KR101826496B1 - Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof - Google Patents

Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof Download PDF

Info

Publication number
KR101826496B1
KR101826496B1 KR1020160146774A KR20160146774A KR101826496B1 KR 101826496 B1 KR101826496 B1 KR 101826496B1 KR 1020160146774 A KR1020160146774 A KR 1020160146774A KR 20160146774 A KR20160146774 A KR 20160146774A KR 101826496 B1 KR101826496 B1 KR 101826496B1
Authority
KR
South Korea
Prior art keywords
polymer electrolyte
triazine
electrolyte composition
solid polymer
chemical formula
Prior art date
Application number
KR1020160146774A
Other languages
Korean (ko)
Inventor
한미정
강영구
석정돈
곽현주
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020160146774A priority Critical patent/KR101826496B1/en
Application granted granted Critical
Publication of KR101826496B1 publication Critical patent/KR101826496B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/38Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/54Three nitrogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a novel triazine compound represented by chemical formula 1, an all-solid-state polymer electrolyte composition comprising the same as a cross-linking agent and uses thereof. More specifically, the triazine compound effectively inhibits crystallization of a plasticizer at a low temperature (room temperature) to show significantly improved ion conductivity, and can realize significantly improved electrochemical stability and excellent battery properties, thereby being usefully used as an all-solid-state polymer electrolyte composition such as a lithium-polymer secondary battery, a dye-sensitized solar cell, etc.

Description

신규한 트리아진계 화합물, 이를 가교제로 포함하는 전고상 고분자 전해질 조성물 및 이의 응용{NOVEL TRIAZINE COMPOUND, ALL-SOLID-STATE POLYMER ELECTROLYTE COMPOSITION AND USE THEREOF}TECHNICAL FIELD [0001] The present invention relates to a novel triazine-based compound, a whole solid polymer electrolyte composition including the triazine-based compound as a crosslinking agent, and an application thereof. BACKGROUND OF THE INVENTION < RTI ID =

본 발명은 신규한 트리아진계 화합물, 이를 가교제로 포함하는 전고상 고분자 전해질 조성물 및 이의 응용에 관한 것이다.The present invention relates to a novel triazine-based compound, a whole solid polymer electrolyte composition comprising the same as a crosslinking agent, and an application thereof.

최근 급증하는 에너지 소비에 대응하고 환경친화적인 소비 형태로 변화시키기 위해 대체 에너지 및 대체 전력원, 즉 전기화학적인 에너지 생산법에 초점을 두고 많은 연구들이 진행되고 있다. 전기화학 에너지의 저장 및 변환법에는 이차전지, 연료전지, 캐패시터 등을 들 수 있으며, 현재 가장 우수한 방전 성능을 가지는 것으로 알려져 있는 리튬 이차전지에 관한 많은 연구가 진행되고 있다. In recent years, many studies have been conducted focusing on alternative energy and alternative power sources, ie, electrochemical energy production methods, in order to respond to rapidly increasing energy consumption and to change to environmentally friendly consumption forms. BACKGROUND ART [0002] Many researches on lithium secondary batteries, which are known to have the most excellent discharge performance, can be cited as examples of storage and conversion of electrochemical energy, such as secondary batteries, fuel cells, and capacitors.

상술된 이차전지는 반도체, 디스플레이와 더불어 국내 전자정보기기산업을 이끌어 나갈 3대 핵심 전략제품으로 휴대폰, 노트북, 컴퓨터, 캠코더, MP3, PDA 등 21세기 인류의 생활과 밀접한 미래형 모바일 IT 제품들의 성능을 좌우함은 물론 전기자동차의 동력원으로 그 중요성을 더하고 있다. 그 중에서 특히, 리튬 고분자 이차전지는 높은 에너지 밀도와 방전 전압으로 인해 가장 많이 연구되고 있으며, 현재 핸드폰 및 캠코더 등에 상용화되고 있다.The above-mentioned secondary battery is one of the three core strategic products that will lead the domestic electronic information appliance industry with semiconductors, displays, and the performance of future mobile IT products such as mobile phones, notebooks, computers, camcorders, MP3s and PDAs, The importance of electric vehicles as a power source is increasing. Among them, lithium polymer secondary batteries are most studied due to their high energy density and discharge voltage, and they are currently being used in mobile phones and camcorders.

종래 리튬 고분자 이차전지에 사용되는 전해질로서 폴리에틸렌 옥사이드[poly(ethylene oxide), PEO]계 고분자 전해질이 상용화 가능성이 가장 높은 고분자 전해질 중의 하나로 알려져 있다. 그러나, PEO계 고분자 전해질의 경우, 60 ℃ 이상의 고온에서는 10-4 S/cm의 비교적 높은 이온 전도도를 나타내지만 상온(20 ℃)에서는 이온 전도도가 10-8 S/cm까지 낮아지는 문제점을 가진다. 이러한 문제점은 PEO가 가지는 상온에서의 높은 결정성(χ= ~ 80%)에 기인한다. 전해질 내에서의 이온의 이동은 고분자의 분절운동에 의해서 일어나며, 결정 영역에서는 그러한 움직임이 제한되게 된다. 따라서 고분자 전해질의 결정성을 억제시켜 비교적 낮은 온도와 상온에서도 높은 이온 전도도와 기계적 강도를 가지는 고분자 전해질을 개발하고자 하는 연구가 활발히 이루어지고 있다.BACKGROUND ART Conventionally, a polymer electrolyte based on polyethylene oxide (PEO) is known as one of the most promising polymer electrolytes as an electrolyte used in a lithium polymer secondary battery. However, the PEO-based polymer electrolyte exhibits a relatively high ionic conductivity of 10-4 S / cm at a high temperature of 60 ° C or higher, but has a problem that ionic conductivity is lowered to 10-8 S / cm at room temperature (20 ° C). This problem is caused by the high crystallinity (χ = ~ 80%) at room temperature of PEO. The movement of ions in the electrolyte is caused by the segmental motion of the polymer and such movement is limited in the crystalline region. Therefore, studies have been actively made to develop a polymer electrolyte having a high ionic conductivity and mechanical strength at a relatively low temperature and room temperature by suppressing the crystallinity of the polymer electrolyte.

종래 리튬 이차전지용 고체 고분자 전해질은 상온에서의 이온 전도도 확보를 위해 다양한 시도들이 이루어졌다. Conventional solid polymer electrolytes for lithium secondary batteries have various attempts to secure ion conductivity at room temperature.

첫째, 고분자 매트릭스인 PEO의 결정성 제어를 목적으로 여러 첨가제를 사용하였다. 예를 들어, 특허문헌 1은 "고분자 전해질 복합재료의 제조방법 및 그로 제조된 고체 고분자 전해질 복합재료를 구비한 리튬 고분자 전지"에 대하여 개시하고 있다. 그러나 대부분의 경우, 첨가제의 사용으로 결정성은 제어되나 동시에 기계적 물성이 약화되는 문제가 발생한다. 뿐만 아니라, 첨가제들 자체의 크기가 PEO 사슬의 이동성(chain mobility)에 영향을 미치므로 상온 및 저온에서의 이온 전도에 있어 매우 중요한 요소인 유리전이온도(Tg)의 증가를 야기하는 단점을 안고 있다. 또한, 고체 고분자 전해질의 강도를 향상시키기 위해 첨가제를 사용할 경우, 고체 고분자 전해질의 강도는 향상되나 동시에 신율이 저하되는 단점이 있었다. First, various additives were used to control the crystallinity of PEO, a polymer matrix. For example, Patent Document 1 discloses "a method for producing a polymer electrolyte composite material and a lithium polymer battery comprising the solid polymer electrolyte composite material produced therefrom ". However, in most cases, crystallinity is controlled by the use of additives, but at the same time, the mechanical properties are deteriorated. In addition, since the size of the additive itself affects the chain mobility of the PEO chain, it has a disadvantage that it causes an increase in the glass transition temperature (Tg), which is a very important factor in ion conduction at room temperature and at low temperature . In addition, when an additive is used to improve the strength of the solid polymer electrolyte, the strength of the solid polymer electrolyte is improved but the elongation is also lowered.

둘째, 고분자 매트릭스인 PEO의 결정성 제어를 목적으로 폴리포스파젠, 폴리아크릴레이트, 폴리실록산 등과 같은 다른 고분자 골격을 사용하여 올리고(에틸렌옥사이드) 측쇄와 그래프트된 빗살무늬 또는 망 형태의 고체 고분자 전해질을 제안하였다. 예를 들어, 특허문헌 2 및 비특허문헌 1에서는 포스페이트 중심부와 다분지형 올리고(에틸렌옥사이드) 그룹을 가소제로 이용하여 PEO의 결정도를 감소시켜 이온 전도도를 향상시키는 방법이 개시되어 있다. 또한, 특허문헌 3 및 비특허문헌 2에서는 포스파젠 고리 중심부와 다분지형 올리고(에틸렌옥사이드) 그룹을 가소제로 이용하여 이온전도도를 향상시키는 방법이 개시되어 있다. 허나 상술한 연구에도 불구하고 여전히, PEO의 결정도 감소를 통하여 상온에서 이온 전도도의 감소를 억제하기에 충분하지 못하였다. 특히, 상기 특허문헌 3 및 비특허문헌 2에 개시하고 있는 아크릴 포스파젠 가교제는 보관 중에 경화가 잘 일어나는 단점을 지니고 있어 보관 안정성을 개선할 필요가 있다. Second, for the purpose of controlling the crystallinity of PEO which is a polymer matrix, it is proposed to use a polymeric skeleton such as polyphosphazene, polyacrylate, polysiloxane or the like to form a solid polymer electrolyte having a comb-like pattern or a net shape grafted with an oligo (ethylene oxide) side chain Respectively. For example, Patent Document 2 and Non-Patent Document 1 disclose a method of improving the ionic conductivity by reducing the crystallinity of PEO using a phosphate center portion and a multi-branched oligo (ethylene oxide) group as a plasticizer. Patent Document 3 and Non-Patent Document 2 disclose a method for improving ionic conductivity by using a center of a phosphazene ring and a multi-branched oligo (ethylene oxide) group as a plasticizer. Despite the above studies, however, the crystallinity of PEO was still insufficient to suppress the decrease in ionic conductivity at room temperature. In particular, the acrylic phosphazene crosslinking agent disclosed in Patent Document 3 and Non-Patent Document 2 has a disadvantage in that curing occurs well during storage, so that it is necessary to improve the storage stability.

이에, 본 발명자들은 가소제로서 폴리알킬렌옥사이드(PEO)계 화합물을 함유하는 고체 고분자 전해질 조성물의 결정도를 감소시켜 이온 전도도를 향상시킬 수 있는 방법을 연구하던 중, 아크릴기와는 달리 그 자체로서의 안정성이 우수한 알릴기를 포함하는 트리아진계 화합물을 고안하였다. 이에, 본 발명에 따른 트리아진계 화합물을 가교제로 포함된 고체 고분자 전해질 조성물이 낮은 온도(상온)에서도 결정도를 효과적으로 낮추어 현저하게 향상된 이온전도도를 나타내는 것을 발견하였다. 특히, 본 발명에 따른 트리아진계 화합물은 티올계 가교제와 혼용시 놀라운 상승효과를 나타냄을 발견하여 본 발명을 완성하였다.Accordingly, the present inventors have studied a method for improving the ionic conductivity by reducing the crystallinity of a solid polymer electrolyte composition containing a polyalkylene oxide (PEO) -based compound as a plasticizer. However, unlike the acrylic group, A triazine-based compound containing an excellent allyl group was devised. Thus, it has been found that the solid polymer electrolyte composition containing the triazine-based compound according to the present invention as a crosslinking agent exhibits remarkably improved ionic conductivity by effectively lowering the crystallinity even at a low temperature (room temperature). In particular, it has been found that the triazine-based compound according to the present invention exhibits a remarkable synergistic effect when mixed with a thiol-based crosslinking agent, thereby completing the present invention.

한국등록특허 제10-0722834호Korean Patent No. 10-0722834 한국등록특허 제10-1368870호Korean Patent No. 10-1368870 한국등록특허 제10-1282129호Korean Patent No. 10-1282129

Journal of Power Sources, 244, p.170-176 (2013) Journal of Power Sources, 244, p.170-176 (2013) Macromolecules, 45, p.7931 (2012) Macromolecules, 45, p. 7931 (2012)

본 발명의 목적은 신규한 트리아진계 화합물을 제공하는 것이다.An object of the present invention is to provide a novel triazine-based compound.

본 발명의 또 다른 목적은 상기 트리아진계 화합물을 마일드한 반응 조건으로 매우 경제적으로 제조할 수 있는 이의 제조방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing the triazine-based compound which can be produced economically in a mild reaction condition.

본 발명의 또 다른 목적은 상기 트리아진계 화합물을 가교제로 포함하는 전고상 고분자 전해질 조성물, 특히 semi-IPN(interpenetrating polymer network) 타입의 전고상 고분자 전해질 조성물을 제공하는 것이다.It is still another object of the present invention to provide a whole solid polymer electrolyte composition comprising the triazine-based compound as a crosslinking agent, particularly a semi-IPN (interpenetrating polymer network) type all solid polymer electrolyte composition.

본 발명의 또 다른 목적은 상기 전고상 고분자 전해질 조성물을 포함하는 전고상 고분자 전해질 박막을 제공하는 것이다.It is still another object of the present invention to provide a whole solid polymer electrolyte membrane comprising the above-mentioned all-solid polymer electrolyte composition.

본 발명의 또 다른 목적은 상기 전고상 고분자 전해질 조성물을 포함하는 리튬-폴리머 이차전지를 제공하는 것이다.It is still another object of the present invention to provide a lithium-polymer secondary battery comprising the above-mentioned all-solid polymer electrolyte composition.

본 발명의 또 다른 목적은 상기 전고상 고분자 전해질 조성물을 포함하는 염료감응형 이차전지를 제공하는 것이다.It is still another object of the present invention to provide a dye-sensitized secondary battery comprising the above-mentioned all-solid polymer electrolyte composition.

본 발명은 상술된 목적을 달성하기 위하여, 하기 화학식 1로 표시되는 트리아진계 화합물을 제공한다.In order to achieve the above-mentioned object, the present invention provides a triazine-based compound represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112016108091112-pat00001
Figure 112016108091112-pat00001

[화학식 1에서, [Chemical Formula 1]

R1 내지 R3는 각각 독립적으로

Figure 112016108091112-pat00002
이고, 상기 Y는 -O-, -S- 또는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112016108091112-pat00003
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]R 1 to R 3 are each independently
Figure 112016108091112-pat00002
And wherein Y is -O-, -S- or -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, or (C3-C20) heteroaryl or
Figure 112016108091112-pat00003
And m and n are each independently an integer of 1 to 10.]

본 발명의 일 양태에 따른 상기 화학식 1로 표시되는 트리아진계 화합물은 하기 화학식 4로 표시되는 화합물과 알릴 할라이드를 반응시켜 하기 화학식 5로 표시되는 알릴옥시 화합물을 제조하는 단계; 및 상기 알릴옥시 화합물과 시아누릭 할라이드를 반응시켜 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 단계;를 포함하여 제조될 수 있으나 이에 한정되지 않는다.The triazine-based compound represented by Formula 1 according to an embodiment of the present invention is prepared by reacting a compound represented by Formula 4 with an allyl halide to prepare an allyloxy compound represented by Formula 5 below; And reacting the allyloxy compound with a cyanuric halide to produce a triazine-based compound represented by the following formula (1), but the present invention is not limited thereto.

[화학식 1][Chemical Formula 1]

Figure 112016108091112-pat00004
Figure 112016108091112-pat00004

[화학식 4][Chemical Formula 4]

Figure 112016108091112-pat00005
Figure 112016108091112-pat00005

[화학식 5][Chemical Formula 5]

Figure 112016108091112-pat00006
Figure 112016108091112-pat00006

[화학식 1 및 화학식 4 내지 5에서, [In the formulas (1) and (4) to (5)

R1 내지 R3는 각각 독립적으로

Figure 112016108091112-pat00007
이고, 상기 Y는 -O-, -S- 또는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112016108091112-pat00008
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]R 1 to R 3 are each independently
Figure 112016108091112-pat00007
And wherein Y is -O-, -S- or -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, or (C3-C20) heteroaryl or
Figure 112016108091112-pat00008
And m and n are each independently an integer of 1 to 10.]

또한, 본 발명의 일 양태에 따른 상기 화학식 1로 표시되는 트리아진계 화합물은 시아누릭 할라이드와 하기 화학식 4로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 히드록시 화합물을 제조하는 단계; 및 상기 히드록시 화합물과 알릴 할라이드를 반응시켜 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 단계; 를 포함하여 제조될 수 있으나 이에 한정되지 않는다. The triazine-based compound represented by Formula 1 according to an embodiment of the present invention may be prepared by reacting a cyanuric halide with a compound represented by Formula 4 to prepare a hydroxy compound represented by Formula 6 below; And reacting the hydroxy compound with an allyl halide to prepare a triazine-based compound represented by the following formula (1); But is not limited thereto.

[화학식 1][Chemical Formula 1]

Figure 112016108091112-pat00009
Figure 112016108091112-pat00009

[화학식 4][Chemical Formula 4]

Figure 112016108091112-pat00010
Figure 112016108091112-pat00010

[화학식 6][Chemical Formula 6]

Figure 112016108091112-pat00011
Figure 112016108091112-pat00011

[화학식 1, 화학식 4 및 화학식 6에서, [In the formulas (1), (4) and (6)

R1 내지 R3는 각각 독립적으로

Figure 112016108091112-pat00012
이고, 상기 Y는 -O-, -S- 또는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112016108091112-pat00013
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]R 1 to R 3 are each independently
Figure 112016108091112-pat00012
And wherein Y is -O-, -S- or -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, or (C3-C20) heteroaryl or
Figure 112016108091112-pat00013
And m and n are each independently an integer of 1 to 10.]

본 발명은 상기 화학식 1로 표시되는 트리아진계 화합물을 가교제로 포함하는 전고상 고분자 전해질 조성물을 제공한다.The present invention provides a whole solid polymer electrolyte composition comprising the triazine-based compound represented by Formula 1 as a crosslinking agent.

또한, 본 발명은 상기 전고상 고분자 전해질 조성물을 포함하는 전고상 고분자 전해질 박막을 제공한다.In addition, the present invention provides a whole solid polymer electrolyte thin film including the above-mentioned all-solid polymer electrolyte composition.

또한, 본 발명은 상기 전고상 고분자 전해질 조성물을 포함하는 리튬-폴리머 이차전지 및 염료감응형 태양전지 등의 용도로 활용될 수 있다.In addition, the present invention can be utilized for a lithium-polymer secondary battery including the above-described all-solid polymer electrolyte composition and a dye-sensitized solar cell.

본 발명에 따른 신규한 트리아진계 화합물은 우수한 저장성을 가질 뿐 아니라 종래 고분자 매트릭스인 PEO의 결정성 제어를 목적으로 사용된 가교제 화합물 대비 현저한 효과를 보인다. 즉, 본 발명에 따르면 전고상 고분자 전해질 조성물에 있어, 현저하게 향상된 이온 전도도의 구현이 가능할 뿐 아니라 전기화학적 안정성 및 전지 특성이 우수하여, 리튬-폴리머 이차전지, 염료감응형 태양전지 등의 전고상 고분자 전해질로 유용하게 사용할 수 있다.The novel triazine compound according to the present invention not only has excellent storability but also shows a remarkable effect compared to the crosslinking compound used for the purpose of controlling the crystallinity of PEO which is a conventional polymer matrix. That is, according to the present invention, not only remarkably improved ionic conductivity can be realized in the whole solid polymer electrolyte composition, but also electrochemical stability and cell characteristics are excellent. Thus, it is possible to provide a lithium- And can be usefully used as a polymer electrolyte.

또한 본 발명에 따르면, 상술된 효과를 가지는 신규한 트리아진계 화합물을 보다 간편한 공정으로도 높은 수율로 수득 가능하여 상업적으로 유용하다.Further, according to the present invention, a novel triazine-based compound having the above-described effect can be obtained by a simple process at a high yield and is commercially useful.

도 1은 본 발명의 실시예 16 및 25와 비교예 1의 온도에 따른 이온전도도를 도시한 그래프이다.1 is a graph showing ionic conductivities according to the temperatures of Examples 16 and 25 and Comparative Example 1 of the present invention.

본 발명에 따른 신규한 트리아진계 화합물, 이를 가교제로 포함하는 전고상 고분자 전해질 조성물 및 이의 응용에 대하여 이하 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.The novel triazine-based compound according to the present invention, the whole solid polymer electrolyte composition comprising the same as a crosslinking agent and its application will be described below. However, unless otherwise defined in technical terms and scientific terms used herein, And a description of known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted in the following description.

본 발명에 따르면, 고유의 안정성이 우수할 뿐 아니라 폴리알킬렌옥사이드(PEO)의 결정성을 효과적으로 억제하여 우수한 이온 전도도를 갖는, 특히, 저온(상온 이하의 온도)에서의 이온 전도도를 현저하게 개선시킬 수 있는 신규한 트리아진계 화합물을 제공할 수 있다. According to the present invention, not only the inherent stability is excellent but also the crystallinity of the polyalkylene oxide (PEO) is effectively suppressed, and the ionic conductivity at a low temperature (temperature below room temperature), which has excellent ionic conductivity, Can be obtained.

본 발명의 일 양태에 따른 트리아진계 화합물은 하기 화학식 1로 표시되는 것일 수 있다.The triazine-based compound according to an embodiment of the present invention may be represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112016108091112-pat00014
Figure 112016108091112-pat00014

[화학식 1에서, [Chemical Formula 1]

R1 내지 R3는 각각 독립적으로

Figure 112016108091112-pat00015
이고, 상기 Y는 -O-, -S- 또는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112016108091112-pat00016
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]R 1 to R 3 are each independently
Figure 112016108091112-pat00015
And wherein Y is -O-, -S- or -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, or (C3-C20) heteroaryl or
Figure 112016108091112-pat00016
And m and n are each independently an integer of 1 to 10.]

본 발명에 기재된 「알킬」은 직쇄 또는 분쇄 형태를 모두 포함하며, 본 발명에서는 탄소수 1 내지 7의 저급 알킬이 우선되나 탄소수 8이상의 고급 알킬 또한 본 발명의 일 양태에 해당함은 물론이다.The term " alkyl " used in the present invention includes both linear and branched forms. In the present invention, lower alkyl having 1 to 7 carbon atoms is preferred, but higher alkyl having 8 or more carbon atoms is also an aspect of the present invention.

본 발명의 일 양태에 따른 트리아진계 화합물은 PEO의 결정성을 효과적으로 억제하여 이온 전도도를 현저하게 향상시킬 수 있음과 동시에 앞서 설명한 고분자 매트릭스인 PEO의 결정성 제어를 목적으로 여러 첨가제를 사용하는 경우와는 달리 기계적 물성이나 신율의 저하를 일으키지 않는다.The triazine-based compound according to one embodiment of the present invention can effectively improve the ionic conductivity by effectively suppressing the crystallinity of PEO, and also can be used in the case where various additives are used for the purpose of controlling the crystallinity of PEO which is the polymer matrix Do not cause deterioration of mechanical properties or elongation.

상술된 효과에 있어 바람직하게, 본 발명의 일 양태에 따른 트리아진계 화합물은 하기 화학식 2 또는 화학식 3으로 표시되는 것일 수 있다.Preferably, the triazine-based compound according to an embodiment of the present invention may be represented by the following general formula (2) or (3).

[화학식 2](2)

Figure 112016108091112-pat00017
Figure 112016108091112-pat00017

[화학식 3](3)

Figure 112016108091112-pat00018
Figure 112016108091112-pat00018

[화학식 2 및 화학식 3에서, In the formulas (2) and (3)

R11은 (C1-C7)알킬, (C6-C20)시클로알킬 또는

Figure 112016108091112-pat00019
이고, 상기 m은 1 내지 10의 정수이고;R < 11 > is (C1-C7) alkyl, (C6-C20)
Figure 112016108091112-pat00019
M is an integer of 1 to 10;

n은 1 내지 10의 정수이다.]and n is an integer of 1 to 10.]

보다 바람직하게, 본 발명의 일 양태에 따른 트리아진계 화합물은 하기 구조에서 선택되는 것일 수 있으나 이에 한정되지 않음은 물론이다.More preferably, the triazine compound according to one embodiment of the present invention may be selected from the following structures, but is not limited thereto.

Figure 112016108091112-pat00020
Figure 112016108091112-pat00020

Figure 112016108091112-pat00021
Figure 112016108091112-pat00021

[구조에서, [In the structure,

n은 1 내지 5의 정수이다.]and n is an integer of 1 to 5.]

이하, 본 발명의 일 양태에 따른 트리아진계 화합물의 제조방법에 대하여 설명한다.Hereinafter, a method for producing a triazine compound according to an embodiment of the present invention will be described.

본 발명의 일 양태에 따른 상기 화학식 1로 표시되는 트리아진계 화합물은 하기 화학식 4로 표시되는 화합물과 알릴 할라이드를 반응시켜 하기 화학식 5로 표시되는 알릴옥시 화합물을 제조하는 단계; 및 상기 알릴옥시 화합물과 시아누릭 할라이드를 반응시켜 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 단계;를 포함하는 제조방법으로 제조될 수 있다.The triazine-based compound represented by Formula 1 according to an embodiment of the present invention is prepared by reacting a compound represented by Formula 4 with an allyl halide to prepare an allyloxy compound represented by Formula 5 below; And reacting the allyloxy compound with a cyanuric halide to produce a triazine-based compound represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112016108091112-pat00022
Figure 112016108091112-pat00022

[화학식 4][Chemical Formula 4]

Figure 112016108091112-pat00023
Figure 112016108091112-pat00023

[화학식 5][Chemical Formula 5]

Figure 112016108091112-pat00024
Figure 112016108091112-pat00024

[화학식 1 및 화학식 4 내지 5에서, [In the formulas (1) and (4) to (5)

R1 내지 R3는 각각 독립적으로

Figure 112016108091112-pat00025
이고, 상기 Y는 -O-, -S- 또는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112016108091112-pat00026
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]R 1 to R 3 are each independently
Figure 112016108091112-pat00025
And wherein Y is -O-, -S- or -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, or (C3-C20) heteroaryl or
Figure 112016108091112-pat00026
And m and n are each independently an integer of 1 to 10.]

또한, 본 발명의 일 양태에 따른 상기 화학식 1로 표시되는 트리아진계 화합물은 시아누릭 할라이드와 하기 화학식 4로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 히드록시 화합물을 제조하는 단계; 및 상기 히드록시 화합물과 알릴 할라이드를 반응시켜 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 단계; 를 포함하는 제조방법으로 제조될 수 있다.The triazine-based compound represented by Formula 1 according to an embodiment of the present invention may be prepared by reacting a cyanuric halide with a compound represented by Formula 4 to prepare a hydroxy compound represented by Formula 6 below; And reacting the hydroxy compound with an allyl halide to prepare a triazine-based compound represented by the following formula (1); ≪ / RTI >

[화학식 1][Chemical Formula 1]

Figure 112016108091112-pat00027
Figure 112016108091112-pat00027

[화학식 4][Chemical Formula 4]

Figure 112016108091112-pat00028
Figure 112016108091112-pat00028

[화학식 6][Chemical Formula 6]

Figure 112016108091112-pat00029
Figure 112016108091112-pat00029

[화학식 1, 화학식 4 및 화학식 6에서, [In the formulas (1), (4) and (6)

R1 내지 R3는 각각 독립적으로

Figure 112016108091112-pat00030
이고, 상기 Y는 -O-, -S- 또는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112016108091112-pat00031
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]R 1 to R 3 are each independently
Figure 112016108091112-pat00030
And wherein Y is -O-, -S- or -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl, or (C3-C20) heteroaryl or
Figure 112016108091112-pat00031
And m and n are each independently an integer of 1 to 10.]

본 발명에 따르면, 수소화나트륨(NaH) 등과 같은 대량생산이 용이하지 않는 물질을 사용하지 않음은 물론이고, 마일드한 반응 조건으로 매우 경제적으로 상술된 효과에 있어 현저한 트리아진계 화합물을 제공할 수 있다. 또한 최종 반응 수율이 우수하고, 대량생산시 특별한 반응장치를 필요로 하거나 조작상의 어려움을 초래하지 않아 상업적 규모의 제조로 매우 효과적인 방법이라 볼 수 있다.According to the present invention, not only materials such as sodium hydride (NaH) that are not easy to mass-produce are used, but also triazine-based compounds which are remarkably economically effective in the mild reaction conditions can be provided. In addition, the final reaction yield is excellent, and it is a very effective method for manufacturing on a commercial scale since a special reaction device is required in mass production or does not cause operational difficulties.

본 발명의 일 양태에 따른 제조방법에 있어서, 상기 반응은 용매 상에서 수행되는 것일 수 있으며, 상시 용매는 출발물질을 모두 용해할 수 있는 것이라면 제한되지는 않으나, 바람직하게는 아세토니트릴, 테트라히드로퓨란, 1,4-디옥산, 디에틸에테르, 1,2-메톡시에탄, 클로로포름, 1,2-디클로로에탄, 1,1-디클로로에탄, 디클로로메탄, 벤젠, 톨루엔, 크실렌, 메시틸렌, 클로로벤젠, 디클로로벤젠, 아세톤, 메틸에틸케톤, 니트로메탄, 디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 설포란, 메탄올, 에탄올, n-프로판올, n-부탄올, 아밀알코올, n-헥실알코올, n-헵탄올, n-옥탄올, 이소프로판올, 이소부탄올, 이소아밀알코올, 3-펜탄올, t-부탄올 및 t-아밀알코올 등에서 선택되는 용매 또는 이들의 혼합용매를 사용할 수 있다.The reaction may be carried out in a solvent. The solvent is not limited as long as it can dissolve all of the starting materials. Preferably, the solvent is acetonitrile, tetrahydrofuran, Dichloroethane, 1,1-dichloroethane, dichloromethane, benzene, toluene, xylene, mesitylene, chlorobenzene, toluene, xylene, N-propanol, n-butanol, amyl alcohol, n-hexyl alcohol, n-heptane, n-hexane, n-hexane, There can be used a solvent selected from water, n-octanol, isopropanol, isobutanol, isoamyl alcohol, 3-pentanol, t-butanol and t-amyl alcohol or a mixed solvent thereof.

이하, 본 발명의 일 양태에 따른 트리아진계 화합물을 가교제로 포함하는 전고상 고분자 전해질 조성물에 대하여 설명한다.Hereinafter, a whole solid polymer electrolyte composition comprising a triazine-based compound as a crosslinking agent according to an embodiment of the present invention will be described.

본 발명의 일 양태에 따른 트리아진계 화합물은 말단에 알릴기가 도입되어 있어, 고분자 전해질이 semi-IPN(Interpenetrating Polymer Network) 타입의 3차원 망상구조를 이루게 하는 역할을 한다. 이때, 본 발명에 따른 트리아진계 화합물은 단독으로 보관할 경우, 가교반응이 일어나지 않아 보관 안정성이 우수하다. The triazine-based compound according to an embodiment of the present invention has an allyl group introduced at a terminal thereof, and plays a role of forming a three-dimensional network structure of the semi-IPN (Interpenetrating Polymer Network) type of the polymer electrolyte. At this time, when the triazine-based compound according to the present invention is stored alone, the crosslinking reaction does not occur and the storage stability is excellent.

본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 트리아진계 화합물에 티올계 가교제를 더 포함하여 가교 효율을 극대화 할 수 있다. 이때, 본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 트리아진계 화합물과 티올계 가교제의 조합을 포함함에 따라 우수한 가교 효율 외에도 이온 전도도 향상에 있어 시너지 효과를 부여함과 동시에 기계적 물성이나 신율의 저하를 효과적으로 억제할 수 있다. 상기 티올계 가교제의 비한정적인 일예로는, 1,3-프로판디티올, 2,3-부탄디티올, 2-머캅토프로피온산, 3-머캅토프로피온산, 펜타에리스리톨 테트라키스(3-머캅토프로피오네이트), 트리메틸올프로판 트리스(3-메르캅토프로피오네이트), 2,2'-(에틸렌디옥시)디에탄티올 등에서 선택되는 하나 이상일 수 있으며, 1,3-프로판디티올, 2,3-부탄디티올, 펜타에리스리톨 테트라키스(3-머캅토프로피오네이트), 트리메틸올프로판 트리스(3-메르캅토프로피오네이트), 2,2'-(에틸렌디옥시)디에탄티올 등에서 선택되는 하나 이상일 경우, 상술된 효과의 구현에 있어 우선된다.In the all solid polymer electrolyte composition according to an embodiment of the present invention, the crosslinking efficiency can be maximized by further including a thiol-based crosslinking agent in the triazine-based compound. At this time, in the whole solid polymer electrolyte composition according to one embodiment of the present invention, since the combination of the triazine-based compound and the thiol-based cross-linking agent is included, in addition to excellent crosslinking efficiency, synergistic effect is provided in improving ionic conductivity, The deterioration of the elongation can be effectively suppressed. Non-limiting examples of the thiol crosslinking agent include 1,3-propanedithiol, 2,3-butanedithiol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, pentaerythritol tetrakis (Ethylene dioxy) diethanethiol, etc., and 1,3-propanedithiol, 2,3-propanediol, 2,3-propanediol, -Butanedithiol, pentaerythritol tetrakis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), 2,2 '- (ethylene dioxy) , It takes priority in the implementation of the above-mentioned effect.

본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 트리아진계 화합물과 티올계 가교제의 사용량은 제한되지는 않으나, 1:0.1 내지 1:5 중량비로 포함되는 것이 좋으며, 1:0.1 내지 1:3 중량비로 포함되는 것이 보다 좋다. 이때, 상술된 가교제의 총 사용량은 제한되지는 않지만, 상기 전고상 고분자 전해질 조성물의 전체 중량 대비, 1 내지 30 중량%, 바람직하게는 5 내지 25 중량%, 보다 바람직하게는 8 내지 20중량%로 포함될 수 있다.The total amount of the triazine-based compound and the thiol-based crosslinking agent in the total solid polymer electrolyte composition according to one embodiment of the present invention is not limited, but is preferably in the range of 1: 0.1 to 1: 5, : 3 weight ratio. The total amount of the cross-linking agent is not limited, but may be 1 to 30% by weight, preferably 5 to 25% by weight, more preferably 8 to 20% by weight, based on the total weight of the total solid polymer electrolyte composition .

또한 본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 가소제, 극성 비수용액계 극성용매, 리튬염, 경화형 개시제 등에서 선택되는 하나 이상을 더 포함할 수 있음은 물론이다.In addition, the total solid polymer electrolyte composition according to an embodiment of the present invention may further include at least one selected from a plasticizer, a polar non-aqueous polar solvent, a lithium salt, a curing initiator, and the like.

본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 가소제는 수평균 분자량 100 내지 10,000 Da 인 폴리(에틸렌글리콜)다이메틸에테르로 당업계에서 일반적으로 사용되는 것이라면 한정되지 않으나 바람직하게 하기 화학식 A로 표시되는 포스페이트계 가소제, 하기 화학식 B로 표시되는 포스파진계 가소제 또는 이의 혼합 가소제일 수 있다. 이때, 상기 가소제의 사용량은 제한되지는 않지만, 상기 전고상 고분자 전해질 조성물의 전체 중량 대비, 1 내지 90 중량%, 바람직하게는 30 내지 80 중량%, 보다 바람직하게는 45 내지 75중량%로 포함될 수 있다. In the total solid polymer electrolyte composition according to one embodiment of the present invention, the plasticizer is a poly (ethylene glycol) dimethyl ether having a number average molecular weight of 100 to 10,000 Da, and is not limited as long as it is generally used in the art, A, a phosphazene-based plasticizer represented by the following formula (B), or a mixed plasticizer thereof. The amount of the plasticizer to be used is not limited, but may be in the range of 1 to 90% by weight, preferably 30 to 80% by weight, more preferably 45 to 75% by weight, based on the total weight of the total solid polymer electrolyte composition have.

[화학식 A](A)

Figure 112016108091112-pat00032
Figure 112016108091112-pat00032

[화학식 B] [Chemical Formula B]

Figure 112016108091112-pat00033
Figure 112016108091112-pat00033

[화학식 A 및 화학식 B에서, In Formulas A and B,

Ra는 각각 독립적으로

Figure 112016108091112-pat00034
,
Figure 112016108091112-pat00035
또는
Figure 112016108091112-pat00036
이고;R a are each independently
Figure 112016108091112-pat00034
,
Figure 112016108091112-pat00035
or
Figure 112016108091112-pat00036
ego;

Rb는 각각 독립적으로

Figure 112016108091112-pat00037
또는
Figure 112016108091112-pat00038
이고;R b are each independently
Figure 112016108091112-pat00037
or
Figure 112016108091112-pat00038
ego;

x, y 및 z는 각각 독립적으로 1 내지 20의 정수이다.]x, y and z each independently represent an integer of 1 to 20.]

또한 본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 가소제는 단독 또는 극성 비수용액계 극성용매와 혼합하여 사용할 수 있다. 이때, 리튬염의 해리와 리튬이온의 전도성을 양호하게 하여 이온 전도도에 있어 상승효과를 부여하기 위한 측면에서 상기 비수용액계 극성용매는 알킬렌 카보네이트계, 알킬테트라하이드로퓨란계, 디옥시란계, 락톤계 및 아세토니트릴계 등에서 선택되는 하나 이상일 수 있으며, 이의 비한정적인 일예로는 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 1,3-디옥시란, 4,4-디메틸-1,3-디옥시란, γ-부티로락톤, 아세토니트릴 등을 들 수 있으나 이에 한정되는 것은 아니다. Further, in the all solid polymer electrolyte composition according to one embodiment of the present invention, the plasticizer may be used alone or in combination with a polar non-aqueous polar solvent. In order to improve the dissociation of the lithium salt and the conductivity of the lithium ion to thereby give a synergistic effect in ionic conductivity, the nonaqueous polar solvent is preferably an alkylene carbonate-based, alkyltetrahydrofuran-based, dioxirane-based, Based solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxane and the like, 4,4-dimethyl-1,3-dioxirane,? -Butyrolactone, acetonitrile, and the like, but are not limited thereto.

본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 리튬염은 당업계에서 일반적으로 사용되는 것이라면 한정되지 않으나 바람직하게 LiClO4, LiCF3SO3, LiBF4, LiPF6, LiAsF6 및 LiN(SO2CF3)2 등에서 선택되는 하나 이상일 수 있다. 이때, 상기 리튬염의 사용량은 제한되지는 않지만, 상기 전고상 고분자 전해질 조성물의 전체 에틸렌옥사이드기 대비 리튬이온의 비율이1 내지 50, 바람직하게는 10 내지 35, 보다 바람직하게는 15 내지 30 으로 포함될 수 있다. In the overall solid polymer electrolyte composition according to an embodiment of the present invention, the lithium salt is not limited as long as it is generally used in the art, but preferably LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiPF 6 , LiAsF 6 and LiN (SO 2 CF 3) may be at least one selected from 2. In this case, although the amount of the lithium salt to be used is not limited, the ratio of the lithium ion to the total ethylene oxide group of the total solid polymer electrolyte composition may be 1 to 50, preferably 10 to 35, more preferably 15 to 30 have.

또한 본 발명의 일 양태에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 경화형 개시제는 당업계에서 일반적으로 사용되는 것이라면 한정되지 않으며, 광경화형, 열경화형 등의 모든 개시제가 사용될 수 있다. 상기 광경화형 개시제의 비한정적인 일예로는 에틸벤조인 에테르, 이소프로필벤조인 에테르, α-메틸벤조인 에틸에테르, 벤조인페닐에테르, α-아실옥심 에스테르, α,α-디에톡시 아세토페논, 1,1-디클로로아세토페논, 2-하이드록시-2-메틸-1-페닐프로판-1-온[시바 가이기(Ciba Geigy)사의 다로큐어(Darocur) 1173], 1-하이드록시시클로헥실 페닐 케톤[시바 가이기(Ciba Geigy)사의 이가큐어(Irgacure) 184, 다로큐어 1116, 이가큐어 907], 안트라퀴논, 2-에틸안트라퀴논, 2-클로로안트라퀴논, 티옥산톤, 이소프로필 티옥산톤, 클로로티옥산톤, 벤조페논, p-클로로벤조페논, 벤질 벤조에이트, 벤조일 벤조에이트 및 미클러 케톤 등을 들 수 있으며, 상기 열경화형 개시제의 비한정적인 일예로는 벤조일 퍼옥시드, 디-tert-부틸 퍼옥시드, 디-tert-아밀 퍼옥시드, a-큐밀 퍼옥시네오데카노에이트, a-큐밀 퍼옥시네오펩타노에이트, t-아밀 퍼옥시네오데카노에이트, 디-(2-에틸헥시) 퍼옥시-디카보네이트, t-아밀 퍼옥시피발레이트, t-부틸 퍼옥시피발레이트, 2,5-디메틸-2,5 비스(2-에틸-헥사노일퍼옥시) 헥산, 디벤조일 퍼옥시드, t-아밀 퍼옥시-2-에틸헥사노에이트, t-부틸 퍼옥시-2-에틸헥사노에이트, 1,1-디-(t-아밀퍼옥시) 시클로헥산, 1,1-디-(t-부틸퍼옥시) 3,3,5-트리메틸 시클로헥산, 1,1-디-(t-부틸퍼옥시) 시클로헥산, t-부틸 퍼옥시아세테이트, t-부틸 퍼옥시벤조에이트, t-아밀 퍼옥시벤조에이트, t-부틸퍼옥시벤조에이트, 에틸 3,3-디-(t-아밀퍼옥시) 부티레이트, 에틸 3,3-디-(t-부틸퍼옥시) 부티레이트, 디큐밀퍼옥시드 등의 퍼옥시드계 개시제 또는 1,1'-아조비스(시클로헥산카보니트릴), 2,2'-아조비스(2-메틸프로피온아미딘) 디히드로클로라이드, 4,4'-아조비스(4-시아노발레르산) 등을 들 수 있다. 이때, 상기 경화형 개시제의 사용량은 제한되지는 않지만, 상기 전고상 고분자 전해질 조성물의 전체 중량 대비, 0.1 내지 5 중량 %로 포함될 수 있다.Further, in the all-solid polymer electrolyte composition according to an embodiment of the present invention, the curing initiator is not limited as long as it is generally used in the art, and all initiators such as photo-curing type and thermosetting type can be used. Non-limiting examples of the photocurable initiator include ethyl benzoin ether, isopropyl benzoin ether,? -Methyl benzoin ethyl ether, benzoin phenyl ether,? -Acyl oxime ester,?,? -Diethoxy acetophenone, Methyl-1-phenylpropan-1-one (Darocur 1173 from Ciba Geigy), 1-hydroxycyclohexyl phenyl ketone (Irgacure 184, DauroCure 1116, Igacure 907 from Ciba Geigy), anthraquinone, 2-ethyl anthraquinone, 2-chloro anthraquinone, thioxanthone, isopropyl thioxanthone, Specific examples of the thermosetting initiator include benzoyl peroxide, di-tert-butylbenzoate, benzoyl peroxide, benzoyl peroxide, benzoyl peroxide, benzoyl peroxide, Butyl peroxide, di-tert-amyl peroxide, a-cumyl peroxyneodeca Amyl peroxyneodecanoate, di- (2-ethylhexyl) peroxy-dicarbonate, t-amyl peroxypivalate, t-butyl peroxy 2,5-dimethyl-2,5 bis (2-ethyl-hexanoylperoxy) hexane, dibenzoylperoxide, t-amylperoxy-2-ethylhexanoate, t- 1,1-di- (t-amylperoxy) cyclohexane, 1,1-di- (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-di butyl peroxybenzoate, t-butyl peroxybenzoate, ethyl 3,3-di- (t-butylperoxy) benzoate, t-butyl peroxybenzoate, t- (cyclohexanecarbonitrile), 2, 3-di (t-butylperoxy) butyrate, ethyl 3,3- , 2'-azobis (2-methylpropionamidine) dihydrochloride, 4,4'- Azobis (4-cyanovaleric acid), and the like. The curing initiator may be used in an amount of 0.1 to 5% by weight based on the total weight of the total solid polymer electrolyte composition.

또한, 본 발명은 상기 전고상 고분자 전해질 조성물을 이용한 다양한 용도를 제공한다. The present invention also provides various uses using the above-described all-solid polymer electrolyte composition.

본 발명의 일 양태에 따르면, 상기 전고상 고분자 전해질 조성물을 포함하는 전고상 고분자 전해질 박막을 제공한다. 이하, 상기 전고상 고분자 전해질 조성물을 사용한 전해질 박막을 제조하는 일례의 과정을 보다 구체적으로 설명하나, 이에 한정되는 것은 아니다.According to an aspect of the present invention, there is provided a total solid polymer electrolyte thin film including the all solid polymer electrolyte composition. Hereinafter, a process of manufacturing an electrolyte thin film using the above-described all-solid polymer electrolyte composition will be described in more detail, but the present invention is not limited thereto.

우선, 본 발명에 따른 가소제 및 리튬염을 적당한 비율로 용기에 넣고 교반기로 교반하여 용액을 제조한 후, 본 발명에 따른 트리아진계 화합물인 제1가교제 및 티올계 가교제인 제2가교제를 혼합하여 상기 용액에 첨가한 후, 경화용 개시제를 첨가하고 교반하면 전고상 고분자 전해질 제조용 조성물 혼합액이 만들어진다. 상기에서 제조된 혼합액을 적절한 두께로 유리판, 폴리에틸렌계 비닐 또는 상업용 마일라(Mylar) 필름 또는 전지용 전극 등의 지지체상에 코팅하여 전자선, 자외선, 감마선 등의 조사기 또는 가열조건에서 경화반응을 유도한다. 일정한 두께의 필름을 얻기 위한 또 다른 제조 방법으로는, 상기 지지체 상에 조성물 혼합액을 도포하고, 지지체 양 끝에 두께 조절용 스페이서(spacer)를 고정시킨 후 그 위에 다른 지지체를 덮은 후, 상기의 경화용 조사 기 또는 열원을 이용하여 경화 반응시켜 전고상 고분자 전해질 박막을 제조할 수 있다.First, the plasticizer and the lithium salt according to the present invention are put into a container at an appropriate ratio and stirred with a stirrer to prepare a solution. Then, the first crosslinking agent as a triazine compound and the second crosslinking agent as a thiol crosslinking agent according to the present invention are mixed, After adding the curing initiator to the solution and stirring the mixture, a mixed solution for preparing all the solid polymer electrolytes is prepared. The mixed solution prepared above is coated on a support such as a glass plate, a polyethylene vinyl or a commercial Mylar film or a battery electrode to induce a curing reaction under irradiation with an electron beam, an ultraviolet ray or a gamma ray or heating. As another manufacturing method for obtaining a film having a constant thickness, there is a method in which a composition mixture is applied on the support, a spacer for thickness control is fixed on both ends of the support, another support is covered thereon, Or a heat source to cure the entire solid polymer electrolyte membrane.

또한, 본 발명의 일 양태에 따르면, 상기 전고상 고분자 전해질 조성물을 포함하는 리튬-폴리머 이차전지를 제공한다. 본 발명에 따른 상기 전고상 고분자 전해질 조성물의 또 다른 적용 예인 리튬-폴리머 이차전지의 고분자 전해질을 제조하는 일례의 과정을 보다 구체적으로 설명하나, 이에 한정되는 것은 아니다.According to another aspect of the present invention, there is provided a lithium-polymer secondary battery comprising the above-described all-solid polymer electrolyte composition. The process of producing the polymer electrolyte of the lithium-polymer secondary battery, which is another application example of the all-solid polymer electrolyte composition according to the present invention, will be described in more detail, but it is not limited thereto.

상기 리튬-폴리머 이차전지는 양극, 전해질 및 음극을 포함하며, 상기 양극으로는 LiFePO4, LiCoO2, LiNiO2 등의 리튬 금속 산화물을 사용하여 제조될 수 있으며, 상기 음극으로는 MCMB, MPCF 등의 흑연 또는 코크스 등과 같은 탄소 계열이나 리튬금속 등을 재료로 사용하여 제조될 수 있다. 이때, 후술되는 리튬-폴리머 이차전지의 제조방법은 상기 설명한 방법 이외에도 본 발명이 속하는 분야에서 통상적으로 사용되는 모든 방법으로 제조할 수 있음은 물론이다.The lithium-polymer secondary battery includes a positive electrode, an electrolyte, and a negative electrode. The positive electrode may be formed using a lithium metal oxide such as LiFePO 4 , LiCoO 2 , or LiNiO 2. Examples of the negative electrode include MCMB and MPCF Graphite, coke or the like, or a metal such as lithium metal. In this case, the method of manufacturing a lithium-polymer secondary battery to be described later may be manufactured by any method conventionally used in the field of the present invention in addition to the above-described method.

또한, 본 발명은 상기 전고상 고분자 전해질 조성물을 포함하는 염료감응형 태양전지를 제공한다. 본 발명에 따른 전고상 고분자 전해질 조성물을 경화하여 얻은 전해질은 이온전도도, 특히 저온(상온)에서의 이온 전도도가 우수하고, 전기화학적 안정성이 우수하며, 초기 충전/방전 거동이 안정적이고, 권장 방전 속도 이하로 전지를 운용할 경우 초기 방전용량에 비하여 감소가 적으며, 충전/방전 사이클 횟수가 늘어나도 초기 방전용량에 비하여 감소가 적으므로, 리튬-폴리머 이차전지, 염료감응형 태양전지 등의 전고상 고분자 전해질로 유용하게 사용할 수 있을 것으로 기대된다.The present invention also provides a dye-sensitized solar cell comprising the above-described all-solid polymer electrolyte composition. The electrolyte obtained by curing the all-solid polymer electrolyte composition according to the present invention has excellent ionic conductivity, especially ionic conductivity at low temperature (room temperature), excellent electrochemical stability, stable initial charging / discharging behavior, The discharge capacity of the battery is less than the initial discharge capacity, and even if the number of charging / discharging cycles is increased, the decrease is less than the initial discharging capacity. Therefore, the total capacity of the lithium-polymer secondary battery, It is expected that it can be usefully used as a polymer electrolyte.

이하, 본 발명을 하기 실시예에 의해 더욱 구체적으로 설명한다. 그러나 이들 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these embodiments are provided to aid understanding of the present invention, and the scope of the present invention is not limited thereto in any sense.

본 명세서에서 달리 언급하지 않는 한 온도는 모두 ℃ 단위이다. 또한, 본 명세서에서 달리 언급하지 않는 한 온도는 20 ℃, 대기압(1 atm)에서 수행된다. Unless otherwise stated herein, all temperatures are in degrees Celsius. Also, unless otherwise stated herein, the temperature is carried out at 20 DEG C and at atmospheric pressure (1 atm).

1H-NMR 및 13C-NMR 은 Fourier 300 FT-NMR 분광계를 이용하여 측정하였다. 화학적 이동은 "ppm(δ 단위)"으로, 결합 상수 (J) 는 "Hz"로 표시하였으며, 분리 패턴은 다중도를 나타내며, s(단일), d(2중), t(3중), q(4중), m(다중), br(넓음)로서 표시된다. 1 H-NMR and 13 C-NMR were measured using a Fourier 300 FT-NMR spectrometer. The chemical shifts are denoted as "ppm (δ units)" and the coupling constants ( J ) as "Hz." The separation pattern represents the multiplicity and s (singlet), d (doublet), t q (quadruple), m (multiple), and br (broad).

(실시예 1)AOT-1 합성(Example 1) AOT-1 synthesis

Figure 112016108091112-pat00039
Figure 112016108091112-pat00039

THF(Tetrahydrofuran)에 Allyloxy ethanol (2.2 ml, 20.6 mmol)을 첨가하고 교반시켰다. -78 ℃ 조건하에 1.6M n-BuLi(13.56 ml, 21.69 mmol)을 첨가한 후, 15분 동안 교반시켰다. 그 후, -78 ℃ 조건하에 THF와 Cyanuric Chloride(1 g, 5.42 mmol)을 녹인 용액을 천천히 투입하였다. 그 다음에 상온에서 24 시간 동안 교반하였다. 반응을 종결 한 뒤 THF를 증발시키고, Methylene chloride을 투입하여 용해 후 그 용액을 NaCl수용액으로 3번 씻어준 다음 NaSO4로 건조시키고 필터하였다. 감압증류 후 수득된 용액을 컬럼크로마토그래피(Hexane:EtOAc= 2:1)를 이용하여 분리하였다. 분리한 반응 생성물(AOT-1)는 50 ℃의 진공오븐에서 건조시켰다(수율 = 29%).Allyloxy ethanol (2.2 ml, 20.6 mmol) was added to THF (tetrahydrofuran) and stirred. 1.6M n-BuLi (13.56 ml, 21.69 mmol) was added under the condition of -78 ° C, and the mixture was stirred for 15 minutes. Then, a solution prepared by dissolving THF and cyanuric chloride (1 g, 5.42 mmol) in -78 ° C was added slowly. It was then stirred at room temperature for 24 hours. After the reaction was completed, THF was evaporated, methylene chloride was added to dissolve the solution, and the solution was washed with NaCl aqueous solution three times, then dried with NaSO 4 and filtered. The solution obtained after distillation under reduced pressure was separated using column chromatography (Hexane: EtOAc = 2: 1). The separated reaction product (AOT-1) was dried in a vacuum oven at 50 DEG C (yield = 29%).

1H-NMR(400MHz, CDCl3) : ppm 5.90 (m,1H), 5.30(d,1H), 5.20(d,1H), 4.55(t,2H) 4.06(d,2H), 3.78(t,2H) 1 H-NMR (400MHz, CDCl 3): ppm 5.90 (m, 1H), 5.30 (d, 1H), 5.20 (d, 1H), 4.55 (t, 2H) 4.06 (d, 2H), 3.78 (t, 2H)

13C-NMR(400MHz, CDCl3) : ppm 173.01 134.42, 117.34, 72.22, 67.61, 67.48 13 C-NMR (400 MHz, CDCl 3 ) ppm 173.01 134.42, 117.34, 72.22, 67.61, 67.48

(실시예 2)AOT-2 합성 (Example 2) AOT-2 synthesis

단계1.Step 1.

Figure 112016108091112-pat00040
Figure 112016108091112-pat00040

1,4-Dioxane에 Sodium hydroxid (2 g, 0.05 mol)을 첨가하고 교반시켰다. 55 ℃ 조건하에 Diethylene gycol(9.475 ml, 0.1 mol)을 첨가한 후, 1시간 동안 교반하였다. 그 후, 55 ℃ 조건하에 Allyl chloride(4.07 ml, 0.05 mol)을 첨가하고 6시간 55 ℃에서 교반시켰다. 그 다음에 상온으로 온도를 내리면 반응이 종결된다. MgSO4로 건조 후 필터하고 걸러진 용액을 컬럼크로마토그래피(Hexane:EtOAc= 1:4)로 분리하였다. 분리한 반응생성물(DGME)는 50℃의 진공오븐에서 건조시켰다(수율 = 49.6%). Sodium hydroxid (2 g, 0.05 mol) was added to 1,4-dioxane and stirred. Diethylene gycol (9.475 ml, 0.1 mol) was added under the condition of 55 占 폚, and the mixture was stirred for 1 hour. Allyl chloride (4.07 ml, 0.05 mol) was then added at 55 캜 and stirred at 55 캜 for 6 hours. The reaction is then terminated when the temperature is lowered to room temperature. Dried over MgSO4, filtered and the filtrate was separated by column chromatography (Hexane: EtOAc = 1: 4). The separated reaction product (DGME) was dried in a vacuum oven at 50 DEG C (yield = 49.6%).

1H-NMR(400MHz, CDCl3) : ppm 5.90 (m,1H), 5.30(d,1H), 5.20(d,1H), 4.06(d,2H), 3.78(m,8H), 3.35(s,1H) 1 H-NMR (400MHz, CDCl 3): ppm 5.90 (m, 1H), 5.30 (d, 1H), 5.20 (d, 1H), 4.06 (d, 2H), 3.78 (m, 8H), 3.35 (s , 1H)

단계2.Step 2.

Figure 112016108091112-pat00041
Figure 112016108091112-pat00041

상기 단계1에서 제조한 DGME (1 g, 7.08 mmol)과 Cyanuric Chloride(0.4 g, 2.15 mmol)를 사용하여, 실시예 1의 단계1의 방법과 동일하게 수행하였다. 수득된 용액을 컬럼크로마토그래피(Hexane:EtOAc= 3:1)를 이용하여 분리하였다. 분리한 반응생성물(AOT-2)는 50℃의 진공오븐에서 건조시켰다(수율 = 10%이내). The procedure of Step 1 of Example 1 was repeated using DGME (1 g, 7.08 mmol) prepared in the above step 1 and cyanuric chloride (0.4 g, 2.15 mmol). The resulting solution was separated using column chromatography (Hexane: EtOAc = 3: 1). The separated reaction product (AOT-2) was dried in a vacuum oven at 50 DEG C (yield = 10% or less).

1H-NMR(400MHz, CDCl3) : ppm 5.89 (m,1H), 5.29(d,1H), 5.19(d,1H), 4.66(t,2H) 4.02(d,2H), 3.88(d,2H), 3.70(t,2H), 3.59(t,2H) 1 H-NMR (400MHz, CDCl 3): ppm 5.89 (m, 1H), 5.29 (d, 1H), 5.19 (d, 1H), 4.66 (t, 2H) 4.02 (d, 2H), 3.88 (d, 2H), 3.70 (t, 2H), 3.59 (t, 2H)

13C-NMR(400MHz, CDCl3) : ppm 172.52, 134.60, 117.19, 72.28, 70.89, 69.44, 69.34, 68.49 13 C-NMR (400 MHz, CDCl 3 ): ppm 172.52, 134.60, 117.19, 72.28, 70.89, 69.44, 69.34, 68.49

(실시예 3)AOT-3 합성(Example 3) AOT-3 synthesis

Figure 112016108091112-pat00042
Figure 112016108091112-pat00042

상기 실시예 2의 단계1에서 Diethylene gycol(9.475 ml, 0.1 mol) 대신 Triethylene gycol(13.34 ml, 0.1 mol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼크로마토그래피(Hexane:EtOAc= 1:4)로 분리하였다. 분리한 반응생성물(TGME)는 50℃의 진공오븐에서 건조시켰다(수율 = 49%). Except that triethylene gycol (13.34 ml, 0.1 mol) was used in place of Diethylene gycol (9.475 ml, 0.1 mol) in step 1 of Example 2 above. The resulting solution was separated by column chromatography (Hexane: EtOAc = 1: 4). The separated reaction product (TGME) was dried in a vacuum oven at 50 DEG C (yield = 49%).

1H-NMR(400MHz, CDCl3) : ppm 5.91(m,1H), 5.30(d,1H), 5.19(d,1H), 4.03(d,2H), 3.68(m,12H), 2.85(s,1H) 1 H-NMR (400MHz, CDCl 3): ppm 5.91 (m, 1H), 5.30 (d, 1H), 5.19 (d, 1H), 4.03 (d, 2H), 3.68 (m, 12H), 2.85 (s , 1H)

단계2.Step 2.

Figure 112016108091112-pat00043
Figure 112016108091112-pat00043

상기 단계1에서 제조한 TGME (0.55g, 2.89 mmol)과 Cyanuric Chloride(0.162 g, 0.876 mmol)를 사용하여, 실시예 1의 단계1의 방법과 동일하게 수행하였다. 수득된 용액을 컬럼크로마토그래피(Hexane:EtOAc= 3:1)로 분리하였다. 분리한 반응생성물(AOT-3)는 50℃의 진공오븐에서 건조시켰다(수율 = 10%이내). The procedure of Step 1 of Example 1 was repeated, except that TGME (0.55 g, 2.89 mmol) prepared in Step 1 and Cyanuric Chloride (0.162 g, 0.876 mmol) were used. The resulting solution was separated by column chromatography (Hexane: EtOAc = 3: 1). The separated reaction product (AOT-3) was dried in a vacuum oven at 50 DEG C (yield = 10% or less).

1H-NMR(400MHz, CDCl3) : ppm 5.90 (m,1H), 5.29(d,1H), 5.19(d,1H), 4.56(t,2H) 4.03(d,2H), 3.87(t,2H), 3.66(m,8H) 1 H-NMR (400MHz, CDCl 3): ppm 5.90 (m, 1H), 5.29 (d, 1H), 5.19 (d, 1H), 4.56 (t, 2H) 4.03 (d, 2H), 3.87 (t, 2H), 3.66 (m, 8H)

13C-NMR(400MHz, CDCl3) : ppm 172.47, 134.72, 117.06, 72.19, 70.82, 70.66, 70.63, 69.39, 69.34, 68.41 13 C-NMR (400 MHz, CDCl 3 ) ppm 172.47, 134.72, 117.06, 72.19, 70.82, 70.66, 70.63, 69.39, 69.34, 68.41

(실시예 4)AOT-4(Example 4) AOT-4

단계1.Step 1.

Figure 112016108091112-pat00044
Figure 112016108091112-pat00044

상기 실시예 2의 단계1에서 Diethylene gycol(9.475 ml, 0.1 mol) 대신 Tetrathylene gycol(13.31 ml, 0.1 mol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼크로마토그래피(Hexane:EtOAc= 1:4)로 분리하였다. 분리한 반응생성물(4GME)는 50℃의 진공오븐에서 건조시켰다(수율 = 45%). Except that Tetrathylene gycol (13.31 ml, 0.1 mol) was used in place of Diethylene gycol (9.475 ml, 0.1 mol) in step 1 of Example 2 above. The resulting solution was separated by column chromatography (Hexane: EtOAc = 1: 4). The separated reaction product (4GME) was dried in a vacuum oven at 50 DEG C (yield = 45%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.65(s,1H), 3.57(m,16H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.65 (s, 1H), 3.57 (m , 16H)

단계2.Step 2.

Figure 112016108091112-pat00045
Figure 112016108091112-pat00045

상기 단계1에서 제조한 4GME (0.68g, 2.89 mmol)과 Cyanuric Chloride(0.162 g, 0.876 mmol)를 사용하여, 실시예 1의 단계1의 방법과 동일하게 수행하였다. 수득된 용액을 컬럼크로마토그래피(Hexane:EtOAc= 3:1)로 분리하였다. 분리한 반응생성물(AOT-4)는 50℃의 진공오븐에서 건조시켰다(수율 = 10%이내). The procedure of Step 1 of Example 1 was followed except that 4GME (0.68 g, 2.89 mmol) and cyanuric chloride (0.162 g, 0.876 mmol) prepared in Step 1 above were used. The resulting solution was separated by column chromatography (Hexane: EtOAc = 3: 1). The separated reaction product (AOT-4) was dried in a vacuum oven at 50 DEG C (yield = 10% or less).

1H-NMR(400MHz, CDCl3) : ppm 6.06 (m,1H), 5.42(d,1H), 5.28(d,1H), 4.31(t,2H) 4.04(d,2H), 3.79(t,2H), 3.54(m,12H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.31 (t, 2H) 4.04 (d, 2H), 3.79 (t, 2H), 3.54 (m, 12H)

13C-NMR(400MHz, CDCl3) : ppm 179.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.0, 69.3, 13 C-NMR (400 MHz, CDCl 3 ) ppm 179.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.0, 69.3,

(실시예 5)TA3ene-1 합성(Example 5) Synthesis of TA3ene-1

단계1.Step 1.

Figure 112016108091112-pat00046
Figure 112016108091112-pat00046

Acetone 에 Cyanuric Chloride (6 g, 32.54 mmol)을 완전히 녹도록 교반시킨 후, Potassium carbonate (11.24 g, 81.34 mmol)을 첨가하였다. 0℃ 조건하에 2-(methylamino)ethanol (11.76 ml, 146.41 mmol)을 첨가하였다. 그 후 상온까지 온도가 오른 후, 48 시간 동안 환류시켰다. 반응을 종결한 뒤 필터하고 컬럼크로마토그래피 (EtOAc 100%)로 분리하였다. 분리 한 반응생성물(TA3OH)는 진공오븐에서 건조시켰다(수율 = 84%). Cyanuric chloride (6 g, 32.54 mmol) was added to Acetone to completely dissolve and then Potassium carbonate (11.24 g, 81.34 mmol) was added. 2- (methylamino) ethanol (11.76 ml, 146.41 mmol) was added at 0 ° C. After that, the temperature was raised to room temperature and refluxed for 48 hours. The reaction was terminated, filtered and separated by column chromatography (EtOAc 100%). The separated reaction product (TA3OH) was dried in a vacuum oven (yield = 84%).

1H-NMR(400MHz, CDCl3) : ppm 4.55 (s,1H), 3.82(d,4H), 3.14(s,3H), 4.55(t,2H) 4.06(d,2H), 3.78(t,2H) 1 H-NMR (400MHz, CDCl 3): ppm 4.55 (s, 1H), 3.82 (d, 4H), 3.14 (s, 3H), 4.55 (t, 2H) 4.06 (d, 2H), 3.78 (t, 2H)

13C-NMR(400MHz, CDCl3) : ppm 165.58, 62.92, 51.90, 35.84 13 C-NMR (400 MHz, CDCl 3 ): ppm 165.58, 62.92, 51.90, 35.84

단계2.Step 2.

Figure 112016108091112-pat00047
Figure 112016108091112-pat00047

THF에 상기 단계1에서 제조한 TA3OH (1 g, 6.7 mmol )을 완전히 녹도록 교반시킨 후, 0℃ 조건하에 Sodium Hydride (0.375 g , 23.45 mmol)을 첨가하였다. 1시간 교반시킨 후, Allylchloride (1.27ml, 23.45 mmol)을 첨가하였다. 그 후 상온까지 온도가 오른 후, 24시간 교반하였다. 반응을 종결하기 위해 물을 넣어 반응하지 않은 Sodium Hydride을 제거하고 EtOAc로 추출하였다. 추출된 EtOAc는 물과 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. 혼합물을 필터한 후 컬럼크로마토그래피(Hexane:EtOAc= 1:1)로 분리하였다. 분리한 반응생성물(TA3ene-1)은 진공오븐에서 건조시켰다(수율 = 98%). To the THF was added TA3OH (1 g, 6.7 mmol) prepared in the above step 1 to be completely dissolved, and then sodium hydride (0.375 g, 23.45 mmol) was added at 0 ° C. After stirring for 1 hour, Allylchloride (1.27 ml, 23.45 mmol) was added. Thereafter, the temperature was raised to room temperature, followed by stirring for 24 hours. Water was added to terminate the reaction to remove unreacted sodium hydride and extracted with EtOAc. The extracted EtOAc was washed with water and aqueous NaCl solution and dried over MgSO 4 . The mixture was filtered and then separated by column chromatography (Hexane: EtOAc = 1: 1). The separated reaction product (TA3ene-1) was dried in a vacuum oven (yield = 98%).

1H-NMR(400MHz, CDCl3) : ppm 5.89 (m,1H), 5.28(d,1H), 5.17(d,1H), 3.99(d,2H) 3.82(m,4H), 3.14(s,3H) 1 H-NMR (400MHz, CDCl 3): ppm 5.89 (m, 1H), 5.28 (d, 1H), 5.17 (d, 1H), 3.99 (d, 2H) 3.82 (m, 4H), 3.14 (s, 3H)

13C-NMR(400MHz, CDCl3) : ppm 165.35, 134.94, 116.61, 71.93, 68.51, 48.28, 35.48 13 C-NMR (400 MHz, CDCl 3 ): ppm 165.35, 134.94, 116.61, 71.93, 68.51, 48.28, 35.48

(실시예 6)TA3ene-2 합성(Example 6) Synthesis of TA3ene-2

단계1.Step 1.

Figure 112016108091112-pat00048
Figure 112016108091112-pat00048

증류수에 Sodium hydroxide(2.56 g, 63.99 mmol)을 완전히 녹도록 교반시킨 후, 0℃ 조건하에 THF와 Allyloxy ethanol(5.83 ml, 54.55 mmol)을 함께 녹인 용액을 첨가하였다. 30분 교반시킨 후, 0℃ 조건에서 THF에 4-Toluenesulfonyl chloride (10 g, 52.45 mmol)을 녹인 용액을 천천히 첨가하였다. 그 후 상온까지 온도가 오른 후, 1시간 동안 교반시켰다. 차가운 증류수를 넣어 반응을 종결한 뒤 Hexane으로 추출하였다. 추출 된 유기 층은 물과 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. 반응생성물(1EO-OTs)은 진공오븐에서 건조시켰다(수율 = 33%). Sodium hydroxide (2.56 g, 63.99 mmol) was completely dissolved in distilled water and a solution of THF and Allyloxy ethanol (5.83 ml, 54.55 mmol) was added at 0 ° C. After stirring for 30 minutes, a solution of 4-Toluenesulfonyl chloride (10 g, 52.45 mmol) dissolved in THF at 0 ° C was added slowly. After that, the temperature was raised to room temperature and then stirred for 1 hour. The reaction was terminated by adding cold distilled water and extracted with hexane. The extracted organic layer was washed with water and aqueous NaCl solution, and then dried with MgSO 4 . The reaction product (1EO-OTs) was dried in a vacuum oven (Yield = 33%).

1H-NMR(400MHz, CDCl3) : ppm 7.78 (d,2H), 7.49 (d,2H), 5.79 (m,1H), 5.21(q,4H), 4.14 (t,2H), 3.89 (t,2H), 3.35(t,2H), 2.42(s,3H) 1 H-NMR (400MHz, CDCl 3): ppm 7.78 (d, 2H), 7.49 (d, 2H), 5.79 (m, 1H), 5.21 (q, 4H), 4.14 (t, 2H), 3.89 (t , 2H), 3.35 (t, 2H), 2.42 (s, 3H)

단계2.Step 2.

Figure 112016108091112-pat00049
Figure 112016108091112-pat00049

THF와 증류수, 2-methylamino ethanol(2 ml, 24.90 mmol)에 Di-tert-butyl Dicarbonate (5.9 g, 27.03 mmol)를 10분 동안 4번 나눠 첨가하였다. 40분 교반한 후, 포화된 NaHCO3 수용액을 넣어 pH 8로 맞추었다. 그 후 4시간 30분 동안 상온에서 교반하였다. THF를 증발시켜서 반응을 종결시킨 후, EtOAc를 첨가하고 2.5M Ammonium chloride와 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. EtOAc를 모두 증발시키고 Hexane로 다시 녹인 후 증발하고 반응생성물(Boc- methylamino ethanol)은 진공오븐에서 건조시켰다(수율 = 97%).Di-tert-butyl dicarbonate (5.9 g, 27.03 mmol) was added in portions to THF and distilled water, 2-methylamino ethanol (2 ml, 24.90 mmol) After stirring for 40 minutes, saturated aqueous NaHCO 3 solution was added to adjust to pH 8. Thereafter, the mixture was stirred at room temperature for 4 hours and 30 minutes. The reaction was terminated by evaporation of THF, followed by addition of EtOAc, washing with 2.5 M Ammonium chloride and aqueous NaCl solution, and drying over MgSO 4 . EtOAc was evaporated and redissolved in hexane and evaporated, and the reaction product (Boc-methylamino ethanol) was dried in a vacuum oven (yield = 97%).

1H-NMR(400MHz, CDCl3) : ppm 3.75 (t,2H), 3.40 (t,2H), 2.92 (s,3H), 2.36(s,1H), 1.47(s,9H) 1 H-NMR (400MHz, CDCl 3): ppm 3.75 (t, 2H), 3.40 (t, 2H), 2.92 (s, 3H), 2.36 (s, 1H), 1.47 (s, 9H)

단계3.Step 3.

Figure 112016108091112-pat00050
Figure 112016108091112-pat00050

질소 하에 DMF와 NaH(60% in mineral oil, 0.46 g, 11.41 mmol)를 첨가하고, -20 ℃조건 하에 상기 단계2에서 제조된 Boc-2 methylaminoethanol(1 g, 5.71 mmol)을 천천히 첨가하였다. 그 후 상온까지 온도를 올린 후, 상기 단계1에서 제조된 Allyloxy-Ts(1.76g, 6.85 mmol)을 첨가한 후, 17시간 상온에서 교반하였다. 반응을 종결하기 위해 0℃ 조건하에 물을 넣어 반응하지 않은 Sodium Hydride을 제거하고 EtOAc로 추출하였다. 추출된 EtOAc는 물과 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. 반응생성물(2EO-(methylamino)ethanol)은 진공오븐에서 건조시켰다(수율 = 57%). DMF and NaH (60% in mineral oil, 0.46 g, 11.41 mmol) were added under nitrogen and Boc-2 methylaminoethanol (1 g, 5.71 mmol) prepared in step 2 above was added slowly at -20 ° C. After the temperature was raised to room temperature, Allyloxy-Ts (1.76 g, 6.85 mmol) prepared in the above step 1 was added and stirred at room temperature for 17 hours. To terminate the reaction, water was added at 0 ° C to remove unreacted sodium hydride and extracted with EtOAc. The extracted EtOAc was washed with water and aqueous NaCl solution and dried over MgSO 4 . The reaction product (2EO- (methylamino) ethanol) was dried in a vacuum oven (yield = 57%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,8H), 3.26(s,3H), 2.72(t,2H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 (s , 8H), 3.26 (s, 3H), 2.72 (t, 2H), 2.0

단계4.Step 4.

Figure 112016108091112-pat00051
Figure 112016108091112-pat00051

실시예 5의 단계1에서 2-(methylamino)ethanol (11.76 ml, 146.41 mmol) 대신 상기 단계3에서 제조한 2EO-(methylamino)ethanol (23.19 g, 146.41 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피(Hex :EtOAc = 1:1)로 분리하였다. 분리한 반응생성물은 진공오븐에서 건조시켰다(수율 = 35%). Except that 2EO- (methylamino) ethanol (23.19 g, 146.41 mmol) prepared in the above step 3 was used instead of 2- (methylamino) ethanol (11.76 ml, 146.41 mmol) in the step 1 of Example 5 Respectively. The resulting solution was separated by column chromatography (Hex: EtOAc = 1: 1). The separated reaction product was dried in a vacuum oven (yield = 35%).

1H-NMR(400MHz, CDCl3) : ppm ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,8H), 3.26(s,3H), 2.72(t,2H), 1 H-NMR (400MHz, CDCl 3): ppm ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 ( s, 8H), 3.26 (s, 3H), 2.72 (t, 2H)

13C-NMR(400MHz, CDCl3) : ppm 165.9, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1 13 C-NMR (400 MHz, CDCl 3 ) ppm 165.9, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1

(실시예 7)TA3ene-3 합성 (Example 7) TA3ene-3 synthesis

단계1.Step 1.

Figure 112016108091112-pat00052
Figure 112016108091112-pat00052

증류수에 Sodium hydroxide(2.56 g, 63.99 mmol)을 완전히 녹도록 교반시킨 후, 0℃ 조건하에 THF와 실시예 2의 단계1에서 제조된 DGME(5.83 ml, 54.55 mmol)을 함께 녹인 용액을 첨가하였다. 30분 교반시킨 후, 0℃ 조건에서 THF에 4-Toluenesulfonyl chloride (10 g, 52.45 mmol)을 녹인 용액을 천천히 첨가하였다. 그 후 상온까지 온도가 오른 후, 1시간 동안 교반시켰다. 차가운 증류수를 넣어 반응을 종결한 뒤 EtOAc와 t-Butyl methyl ether으로 추출하였다. 추출된 유기층을 물과 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. 반응생성물(2EO-OTs)은 진공오븐에서 건조시켰다(수율 = 33%). Sodium hydroxide (2.56 g, 63.99 mmol) was stirred in distilled water to completely dissolve the solution, and THF and DGME (5.83 ml, 54.55 mmol) prepared in Step 1 of Example 2 were dissolved together at 0 ° C. After stirring for 30 minutes, a solution of 4-Toluenesulfonyl chloride (10 g, 52.45 mmol) dissolved in THF at 0 ° C was added slowly. After that, the temperature was raised to room temperature and then stirred for 1 hour. The reaction was terminated by adding cold distilled water and extracted with EtOAc and t-Butyl methyl ether. The extracted organic layer was washed with water and aqueous NaCl solution, and dried over MgSO 4 . The reaction product (2EO-OTs) was dried in a vacuum oven (Yield = 33%).

1H-NMR(400MHz, CDCl3) : ppm 7.78 (d,2H), 7.49 (d,2H), 5.79 (m,1H), 5.21(q,4H), 4.14 (t,2H), 3.89 (t,2H), 3.35(t,2H), 2.42(s,3H) 1 H-NMR (400MHz, CDCl 3): ppm 7.78 (d, 2H), 7.49 (d, 2H), 5.79 (m, 1H), 5.21 (q, 4H), 4.14 (t, 2H), 3.89 (t , 2H), 3.35 (t, 2H), 2.42 (s, 3H)

단계2.Step 2.

Figure 112016108091112-pat00053
Figure 112016108091112-pat00053

실시예 6의 단계3에서, 2EO-Ts (2.47g, 8.22 mmol) 대신 2EO-Ts(2.1 g, 6.85 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(3EO-(methylamino)ethanol)을 수득하여 진공오븐에서 건조시켰다(수율 = 57%). The same procedure was followed except that 2EO-Ts (2.1 g, 6.85 mmol) was used instead of 2EO-Ts (2.47 g, 8.22 mmol) in step 3 of Example 6 to give the reaction product 3EO- (methylamino) ethanol ) Was obtained and dried in a vacuum oven (yield = 57%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,8H), 3.26(s,3H), 2.72(t,2H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 (s , 8H), 3.26 (s, 3H), 2.72 (t, 2H), 2.0

단계3.Step 3.

Figure 112016108091112-pat00054
Figure 112016108091112-pat00054

실시예 6의 단계4에서, 2EO-(methylamino)ethanol 대신 상기 단계2에서 제조된 3EO-(methylamino)ethanol (11.76 ml, 146.41 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피(Hex :EtOAc = 1:1)로 반응생성물을 분리하였다. 분리한 반응생성물(TA3ene-3)은 진공오븐에서 건조시켰다(수율 = 30%). The procedure of Example 6 was repeated except that 3EO- (methylamino) ethanol (11.76 ml, 146.41 mmol) prepared in Step 2 was used instead of 2EO- (methylamino) ethanol in Step 4 of Example 6. The obtained solution was subjected to column chromatography (Hex: EtOAc = 1: 1) to separate the reaction product. The separated reaction product (TA3ene-3) was dried in a vacuum oven (yield = 30%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,8H), 3.26(s,3H), 2.72(t,2H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 (s , 8 H), 3.26 (s, 3 H), 2.72 (t, 2 H)

13C-NMR(400MHz, CDCl3) : ppm 184.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1 13 C-NMR (400 MHz, CDCl 3 ): ppm 184.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1

(실시예 8)TA3ene-4 합성 (Example 8) TA3ene-4 synthesis

단계1.Step 1.

Figure 112016108091112-pat00055
Figure 112016108091112-pat00055

실시예 7의 단계1에서 DGME 대신 실시예 3의 단계1에서 제조된 TGME(10.38 g, 54.55 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(3EO-OTs)을 수득하여 진공오븐에서 건조시켰다(수율 = 33%). (3EO-OTs) was obtained in the same manner as in Example 7 except that TGME (10.38 g, 54.55 mmol) prepared in Step 1 of Example 3 was used instead of DGME in Step 1 of Example 7 to obtain a reaction product (Yield = 33%).

1H-NMR(400MHz, CDCl3) : ppm 7.75 (d,2H), 7.46 (d,2H), 6.06 (m,1H), 5.42(q,4H), 4.04 (t,2H), 3.70 (t,2H), 3.54(t,10H), 2.34(s,3H). 1 H-NMR (400MHz, CDCl 3): ppm 7.75 (d, 2H), 7.46 (d, 2H), 6.06 (m, 1H), 5.42 (q, 4H), 4.04 (t, 2H), 3.70 (t , 2H), 3.54 (t, 10H), 2.34 (s, 3H).

단계2.Step 2.

Figure 112016108091112-pat00056
Figure 112016108091112-pat00056

실시예 6의 단계3에서, 3EO-Ts (2.83g, 8.22 mmol) 대신 상기 단계1에서 제조된 3EO-Ts(2.4 g, 6.85 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(4EO-(methylamino)ethanol)을 수득하여 진공오븐에서 건조시켰다(수율 = 55%). The same procedure was followed except that 3EO-Ts (2.4 g, 6.85 mmol) prepared in the above step 1 was used instead of 3EO-Ts (2.83 g, 8.22 mmol) in the step 3 of Example 6 to obtain the reaction product 4EO- (methylamino) ethanol) was obtained and dried in a vacuum oven (yield = 55%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,10H), 3.26(s,3H), 2.72(t,2H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 (s , 10H), 3.26 (s, 3H), 2.72 (t, 2H), 2.0

단계3.Step 3.

Figure 112016108091112-pat00057
Figure 112016108091112-pat00057

실시예 6의 단계4에서, 2EO-(methylamino)ethanol (23.19 g, 146.41 mmol) 대신 상기 단계2에서 제조된 4EO-(methylamino)ethanol (36.2 g, 146.41 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피(Hex :EtOAc = 1:1)로 분리하였다. 분리한 반응생성물(TA3ene-4)은 진공오븐에서 건조시켰다(수율 = 25%). In the same manner as in Example 6 except that 4EO- (methylamino) ethanol (36.2 g, 146.41 mmol) prepared in the above Step 2 was used instead of 2EO- (methylamino) ethanol (23.19 g, Respectively. The resulting solution was separated by column chromatography (Hex: EtOAc = 1: 1). The separated reaction product (TA3ene-4) was dried in a vacuum oven (yield = 25%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,10H), 3.26(s,3H), 2.72(t,2H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 (s , 10 H), 3.26 (s, 3 H), 2.72 (t, 2 H)

13C-NMR(400MHz, CDCl3) : ppm 184.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1 13 C-NMR (400 MHz, CDCl 3 ): ppm 184.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1

(실시예 9)TA3ene-5 합성(Example 9) TA3ene-5 synthesis

단계1.Step 1.

Figure 112016108091112-pat00058
Figure 112016108091112-pat00058

실시예 7의 단계1에서 TGME대신 실시예 3의 단계1에서 제조된 4GME(12.84 g, 54.55 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(3EO-OTs)을 수득하여 진공오븐에서 건조시켰다(수율 = 33%)(3EO-OTs) was obtained in the same manner as in Example 7 except that 4GME (12.84 g, 54.55 mmol) prepared in Step 1 of Example 3 was used instead of TGME in Step 1 of Example 7 to obtain a reaction product ≪ / RTI > (Yield = 33%).

1H-NMR(400MHz, CDCl3) : ppm 7.75 (d,2H), 7.46 (d,2H), 6.06 (m,1H), 5.42(q,4H), 4.04 (t,2H), 3.70 (t,2H), 3.54(t,14H), 2.34(s,3H). 1 H-NMR (400MHz, CDCl 3): ppm 7.75 (d, 2H), 7.46 (d, 2H), 6.06 (m, 1H), 5.42 (q, 4H), 4.04 (t, 2H), 3.70 (t , 2H), 3.54 (t, 14H), 2.34 (s, 3H).

단계2.Step 2.

Figure 112016108091112-pat00059
Figure 112016108091112-pat00059

실시예 6의 단계3에서, 3EO-Ts 대신 상기 단계1에서 제조된 , 4EO-Ts(2.7 g, 6.85 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(4EO-(methylamino)ethanol)을 수득하여 진공오븐에서 건조시켰다(수율 = 57%). Except that 4EO-Ts (2.7 g, 6.85 mmol) prepared in the above step 1 was used instead of 3EO-Ts in step 3 of Example 6 to obtain the reaction product (4EO- (methylamino) ethanol ) Was obtained and dried in a vacuum oven (yield = 57%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,16H), 3.26(s,3H), 2.72(t,2H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 (s , 16H), 3.26 (s, 3H), 2.72 (t, 2H), 2.0 (s,

단계3.Step 3.

Figure 112016108091112-pat00060
Figure 112016108091112-pat00060

실시예 6의 단계4에서, 2EO-(methylamino)ethanol 대신 5EO-(methylamino)ethanol (42.65 g, 146.41 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피(Hex :EtOAc = 1:1)로 분리하였다. 분리한 반응생성물(TA3ene-5)은 진공오븐에서 건조시켰다(수율 = 20%). The same procedure was followed except that 5EO- (methylamino) ethanol (42.65 g, 146.41 mmol) was used instead of 2EO- (methylamino) ethanol in step 4 of Example 6. The resulting solution was separated by column chromatography (Hex: EtOAc = 1: 1). The separated reaction product (TA3ene-5) was dried in a vacuum oven (yield = 20%).

1H-NMR(400MHz, CDCl3) : ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.62(t,2H), 3.54(s,16H), 3.26(s,3H), 2.72(t,2H), 1 H-NMR (400MHz, CDCl 3): ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.62 (t, 2H), 3.54 (s , 16H), 3.26 (s, 3H), 2.72 (t, 2H)

13C-NMR(400MHz, CDCl3) : ppm 184.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1 13 C-NMR (400 MHz, CDCl 3 ): ppm 184.4, 134.1, 117.6, 71.9, 70.5, 70.4, 70.1, 67.8, 61.7, 39.1

(실시예 10) TA6ene-1 합성(Example 10) Synthesis of TA6ene-1

단계1.Step 1.

Figure 112016108091112-pat00061
Figure 112016108091112-pat00061

THF에 Cyanuric Chloride (5 g, 27.11 mmol)을 완전히 녹도록 교반시킨 후, Potassium carbonate (7.46 g, 53.98 mmol)을 첨가하였다. 0℃ 조건하에 Diethanolamine (10.3 ml, 108.46 mmol)을 첨가하였다. 그 후 상온까지 온도를 올린 다음 2시간 교반시키고, 24시간 환류시켰다. 반응을 종결한 뒤 필터하고 컬럼 크로마토그래피(MeOH:EtOAc= 1:3)로 분리하였다. 분리한 반응생성물(TA6OH)는 진공오븐에서 건조시켰다(수율 = 58.6%).Cyanuric chloride (5 g, 27.11 mmol) was stirred in THF to completely dissolve, and then Potassium carbonate (7.46 g, 53.98 mmol) was added. Diethanolamine (10.3 ml, 108.46 mmol) was added at 0 ° C. Thereafter, the temperature was raised to room temperature, followed by stirring for 2 hours and refluxing for 24 hours. The reaction was terminated, filtered and separated by column chromatography (MeOH: EtOAc = 1: 3). The separated reaction product (TA6OH) was dried in a vacuum oven (yield = 58.6%).

1H-NMR(400MHz, DMSO) : ppm 4.70(s,1H), 3.55(t,3H), 3.40(t,1H), 1 H-NMR (400MHz, DMSO ): ppm 4.70 (s, 1H), 3.55 (t, 3H), 3.40 (t, 1H),

13C-NMR(400MHz, DMSO) : ppm 164.88, 59.96, 50.98 13 C-NMR (400 MHz, DMSO): ppm 164.88, 59.96, 50.98

단계2.Step 2.

Figure 112016108091112-pat00062
Figure 112016108091112-pat00062

N,N-Dimethylformamide(DMF)에 상기 단계1에서 제조된 TA6OH ( 2 g, 5.12 mmol )을 완전히 녹도록 교반시킨 후, 0℃ 조건하에 Sodium Hydride (2.58 g, 107.63 mmol)을 첨가하였다. 1시간 교반시킨 후, Allylchloride (1.27ml, 23.45 mmol)을 첨가하였다. 그 후 상온까지 온도가 오른 후, 24시간 교반하였다. 반응을 종결하기 위해 물을 넣어 반응하지 않은 Sodium Hydride을 제거하고 EtOAc로 추출하였다. 추출된 EtOAc는 물과 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. 혼합물을 필터한 후 컬럼크로마토그래피(100% EtOAc)로 반응생성물(TA6ene-1)을 분리하였다. 분리한 반응생성물(TA6ene-1)은 진공오븐에서 건조시켰다(수율 = 98%). N, N-Dimethylformamide (DMF) was stirred to completely dissolve TA6OH (2 g, 5.12 mmol) prepared in Step 1, and sodium hydride (2.58 g, 107.63 mmol) was added at 0 ° C. After stirring for 1 hour, Allylchloride (1.27 ml, 23.45 mmol) was added. Thereafter, the temperature was raised to room temperature, followed by stirring for 24 hours. Water was added to terminate the reaction to remove unreacted sodium hydride and extracted with EtOAc. The extracted EtOAc was washed with water and aqueous NaCl solution and dried over MgSO 4 . The mixture was filtered and the reaction product (TA6ene-1) was separated by column chromatography (100% EtOAc). The separated reaction product (TA6ene-1) was dried in a vacuum oven (yield = 98%).

1H-NMR(400MHz, CDCl3) : ppm 5.89 (m,1H), 5.28(d,1H), 5.17(d,1H), 3.98(d,2H) 3.74(t,2H), 3.61(t,2H) 1 H-NMR (400MHz, CDCl 3): ppm 5.89 (m, 1H), 5.28 (d, 1H), 5.17 (d, 1H), 3.98 (d, 2H) 3.74 (t, 2H), 3.61 (t, 2H)

13C-NMR(400MHz, CDCl3) : ppm 164.96, 134,97, 116.60, 71.99, 68,73, 48.03 13 C-NMR (400 MHz, CDCl 3 ): ppm 164.96, 134, 97, 116.60, 71.99, 68, 73, 48.03

(실시예 11)TA6ene-2 합성(Example 11) TA6ene-2 synthesis

단계1.Step 1.

Figure 112016108091112-pat00063
Figure 112016108091112-pat00063

THF와 증류수, Diethanolamine (2.36 ml ,24.90 mmol) 에 Di-tert-butyl Dicarbonate (5.9 g, 27.03 mmol)를 10분 동안 4번 나눠 첨가하였다. 40분 교반한 후, 포화된 NaHCO3 수용액을 넣어 pH 8로 맞추었다. 그 후 4시간 30분 동안 상온에서 교반하였다. THF를 증발시켜서 반응을 종결시킨 후, EtOAc를 첨가하고 2.5M Ammonium chloride와 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. EtOAc를 모두 증발시키고 Hexane로 다시 녹인 후 증발하고 반응생성물(Boc-2 methylaminoethanol)은 진공오븐에서 건조시켰다(수율 = 92%). Di-tert-butyl dicarbonate (5.9 g, 27.03 mmol) was added in portions to THF, distilled water and diethanolamine (2.36 ml, 24.90 mmol) four times for 10 minutes. After stirring for 40 minutes, saturated aqueous NaHCO 3 solution was added to adjust to pH 8. Thereafter, the mixture was stirred at room temperature for 4 hours and 30 minutes. The reaction was terminated by evaporation of THF, followed by addition of EtOAc, washing with 2.5 M Ammonium chloride and aqueous NaCl solution, and drying over MgSO 4 . EtOAc was evaporated and redissolved in hexane and evaporated, and the reaction product (Boc-2 methylaminoethanol) was dried in a vacuum oven (yield = 92%).

1H-NMR(400MHz, CDCl3) : ppm 3.65(m,1H), 3.61(t,2H), 3.39(t,2H), 1.28(s,9H) 1 H-NMR (400MHz, CDCl 3): ppm 3.65 (m, 1H), 3.61 (t, 2H), 3.39 (t, 2H), 1.28 (s, 9H)

단계2.Step 2.

Figure 112016108091112-pat00064
Figure 112016108091112-pat00064

질소 하에 DMF와 NaH(60% in mineral oil, 0.46 g, 11.41 mmol)를 첨가하고, -20℃조건 하에 상기 단계1에서 제조된 Boc-2 methylaminoethanol(1 g, 5.71 mmol)을 천천히 첨가하였다. 그 후 상온까지 온도를 올린 후, 상기 실시예 6의 단계1에서 제조된 Allyloxy-Ts(3.52 g, 13.7 mmol)을 첨가한 후, 17시간 상온에서 교반히였다. 반응을 종결하기 위해 0℃ 조건하에 물을 넣어 반응하지 않은 Sodium Hydride을 제거하고 EtOAc로 추출하였다. 추출된 EtOAc는 물과 NaCl수용액으로 씻어준 다음 MgSO4로 건조하였다. 반응생성물(2,2EO-Diethanolamine)은 진공오븐에서 건조시켰다(수율 = 43%). DMF and NaH (60% in mineral oil, 0.46 g, 11.41 mmol) were added under nitrogen and Boc-2 methylaminoethanol (1 g, 5.71 mmol) prepared in step 1 above was added slowly at -20 ° C. After the temperature was raised to room temperature, Allyloxy-Ts (3.52 g, 13.7 mmol) prepared in Step 1 of Example 6 was added and stirred at room temperature for 17 hours. To terminate the reaction, water was added at 0 ° C to remove unreacted sodium hydride and extracted with EtOAc. The extracted EtOAc was washed with water and aqueous NaCl solution and dried over MgSO 4 . The reaction product (2,2EO-Diethanolamine) was dried in a vacuum oven (yield = 43%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,4H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 4H), 2.0 (s, IH)

단계3.Step 3.

Figure 112016108091112-pat00065
Figure 112016108091112-pat00065

실시예 6의 단계4에서, 2EO-(methylamino)ethanol (23.19 g, 146.41 mmol) 대신 상기 단계2에서 제조된 2,2EO-Diethanolamine (20.96 g, 108.46 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피 (MeOH:EtOAc=1:3)로 반응생성물을 분리하였다. 분리한 반응생성물(TA6ene-3)은 진공오븐에서 건조시켰다(수율 = 30%).Except that 2,2EO-Diethanolamine (20.96 g, 108.46 mmol) prepared in the above step 2 was used instead of 2EO- (methylamino) ethanol (23.19 g, 146.41 mmol) in the step 4 of Example 6 Respectively. The resulting solution was subjected to column chromatography (MeOH: EtOAc = 1: 3) to separate the reaction product. The separated reaction product (TA6ene-3) was dried in a vacuum oven (yield = 30%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,4H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 4H)

13C-NMR(400MHz, CDCl3) : ppm 164.96, 134,97, 116.60, 71.99, 68,73, 48.03 13 C-NMR (400 MHz, CDCl 3 ): ppm 164.96, 134, 97, 116.60, 71.99, 68, 73, 48.03

(실시예 12)TA6ene-3 합성(Example 12) Synthesis of TA6ene-3

단계1.Step 1.

Figure 112016108091112-pat00066
Figure 112016108091112-pat00066

실시예 11의 단계2에서, 2EO-OTs (3.52 g, 13.7 mmol) 대신 2EO-Ts(4.12 g, 13.7 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(3,3EO-Diethanolamine)을 수득하여 진공오븐에서 건조시켰다(수율 = 43%). (3,3EO-Diethanolamine) was carried out in the same manner as in Example 11, except that 2EO-Ts (4.12 g, 13.7 mmol) was used instead of 2EO-OTs (3.52 g, 13.7 mmol) Was obtained and dried in a vacuum oven (yield = 43%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,8H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 8H), 2.0 (s, 1H)

단계2.Step 2.

Figure 112016108091112-pat00067
Figure 112016108091112-pat00067

실시예 6의 단계4에서, 2EO-(methylamino)ethanol (23.19 g, 146.41 mmol) 대신 상기 단계1에서 제조된 3,3EO-Diethanolamine (39.2 g, 108.46 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피 (MeOH:EtOAc= 1:3)로 분리하였다. 분리한 반응생성물(TA6ene-3)는 진공오븐에서 건조시켰다(수율 = 30%). The same procedure was followed except that 3,3EO-Diethanolamine (39.2 g, 108.46 mmol) prepared in the above step 1 was used instead of 2EO- (methylamino) ethanol (23.19 g, 146.41 mmol) in the step 4 of Example 6. Respectively. The resulting solution was separated by column chromatography (MeOH: EtOAc = 1: 3). The separated reaction product (TA6ene-3) was dried in a vacuum oven (yield = 30%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,8H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 8H)

13C-NMR(400MHz, CDCl) : ppm 184.4, 134,1, 117.60, 71.9, 70.5, 70.4, 70.1, 68.1, 59.5 13 C-NMR (400 MHz, CDCl3): ppm 184.4, 134.1, 117.60, 71.9, 70.5, 70.4, 70.1, 68.1, 59.5

(실시 13)TA3ene-4 합성 (Example 13) TA3ene-4 synthesis

단계1.Step 1.

Figure 112016108091112-pat00068
Figure 112016108091112-pat00068

실시예 11의 단계2에서, 2EO-OTs (3.52 g, 13.7 mmol) 대신 3EO-Ts (4.73 g, 13.7 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(4,4EO-Diethanolamine)을 수득하여 진공오븐에서 건조시켰다(수율 = 43%).(4,4EO-Diethanolamine) was carried out in the same manner as in Example 11 except that 3E0-Ts (4.73 g, 13.7 mmol) was used instead of 2EO-OTs (3.52 g, 13.7 mmol) Was obtained and dried in a vacuum oven (yield = 43%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,16H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 16H), 2.0 (s, 1H)

단계2.Step 2.

Figure 112016108091112-pat00069
Figure 112016108091112-pat00069

실시예 6의 단계4에서, 2EO-(methylamino)ethanol (23.19 g, 146.41 mmol) 대신 상기 단계1에서 제조된 4,4EO-Diethanolamine (48.76 g, 108.46 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피 (MeOH:EtOAc= 1:3)로 분리하였다. 분리한 반응생성물(TA6ene-4)는 진공오븐에서 건조시켰다(수율 = 30%). The same procedure was followed except that 4,4EO-Diethanolamine (48.76 g, 108.46 mmol) prepared in the above step 1 was used instead of 2EO- (methylamino) ethanol (23.19 g, 146.41 mmol) in the step 4 of Example 6. Respectively. The resulting solution was separated by column chromatography (MeOH: EtOAc = 1: 3). The separated reaction product (TA6ene-4) was dried in a vacuum oven (yield = 30%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,12H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 12H)

13C-NMR(400MHz, CDCl3) : ppm 184.4, 134,1, 117.60, 71.9, 70.5, 70.4, 70.1, 68.1, 59.5 13 C-NMR (400 MHz, CDCl 3 ) ppm 184.4, 134.1, 117.60, 71.9, 70.5, 70.4, 70.1, 68.1, 59.5

(실시예 14)TA3ene-5 합성(Example 14) Synthesis of TA3ene-5

단계1. Step 1.

Figure 112016108091112-pat00070
Figure 112016108091112-pat00070

실시예 11의 단계2에서, 2EO-OTs(3.52 g, 13.7 mmol) 대신 4EO-Ts (5.33 g, 13.7 mmol)을 사용하는 것을 제외하고는 동일한 방법으로 수행하여 반응생성물(5,5EO-Diethanolamine)을 수득하여 진공오븐에서 건조시켰다(수율 = 25%).(5,5EO-Diethanolamine) was carried out in the same manner as in Example 11 except that 4EO-Ts (5.33 g, 13.7 mmol) was used instead of 2EO-OTs (3.52 g, 13.7 mmol) Was obtained and dried in a vacuum oven (yield = 25%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,16H), 2.0(s,1H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 16H), 2.0 (s, 1H)

단계2.Step 2.

Figure 112016108091112-pat00071
Figure 112016108091112-pat00071

실시예 6의 단계4에서, 2EO-(methylamino)ethanol (23.19 g, 146.41 mmol) 대신 5,5EO-Diethanolamine (58.31 g, 108.46 mmol) 을 사용하는 것을 제외하고는 동일한 방법으로 수행하였다. 수득된 용액을 컬럼 크로마토그래피 (MeOH:EtOAc= 1:3) 로 분리하였다. 분리한 반응생성물(TA3ene-5)는 진공오븐에서 건조시켰다(수율 = 30%). The procedure of Example 6 was repeated except that 5,5EO-Diethanolamine (58.31 g, 108.46 mmol) was used instead of 2EO- (methylamino) ethanol (23.19 g, 146.41 mmol). The resulting solution was separated by column chromatography (MeOH: EtOAc = 1: 3). The separated reaction product (TA3ene-5) was dried in a vacuum oven (yield = 30%).

1H-NMR(400MHz, CDCl3) ppm 6.06(m,1H), 5.42(d,1H), 5.28(d,1H), 4.04(d,2H), 3.89(m,2H), 3.73(m,2H), 3.54(s,16H) 1 H-NMR (400MHz, CDCl 3) ppm 6.06 (m, 1H), 5.42 (d, 1H), 5.28 (d, 1H), 4.04 (d, 2H), 3.89 (m, 2H), 3.73 (m, 2H), 3.54 (s, 16H)

13C-NMR(400MHz, CDCl3) : ppm 184.4, 134,1, 117.60, 71.9, 70.5, 70.4, 70.1, 68.1, 59.5 13 C-NMR (400 MHz, CDCl 3 ) ppm 184.4, 134.1, 117.60, 71.9, 70.5, 70.4, 70.1, 68.1, 59.5

(실시예 15-53)(Examples 15-53)

semi-IPN 타입의 전고상 고분자 전해질의 제조 1Preparation of Semi-IPN Type All Solid Polymer Electrolytes 1

가소제: 폴리(에틸렌글리콜)다이메틸에테르 (수평균분자량(Mn): 500) (0.35 g, 0.7 mmol);Plasticizer: poly (ethylene glycol) dimethyl ether (number average molecular weight (Mn): 500) (0.35 g, 0.7 mmol);

리튬염: LiN(SO2CF3)2 (0.152g, 0.53mmol);Lithium salt: LiN (SO 2 CF 3) 2 (0.152g, 0.53mmol);

제1가교제: 실시예 및 비교예에 따른 화합물 (0.06 g, 0.13 mmol, 하기 표 1 참조);First crosslinking agent: Compound according to Examples and Comparative Examples (0.06 g, 0.13 mmol, see Table 1 below);

제2가교제: 티올계 가교제 (0.09 g, 0.18 mmol, 하기 표 1 참조); 및Second crosslinking agent: thiol based crosslinker (0.09 g, 0.18 mmol, see Table 1 below); And

열경화형 개시제: t-부틸 퍼옥시피발레이트 (제1가교제 및 제2가교제 총 중량 대비 2 중량%).Thermosetting initiator: t-butyl peroxy pivalate (2 wt% based on the total weight of the first and second crosslinking agents).

상기 가소제와 리튬염을 균일한 혼합물이 될 때까지 상온에서 교반하였다. 다음으로, 제1가교제와 제2가교제를 섞어 상기 용액에 첨가한 후, 열경화형 개시제를 넣고 교반하여 전고상 고분자 전해질을 필름 형태로 제조하였다. 여기서, 제2가교제는 제1가교제와 함께 반응하여 경화를 일으키는 역할을 한다. 한편, [EO]/[Li] 몰 비는 15로, [EO]/[Li] 값이 증가할수록 리튬 염의 함량이 감소하는 것을 의미한다. (여기서, [EO]는 전해질 내에 존재하는 에틸렌옥사이드의 몰 수이고, [Li]는 리튬 이온의 몰 수이다.)The plasticizer and the lithium salt were stirred at room temperature until a homogeneous mixture was obtained. Next, a first crosslinking agent and a second crosslinking agent were mixed and added to the solution, and then a thermosetting initiator was added thereto and stirred to prepare a film of the all solid polymer electrolyte. Here, the second crosslinking agent reacts with the first crosslinking agent to cause hardening. On the other hand, the molar ratio [EO] / [Li] is 15, which means that the content of lithium salt decreases as the value of [EO] / [Li] increases. Where [EO] is the number of moles of ethylene oxide present in the electrolyte and [Li] is the number of moles of lithium ion.)

Figure 112016108091112-pat00072
Figure 112016108091112-pat00072

Figure 112016108091112-pat00073
Figure 112016108091112-pat00073

Figure 112016108091112-pat00074
Figure 112016108091112-pat00074

상기 방법으로 제조된 semi-IPN 타입의 전고상 고분자 전해질에 대한 평가를 하기 방법으로 수행하였다. The semi-IPN type all solid polymer electrolyte prepared by the above method was evaluated by the following method.

(온도변화에 따른 이온 전도도의 평가)(Evaluation of ion conductivity according to temperature change)

상기 실시예 15 내지 53과 비교예 1에서 제조한 전고상 고분자 전해질 조성물을 각각 전도성 유리 기판에 주입한후, 열경화하여 중합시키고, 충분히 식힌 뒤, 교류 임피던스 분석기로 측정하였다. 상기에서 얻은 측정치를 주파수 응답 분석기(제조사: Zahner Elekrik, 모델명: IM6)로 분석하여 복소 임피던스를 해석하는 방법으로 이온 전도도를 평가하였다. 이때, 이온 전도도의 평가는 하기 식 1을 이용하여 계산되었으며, 그 결과를 하기 표 2에 도시하였다.The entire solid polymer electrolyte compositions prepared in Examples 15 to 53 and Comparative Example 1 were each injected into a conductive glass substrate and polymerized by thermosetting and then sufficiently cooled and then measured by an AC impedance analyzer. The measured values were analyzed by a frequency response analyzer (manufacturer: Zahner Elekrik, model name: IM6), and the ion conductivity was evaluated by a method of analyzing the complex impedance. At this time, the ionic conductivity was evaluated using the following formula 1, and the results are shown in Table 2 below.

(식 1)(Equation 1)

Figure 112016108091112-pat00075
Figure 112016108091112-pat00075

R= 측정되는 저항값R = resistance value to be measured

b= 1 ㎝(커버글라스의 surlyn 사이의 간격 :전해질의 길이)b = 1 cm (gap between surlyn of cover glass: length of electrolyte)

W= 100 ㎛ (ITO글라스의 ITO가 도포되지 않은 영역)W = 100 占 퐉 (region where ITO glass of ITO glass is not applied)

t= 60 ㎛ (커버글라스와 ITO글라스의 사이 두께 : surlyn 두께)t = 60 占 퐉 (thickness between cover glass and ITO glass: surlyn thickness)

Figure 112016108091112-pat00076
Figure 112016108091112-pat00076

상기 도 1에 따르면, 본 발명에 따른 semi-IPN 타입의 전고상 고분자 전해질은 전반의 온도에 있어서 우수한 이온 전도도를 나타낼 뿐 아니라, 특히 20 ℃(상온)에서 2.13 ×10-4 S/㎝(실시예 15), 3.60 ×10-4 S/㎝(실시예 24)에 이르는 높은 이온 전도도를 나타냄을 확인할 수 있었다.1, the semi-IPN type all solid polymer electrolyte according to the present invention not only exhibits excellent ion conductivity at the temperature of the first half, but also exhibits an ion conductivity of 2.13 × 10 -4 S / cm at 20 ° C (room temperature) Example 15) and 3.60 × 10 -4 S / cm (Example 24), respectively.

이는 비교예 1 대비 최대 430% 이상에 해당하는 값으로, 본 발명에 따르면 현저하게 향상된 저온(상온)에서의 이온 전도도를 가짐에 따라, 리튬-폴리머 이차전지, 염료감응형 태양전지 등의 전고상 고분자 전해질로 유용하게 사용될 것으로 기대된다.This is a value corresponding to a maximum of 430% or more as compared with Comparative Example 1. According to the present invention, since the ionic conductivity at a low temperature (room temperature) is remarkably improved according to the present invention, It is expected to be useful as a polymer electrolyte.

Claims (12)

하기 화학식 1로 표시되는 트리아진계 화합물.
[화학식 1]
Figure 112017091654681-pat00077

[화학식 1에서,
R1 내지 R3는 각각 독립적으로
Figure 112017091654681-pat00078
이고, 상기 Y는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112017091654681-pat00079
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]
A triazine-based compound represented by the following formula (1).
[Chemical Formula 1]
Figure 112017091654681-pat00077

[Chemical Formula 1]
R 1 to R 3 are each independently
Figure 112017091654681-pat00078
And wherein Y is -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl or (C3-C20) heteroaryl, or
Figure 112017091654681-pat00079
And m and n are each independently an integer of 1 to 10.]
제 1항에 있어서,
하기 화학식 3으로 표시되는 트리아진계 화합물.
[화학식 3]
Figure 112017091654681-pat00081

[화학식 3에서,
R11은 (C1-C7)알킬, (C6-C20)시클로알킬 또는
Figure 112017091654681-pat00082
이고, 상기 m은 1 내지 10의 정수이고;
n은 1 내지 10의 정수이다.]
The method according to claim 1,
A triazine-based compound represented by the following formula (3).
(3)
Figure 112017091654681-pat00081

In Formula 3,
R < 11 > is (C1-C7) alkyl, (C6-C20)
Figure 112017091654681-pat00082
M is an integer of 1 to 10;
and n is an integer of 1 to 10.]
제 2항에 있어서,
하기 구조에서 선택되는 트리아진계 화합물.
Figure 112017091654681-pat00099

Figure 112017091654681-pat00084

[구조에서,
n은 1 내지 5의 정수이다.]
3. The method of claim 2,
A triazine-based compound selected from the following structures.
Figure 112017091654681-pat00099

Figure 112017091654681-pat00084

[In the structure,
and n is an integer of 1 to 5.]
하기 화학식 4로 표시되는 화합물과 알릴 할라이드를 반응시켜 하기 화학식 5로 표시되는 알릴옥시 화합물을 제조하는 단계; 및 상기 알릴옥시 화합물과 시아누릭 할라이드를 반응시켜 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 단계; 를 포함하여 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 방법.
[화학식 1]
Figure 112017091654681-pat00085

[화학식 4]
Figure 112017091654681-pat00086

[화학식 5]
Figure 112017091654681-pat00087

[화학식 1 및 화학식 4 내지 5에서,
R1 내지 R3는 각각 독립적으로
Figure 112017091654681-pat00088
이고, 상기 Y는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112017091654681-pat00089
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]
Reacting a compound represented by the following formula (4) with an allyl halide to prepare an allyloxy compound represented by the following formula (5); And reacting the allyloxy compound with a cyanuric halide to prepare a triazine-based compound represented by the following formula (1); Wherein the triazine compound is represented by the following formula (1).
[Chemical Formula 1]
Figure 112017091654681-pat00085

[Chemical Formula 4]
Figure 112017091654681-pat00086

[Chemical Formula 5]
Figure 112017091654681-pat00087

[In the formulas (1) and (4) to (5)
R 1 to R 3 are each independently
Figure 112017091654681-pat00088
And wherein Y is -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl or (C3-C20) heteroaryl, or
Figure 112017091654681-pat00089
And m and n are each independently an integer of 1 to 10.]
시아누릭 할라이드와 하기 화학식 4로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 히드록시 화합물을 제조하는 단계; 및 상기 히드록시 화합물과 알릴 할라이드를 반응시켜 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 단계; 를 포함하여 하기 화학식 1로 표시되는 트리아진계 화합물을 제조하는 방법.
[화학식 1]
Figure 112017091654681-pat00090

[화학식 4]
Figure 112017091654681-pat00091

[화학식 6]
Figure 112017091654681-pat00092

[화학식 1, 화학식 4 및 화학식 6에서,
R1 내지 R3는 각각 독립적으로
Figure 112017091654681-pat00093
이고, 상기 Y는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112017091654681-pat00094
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]
Reacting a cyanuric halide with a compound represented by the following formula (4) to prepare a hydroxy compound represented by the following formula (6); And reacting the hydroxy compound with an allyl halide to prepare a triazine-based compound represented by the following formula (1); Wherein the triazine compound is represented by the following formula (1).
[Chemical Formula 1]
Figure 112017091654681-pat00090

[Chemical Formula 4]
Figure 112017091654681-pat00091

[Chemical Formula 6]
Figure 112017091654681-pat00092

[In the formulas (1), (4) and (6)
R 1 to R 3 are each independently
Figure 112017091654681-pat00093
And wherein Y is -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl or (C3-C20) heteroaryl, or
Figure 112017091654681-pat00094
And m and n are each independently an integer of 1 to 10.]
하기 화학식 1로 표시되는 트리아진계 화합물을 가교제로 포함하는 전고상 고분자 전해질 조성물.
[화학식 1]
Figure 112017091654681-pat00095

[화학식 1에서,
R1 내지 R3는 각각 독립적으로
Figure 112017091654681-pat00096
이고, 상기 Y는 -N(R11)-이고, 상기 R11은 수소, (C1-C20)알킬, (C3-C20)시클로알킬, (C6-C20)아릴 또는 (C3-C20)헤테로아릴 또는
Figure 112017091654681-pat00097
이고, 상기 m 및 n은 각각 독립적으로 1 내지 10의 정수이다.]
1. A solid polymer electrolyte composition comprising a triazine-based compound represented by the following formula (1) as a crosslinking agent.
[Chemical Formula 1]
Figure 112017091654681-pat00095

[Chemical Formula 1]
R 1 to R 3 are each independently
Figure 112017091654681-pat00096
And wherein Y is -N (R 11) -, and wherein R 11 is hydrogen, (C1-C20) alkyl, (C3-C20) cycloalkyl, (C6-C20) aryl or (C3-C20) heteroaryl, or
Figure 112017091654681-pat00097
And m and n are each independently an integer of 1 to 10.]
제 6항에 있어서,
티올계 가교제를 더 포함하는 전고상 고분자 전해질 조성물.
The method according to claim 6,
And a thiol-based crosslinking agent.
제 7항에 있어서,
상기 티올계 가교제는 1,3-프로판디티올, 2,3-부탄디티올, 2-머캅토프로피온산, 3-머캅토프로피온산, 펜타에리스리톨 테트라키스(3-머캅토프로피오네이트), 트리메틸올프로판 트리스(3-메르캅토프로피오네이트), 2,2'-(에틸렌디옥시)디에탄티올에서 선택되는 하나 이상인 전고상 고분자 전해질 조성물.
8. The method of claim 7,
The thiol crosslinking agent may be at least one selected from the group consisting of 1,3-propanedithiol, 2,3-butanedithiol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, pentaerythritol tetrakis (3-mercaptopropionate) Tris (3-mercaptopropionate), and 2,2 '- (ethylene dioxy) diethanethiol.
제 7항에 있어서,
상기 트리아진계 화합물 100 중량부를 기준으로, 상기 티올계 가교제를10 내지 200 중량부로 포함하는 전고상 고분자 전해질 조성물.
8. The method of claim 7,
Wherein the thiol-based crosslinking agent is contained in an amount of 10 to 200 parts by weight based on 100 parts by weight of the triazine-based compound.
제 6항 내지 제 9항에서 선택되는 어느 한 항에 따른 전고상 고분자 전해질 조성물을 포함하는 전고상 고분자 전해질 박막.A total solid polymer electrolyte membrane comprising the all-solid polymer electrolyte composition according to any one of claims 6 to 9. 제 6항 내지 제 9항에서 선택되는 어느 한 항에 따른 전고상 고분자 전해질 조성물을 포함하는 리튬-폴리머 이차전지.A lithium-polymer secondary battery comprising the all solid polymer electrolyte composition according to any one of claims 6 to 9. 제 6항 내지 제 9항에서 선택되는 어느 한 항에 따른 전고상 고분자 전해질 조성물을 포함하는 염료감응형 태양전지.A dye-sensitized solar cell comprising the all-solid polymer electrolyte composition according to any one of claims 6 to 9.
KR1020160146774A 2016-11-04 2016-11-04 Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof KR101826496B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160146774A KR101826496B1 (en) 2016-11-04 2016-11-04 Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160146774A KR101826496B1 (en) 2016-11-04 2016-11-04 Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof

Publications (1)

Publication Number Publication Date
KR101826496B1 true KR101826496B1 (en) 2018-02-07

Family

ID=61204143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160146774A KR101826496B1 (en) 2016-11-04 2016-11-04 Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof

Country Status (1)

Country Link
KR (1) KR101826496B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039294A (en) 2018-10-05 2020-04-16 한국화학연구원 Polymer electrolytes comprising functional additives and all solid lithium polymer secondary battery comprising the same
KR20200055176A (en) 2018-11-12 2020-05-21 한국화학연구원 All solid lithium-polymer secondary battery with a positive electrode comprising active material and a negative electrode comprising graphite and a polymer electrolyte comprising functional additives and preparation method thereof
KR20200127962A (en) 2018-10-05 2020-11-11 한국화학연구원 Polymer electrolytes comprising functional additives and all solid lithium polymer secondary battery comprising the same
WO2021034696A1 (en) * 2019-08-21 2021-02-25 Sion Power Corporation Electrochemical cells and components comprising thiol group-containing species
KR20210122995A (en) 2020-04-02 2021-10-13 한국화학연구원 Negative electrode for all solid state battery, all solid state battery comprising the same and method for preparing the all solid state battery
WO2022019642A1 (en) * 2020-07-22 2022-01-27 한국화학연구원 Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same
EP3856490A4 (en) * 2018-11-13 2022-07-06 Board of Regents, The University of Texas System Hydrolytically stable polymers, method of synthesis thereof and use in bio-electronic devices
WO2022197002A1 (en) * 2021-03-18 2022-09-22 한양대학교 에리카산학협력단 Ionic organic framework for all-solid-state secondary battery, electrolyte including same, and all-solid-state secondary battery including same electrolyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191729A (en) * 1998-12-24 2000-07-11 Fuji Photo Film Co Ltd Electrolyte, photoelectric converting element, photoelectrochemical cell or battery and polymer
PL192726B1 (en) * 1999-05-20 2006-12-29 Politechnika Szczecinska Derivative of isocyanuric acid and method of obtaining same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191729A (en) * 1998-12-24 2000-07-11 Fuji Photo Film Co Ltd Electrolyte, photoelectric converting element, photoelectrochemical cell or battery and polymer
PL192726B1 (en) * 1999-05-20 2006-12-29 Politechnika Szczecinska Derivative of isocyanuric acid and method of obtaining same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039294A (en) 2018-10-05 2020-04-16 한국화학연구원 Polymer electrolytes comprising functional additives and all solid lithium polymer secondary battery comprising the same
KR20200127962A (en) 2018-10-05 2020-11-11 한국화학연구원 Polymer electrolytes comprising functional additives and all solid lithium polymer secondary battery comprising the same
KR20200055176A (en) 2018-11-12 2020-05-21 한국화학연구원 All solid lithium-polymer secondary battery with a positive electrode comprising active material and a negative electrode comprising graphite and a polymer electrolyte comprising functional additives and preparation method thereof
EP3856490A4 (en) * 2018-11-13 2022-07-06 Board of Regents, The University of Texas System Hydrolytically stable polymers, method of synthesis thereof and use in bio-electronic devices
US11584867B2 (en) 2018-11-13 2023-02-21 Board Of Regents, The University Of Texas System Bio-electronic devices including hydrolytically stable polymers
WO2021034696A1 (en) * 2019-08-21 2021-02-25 Sion Power Corporation Electrochemical cells and components comprising thiol group-containing species
KR20210122995A (en) 2020-04-02 2021-10-13 한국화학연구원 Negative electrode for all solid state battery, all solid state battery comprising the same and method for preparing the all solid state battery
WO2022019642A1 (en) * 2020-07-22 2022-01-27 한국화학연구원 Solid polymer electrolyte precursor composition, solid polymer electrolyte and all-solid-state battery comprising same
WO2022197002A1 (en) * 2021-03-18 2022-09-22 한양대학교 에리카산학협력단 Ionic organic framework for all-solid-state secondary battery, electrolyte including same, and all-solid-state secondary battery including same electrolyte

Similar Documents

Publication Publication Date Title
KR101826496B1 (en) Novel triazine compound, all-solid-state polymer electrolyte composition and use thereof
JP5247692B2 (en) Phosphate-based acrylate crosslinking agent for polymer electrolyte and composition containing the same
KR101613511B1 (en) Solid polymer electrolyte composition and lithium secondary battery including the same
KR101689661B1 (en) Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
KR100759377B1 (en) Rechargeable lithium battery
KR20150033445A (en) Additive for electrolyte of lithium battery, organic electrolytic solution comprising the same and Lithium battery using the solution
KR101368870B1 (en) semi-IPN type solid polymer electrolyte composition comprising multi-armed acrylate cross linker and phosphate based plasticizer
JP6723461B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all-solid secondary battery, and method for producing solid electrolyte-containing sheet and all-solid secondary battery
KR20160109664A (en) Organic electrolytic solution and Lithium battery comprising organic electrolyte solution
JP2008534493A (en) Solid polymer electrolyte composition containing cyclic siloxane compound and this compound as crosslinking agent
KR20110010516A (en) Perfluorinated phosphate crosslinker for gel polymer electrolyte, gel polymer electrolyte prepared from the same and electrochemical device comprising the electolyte
WO2019213159A1 (en) Polyacrylonitrile gels for energy storage
JPWO2014006845A1 (en) Electrode protective film forming agent
KR102055265B1 (en) Polymer electrolyte membrane for lithium-ion battery, method of manufacturing the polymer electrolyte membrane, and lithium-ion battery
KR101840335B1 (en) Novel compounds and uses thereof
KR100578873B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20130120172A (en) Anion receptors, electrolyte containing anion receptors, lithium ion battery and lithium ion capacitor using the same
KR20160109680A (en) Electrolyte for lithium battery and lithium battery including the electrolyte
KR20080009313A (en) Anion receptor and electrolyte using the same
KR101190145B1 (en) Polymer electrolyte composite containing the amine acrylate compounds and lithium-polymer secondary battery using the same
WO2014129971A1 (en) Polyamide single-ion conducting composite polymer electrolyte
KR101634107B1 (en) Allyl phosphazene based cross linker and semi-IPN type all-solid-state polymer electrolyte composition comprising the same
KR101373093B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
EP2629357B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100344910B1 (en) Heat-Crosslinkable Polysiloxane Electrolytes Composition And Method For Preparing Solid Polymer Electrolytic Film By Using The Same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant