efficiency.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층에 포함되는 전해질 첨가제는 상기 고체 고분자 전해질 전구체 조성물로부터 유래된 것일 수 있다. 구체적인 예로, 상기 전해질 첨가제는 음극 활물질 및 제1 고체 고분자 전해질 전구체 조성물로부터 음극 활물질층의 형성 시에는 포함되지 않고, 전고체 전지의 제조 후, 상기 고체 고분자 전해질에 포함된 전해질 첨가제가 상기 음극 활물질층에 함침되어 최종적으로 전고체 전지용 음극에 포함되는 것일 수 있다. 따라서, 상기 음극 활물질층 및 상기 고체 고분자 전해질에 포함된 전해질 첨가제는 서로 동일한 것일 수 있다.According to an embodiment of the present invention, the electrolyte additive included in the negative electrode active material layer may be derived from the solid polymer electrolyte precursor composition. As a specific example, the electrolyte additive is not included in the formation of the anode active material layer from the anode active material and the first solid polymer electrolyte precursor composition, and the electrolyte additive included in the solid polymer electrolyte is added to the anode active material layer after manufacturing the all-solid-state battery. It may be impregnated with and finally included in the negative electrode for an all-solid-state battery. Accordingly, the anode active material layer and the electrolyte additive included in the solid polymer electrolyte may be identical to each other.
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 전해질 첨가제를 제외한 음극 활물질층의 구성성분의 전체 함량 100 중량부에 대하여, 0.01 중량부 내지 5 중량부, 0.01 중량부 내지 1 중량부, 또는 0.01 중량부 내지 0.1 중량부로 포함될 수 있고, 이 범위 내에서 전고체 전지의 고체 특성은 유지하면서도, 충방전 용량 및 효율을 향상시키는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive is 0.01 parts by weight to 5 parts by weight, 0.01 parts by weight to 1 parts by weight, or 0.01 with respect to 100 parts by weight of the total content of the components of the negative electrode active material layer excluding the electrolyte additive. It may be included in an amount of from 0.1 parts by weight to 0.1 parts by weight, and while maintaining the solid characteristics of the all-solid-state battery within this range, there is an effect of improving the charge/discharge capacity and efficiency.
본 발명의 일 실시예에 따르면, 상기 전고체 전지용 음극은 전고체 전지에 이용되는 음극이기 때문에, 용매 등과 같은 액체를 포함하지 않고, 포함하더라도 전고체 전지의 고체 특성을 유지하기 위해 극히 일부로 포함할 수 있다. 만일, 음극이 액체 전해질로부터 유래된 용매 등과 같은 액체에 함침되어 있다면, 전지의 사용 환경에 따른 온도 변화, 특히 고온에서 상기 용매가 증발하는 문제가 발생할 수 있고, 이에 따라 결국 액체 전해질을 이용하는 액체 전해질 이차 전지와 같이, 증발된 액체 전해질에 의해 전지의 팽창을 유발할 수 있는 문제가 있다.According to an embodiment of the present invention, since the anode for an all-solid-state battery is an anode used for an all-solid-state battery, it does not contain a liquid such as a solvent, and even if it is included, it may be included in a very small part in order to maintain the solid characteristics of the all-solid-state battery. can If the negative electrode is impregnated in a liquid such as a solvent derived from a liquid electrolyte, a temperature change according to the usage environment of the battery, particularly, a problem of evaporating the solvent at a high temperature may occur, and consequently, a liquid electrolyte using the liquid electrolyte As in a secondary battery, there is a problem that may cause the battery to expand due to the evaporated liquid electrolyte.
전고체 전지용 양극Positive electrode for all-solid-state battery
본 발명은 전고체 전지용 양극을 제공한다.The present invention provides a positive electrode for an all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 전고체 전지용 양극은 집전체, 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질을 포함하는 것일 수 있다.According to an embodiment of the present invention, the positive electrode for an all-solid-state battery may include a current collector and a positive electrode active material layer formed on at least one surface of the current collector, and the positive electrode active material layer may include a positive electrode active material.
또한, 본 발명의 일 실시예에 따르면, 상기 전고체 전지용 양극은 집전체, 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질 및 제2 고체 고분자 전해질을 포함하는 전고제 전지용 복합 양극일 수 있다.In addition, according to an embodiment of the present invention, the positive electrode for an all-solid-state battery includes a current collector and a positive electrode active material layer formed on at least one surface of the current collector, and the positive electrode active material layer includes a positive electrode active material and a second solid polymer electrolyte. It may be a composite positive electrode for an all-solid-state battery including.
본 발명의 일 실시예에 따르면, 상기 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 표면이 탄소, 니켈, 티탄, 은 등으로 표면처리된 구리 또는 스테인레스 스틸, 또는 알루미늄-카드뮴 합금일 수 있다. 또한, 상기 집전체는 앵커 효과를 통하여 집전체와 양극 활물질층의 결합력을 향상시키기 위해 표면 조도화된 것일 수 있다. 또한, 상기 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 또는 부직포체 등의 형태일 수 있다.According to an embodiment of the present invention, the current collector is copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, etc., or aluminum-cadmium It may be an alloy. In addition, the current collector may be surface roughened in order to improve the bonding force between the current collector and the positive electrode active material layer through an anchor effect. In addition, the current collector may be in the form of a film, a sheet, a foil, a net, a porous body, a foam body, or a nonwoven body.
본 발명의 일 실시예에 따르면, 상기 집전체의 적어도 일면에 형성된 양극 활물질층은 양극 활물질이 바인더에 의해 양극 활물질층 내에 분산된 형태로 존재하는 것일 수 있다. 이 때, 상기 양극 활물질은 복수 개의 양극 활물질 입자일 수 있다. 구체적인 예로, 상기 바인더는 양극 활물질층 내에서 복수 개의 양극 활물질 입자를 분산상으로 포함하는 연속상의 형태로 존재할 수 있다.According to an embodiment of the present invention, the positive active material layer formed on at least one surface of the current collector may exist in a form in which the positive active material is dispersed in the positive electrode active material layer by a binder. In this case, the positive active material may be a plurality of positive active material particles. As a specific example, the binder may exist in the form of a continuous phase including a plurality of positive active material particles as a dispersed phase in the positive electrode active material layer.
또한, 본 발명의 일 실시예에 따르면, 상기 집전체의 적어도 일면에 형성된 양극 활물질층은 양극 활물질 및 제2 고체 고분자 전해질이 양극 활물질층 내에 서로 혼합되어 분산된 형태로 존재하는 것일 수 있다. 이 때, 상기 양극 활물질은 복수 개의 양극 활물질 입자일 수 있다. 구체적인 예로, 상기 제2 고체 고분자 전해질은 양극 활물질층 내에서 복수 개의 양극 활물질 입자를 분산상으로 포함하는 연속상의 형태로 존재할 수 있다. 다른 구체적인 예로, 상기 제2 고체 고분자 전해질은 양극 활물질층 내에서 복수 개의 양극 활물질 입자에 의해 형성된 공극 사이에서 복수 개의 양극 활물질 입자의 전부 또는 일부를 피복하고 있는 형태로 존재할 수 있다.In addition, according to an embodiment of the present invention, the positive active material layer formed on at least one surface of the current collector may exist in a dispersed form in which the positive active material and the second solid polymer electrolyte are mixed with each other in the positive active material layer. In this case, the positive active material may be a plurality of positive active material particles. As a specific example, the second solid polymer electrolyte may exist in the form of a continuous phase including a plurality of positive electrode active material particles as a dispersed phase in the positive electrode active material layer. As another specific example, the second solid polymer electrolyte may be present in the form of covering all or part of the plurality of positive active material particles between pores formed by the plurality of positive active material particles in the positive electrode active material layer.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 리튬과 인터칼레이션 및 디인터칼레이션이 가능한 리튬 금속 산화물일 수 있고, 구체적인 예로 상기 리튬 금속 산화물은 코발트, 망간, 니켈 및 알루미늄으로 이루어진 군으로부터 선택된 1종 이상의 금속을 포함하는 리튬 금속 산화물일 수 있으며, 보다 구체적인 예로 상기 리튬 금속 산화물은 4V 급의 고전압을 나타낼 수 있는 LiCoaM1bM2cO2(M1 및 M2는 각각 독립적으로 Ni, Mn 또는 Al이되, 서로 상이하고, 0.05≤a≤1.0, 0≤b≤0.95, 0≤c≤0.95, a+b+c=1이다.)일 수 있다.According to an embodiment of the present invention, the positive active material may be a lithium metal oxide capable of intercalation and deintercalation with lithium, and as a specific example, the lithium metal oxide is selected from the group consisting of cobalt, manganese, nickel and aluminum. It may be a lithium metal oxide including one or more selected metals, and as a more specific example, the lithium metal oxide is LiCo a M1 b M2 c O 2 capable of exhibiting a high voltage of 4V class (M1 and M2 are each independently Ni, Mn or Al, but different from each other, and 0.05≤a≤1.0, 0≤b≤0.95, 0≤c≤0.95, a+b+c=1).
본 발명의 일 실시예에 따르면, 상기 리튬 금속 산화물은 LiCoO2, LiNi0.8Mn0.1Co0.1O2, LiNi0.6Mn0.2Co0.2O2 및 LiNi0.8Co0.15Al0.05O2로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 전고체 전지가 고전압을 나타낼 수 있다.According to an embodiment of the present invention, the lithium metal oxide is one selected from the group consisting of LiCoO 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , and LiNi 0.8 Co 0.15 Al 0.05 O 2 . or more, and in this case, the all-solid-state battery may exhibit a high voltage.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 양극 활물질층의 구성성분의 전체 함량에 대하여, 50 중량% 내지 90 중량%, 55 중량% 내지 85 중량%, 또는 60 중량% 내지 80 중량%로 포함될 수 있고, 이 범위 내에서 전고체 전지의 충방전 용량 및 효율이 우수한 효과가 있다.According to an embodiment of the present invention, the positive active material is 50% to 90% by weight, 55% to 85% by weight, or 60% to 80% by weight based on the total content of the components of the positive active material layer. It may be included, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
본 발명의 일 실시예에 따르면, 상기 양극 활물질층은 상기 양극 활물질을 양극 활물질층에 결착시키기 위한 바인더를 포함할 수 있다. 상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR) 및 불소 고무 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.According to an embodiment of the present invention, the positive active material layer may include a binder for binding the positive active material to the positive active material layer. The binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethyl methacrylate, polyvinyl alcohol, Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, It may be at least one selected from the group consisting of styrene butyrene rubber (SBR) and fluororubber.
본 발명의 일 실시예에 따르면, 상기 바인더는 양극 활물질층의 구성성분의 전체 함량에 대하여, 1 중량% 내지 40 중량%, 10 중량% 내지 35 중량%, 또는 15 중량% 내지 25 중량%로 포함될 수 있고, 이 범위 내에서 양극 활물질의 결착력이 우수한 효과가 있다.According to an embodiment of the present invention, the binder may be included in an amount of 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt%, based on the total content of the components of the positive electrode active material layer. And within this range, there is an excellent effect of binding force of the positive electrode active material.
본 발명의 일 실시예에 따르면, 상기 제2 고체 고분자 전해질은 바인더, 가소제 및 리튬염을 포함하는 것일 수 있다. 구체적인 예로, 상기 제2 고체 고분자 전해질은 바인더, 가소제 및 리튬염을 포함하는 제2 고체 고분자 전해질 전구체 조성물을 양극 활물질과 혼합하여 양극 활물질층을 형성할 때, 제2 고체 고분자 전해질 전구체 조성물로부터 형성된 것일 수 있다.According to an embodiment of the present invention, the second solid polymer electrolyte may include a binder, a plasticizer, and a lithium salt. As a specific example, the second solid polymer electrolyte may be formed from the second solid polymer electrolyte precursor composition when the cathode active material layer is formed by mixing a second solid polymer electrolyte precursor composition including a binder, a plasticizer and a lithium salt with a cathode active material. can
본 발명의 일 실시예에 따르면, 상기 제2 고체 고분자 전해질은 양극 활물질층의 구성성분의 전체 함량에 대하여, 1 중량% 내지 40 중량%, 10 중량% 내지 35 중량%, 또는 15 중량% 내지 25 중량%로 포함될 수 있고, 이 범위 내에서 전고체 전지의 충방전 용량 및 효율이 우수한 효과가 있다.According to an embodiment of the present invention, the second solid polymer electrolyte is 1 wt% to 40 wt%, 10 wt% to 35 wt%, or 15 wt% to 25 wt% based on the total content of the components of the positive electrode active material layer It may be included in weight %, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
본 발명의 일 실시예에 따르면, 상기 바인더는 제2 고체 고분자 전해질은 물론, 양극 활물질을 양극 활물질층에서 서로 결착시키기 위한 것으로, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트, 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR) 및 불소 고무 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 폴리비닐리덴플루오라이드일 수 있다.According to an embodiment of the present invention, the binder is for binding the positive active material as well as the second solid polymer electrolyte to each other in the positive active material layer, and is a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HEP), polyvinylidenefluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl blood It may be at least one selected from the group consisting of rolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butyrene rubber (SBR), and fluororubber. And, as a specific example, it may be polyvinylidene fluoride.
본 발명의 일 실시예에 따르면, 상기 바인더는 제2 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 40 중량% 내지 80 중량%, 45 중량% 내지 75 중량%, 또는 50 중량% 내지 70 중량%로 포함될 수 있고, 제2 고체 고분자 전해질 전구체 조성물로부터 형성된 제2 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 제2 고체 고분자 전해질 및 양극 활물질의 결착력이 우수한 효과가 있다.According to an embodiment of the present invention, the binder is used in an amount of 40 wt% to 80 wt%, 45 wt% to 75 wt%, or 50 wt% to 70 wt%, based on the total content of the second solid polymer electrolyte precursor composition. It may be included, and may be included in the same amount in the second solid polymer electrolyte formed from the second solid polymer electrolyte precursor composition, and within this range, the binding force of the second solid polymer electrolyte and the positive electrode active material is excellent.
본 발명의 일 실시예에 따르면, 상기 가소제는 이온전도성 가소제일 수 있고, 제2 고체 고분자 전해질에 있어서 리튬염을 위한 매트릭스로서 이온전도성을 나타내는 폴리에테르계 가소제일 수 있다. 구체적인 예로, 상기 가소제는 폴리에틸렌글리콜 디메틸에테르, 폴리에틸렌글리콜 디에틸에테르, 폴리에틸렌글리콜 디프로필에테르, 폴리에틸렌글리콜 디부틸에테르, 폴리에틸렌글리콜 디글리시딜에테르, 폴리프로필렌글리콜 디메틸에테르, 폴리프로필렌글리콜 디글리시딜에테르, 디부틸에테르 말단의 폴리프로필렌글리콜/폴리에틸렌글리콜 공중합체 및 디부틸에테르 말단의 폴리에틸렌글리콜/폴리프로필렌글리콜/폴리에틸렌글리콜 블록 공중합체 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 구체적인 예로 폴리에틸렌글리콜 디메틸에테르일 수 있다.According to an embodiment of the present invention, the plasticizer may be an ion conductive plasticizer, and may be a polyether plasticizer exhibiting ion conductivity as a matrix for a lithium salt in the second solid polymer electrolyte. As a specific example, the plasticizer is polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol dipropyl ether, polyethylene glycol dibutyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol dimethyl ether, polypropylene glycol diglycidyl. It may be at least one selected from the group consisting of ether, dibutyl ether-terminated polypropylene glycol/polyethylene glycol copolymer, and dibutyl ether-terminated polyethylene glycol/polypropylene glycol/polyethylene glycol block copolymer, and more specifically, polyethylene glycol It may be dimethyl ether.
본 발명의 일 실시예에 따르면, 상기 가소제는 제2 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 15 중량% 내지 40 중량%, 20 중량% 내지 35 중량%, 또는 25 중량% 내지 35 중량%로 포함될 수 있고, 제2 고체 고분자 전해질 전구체 조성물로부터 형성된 제2 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 제2 고체 고분자 전해질의 이온전도도를 충분히 확보하여 전고체 전지의 충방전 용량 및 효율이 향상되는 효과가 있다.According to an embodiment of the present invention, the plasticizer is 15% to 40% by weight, 20% to 35% by weight, or 25% to 35% by weight based on the total content of the second solid polymer electrolyte precursor composition. may be included, and may be included in the same amount in the second solid polymer electrolyte formed from the second solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the second solid polymer electrolyte is sufficiently secured to determine the charge/discharge capacity of the all-solid-state battery and It has the effect of improving the efficiency.
본 발명의 일 실시예에 따르면, 상기 리튬염은 제2 고체 고분자 전해질에 있어서 리튬 이온을 전달하기 위한 매개체로서, 리튬헥사플루오로포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬헥사플루오로안티모네이트(LiSbF6), 리튬헥사플루오로아세네이트(LiAsF6), 리튬디플루오로메탄설포네이트(LiC4F9SO3), 과염소산리튬(LiClO4), 리튬알루미네이트(LiAlO2), 리튬테트라클로로알루미네이트(LiAlCl4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C2O4)2), 리튬 디플루오로(옥살레이토) 보레이트(LiBF2(C2O4)), 리튬 비스(플루오로설포닐)이미드(LiN(FSO2)2, LiFSI) 및 리튬 비스(트리플루오로메탄설포닐)이미드(LiN(CF3SO2)2, LiTFSI) 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 리튬 비스(트리플루오로메탄설포닐)이미드(LiN(CF3SO2)2, LiTFSI)일 수 있다.According to an embodiment of the present invention, the lithium salt is a medium for transferring lithium ions in the second solid polymer electrolyte, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium Hexafluoroantimonate (LiSbF 6 ), lithium hexafluoroacetonate (LiAsF 6 ), lithium difluoromethanesulfonate (LiC 4 F 9 SO 3 ), lithium perchlorate (LiClO 4 ), lithium aluminate (LiAlO) 2 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium chloride (LiCl), lithium iodide (LiI), lithium bisoxalato borate (LiB(C 2 O 4 ) 2 ), lithium difluoro (oxalato) borate (LiBF 2 (C 2 O 4 )), lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 , LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO) 2 ) 2 , and may be at least one selected from the group consisting of LiTFSI), and a specific example thereof may be lithium bis(trifluoromethanesulfonyl)imide (LiN(CF 3 SO 2 ) 2 , LiTFSI).
본 발명의 일 실시예에 따르면, 상기 리튬염은 제2 고체 고분자 전해질 전구체 조성물의 전체 함량에 대하여, 1 중량% 내지 20 중량%, 3 중량% 내지 18 중량%, 또는 5 중량% 내지 15 중량%로 포함될 수 있고, 제2 고체 고분자 전해질 전구체 조성물로부터 형성된 제2 고체 고분자 전해질 내에서도 동일한 함량으로 포함될 수 있으며, 이 범위 내에서 제2 고체 고분자 전해질의 이온전도도를 충분히 확보하여 전고체 전지의 충방전 용량 및 효율이 향상되는 효과가 있다.According to an embodiment of the present invention, the lithium salt is 1 wt% to 20 wt%, 3 wt% to 18 wt%, or 5 wt% to 15 wt%, based on the total content of the second solid polymer electrolyte precursor composition and may be included in the same amount in the second solid polymer electrolyte formed from the second solid polymer electrolyte precursor composition, and within this range, the ionic conductivity of the second solid polymer electrolyte is sufficiently secured to provide the charge/discharge capacity of the all-solid-state battery And there is an effect that the efficiency is improved.
본 발명의 일 실시예에 따르면, 상기 양극 활물질층은 도전재를 더 포함하는 것일 수 있다. 상기 도전재는 양극에 도전성을 더욱 향상시키기 위한 것으로, 천연 흑연, 인조 흑연 등과 같은 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등과 같은 카본 블랙; 탄소 섬유, 금속 섬유 등과 같은 도전성 섬유; 탄소나노튜브, 그래핀 등과 같은 탄소계 도전재; 불화 카본, 알루미늄, 니켈 분말 등과 같은 금속 분말; 산화아연, 티탄산 칼륨 등과 같은 도전성 휘스커; 산화티탄 등과 같은 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 구체적인 예로 상기 도전재는 카본 블랙 및 탄소계 도전재를 동시에 포함하는 것일 수 있고, 이 때 상기 탄소계 도전재와 카본 블랙의 혼합비는 중량을 기준으로 1:5 내지 1:60인 것일 수 있으며, 이 경우 양극 내에 단거리 및 장거리 전자 경로를 효과적으로 형성할 수 있고, 단일 성분의 도전재를 사용하는 경우보다 저율 및 고율 방전 용량이 우수한 효과가 있다.According to an embodiment of the present invention, the positive active material layer may further include a conductive material. The conductive material is to further improve the conductivity of the anode, graphite such as natural graphite, artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like; conductive fibers such as carbon fibers, metal fibers, and the like; carbon-based conductive materials such as carbon nanotubes and graphene; metal powders such as carbon fluoride, aluminum, nickel powder and the like; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; And it may be at least one selected from the group consisting of polyphenylene derivatives. As a specific example, the conductive material may include carbon black and a carbon-based conductive material at the same time, and in this case, a mixing ratio of the carbon-based conductive material and carbon black may be 1:5 to 1:60 based on weight, In this case, short-distance and long-distance electron paths can be effectively formed in the anode, and low-rate and high-rate discharge capacity are excellent compared to the case of using a single-component conductive material.
본 발명의 일 실시예에 따르면, 상기 도전재가 상기 양극 활물질층에 포함되는 경우, 상기 도전재는 양극 활물질층의 구성성분의 전체 함량에 대하여, 1 중량% 내지 15 중량%, 1 중량% 내지 10 중량%, 또는 5 중량% 내지 10 중량%로 포함될 수 있고, 이 범위 내에서 전고체 전지의 충방전 용량 및 효율이 우수한 효과가 있다.According to an embodiment of the present invention, when the conductive material is included in the positive electrode active material layer, the conductive material is 1% to 15% by weight, 1% to 10% by weight based on the total content of the components of the positive electrode active material layer. %, or may be included in an amount of 5 wt% to 10 wt%, and within this range, the charge/discharge capacity and efficiency of the all-solid-state battery are excellent.
본 발명의 일 실시예에 따르면, 상기 양극 활물질 및 제2 고체 고분자 전해질을 포함하는 양극 활물질층은 전해질 첨가제를 더 포함하는 것일 수 있다. 상기 전해질 첨가제는 양극 활물질층 내에서 복수 개의 양극 활물질 입자에 의해 형성된 공극 사이에 존재할 수 있다. 다른 구체적인 예로, 상기 전해질 첨가제는 상기 제2 고체 고분자 전해질 중에 분산되어 존재할 수 있고, 또는 상기 제2 고체 고분자 전해질에 의하여 형성된 3차원 망목 구조 내에 제2 고체 고분자 전해질과 상호 혼합된 형태로 존재할 수 있다.According to an embodiment of the present invention, the positive active material layer including the positive active material and the second solid polymer electrolyte may further include an electrolyte additive. The electrolyte additive may be present between the pores formed by the plurality of positive electrode active material particles in the positive electrode active material layer. As another specific example, the electrolyte additive may be present dispersed in the second solid polymer electrolyte, or may be present in a mixed form with the second solid polymer electrolyte in a three-dimensional network structure formed by the second solid polymer electrolyte. .
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 제2 고체 고분자 전해질의 이온전도도를 더욱 향상시키기 위한 것으로, 고리형 카보네이트계 화합물, 고리형 황계 화합물 및 니트릴계 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 본 발명에 따라, 전고체 전지용 양극이 양극 활물질층 내에 전해질 첨가제를 포함하는 경우, 전고체 전지에 있어서 더욱 우수한 충방전 용량 및 효율을 달성할 수 있는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive is to further improve the ionic conductivity of the second solid polymer electrolyte, and is at least one selected from the group consisting of a cyclic carbonate-based compound, a cyclic sulfur-based compound, and a nitrile-based compound. can According to the present invention, when the positive electrode for an all-solid-state battery includes an electrolyte additive in the positive electrode active material layer, there is an effect of achieving more excellent charge/discharge capacity and efficiency in the all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 고리형 카보네이트계 화합물은 비닐렌 카보네이트(Vinylene Carbonate, VC), 카테콜 카보네이트(Catechol Carbonate, CC), 플루오로 에틸렌 카보네이트(Fluoro Ethylene Carbonate, FEC), 또는 비닐 에틸렌 카보네이트(Vinyl Ethylene Carbonate, VEC)일 수 있고, 상기 고리형 황계 화합물은 프로판 설톤(Propane Sultone, PS) 또는 글리콜 설파이트(Glycol Sulfite, GS)일 수 있으며, 상기 니트릴계 화합물은 숙시노니트릴(Succinonitrile, SN) 또는 아디포니트릴(Adiponitrile, AN)일 수 있다.According to an embodiment of the present invention, the cyclic carbonate-based compound is vinylene carbonate (Vinylene Carbonate, VC), catechol carbonate (Catechol Carbonate, CC), fluoroethylene carbonate (Fluoro Ethylene Carbonate, FEC), or vinyl It may be ethylene carbonate (Vinyl Ethylene Carbonate, VEC), the cyclic sulfur-based compound may be propane sultone (PS) or glycol sulfite (Glycol Sulfite, GS), and the nitrile-based compound is succinonitrile ( Succinonitrile, SN) or adiponitrile (AN).
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 비닐렌 카보네이트, 플루오로 에틸렌 카보네이트, 또는 비닐 에틸렌 카보네이트일 수 있고, 이 경우 전고체 전지에 있어서 더욱 우수한 충방전 용량 및 효율을 달성할 수 있는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive may be vinylene carbonate, fluoroethylene carbonate, or vinyl ethylene carbonate, and in this case, the effect of achieving better charge/discharge capacity and efficiency in an all-solid-state battery there is
본 발명의 일 실시예에 따르면, 상기 양극 활물질층에 포함되는 전해질 첨가제는 상기 고체 고분자 전해질 전구체 조성물로부터 유래된 것일 수 있다. 구체적인 예로, 상기 전해질 첨가제는 양극 활물질 및 제2 고체 고분자 전해질 전구체 조성물로부터 양극 활물질층의 형성 시에는 포함되지 않고, 전고체 전지의 제조 후, 상기 고체 고분자 전해질에 포함된 전해질 첨가제가 상기 양극 활물질층에 함침되어 최종적으로 전고체 전지용 양극에 포함되는 것일 수 있다. 따라서, 상기 양극 활물질층 및 상기 제2 고체 고분자 전해질에 포함된 전해질 첨가제는 서로 동일한 것일 수 있다.According to an embodiment of the present invention, the electrolyte additive included in the positive electrode active material layer may be derived from the solid polymer electrolyte precursor composition. As a specific example, the electrolyte additive is not included in the formation of the positive electrode active material layer from the positive electrode active material and the second solid polymer electrolyte precursor composition, and the electrolyte additive included in the solid polymer electrolyte is added to the positive electrode active material layer after the all-solid-state battery is manufactured. It may be impregnated with and finally included in the positive electrode for an all-solid-state battery. Accordingly, the electrolyte additives included in the positive electrode active material layer and the second solid polymer electrolyte may be identical to each other.
본 발명의 일 실시예에 따르면, 상기 전해질 첨가제는 전해질 첨가제를 제외한 양극 활물질층의 구성성분의 전체 함량 100 중량부에 대하여, 0.01 중량부 내지 5 중량부, 0.01 중량부 내지 1 중량부, 또는 0.01 중량부 내지 0.1 중량부로 포함될 수 있고, 이 범위 내에서 전고체 전지의 고체 특성은 유지하면서도, 충방전 용량 및 효율을 향상시키는 효과가 있다.According to an embodiment of the present invention, the electrolyte additive is 0.01 parts by weight to 5 parts by weight, 0.01 parts by weight to 1 parts by weight, or 0.01 with respect to 100 parts by weight of the total content of the components of the positive electrode active material layer excluding the electrolyte additive. It may be included in an amount of from 0.1 parts by weight to 0.1 parts by weight, and while maintaining the solid characteristics of the all-solid-state battery within this range, there is an effect of improving the charge/discharge capacity and efficiency.
본 발명의 일 실시예에 따르면, 상기 전고체 전지용 양극은 전고체 전지에 이용되는 양극이기 때문에, 용매 등과 같은 액체를 포함하지 않고, 포함하더라도 전고체 전지의 고체 특성을 유지하기 위해 극히 일부로 포함할 수 있다.According to an embodiment of the present invention, since the positive electrode for an all-solid-state battery is a positive electrode used in an all-solid-state battery, it does not contain a liquid such as a solvent, and even if it is included, it may be included in a very small part in order to maintain the solid characteristics of the all-solid-state battery. can
전고체 전지 및 이의 제조방법All-solid-state battery and manufacturing method thereof
본 발명에 따른 전고체 전지는 음극, 양극 및 상기 음극 및 상기 양극 사이에 개재된 고체 고분자 전해질을 포함하는 것일 수 있고, 여기서 상기 고체 고분자 전해질은 앞서 기재한 고체 고분자 전해질 전구체 조성물로부터 형성된 고체 고분자 전해질일 수 있다.The all-solid-state battery according to the present invention may include a negative electrode, a positive electrode, and a solid polymer electrolyte interposed between the negative electrode and the positive electrode, wherein the solid polymer electrolyte is a solid polymer electrolyte formed from the solid polymer electrolyte precursor composition described above. can be
본 발명의 일 실시예에 따르면, 상기 전고체 전지는 상기 고체 고분자 전해질을 포함함으로써, 전고체인 상태로 존재할 수 있고, 고체 고분자 전해질은 전고체 전지 내에서 전해질이면서, 음극과 양극을 분리하는 분리막의 역할을 동시에 수행할 수 있다.According to an embodiment of the present invention, the all-solid-state battery can exist in an all-solid state by including the solid polymer electrolyte, and the solid polymer electrolyte is an electrolyte in the all-solid-state battery and a separator for separating the anode and the cathode. roles can be performed at the same time.
본 발명의 일 실시예에 따르면, 상기 음극 및 양극은 앞서 기재한 전고체 전지용 음극 및 양극일 수 있다. 특히, 본 발명에 따른 전고체 전지는 상기 고체 고분자 전해질을 포함함으로써, 가소제를 포함하면서도 산화 전압 안정성의 저하를 방지하여 고전압 양극재를 이용한 양극을 이용하는 것이 가능하다.According to an embodiment of the present invention, the negative electrode and the positive electrode may be the negative electrode and the positive electrode for an all-solid-state battery described above. In particular, since the all-solid-state battery according to the present invention includes the solid polymer electrolyte, it is possible to use a positive electrode using a high-voltage positive electrode material by preventing a decrease in oxidation voltage stability while including a plasticizer.
즉, 본 발명의 일 실시예에 따르면, 상기 전고체 전지는 음극, 양극 및 상기 음극 및 상기 양극 사이에 개재된 고체 고분자 전해질을 포함하고, 상기 음극은 집전체, 및 상기 집전체의 적어도 일면에 형성된 음극 활물질층을 포함하고, 상기 음극 활물질층은 음극 활물질을 포함하며, 상기 음극 활물질은 탄소계 재료이고, 상기 양극은 집전체, 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질을 포함하며, 상기 양극 활물질은 LiCoaM1bM2cO2(M1 및 M2는 각각 독립적으로 Ni, Mn 또는 Al이되, 서로 상이하고, 0.05≤a≤1.0, 0≤b≤0.95, 0≤c≤0.95, a+b+c=1이다.)이고, 상기 고체 고분자 전해질은 상기 화학식 1로 표시되는 화합물 단위를 포함하는 가교성 중합체; 가소제 및 리튬염을 포함하는 것일 수 있으며, 이 경우 전고체 전지의 사이클 수명과 용량 특성이 우수한 효과가 있다.That is, according to an embodiment of the present invention, the all-solid-state battery includes a negative electrode, a positive electrode, and a solid polymer electrolyte interposed between the negative electrode and the positive electrode, and the negative electrode includes a current collector and at least one surface of the current collector. a negative active material layer formed, wherein the negative active material layer includes a negative active material, the negative active material is a carbon-based material, the positive electrode includes a current collector, and a positive electrode active material layer formed on at least one surface of the current collector, The positive active material layer includes a positive active material, and the positive active material is LiCo a M1 b M2 c O 2 (M1 and M2 are each independently Ni, Mn, or Al, but are different from each other, and 0.05≤a≤1.0, 0≤ b≤0.95, 0≤c≤0.95, and a+b+c=1), and the solid polymer electrolyte may include a cross-linkable polymer including a compound unit represented by Formula 1; It may include a plasticizer and a lithium salt, and in this case, the cycle life and capacity characteristics of the all-solid-state battery are excellent.
또한, 본 발명은 전고체 전지 제조방법을 제공한다.In addition, the present invention provides a method for manufacturing an all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 전고체 전지 제조방법은 음극을 준비하는 단계(S1); 상기 음극 상에, 고체 고분자 전해질 전구체 조성물을 도포하는 단계(S2); 도포된 고체 고분자 전해질 전구체 조성물 상에 양극을 적층하는 단계(S3); 및 상기 양극이 적층된 전극 조립체를 열 경화시키는 단계(S4)를 포함하는 것일 수 있다.According to an embodiment of the present invention, the all-solid-state battery manufacturing method includes the steps of preparing a negative electrode (S1); applying a solid polymer electrolyte precursor composition on the negative electrode (S2); Laminating a positive electrode on the applied solid polymer electrolyte precursor composition (S3); and thermally curing the electrode assembly on which the positive electrode is stacked (S4).
본 발명의 일 실시예에 따르면, 상기 음극을 준비하는 단계(S1)는 음극 활물질, 제1 고체 고분자 전해질 및 용매를 혼합하여 음극 슬러리를 제조하는 단계(S10); 및 집전체 상에, 상기 음극 슬러리를 도포하고, 건조하여 음극 활물질층을 형성하는 단계(S20)를 포함하여 실시될 수 있다.According to an embodiment of the present invention, the step of preparing the negative electrode (S1) includes preparing a negative electrode slurry by mixing the negative electrode active material, the first solid polymer electrolyte and the solvent (S10); and coating the negative electrode slurry on the current collector and drying it to form a negative electrode active material layer (S20).
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 음극 활물질층을 형성하기 위한 음극 슬러리를 제조하는 단계로서, 음극 활물질, 제1 고체 고분자 전해질 및 용매를 혼합하여 실시될 수 있다.According to an embodiment of the present invention, step (S10) is a step of preparing a negative electrode slurry for forming the negative electrode active material layer, and may be performed by mixing the negative electrode active material, the first solid polymer electrolyte, and the solvent.
본 발명의 일 실시예에 따르면, 상기 음극 활물질 및 제1 고체 고분자 전해질은 상기 전고체 전지용 음극에서 기재한 음극 활물질 및 제1 고체 고분자 전해질과 동일한 것일 수 있다. 여기서, 상기 제1 고체 고분자 전해질은 앞서 기재한 바와 같이 제1 고체 고분자 전해질 전구체 조성물의 형태로서 음극 슬러리에 혼합될 수 있다.According to an embodiment of the present invention, the negative active material and the first solid polymer electrolyte may be the same as the negative active material and the first solid polymer electrolyte described in the negative electrode for an all-solid-state battery. Here, the first solid polymer electrolyte may be mixed into the negative electrode slurry in the form of the first solid polymer electrolyte precursor composition as described above.
본 발명의 일 실시예에 따르면, 상기 용매는 에탄올, 메탄올, 프로판올, 부탄올, 이소프로필알코올, 디메틸포름아미드(Dimethyformamide, DMF), 아세톤, 테트라하이드로퓨란(Tetrahydrofuran, THF), 톨루엔, 디메틸아세트아미드 및 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP)으로 이루어진 군으로부터 선택된 1종 이상의 유기 용매일 수 있고, 구체적인 예로 N-메틸-2-피롤리돈일 수 있다.According to an embodiment of the present invention, the solvent is ethanol, methanol, propanol, butanol, isopropyl alcohol, dimethylformamide (DMF), acetone, tetrahydrofuran (Tetrahydrofuran, THF), toluene, dimethylacetamide and It may be at least one organic solvent selected from the group consisting of N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), and a specific example may be N-methyl-2-pyrrolidone.
본 발명의 일 실시예에 따르면, 상기 음극 슬러리의 제조 시, 음극 활물질의 로딩 밀도는 1.0 mg/cm2 내지 10.0 mg/cm2 일 수 있고, 이 범위 내에서 전고체 전지의 충분한 충방전 용량 및 효율을 확보할 수 있는 효과가 있다.According to an embodiment of the present invention, when preparing the negative electrode slurry, the loading density of the negative electrode active material may be 1.0 mg/cm 2 to 10.0 mg/cm 2 , and within this range, sufficient charge/discharge capacity of the solid-state battery and It has the effect of securing efficiency.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계는 집전체 상에, 상기 (S10) 단계에서 제조된 음극 슬러리를 도포하고, 건조하여 음극 활물질층을 형성하는 단계로서, 전해질 첨가제를 포함하지 않는 전고체 전지용 예비 음극을 제조하는 단계일 수 있다. 여기서, 상기 집전체는 상기 전고체 전지용 음극에서 기재한 집전체와 동일한 것일 수 있다.According to an embodiment of the present invention, the step (S20) is a step of forming the negative electrode active material layer by applying the negative electrode slurry prepared in the step (S10) on the current collector and drying it, and does not include an electrolyte additive. It may be a step of preparing a preliminary negative electrode for an all-solid-state battery. Here, the current collector may be the same as the current collector described in the negative electrode for an all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 집전체 상에, 음극 슬러리가 도포되고 건조되는 단계를 통해, 음극 활물질층이 형성됨과 동시에, 상기 (S10) 단계에서 음극 슬러리에 혼합된 제1 고체 고분자 전해질 전구체 조성물로부터 제1 고체 고분자 전해질이 형성될 수 있다.According to an embodiment of the present invention, the negative electrode active material layer is formed through the step of applying and drying the negative electrode slurry on the current collector, and at the same time, the first solid polymer electrolyte mixed with the negative electrode slurry in the step (S10). A first solid polymer electrolyte may be formed from the precursor composition.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계는 상기 (S1) 단계에서 준비된 음극, 구체적으로 상기 (S20) 단계에서 형성된 음극 활물질층 상에, 제2 고체 고분자 전해질 전구체 조성물을 도포하는 단계이고, 상기 (S2) 단계에서 고체 고분자 전해질 전구체 조성물로부터 고체 고분자 전해질이 형성되는 것은 아닐 수 있다.According to an embodiment of the present invention, the step (S2) is a step of applying a second solid polymer electrolyte precursor composition on the negative electrode prepared in the step (S1), specifically, the negative electrode active material layer formed in the step (S20). and the solid polymer electrolyte may not be formed from the solid polymer electrolyte precursor composition in step (S2).
본 발명의 일 실시예에 따르면, 상기 고체 고분자 전해질 전구체 조성물은 상기 고체 고분자 전해질 전구체 조성물에서 기재한 것과 동일하게, 전해질 첨가제를 포함하는 것일 수 있고, 또한, 상기 제2 고체 고분자 전해질 전구체 조성물은, 이후 실시되는 (S4) 단계에서 열 경화에 의한 가교제의 직접 가교 반응을 개시하기 위한 열 경화 개시제를 더 포함할 수 있다.According to an embodiment of the present invention, the solid polymer electrolyte precursor composition may include an electrolyte additive in the same manner as described in the solid polymer electrolyte precursor composition, and the second solid polymer electrolyte precursor composition comprises: A thermal curing initiator for initiating a direct crosslinking reaction of the crosslinking agent by thermal curing in step (S4) performed later may be further included.
본 발명의 일 실시예에 따르면, 상기 열 경화 개시제는 가교제의 가교 가능한 관능기로부터 가교 반응을 개시하기 위한 라디칼을 제공할 수 있는 퍼옥시드계 개시제 또는 아조계 개시제일 수 있다. 구체적인 예로 상기 열 경화 개시제는 벤조일 퍼옥시드, 디-tert-부틸 퍼옥시드, 디-tert-아밀 퍼옥시드, a-큐밀 퍼옥시네오데카노에이트, a-큐밀 퍼옥시네오펩타노에이트, t-아밀 퍼옥시네오데카노에이트, 디-(2-에틸헥실) 퍼옥시-디카보네이트, t-아밀 퍼옥시피발레이트, t-부틸 퍼옥시피발레이트, 2,5-디메틸-2,5 비스(2-에틸-헥사노일퍼옥시) 헥산, 디벤조일 퍼옥시드, t-아밀 퍼옥시-2-에틸헥사노에이트, t-부틸 퍼옥시-2-에틸헥사노에이트, 1,1-디-(t-아밀퍼옥시) 시클로헥산, 1,1-디-(t-부틸퍼옥시) 3,3,5-트리메틸 시클로헥산, 1,1-디-(t-부틸퍼옥시) 시클로헥산, t-부틸 퍼옥시아세테이트, t-부틸 퍼옥시벤조에이트, t-아밀 퍼옥시벤조에이트, 에틸 3,3-디-(t-아밀퍼옥시) 부티레이트 및 에틸 3,3-디-(t-부틸퍼옥시) 부티레이트 및 디큐밀 퍼옥시드 등의 퍼옥시드계 개시제; 또는 1,1'-아조비스(시클로헥산카보니트릴), 2,2'-아조비스(2-메틸프로피온아미딘) 디히드로클로라이드 및 4,4'-아조비스(4-시아노발레르산) 등의 아조계 개시제로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 구체적인 예로 t-부틸 퍼옥시피발레이트(t-butyl peroxypivalate, t-BPP)일 수 있다.According to an embodiment of the present invention, the thermal curing initiator may be a peroxide-based initiator or an azo-based initiator capable of providing radicals for initiating a crosslinking reaction from a crosslinkable functional group of the crosslinking agent. Specific examples of the thermal curing initiator include benzoyl peroxide, di-tert-butyl peroxide, di-tert-amyl peroxide, a-cumyl peroxyneodecanoate, a-cumyl peroxyneopeptanoate, t-amyl Peroxyneodecanoate, di-(2-ethylhexyl) peroxy-dicarbonate, t-amyl peroxypivalate, t-butyl peroxypivalate, 2,5-dimethyl-2,5 bis(2- Ethyl-hexanoylperoxy) hexane, dibenzoyl peroxide, t-amyl peroxy-2-ethylhexanoate, t-butyl peroxy-2-ethylhexanoate, 1,1-di-(t-amyl) peroxy) cyclohexane, 1,1-di-(t-butylperoxy) 3,3,5-trimethyl cyclohexane, 1,1-di-(t-butylperoxy) cyclohexane, t-butyl peroxy acetate, t-butyl peroxybenzoate, t-amyl peroxybenzoate, ethyl 3,3-di-(t-amylperoxy) butyrate and ethyl 3,3-di-(t-butylperoxy) butyrate and peroxide-based initiators such as dicumyl peroxide; or 1,1'-azobis(cyclohexanecarbonitrile), 2,2'-azobis(2-methylpropionamidine) dihydrochloride and 4,4'-azobis(4-cyanovaleric acid), etc. It may be at least one selected from the group consisting of azo-based initiators, and a more specific example may be t-butyl peroxypivalate (t-BPP).
본 발명의 일 실시예에 따르면, 상기 (S3) 단계는 상기 (S2) 단계에서 도포된 고체 고분자 전해질 전구체 조성물 상에 양극을 적층하는 단계로서, 상기 (S3) 단계에 의해 '음극/고체 고분자 전해질 전구체 조성물/양극'의 적층 구조를 갖는 전극 조립체가 형성될 수 있다.According to an embodiment of the present invention, the step (S3) is a step of laminating a positive electrode on the solid polymer electrolyte precursor composition applied in the step (S2), and the 'cathode/solid polymer electrolyte An electrode assembly having a stacked structure of precursor composition/anode' may be formed.
본 발명의 일 실시예에 따르면, 상기 양극은 상기 (S1) 단계, 구체적으로 상기 (S10) 및 (S20) 단계와는 시간의 전후와 관계없이 개별적으로 제조된 양극일 수 있다. 구체적인 예로, 상기 양극은 집전체 상에 양극 활물질을 포함하는 양극 슬러리를 도포하고, 건조하여 양극 활물질층을 형성하여 제조된 것일 수 있다. 보다 구체적인 예로, 상기 양극은 양극 활물질, 제2 고체 고분자 전해질 및 용매를 혼합하여 양극 슬러리를 제조하는 단계(S100) 및 집전체 상에, 상기 양극 슬러리를 도포하고, 건조하여 양극 활물질층을 형성하는 단계(S200)로부터 제조된 것일 수 있다.According to an embodiment of the present invention, the positive electrode may be a positive electrode manufactured independently of the time before or after the step (S1), specifically, the steps (S10) and (S20). As a specific example, the positive electrode may be prepared by coating a positive electrode slurry containing a positive electrode active material on a current collector and drying the positive electrode active material layer to form a positive electrode active material layer. As a more specific example, the positive electrode is prepared by mixing a positive electrode active material, a second solid polymer electrolyte, and a solvent to prepare a positive electrode slurry (S100) and applying the positive electrode slurry on a current collector and drying to form a positive electrode active material layer It may be the one prepared in step S200.
본 발명의 일 실시예에 따르면, 상기 (S100) 단계는 양극 활물질층을 형성하기 위한 양극 슬러리를 제조하는 단계로서, 양극 활물질, 제2 고체 고분자 전해질 및 용매를 혼합하여 실시될 수 있다.According to an embodiment of the present invention, step (S100) is a step of preparing a cathode slurry for forming a cathode active material layer, and may be performed by mixing a cathode active material, a second solid polymer electrolyte, and a solvent.
본 발명의 일 실시예에 따르면, 상기 양극 활물질 및 제2 고체 고분자 전해질은 상기 전고체 전지용 양극에서 기재한 양극 활물질 및 제2 고체 고분자 전해질과 동일한 것일 수 있다. 여기서, 상기 제2 고체 고분자 전해질은 앞서 기재한 바와 같이 제2 고체 고분자 전해질 전구체 조성물의 형태로서 양극 슬러리에 혼합될 수 있다.According to an embodiment of the present invention, the positive active material and the second solid polymer electrolyte may be the same as the positive active material and the second solid polymer electrolyte described in the positive electrode for an all-solid-state battery. Here, the second solid polymer electrolyte may be mixed into the positive electrode slurry in the form of a second solid polymer electrolyte precursor composition as described above.
본 발명의 일 실시예에 따르면, 상기 용매는 에탄올, 메탄올, 프로판올, 부탄올, 이소프로필알코올, 디메틸포름아미드(Dimethyformamide, DMF), 아세톤, 테트라하이드로퓨란(Tetrahydrofuran, THF), 톨루엔, 디메틸아세트아미드 및 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP)으로 이루어진 군으로부터 선택된 1종 이상의 유기 용매일 수 있고, 구체적인 예로 N-메틸-2-피롤리돈일 수 있다.According to an embodiment of the present invention, the solvent is ethanol, methanol, propanol, butanol, isopropyl alcohol, dimethylformamide (DMF), acetone, tetrahydrofuran (Tetrahydrofuran, THF), toluene, dimethylacetamide and It may be at least one organic solvent selected from the group consisting of N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), and a specific example may be N-methyl-2-pyrrolidone.
본 발명의 일 실시예에 따르면, 상기 양극 슬러리의 제조 시, 양극 활물질의 로딩 밀도는 1.0 mg/cm2 내지 10.0 mg/cm2, 3.0 mg/cm2 내지 8.0 mg/cm2, 또는 5.0 내지 6.0 mg/cm2일 수 있고, 이 범위 내에서 전고체 전지의 충분한 충방전 용량 및 효율을 확보할 수 있는 효과가 있다.According to an embodiment of the present invention, when preparing the positive electrode slurry, the loading density of the positive electrode active material is 1.0 mg/cm 2 to 10.0 mg/cm 2 , 3.0 mg/cm 2 to 8.0 mg/cm 2 , or 5.0 to 6.0 It may be mg/cm 2 , and within this range, there is an effect of securing sufficient charge/discharge capacity and efficiency of the all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 (S200) 단계는 집전체 상에, 상기 (S100) 단계에서 제조된 양극 슬러리를 도포하고, 건조하여 양극 활물질층을 형성하는 단계로서, 전해질 첨가제를 포함하지 않는 전고체 전지용 예비 양극을 제조하는 단계일 수 있다. 여기서, 상기 집전체는 상기 전고체 전지용 양극에서 기재한 집전체와 동일한 것일 수 있다.According to an embodiment of the present invention, the step (S200) is a step of applying the positive electrode slurry prepared in the step (S100) on the current collector and drying it to form a positive electrode active material layer, and does not include an electrolyte additive. It may be a step of preparing a preliminary positive electrode for an all-solid-state battery that is not used. Here, the current collector may be the same as the current collector described in the positive electrode for an all-solid-state battery.
본 발명의 일 실시예에 따르면, 상기 집전체 상에, 양극 슬러리가 도포되고 건조되는 단계를 통해, 양극 활물질층이 형성됨과 동시에, 상기 (S100) 단계에서 양극 슬러리에 혼합된 제2 고체 고분자 전해질 전구체 조성물로부터 제2 고체 고분자 전해질이 형성될 수 있다.According to an embodiment of the present invention, the cathode active material layer is formed through the step of applying and drying the cathode slurry on the current collector, and at the same time, the second solid polymer electrolyte mixed with the cathode slurry in the step (S100). A second solid polymer electrolyte may be formed from the precursor composition.
본 발명의 일 실시예에 따르면, 상기 전고체 전지 제조방법은, 상기 (S4) 단계를 실시하기에 앞서, 상기 (S3) 단계에서 양극까지 적층이 완료된 '음극/고체 고분자 전해질 전구체 조성물/양극'의 적층 구조를 갖는 전극 조립체를 밀봉하는 단계(S3-1)를 더 포함할 수 있다. 이 경우, 이어서 실시될 (S4) 단계의 열 경화시킬 때, 고체 고분자 전해질 전구체 조성물에 포함된 전해질 첨가제가 휘발되더라도 밀봉된 전극 조립체 내에 기상(gas phase)으로 잔류하게 되어 전고체 전지 내 전해질 첨가제의 함량을 일정하게 제어할 수 있는 효과가 있다.According to an embodiment of the present invention, in the all-solid-state battery manufacturing method, before the step (S4) is performed, the 'cathode/solid polymer electrolyte precursor composition/anode' in which the stacking from the step (S3) to the positive electrode is completed. It may further include the step of sealing the electrode assembly having a stacked structure (S3-1). In this case, when the subsequent thermal curing of step (S4) is performed, even if the electrolyte additive included in the solid polymer electrolyte precursor composition is volatilized, it remains as a gas phase in the sealed electrode assembly, so that the electrolyte additive in the all-solid battery There is an effect that the content can be constantly controlled.
본 발명의 일 실시예에 따르면, 상기 (S3-1) 단계의 밀봉은 전극 조립체를 전고체 전지의 외장 케이스에 수납한 후, 외장 케이스를 밀봉하여 실시될 수 있고, 이 때 상기 외장 케이스는 원통형, 각형, 파우치형 등과 같이 전지의 사용 형태에 따라 적절히 선택될 수 있다.According to an embodiment of the present invention, the sealing in step (S3-1) may be performed by accommodating the electrode assembly in the outer case of the all-solid-state battery and then sealing the outer case, in which case the outer case is cylindrical. , a square shape, a pouch type, etc. may be appropriately selected according to the type of use of the battery.
본 발명의 일 실시예에 따르면, 상기 (S4) 단계는 상기 양극이 적층된 전극 조립체를 열 경화시키는 단계로서, 이 때, 상기 고체 고분자 전해질 전구체 조성물이 열 경화에 의한 직접 가교 반응을 통하여 고체 고분자 전해질을 형성할 수 있다.According to an embodiment of the present invention, the step (S4) is a step of thermally curing the electrode assembly on which the positive electrode is stacked. In this case, the solid polymer electrolyte precursor composition is a solid polymer through a direct crosslinking reaction by thermal curing. electrolytes can be formed.
본 발명의 일 실시예에 따르면, 상기 (S4) 단계의 열 경화는 50 ℃ 내지 150 ℃, 60 ℃ 내지 140 ℃, 70 ℃ 내지 130 ℃, 80 ℃ 내지 120 ℃, 또는 80 ℃ 내지 110 ℃의 온도에서 실시될 수 있다.According to an embodiment of the present invention, the thermal curing in step (S4) is at a temperature of 50 °C to 150 °C, 60 °C to 140 °C, 70 °C to 130 °C, 80 °C to 120 °C, or 80 °C to 110 °C. can be carried out in
본 발명의 일 실시예에 따르면, 상기 (S4) 단계의 열 경화는 10분 내지 100분, 10분 내지 80분, 10분 내지 60분, 10분 내지 50분, 또는 20분 내지 40분의 시간 동안 실시될 수 있다.According to an embodiment of the present invention, the thermal curing in step (S4) is a time of 10 minutes to 100 minutes, 10 minutes to 80 minutes, 10 minutes to 60 minutes, 10 minutes to 50 minutes, or 20 minutes to 40 minutes. can be carried out during
본 발명의 전고체 전지 제조방법에 따라서 전고체 전지를 제조하는 경우, 전고체 전지 전해질에 해당하는 고체 고분자 전해질과, 전고체 전지용 음극의 음극 활물질층 및/또는 전고체 전지용 양극의 양극 활물질층에 전해질 첨가제를 효과적으로 포함시키는 것이 가능하고, 음극과 양극 사이에서 고체 고분자 전해질을 직접 가교에 의해 형성함으로써, 음극 및 양극과, 고체 고분자 전해질 사이의 계면 저항을 낮출 수 있어, 전고체 전지의 균일한 성능을 확보함과 동시에, 충방전 용량 및 효율을 향상시키는 것이 가능하게 된다.In the case of manufacturing an all-solid-state battery according to the all-solid-state battery manufacturing method of the present invention, the solid polymer electrolyte corresponding to the all-solid-state battery electrolyte, the negative electrode active material layer of the negative electrode for an all-solid-state battery and/or the positive electrode active material layer of the positive electrode for an all-solid-state battery It is possible to effectively include the electrolyte additive, and by forming a solid polymer electrolyte between the negative electrode and the positive electrode by direct crosslinking, the interfacial resistance between the negative electrode and the positive electrode and the solid polymer electrolyte can be lowered, resulting in uniform performance of the all-solid-state battery It becomes possible to improve the charging/discharging capacity and efficiency while securing the .
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein.
실시예Example
실시예 1Example 1
<고체 고분자 전해질 제조><Production of solid polymer electrolyte>
하기 화학식 1-1로 표시되는 화합물 5.9 중량%, 티올계 가교제로 펜타에리스리톨 테트라키스(3-머캅토프로피오네이트) 8.7 중량%, 가소제로 폴리에틸렌글리콜 디메틸에티르(poly(ethylene glycol) dimethyl ether, PEGDME, 수평균 분자량 500 g/mol) 58.4 중량%, 리튬염으로 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI) 23.0 중량%, 열 경화 개시제로 t-부틸 퍼옥시피발레이트(t-butyl peroxypivalate, t-BPP) 0.3 중량% 및 전해질 첨가제로 플루오로 에틸렌 카보네이트(Fluoro Ethylene Carbonate, FEC) 3.7 중량%를 혼합하여 고체 고분자 전해질 전구체 조성물을 제조하였다.5.9 wt% of a compound represented by the following formula 1-1, pentaerythritol tetrakis (3-mercaptopropionate) 8.7 as a thiol-based crosslinking agent Weight %, as a plasticizer, polyethylene glycol dimethyl ether (poly(ethylene glycol) dimethyl ether, PEGDME, number average molecular weight: 500 g/mol) 58.4 wt%, lithium salt as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI ) 23.0 wt%, 0.3 wt% of t-butyl peroxypivalate (t-BPP) as a thermal curing initiator and 3.7 wt% of Fluoro Ethylene Carbonate (FEC) as an electrolyte additive A solid polymer electrolyte precursor composition was prepared.
이 때, 화학식 1-1로 표시되는 화합물과 티올계 가교제의 몰비는 4:3이었고, 가소제와 화학식 1-1로 표시되는 화합물 및 티올계 가교제를 포함하는 가교제 조성물의 중량비는 8:2이었으며, 상기 전해질 첨가제는 상기 가교제 및 가소제의 전체 함량 100 중량부에 대하여, 5 중량부이었고, [EO]/[Li+] 비는 15이었다. [EO]/[Li+] 비는 고체 고분자 전해질 전구체 조성물 내 리튬염의 함량을 나타내기 위한 것으로, 리튬 이온 대비 에틸렌 옥사이드의 반복단위 수에 대한 비율이다.At this time, the molar ratio of the compound represented by Formula 1-1 to the thiol-based crosslinking agent was 4:3, and the weight ratio of the plasticizer to the crosslinking agent composition including the compound represented by Formula 1-1 and the thiol-based crosslinking agent was 8:2, The electrolyte additive was 5 parts by weight based on 100 parts by weight of the total amount of the crosslinking agent and the plasticizer, and the [EO]/[Li + ] ratio was 15. The [EO]/[Li + ] ratio is for indicating the content of lithium salt in the solid polymer electrolyte precursor composition, and is a ratio of the number of repeating units of ethylene oxide to lithium ions.
[화학식 1-1][Formula 1-1]
Figure PCTKR2021009404-appb-I000007
Figure PCTKR2021009404-appb-I000007
<전고체 전지용 복합 음극 제조><Production of composite negative electrode for all-solid-state battery>
고분자 전해질 22 중량%, 인조 흑연 70 중량% 및 전도성 카본(super P) 8 중량%를, 2.4 ml NMP(N-Methyl-2-pyrrolidone)에 용해시키고, 10분 동안 교반하여 슬러리를 준비하였다. 다음으로, 제조된 슬러리를 구리 호일 위에 도포하고, 80 ℃의 진공 오븐에서 24시간 건조시켜 복합 음극을 제조하였다.22 wt% of a polymer electrolyte, 70 wt% of artificial graphite, and 8 wt% of conductive carbon (super P) were dissolved in 2.4 ml NMP (N-Methyl-2-pyrrolidone) and stirred for 10 minutes to prepare a slurry. Next, the prepared slurry was applied on a copper foil and dried in a vacuum oven at 80° C. for 24 hours to prepare a composite negative electrode.
여기서, 상기 고분자 전해질은 고분자 바인더인 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF) 60.7 중량%, 가소제인 폴리에틸렌글리콜 디메틸에티르(poly(ethylene glycol) dimethyl ether, PEGDME, 수평균 분자량 500 g/mol) 30.34 중량% 및 리튬염인 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI) 8.96 중량%의 혼합물이다.Here, the polymer electrolyte contains 60.7 wt% of polyvinylidenefluoride (PVdF) as a polymer binder, poly(ethylene glycol) dimethyl ether as a plasticizer, PEGDME, number average molecular weight 500 g/mol) 30.34 and 8.96% by weight of lithium salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI).
<전고체 전지용 복합 양극 제조><Manufacture of composite positive electrode for all-solid-state battery>
고분자 전해질 22 중량%, 양극활물질인 LiNi0.8Mn0.1Co0.1O2 70 중량%, 전도성 카본(super P) 7.85 중량%, 탄소계 도전재인 탄소나노튜브 0.15 중량%를, 2.4 ml의 N-메틸-2-피롤리돈(NMP)에 용해시키고 10분 동안 교반하여 슬러리를 준비하였다. 다음으로, 제조된 슬러리를 알루미늄 호일 위에 60 ㎛ 두께로 도포하고, 120 ℃의 온도에서 1시간 동안 건조시켜 양극을 제조하였다.Polyelectrolyte 22 wt%, positive electrode active material LiNi 0.8 Mn 0.1 Co 0.1 O 2 70 wt%, conductive carbon (super P) 7.85 wt%, carbon-based conductive material carbon nanotube 0.15 wt%, 2.4 ml of N-methyl- A slurry was prepared by dissolving in 2-pyrrolidone (NMP) and stirring for 10 minutes. Next, the prepared slurry was applied to a thickness of 60 μm on an aluminum foil and dried at a temperature of 120° C. for 1 hour to prepare a positive electrode.
여기서, 상기 고분자 전해질은 고분자 바인더인 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVdF) 60.7 중량%, 가소제인 폴리에틸렌글리콜 디메틸에티르(poly(ethylene glycol) dimethyl ether, PEGDME, 수평균 분자량 500 g/mol) 30.34 중량% 및 리튬염인 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI) 8.96 중량%의 혼합물이다.Here, the polymer electrolyte contains 60.7 wt% of polyvinylidenefluoride (PVdF) as a polymer binder, poly(ethylene glycol) dimethyl ether as a plasticizer, PEGDME, number average molecular weight 500 g/mol) 30.34 and 8.96% by weight of lithium salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI).
<전고체 전지 제조><All-solid-state battery manufacturing>
상기에서 제조한 복합 음극 위에, 상기에서 제조한 고체 고분자 전해질 전구체 조성물을 도포하고, 그 위에 상기에서 제조한 복합 양극을 적층하여 전지를 구성하였다. 이후, 산소가 닿지 않도록 전지를 봉인(sealing)한 후, 90 ℃의 온도로 30 분간 경화하여, 고체 고분자 전해질 전구체 조성물을 고체 고분자 전해질로 전환하여 전고체 전지를 제조하였다.On the composite negative electrode prepared above, the solid polymer electrolyte precursor composition prepared above was applied, and the composite positive electrode prepared above was laminated thereon to construct a battery. Thereafter, the battery was sealed so that oxygen did not come into contact with it, and then cured at a temperature of 90° C. for 30 minutes, and the solid polymer electrolyte precursor composition was converted into a solid polymer electrolyte to prepare an all-solid-state battery.
실시예 2Example 2
상기 실시예 1에서, 양극 활물질로 LiNi0.8Mn0.1Co0.1O2 대신 LiNi0.6Mn0.2Co0.2O2을 동량 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, it was carried out in the same manner as in Example 1, except that the same amount of LiNi 0.6 Mn 0.2 Co 0.2 O 2 instead of LiNi 0.8 Mn 0.1 Co 0.1 O 2 as the positive electrode active material was added.
실시예 3Example 3
상기 실시예 1에서, 양극 활물질로 LiNi0.8Mn0.1Co0.1O2 대신 LiCoO2을 동량 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, it was carried out in the same manner as in Example 1, except that the same amount of LiCoO 2 instead of LiNi 0.8 Mn 0.1 Co 0.1 O 2 as the positive electrode active material was input.
실시예 4Example 4
상기 실시예 1에서, 양극 활물질로 LiNi0.8Mn0.1Co0.1O2 대신 LiNi0.8Co0.15Al0.05O2을 동량 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, it was carried out in the same manner as in Example 1, except that the same amount of LiNi 0.8 Co 0.15 Al 0.05 O 2 instead of LiNi 0.8 Mn 0.1 Co 0.1 O 2 as the positive electrode active material was added.
실험예Experimental example
실험예 1: 충방율에 따른 풀셀(Full Cell)의 충·방전 특성 평가(코인셀)Experimental Example 1: Evaluation of charge/discharge characteristics of a full cell according to the charge/discharge rate (coin cell)
상기 실시예 1 내지 4에서 제조한 전고체 전지의 충방율에 따른 충·방전 특성을 평가하기 위하여 아래와 같은 실험을 수행하였다. 이 때, 실시예 1에서 제조한 전고체 전지의 양극 용량 대비 음극의 용량의 비 (N/P ratio)는 1.02 이었고, 실시예 2에서 제조한 전고체 전지의 양극 용량 대비 음극의 용량의 비 (N/P ratio)는 1.09이었으며, 실시예 3에서 제조한 전고체 전지의 양극 용량 대비 음극의 용량의 비 (N/P ratio)는 1.05이었고, 실시예 4에서 제조한 전고체 전지의 양극 용량 대비 음극의 용량의 비 (N/P ratio)는 1.07이었다.In order to evaluate the charge/discharge characteristics according to the charge/discharge rate of the all-solid-state batteries prepared in Examples 1 to 4, the following experiment was performed. At this time, the ratio of the negative electrode capacity to the positive electrode capacity of the all-solid-state battery prepared in Example 1 (N/P ratio) was 1.02, and the ratio of the negative electrode capacity to the positive electrode capacity of the all-solid-state battery prepared in Example 2 ( N/P ratio) was 1.09, and the ratio of the negative electrode capacity to the positive electrode capacity of the all-solid-state battery prepared in Example 3 (N/P ratio) was 1.05, compared to the positive electrode capacity of the all-solid-state battery prepared in Example 4 The capacity ratio of the negative electrode (N/P ratio) was 1.07.
구체적으로, 전고체 전지의 율속 특성(rate capability)을 확인하기 위해 0.1 C, 0.2 C, 0.5 C, 1.0 C, 2.0 C 및 0.1 C의 전류 밀도로 나누어 2회 또는 3회씩 충방전 사이클을 진행하였고, 각 전류 밀도 별 첫 사이클 방전 용량을 하기 표 1 및 2에 나타내었고, 충방전 사이클에서 각 전류 밀도에 따른 방전 용량을 도 1에 나타내었다.Specifically, in order to confirm the rate capability of the all-solid-state battery, it was divided into current densities of 0.1 C, 0.2 C, 0.5 C, 1.0 C, 2.0 C, and 0.1 C, and charging and discharging cycles were performed twice or three times. , The first cycle discharge capacity for each current density is shown in Tables 1 and 2 below, and the discharge capacity according to each current density in the charge/discharge cycle is shown in FIG. 1 .
또한, 전고체 전지의 충방전 속도에 따른 충방전 특성 곡선을 도 2에 나타내었다.In addition, the charge-discharge characteristic curve according to the charge-discharge rate of the all-solid-state battery is shown in FIG. 2 .
구분division 0.1 C0.1 C 0.2 C0.2 C 0.5 C0.5 C 1.0 C1.0 C 2.0 C2.0 C 0.1 C0.1 C
1 cycle1 cycle 3 cycle3 cycle 5 cycle5 cycle 7 cycle7 cycle 9 cycle9 cycle 11 cycle11 cycle
실시예 1Example 1 137.2 mAh/g137.2 mAh/g 126.2 mAh/g126.2 mAh/g 57.4 mAh/g57.4 mAh/g 20.7 mAh/g20.7 mAh/g 10.5 mAh/g10.5 mAh/g 140.1 mAh/g140.1 mAh/g
실시예 2Example 2 128.7 mAh/g128.7 mAh/g 116.5 mAh/g116.5 mAh/g 59.7 mAh/g59.7 mAh/g 22.2 mAh/g22.2 mAh/g 9.3 mAh/g9.3 mAh/g 121.6 mAh/g121.6 mAh/g
실시예 4Example 4 107.5 mAh/g107.5 mAh/g 101.5 mAh/g101.5 mAh/g 30.6 mAh/g30.6 mAh/g 14.9 mAh/g14.9 mAh/g 4.9 mAh/g4.9 mAh/g 123.7 mAh/g123.7 mAh/g
구분division 0.1 C0.1 C 0.2 C0.2 C 0.5 C0.5 C 1.0 C1.0 C 2.0 C2.0 C 0.2 C0.2 C
1 cycle1 cycle 2 cycle2 cycle 5 cycle5 cycle 8 cycle8 cycle 11 cycle11 cycle 14 cycle14 cycle
실시예 3Example 3 107.4 mAh/g107.4 mAh/g 90.0 mAh/g90.0 mAh/g 27.1 mAh/g27.1 mAh/g 9.1 mAh/g9.1 mAh/g 2.7 mAh/g2.7 mAh/g 76.1 mAh/g76.1 mAh/g
상기 표 1, 2 및 도 1에 나타낸 바와 같이, 실시예 1에서 제조한 전고체 전지는 0.1 C에서의 첫 사이클 용량은 137.2 mAh/g을 나타내었고, 0.2 C, 0.5 C, 1.0 C 및 2.0 C에서 각각 126.2 mAh/g, 57.4 mAh/g, 20.7 mAh/g 및 10.5 mAh/g 용량을 나타내었다. 또한, 충방전 속도를 0.1 C로 되돌렸을 때, 140.1 mAh/g의 용량을 회복하였다.As shown in Tables 1, 2 and 1, the all-solid-state battery prepared in Example 1 had a first cycle capacity of 137.2 mAh/g at 0.1 C, 0.2 C, 0.5 C, 1.0 C and 2.0 C showed capacities of 126.2 mAh/g, 57.4 mAh/g, 20.7 mAh/g and 10.5 mAh/g, respectively. In addition, when the charge/discharge rate was returned to 0.1 C, the capacity of 140.1 mAh/g was recovered.
또한, 실시예 2에서 제조한 전고체 전지는 0.1 C에서의 첫 사이클 용량은 128.7 mAh/g을 나타내었고, 0.2 C, 0.5 C, 1.0 C 및 2.0 C에서 각각 116.5 mAh/g, 59.7 mAh/g, 22.2 mAh/g 및 9.3 mAh/g 용량을 나타내었다. 또한, 충방전 속도를 0.1 C로 되돌렸을 때, 121.6 mAh/g의 용량을 회복하였다.In addition, the all-solid-state battery prepared in Example 2 exhibited a first cycle capacity of 128.7 mAh/g at 0.1 C, and 116.5 mAh/g and 59.7 mAh/g at 0.2 C, 0.5 C, 1.0 C and 2.0 C, respectively. , 22.2 mAh/g and 9.3 mAh/g capacities were shown. In addition, when the charge/discharge rate was returned to 0.1 C, the capacity of 121.6 mAh/g was recovered.
또한, 실시예 3에서 제조한 전고체 전지는 0.1 C에서의 첫 사이클 용량은 107.4 mAh/g을 나타내었고, 0.2 C, 0.5 C, 1.0 C 및 2.0 C에서 각각 90.0 mAh/g, 27.1 mAh/g, 9.1 mAh/g 및 2.7 mAh/g 용량을 나타내었다. 또한, 충방전 속도를 0.2 C로 되돌렸을 때, 76.1 mAh/g의 용량을 회복하였다.In addition, the all-solid-state battery prepared in Example 3 exhibited a first cycle capacity of 107.4 mAh/g at 0.1 C, and 90.0 mAh/g and 27.1 mAh/g at 0.2 C, 0.5 C, 1.0 C and 2.0 C, respectively. , 9.1 mAh/g and 2.7 mAh/g capacities were shown. In addition, when the charge/discharge rate was returned to 0.2 C, the capacity of 76.1 mAh/g was recovered.
또한, 실시예 4에서 제조한 전고체 전지는 0.1 C에서의 첫 사이클 용량은 107.5 mAh/g을 나타내었고, 0.2 C, 0.5 C, 1.0 C 및 2.0 C에서 각각 101.5 mAh/g, 30.6 mAh/g, 14.9 mAh/g 및 4.9 mAh/g 용량을 나타내었다. 또한, 충방전 속도를 0.1 C로 되돌렸을 때, 123.7 mAh/g의 용량을 회복하였다.In addition, the all-solid-state battery prepared in Example 4 exhibited a first cycle capacity of 107.5 mAh/g at 0.1 C, and 101.5 mAh/g and 30.6 mAh/g at 0.2 C, 0.5 C, 1.0 C and 2.0 C, respectively. , 14.9 mAh/g and 4.9 mAh/g capacities were shown. In addition, when the charge/discharge rate was returned to 0.1 C, the capacity of 123.7 mAh/g was recovered.
즉, 본 발명에 따른 전고체 전지는 고전압 양극재를 적용할 때, 충방전에 대한 우수한 전기화학적 가역성을 나타내면서, 이와 동시에 방전 용량을 확보할 수 있음을 확인할 수 있었다.That is, it was confirmed that the all-solid-state battery according to the present invention exhibits excellent electrochemical reversibility with respect to charging and discharging when a high voltage cathode material is applied, and at the same time, it is possible to secure a discharge capacity.
실험예 2: 율속에 따른 용량 유지율Experimental Example 2: Capacity retention rate according to rate
상기 실시예 1 내지 4에서 제조한 전고체 전지의 율속에 따른 용량 유지율 특성을 평가하기 위하여 아래와 같은 실험을 수행하였다.In order to evaluate the capacity retention rate characteristics according to the rate of the all-solid-state batteries prepared in Examples 1 to 4, the following experiment was performed.
구체적으로, 전고체 전지의 용량 유지율(Capacity Retention)을 확인하기 위해 0.1 C, 0.2 C, 0.5 C, 1.0 C 및 2.0 C의 전류 밀도로 충방전 사이클을 진행하였고, 율속에 따른 용량 유지율은 0.1 C에서의 용량 대비 방전 속도를 증가하였을 때의 용량을 백분율 계산하여 표 3 및 도 3에 나타내었다.Specifically, in order to confirm the capacity retention of the all-solid-state battery, charge and discharge cycles were performed at current densities of 0.1 C, 0.2 C, 0.5 C, 1.0 C, and 2.0 C, and the capacity retention rate according to the rate was 0.1 C The percentage of the capacity when the discharge rate was increased compared to the capacity in the was calculated and shown in Table 3 and FIG. 3 .
구분division 0.1 C0.1 C 0.2 C0.2 C 0.5 C0.5 C 1.0 C1.0 C 2.0 C2.0 C
실시예 1Example 1 100.0 %100.0% 92.0 %92.0% 41.8 %41.8% 15.0 %15.0% 7.7 %7.7%
실시예 2Example 2 100.0 %100.0% 90.5 %90.5% 46.4 %46.4% 17.3 %17.3% 7.3 %7.3%
실시예 3Example 3 100.0 %100.0% 83.7 %83.7% 25.2 %25.2% 8.5 %8.5% 2.5 %2.5%
실시예 4Example 4 100.0 %100.0% 94.4 %94.4% 28.5 %28.5% 13.9 %13.9% 4.6 %4.6%
도 3에 나타낸 바와 같이, 본 발명에 따른 전고체 전지는 고전압 양극재를 적용할 때, 0.2 C에서도 80 % 이상의 용량 유지율을 구현할 수 있음을 확인할 수 있었다.As shown in FIG. 3 , it was confirmed that the all-solid-state battery according to the present invention can implement a capacity retention rate of 80% or more even at 0.2 C when a high voltage cathode material is applied.
실험예 3: 사이클 수명 특성 평가Experimental Example 3: Cycle life characteristic evaluation
상기 실시예 1 내지 4에서 제조한 전고체 전지의 사이클 수명 특성을 평가하기 위하여 아래와 같은 실험을 수행하였다.In order to evaluate the cycle life characteristics of the all-solid-state batteries prepared in Examples 1 to 4, the following experiment was performed.
구체적으로, 0.1 C로 한 사이클 포메이션 충방전을 진행하고 0.2 C로 100 사이클동안 충방전 테스트를 진행하면서 각 사이클 별로 방전 용량을 초기 사이클 대비 백분율로 환산한 용량 유지율(Capacity retention)로서 도 4에 나타내었다.Specifically, one cycle formation charge/discharge at 0.1 C and a charge/discharge test for 100 cycles at 0.2 C were performed, and the discharge capacity for each cycle was converted into a percentage compared to the initial cycle. it was
도 4에 나타낸 바와 같이, 실시예 1 및 2에서 제조한 전고체 전지의 경우, 100 사이클 충방전 후에 약 80 % 수준의 용량 유지율을 나타내었고, 실시예 3에서 제조한 전고체 전지의 경우, 100 사이클 충방전 후에 약 60 % 수준의 용량 유지율을 나타내었으며, 실시예 3에서 제조한 전고체 전지의 경우, 100 사이클 충방전 후에 약 90 % 수준의 용량 유지율을 나타내었다.As shown in FIG. 4 , in the case of the all-solid-state batteries prepared in Examples 1 and 2, a capacity retention rate of about 80% was exhibited after 100 cycles of charging and discharging, and in the case of the all-solid-state batteries prepared in Example 3, 100 After charging and discharging cycles, a capacity retention rate of about 60% was exhibited, and in the case of the all-solid-state battery prepared in Example 3, a capacity retention rate of about 90% was exhibited after 100 cycles of charging and discharging.
이와 같은 결과로부터, 본 발명에 따른 고체 고분자 전해질 전구체 조성물로부터 형성된 고체 고분자 전해질을 전고체 전지의 전해질로 이용하는 경우, 고전압 양극재의 적용이 가능하여 전고체 전지의 사이클 수명과 용량 특성을 향상시킬 수 있음을 확인할 수 있었다.From these results, when the solid polymer electrolyte formed from the solid polymer electrolyte precursor composition according to the present invention is used as an electrolyte for an all-solid-state battery, it is possible to apply a high-voltage cathode material, thereby improving the cycle life and capacity characteristics of the all-solid-state battery. was able to confirm

Claims (16)

  1. 하기 화학식 1로 표시되는 화합물; 가소제 및 리튬염을 포함하는 고체 고분자 전해질 전구체 조성물:a compound represented by the following formula (1); A solid polymer electrolyte precursor composition comprising a plasticizer and a lithium salt:
    [화학식 1][Formula 1]
    Figure PCTKR2021009404-appb-I000008
    Figure PCTKR2021009404-appb-I000008
    상기 화학식 1에서,In Formula 1,
    X1은 -CR1R2- 또는 -NR7-이고, X2는 -CR3R4- 또는 -NR8-이며, X3은 -CR5R6- 또는 -NR9-이되, X1 내지 X3 중 적어도 1개 이상은 -NR7-, -NR8- 또는 -NR9-이며,X 1 is -CR 1 R 2 - or -NR 7 -, X 2 is -CR 3 R 4 - or -NR 8 -, X 3 is -CR 5 R 6 - or -NR 9 -, wherein X 1 At least one of to X 3 is -NR 7 -, -NR 8 - or -NR 9 -,
    R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 30의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 30의 알케닐기이다.R 1 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, A heteroalkyl group having 1 to 30 carbon atoms or a heterocyclic group having 5 to 30 ring atoms, at least one or more is an alkenyl group having 2 to 30 carbon atoms.
  2. 제1항에 있어서,According to claim 1,
    X1은 -NR7-이고, X2는 -NR8-이며, X3은 -NR9-이고,X 1 is -NR 7 -, X 2 is -NR 8 -, X 3 is -NR 9 -,
    R7 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 30의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 30의 알케닐기인 고체 고분자 전해질 전구체 조성물.R 7 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, A solid polymer electrolyte precursor composition which is a heteroalkyl group having 1 to 30 carbon atoms or a heterocyclic group having 5 to 30 ring atoms, wherein at least one is an alkenyl group having 2 to 30 carbon atoms.
  3. 제1항에 있어서,According to claim 1,
    X1은 -NR7-이고, X2는 -NR8-이며, X3은 -NR9-이고, R7 내지 R9는 각각 독립적으로 탄소수 2 내지 30의 알케닐기인 고체 고분자 전해질 전구체 조성물.X 1 is -NR 7 -, X 2 is -NR 8 -, X 3 is -NR 9 -, and R 7 to R 9 are each independently an alkenyl group having 2 to 30 carbon atoms.
  4. 제1항에 있어서,According to claim 1,
    티올계 가교제를 포함하는 고체 고분자 전해질 전구체 조성물.A solid polymer electrolyte precursor composition comprising a thiol-based crosslinking agent.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 티올계 가교제는 1,3-프로판디티올, 2,3-부탄디티올, 2-머캅토프로피온산, 3-머캅토프로피온산, 펜타에리스리톨 테트라키스(3-머캅토프로피오네이트), 트리메틸올프로판 트리스(3-메르캅토프로피오네이트) 및 2,2'-(에틸렌디옥시)디에탄티올로 이루어진 군으로부터 선택된 1종 이상인 고체 고분자 전해질 전구체 조성물.The thiol-based crosslinking agent is 1,3-propanedithiol, 2,3-butanedithiol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, pentaerythritol tetrakis (3-mercaptopropionate), trimethylolpropane A solid polymer electrolyte precursor composition of at least one selected from the group consisting of tris(3-mercaptopropionate) and 2,2'-(ethylenedioxy)diethanethiol.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 티올계 가교제는 하기 화학식 2로 표시되는 티올 화합물인 고체 고분자 전해질 전구체 조성물:The thiol-based crosslinking agent is a solid polymer electrolyte precursor composition, which is a thiol compound represented by the following Chemical Formula 2:
    [화학식 2][Formula 2]
    Figure PCTKR2021009404-appb-I000009
    Figure PCTKR2021009404-appb-I000009
    상기 화학식 2에서,In Formula 2,
    X는 각각 독립적으로 S 또는 NR10이고, R10은 수소 또는 탄소수 1 내지 7의 알킬기이고, n은 각각 독립적으로 1 내지 12에서 선택된 정수이며, Y는 단일 결합 또는 탄소수 1 내지 7의 알킬렌기이다.X is each independently S or NR 10 , R 10 is hydrogen or an alkyl group having 1 to 7 carbon atoms, n is each independently an integer selected from 1 to 12, Y is a single bond or an alkylene group having 1 to 7 carbon atoms .
  7. 제4항에 있어서,5. The method of claim 4,
    상기 화학식 1로 표시되는 화합물 및 상기 티올계 가교제는 몰비가 10:1 내지 1:10인 고체 고분자 전해질 전구체 조성물.A solid polymer electrolyte precursor composition in which the compound represented by Formula 1 and the thiol-based crosslinking agent have a molar ratio of 10:1 to 1:10.
  8. 제1항에 있어서,According to claim 1,
    상기 가소제는 폴리에테르계 가소제인 것인 고체 고분자 전해질 전구체 조성물.The plasticizer is a solid polymer electrolyte precursor composition that is a polyether-based plasticizer.
  9. 제1항에 있어서,According to claim 1,
    전해질 첨가제를 포함하는 고체 고분자 전해질 전구체 조성물.A solid polyelectrolyte precursor composition comprising an electrolyte additive.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 전해질 첨가제는 고리형 카보네이트계 화합물, 고리형 황계 화합물 및 니트릴계 화합물로 이루어진 군으로부터 선택된 1종 이상인 고체 고분자 전해질 전구체 조성물.The electrolyte additive is at least one solid polymer electrolyte precursor composition selected from the group consisting of a cyclic carbonate-based compound, a cyclic sulfur-based compound, and a nitrile-based compound.
  11. 제1항에 있어서,According to claim 1,
    경화성 개시제를 포함하는 고체 고분자 전해질 전구체 조성물.A solid polymer electrolyte precursor composition comprising a curable initiator.
  12. 하기 화학식 1로 표시되는 화합물 단위를 포함하는 가교성 중합체; 가소제 및 리튬염을 포함하는 고체 고분자 전해질:A cross-linkable polymer comprising a compound unit represented by the following formula (1); A solid polymer electrolyte comprising a plasticizer and a lithium salt:
    [화학식 1][Formula 1]
    Figure PCTKR2021009404-appb-I000010
    Figure PCTKR2021009404-appb-I000010
    상기 화학식 1에서,In Formula 1,
    X1은 -CR1R2- 또는 -NR7-이고, X2는 -CR3R4- 또는 -NR8-이며, X3은 -CR5R6- 또는 -NR9-이되, X1 내지 X3 중 적어도 1개 이상은 -NR7-, -NR8- 또는 -NR9-이며,X 1 is -CR 1 R 2 - or -NR 7 -, X 2 is -CR 3 R 4 - or -NR 8 -, X 3 is -CR 5 R 6 - or -NR 9 -, wherein X 1 At least one of to X 3 is -NR 7 -, -NR 8 - or -NR 9 -,
    R1 내지 R9는 각각 독립적으로 수소, 탄소수 1 내지 30의 알킬기, 탄소수 2 내지 30의 알케닐기, 탄소수 2 내지 30의 알카이닐기, 탄소수 5 내지 30의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 1 내지 30의 헤테로알킬기 또는 고리 형성 원자 수 5 내지 30의 헤테로고리기이되, 적어도 1개 이상은 탄소수 2 내지 30의 알케닐기이다.R 1 to R 9 are each independently hydrogen, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, A heteroalkyl group having 1 to 30 carbon atoms or a heterocyclic group having 5 to 30 ring atoms, at least one or more is an alkenyl group having 2 to 30 carbon atoms.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 가교성 중합체는 티올계 가교제 단위를 포함하는 것인 고체 고분자 전해질.The crosslinkable polymer is a solid polymer electrolyte comprising a thiol-based crosslinking agent unit.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 가교성 중합체는 상기 가소제와 반-상호 침투 네트워크를 형성하고,the crosslinkable polymer forms a semi-interpenetrating network with the plasticizer,
    상기 리튬염은 상기 네트워크 상에 분산되어 있는 것인 고체 고분자 전해질.The lithium salt is a solid polymer electrolyte dispersed in the network.
  15. 음극; 양극; 및 상기 음극 및 상기 양극 사이에 개재된 고체 고분자 전해질을 포함하고,cathode; anode; and a solid polymer electrolyte interposed between the negative electrode and the positive electrode,
    상기 고체 고분자 전해질은 제12항 내지 제14항 중 어느 한 항에 따른 고체 고분자 전해질을 포함하는 것인 전고체 전지.The solid polymer electrolyte is an all-solid-state battery comprising the solid polymer electrolyte according to any one of claims 12 to 14.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 양극은 양극 집전체 및 상기 집전체의 적어도 일면에 형성된 양극 활물질층을 포함하고,The positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on at least one surface of the current collector,
    상기 양극 활물질층은 양극 활물질을 포함하며,The positive active material layer includes a positive active material,
    상기 양극 활물질은 LiCoaM1bM2cO2(M1 및 M2는 각각 독립적으로 Ni, Mn 또는 Al이되, 서로 상이하고, 0.05≤a≤1.0, 0≤b≤0.95, 0≤c≤0.95, a+b+c=1이다.)인 전고체 전지.The positive active material is LiCo a M1 b M2 c O 2 (M1 and M2 are each independently Ni, Mn or Al, but are different from each other, and 0.05≤a≤1.0, 0≤b≤0.95, 0≤c≤0.95, a +b + c = 1.) all-solid-state battery.
PCT/KR2021/009404 2020-07-22 2021-07-21 Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same WO2022019642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200091180A KR102489655B1 (en) 2020-07-22 2020-07-22 Solid polymer electrolyte precursor composition, solid polymer electrolyte and all solid state battery comprising the electrolyte
KR10-2020-0091180 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019642A1 true WO2022019642A1 (en) 2022-01-27

Family

ID=79729669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009404 WO2022019642A1 (en) 2020-07-22 2021-07-21 Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same

Country Status (2)

Country Link
KR (1) KR102489655B1 (en)
WO (1) WO2022019642A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914539A (en) * 2022-06-28 2022-08-16 肇庆小鹏汽车有限公司 Solid/semisolid electrolyte and preparation method and application thereof
CN114976486A (en) * 2022-06-13 2022-08-30 吉林省东驰新能源科技有限公司 Electrolyte diaphragm, gel-state electrolyte membrane, preparation method of gel-state electrolyte membrane and semi-solid lithium-sulfur battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120074952A (en) * 2010-12-28 2012-07-06 호남석유화학 주식회사 Plastic crystal electrolyte composition with chemical cross-linked structure
KR101826496B1 (en) * 2016-11-04 2018-02-07 한국화학연구원 Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof
KR101840335B1 (en) * 2017-06-19 2018-03-20 한국화학연구원 Novel compounds and uses thereof
JP2020076024A (en) * 2018-11-09 2020-05-21 公立大学法人首都大学東京 Electrolyte for secondary battery
KR20200055176A (en) * 2018-11-12 2020-05-21 한국화학연구원 All solid lithium-polymer secondary battery with a positive electrode comprising active material and a negative electrode comprising graphite and a polymer electrolyte comprising functional additives and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722834B1 (en) 2005-09-16 2007-05-30 한국화학연구원 Preparation method of solid polymer electrolytic composite and lithium polymer cell employing solid polymer electrolytic composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120074952A (en) * 2010-12-28 2012-07-06 호남석유화학 주식회사 Plastic crystal electrolyte composition with chemical cross-linked structure
KR101826496B1 (en) * 2016-11-04 2018-02-07 한국화학연구원 Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof
KR101840335B1 (en) * 2017-06-19 2018-03-20 한국화학연구원 Novel compounds and uses thereof
JP2020076024A (en) * 2018-11-09 2020-05-21 公立大学法人首都大学東京 Electrolyte for secondary battery
KR20200055176A (en) * 2018-11-12 2020-05-21 한국화학연구원 All solid lithium-polymer secondary battery with a positive electrode comprising active material and a negative electrode comprising graphite and a polymer electrolyte comprising functional additives and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976486A (en) * 2022-06-13 2022-08-30 吉林省东驰新能源科技有限公司 Electrolyte diaphragm, gel-state electrolyte membrane, preparation method of gel-state electrolyte membrane and semi-solid lithium-sulfur battery
CN114976486B (en) * 2022-06-13 2023-11-17 吉林省东驰新能源科技有限公司 Electrolyte membrane, gel electrolyte membrane, preparation method of gel electrolyte membrane and semi-solid lithium sulfur battery
CN114914539A (en) * 2022-06-28 2022-08-16 肇庆小鹏汽车有限公司 Solid/semisolid electrolyte and preparation method and application thereof

Also Published As

Publication number Publication date
KR102489655B1 (en) 2023-01-18
KR20220012084A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2018135889A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020067779A1 (en) Nonaqueous electrolyte and lithium secondary battery comprising same
WO2017171442A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte produced therefrom, and electrochemical element comprising same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022019642A1 (en) Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same
WO2019004699A1 (en) Lithium secondary battery
WO2019045399A2 (en) Lithium secondary battery
WO2020149678A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2020162659A1 (en) Organic electrolyte, and secondary battery comprising same
WO2018221827A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2018135890A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020036337A1 (en) Electrolyte for lithium secondary battery
WO2018131952A1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2020222469A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020149677A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including same
WO2019107838A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020009505A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019151725A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2023063648A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023286885A1 (en) Novel compound, electrolyte for secondary battery comprising same, and secondary battery comprising same
WO2022211320A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte comprising same for lithium secondary battery, and lithium secondary battery
WO2021015488A1 (en) Method for manufacturing secondary battery
WO2021194220A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846320

Country of ref document: EP

Kind code of ref document: A1