WO2022019320A1 - Film antenna and communication device - Google Patents

Film antenna and communication device Download PDF

Info

Publication number
WO2022019320A1
WO2022019320A1 PCT/JP2021/027239 JP2021027239W WO2022019320A1 WO 2022019320 A1 WO2022019320 A1 WO 2022019320A1 JP 2021027239 W JP2021027239 W JP 2021027239W WO 2022019320 A1 WO2022019320 A1 WO 2022019320A1
Authority
WO
WIPO (PCT)
Prior art keywords
film antenna
less
patch
base material
conductor layer
Prior art date
Application number
PCT/JP2021/027239
Other languages
French (fr)
Japanese (ja)
Inventor
真也 雨海
太郎 石田
尚子 中田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2022019320A1 publication Critical patent/WO2022019320A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • the embodiments of the present disclosure relate to a film antenna and a communication device.
  • Patent Document 1 proposes using a patch antenna as an antenna device in a mobile communication system.
  • the thickness of the base material In order to suppress the influence of the antenna from the surroundings, it is preferable to increase the thickness of the base material. However, when the thickness of the base material becomes large, the installation location, installation form, and the like of the antenna may be restricted.
  • the embodiment of the present disclosure has been made in consideration of such a point, and an object thereof is to provide a film antenna that can be easily made thinner.
  • One embodiment of the present disclosure comprises a substrate comprising a first surface and a second surface located on the opposite side of the first surface.
  • One or more patches comprising a first conductor layer located on the first surface side and having a first outer edge in plan view.
  • the film antenna includes a second conductor layer located on the second surface side, and includes a ground having a second outer edge located outside the first outer edge in a plan view.
  • the first conductor layer may contain a metal material.
  • the second conductor layer may contain a metal material.
  • the film antenna according to the embodiment of the present disclosure may include a plurality of the patches located on the first surface side.
  • the second outer edge may surround the plurality of patches in a plan view.
  • the film antenna according to the embodiment of the present disclosure may include the first patch and the second patch located on the first surface side.
  • the first patch may have a shape different from that of the second patch in a plan view.
  • the base material may contain a fluororesin.
  • the base material may contain a plurality of bubbles.
  • the thickness of the base material may be 2 mm or less.
  • the thickness of the base material may be 10 ⁇ m or more.
  • the first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface. May be good.
  • the third surface may have a maximum height of 3 ⁇ m or less.
  • the first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface. May be good.
  • the film antenna may include a first cover layer that covers the fourth surface.
  • the first cover layer may contain a coloring material.
  • the first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface. May be good.
  • the film antenna may include a first adhesive layer located between the first surface and the third surface.
  • One embodiment of the present disclosure is a communication device comprising a structure having a surface and the film antenna described above, which is attached to the surface so that the second conductor layer faces the surface. be.
  • the surface may include a curved surface at least partially, and the film antenna may be attached to the curved surface.
  • the structure may be a pillar of an automobile.
  • FIG. 3 is a cross-sectional view of the film antenna of FIG. 3 as viewed from the IV-IV direction. It is a figure which shows one modification of the film antenna. It is a figure which shows an example of the communication apparatus provided with the film antenna of FIG. It is a figure for demonstrating the evaluation method of the flexibility of a film antenna. It is a figure which shows one modification of the film antenna. It is a figure which shows the modification of a patch. It is a figure which shows one modification of a patch. It is sectional drawing which shows one modification of the film antenna.
  • the numerical range of the parameter is any one upper limit candidate and any one lower limit value. It may be configured by combining with the candidates of.
  • “Parameter B may be, for example, A1 or more, A2 or more, or A3 or more. Parameter B may be, for example, A4 or less, A5 or less, or A6 or less. It may be. " In this case, the numerical range of the parameter B may be A1 or more and A4 or less, A1 or more and A5 or less, A1 or more and A6 or less, or A2 or more and A4 or less. It may be A2 or more and A5 or less, A2 or more and A6 or less, A3 or more and A4 or less, A3 or more and A5 or less, or A3 or more and A6 or less.
  • the microwave is a radio wave in a frequency band of about 0.3 GHz or more and 110 GHz or less.
  • the millimeter wave is a radio wave in a frequency band of about 30 GHz or more and 300 GHz or less. Examples in the field are 5th generation mobile communication systems and mobiles, communication systems for automobiles, radar of anti-collision systems, medical biosensing and the like.
  • FIG. 1 is a diagram showing an example of a mobile communication system 100.
  • the mobile communication system 100 includes a base station 110, a plurality of communication devices 120, and a plurality of terminal devices 130.
  • the base station 110 also called a macro cell, performs wireless communication with a communication device and a terminal device 130 located in the area 115.
  • the communication device 120 also called a small cell, performs wireless communication with the terminal device 130 located in the area 125.
  • the terminal device 130 is, for example, a smartphone.
  • the area 125 covered by each communication device 120 which is a small cell, may be located inside the area 115 covered by the macro cell, as shown in FIG. Although not shown, the area 125 covered by the small cell may be partially located outside the area 115 covered by the macrocell.
  • a small cell means a communication device that covers a smaller area than a macro cell.
  • the small cell may be a so-called femtocell, nanocell, picocell, microcell or the like.
  • FIG. 2 is a diagram showing an example of a communication device 120 for forming the area 125.
  • the communication device 120 includes a structure 121 including a surface 122 and a film antenna 10 attached to the surface 122.
  • the structure 121 is, for example, a utility pole. By attaching the film antenna 10 to the structure 121, the structure 121 can have a communication function.
  • the communication device 120 may include a plurality of film antennas 10 attached to the surface 122.
  • the film antenna 10 may be mounted on the terminal device 130. That is, the film antenna 10 may play a part of the communication function of the terminal device 130.
  • the communication device 120 may include a control device that controls radio waves transmitted by the film antenna 10.
  • the communication device 120 may include a processing device that processes radio waves received by the film antenna 10.
  • the control device and the processing device may be provided on a common base material with the film antenna 10. Alternatively, the control device and the processing device may be provided on a member different from the film antenna 10.
  • the film antenna 10 includes a base material 20 and a patch 30 provided on the base material 20.
  • Patch 30 transmits or receives radio waves.
  • the properties of patch 30 can be affected by structure 121. For example, if the structure 121 contains a conductive material, the radio waves transmitted or received by the patch 30 may be affected by the structure 121.
  • the thickness of the base material 20 As a method of reducing the influence of the structure 121, it is conceivable to increase the thickness of the base material 20. However, as the thickness of the base material 20 increases, the installation location, installation form, and the like of the film antenna 10 are limited. For example, as the thickness of the base material 20 increases, the flexibility of the film antenna 10 decreases. Therefore, it becomes difficult to attach the film antenna 10 to the structure 121 having a curved surface. In addition, it becomes difficult to mount the film antenna 10 on a thin device. For example, it becomes difficult to mount the film antenna 10 on a terminal device 130 such as a smartphone.
  • the film antenna 10 can be easily made thinner. As a result, restrictions on the installation location and installation form of the film antenna 10 can be relaxed.
  • the film antenna 10 can be attached to the curved surface of the surface 122 of the structure 121. Further, the film antenna 10 can be mounted inside a thin device such as a smartphone.
  • FIG. 3 is a diagram showing an example of the film antenna 10.
  • FIG. 4 is a cross-sectional view of the film antenna 10 of FIG. 3 as viewed from the IV-IV direction.
  • the film antenna 10 includes a base material 20 including a first surface 21 and a second surface 22, a patch 30 located on the first surface 21 side, and a ground 40 located on the second surface 22 side.
  • the second surface 22 is located on the opposite side of the first surface 21.
  • the base material 20 has an insulating property.
  • the patch 30 and the gland 40 are conductive.
  • the base material 20, the patch 30, and the ground 40 form a capacitor-type antenna.
  • the frequency of the radio wave transmitted or received by the film antenna 10 is, for example, 300 MHz or more, may be 3 GHz or more, may be 25 GHz or more, or may be 50 GHz or more.
  • the frequency of the radio wave transmitted or received by the film antenna 10 is, for example, 110 GHz or less, and may be 80 GHz or less.
  • Such radio waves are used in fifth-generation mobile communication systems, inter-vehicle communication systems, radar devices for automobiles, and the like.
  • the film antenna 10 may include a first adhesive layer 36 located between the base material 20 and the patch 30.
  • the film antenna 10 does not have to include the first adhesive layer 36.
  • the film antenna 10 may include a second adhesive layer 46 located between the base material 20 and the ground 40. The film antenna 10 does not have to include the second adhesive layer 46.
  • the base material 20 has flexibility. Therefore, the film antenna 10 can be attached to the structure 121 including the curved surface.
  • the base material 20 may have a rectangular outer edge in a plan view.
  • the base material 20 may include an outer edge 20Y extending in the first direction D1 and the second direction D2 orthogonal to the first direction D1.
  • the plan view means to see the film antenna 10 along the normal direction of the first surface 21.
  • the base material 20 contains a resin material having a low relative permittivity.
  • the relative permittivity of the base material 20 may be 4.0 or less, 3.5 or less, 3.0 or less, 2.5 or less, or 2 It may be 0.0 or less. This makes it possible to increase the efficiency and gain of the film antenna 10.
  • the relative permittivity of the base material 20 may be 1.0 or more, or 1.5 or more.
  • the dielectric loss tang tan ⁇ of the base material 20 may be 0.01 or less, 0.005 or less, 0.001 or less, or 0.0005 or less.
  • fluororesin liquid crystal polymer (LCP), polypropylene (PP), modified polypropylene (modified PP), polyimide (PI) and the like
  • fluororesins include fully fluororesin such as polytetrafluoroethylene (PTFE), partially fluororesin such as polychlorotrifluoroethylene (PCTFE), and fluorine such as ethylene / tetrafluoroethylene copolymer (ETFE). It is a chemical resin copolymer or the like.
  • the fluororesin has, for example, a relative permittivity of 2.0 or more and 3.0 or less.
  • the liquid crystal polymer has, for example, a relative permittivity of 3.0 or more and 3.5 or less.
  • Polypropylene has, for example, a relative permittivity of 2.2 or more and 2.6 or less.
  • Polyimide has a relative permittivity of about 3.5.
  • the base material 20 may be composed of a single layer or may be composed of a plurality of layers.
  • the thickness T0 of the base material 20 is, for example, 2 mm or less, may be 800 ⁇ m or less, may be 500 ⁇ m or less, or may be 200 ⁇ m or less. By reducing the thickness T0, the base material 20 can have flexibility.
  • the thickness T0 of the base material 20 is, for example, 10 ⁇ m or more, may be 20 ⁇ m or more, may be 50 ⁇ m or more, or may be 100 ⁇ m or more.
  • the base material 20 may contain a plurality of bubbles. That is, the base material 20 may contain a foamed resin. As a result, the relative permittivity of the base material 20 can be lowered.
  • the patch 30 includes a first conductor layer 31 located on the first surface 21 side of the base material 20.
  • the first conductor layer 31 includes a third surface 32 facing the first surface 21 of the base material 20, and a fourth surface 33 located on the opposite side of the third surface 32.
  • the patch 30 includes a first outer edge 30Y located inside the outer edge 20Y of the base material 20 in a plan view.
  • the first outer edge 30Y may have a rectangular shape in a plan view.
  • the first outer edge 30Y may extend in the first direction D1 and the second direction D2 orthogonal to the first direction D1.
  • a microstrip line 34 may be connected to the patch 30.
  • the patch 30 and the microstrip line 34 may include a common first conductor layer 31.
  • the first conductor layer 31 contains a material having conductivity.
  • the first conductor layer 31 contains a metal material such as copper (Cu), gold (Au), silver (Ag), aluminum (Al), or an alloy using these.
  • the first conductor layer 31 may contain a transparent conductive material such as indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the first conductor layer 31 may contain a carbon-based conductive material such as graphite, carbon nanotubes, graphene, and fullerene.
  • the method for forming the first conductor layer 31 is not particularly limited.
  • the first conductor layer 31 may be formed by a plating method, a printing method, a sputtering method, a vapor deposition method, or the like.
  • the foil constituting the first conductor layer 31 may be attached to the base material 20 via the first adhesive layer 36.
  • the foil may be produced by an electrodeposition method, a rolling method, or the like.
  • the thickness T1 of the first conductor layer 31 may be 1 ⁇ m or more, or 5 ⁇ m or more.
  • the thickness of the first conductor layer 31 may be 35 ⁇ m or less, or 20 ⁇ m or less.
  • the surface of the first conductor layer 31 is preferably flat. This makes it possible to reduce the transmission loss that occurs in the patch 30.
  • the maximum height (Rz) of the first conductor layer 31 on the third surface 32 may be 3.0 ⁇ m or less, 2.0 ⁇ m or less, or 1.0 ⁇ m or less. good. Since the maximum height of the third surface 32 is 3.0 ⁇ m or less, the transmission loss of the patch 30 at 20 GHz can be reduced to, for example, 6 dB or less.
  • the arithmetic mean roughness (Ra) on the third surface 32 of the first conductor layer 31 may be 3.0 ⁇ m or less, 2.0 ⁇ m or less, or 1.0 ⁇ m or less. ..
  • Arithmetic mean roughness (Ra) and maximum height (Rz) are defined based on JIS B 0601: 2013. Specifically, first, the contour curve of the third surface 32 is measured.
  • the measuring instrument for measuring the roughness curve is, for example, a Spectra Film manufactured by KLA.
  • the measurement result of the contour curve is extracted over the reference length in the reference direction.
  • the reference direction is one direction in the in-plane direction of the third surface 32.
  • the reference length is, for example, 0.8 mm.
  • the arithmetic mean roughness (Ra) is calculated by dividing the integral value of the absolute value of the difference between the contour curve and the average value by the reference length.
  • the maximum height (Rz) is the sum of the maximum value of the peak height of the contour curve and the maximum value of the valley depth.
  • reference numeral L1 represents the dimension of the patch 30 in the first direction D1.
  • Reference numeral W1 represents the dimension of the patch 30 in the second direction D2.
  • the dimensions L1 and W1 are, for example, 40 mm or less, 20 mm or less, 10 mm or less, or 1 mm or less.
  • the dimensions L1 and W1 may be, for example, 0.2 mm or more.
  • the dimensions L1 and W1 may be determined based on the frequency of the radio wave transmitted or received by the film antenna 10. When the frequency of the radio wave is 3 GHz or more and 6 GHz or less, the dimensions L1 and W1 may be 10 mm or more and 40 mm or less.
  • the dimensions L1 and W1 may be 2 mm or more and 20 mm or less.
  • the dimensions L1 and W1 may be 0.5 mm or more and 10 mm or less.
  • the dimensions L1 and W1 may be 0.2 mm or more and 5.0 mm or less.
  • reference numeral L0 represents the dimension of the base material 20 in the first direction D1.
  • Reference numeral W0 represents the dimension of the base material 20 in the second direction D2.
  • the dimensions L0 and W0 are larger than the dimensions L1 and W1.
  • the dimensions L0 and W0 may be twice or more or three times or more the dimensions L1 and W1.
  • the first adhesive layer 36 is located between the first surface 21 of the base material 20 and the third surface 32 of the patch 30.
  • the first adhesive layer 36 adheres the first surface 21 and the third surface 32.
  • the first adhesive layer 36 may extend outward from the first outer edge 30Y of the patch 30. That is, the first adhesive layer 36 may include a region that does not overlap the patch 30 in a plan view.
  • the first adhesive layer 36 may be provided with a fluororesin-based adhesive containing a fluororesin.
  • the first adhesive layer 36 may contain a carboxyl group-containing styrene-based elastomer, an epoxy resin, or the like.
  • the relative permittivity of the first adhesive layer 36 may be 4.0 or less, 3.5 or less, 3.0 or less, or 2.5 or less. , 2.0 or less.
  • the relative permittivity of the first adhesive layer 36 may be 1.0 or more, or may be 1.5 or more.
  • the first adhesive layer 36 may not be provided with a fluorine-based adhesive.
  • the dielectric loss tangent tan ⁇ of the first adhesive layer 36 may be 0.01 or less, 0.005 or less, 0.001 or less, or 0.0005 or less. ..
  • the thickness of the first adhesive layer 36 is, for example, 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less.
  • the thickness of the first adhesive layer 36 is, for example, 2 ⁇ m or more, may be 5 ⁇ m or more, or may be 10 ⁇ m or more.
  • the thickness of the first adhesive layer 36 may be further increased, for example, 50 ⁇ m or more, or 100 ⁇ m.
  • An adhesive such as a fluorine-based adhesive may constitute the base material 20.
  • the base material 20 may be produced by solidifying the adhesive.
  • the first conductor layer 31 and the second conductor layer 41 may be provided on the first surface 21 and the second surface 22 of the base material 20 made of the adhesive.
  • the ground 40 includes a second conductor layer 41 located on the second surface 22 side of the base material 20.
  • the second conductor layer 41 includes a fifth surface 42 facing the second surface 22 of the base material 20, and a sixth surface 43 located on the opposite side of the fifth surface 42.
  • the ground 40 includes a second outer edge 40Y located outside the first outer edge 30Y of the patch 30 in a plan view. The second outer edge 40Y may coincide with the outer edge 20Y of the base material 20.
  • the second conductor layer 41 contains a material having conductivity.
  • the material exemplified in the first conductor layer 31 can be used.
  • the material of the second conductor layer 41 may be the same as or different from the material of the first conductor layer 31.
  • the thickness T2 of the second conductor layer 41 may be 1 ⁇ m or more, or 5 ⁇ m or more.
  • the thickness of the second conductor layer 41 may be 35 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the second conductor layer 41 faces the first conductor layer 31 in the thickness direction of the base material 20. As a result, an electric field can be generated between the first conductor layer 31 and the second conductor layer 41.
  • the second adhesive layer 46 is located between the second surface 22 of the base material 20 and the fifth surface 42 of the ground 40. The second adhesive layer 46 adheres the second surface 22 and the fifth surface 42.
  • the material of the second adhesive layer 46 the material exemplified by the first adhesive layer 36 can be used.
  • the material of the second adhesive layer 46 may be the same as or different from the material of the first adhesive layer 36.
  • the thickness of the second adhesive layer 46 is within the range of the thickness exemplified by the first adhesive layer 36.
  • the thickness of the second adhesive layer 46 may be the same as or different from the thickness of the first adhesive layer 36.
  • the member located between the third surface 32 of the first conductor layer 31 and the fifth surface 42 of the second conductor layer 41 is also referred to as a base layer 50.
  • the base layer 50 includes the base material 20, the first adhesive layer 36, and the second adhesive layer 46.
  • the base layer 50 is obtained by removing the patch 30 and the ground 40 of the film antenna 10 by etching or the like.
  • the relative permittivity of the base layer 50 may be 4.0 or less, 3.5 or less, 3.0 or less, 2.5 or less, or 2 It may be 0.0 or less. This makes it possible to increase the efficiency and gain of the film antenna 10.
  • the relative permittivity of the base layer 50 may be 1.0 or more, or may be 1.5 or more.
  • the dielectric loss tangent tan ⁇ of the base layer 50 may be 0.01 or less, 0.005 or less, 0.001 or less, or 0.0005 or less.
  • the thickness T3 of the base layer 50 may be, for example, 2 mm or less, 800 ⁇ m or less, 500 ⁇ m or less, or 200 ⁇ m or less.
  • the thickness T3 of the base layer 50 may be, for example, 10 ⁇ m or more, 20 ⁇ m or more, 50 ⁇ m or more, or 100 ⁇ m or more.
  • the open resonator method can be used as a method for measuring the relative permittivity and the dielectric loss tangent.
  • Measurement systems that perform the open resonator method include a network analyzer, a millimeter wave doubler, a millimeter wave detector, and a Fabry-Perot resonator.
  • Fabry-Perot resonator FPR-40, FPR-50, FPR-60, FPR-75, PFR-90, FPR-110 and the like of Keycom Co., Ltd. can be used depending on the frequency.
  • a length measuring machine can be used, for example, a Nikon Digimicro can be used. If the thickness cannot be measured by the length measuring machine, the thickness may be calculated based on the image of the cross section of the sample of the film antenna 10.
  • a scanning electron microscope can be used as a measuring instrument for measuring an image.
  • the thickness of the entire film antenna 10 is, for example, 2 mm or less, 800 ⁇ m or less, 500 ⁇ m or less, or 200 ⁇ m or less.
  • the thickness of the entire film antenna 10 may be, for example, 10 ⁇ m or more, 20 ⁇ m or more, 50 ⁇ m or more, or 100 ⁇ m or more.
  • the film antenna 10 includes a ground 40 located on the second surface 22 side of the base material 20.
  • the film antenna 10 is attached to the structure 121 so that the ground 40 faces the structure 121 side.
  • the base material 20 of the film antenna 10 contains a resin material and has a thickness of 2 mm or less. Therefore, the film antenna 10 can have flexibility. As a result, restrictions on the installation location and installation form of the film antenna 10 can be relaxed.
  • the film antenna 10 can be attached to the curved surface of the surface 122 of the structure 121 such as a utility pole. Since the film antenna 10 can be installed in various structures 121, the region 125 can be easily configured. As a result, the communication capacity of the mobile communication system 100 can be increased.
  • radio waves can be transmitted in various directions.
  • the normal direction of the first film antenna 10 is different from the normal direction of the second film antenna 10 adjacent to the first film antenna 10. Therefore, the direction of the radio wave E1 transmitted from the first film antenna 10 can also be different from the direction of the radio wave E2 transmitted from the second film antenna 10. This makes it possible to easily extend the range of radio wave transmission directions.
  • FIG. 5 is a diagram showing a film antenna 10 according to the first modification.
  • the film antenna 10 may include a plurality of patches 30. Each patch 30 can transmit or receive radio waves. By providing the film antenna 10 with a plurality of patches 30, the communication capacity of the film antenna 10 can be increased.
  • the plurality of patches 30 are provided on one base material 20.
  • the plurality of patches 30 are located on the first surface 21 side of the base material 20 as in the case of the above-described embodiment.
  • the second outer edge 40Y of the ground 40 surrounds the plurality of patches 30 in a plan view.
  • the plurality of patches 30 may be arranged in the in-plane direction of the base material 20.
  • the plurality of patches 30 may be arranged in the first direction D1 in the first period P1.
  • the plurality of patches 30 may be arranged in the second direction D2 in the second cycle P2.
  • the first period P1 and the second period P2 may be the same or different.
  • the cycles P1 and P2 may be twice or more or three times or more the dimensions L1 and W1 of the patch 30.
  • FIG. 6 is a diagram showing an example of a communication device 120 including the film antenna 10 of FIG.
  • the film antenna 10 may be wound around the surface 122 of the structure 121.
  • the film antenna 10 may be attached to the surface 122 over a distance of 1/2 or more of the circumference of the surface 122 of the structure 121.
  • FIG. 7 is a diagram for explaining a method for evaluating the flexibility of the film antenna 10.
  • "flexibility” means flexibility to the extent that the film antenna 10 does not crease when the film antenna 10 is wound into a roll shape having a diameter D in an environment of 25 ° C. Means. The diameter D is, for example, 300 mm.
  • the "crease” is a deformation that appears on the film antenna 10 in a direction intersecting the winding direction of the film antenna 10. The crease that appears in the film antenna 10 is not eliminated even if the film antenna 10 is wound in the opposite direction. Due to the flexibility of the film antenna 10, the film antenna 10 can be wound around the structure 121 as shown in FIG.
  • FIG. 8 is a diagram showing a film antenna 10 according to the first modification.
  • the film antenna 10 may include a plurality of patches 30 having different shapes.
  • the film antenna 10 may include a first patch 30M and a second patch 30S having a shape different from that of the first patch 30M.
  • the first patch 30M has dimension L1 in the first direction D1 and dimension W1 in the second direction D2.
  • the second patch 30S has dimension L2 in the first direction D1 and dimension W2 in the second direction D2.
  • the dimension L2 is smaller than the dimension L1.
  • the dimension W2 is smaller than the dimension W1. Therefore, the frequency of the radio wave transmitted or received by the second patch 30S is different from the frequency of the radio wave transmitted or received by the first patch 30.
  • the band of radio waves that the film antenna 10 can handle can be widened.
  • FIG. 9 is a diagram showing an example of the shape of the patch 30 in a plan view.
  • the patch 30 may be circular. As indicated by reference numeral 30B, the patch 30 may be elliptical. As indicated by reference numeral 30C, the patch 30 may be in the shape of a ring. As indicated by reference numeral 30D, the patch 30 may be in the shape of a portion of the ring in the circumferential direction. As indicated by reference numeral 30E, patch 30 may be triangular. Although not shown, the patch 30 may be another polygon such as a pentagon or a hexagon. As indicated by reference numeral 30F, the patch 30 may be in the shape of an arc.
  • the corners of the patch 30 may be curved as shown in FIG. This makes it possible to widen the radiation angle of the patch 30.
  • the radius of curvature R1 at the corner is, for example, 1 mm or more, may be 2 mm or more, or may be 3 mm or more.
  • FIG. 11 is a cross-sectional view showing the film antenna 10 according to the fifth modification.
  • the film antenna 10 may include a first cover layer 37 that covers the fourth surface 33 of the patch 30. Thereby, at least one of the design property and the weather resistance of the film antenna 10 can be enhanced.
  • the first cover layer 37 may extend outward from the first outer edge 30Y of the patch 30. That is, the first cover layer 37 may include a region that does not overlap the patch 30 in a plan view. The film antenna 10 does not have to include the first cover layer 37.
  • the film antenna 10 When the film antenna 10 is attached to various structures 121, it may be required that the film antenna 10 be inconspicuous. Such a requirement can be achieved by providing the film antenna 10 with a first cover layer 37 having a color, pattern, or the like corresponding to the structure 121.
  • the surface of the first cover layer 37 may include fine irregularities.
  • the fine irregularities may express the color, pattern, and texture of the surface of the first cover layer 37.
  • the fine irregularities may prevent the adhesion of dirt, bacteria, etc. on the surface of the first cover layer 37.
  • the first cover layer 37 may contain a coloring material.
  • the composition, distribution, and the like of the coloring material are selected according to the structure 121.
  • the first cover layer 37 may be composed of a single layer or may be composed of a plurality of layers.
  • Weather resistance is a characteristic of preventing deterioration of the film antenna 10 due to the surrounding environment.
  • the film antenna 10 is affected by various environments such as sunshine, rainfall, and snowfall.
  • the weather resistance of the film antenna 10 can be enhanced.
  • the first cover layer 37 contains a material having an insulating property.
  • a material having an insulating property As the material of the first cover layer 37, polypropylene, acrylic or the like can be used.
  • the thickness T4 of the first cover layer 37 located on the patch 30 may be 50 ⁇ m or more, or 100 ⁇ m or more.
  • the thickness T4 may be 200 ⁇ m or less, or may be 500 ⁇ m or less.
  • the film antenna 10 may include a second cover layer 47 that covers the sixth surface 43 of the ground 40.
  • a second cover layer 47 that covers the sixth surface 43 of the ground 40.
  • the design property and the weather resistance of the film antenna 10 can be enhanced.
  • the structure 121 is transparent glass or the like
  • the second cover layer 47 is visually recognized.
  • the design of the film antenna 10 can be enhanced.
  • the film antenna 10 does not have to include the second cover layer 47.
  • the material of the second cover layer 47 As the material of the second cover layer 47, the material exemplified in the first cover layer 37 can be used.
  • the material of the second cover layer 47 may be the same as or different from the material of the first cover layer 37.
  • the second cover layer 47 may be composed of a single layer or may be composed of a plurality of layers.
  • the thickness T5 of the second cover layer 47 is within the range of the thickness T4 exemplified by the first cover layer 37.
  • the thickness T5 of the second cover layer 47 may be the same as or different from the thickness T4 of the first cover layer 37.
  • the present invention is not limited to this, and as shown in FIG. 12, the patch 30 may be fixed to the first surface 21 without using the first adhesive layer 36.
  • the third surface 32 of the patch 30 may be in contact with the first surface 21 of the base material 20.
  • Such a form may be realized by forming the patch 30 by, for example, a plating method, a printing method, a sputtering method, a vapor deposition method, a clad method, or the like.
  • the ground 40 may be fixed to the second surface 22 without using the second adhesive layer 46.
  • the structure 121 to which the film antenna 10 is attached is a utility pole, but the present invention is not particularly limited.
  • the structure 121 may be the inner or outer surface of a wall, ceiling, beam, pillar, or other building component, on the inner or outer surface of an electric pole, traffic light, tunnel inner wall, side step, or other building. It may be on the surface of the earth, trees, or other natural structures.
  • the structure 121 may be part of an automobile.
  • the structure 121 may be a pillar of an automobile.
  • the communication device 120 including the structure 121 and the film antenna 10 may function as a radar of the collision prevention system.
  • the structure 121 may include a base portion 123 and a protruding portion 124 that protrudes from the end portion of the base portion 123 in the normal direction of the surface 122 of the base portion 123.
  • the film antenna 10 may be attached to the surface 122 of the base portion 123.
  • the film antenna 10 includes a ground 40. Therefore, even when the structure 121 has conductivity, it is possible to suppress the characteristics of the film antenna 10 from being affected by the structure 121.
  • the present invention is not limited to this, and as shown in FIG. 14, a plurality of openings 31a may be formed in the first conductor layer 31.
  • the first conductor layer 31 may be in the form of a so-called mesh, which is formed by combining a plurality of linear layers.
  • a plurality of openings 41a may be formed in the second conductor layer 41.
  • the flexibility of the film antenna 10 can be increased.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

A film antenna comprising: a substrate having a first surface and a second surface positioned opposite to the first surface; one or more patches including a first electrical conductor layer positioned on the first surface side and having a first outer edge in plan view; and a ground including a second electrical conductor layer positioned on the second surface side and having a second outer edge positioned outside the first outer edge in plan view.

Description

フィルムアンテナ及び通信装置Film antenna and communication equipment
 本開示の実施形態は、フィルムアンテナ及び通信装置に関する。 The embodiments of the present disclosure relate to a film antenna and a communication device.
 通信システムにおいて、基材と、基材上の導電体層とを含むアンテナが用いられている。例えば特許文献1は、移動体通信システムにおけるアンテナ装置としてパッチアンテナを用いることを提案している。 In a communication system, an antenna including a base material and a conductor layer on the base material is used. For example, Patent Document 1 proposes using a patch antenna as an antenna device in a mobile communication system.
国際公開第2018/230039号パンフレットInternational Publication No. 2018/230039 Pamphlet
 アンテナが周囲からの影響を受けることを抑制するためには、基材の厚さを大きくすることが好ましい。しかしながら、基材の厚さが大きくなると、アンテナの設置場所、設置形態などが制限されることがある。 In order to suppress the influence of the antenna from the surroundings, it is preferable to increase the thickness of the base material. However, when the thickness of the base material becomes large, the installation location, installation form, and the like of the antenna may be restricted.
 本開示の実施形態は、このような点を考慮してなされたものであり、薄型化を実現しやすいフィルムアンテナを提供することを目的とする。 The embodiment of the present disclosure has been made in consideration of such a point, and an object thereof is to provide a film antenna that can be easily made thinner.
 本開示の一実施形態は、第1面及び前記第1面の反対側に位置する第2面を含む基材と、
 前記第1面側に位置する第1導電体層を含み、平面視において第1外縁を備える1つ以上のパッチと、
 前記第2面側に位置する第2導電体層を含み、平面視において前記第1外縁よりも外側に位置する第2外縁を備えるグランドと、を備える、フィルムアンテナである。
One embodiment of the present disclosure comprises a substrate comprising a first surface and a second surface located on the opposite side of the first surface.
One or more patches comprising a first conductor layer located on the first surface side and having a first outer edge in plan view.
The film antenna includes a second conductor layer located on the second surface side, and includes a ground having a second outer edge located outside the first outer edge in a plan view.
 本開示の一実施形態によるフィルムアンテナにおいて、前記第1導電体層が金属材料を含んでいてもよい。 In the film antenna according to the embodiment of the present disclosure, the first conductor layer may contain a metal material.
 本開示の一実施形態によるフィルムアンテナにおいて、前記第2導電体層が金属材料を含んでいてもよい。 In the film antenna according to the embodiment of the present disclosure, the second conductor layer may contain a metal material.
 本開示の一実施形態によるフィルムアンテナは、前記第1面側に位置する複数の前記パッチを備えていてもよい。この場合、前記第2外縁は、平面視において複数の前記パッチを囲んでいてもよい。 The film antenna according to the embodiment of the present disclosure may include a plurality of the patches located on the first surface side. In this case, the second outer edge may surround the plurality of patches in a plan view.
 本開示の一実施形態によるフィルムアンテナは、前記第1面側に位置する第1の前記パッチ及び第2の前記パッチを備えていてもよい。この場合、前記第1のパッチは、平面視において前記第2のパッチの形状とは異なる形状を有していてもよい。 The film antenna according to the embodiment of the present disclosure may include the first patch and the second patch located on the first surface side. In this case, the first patch may have a shape different from that of the second patch in a plan view.
 本開示の一実施形態によるフィルムアンテナにおいて、前記基材は、フッ素樹脂を含んでいてもよい。 In the film antenna according to the embodiment of the present disclosure, the base material may contain a fluororesin.
 本開示の一実施形態によるフィルムアンテナにおいて、前記基材は、複数の気泡を含んでいてもよい。 In the film antenna according to the embodiment of the present disclosure, the base material may contain a plurality of bubbles.
 本開示の一実施形態によるフィルムアンテナにおいて、前記基材の厚さは2mm以下であってもよい。 In the film antenna according to the embodiment of the present disclosure, the thickness of the base material may be 2 mm or less.
 本開示の一実施形態によるフィルムアンテナにおいて、前記基材の厚さは10μm以上であってもよい。 In the film antenna according to the embodiment of the present disclosure, the thickness of the base material may be 10 μm or more.
 本開示の一実施形態によるフィルムアンテナにおいて、前記第1導電体層は、前記第1面に対向する第3面と、前記第3面の反対側に位置する第4面と、を含んでいてもよい。この場合、前記第3面は、3μm以下の最大高さを有していてもよい。 In the film antenna according to the embodiment of the present disclosure, the first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface. May be good. In this case, the third surface may have a maximum height of 3 μm or less.
 本開示の一実施形態によるフィルムアンテナにおいて、前記第1導電体層は、前記第1面に対向する第3面と、前記第3面の反対側に位置する第4面と、を含んでいてもよい。この場合、フィルムアンテナは、前記第4面を覆う第1カバー層を備えていてもよい。 In the film antenna according to the embodiment of the present disclosure, the first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface. May be good. In this case, the film antenna may include a first cover layer that covers the fourth surface.
 本開示の一実施形態によるフィルムアンテナにおいて、前記第1カバー層は着色材を含んでいてもよい。 In the film antenna according to the embodiment of the present disclosure, the first cover layer may contain a coloring material.
 本開示の一実施形態によるフィルムアンテナにおいて、前記第1導電体層は、前記第1面に対向する第3面と、前記第3面の反対側に位置する第4面と、を含んでいてもよい。この場合、フィルムアンテナは、前記第1面と前記第3面との間に位置する第1接着層を備えていてもよい。 In the film antenna according to the embodiment of the present disclosure, the first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface. May be good. In this case, the film antenna may include a first adhesive layer located between the first surface and the third surface.
 本開示の一実施形態は、表面を有する構造体と、前記表面に前記第2導電体層が対向するように前記表面に取り付けられている、上記記載のフィルムアンテナと、を備える、通信装置である。 One embodiment of the present disclosure is a communication device comprising a structure having a surface and the film antenna described above, which is attached to the surface so that the second conductor layer faces the surface. be.
 本開示の一実施形態による通信装置において、前記表面は、少なくとも部分的に湾曲面を含み、前記フィルムアンテナは、前記湾曲面に取り付けられていてもよい。 In the communication device according to the embodiment of the present disclosure, the surface may include a curved surface at least partially, and the film antenna may be attached to the curved surface.
 本開示の一実施形態による通信装置において、前記構造体は、自動車のピラーであってもよい。 In the communication device according to the embodiment of the present disclosure, the structure may be a pillar of an automobile.
 本開示の実施形態によれば、薄型化を実現しやすいフィルムアンテナを提供できる。 According to the embodiment of the present disclosure, it is possible to provide a film antenna that can be easily made thinner.
通信システムの一例を示す図である。It is a figure which shows an example of a communication system. 通信装置の一例を示す図である。It is a figure which shows an example of a communication device. フィルムアンテナの一例を示す図である。It is a figure which shows an example of a film antenna. 図3のフィルムアンテナをIV-IV方向から見た断面図である。FIG. 3 is a cross-sectional view of the film antenna of FIG. 3 as viewed from the IV-IV direction. フィルムアンテナの一変形例を示す図である。It is a figure which shows one modification of the film antenna. 図5のフィルムアンテナを備える通信装置の一例を示す図である。It is a figure which shows an example of the communication apparatus provided with the film antenna of FIG. フィルムアンテナの可撓性の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the flexibility of a film antenna. フィルムアンテナの一変形例を示す図である。It is a figure which shows one modification of the film antenna. パッチの変形例を示す図である。It is a figure which shows the modification of a patch. パッチの一変形例を示す図である。It is a figure which shows one modification of a patch. フィルムアンテナの一変形例を示す断面図である。It is sectional drawing which shows one modification of the film antenna. フィルムアンテナの一変形例を示す断面図である。It is sectional drawing which shows one modification of the film antenna. フィルムアンテナを備える通信装置の一変形例を示す図である。It is a figure which shows one modification of the communication device provided with a film antenna. フィルムアンテナの一変形例を示す平面図である。It is a top view which shows one modification of the film antenna. フィルムアンテナの一変形例を示す背面図である。It is a rear view which shows one modification of the film antenna.
 本開示の一実施形態に係るフィルムアンテナ10の構成について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。本明細書において、「基板」、「基材」、「シート」や「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「基板」や「基材」は、シートやフィルムと呼ばれ得るような部材も含む概念である。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈する。 The configuration of the film antenna 10 according to the embodiment of the present disclosure will be described in detail with reference to the drawings. It should be noted that the embodiments shown below are examples of the embodiments of the present disclosure, and the present disclosure is not construed as being limited to these embodiments. In the present specification, terms such as "board", "base material", "sheet" and "film" are not distinguished from each other based only on the difference in designation. For example, "base material" and "base material" are concepts including members that can be called sheets or films. Furthermore, the terms such as "parallel" and "orthogonal" and the values of length and angle used in the present specification to specify the shape and geometric conditions and their degrees are bound by a strict meaning. Interpret without including the range in which similar functions can be expected.
 本明細書において、あるパラメータに関して複数の上限値の候補及び複数の下限値の候補が挙げられている場合、そのパラメータの数値範囲は、任意の1つの上限値の候補と任意の1つの下限値の候補とを組み合わせることによって構成されてもよい。例えば、「パラメータBは、例えばA1以上であり、A2以上であってもよく、A3以上であってもよい。パラメータBは、例えばA4以下であり、A5以下であってもよく、A6以下であってもよい。」と記載されている場合を考える。この場合、パラメータBの数値範囲は、A1以上A4以下であってもよく、A1以上A5以下であってもよく、A1以上A6以下であってもよく、A2以上A4以下であってもよく、A2以上A5以下であってもよく、A2以上A6以下であってもよく、A3以上A4以下であってもよく、A3以上A5以下であってもよく、A3以上A6以下であってもよい。 In the present specification, when a plurality of upper limit candidates and a plurality of lower limit candidates are listed for a certain parameter, the numerical range of the parameter is any one upper limit candidate and any one lower limit value. It may be configured by combining with the candidates of. For example, "Parameter B may be, for example, A1 or more, A2 or more, or A3 or more. Parameter B may be, for example, A4 or less, A5 or less, or A6 or less. It may be. " In this case, the numerical range of the parameter B may be A1 or more and A4 or less, A1 or more and A5 or less, A1 or more and A6 or less, or A2 or more and A4 or less. It may be A2 or more and A5 or less, A2 or more and A6 or less, A3 or more and A4 or less, A3 or more and A5 or less, or A3 or more and A6 or less.
 本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。図面の寸法比率は、説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 In the drawings referred to in this embodiment, the same parts or parts having similar functions are designated by the same reference numerals or similar reference numerals, and the repeated description thereof may be omitted. The dimensional ratios in the drawings may differ from the actual ratios for convenience of explanation, or some of the configurations may be omitted from the drawings.
 以下、本開示の実施の形態について説明する。 Hereinafter, embodiments of the present disclosure will be described.
 近年、マイクロ波、ミリ波などの高い周波数を有する電波が、様々な分野で活用され始めている。マイクロ波とは、およそ0.3GHz以上110GHz以下の周波数帯の電波である。ミリ波とは、およそ30GHz以上300GHz以下の周波数帯の電波である。分野の例は、第5世代移動通信システムやモバイル、自動車用の通信システム、衝突防止システムのレーダ、医療の生体センシングなどである。 In recent years, radio waves with high frequencies such as microwaves and millimeter waves have begun to be used in various fields. The microwave is a radio wave in a frequency band of about 0.3 GHz or more and 110 GHz or less. The millimeter wave is a radio wave in a frequency band of about 30 GHz or more and 300 GHz or less. Examples in the field are 5th generation mobile communication systems and mobiles, communication systems for automobiles, radar of anti-collision systems, medical biosensing and the like.
 図1は、移動通信システム100の一例を示す図である。移動通信システム100は、基地局110、複数の通信装置120及び複数の端末装置130を備える。基地局110はマクロセルとも呼ばれ、領域115に位置する通信装置及び端末装置130との間で無線通信を行う。通信装置120はスモールセルとも呼ばれ、領域125に位置する端末装置130との間で無線通信を行う。端末装置130は、例えばスマートフォンである。スモールセルである各通信装置120がカバーする領域125は、図1に示すように、マクロセルがカバーする領域115の内側に位置していてもよい。図示はしないが、スモールセルがカバーする領域125は、マクロセルがカバーする領域115の外側に部分的に位置していてもよい。本明細書において、スモールセルは、マクロセルよりも小さい領域をカバーする通信装置を意味する。スモールセルは、いわゆるフェムトセル、ナノセル、ピコセル、マイクロセルなどであってもよい。 FIG. 1 is a diagram showing an example of a mobile communication system 100. The mobile communication system 100 includes a base station 110, a plurality of communication devices 120, and a plurality of terminal devices 130. The base station 110, also called a macro cell, performs wireless communication with a communication device and a terminal device 130 located in the area 115. The communication device 120, also called a small cell, performs wireless communication with the terminal device 130 located in the area 125. The terminal device 130 is, for example, a smartphone. The area 125 covered by each communication device 120, which is a small cell, may be located inside the area 115 covered by the macro cell, as shown in FIG. Although not shown, the area 125 covered by the small cell may be partially located outside the area 115 covered by the macrocell. As used herein, a small cell means a communication device that covers a smaller area than a macro cell. The small cell may be a so-called femtocell, nanocell, picocell, microcell or the like.
 図2は、領域125を構成するための通信装置120の一例を示す図である。通信装置120は、表面122を含む構造体121と、表面122に取り付けられているフィルムアンテナ10と、を備える。構造体121は、例えば電柱である。構造体121にフィルムアンテナ10を取り付けることにより、構造体121が通信の機能を有することができる。図2に示すように、通信装置120は、表面122に取り付けられている複数のフィルムアンテナ10を備えていてもよい。 FIG. 2 is a diagram showing an example of a communication device 120 for forming the area 125. The communication device 120 includes a structure 121 including a surface 122 and a film antenna 10 attached to the surface 122. The structure 121 is, for example, a utility pole. By attaching the film antenna 10 to the structure 121, the structure 121 can have a communication function. As shown in FIG. 2, the communication device 120 may include a plurality of film antennas 10 attached to the surface 122.
 図示はしないが、フィルムアンテナ10は、端末装置130に搭載されていてもよい。すなわち、フィルムアンテナ10は、端末装置130の通信機能の一部を担っていてもよい。 Although not shown, the film antenna 10 may be mounted on the terminal device 130. That is, the film antenna 10 may play a part of the communication function of the terminal device 130.
 図示はしないが、通信装置120は、フィルムアンテナ10により送信される電波を制御する制御装置を備えていてもよい。通信装置120は、フィルムアンテナ10により受信される電波を処理する処理装置を備えていてもよい。制御装置及び処理装置は、フィルムアンテナ10と共通の基材に設けられていてもよい。若しくは、制御装置及び処理装置は、フィルムアンテナ10とは異なる部材に設けられていてもよい。 Although not shown, the communication device 120 may include a control device that controls radio waves transmitted by the film antenna 10. The communication device 120 may include a processing device that processes radio waves received by the film antenna 10. The control device and the processing device may be provided on a common base material with the film antenna 10. Alternatively, the control device and the processing device may be provided on a member different from the film antenna 10.
 図2に示すように、フィルムアンテナ10は、基材20と、基材20に設けられているパッチ30と、を備える。パッチ30は、電波を送信又は受信する。パッチ30の特性は、構造体121の影響を受ける可能性がある。例えば、構造体121が導電性材料を含む場合、パッチ30が送信又は受信する電波に構造体121の影響が及ぶ可能性がある。 As shown in FIG. 2, the film antenna 10 includes a base material 20 and a patch 30 provided on the base material 20. Patch 30 transmits or receives radio waves. The properties of patch 30 can be affected by structure 121. For example, if the structure 121 contains a conductive material, the radio waves transmitted or received by the patch 30 may be affected by the structure 121.
 構造体121の影響を低減する方法として、基材20の厚さを大きくすることが考えられる。しかしながら、基材20の厚さが大きくなると、フィルムアンテナ10の設置場所、設置形態などが制限される。例えば、基材20の厚さが大きくなると、フィルムアンテナ10の可撓性が低下する。このため、湾曲面を有する構造体121にフィルムアンテナ10を取り付けることが難しくなる。また、薄い装置にフィルムアンテナ10を搭載することが難しくなる。例えば、スマートフォンなどの端末装置130にフィルムアンテナ10を搭載することが難しくなる。 As a method of reducing the influence of the structure 121, it is conceivable to increase the thickness of the base material 20. However, as the thickness of the base material 20 increases, the installation location, installation form, and the like of the film antenna 10 are limited. For example, as the thickness of the base material 20 increases, the flexibility of the film antenna 10 decreases. Therefore, it becomes difficult to attach the film antenna 10 to the structure 121 having a curved surface. In addition, it becomes difficult to mount the film antenna 10 on a thin device. For example, it becomes difficult to mount the film antenna 10 on a terminal device 130 such as a smartphone.
 このような課題を考慮し、本実施の形態においては、薄型化を実現しやすいフィルムアンテナ10を提供することを目的とする。これにより、フィルムアンテナ10の設置場所、設置形態の制限を緩和できる。例えば図2に示すように、構造体121の表面122の湾曲面にフィルムアンテナ10を取り付けることができる。また、スマートフォンなどの薄い装置の内部にフィルムアンテナ10を搭載できる。 In consideration of such problems, it is an object of the present embodiment to provide a film antenna 10 that can be easily made thinner. As a result, restrictions on the installation location and installation form of the film antenna 10 can be relaxed. For example, as shown in FIG. 2, the film antenna 10 can be attached to the curved surface of the surface 122 of the structure 121. Further, the film antenna 10 can be mounted inside a thin device such as a smartphone.
 図3は、フィルムアンテナ10の一例を示す図である。図4は、図3のフィルムアンテナ10をIV-IV方向から見た断面図である。フィルムアンテナ10は、第1面21及び第2面22を含む基材20と、第1面21側に位置するパッチ30と、第2面22側に位置するグランド40と、を備える。第2面22は、第1面21の反対側に位置する。基材20は、絶縁性を有する。パッチ30及びグランド40は、導電性を有する。基材20、パッチ30及びグランド40は、コンデンサ型のアンテナを構成している。 FIG. 3 is a diagram showing an example of the film antenna 10. FIG. 4 is a cross-sectional view of the film antenna 10 of FIG. 3 as viewed from the IV-IV direction. The film antenna 10 includes a base material 20 including a first surface 21 and a second surface 22, a patch 30 located on the first surface 21 side, and a ground 40 located on the second surface 22 side. The second surface 22 is located on the opposite side of the first surface 21. The base material 20 has an insulating property. The patch 30 and the gland 40 are conductive. The base material 20, the patch 30, and the ground 40 form a capacitor-type antenna.
 フィルムアンテナ10が送信又は受信する電波の周波数は、例えば300MHz以上であり、3GHz以上であってもよく、25GHz以上であってもよく、50GHz以上であってもよい。フィルムアンテナ10が送信又は受信する電波の周波数は、例えば110GHz以下であり、80GHz以下であってもよい。このような電波は、第5世代移動通信システム、自動車間通信システム、自動車用のレーダ装置などで利用される。 The frequency of the radio wave transmitted or received by the film antenna 10 is, for example, 300 MHz or more, may be 3 GHz or more, may be 25 GHz or more, or may be 50 GHz or more. The frequency of the radio wave transmitted or received by the film antenna 10 is, for example, 110 GHz or less, and may be 80 GHz or less. Such radio waves are used in fifth-generation mobile communication systems, inter-vehicle communication systems, radar devices for automobiles, and the like.
 図4に示すように、フィルムアンテナ10は、基材20とパッチ30との間に位置する第1接着層36を備えていてもよい。フィルムアンテナ10は、第1接着層36を備えていなくてもよい。フィルムアンテナ10は、基材20とグランド40との間に位置する第2接着層46を備えていてもよい。フィルムアンテナ10は、第2接着層46を備えていなくてもよい。 As shown in FIG. 4, the film antenna 10 may include a first adhesive layer 36 located between the base material 20 and the patch 30. The film antenna 10 does not have to include the first adhesive layer 36. The film antenna 10 may include a second adhesive layer 46 located between the base material 20 and the ground 40. The film antenna 10 does not have to include the second adhesive layer 46.
 フィルムアンテナ10の各構成要素について説明する。 Each component of the film antenna 10 will be described.
(基材)
 基材20は可撓性を有する。このため、湾曲面を含む構造体121にフィルムアンテナ10を取り付けることができる。
(Base material)
The base material 20 has flexibility. Therefore, the film antenna 10 can be attached to the structure 121 including the curved surface.
 図3に示すように、基材20は、平面視において矩形の外縁を有していてもよい。例えば、基材20は、第1方向D1及び第1方向D1に直交する第2方向D2に延びる外縁20Yを含んでいてもよい。平面視とは、第1面21の法線方向に沿ってフィルムアンテナ10を見ることを意味する。 As shown in FIG. 3, the base material 20 may have a rectangular outer edge in a plan view. For example, the base material 20 may include an outer edge 20Y extending in the first direction D1 and the second direction D2 orthogonal to the first direction D1. The plan view means to see the film antenna 10 along the normal direction of the first surface 21.
 基材20は、低い比誘電率を有する樹脂材料を含む。基材20の比誘電率は、4.0以下であってもよく、3.5以下であってもよく、3.0以下であってもよく、2.5以下であってもよく、2.0以下であってもよい。これにより、フィルムアンテナ10の効率及び利得を高めることができる。基材20の比誘電率は、1.0以上であってもよく、1.5以上であってもよい。 The base material 20 contains a resin material having a low relative permittivity. The relative permittivity of the base material 20 may be 4.0 or less, 3.5 or less, 3.0 or less, 2.5 or less, or 2 It may be 0.0 or less. This makes it possible to increase the efficiency and gain of the film antenna 10. The relative permittivity of the base material 20 may be 1.0 or more, or 1.5 or more.
 基材20の誘電正接tanδは、0.01以下であってもよく、0.005以下であってもよく、0.001以下であってもよく、0.0005以下であってもよい。 The dielectric loss tang tan δ of the base material 20 may be 0.01 or less, 0.005 or less, 0.001 or less, or 0.0005 or less.
 基材20の樹脂材料としては、フッ素樹脂、液晶ポリマー(LCP)、ポリプロピレン(PP)、変性ポリプロピレン(変性PP)、ポリイミド(PI)などを用いることができる。フッ素樹脂の例は、ポリテトラフルオロエチレン(PTFE)などの完全フッ化樹脂、ポリクロロトリフルオロエチレン(PCTFE)などの部分フッ化樹脂、エチレン・4フッ化エチレン共重合体(ETFE)などのフッ素化樹脂共重合体などである。フッ素樹脂は、例えば2.0以上3.0以下の比誘電率を有する。液晶ポリマーは、例えば3.0以上3.5以下の比誘電率を有する。ポリプロピレンは、例えば2.2以上2.6以下の比誘電率を有する。ポリイミドは、約3.5の比誘電率を有する。 As the resin material of the base material 20, fluororesin, liquid crystal polymer (LCP), polypropylene (PP), modified polypropylene (modified PP), polyimide (PI) and the like can be used. Examples of fluororesins include fully fluororesin such as polytetrafluoroethylene (PTFE), partially fluororesin such as polychlorotrifluoroethylene (PCTFE), and fluorine such as ethylene / tetrafluoroethylene copolymer (ETFE). It is a chemical resin copolymer or the like. The fluororesin has, for example, a relative permittivity of 2.0 or more and 3.0 or less. The liquid crystal polymer has, for example, a relative permittivity of 3.0 or more and 3.5 or less. Polypropylene has, for example, a relative permittivity of 2.2 or more and 2.6 or less. Polyimide has a relative permittivity of about 3.5.
 基材20は、単一の層で構成されていてもよく、複数の層で構成されていてもよい。 The base material 20 may be composed of a single layer or may be composed of a plurality of layers.
 基材20の厚さT0は、例えば2mm以下であり、800μm以下であってもよく、500μm以下であってもよく、200μm以下であってもよい。厚さT0を小さくすることにより、基材20が可撓性を有することができる。基材20の厚さT0は、例えば10μm以上であり、20μm以上であってもよく、50μm以上であってもよく、100μm以上であってもよい。 The thickness T0 of the base material 20 is, for example, 2 mm or less, may be 800 μm or less, may be 500 μm or less, or may be 200 μm or less. By reducing the thickness T0, the base material 20 can have flexibility. The thickness T0 of the base material 20 is, for example, 10 μm or more, may be 20 μm or more, may be 50 μm or more, or may be 100 μm or more.
 図示はしないが、基材20は、複数の気泡を含んでいてもよい。すなわち、基材20が発泡樹脂を含んでいてもよい。これにより、基材20の比誘電率を低くすることができる。 Although not shown, the base material 20 may contain a plurality of bubbles. That is, the base material 20 may contain a foamed resin. As a result, the relative permittivity of the base material 20 can be lowered.
(パッチ)
 図4に示すように、パッチ30は、基材20の第1面21側に位置する第1導電体層31を含む。第1導電体層31は、基材20の第1面21に対向する第3面32と、第3面32の反対側に位置する第4面33と、を含む。パッチ30は、平面視において基材20の外縁20Yよりも内側に位置する第1外縁30Yを含む。図3に示すように、第1外縁30Yは、平面視において矩形の形状を有していてもよい。例えば、第1外縁30Yは、第1方向D1及び第1方向D1に直交する第2方向D2に延びていてもよい。
(patch)
As shown in FIG. 4, the patch 30 includes a first conductor layer 31 located on the first surface 21 side of the base material 20. The first conductor layer 31 includes a third surface 32 facing the first surface 21 of the base material 20, and a fourth surface 33 located on the opposite side of the third surface 32. The patch 30 includes a first outer edge 30Y located inside the outer edge 20Y of the base material 20 in a plan view. As shown in FIG. 3, the first outer edge 30Y may have a rectangular shape in a plan view. For example, the first outer edge 30Y may extend in the first direction D1 and the second direction D2 orthogonal to the first direction D1.
 図3に示すように、パッチ30にはマイクロストリップ線路34が接続されていてもよい。パッチ30及びマイクロストリップ線路34は、共通の第1導電体層31を含んでいてもよい。 As shown in FIG. 3, a microstrip line 34 may be connected to the patch 30. The patch 30 and the microstrip line 34 may include a common first conductor layer 31.
 第1導電体層31は、導電性を有する材料を含む。例えば第1導電体層31は、銅(Cu)、金(Au)、銀(Ag)、アルミニウム(Al)等の金属材料又はこれらを用いた合金などを含む。第1導電体層31は、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)などの透明な導電性材料を含んでいてもよい。第1導電体層31は、グラファイト、カーボンナノチューブ、グラーフェン、フラーレン等の炭素系導電性材料を含んでもよい。 The first conductor layer 31 contains a material having conductivity. For example, the first conductor layer 31 contains a metal material such as copper (Cu), gold (Au), silver (Ag), aluminum (Al), or an alloy using these. The first conductor layer 31 may contain a transparent conductive material such as indium tin oxide (ITO) and indium zinc oxide (IZO). The first conductor layer 31 may contain a carbon-based conductive material such as graphite, carbon nanotubes, graphene, and fullerene.
 第1導電体層31の形成方法は特に限定されない。例えば、めっき法、印刷法、スパッタリング法、蒸着法などによって第1導電体層31を形成してもよい。第1導電体層31を構成する箔を、第1接着層36を介して基材20に貼り付けてもよい。箔は、電析法、圧延法などによって作製されてもよい。 The method for forming the first conductor layer 31 is not particularly limited. For example, the first conductor layer 31 may be formed by a plating method, a printing method, a sputtering method, a vapor deposition method, or the like. The foil constituting the first conductor layer 31 may be attached to the base material 20 via the first adhesive layer 36. The foil may be produced by an electrodeposition method, a rolling method, or the like.
 第1導電体層31の厚さT1は、1μm以上であってもよく、5μm以上であってもよい。第1導電体層31の厚さは、35μm以下であってもよく、20μm以下であってもよい。 The thickness T1 of the first conductor layer 31 may be 1 μm or more, or 5 μm or more. The thickness of the first conductor layer 31 may be 35 μm or less, or 20 μm or less.
 第1導電体層31の面は、平坦であることが好ましい。これにより、パッチ30において生じる伝送損失を低減できる。例えば、第1導電体層31の第3面32における最大高さ(Rz)は、3.0μm以下であってもよく、2.0μm以下であってもよく、1.0μm以下であってもよい。第3面32の最大高さが3.0μm以下であることにより、20GHzにおけるパッチ30の伝送損失を例えば6dB以下に低減できる。 The surface of the first conductor layer 31 is preferably flat. This makes it possible to reduce the transmission loss that occurs in the patch 30. For example, the maximum height (Rz) of the first conductor layer 31 on the third surface 32 may be 3.0 μm or less, 2.0 μm or less, or 1.0 μm or less. good. Since the maximum height of the third surface 32 is 3.0 μm or less, the transmission loss of the patch 30 at 20 GHz can be reduced to, for example, 6 dB or less.
 第1導電体層31の第3面32における算術平均粗さ(Ra)は、3.0μm以下であってもよく、2.0μm以下であってもよく、1.0μm以下であってもよい。 The arithmetic mean roughness (Ra) on the third surface 32 of the first conductor layer 31 may be 3.0 μm or less, 2.0 μm or less, or 1.0 μm or less. ..
 なお、第3面32の算術平均粗さ(Ra)及び最大高さ(Rz)が小さいほど、基材20の第1面21に対する第3面32の密着性が低くなる可能性がある。この点を考慮すると、第1面21と第3面32との間に第1接着層36が設けられていることが好ましい。これにより、第3面32の算術平均粗さ(Ra)及び最大高さ(Rz)が小さい場合であっても、パッチ30が剥離することを抑制できる。 The smaller the arithmetic average roughness (Ra) and the maximum height (Rz) of the third surface 32, the lower the adhesion of the third surface 32 to the first surface 21 of the base material 20 may be. Considering this point, it is preferable that the first adhesive layer 36 is provided between the first surface 21 and the third surface 32. Thereby, even when the arithmetic average roughness (Ra) and the maximum height (Rz) of the third surface 32 are small, it is possible to suppress the patch 30 from peeling off.
 算術平均粗さ(Ra)及び最大高さ(Rz)は、JIS B 0601:2013に基づいて規定される。具体的には、まず、第3面32の輪郭曲線を測定する。粗さ曲線を測定する測定器は、例えばKLA製のSpectra Filmである。続いて、輪郭曲線の測定結果を、基準方向において基準長さにわたって抽出する。基準方向は、第3面32の面内方向における1つの方向である。基準長さは、例えば0.8mmである。算術平均粗さ(Ra)は、輪郭曲線とその平均値との差の絶対値の積分値を、基準長さで割ることによって算出される。最大高さ(Rz)は、輪郭曲線の山の高さの最大値と谷の深さの最大値との和である。 Arithmetic mean roughness (Ra) and maximum height (Rz) are defined based on JIS B 0601: 2013. Specifically, first, the contour curve of the third surface 32 is measured. The measuring instrument for measuring the roughness curve is, for example, a Spectra Film manufactured by KLA. Subsequently, the measurement result of the contour curve is extracted over the reference length in the reference direction. The reference direction is one direction in the in-plane direction of the third surface 32. The reference length is, for example, 0.8 mm. The arithmetic mean roughness (Ra) is calculated by dividing the integral value of the absolute value of the difference between the contour curve and the average value by the reference length. The maximum height (Rz) is the sum of the maximum value of the peak height of the contour curve and the maximum value of the valley depth.
 図3において、符号L1は、第1方向D1におけるパッチ30の寸法を表す。符号W1は、第2方向D2におけるパッチ30の寸法を表す。寸法L1、W1は、例えば40mm以下であり、20mm以下であってもよく、10mm以下であってもよく、1mm以下であってもよい。寸法L1、W1は、例えば0.2mm以上であってもよい。
 寸法L1、W1は、フィルムアンテナ10が送信又は受信する電波の周波数に基づいて定められてもよい。
 電波の周波数が3GHz以上6GHz以下である場合、寸法L1、W1は、10mm以上40mm以下であってもよい。
 電波の周波数が25GHz以上30GHz以下である場合、寸法L1、W1は、2mm以上20mm以下であってもよい。
 電波の周波数が50GHz以上75GHz以下である場合、寸法L1、W1は、0.5mm以上10mm以下であってもよい。
 電波の周波数が75GHz以上300GHz以下である場合、寸法L1、W1は、0.2mm以上5.0mm以下であってもよい。
In FIG. 3, reference numeral L1 represents the dimension of the patch 30 in the first direction D1. Reference numeral W1 represents the dimension of the patch 30 in the second direction D2. The dimensions L1 and W1 are, for example, 40 mm or less, 20 mm or less, 10 mm or less, or 1 mm or less. The dimensions L1 and W1 may be, for example, 0.2 mm or more.
The dimensions L1 and W1 may be determined based on the frequency of the radio wave transmitted or received by the film antenna 10.
When the frequency of the radio wave is 3 GHz or more and 6 GHz or less, the dimensions L1 and W1 may be 10 mm or more and 40 mm or less.
When the frequency of the radio wave is 25 GHz or more and 30 GHz or less, the dimensions L1 and W1 may be 2 mm or more and 20 mm or less.
When the frequency of the radio wave is 50 GHz or more and 75 GHz or less, the dimensions L1 and W1 may be 0.5 mm or more and 10 mm or less.
When the frequency of the radio wave is 75 GHz or more and 300 GHz or less, the dimensions L1 and W1 may be 0.2 mm or more and 5.0 mm or less.
 図3において、符号L0は、第1方向D1における基材20の寸法を表す。符号W0は、第2方向D2における基材20の寸法を表す。寸法L0、W0は、寸法L1、W1よりも大きい。例えば、寸法L0、W0は、寸法L1、W1の2倍以上であってもよく、3倍以上であってもよい。 In FIG. 3, reference numeral L0 represents the dimension of the base material 20 in the first direction D1. Reference numeral W0 represents the dimension of the base material 20 in the second direction D2. The dimensions L0 and W0 are larger than the dimensions L1 and W1. For example, the dimensions L0 and W0 may be twice or more or three times or more the dimensions L1 and W1.
(第1接着層)
 第1接着層36は、基材20の第1面21とパッチ30の第3面32との間に位置する。第1接着層36は、第1面21と第3面32とを接着している。図4に示すように、第1接着層36は、パッチ30の第1外縁30Yよりも外側にまで広がっていてもよい。すなわち、第1接着層36は、平面視においてパッチ30に重ならない領域を含んでいてもよい。
(First adhesive layer)
The first adhesive layer 36 is located between the first surface 21 of the base material 20 and the third surface 32 of the patch 30. The first adhesive layer 36 adheres the first surface 21 and the third surface 32. As shown in FIG. 4, the first adhesive layer 36 may extend outward from the first outer edge 30Y of the patch 30. That is, the first adhesive layer 36 may include a region that does not overlap the patch 30 in a plan view.
 第1接着層36は、フッ素樹脂を含むフッ素系接着剤を備えていてもよい。例えば、第1接着層36は、カルボキシル基含有スチレン系エラストマー、エポキシ樹脂などを含んでいてもよい。第1接着層36の比誘電率は、4.0以下であってもよく、3.5以下であってもよく、3.0以下であってもよく、2.5以下であってもよく、2.0以下であってもよい。第1接着層36の比誘電率は、1.0以上であってもよく、1.5以上であってもよい。第1接着層36は、フッ素系接着剤を備えていなくてもよい。 The first adhesive layer 36 may be provided with a fluororesin-based adhesive containing a fluororesin. For example, the first adhesive layer 36 may contain a carboxyl group-containing styrene-based elastomer, an epoxy resin, or the like. The relative permittivity of the first adhesive layer 36 may be 4.0 or less, 3.5 or less, 3.0 or less, or 2.5 or less. , 2.0 or less. The relative permittivity of the first adhesive layer 36 may be 1.0 or more, or may be 1.5 or more. The first adhesive layer 36 may not be provided with a fluorine-based adhesive.
 第1接着層36の誘電正接tanδは、0.01以下であってもよく、0.005以下であってもよく、0.001以下であってもよく、0.0005以下であってもよい。 The dielectric loss tangent tan δ of the first adhesive layer 36 may be 0.01 or less, 0.005 or less, 0.001 or less, or 0.0005 or less. ..
 第1接着層36の厚さは、例えば30μm以下であり、25μm以下であってもよく、20μm以下であってもよい。第1接着層36の厚さは、例えば2μm以上であり、5μm以上であってもよく、10μm以上であってもよい。第1接着層36の厚さは、さらに大きくてもよく、例えば50μm以上であってもよく、100μmであってもよい。
 フッ素系接着剤などの接着剤が基材20を構成していてもよい。例えば、接着剤を固化させることによって基材20が作製されてもよい。接着剤から作製された基材20の第1面21及び第2面22に、第1導電体層31及び第2導電体層41が設けられていてもよい。
The thickness of the first adhesive layer 36 is, for example, 30 μm or less, 25 μm or less, or 20 μm or less. The thickness of the first adhesive layer 36 is, for example, 2 μm or more, may be 5 μm or more, or may be 10 μm or more. The thickness of the first adhesive layer 36 may be further increased, for example, 50 μm or more, or 100 μm.
An adhesive such as a fluorine-based adhesive may constitute the base material 20. For example, the base material 20 may be produced by solidifying the adhesive. The first conductor layer 31 and the second conductor layer 41 may be provided on the first surface 21 and the second surface 22 of the base material 20 made of the adhesive.
(グランド)
 図4に示すように、グランド40は、基材20の第2面22側に位置する第2導電体層41を含む。第2導電体層41は、基材20の第2面22に対向する第5面42と、第5面42の反対側に位置する第6面43と、を含む。グランド40は、平面視においてパッチ30の第1外縁30Yよりも外側に位置する第2外縁40Yを含む。第2外縁40Yは、基材20の外縁20Yに一致していてもよい。
(ground)
As shown in FIG. 4, the ground 40 includes a second conductor layer 41 located on the second surface 22 side of the base material 20. The second conductor layer 41 includes a fifth surface 42 facing the second surface 22 of the base material 20, and a sixth surface 43 located on the opposite side of the fifth surface 42. The ground 40 includes a second outer edge 40Y located outside the first outer edge 30Y of the patch 30 in a plan view. The second outer edge 40Y may coincide with the outer edge 20Y of the base material 20.
 第2導電体層41は、導電性を有する材料を含む。第2導電体層41の材料としては、第1導電体層31で例示した材料を用いることができる。第2導電体層41の材料は、第1導電体層31の材料と同一であってもよく、異なっていてもよい。 The second conductor layer 41 contains a material having conductivity. As the material of the second conductor layer 41, the material exemplified in the first conductor layer 31 can be used. The material of the second conductor layer 41 may be the same as or different from the material of the first conductor layer 31.
 第2導電体層41の厚さT2は、1μm以上であってもよく、5μm以上であってもよい。第2導電体層41の厚さは、35μm以下であってもよく、20μm以下であってもよく、10μm以下であってもよい。 The thickness T2 of the second conductor layer 41 may be 1 μm or more, or 5 μm or more. The thickness of the second conductor layer 41 may be 35 μm or less, 20 μm or less, or 10 μm or less.
 第2導電体層41は、基材20の厚さ方向において第1導電体層31に対向している。これにより、第1導電体層31と第2導電体層41との間に電界を生じさせることができる。 The second conductor layer 41 faces the first conductor layer 31 in the thickness direction of the base material 20. As a result, an electric field can be generated between the first conductor layer 31 and the second conductor layer 41.
(第2接着層)
 第2接着層46は、基材20の第2面22とグランド40の第5面42との間に位置する。第2接着層46は、第2面22と第5面42とを接着している。
(Second adhesive layer)
The second adhesive layer 46 is located between the second surface 22 of the base material 20 and the fifth surface 42 of the ground 40. The second adhesive layer 46 adheres the second surface 22 and the fifth surface 42.
 第2接着層46の材料としては、第1接着層36で例示した材料を用いることができる。第2接着層46の材料は、第1接着層36の材料と同一であってもよく、異なっていてもよい。 As the material of the second adhesive layer 46, the material exemplified by the first adhesive layer 36 can be used. The material of the second adhesive layer 46 may be the same as or different from the material of the first adhesive layer 36.
 第2接着層46の厚さは、第1接着層36で例示した厚さの範囲内である。第2接着層46の厚さは、第1接着層36の厚さと同一であってもよく、異なっていてもよい。 The thickness of the second adhesive layer 46 is within the range of the thickness exemplified by the first adhesive layer 36. The thickness of the second adhesive layer 46 may be the same as or different from the thickness of the first adhesive layer 36.
(下地層)
 第1導電体層31の第3面32と第2導電体層41の第5面42との間に位置する部材を、下地層50とも称する。図4に示す例において、下地層50は、基材20、第1接着層36及び第2接着層46を含む。下地層50は、フィルムアンテナ10のパッチ30及びグランド40をエッチングなどによって除去することによって得られる。
(Underground layer)
The member located between the third surface 32 of the first conductor layer 31 and the fifth surface 42 of the second conductor layer 41 is also referred to as a base layer 50. In the example shown in FIG. 4, the base layer 50 includes the base material 20, the first adhesive layer 36, and the second adhesive layer 46. The base layer 50 is obtained by removing the patch 30 and the ground 40 of the film antenna 10 by etching or the like.
 下地層50の比誘電率は、4.0以下であってもよく、3.5以下であってもよく、3.0以下であってもよく、2.5以下であってもよく、2.0以下であってもよい。これにより、フィルムアンテナ10の効率及び利得を高めることができる。下地層50の比誘電率は、1.0以上であってもよく、1.5以上であってもよい。 The relative permittivity of the base layer 50 may be 4.0 or less, 3.5 or less, 3.0 or less, 2.5 or less, or 2 It may be 0.0 or less. This makes it possible to increase the efficiency and gain of the film antenna 10. The relative permittivity of the base layer 50 may be 1.0 or more, or may be 1.5 or more.
 下地層50の誘電正接tanδは、0.01以下であってもよく、0.005以下であってもよく、0.001以下であってもよく、0.0005以下であってもよい。 The dielectric loss tangent tan δ of the base layer 50 may be 0.01 or less, 0.005 or less, 0.001 or less, or 0.0005 or less.
 下地層50の厚さT3は、例えば2mm以下であり、800μm以下であってもよく、500μm以下であってもよく、200μm以下であってもよい。下地層50の厚さT3は、例えば10μm以上であり、20μm以上であってもよく、50μm以上であってもよく、100μm以上であってもよい。 The thickness T3 of the base layer 50 may be, for example, 2 mm or less, 800 μm or less, 500 μm or less, or 200 μm or less. The thickness T3 of the base layer 50 may be, for example, 10 μm or more, 20 μm or more, 50 μm or more, or 100 μm or more.
 比誘電率及び誘電正接を測定する方法としては、開放型共振器法を利用できる。開放型共振器法を実行する測定システムは、ネットワークアナライザ、ミリ波てい倍器、ミリ波検波器、ファブリペロー共振器を含む。ファブリペロー共振器としては、キーコム株式会社のFPR-40、FPR-50、FPR-60、FPR-75、PFR-90、FPR-110などを、周波数に応じて用いることができる。 The open resonator method can be used as a method for measuring the relative permittivity and the dielectric loss tangent. Measurement systems that perform the open resonator method include a network analyzer, a millimeter wave doubler, a millimeter wave detector, and a Fabry-Perot resonator. As the Fabry-Perot resonator, FPR-40, FPR-50, FPR-60, FPR-75, PFR-90, FPR-110 and the like of Keycom Co., Ltd. can be used depending on the frequency.
 厚さを測定する測定器としては、測長機を利用でき、例えばニコン社製デジマイクロを用いることができる。測長機によっては厚さを測定できない場合、フィルムアンテナ10のサンプルの断面の画像に基づいて厚さを算出してもよい。画像を測定する測定器としては、走査電子顕微鏡を用いることができる。 As a measuring instrument for measuring the thickness, a length measuring machine can be used, for example, a Nikon Digimicro can be used. If the thickness cannot be measured by the length measuring machine, the thickness may be calculated based on the image of the cross section of the sample of the film antenna 10. A scanning electron microscope can be used as a measuring instrument for measuring an image.
 フィルムアンテナ10全体の厚さは、例えば2mm以下であり、800μm以下であってもよく、500μm以下であってもよく、200μm以下であってもよい。フィルムアンテナ10全体の厚さは、例えば10μm以上であり、20μm以上であってもよく、50μm以上であってもよく、100μm以上であってもよい。 The thickness of the entire film antenna 10 is, for example, 2 mm or less, 800 μm or less, 500 μm or less, or 200 μm or less. The thickness of the entire film antenna 10 may be, for example, 10 μm or more, 20 μm or more, 50 μm or more, or 100 μm or more.
 次に、上述の構成を備えるフィルムアンテナ10の作用について説明する。 Next, the operation of the film antenna 10 having the above configuration will be described.
 上述のように、フィルムアンテナ10は、基材20の第2面22側に位置するグランド40を備える。フィルムアンテナ10は、グランド40が構造体121側を向くように構造体121に取り付けられる。フィルムアンテナ10がグランド40を備えることにより、フィルムアンテナ10の特性が構造体121の影響を受けることを抑制できる。また、フィルムアンテナ10の基材20は、樹脂材料を含み、2mm以下の厚さを有する。このため、フィルムアンテナ10が可撓性を有することができる。これらのことにより、フィルムアンテナ10の設置場所、設置形態の制限を緩和できる。例えば図2に示すように、電柱などの構造体121の表面122の湾曲面にフィルムアンテナ10を取り付けることができる。様々な構造体121にフィルムアンテナ10を設置できるので、領域125を容易に構成できる。これにより、移動通信システム100の通信容量を増加させることができる。 As described above, the film antenna 10 includes a ground 40 located on the second surface 22 side of the base material 20. The film antenna 10 is attached to the structure 121 so that the ground 40 faces the structure 121 side. By providing the film antenna 10 with the ground 40, it is possible to suppress the characteristics of the film antenna 10 from being affected by the structure 121. Further, the base material 20 of the film antenna 10 contains a resin material and has a thickness of 2 mm or less. Therefore, the film antenna 10 can have flexibility. As a result, restrictions on the installation location and installation form of the film antenna 10 can be relaxed. For example, as shown in FIG. 2, the film antenna 10 can be attached to the curved surface of the surface 122 of the structure 121 such as a utility pole. Since the film antenna 10 can be installed in various structures 121, the region 125 can be easily configured. As a result, the communication capacity of the mobile communication system 100 can be increased.
 図2に示すように、構造体121の表面122の湾曲面にフィルムアンテナ10を取り付けることにより、様々な方向に電波を送信できる。例えば、図2に示すように、第1のフィルムアンテナ10の法線方向は、第1のフィルムアンテナ10に隣接する第2のフィルムアンテナ10の法線方向と異なる。このため、第1のフィルムアンテナ10から送信される電波E1の方向も、第2のフィルムアンテナ10から送信される電波E2の方向と異なることができる。これにより、電波の送信方向の範囲を容易に拡張できる。 As shown in FIG. 2, by attaching the film antenna 10 to the curved surface of the surface 122 of the structure 121, radio waves can be transmitted in various directions. For example, as shown in FIG. 2, the normal direction of the first film antenna 10 is different from the normal direction of the second film antenna 10 adjacent to the first film antenna 10. Therefore, the direction of the radio wave E1 transmitted from the first film antenna 10 can also be different from the direction of the radio wave E2 transmitted from the second film antenna 10. This makes it possible to easily extend the range of radio wave transmission directions.
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明及び以下の説明で用いる図面では、上述の実施の形態と同様に構成され得る部分について、第1の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。上述の実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 It is possible to make various changes to the above-described embodiment. Hereinafter, modification examples will be described with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding portions in the first embodiment will be used for the portions that can be configured in the same manner as in the above-described embodiment. , Omit duplicate explanations. When it is clear that the action and effect obtained in the above-described embodiment can be obtained in the modified example, the description thereof may be omitted.
 (第1変形例)
 図5は、第1変形例に係るフィルムアンテナ10を示す図である。図5に示すように、フィルムアンテナ10は、複数のパッチ30を備えていてもよい。各パッチ30は、電波を送信又は受信できる。フィルムアンテナ10が複数のパッチ30を備えることにより、フィルムアンテナ10の通信容量を増加させることができる。
(First modification)
FIG. 5 is a diagram showing a film antenna 10 according to the first modification. As shown in FIG. 5, the film antenna 10 may include a plurality of patches 30. Each patch 30 can transmit or receive radio waves. By providing the film antenna 10 with a plurality of patches 30, the communication capacity of the film antenna 10 can be increased.
 複数のパッチ30は、1つの基材20の上に設けられている。例えば、複数のパッチ30は、上述の実施の形態の場合と同様に、基材20の第1面21側に位置している。グランド40の第2外縁40Yは、平面視において複数のパッチ30を囲んでいる。 The plurality of patches 30 are provided on one base material 20. For example, the plurality of patches 30 are located on the first surface 21 side of the base material 20 as in the case of the above-described embodiment. The second outer edge 40Y of the ground 40 surrounds the plurality of patches 30 in a plan view.
 複数のパッチ30は、基材20の面内方向に並んでいてもよい。例えば、複数のパッチ30は、第1周期P1で第1方向D1に並んでいてもよい。複数のパッチ30は、第2周期P2で第2方向D2に並んでいてもよい。第1周期P1と第2周期P2とは、同一であってもよく、異なっていてもよい。周期P1、P2は、パッチ30の寸法L1、W1の2倍以上であってもよく、3倍以上であってもよい。 The plurality of patches 30 may be arranged in the in-plane direction of the base material 20. For example, the plurality of patches 30 may be arranged in the first direction D1 in the first period P1. The plurality of patches 30 may be arranged in the second direction D2 in the second cycle P2. The first period P1 and the second period P2 may be the same or different. The cycles P1 and P2 may be twice or more or three times or more the dimensions L1 and W1 of the patch 30.
 図6は、図5のフィルムアンテナ10を備える通信装置120の一例を示す図である。図6に示すように、フィルムアンテナ10は、構造体121の表面122に巻き付けられていてもよい。例えば、構造体121が円筒の形状を有する場合、フィルムアンテナ10が、構造体121の表面122の円周の1/2以上の距離にわたって表面122に取り付けられていてもよい。 FIG. 6 is a diagram showing an example of a communication device 120 including the film antenna 10 of FIG. As shown in FIG. 6, the film antenna 10 may be wound around the surface 122 of the structure 121. For example, when the structure 121 has a cylindrical shape, the film antenna 10 may be attached to the surface 122 over a distance of 1/2 or more of the circumference of the surface 122 of the structure 121.
 図7は、フィルムアンテナ10の可撓性の評価方法を説明するための図である。本明細書において、「可撓性」とは、25℃の環境下でフィルムアンテナ10を直径Dのロール状の形態に巻き取った場合に、フィルムアンテナ10に折れ目が生じない程度の柔軟性を意味している。直径Dは、例えば300mmである。「折れ目」とは、フィルムアンテナ10を巻き取る方向に交差する方向においてフィルムアンテナ10に現れる変形である。フィルムアンテナ10に現れた折れ目は、フィルムアンテナ10を逆向きに巻き取ったとしても解消されない。
 フィルムアンテナ10が可撓性を有することにより、図6に示すようにフィルムアンテナ10を構造体121に巻き付けることができる。
FIG. 7 is a diagram for explaining a method for evaluating the flexibility of the film antenna 10. As used herein, "flexibility" means flexibility to the extent that the film antenna 10 does not crease when the film antenna 10 is wound into a roll shape having a diameter D in an environment of 25 ° C. Means. The diameter D is, for example, 300 mm. The "crease" is a deformation that appears on the film antenna 10 in a direction intersecting the winding direction of the film antenna 10. The crease that appears in the film antenna 10 is not eliminated even if the film antenna 10 is wound in the opposite direction.
Due to the flexibility of the film antenna 10, the film antenna 10 can be wound around the structure 121 as shown in FIG.
 (第2変形例)
 図8は、第1変形例に係るフィルムアンテナ10を示す図である。図8に示すように、フィルムアンテナ10は、異なる形状を有する複数のパッチ30を備えていてもよい。例えば、フィルムアンテナ10は、第1のパッチ30Mと、第1のパッチ30Mとは異なる形状を有する第2のパッチ30Sと、を備えていてもよい。第1のパッチ30Mは、第1方向D1において寸法L1を有し、第2方向D2において寸法W1を有する。第2のパッチ30Sは、第1方向D1において寸法L2を有し、第2方向D2において寸法W2を有する。寸法L2は寸法L1よりも小さい。寸法W2は寸法W1よりも小さい。このため、第2のパッチ30Sが送信又は受信する電波の周波数は、第1のパッチ30が送信又は受信する電波の周波数と異なる。本変形例によれば、フィルムアンテナ10が対応可能な電波の帯域を広げることができる。
(Second modification)
FIG. 8 is a diagram showing a film antenna 10 according to the first modification. As shown in FIG. 8, the film antenna 10 may include a plurality of patches 30 having different shapes. For example, the film antenna 10 may include a first patch 30M and a second patch 30S having a shape different from that of the first patch 30M. The first patch 30M has dimension L1 in the first direction D1 and dimension W1 in the second direction D2. The second patch 30S has dimension L2 in the first direction D1 and dimension W2 in the second direction D2. The dimension L2 is smaller than the dimension L1. The dimension W2 is smaller than the dimension W1. Therefore, the frequency of the radio wave transmitted or received by the second patch 30S is different from the frequency of the radio wave transmitted or received by the first patch 30. According to this modification, the band of radio waves that the film antenna 10 can handle can be widened.
 (第3変形例)
 上述の実施の形態においては、平面視においてパッチ30の第1外縁30Yが第1方向D1及び第1方向D1に直交する第2方向D2に延びる例を示した。すなわち、平面視におけるパッチ30の形状が長方形又は正方形である例を示した。しかしながら、平面視におけるパッチ30の形状は特には限定されない。図9は、平面視におけるパッチ30の形状の例を示す図である。
(Third modification example)
In the above-described embodiment, an example is shown in which the first outer edge 30Y of the patch 30 extends in the first direction D1 and the second direction D2 orthogonal to the first direction D1 in a plan view. That is, an example is shown in which the shape of the patch 30 in a plan view is a rectangle or a square. However, the shape of the patch 30 in a plan view is not particularly limited. FIG. 9 is a diagram showing an example of the shape of the patch 30 in a plan view.
 図9において符号30Aで示すように、パッチ30は円形であってもよい。符号30Bで示すように、パッチ30は楕円形であってもよい。符号30Cで示すように、パッチ30はリングの形状であってもよい。符号30Dで示すように、パッチ30は、円周方向におけるリングの一部分の形状であってもよい。符号30Eで示すように、パッチ30は三角形であってもよい。図示はしないが、パッチ30は、五角形、六角形などのその他の多角形であってもよい。符号30Fで示すように、パッチ30は弧の形状であってもよい。 As indicated by reference numeral 30A in FIG. 9, the patch 30 may be circular. As indicated by reference numeral 30B, the patch 30 may be elliptical. As indicated by reference numeral 30C, the patch 30 may be in the shape of a ring. As indicated by reference numeral 30D, the patch 30 may be in the shape of a portion of the ring in the circumferential direction. As indicated by reference numeral 30E, patch 30 may be triangular. Although not shown, the patch 30 may be another polygon such as a pentagon or a hexagon. As indicated by reference numeral 30F, the patch 30 may be in the shape of an arc.
 (第4変形例)
 平面視においてパッチ30の形状が多角形である場合、図10に示すように、パッチ30の角部が湾曲していてもよい。これにより、パッチ30の放射角を広げることができる。角部の曲率半径R1は、例えば1mm以上であり、2mm以上であってもよく、3mm以上であってもよい。
(Fourth modification)
When the shape of the patch 30 is polygonal in a plan view, the corners of the patch 30 may be curved as shown in FIG. This makes it possible to widen the radiation angle of the patch 30. The radius of curvature R1 at the corner is, for example, 1 mm or more, may be 2 mm or more, or may be 3 mm or more.
 (第5変形例)
 図11は、第5変形例に係るフィルムアンテナ10を示す断面図である。図11に示すように、フィルムアンテナ10は、パッチ30の第4面33を覆う第1カバー層37を備えていてもよい。これにより、フィルムアンテナ10の意匠性又は耐候性の少なくともいずれか1つを高めることができる。図11に示すように、第1カバー層37は、パッチ30の第1外縁30Yよりも外側にまで広がっていてもよい。すなわち、第1カバー層37は、平面視においてパッチ30に重ならない領域を含んでいてもよい。フィルムアンテナ10は、第1カバー層37を備えていなくてもよい。
(Fifth modification)
FIG. 11 is a cross-sectional view showing the film antenna 10 according to the fifth modification. As shown in FIG. 11, the film antenna 10 may include a first cover layer 37 that covers the fourth surface 33 of the patch 30. Thereby, at least one of the design property and the weather resistance of the film antenna 10 can be enhanced. As shown in FIG. 11, the first cover layer 37 may extend outward from the first outer edge 30Y of the patch 30. That is, the first cover layer 37 may include a region that does not overlap the patch 30 in a plan view. The film antenna 10 does not have to include the first cover layer 37.
 意匠性について説明する。フィルムアンテナ10を様々な構造体121に取り付ける時、フィルムアンテナ10が目立たないことが求められる場合がある。このような要求は、構造体121に対応した色、模様などを有する第1カバー層37をフィルムアンテナ10に設けることによって達成され得る。第1カバー層37の表面が、微細な凹凸を含んでいてもよい。微細な凹凸が、第1カバー層37の表面の色、模様、手触り感を表現してもよい。微細な凹凸が、第1カバー層37の表面における、汚れ、細菌等の付着を防止してもよい。第1カバー層37は、着色材を含んでいてもよい。着色材の構成、分布などは、構造体121に応じて選択される。第1カバー層37は、単一の層で構成されていてもよく、複数の層で構成されていてもよい。 Explain the design. When the film antenna 10 is attached to various structures 121, it may be required that the film antenna 10 be inconspicuous. Such a requirement can be achieved by providing the film antenna 10 with a first cover layer 37 having a color, pattern, or the like corresponding to the structure 121. The surface of the first cover layer 37 may include fine irregularities. The fine irregularities may express the color, pattern, and texture of the surface of the first cover layer 37. The fine irregularities may prevent the adhesion of dirt, bacteria, etc. on the surface of the first cover layer 37. The first cover layer 37 may contain a coloring material. The composition, distribution, and the like of the coloring material are selected according to the structure 121. The first cover layer 37 may be composed of a single layer or may be composed of a plurality of layers.
 耐候性とは、周囲の環境に起因するフィルムアンテナ10の劣化を防ぐという特性である。例えば、フィルムアンテナ10が屋外の構造体121に取り付けられる場合、フィルムアンテナ10は、日照、降雨、降雪などの様々な環境の影響を受ける。環境の変化に対する耐性を有する第1カバー層37をフィルムアンテナ10に設けることにより、フィルムアンテナ10の耐候性を高めることができる。 Weather resistance is a characteristic of preventing deterioration of the film antenna 10 due to the surrounding environment. For example, when the film antenna 10 is attached to the outdoor structure 121, the film antenna 10 is affected by various environments such as sunshine, rainfall, and snowfall. By providing the film antenna 10 with the first cover layer 37 having resistance to changes in the environment, the weather resistance of the film antenna 10 can be enhanced.
 第1カバー層37は、絶縁性を有する材料を含む。第1カバー層37の材料としては、ポリプロピレン、アクリルなどを用いることができる。 The first cover layer 37 contains a material having an insulating property. As the material of the first cover layer 37, polypropylene, acrylic or the like can be used.
 パッチ30上に位置する第1カバー層37の厚さT4は、50μm以上であってもよく、100μm以上であってもよい。厚さT4は、200μm以下であってもよく、500μm以下であってもよい。 The thickness T4 of the first cover layer 37 located on the patch 30 may be 50 μm or more, or 100 μm or more. The thickness T4 may be 200 μm or less, or may be 500 μm or less.
 図11に示すように、フィルムアンテナ10は、グランド40の第6面43を覆う第2カバー層47を備えていてもよい。これにより、フィルムアンテナ10の意匠性又は耐候性の少なくともいずれか1つを高めることができる。例えば、構造体121が透明なガラスなどである場合、第2カバー層47が視認される。第2カバー層47が適切な色、模様などを有することにより、フィルムアンテナ10の意匠性を高めることができる。フィルムアンテナ10は、第2カバー層47を備えていなくてもよい。 As shown in FIG. 11, the film antenna 10 may include a second cover layer 47 that covers the sixth surface 43 of the ground 40. Thereby, at least one of the design property and the weather resistance of the film antenna 10 can be enhanced. For example, when the structure 121 is transparent glass or the like, the second cover layer 47 is visually recognized. When the second cover layer 47 has an appropriate color, pattern, and the like, the design of the film antenna 10 can be enhanced. The film antenna 10 does not have to include the second cover layer 47.
 第2カバー層47の材料としては、第1カバー層37で例示した材料を用いることができる。第2カバー層47の材料は、第1カバー層37の材料と同一であってもよく、異なっていてもよい。第2カバー層47は、単一の層で構成されていてもよく、複数の層で構成されていてもよい。 As the material of the second cover layer 47, the material exemplified in the first cover layer 37 can be used. The material of the second cover layer 47 may be the same as or different from the material of the first cover layer 37. The second cover layer 47 may be composed of a single layer or may be composed of a plurality of layers.
 第2カバー層47の厚さT5は、第1カバー層37で例示した厚さT4の範囲内である。第2カバー層47の厚さT5は、第1カバー層37の厚さT4と同一であってもよく、異なっていてもよい。 The thickness T5 of the second cover layer 47 is within the range of the thickness T4 exemplified by the first cover layer 37. The thickness T5 of the second cover layer 47 may be the same as or different from the thickness T4 of the first cover layer 37.
 (第6変形例)
 上述の実施の形態においては、基材20の第1面21とパッチ30の第3面32との間に第1接着層36が存在している例を示した。しかしながら、これに限られることはなく、図12に示すように、第1接着層36を用いることなくパッチ30が第1面21に固定されていてもよい。例えば、パッチ30の第3面32が基材20の第1面21に接していてもよい。このような形態は、例えば、めっき法、印刷法、スパッタリング法、蒸着法、クラッド法などによってパッチ30を形成することによって実現されてもよい。同様に、図12に示すように、第2接着層46を用いることなくグランド40が第2面22に固定されていてもよい。
(6th modification)
In the above-described embodiment, an example is shown in which the first adhesive layer 36 is present between the first surface 21 of the base material 20 and the third surface 32 of the patch 30. However, the present invention is not limited to this, and as shown in FIG. 12, the patch 30 may be fixed to the first surface 21 without using the first adhesive layer 36. For example, the third surface 32 of the patch 30 may be in contact with the first surface 21 of the base material 20. Such a form may be realized by forming the patch 30 by, for example, a plating method, a printing method, a sputtering method, a vapor deposition method, a clad method, or the like. Similarly, as shown in FIG. 12, the ground 40 may be fixed to the second surface 22 without using the second adhesive layer 46.
 (第7変形例)
 上述の実施の形態においては、フィルムアンテナ10が取り付けられる構造体121が電柱である例を示したが、特には限られない。例えば、構造体121は、壁、天井、梁、柱、その他建築物構成要素の内面又は外面であってもよく、電柱、信号機、トンネル内壁、歩道の段差、その他の建設物の内面又は外面であってもよく、地表、樹木、その他の自然の構造物等であってもよい。構造体121は、自動車の一部であってもよい。例えば図13に示すように、構造体121は、自動車のピラーであってもよい。この場合、構造体121及びフィルムアンテナ10を備える通信装置120は、衝突防止システムのレーダとして機能してもよい。
(7th modification)
In the above-described embodiment, an example is shown in which the structure 121 to which the film antenna 10 is attached is a utility pole, but the present invention is not particularly limited. For example, the structure 121 may be the inner or outer surface of a wall, ceiling, beam, pillar, or other building component, on the inner or outer surface of an electric pole, traffic light, tunnel inner wall, side step, or other building. It may be on the surface of the earth, trees, or other natural structures. The structure 121 may be part of an automobile. For example, as shown in FIG. 13, the structure 121 may be a pillar of an automobile. In this case, the communication device 120 including the structure 121 and the film antenna 10 may function as a radar of the collision prevention system.
 図13に示すように、構造体121は、ベース部123と、ベース部123の端部からベース部123の表面122の法線方向に突出する突出部124と、を含んでいてもよい。フィルムアンテナ10は、ベース部123の表面122に取り付けられていてもよい。上述のように、フィルムアンテナ10はグランド40を含む。このため、構造体121が導電性を有する場合であっても、フィルムアンテナ10の特性が構造体121の影響を受けることを抑制できる。 As shown in FIG. 13, the structure 121 may include a base portion 123 and a protruding portion 124 that protrudes from the end portion of the base portion 123 in the normal direction of the surface 122 of the base portion 123. The film antenna 10 may be attached to the surface 122 of the base portion 123. As mentioned above, the film antenna 10 includes a ground 40. Therefore, even when the structure 121 has conductivity, it is possible to suppress the characteristics of the film antenna 10 from being affected by the structure 121.
 (第8変形例)
 上述の実施の形態においては、パッチ30を構成する第1導電体層31が連続的に広がる例を示した。しかしながら、これに限られることはなく、図14に示すように、第1導電体層31には複数の開口31aが形成されていてもよい。例えば、第1導電体層31は、複数の線状の層を組み合わせることにより構成される、いわゆるメッシュの形態であってもよい。第1導電体層31に開口31aを形成することにより、フィルムアンテナ10の可撓性を高めることができる。
(8th modification)
In the above-described embodiment, an example is shown in which the first conductor layer 31 constituting the patch 30 continuously spreads. However, the present invention is not limited to this, and as shown in FIG. 14, a plurality of openings 31a may be formed in the first conductor layer 31. For example, the first conductor layer 31 may be in the form of a so-called mesh, which is formed by combining a plurality of linear layers. By forming the opening 31a in the first conductor layer 31, the flexibility of the film antenna 10 can be increased.
 第1導電体層31と同様に、図15に示すように、第2導電体層41には複数の開口41aが形成されていてもよい。第2導電体層41に開口41aを形成することにより、フィルムアンテナ10の可撓性を高めることができる。 Similar to the first conductor layer 31, as shown in FIG. 15, a plurality of openings 41a may be formed in the second conductor layer 41. By forming the opening 41a in the second conductor layer 41, the flexibility of the film antenna 10 can be increased.
 上述した複数の変形例を適宜組み合わせて上述の実施の形態に適用してもよい。 The above-mentioned plurality of modifications may be appropriately combined and applied to the above-mentioned embodiment.
10 フィルムアンテナ
20 基材
21 第1面
22 第2面
30 パッチ
30Y 第1外縁
31 第1導電体層
32 第3面
33 第4面
34 マイクロストリップ線路
36 第1接着層
37 第1カバー層
40 グランド
40Y 第2外縁
41 第2導電体層
42 第5面
43 第6面
46 第2接着層
47 第2カバー層
50 下地層
100 移動通信システム
110 基地局
115 基地局110がカバーする通信領域
120 通信装置
121 構造体
122 表面
125 通信装置120がカバーする通信領域
130 端末装置
10 Film antenna 20 Base material 21 Base material 21 First surface 22 Second surface 30 Patch 30Y First outer edge 31 First conductor layer 32 Third surface 33 Fourth surface 34 Microstrip line 36 First adhesive layer 37 First cover layer 40 Ground 40Y 2nd outer edge 41 2nd conductor layer 42 5th surface 43 6th surface 46 2nd adhesive layer 47 2nd cover layer 50 Underlayer 100 Mobile communication system 110 Base station 115 Communication area 120 communication device covered by base station 110 121 Structure 122 Surface 125 Communication area covered by communication device 120 Terminal device

Claims (16)

  1.  第1面及び前記第1面の反対側に位置する第2面を含む基材と、
     前記第1面側に位置する第1導電体層を含み、平面視において第1外縁を備える1つ以上のパッチと、
     前記第2面側に位置する第2導電体層を含み、平面視において前記第1外縁よりも外側に位置する第2外縁を備えるグランドと、を備える、フィルムアンテナ。
    A base material containing a first surface and a second surface located on the opposite side of the first surface,
    One or more patches comprising a first conductor layer located on the first surface side and having a first outer edge in plan view.
    A film antenna comprising a second conductor layer located on the second surface side and comprising a ground having a second outer edge located outside the first outer edge in a plan view.
  2.  前記第1導電体層が金属材料を含む、請求項1に記載のフィルムアンテナ。 The film antenna according to claim 1, wherein the first conductor layer contains a metal material.
  3.  前記第2導電体層が金属材料を含む、請求項1又は2に記載のフィルムアンテナ。 The film antenna according to claim 1 or 2, wherein the second conductor layer contains a metal material.
  4.  前記第1面側に位置する複数の前記パッチを備え、
     前記第2外縁は、平面視において複数の前記パッチを囲んでいる、請求項1乃至3のいずれか一項に記載のフィルムアンテナ。
    With a plurality of the patches located on the first surface side,
    The film antenna according to any one of claims 1 to 3, wherein the second outer edge surrounds the plurality of patches in a plan view.
  5.  前記第1面側に位置する第1の前記パッチ及び第2の前記パッチを備え、
     前記第1のパッチは、平面視において前記第2のパッチの形状とは異なる形状を有する、請求項1乃至4のいずれか一項に記載のフィルムアンテナ。
    The first patch and the second patch located on the first surface side are provided.
    The film antenna according to any one of claims 1 to 4, wherein the first patch has a shape different from that of the second patch in a plan view.
  6.  前記基材は、フッ素樹脂を含む、請求項1乃至5のいずれか一項に記載のフィルムアンテナ。 The film antenna according to any one of claims 1 to 5, wherein the base material contains a fluororesin.
  7.  前記基材は、複数の気泡を含む、請求項1乃至6のいずれか一項に記載のフィルムアンテナ。 The film antenna according to any one of claims 1 to 6, wherein the base material contains a plurality of bubbles.
  8.  前記基材の厚さは2mm以下である、請求項1乃至7のいずれか一項に記載のフィルムアンテナ。 The film antenna according to any one of claims 1 to 7, wherein the thickness of the base material is 2 mm or less.
  9.  前記基材の厚さは10μm以上である、請求項1乃至8のいずれか一項に記載のフィルムアンテナ。 The film antenna according to any one of claims 1 to 8, wherein the thickness of the base material is 10 μm or more.
  10.  前記第1導電体層は、前記第1面に対向する第3面と、前記第3面の反対側に位置する第4面と、を含み、
     前記第3面は、3μm以下の最大高さを有する、請求項1乃至9のいずれか一項に記載のフィルムアンテナ。
    The first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface.
    The film antenna according to any one of claims 1 to 9, wherein the third surface has a maximum height of 3 μm or less.
  11.  前記第1導電体層は、前記第1面に対向する第3面と、前記第3面の反対側に位置する第4面と、を含み、
     前記第4面を覆う第1カバー層を備える、請求項1乃至10のいずれか一項に記載のフィルムアンテナ。
    The first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface.
    The film antenna according to any one of claims 1 to 10, further comprising a first cover layer covering the fourth surface.
  12.  前記第1カバー層は着色材を含む、請求項11に記載のフィルムアンテナ。 The film antenna according to claim 11, wherein the first cover layer contains a coloring material.
  13.  前記第1導電体層は、前記第1面に対向する第3面と、前記第3面の反対側に位置する第4面と、を含み、
     前記第1面と前記第3面との間に位置する第1接着層を備える、請求項1乃至12のいずれか一項に記載のフィルムアンテナ。
    The first conductor layer includes a third surface facing the first surface and a fourth surface located on the opposite side of the third surface.
    The film antenna according to any one of claims 1 to 12, further comprising a first adhesive layer located between the first surface and the third surface.
  14.  表面を有する構造体と、
     前記表面に前記第2導電体層が対向するように前記表面に取り付けられている、請求項1乃至13のいずれか一項に記載のフィルムアンテナと、を備える、通信装置。
    A structure with a surface and
    A communication device comprising the film antenna according to any one of claims 1 to 13, which is attached to the surface so that the second conductor layer faces the surface.
  15.  前記表面は、少なくとも部分的に湾曲面を含み、
     前記フィルムアンテナは、前記湾曲面に取り付けられている、請求項14に記載の通信装置。
    The surface includes at least a partially curved surface.
    The communication device according to claim 14, wherein the film antenna is attached to the curved surface.
  16.  前記構造体は、自動車のピラーである、請求項14又は15に記載の通信装置。 The communication device according to claim 14 or 15, wherein the structure is a pillar of an automobile.
PCT/JP2021/027239 2020-07-21 2021-07-20 Film antenna and communication device WO2022019320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020124542A JP2022021130A (en) 2020-07-21 2020-07-21 Film antenna and communication apparatus
JP2020-124542 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022019320A1 true WO2022019320A1 (en) 2022-01-27

Family

ID=79729197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027239 WO2022019320A1 (en) 2020-07-21 2021-07-20 Film antenna and communication device

Country Status (2)

Country Link
JP (1) JP2022021130A (en)
WO (1) WO2022019320A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519557A (en) * 2002-03-05 2005-06-30 プレシジョン ダイナミックス コーポレイション Microstrip antenna for identification equipment
JP2007081554A (en) * 2005-09-12 2007-03-29 Fujitsu Ltd Glass antenna and manufacturing method thereof
WO2009056642A1 (en) * 2007-10-31 2009-05-07 Universiteit Gent A flexible patch antenna
JP2010081289A (en) * 2008-09-26 2010-04-08 Mitsubishi Electric Corp Rfid tag
CN104134870A (en) * 2013-05-08 2014-11-05 中国空空导弹研究院 Graphene microstrip antenna and preparation method thereof
JP2015027029A (en) * 2013-07-29 2015-02-05 日本バルカー工業株式会社 Planar antenna
WO2017119223A1 (en) * 2016-01-07 2017-07-13 株式会社村田製作所 Luneberg lens antenna device
US20190386387A1 (en) * 2017-02-28 2019-12-19 Dongwoo Fine-Chem Co., Ltd. Film-type microstrip patch antenna

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519557A (en) * 2002-03-05 2005-06-30 プレシジョン ダイナミックス コーポレイション Microstrip antenna for identification equipment
JP2007081554A (en) * 2005-09-12 2007-03-29 Fujitsu Ltd Glass antenna and manufacturing method thereof
WO2009056642A1 (en) * 2007-10-31 2009-05-07 Universiteit Gent A flexible patch antenna
JP2010081289A (en) * 2008-09-26 2010-04-08 Mitsubishi Electric Corp Rfid tag
CN104134870A (en) * 2013-05-08 2014-11-05 中国空空导弹研究院 Graphene microstrip antenna and preparation method thereof
JP2015027029A (en) * 2013-07-29 2015-02-05 日本バルカー工業株式会社 Planar antenna
WO2017119223A1 (en) * 2016-01-07 2017-07-13 株式会社村田製作所 Luneberg lens antenna device
US20190386387A1 (en) * 2017-02-28 2019-12-19 Dongwoo Fine-Chem Co., Ltd. Film-type microstrip patch antenna

Also Published As

Publication number Publication date
JP2022021130A (en) 2022-02-02

Similar Documents

Publication Publication Date Title
US10862205B2 (en) Patch antenna
CN110313137B (en) Passive repeater device, microwave network and method for designing repeater device
US7453401B2 (en) Vertical complementary fractal antenna
EP3993160A1 (en) Antenna apparatus and electronic device
CN102769198B (en) Artificial electromagnetic material, radome and antenna system
JP4784115B2 (en) Radome
CN112002965B (en) Surface wave transmission device
KR102475582B1 (en) Inverted Feeding Microstrip Ppatch Aantenna for vehicle radar
CN214706247U (en) Millimeter wave radar antenna
WO2022019320A1 (en) Film antenna and communication device
CN108539429B (en) Broadband omnidirectional oblique polarization antenna for metal carrier
EP4040601A1 (en) Antenna apparatus and electronic device
US20240145909A1 (en) Ultrawideband hyperflat and mesh grid siso/mimo antenna
JP7304009B2 (en) Antennas and communication equipment
CN102856661B (en) Bandpass wave-transmitting material and antenna housing and antenna system
KR101794141B1 (en) Antenna for WAVE communication
GB2573311A (en) An antenna assembly, a method of mounting an antenna assembly, a high impedance surface and a method of fabricating a high impedance surface
US11271303B2 (en) Antenna, smart window, and method of fabricating antenna
JP2024003715A (en) Radio wave absorption sheet
US10923825B2 (en) Spiral antenna system
EP2525371A1 (en) Cable for transmitting radio frequency signals
US11876308B2 (en) Micro-wave transducer and manufacturing method thereof
Saha et al. An Optically Transparent Antenna for Digital TV Reception Using Nanoweb Sub-micron Wire Mesh
Mingle et al. A Fabry-Pérot Multilayer High Gain Frequency Scanning Antenna at 60GHz
Eskandari et al. Transmitarray antenna based on parallel‐plate transmission line with high efficiency and large gain bandwidth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845363

Country of ref document: EP

Kind code of ref document: A1