WO2022019197A1 - Imaging device, lens tube device, imaging method, transmission method - Google Patents

Imaging device, lens tube device, imaging method, transmission method Download PDF

Info

Publication number
WO2022019197A1
WO2022019197A1 PCT/JP2021/026496 JP2021026496W WO2022019197A1 WO 2022019197 A1 WO2022019197 A1 WO 2022019197A1 JP 2021026496 W JP2021026496 W JP 2021026496W WO 2022019197 A1 WO2022019197 A1 WO 2022019197A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
lens
control unit
image stabilization
blur correction
Prior art date
Application number
PCT/JP2021/026496
Other languages
French (fr)
Japanese (ja)
Inventor
真己斗 大田
淳司 島田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022537954A priority Critical patent/JPWO2022019197A1/ja
Publication of WO2022019197A1 publication Critical patent/WO2022019197A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This technology relates to an image pickup device and its image pickup method, a lens barrel device and its transmission method, and particularly to the processing of image stabilization data.
  • an image pickup device that is composed of a camera body (camera body) and a lens barrel and can record moving images on a recording medium.
  • an image pickup device there are those that perform image stabilization by mechanically moving the image stabilization function in the camera body and those that perform image stabilization by mechanically moving the image stabilization function in the lens barrel.
  • an electronic image stabilization function that changes the reading range of an image signal from an image sensor according to blurring and changes the cropping range of an image in image signal processing.
  • Patent Document 1 discloses a configuration in which image stabilization is performed on the lens barrel side and the camera body side, respectively.
  • the image pickup apparatus includes a first blur correction value related to a first blur correction function for correcting the positional relationship between an optical image incident via a lens and an output captured image, and a lens mirror provided with the lens. It is provided with a control unit that generates correction information including a second blur correction value related to the second blur correction function provided in the cylinder as metadata associated with the captured image.
  • the first blur correction function is a function of correcting the positional relationship between the optical image and the output image captured image (the image finally output from the image pickup device) on the main body side.
  • the second image stabilization function is a function provided on the lens barrel side.
  • the lens barrel side and the camera body side each have a mechanical or electronic image stabilization function
  • the correction information including the respective image stabilization values on the lens barrel side and the camera body side can be obtained.
  • metadata is recorded on a recording medium in a state associated with image data.
  • control unit uses the second blur correction value received from the lens barrel as the correction information.
  • the second image stabilization value related to the second image stabilization function on the lens barrel side is transmitted from the lens barrel to the camera body.
  • the control unit includes this in the metadata.
  • the first blur correction function performs the blur correction of the high frequency component
  • the second blur correction function performs the blur correction of the low frequency component.
  • the shaking caused by camera shake, etc. applied to the image pickup device is divided into high-frequency components and low-frequency components, and the high-frequency components are corrected on the main unit side and the low-frequency components are corrected on the lens barrel side. ..
  • the lens barrel is configured to be removable from the camera body, and the control unit has a communication speed between the mounted lens barrel and the lens barrel. Based on the determination, it is conceivable to control the first blur correction function to perform blur correction of the high frequency component and the second blur correction function to perform blur correction of the low frequency component. For example, when a lens barrel with a slow communication speed with the main body is attached, the shaking caused by camera shake etc. applied to the image pickup device is divided into high frequency components and low frequency components, and the main body side performs image stabilization. Therefore, the image stabilization of low frequency components is performed on the lens barrel side.
  • the second image stabilization value at each sample timing is stored in the storage unit together with the time information, and the second image stabilization value stored in the storage unit at a predetermined time point.
  • the image stabilization value and the time information are transmitted to the control unit, and the control unit converts the second image stabilization value received from the lens barrel into a frame of a moving image based on the time information. It is conceivable to perform processing with the corresponding metadata.
  • the lens barrel side does not sequentially transmit the second image stabilization value to the main body side, but stores it in the storage unit and transmits it at a certain point in time.
  • the control unit is generated by an interpolation process using the second image stabilization value received from the lens barrel and the received second image stabilization value. It is conceivable that the second blur correction value is used as the correction information. For example, when the second blur correction value transmitted from the lens barrel side has a low sampling rate, the second blur correction value by interpolation processing can also be generated.
  • the blur correction of the high frequency component is performed by the first blur correction function
  • the blur correction of the low frequency component is performed by the second blur correction function. It is conceivable to set the frequency range of the low frequency component based on the communication speed with the lens barrel side. When blur correction of low frequency components is performed on the lens barrel side, the frequency range for the low frequency components is set according to the communication speed.
  • the blur correction of the high frequency component is performed by the first blur correction function
  • the blur correction of the low frequency component is performed by the second blur correction function. It is conceivable to set the frequency range of the low frequency component based on the storage capacity of the storage unit. When blur correction of a low frequency component is performed on the lens barrel side, the frequency range of the low frequency component is determined based on the storage capacity of the storage unit, for example, the storable capacity of the second blur correction value. Set.
  • control unit performs a process of recording the communication speed information between the lens barrel and the camera body as metadata on a recording medium.
  • the communication speed information on the lens barrel side and the camera body side is also recorded as metadata.
  • the lens barrel device has a blur correction function for displaced the blur correction lens, a storage unit, a process for detecting a blur correction value related to the blur correction function at each sample timing, and the detected blur correction value.
  • a control unit that stores the image in the storage unit together with the time information, and a control unit that transmits the image stabilization value and the time information stored in the storage unit to the camera body unit to which the lens is mounted. To prepare for.
  • the image stabilization value is temporarily stored together with the time information and then transmitted to the camera body side.
  • the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit at intermittent timings during the moving image imaging period. Is possible.
  • the control unit on the lens barrel side stores the image stabilization value in the storage unit during the period during video recording, and transmits the image stabilization value to the camera body, for example, periodically or irregularly.
  • the control unit performs a process of transmitting the blur correction value and the time information stored in the storage unit to a time point after the moving image imaging is completed. Is possible.
  • the control unit on the lens barrel side transmits the image stabilization value stored in the storage unit to the camera body side after the moving image recording is completed.
  • the control unit selects whether to transmit the blur correction value detected at each sample timing to the camera body unit or store it in the storage unit.
  • the blur correction value stored in the storage unit is stored in the storage unit together with the time information, read from the storage unit at a predetermined time point, and transmitted to the camera main body unit together with the time information. It is conceivable to do.
  • the control unit on the lens barrel side transmits the image stabilization value even during video recording, but if transmission is inappropriate for some reason, it is stored in the storage unit and transmitted at a later point in time.
  • the imaging method includes a first image stabilization value related to a first image stabilization function for correcting the positional relationship between an optical image incident through a lens and an output image image, and a lens mirror provided with the lens.
  • the image pickup apparatus performs a process of generating correction information including a second blur correction value related to the second blur correction function provided in the cylinder as metadata associated with the captured image. This makes it possible to refer to the image stabilization values on both the lens barrel side and the main body side from the metadata when capturing an image.
  • the transmission method includes a process in which a lens barrel device provided with a blur correction function for displacement of a blur correction lens and a storage unit detects a blur correction value related to the blur correction function at each sample timing.
  • FIG. 1 shows an example of the image pickup apparatus 1 of the embodiment and an image processing apparatus (5, 6) for acquiring an image file MF imaged by the image pickup apparatus 1.
  • the figure shows an example in which the mobile terminal 7 and the personal computer 8 function as the image processing devices 5 and 6.
  • various other devices such as an image editing dedicated device, a cloud server, a television device, and a video recording / playback device are assumed as the image processing devices 5 and 6. These devices can function as any of the image processing devices 5 and 6.
  • the image processing device 5 is a device that temporarily performs a shake change process on the image data acquired from the image pickup device 1.
  • the image processing device 6 is a device that secondarily performs the shaking change processing on the image data that has already been shake-changing processing by another image processing device.
  • shake refers to a shake between frames (interframe shake) of images constituting a moving image. Vibration components that occur between frames, such as image shake caused by camera shake in the image captured by the image pickup device 1 and shake intentionally added by image processing (image fluctuation between frames). Is broadly referred to.
  • the term “camera shake” is also used when referring to “shaking” caused by camera shake or the like during imaging with the image pickup apparatus 1.
  • Image stabilization is used for corrections performed in the image pickup device 1 to reduce image shake due to camera shake, etc. (including vibrations applied when the image pickup device 1 is fixedly placed without being held by hand). It is distinguished from the process of "shaking change" in the image processing devices 5 and 6.
  • Interframe shake modification refers to changing the state of shaking in an image, such as reducing the shaking occurring in the image or adding shaking to the image.
  • This "shake change” shall include the following “interframe shake reduction” and “interframe shake production”.
  • Hande removal refers to eliminating or reducing (totally removing) or reducing (partially removing) shaking that occurs in an image due to camera shake during imaging in the image processing devices 5 and 6. ..
  • the “shaking effect” refers to changing the shaking state of the image with the image processing devices 5 and 6.
  • the shaking is reduced as this shaking effect, and in that sense, it may be the same as "sway removal".
  • the amount of change in the shaking is instructed by the user's operation or automatic control. It means changing the shaking state of the image according to the instruction. For example, reducing or increasing the shaking generated at the time of imaging according to a user instruction or the like, or adding new shaking corresponds to "shaking effect".
  • the purpose of the shaking effect it is assumed that the image is intentionally shaken in order to give power to the moving image scene.
  • the image pickup device 1 in FIG. 1 is a so-called digital still camera or a digital video camera, and is capable of at least moving image.
  • the camera body of the image pickup apparatus 1 is shown as the camera body 2.
  • the lens barrel 3 functions as a so-called interchangeable lens, and is detachable from the camera body (camera body 2) of the image pickup apparatus 1.
  • the user can replace and use the lens barrel 3 according to the use case.
  • such an interchangeable lens type image pickup apparatus 1 is assumed, but the technique of the present disclosure can be applied to a type in which the lens barrel 3 cannot be removed from the camera body 2.
  • the image pickup device 1 can perform moving image imaging, and transfer the image file MF obtained by the moving image imaging to a mobile terminal 7 as an image processing device 5, a personal computer 8 or the like via wired communication or wireless communication.
  • the image pickup device 1 may record the image file MF on a recording medium such as a memory card, and the mobile terminal 7 or the personal computer 8 may be able to read the image file MF from the memory card.
  • the image file MF includes not only the image data as a moving image but also the metadata which is the additional information corresponding to the image data.
  • FIG. 2 shows a state of information transmission in the image pickup apparatus 1, the image processing apparatus 5, and the image processing apparatus 6.
  • the image data VD1 and the metadata MTD1 are transmitted from the image pickup device 1 to the image processing device 5 via wired communication, wireless communication, or a recording medium.
  • the image data VD1 and the metadata MTD1 are information transmitted as, for example, an image file MF.
  • the metadata MTD1 includes, for example, information regarding camera shake correction at the time of imaging.
  • the image processing device 5 can receive the image data VD1 and the metadata MTD1 and perform various processing.
  • the image processing apparatus 5 can perform the shake change processing for the image data VD1 by using the information related to the camera shake correction included in the metadata MTD1.
  • the shake change is a process of canceling the image stabilization and returning to the original image with shake, performing more advanced shake removal, and adding shake to the image for production. ..
  • the image processing device 5 can transfer the image data VD2 that has undergone the shake change processing and the like and the metadata MTD2 to another image processing device 6.
  • the image processing apparatus 6 can also perform various shaking changes.
  • FIG. 3 shows a configuration example of the image pickup apparatus 1 and the lens barrel 3.
  • a lens system 10 having a plurality of optical components is formed on the lens barrel 3.
  • the lens system 10 includes a zoom lens 10a, an aperture mechanism 10b, an image stabilization lens mechanism 10c, a focus lens 10d, and the like.
  • the image stabilization lens mechanism 10c is a mechanism that reduces the shaking that occurs in an image by mechanically driving the lens against camera shake.
  • the light (incident light) from the subject is focused on the image sensor unit 12 via the lens system 10 and the shutter 11 in the camera body 2.
  • the image sensor unit 12 includes, for example, an image sensor (image sensor) such as a CMOS (Complementary Metal Oxide Semiconductor) type or a CCD (Charge Coupled Device) type.
  • the image sensor unit 12 executes, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, and the like on the electric signal obtained by photoelectric conversion of the light received by the image sensor, and further performs A / D (A / D). Analog / Digital) Performs conversion processing. Then, the image pickup signal as digital data is output to the camera signal processing unit 13 in the subsequent stage.
  • An image pickup surface camera shake correction unit 30 is provided for the image pickup element unit 12.
  • the image stabilization unit 30 is a mechanism for correcting image shake by mechanically moving the image sensor in response to camera shake or the like.
  • the camera signal processing unit 13 is configured as an image processing processor by, for example, a DSP (Digital Signal Processor) or the like.
  • the camera signal processing unit 13 performs various signal processing on the digital signal (image pickup image signal) from the image pickup element unit 12. For example, as a camera process, the camera signal processing unit 13 performs preprocessing, simultaneous processing, YC generation processing, various correction processing, resolution conversion processing, codec processing, and the like.
  • a clamping process for clamping the black level of R, G, B to a predetermined level, a correction process between the color channels of R, G, B, etc. are performed on the captured image signal from the image sensor unit 12. conduct.
  • a color separation processing is performed so that the image data for each pixel has all the color components of R, G, and B.
  • demosaic processing is performed as color separation processing.
  • YC generation process a luminance (Y) signal and a color (C) signal are generated (separated) from the image data of R, G, and B.
  • the resolution conversion process the resolution conversion process is executed for the image data to which various signal processes have been performed.
  • FIG. 4 shows an example of various correction processes performed from the lens system 10 to the camera signal processing unit 13.
  • FIG. 4 exemplifies the correction processing performed by the camera signal processing unit 13 together with the optical image stabilization performed by the camera shake correction lens mechanism 10c and the image stabilization unit 30 according to the execution order. There is.
  • lens vibration isolation by the image stabilization lens mechanism 10c and body vibration isolation by the image pickup surface image stabilization unit 30 are performed.
  • camera shake correction as lens vibration isolation by shifting the yaw direction and pitch direction of the camera shake correction lens mechanism 10c
  • body vibration isolation by shifting the image sensor yaw direction and pitch direction by the image stabilization unit 30.
  • the image stabilization the image of the subject is formed on the image sensor in a state where the influence of the camera shake is physically canceled.
  • this lens vibration isolation and body vibration isolation are performed only in one case, and in other cases, both are performed.
  • electronic image stabilization may be performed as the image stabilization.
  • processing from processing F2 to processing F6 is performed by spatial coordinate conversion for each pixel.
  • lens distortion correction is performed.
  • focal plane distortion correction is performed as one element of electronic image stabilization. It should be noted that this corrects the distortion when the rolling shutter method is read out by, for example, a CMOS type image sensor.
  • Roll correction is performed in the process F4. That is, the roll component is corrected as one element of the electronic image stabilization.
  • trapezoidal distortion correction is performed for the trapezoidal distortion amount generated by the electronic image stabilization.
  • the trapezoidal distortion caused by electronic image stabilization is perspective distortion caused by cutting out a place away from the center of the image.
  • shift and cutout in the pitch direction and the yaw direction are performed as one element of the electronic image stabilization.
  • camera shake correction, lens distortion correction, and trapezoidal distortion correction are performed by the above procedure. It is not essential to carry out all of the processes listed here, and the order of the processes may be changed as appropriate.
  • an image file MF is generated as an MP4 format used for recording MPEG-4 compliant video / audio. It is also conceivable to generate files in formats such as JPEG (Joint Photographic Experts Group), TIFF (Tagged Image File Format), and GIF (Graphics Interchange Format) as still image files.
  • JPEG Joint Photographic Experts Group
  • TIFF Tagged Image File Format
  • GIF Graphics Interchange Format
  • the audio processing system is not shown in FIG. 3, it actually has an audio recording system and an audio processing system, and the image file MF includes the audio data as well as the image data as a moving image. May be good.
  • the camera control unit 18 is composed of a microcomputer (arithmetic processing unit) provided with a CPU (Central Processing Unit).
  • the memory unit 19 stores information and the like used for processing by the camera control unit 18.
  • a ROM Read Only Memory
  • RAM Random Access Memory
  • flash memory and the like are comprehensively shown.
  • the RAM in the memory unit 19 is used for temporarily storing data, programs, and the like as a work area for various data processing of the CPU of the camera control unit 18.
  • the ROM and flash memory (nonvolatile memory) in the memory unit 19 include an OS (Operating System) for the CPU to control each unit, content files such as image files, application programs for various operations, and firmware. It is used for memory of etc.
  • the memory unit 19 may be a memory area built in the microcomputer chip as the camera control unit 18, or may be configured by a separate memory chip.
  • the camera control unit 18 controls the entire image pickup apparatus 1 and the lens barrel 3 by executing a program stored in the ROM of the memory unit 19, the flash memory, or the like.
  • the camera control unit 18 controls the shutter speed of the image sensor unit 12, gives instructions for various signal processing in the camera signal processing unit 13, captures and records operations according to user operations, reproduces recorded image files, and lenses.
  • the operation of each necessary part is controlled with respect to the operation of the lens system 10 such as zoom, focus, and aperture adjustment in the lens barrel 3, the user interface operation, and the like.
  • the camera control unit 18 also performs various processing and output control on the image data processed by the camera signal processing unit 13.
  • the camera control unit 18 can execute the electronic image stabilization process on the image data by the electronic image stabilization control unit 35. Further, the camera control unit 18 causes the image stabilization metadata processing unit 36 to execute metadata generation related to image stabilization.
  • the camera control unit 18 also controls to generate metadata including various information including information related to image stabilization and record it as information related to the image file MF. Further, the camera control unit 18 communicates with the lens control unit 20 on the lens barrel 3 side via the communication control unit 33.
  • the electronic image stabilization control unit 35 and the image stabilization metadata processing unit 36 are shown in separate blocks from the camera control unit 18, but these are realized by the microcomputer constituting the camera control unit 18. It can be thought of as a function. Therefore, for the sake of explanation, the camera control unit 18, the electronic image stabilization control unit 35, and the image stabilization metadata processing unit 36 are collectively referred to as a “control unit 40”. However, these may be configured by a separate arithmetic processing unit.
  • the recording control unit 14 records and reproduces, for example, a recording medium using a non-volatile memory.
  • the recording control unit 14 performs a process of recording an image file MF such as moving image data or still image data, a thumbnail image, or the like on a recording medium, for example.
  • the actual form of the recording control unit 14 can be considered in various ways.
  • the recording control unit 14 may be configured as a flash memory built in the image pickup device 1 and a write / read circuit thereof, or a recording medium that can be attached to and detached from the image pickup device 1, such as a memory card (portable flash memory, etc.). ) May be in the form of a card recording / playback unit that performs recording / playback access. Further, it may be realized as an HDD (Hard Disk Drive) or the like as a form built in the image pickup apparatus 1.
  • HDD Hard Disk Drive
  • the display unit 15 is a display unit that displays various displays to the user, and is a display device such as a liquid crystal panel (LCD: Liquid Crystal Display) or an organic EL (Electro-Luminescence) display arranged in the housing of the image pickup device 1, for example. It is said to be a display panel or viewfinder.
  • the display unit 15 causes various displays to be executed on the display screen based on the instructions of the camera control unit 18. For example, the display unit 15 displays a reproduced image of image data read from a recording medium by the recording control unit 14. Further, the display unit 15 is supplied with image data of the captured image whose resolution has been converted for display by the camera signal processing unit 13, and the display unit 15 is based on the image data of the captured image according to the instruction of the camera control unit 18.
  • a so-called through image (subject monitoring image), which is an captured image during composition confirmation, is displayed.
  • the display unit 15 causes various operation menus, icons, messages, etc., that is, display as a GUI (Graphical User Interface) to be executed on the screen based on the instruction of the camera control unit 18.
  • GUI Graphic User Interface
  • the output unit 16 performs data communication and network communication with an external device by wire or wirelessly.
  • the image data (still image file or moving image file) is transmitted and output to an external display device, recording device, playback device, or the like.
  • the output unit 16 is a network communication unit, it communicates with various networks such as the Internet, a home network, and a LAN (Local Area Network), and transmits / receives various data to / from a server, a terminal, etc. on the network. You may do so.
  • the operation unit 17 collectively shows input devices for the user to perform various operation inputs. Specifically, the operation unit 17 shows various controls (keys, dials, touch panels, touch pads, etc.) provided in the housing of the image pickup apparatus 1. The operation unit 17 detects the user's operation, and the signal corresponding to the input operation is sent to the camera control unit 18.
  • the shutter drive unit 31 drives the shutter 11 based on the instruction of the camera control unit 18.
  • the correction unit drive unit 32 drives the image stabilization unit 30 based on the instruction of the camera control unit 18, and displaces the image sensor in the image sensor unit 12 for optical image stabilization.
  • the blur detection unit 34 shows a sensor that detects the vibration applied to the camera body 2.
  • an IMU inertial measurement unit
  • an angular velocity is detected by a three-axis angular velocity (gyro) sensor of pitch-, yaw, and roll, and acceleration is detected by an acceleration sensor.
  • the blur detection unit 34 may include a sensor capable of detecting camera shake during imaging, and does not need to include both a gyro sensor and an acceleration sensor.
  • a lens control unit 20 by a microcomputer is mounted.
  • the camera control unit 18 and the lens control unit 20 can communicate with each other via the communication control units 27 and 33.
  • the communication control units 27 and 33 are connected by wire when the lens barrel 3 is attached to the camera body 2 to perform communication. However, both may be configured to perform wireless communication.
  • the lens control unit 20 and the camera control unit 18 constantly exchange bidirectional data communication at a certain communication speed.
  • the camera control unit 18 instructs the lens control unit 20 to drive the zoom lens 10a, the focus lens 10d, the aperture mechanism 10b, and the camera shake correction lens mechanism 10c.
  • the lens control unit 20 executes the operation of the lens system 10 in response to these drive instructions. Further, the lens control unit 20 transmits the distortion correction information of the lens, the focal length information, the position of the correction lens of the camera shake correction lens mechanism 10c, and the like to the camera control unit 18.
  • the lens barrel 3 drives, for example, a zoom drive unit 21 having a motor and a motor driver for driving the zoom lens 10a, an aperture drive unit 22 having a motor and a motor driver for driving the aperture mechanism 10b, and a camera shake correction lens mechanism 10c.
  • a correction lens drive unit 23 having a motor and a motor driver, and a focus drive unit 24 having a motor and a motor driver for driving the focus lens 10d are provided.
  • the zoom drive unit 21, the aperture drive unit 22, the correction lens drive unit 23, and the focus drive unit 24 apply a drive current to the corresponding motor in response to an instruction from the lens control unit 20 based on an instruction from the camera control unit 18. ..
  • a zoom operation, an aperture opening / closing operation, an optical image stabilization operation, and a focus operation are executed.
  • the memory unit 26 stores information and the like used for processing by the lens control unit 20.
  • the memory unit 26 comprehensively shows, for example, a ROM, a RAM, a flash memory, and the like.
  • the memory unit 26 may be used for temporarily storing information transmitted by the lens control unit 20 to the camera control unit 18.
  • the blur detection unit 25 indicates a sensor that detects vibration in the lens barrel 3, and it is assumed that an IMU is mounted in the same manner as the blur detection unit 34 on the camera body 2 side, for example. It is also assumed that the blur detection unit 34 is not mounted in the lens barrel 3.
  • FIG. 5A shows the data included in the image file MF.
  • the image file MF includes various data as “header”, “sound”, “movie”, and "metadata”.
  • “header” information such as a file name and a file size as well as information indicating the presence or absence of metadata are described.
  • “Sound” is audio data recorded with a moving image. For example, 2-channel stereo audio data is stored.
  • the “movie” is moving image data, and is composed of image data as each frame (# 1, # 2, # 3 %) constituting the moving image.
  • FIG. 5B An example of the content of the metadata is shown in FIG. 5B.
  • IMU data, coordinate conversion parameter HP, timing information TM, and camera parameter CP are described for one frame. It should be noted that these are part of the metadata content, and other information may be possible. In addition, any of the information shown in the figure may not be included.
  • FIG. 5B shows a case where the communication speed information is included in the metadata by the broken line, which is the case where the processing of the fifth and sixth embodiments described later is performed.
  • the IMU data As the IMU data, a gyro (angular velocity data), an accelerator (acceleration data), and a sampling rate are described.
  • the IMU mounted on the image pickup apparatus 1 as the blur detection units 34 and 25 outputs the angular velocity data and the acceleration data at a predetermined sampling rate.
  • this sampling rate is higher than the frame rate of the captured image, so that many IMU data samples can be obtained in one frame period.
  • n samples are associated with each frame, such as gyro sample # 1, gyro sample # 2, ... Gyro sample # n shown in FIG. 5C.
  • m samples are associated with each frame, such as accelerator sample # 1, accelerator sample # 2, ... accelerator sample # m.
  • n m
  • n ⁇ m the metadata is described here in the example of being associated with each frame, for example, the IMU data may not be completely synchronized with the frame. In such a case, for example, the time information associated with the time information of each frame is provided as the IMU sample timing offset in the timing information TM.
  • the coordinate conversion parameter HP is a general term for parameters used for correction accompanied by coordinate conversion of each pixel in an image. It also includes non-linear coordinate transformations such as lens distortion.
  • the coordinate conversion parameter HP is a term that can include at least a lens distortion correction parameter, a trapezoidal distortion correction parameter, a focal plane distortion correction parameter, an electronic camera shake correction parameter, and an optical camera shake correction parameter.
  • the lens distortion correction parameter is information for directly or indirectly grasping how the distortion such as barrel aberration and pincushion aberration is corrected and returning to the image before the lens distortion correction.
  • the trapezoidal distortion correction parameter is a correction amount for correcting trapezoidal distortion caused by shifting the cutout area from the center by electronic image stabilization, and is also a value corresponding to the correction amount for electronic image stabilization.
  • the focal plane distortion correction parameter is a value indicating the amount of correction for each line with respect to the focal plane distortion.
  • the optical image stabilization mechanism As described in FIG. 3, as the optical image stabilization mechanism, the image stabilization lens mechanism 10c and the image stabilization unit 30 are provided. Therefore, as the correction information indicating the correction amount of the optical image stabilization, for example, the body side image stabilization value and the lens side image stabilization value are recorded as shown in FIG. 5D.
  • the body-side image stabilization value is an image stabilization value in the image stabilization unit 30.
  • the lens-side image stabilization value is an image stabilization value in the camera shake correction lens mechanism 10c.
  • these image stabilization values are the correction execution values of the actual image pickup surface image stabilization unit 30 and the image stabilization lens mechanism 10c.
  • This correction effective value is the position information that changes due to the actual correction, which is detected by the position sensor provided in the image stabilization unit 30 and the camera shake correction lens mechanism 10c, and the position information from the previous frame. It is a value representing the actual displacement performed as optical image stabilization, such as the amount of displacement of.
  • these blur correction values are a correction instruction value output by the camera control unit 18 to the correction unit drive unit 32, or a correction instruction value transmitted by the camera control unit 18 to the correction lens drive unit 23 via the lens control unit 20. It may be. This is because the image pickup surface camera shake correction unit 30 and the camera shake correction lens mechanism 10c are driven so that the position and the displacement amount of the position correspond to these correction instruction values.
  • the parameters of lens distortion correction, trapezoidal distortion correction, focal plane distortion correction, and electronic camera shake correction are collectively referred to as coordinate conversion parameters, but these correction processes are performed by each of the image sensors of the image sensor unit 12. This is because it is a correction process for the image formed on the pixel and is a parameter of the correction process accompanied by the coordinate conversion of each pixel. Also, for the sake of explanation, the correction information for optical image stabilization is also one of the coordinate conversion parameters, because in optical image stabilization, the correction of the fluctuation of the inter-frame component is a process that involves coordinate conversion of each pixel. be.
  • the image data to which the lens distortion correction, the trapezoidal distortion correction, the focal plane distortion correction, the electronic camera shake correction, and the optical camera shake correction are performed is performed before each correction processing, that is, It is possible to return to the state when the image was formed on the image sensor of the image sensor unit 12.
  • each parameter of lens distortion correction, trapezoidal distortion correction, and focal plane distortion correction is distortion correction processing for the case where the optical image itself from the subject is an image captured in an optically distorted state, and each is optical distortion. Since it is intended for correction, it is collectively referred to as an optical distortion correction parameter. That is, if the reverse correction is performed using these parameters, the image data to which the lens distortion correction, the trapezoidal distortion correction, and the focal plane distortion correction have been performed can be returned to the state before the optical distortion correction.
  • the timing information TM in the metadata includes each information of exposure time (shutter speed), exposure start timing, readout time (curtain speed), number of exposure frames (long exposure information), IMU sample offset, and frame rate. These are mainly used to associate the line of each frame with the IMU data. However, even if the image sensor 12a is a CCD or a global shutter type CMOS, if the exposure center of gravity shifts using an electronic shutter or mechanical shutter, the exposure start timing and curtain speed are also used to match the exposure center of gravity. Correction is possible.
  • the angle of view (focal length), zoom position, and lens distortion information are described as the camera parameter CP in the metadata.
  • the shake change processing can be performed on the image file MF generated by the image pickup by the image pickup device 1.
  • the functional configuration of the image processing apparatus 5 for this purpose is shown in FIG. It is assumed that the image processing device 6 also has a similar configuration.
  • the image processing device 5 may be an information processing device such as the mobile terminal 7 or the personal computer 8 shown in FIG. 1.
  • the function as shown in FIG. 6 is formed by the application program.
  • the image processing device 5 has functions as a correction canceling unit 51, a shaking effect unit 52, a processing setting unit 53, and a user interface unit 54.
  • the "user interface” is also referred to as “UI”
  • the user interface unit 54 is hereinafter referred to as "UI unit 54".
  • the correction canceling unit 51 and the shaking effecting unit 52 are functions for changing the shaking of the image.
  • the correction canceling unit 51 cancels the optical image stabilization and the electronic image stabilization applied by the image pickup apparatus 1, and the image stabilization is not applied, that is, the image is shaken due to the original image stabilization. It is a function to change the shaking like returning to.
  • the correction canceling unit 51 performs a process of canceling only the correction by the camera shake correction lens mechanism 10c, a process of canceling only the correction by the image pickup surface camera shake correction unit 30, a process of canceling only the electronic camera shake correction, and the like. You can also.
  • the shaking effect unit 52 is a function of performing a process of changing the shaking state of the image data according to a parameter or an instruction input by the user.
  • the shaking effecting unit 52 may add or remove shaking to, for example, the image data VD1 that has not been canceled by the correction canceling unit 51, or the image data VD1 that has been canceled by the correction canceling unit 51. Directing processing can be performed.
  • the shaking effect processing it is assumed that the shaking of the image is reduced, the shaking is removed with higher accuracy than the camera shake correction of the image pickup apparatus 1, or the shaking is added to the image.
  • the UI unit 54 is a function that causes the user to present an operator regarding correction cancellation and shaking change, and also performs a process of acquiring operation information by the operator.
  • the processing setting unit 53 sets the processing parameters for correction cancellation based on the metadata MTD1 and executes the processing of the correction cancellation unit 51. Further, the processing setting unit 53 sets the processing parameters for changing the shaking according to the user operation detected by the UI unit 54 and the metadata MTD1, and causes the processing of the shaking effect unit 52 to be executed.
  • the user can make desired fluctuation changes to the image file MF obtained by the image pickup device 1.
  • the metadata MTD1 contains information on optical image stabilization, it is possible to recognize the correction by the image stabilization lens mechanism 10c and the correction by the image stabilization unit 30, and perform processing according to each. It becomes. For example, it is possible to cancel the image stabilization and add an appropriate amount of shaking.
  • camera shake correction is performed by the camera shake correction lens mechanism 10c in the lens barrel 3 and the camera shake correction unit 30 on the image pickup surface in the camera body 2.
  • the image stabilization By simultaneously functioning the image stabilization on both the lens barrel 3 side and the camera body 2 side, there are merits such as wide range of movement.
  • the motion data log by saving the motion data log as metadata in a state where the moving data is matched with the image in time series, it is possible to create a moving image in which the metadata can be used later. For example, it is conceivable to store IMU data.
  • the camera control unit 18 can easily save the body side image stabilization value as metadata as it is, but the lens side image stabilization value is the same as that of the lens control unit 20. It will be received by communication between them and will be used as metadata.
  • the lens barrel 3 side is responsible for the low frequency component, not the circumstances of the range. This is also related to the fact that the lens-side image stabilization value is sent to the camera control unit 18 by communication between the lens control unit 20 and the camera control unit 18 (hereinafter, also referred to as “lens-body communication”).
  • the change in the movement of the camera shake correction lens mechanism 10c that moves per unit time becomes smaller than when the high frequency component is corrected.
  • the small change in motion means that the data as the lens-side image stabilization value is small even if it is intermittent to some extent. Therefore, it is possible to reduce the sampling rate required to accurately express the movement of the camera shake correction lens mechanism 10c when the low frequency component is corrected.
  • the lens-side image stabilization value transmitted from the lens control unit 20 to the camera control unit 18 it is possible to send data with sufficient accuracy even at a low sampling rate. This has the advantage of reducing the amount of communication data (even if communication is high speed, it can be transmitted with a small amount of data), and even when communication is low speed, it is possible to send the lens side blur correction value without reducing the accuracy.
  • the camera control unit 18 performs the setting process as shown in FIG. 7 for moving image imaging.
  • step S1 of FIG. 7 the camera control unit 18 branches the process depending on whether or not metadata recording is performed. For example, one of them is selected according to the user's operation or the setting information from the outside. When the mode is set to not record metadata, the subsequent processing is not executed.
  • the camera control unit 18 is set in step S2 to perform metadata recording with moving image imaging.
  • the camera control unit 18 branches the process depending on whether or not the image stabilization is turned on. For example, one of them is determined according to the setting operation of the user. When the camera shake correction is not performed, the process of FIG. 7 is completed.
  • the camera control unit 18 branches the process in step S4 depending on whether or not the camera body 2 performs image stabilization. This is selected according to, for example, a user setting or an application program specification.
  • the camera control unit 18 When performing camera shake correction on the camera body 2 side, the camera control unit 18 is set to record the body side shake correction value as metadata in step S5.
  • step S6 the camera control unit 18 branches the process depending on whether or not the camera shake correction is performed on both the camera body 2 side and the lens barrel 3 side. This is also selected according to, for example, a user setting or an application program specification. Further, the mounted lens barrel 3 may be a lens barrel that does not have the camera shake correction lens mechanism 10c. In that case, image stabilization is selected only on the camera body 2 side. If the camera shake correction is not performed on the lens barrel 3 side, the process of FIG. 7 is completed.
  • the camera control unit 18 determines in step S7 whether or not to share each frequency component.
  • the following examples can be considered as this determination.
  • the camera control unit 18 measures the communication speed (for example, bps: bits per second) as a result of communicating with the lens control unit 20 with the lens barrel 3 connected, and the communication speed is equal to or higher than a predetermined value. If this is the case, the frequency component may not be shared, and if the communication speed performance is not equal to or higher than a predetermined value, that is, the communication speed is slow, the frequency component may be used for sharing.
  • the communication speed for example, bps: bits per second
  • whether or not the frequency component is shared is determined by the setting process of FIG. 7, whether or not the frequency component is shared may be arbitrarily switched. For example, it may be possible to switch during video recording.
  • step S9 the camera control unit 18 sets the frequency range in step S8. That is, after setting the range of the blur frequency as the low frequency component in charge of the lens barrel 3 side and the range of the blur frequency as the high frequency component in charge of the camera body 2, the process proceeds to step S9.
  • the low frequency / high frequency separation frequency in step S8 is determined as follows. First, it is conceivable to make a decision according to the user's designated operation. Further, it is conceivable to determine the frequency according to the model, model number, type, year of manufacture, software version, etc. of the lens barrel 3. That is, an appropriate frequency is determined according to the communication speed determined from these, the movable range of the camera shake correction lens mechanism 10c, the frequency response characteristic, and the like. Further, it may be determined according to the actually measured communication speed between the lens and the body. Further, in the case of the processing of the second and third embodiments described later, it is also appropriate to determine the frequency according to the capacity of the memory unit 26 on the lens barrel 3 side and the recordable time of the lens side image stabilization value. It becomes.
  • step S9 the camera control unit 18 selects whether or not to set the operation mode in which the data of the lens-side image stabilization value is temporarily stored in the memory unit 26 on the lens barrel 3 side.
  • This operation will be described in the second and third embodiments, but the lens control unit 20 temporarily stores the acquired lens-side image stabilization value in the memory unit 26, and the camera control unit 18 at a predetermined time point. It is intended to be sent.
  • Whether or not to select such an operation mode may be determined according to the user's operation, the communication speed determined from the model, model number, type, year of manufacture, software version, etc. of the lens barrel 3, or It may be determined based on the measured value of the communication speed.
  • the camera control unit 18 proceeds to step S13.
  • the camera control unit 18 sets the transmission timing in step S10.
  • the transmission timing includes periodic transmission, irregular transmission, timing according to the storage capacity of the memory unit 26, and the end of video recording. As such a transmission timing, it is necessary to set at what timing the transmission is performed.
  • the camera control unit 18 receives the lens-side image stabilization value by lens-body communication and sets it to be recorded as metadata. That is, in this case, both the body-side image stabilization value and the lens-side image stabilization value are included in the metadata as correction information in combination with the setting in step S5.
  • step S4 If it is determined in step S4 that camera shake correction is not performed on the camera body 2 side, the camera control unit 18 is set to perform camera shake correction only on the lens barrel 3 side in step S11. Then, in step S12, the camera control unit 18 selects whether or not to set the mode for temporarily storing the lens-side image stabilization value in the memory unit 26, proceeds to step S10 when the mode is set, and when the mode is not set. The process proceeds to step S13.
  • First Embodiment> 8 and 9 show a processing example of the control unit 40 (mainly the camera control unit 18 and the image stabilization metadata processing unit 36) during video recording as the first embodiment.
  • the camera control unit 18 is set to perform camera shake correction of high frequency components on the camera body 2 side and camera shake correction of low frequency components on the lens barrel 3 side. Further, on the lens barrel 3 side, it is assumed that the lens control unit 20 transmits the lens side image stabilization value in real time without temporarily storing it in the memory unit 26.
  • FIG. 8 is an example of processing related to image stabilization executed by the control unit 40 at each frame timing during video recording.
  • FIG. 9 is an example of processing according to reception from the lens control unit 20.
  • step S101 the control unit 40 detects the amount of blurring. For example, from the IMU data by the blur detection unit 34, the amount of shaking generated between the timings of the previous frame and the current frame is detected.
  • the IMU data of the blur detection unit 25 in the lens barrel 3 may be referred to.
  • step S102 the control unit 40 extracts the high frequency component and the low frequency component of the blur according to the setting of the frequency component sharing (setting of the shared frequency range) in step S8 of FIG. 7.
  • step S103 the control unit 40 calculates the body-side image stabilization amount.
  • the body-side image stabilization amount is a correction amount executed by the image pickup surface camera shake correction unit 30, and is a correction amount corresponding to the high-frequency component of the blur extracted in step S102.
  • step S104 the control unit 40 calculates the lens-side image stabilization amount.
  • the lens-side image stabilization amount is a correction amount executed by the camera shake correction lens mechanism 10c, and is a correction amount corresponding to the low frequency component of the blur extracted in step S102.
  • the control unit 40 selects the image stabilization unit 30 and the image stabilization lens mechanism 10c based on the high-frequency component and the low-frequency component of the amount of blur added to the image pickup device 1 detected in step S101. Calculate whether blur correction can be performed by operating only, and set the blur correction amount for each.
  • step S105 the control unit 40 transmits a correction instruction value according to the blur correction amount. That is, the position and the position displacement for instructing the correction amount for the high frequency blur are transmitted to the correction unit drive unit 32 to indicate the position and the position displacement amount, and the position and the position displacement for executing the correction for the low frequency blur.
  • the correction instruction value indicating the amount is transmitted to the lens control unit 20.
  • the correction unit drive unit 32 drives the image pickup surface camera shake correction unit 30 corresponding to the blur of the high frequency component.
  • the lens control unit 20 transmits a correction instruction value to the correction lens drive unit 23, and the correction lens drive unit 23 drives the camera shake correction lens mechanism 10c corresponding to the blur of the low frequency component.
  • optical image stabilization is performed on both the lens barrel 3 side and the camera body 2 side, and it functions to reduce image shake due to camera shake or the like applied to the image pickup apparatus 1.
  • step S106 the control unit 40 performs a process of using the body-side image stabilization value as metadata.
  • This body-side image stabilization value is recorded corresponding to the current frame.
  • the control unit 40 waits for reception from the lens control unit 20.
  • step S121 of FIG. 9 reception of the lens-side image stabilization value from the lens control unit 20 is waited for, and if there is reception, processing is performed in step S122 to use the lens-side image stabilization value as metadata.
  • the body-side image stabilization value and the lens-side image stabilization value set as metadata in the above steps S106 and S122 are individually or simultaneously associated with the current frame, and are recorded as metadata in the recording control unit 14. Is recorded on a recording medium.
  • the image information of each frame is subjected to image stabilization, that is, the amount of correction indicated by the body-side image stabilization value, and the lens.
  • image stabilization that is, the amount of correction indicated by the body-side image stabilization value, and the lens.
  • the amount of correction indicated by the side shake correction value can be offset.
  • the information in the metadata MTD1 is used to create a state when distortion correction is not performed, and an image when blur correction or distortion correction is not performed is created. Can be created.
  • the amount of blurring of the camera body 2 was recalculated from the information of the gyro sensor and the acceleration sensor, and the above-mentioned blurring correction and distortion correction were not performed. It is possible to perform blur correction and distortion correction again for the image in the state of the case. That is, it is possible to realize image stabilization later on the moving image data captured in the past.
  • FIG. 10 shows the processing of IMU data by the control unit 40.
  • the control unit 40 takes in the IMU data detected by the blur detection unit 34 in step S161 at each predetermined sampling timing, and performs a process for recording as metadata in step S162.
  • the IMU data is not necessarily synchronized with the frame timing of the moving image, and therefore, for example, it is controlled so that a plurality of IMU data are recorded as metadata per frame.
  • the time-series IMU data and the frame of the moving image are associated with each other. It is assumed that such recording of IMU data as metadata is performed even in the case of each embodiment described below.
  • Second Embodiment> As a second embodiment, an example in which the lens control unit 20 transmits the lens side image stabilization value while temporarily storing it in the memory unit 26 will be described. From now on, the same step numbers will be assigned to the above-mentioned processes, and detailed duplicate explanations will be avoided.
  • the body-side image stabilization value and the lens-side image stabilization value may be finally recorded as metadata of the moving image. Therefore, it is conceivable that the lens control unit 20 does not send the lens-side image stabilization value in real time, but temporarily stores it in the memory unit 26 and sends it when there is a margin in the lens-body communication. ..
  • the lens side image stabilization value can be stored in the form of thinning out the data according to the low frequency component moved on the lens barrel 3 side, and the memory unit 26 also has the advantage of temporarily reducing the storage capacity.
  • the lens-body communication is very slow in the first place, and if the movement of the camera shake correction lens mechanism 10c is sampled at that communication interval, the change in movement per time that is lost is large, and the accuracy as data is maintained. Even when the lens-side image stabilization value cannot be sent to the camera body 2 side in real time, the process of temporarily storing it in the memory unit 26 and transmitting it later is useful.
  • the lens control unit 20 performs the processing of FIG. 11 during moving image imaging and the like.
  • step S201 the lens control unit 20 determines whether or not it is the transmission timing.
  • This transmission timing is the timing set in step S10 of FIG.
  • the camera control unit 18 sets periodic transmission, irregular transmission, timing according to the storage capacity of the memory unit 26, the end of video recording, and the like, and notifies the lens control unit 20. ..
  • the lens control unit 20 sets the transmission timing of the lens-side image stabilization value according to the notified setting content, and in step S201, determines whether or not it is the current timing.
  • the lens control unit 20 proceeds to step S202 and detects a lens-side image stabilization value as a correction execution value in the camera shake correction lens mechanism 10c. Then, in step S203, the lens-side image stabilization value detected this time is stored in the memory unit 26 in association with the time stamp indicating the current time (time corresponding to the current frame). This is because it is necessary to set the time stamp and transmit it on the camera body 2 side in order to associate the lens side image stabilization value with the frame of the moving image.
  • the lens-side image stabilization value is sent in real time as in the first embodiment described above, there may be some delay. Therefore, even in the case of the first embodiment, it is desirable that the lens-side image stabilization value is transmitted as a set with the time stamp. Further, in the case of transmission after temporary storage as in the second embodiment, it is necessary to send the lens-side image stabilization value together with the time stamp.
  • the lens control unit 20 proceeds to step S204 and performs a process of transmitting the lens-side image stabilization value recorded in the memory unit 26 to the camera control unit 18 together with the time stamp.
  • the lens-side image stabilization values of the plurality of samples stored in the memory unit 26 are collectively transmitted to the camera control unit 18.
  • a periodic timing batch transmission is performed at regular intervals.
  • an irregular timing batch transmission is performed in response to some trigger.
  • batch transmission may be performed at a timing according to the storage capacity of the lens-side image stabilization value in the memory unit 26. As a result, it is possible to avoid a situation in which the lens-side image stabilization value cannot be stored in the memory unit 26.
  • it may be transmitted all at once after the video imaging is completed. As a result, transmission can be performed when there is a margin in communication.
  • the control unit 40 of the camera body 2 performs the process of FIG. 12 in addition to the process of FIG. 8 described above when recording a moving image.
  • the control unit 40 waits for the lens side image stabilization value to be received from the lens control unit 20 in step S140 of FIG.
  • a process of using the lens-side image stabilization value as metadata is performed.
  • a time stamp is transmitted corresponding to each lens-side image stabilization value. Therefore, the control unit 40 determines which frame of the moving image corresponds to the lens-side image stabilization value for each received lens-side image stabilization value, and corresponds to the determined frame. It is metadata.
  • the body-side image stabilization value and the lens-side image stabilization value set as metadata in step S106 of FIG. 8 and step S141 of FIG. 12 are individually or simultaneously associated with the current frame and are metadata. Is recorded on the recording medium in the recording control unit 14.
  • the user can select whether to transmit the lens-side image stabilization value in real time as in the first embodiment or to temporarily store and transmit the lens-side image stabilization value at a set timing as in the second embodiment. May be. While temporarily storing and transmitting later has an advantage in terms of communication load as described above, by transmitting in real time, the memory unit 26 on the lens barrel 3 side can be reduced or transmitted later. There are also merits such as reduction of transmission time and metadata processing time. Therefore, it is also appropriate to let the user select according to the situation.
  • the third embodiment is an example in which real-time transmission and transmission after temporary storage are used in combination.
  • FIG. 13 shows the processing of the lens control unit 20.
  • step S201A the lens control unit 20 determines whether or not it is the batch transmission timing of the lens-side image stabilization values stored in the memory unit 26. If it is not the transmission timing, the lens control unit 20 proceeds to step S202 and detects a lens-side image stabilization value as a correction execution value in the camera shake correction lens mechanism 10c.
  • step S230 the lens control unit 20 determines whether or not there is a transmission margin at present. For example, it is determined whether or not there is a transmission margin based on the current communication speed, the amount of data to be transmitted, and the like. If there is a transmission margin, the lens control unit 20 proceeds to step S231 and transmits the lens-side image stabilization value detected this time to the camera control unit 18 together with the time stamp. On the other hand, if there is no transmission margin, in step S232, the lens-side image stabilization value detected this time is stored in the memory unit 26 in association with a time stamp indicating the current time (time corresponding to the current frame).
  • step S201 the lens control unit 20 proceeds to step S204 and performs a process of transmitting the lens-side image stabilization value recorded in the memory unit 26 to the camera control unit 18 together with the time stamp.
  • the lens-side image stabilization value transmitted from the lens control unit 20 to the camera control unit 18 has a slow sampling rate, and may be missing in time series when it is linked to a moving image. In other words, it is expected that all frames will not be supported. Therefore, the lens-side image stabilization value is generated by interpolation processing.
  • FIG. 14 shows a processing example of the control unit 40.
  • the control unit 40 performs the processing of FIG. 14 for each frame of the moving image during the moving image recording or after the moving image recording is completed.
  • step S130 the control unit 40 determines whether or not the lens-side image stabilization value corresponding to the currently targeted frame has been received. If the corresponding lens-side image stabilization value does not exist, the process proceeds to step S131, and the lens-side image stabilization value corresponding to the target frame is generated by interpolation processing. For example, interpolation is performed by linear interpolation processing using the lens-side image stabilization value in the front and rear frames.
  • step S121 the received lens-side image stabilization value or the lens-side image stabilization value generated by the interpolation processing is used as metadata.
  • the lens-side image stabilization value corresponding to each frame can be left as metadata.
  • the camera shake correction lens mechanism 10c corrects camera shake of low-frequency components, and since there are few small changes in position, the lens-side image stabilization value obtained by linear interpolation or the like is also relatively accurate. Using this, the image processing device 5 can also realize an appropriate shake change.
  • the fifth embodiment makes it possible to show the reliability of the lens-side image stabilization value when both the body-side image stabilization value and the lens-side image stabilization value are recorded as metadata. As described above, the control unit 40 needs to wait for the notification from the lens control unit 20 regarding the lens-side image stabilization value.
  • the correction amount of the camera shake correction lens mechanism 10c of the lens barrel 3 is also set and corrected on the camera control unit 18 side as in the first to fourth embodiments described above.
  • the indicated value may be transmitted to the lens control unit 20, but on the lens barrel 3 side, the lens control unit 20 may set the correction amount of the camera shake correction lens mechanism 10c. That is, the camera control unit 18 sets the correction amount of the image stabilization unit 30 according to the detection value of the blur detection unit 34, executes the optical camera shake correction on the camera body 2 side, and the lens control unit 20 performs the blur correction.
  • the correction amount of the camera shake correction lens mechanism 10c is set according to the detection value of the detection unit 25, and the optical camera shake correction on the lens barrel 3 side is executed.
  • control unit 40 uses the body-side image stabilization value and the lens-side image stabilization value transmitted from the lens control unit 20 as metadata. In this case, the control unit 40 performs the processing as shown in FIG. 15A, and the image processing apparatus 5 performs the processing as shown in FIG. 15B.
  • FIG. 15A is an example in which the control unit 40 performs a process of recording communication speed information (for example, bps) as metadata.
  • the control unit 40 detects and holds the communication speed of the lens-body communication, that is, the communication speed information between the lens control unit 20 and the camera control unit 18.
  • the control unit 40 records the communication speed information in the metadata together with the image data (see the broken line portion in FIG. 5B).
  • the communication speed may be recorded once for one moving image. If there is a factor that causes the communication speed to fluctuate during video recording, it is conceivable to record the communication speed as metadata in association with each frame.
  • the image processing apparatus 5 that processes the image file MF performs the processing of FIG. 15B.
  • the image processing apparatus 5 acquires the image data VD1 and the metadata MTD1 as the image file MF in step S501.
  • the image file MF is read from the recording medium.
  • the image file MF transmitted from the image pickup apparatus 1 is received.
  • step S502 the image processing device 5 extracts the communication speed information included in the metadata MTD1 and compares it with the threshold value.
  • This threshold value is a threshold value for determining whether the communication speed between the lens control unit 20 and the camera control unit 18 is in a fast state or a slow state.
  • this threshold value is a threshold value for determining whether or not the lens-side image stabilization value included in the metadata MTD1 is suitable for use in the shake change processing.
  • the image processing device 5 performs high-speed communication between the lens control unit 20 and the camera control unit 18 at the time of image pickup in the image pickup device 1 of the image file MF, and the lens side blurring occurs. Assuming that the reliability of the correction value is maintained, the process proceeds to step S503 to generate a supportable flag. In that case, the image processing apparatus 5 sets the processing based on the available flag in step S505. Specifically, the setting is such that the shake change processing can be performed using both the body-side image stabilization value and the lens-side image stabilization value.
  • the image processing device 5 determines whether the communication speed is higher than the threshold value. If the communication speed is not higher than the threshold value, the image processing device 5 has a low communication speed between the lens control unit 20 and the camera control unit 18 at the time of imaging in the image pickup device 1 of the image file MF, and the lens side. Assuming that the reliability of the blur correction value is not maintained, the process proceeds to step S504 to generate a non-correspondence flag. In that case, the image processing apparatus 5 sets the processing based on the incompatibility flag in step S505. For example, the lens-side image stabilization value is set so that it cannot be used for the image stabilization process.
  • FIG. 16A A processing example of the control unit 40 of the sixth embodiment is shown in FIG. 16A, and a processing example of the image processing apparatus 5 is shown in FIG. 16B. This is another processing example having the same purpose as in FIGS. 15A and 15B.
  • FIG. 16A is an example in which the control unit 40 performs a process of recording flag information as communication speed information.
  • the control unit 40 detects and holds the communication speed (bps) between the lens barrel 3 and the camera body 2, that is, between the lens control unit 20 and the camera control unit 18.
  • step S410 the control unit 40 compares the communication speed with the threshold value.
  • This threshold value is the same as the threshold value described in FIG. 15B, and is a threshold value for determining whether the communication speed between the lens control unit 20 and the camera control unit 18 is in a fast state or a slow state.
  • step S412 If the communication speed is higher than the threshold value, the control unit 40 proceeds to step S412 and generates a supportable flag. If the communication speed is not higher than the threshold value, the control unit 40 proceeds to step S413 and generates a non-correspondence flag. Then, in step S414, the control unit 40 records the communication speed information in the metadata together with the image data (see the broken line portion in FIG. 5B). In this case, the supportable flag or the non-supportable flag is recorded as communication speed information.
  • the image processing apparatus 5 that processes the image file MF performs the processing of FIG. 16B.
  • the image processing apparatus 5 acquires the image data VD1 and the metadata MTD1 as the image file MF in step S501.
  • step S510 the image processing apparatus 5 sets the processing based on the available flag or the incompatible flag recorded in the metadata MTD1. That is, if the available flag can be confirmed, the image file MF this time is set so that the shake change processing using both the body side image stabilization value and the lens side image stabilization value can be performed. On the other hand, if the incompatible flag is confirmed, the lens-side image stabilization value is set so that it cannot be used for the shake change processing for the image file MF this time.
  • the image processing apparatus 5 By doing so, it is possible to prevent the image processing apparatus 5 from performing the shake change processing using an inappropriate lens-side image stabilization value.
  • the speed information included in the metadata MTD1 for example, 1-bit flag information may be used, which is advantageous for reducing the amount of data in the metadata MTD1.
  • "0" may be a supportable flag and "1" may be a non-correspondence flag.
  • the body-side image stabilization value by the image stabilization unit 30 (first image stabilization function) of the image pickup surface of the camera body 2.
  • both the image stabilization by the image stabilization lens mechanism 10c and the image stabilization by the image stabilization unit 30 can be canceled, or the image stabilization of only one of them can be canceled.
  • the image processing device 5 can perform more precise shake correction or perform a shake effect that intentionally adds shake.
  • the mechanical image stabilization function by the image pickup surface image stabilization unit 30 and the image stabilization lens mechanism 10c has been focused on, but the technique of the present disclosure is used when the electronic image stabilization function is adopted. It can also be applied.
  • the electronic image stabilization function is used as the first image stabilization function, the hand.
  • the image stabilization lens mechanism 10c may be considered as the second image stabilization function.
  • the control unit 40 uses the lens-side image stabilization value received from the lens barrel 3 side as the correction information.
  • the camera control unit 18 can acquire the image stabilization value on the lens side by the camera shake correction lens mechanism 10c of the lens barrel 3 and record it as metadata.
  • the lens-side image stabilization value is the correction execution value, highly accurate correction information can be recorded as metadata.
  • the image stabilization unit 30 performs image stabilization for high-frequency components
  • the image stabilization lens mechanism 10c performs image stabilization for low-frequency components.
  • the camera control unit 18 receives the lens-side image stabilization value by communication with the lens control unit 20, and records the lens-side image stabilization value as metadata. In this case, by correcting the low frequency component on the lens side, the change in the movement of the lens that moves in a short time becomes smaller than when the high frequency component is corrected, and the sampling rate at which accuracy can be maintained can be lowered. ..
  • the camera control unit 18 when the camera control unit 18 receives the lens-side image stabilization value in communication with the lens control unit 20 and uses it as metadata, the amount of communication between the camera control unit 18 and the lens control unit 20 is reduced. There are advantages that it can be reduced and that the information accuracy is not reduced even when the communication speed is low.
  • the lens barrel 3 is detachable from the camera body 2, and the control unit 40 takes an image based on the determination of the communication speed with the mounted lens barrel 3.
  • the face camera shake correction unit 30 performs blur correction of high frequency components
  • the camera shake correction lens mechanism 10c controls blur correction of low frequency components. That is, the camera control unit 18 determines the communication speed of the mounted lens barrel 3 according to the type, communication trial, etc. at the time of step S7 in FIG. 7, and distributes the blur correction according to the frequency component. Can be set whether or not to perform.
  • the lens barrel 3 having a slow communication speed is attached, it is possible to perform blur correction of low frequency components on the lens barrel 3 side.
  • the lens side image stabilization value at each sample timing is stored in the memory unit 26 together with the time stamp (time information), and at a predetermined time point, the memory unit 26 stores the image stabilization value.
  • time stamp time information
  • the control unit 40 performs a process of converting the lens-side image stabilization value received from the lens barrel 3 into metadata corresponding to the frame of the moving image based on the time stamp.
  • the time stamp may be an absolute time, but for example, it may be the elapsed time from the start of recording the moving image.
  • any time information that can be associated with the frame of the moving image is sufficient.
  • the camera control unit 18 can acquire the lens side image stabilization value at the time corresponding to each frame regardless of the communication speed between the lens control unit 20 and the camera control unit 18. Therefore, it is possible to record an accurate image stabilization value as metadata regardless of the communication speed. It is also possible to reduce the communication processing load when recording a moving image. Further, since the camera shake correction lens mechanism 10c is in charge of low frequency shake correction, the sampling rate of the lens side shake correction value can be lowered, which means that the amount of data of the lens side shake correction value stored in the memory unit 26 is small. It leads to what you can do. Therefore, the capacity of the memory unit 26 does not become excessive. Further, the amount of transmission data when the lens-side image stabilization value stored in the memory unit 26 is collectively transmitted to the camera control unit 18 can be prevented from becoming excessive.
  • the control unit 40 uses the lens-side image stabilization value received from the lens barrel 3 and the lens-side image stabilization value generated by interpolation processing using the received lens-side image stabilization value.
  • An example of using correction information has been described.
  • not only the sampling rate of the lens-side image stabilization value but also the lens-side image stabilization value corresponding to each frame of the moving image can be obtained and recorded as metadata.
  • the control unit 40 has described an example in which the frequency range of the low frequency component assigned to the lens barrel 3 side is set based on the communication speed with the lens barrel side.
  • the communication speed between the camera control unit 18 and the lens control unit 20 is slower, it is more advantageous for the lens barrel 3 side to take charge of lower frequency image stabilization. Therefore, the low frequency range of the shake to be executed by the camera shake correction lens mechanism 10c is determined according to the communication speed. As a result, even when the communication speed is slow, it is possible to easily secure the accuracy of the lens-side image stabilization value as the metadata.
  • the control unit 40 has described an example in which the frequency range of the low frequency component assigned to the lens barrel 3 side is set based on the storage capacity of the memory unit 26.
  • the lens control unit 20 stores the lens-side image stabilization value in the memory unit 26 on the lens barrel 3 side and transmits it to the camera control unit 18 at a predetermined time point, low-frequency image stabilization is performed to determine the sampling rate.
  • the lower the value the larger the amount of lens-side image stabilization value that can be stored in the memory unit 26. Therefore, based on the storage capacity of the memory unit 26, the low frequency range of the shaking to be executed by the image stabilization lens mechanism 10c is determined.
  • the amount of data stored in the memory unit 26 can be reduced and communication opportunities can be reduced.
  • the control unit 40 uses the communication speed information between the lens barrel 3 (lens control unit 20) and the camera body 2 (camera control unit 18) as metadata. It was decided to perform a process of recording on a recording medium. As a result, it is possible to confirm from the metadata whether or not the information of the lens-side image stabilization value is affected by the communication speed. For example, if the communication speed is low and the lens-side image stabilization value is not sufficient, it is possible not to cancel the correction using it.
  • the communication speed information is a value indicating the communication speed (for example, bps). This makes it possible to confirm from the metadata whether or not the information on the lens-side image stabilization value is delayed information, or the degree of delay.
  • the communication speed information is the result information (possible flag / non-correspondence flag) in which the communication speed is compared with a predetermined value. This makes it possible to easily confirm from the metadata whether or not the information on the lens-side image stabilization value is delayed information.
  • the lens barrel 3 in the embodiment includes a camera shake correction lens mechanism 10c that displaces the shake correction lens, a memory unit 26, and a lens control unit 20. Then, in the second and third embodiments, the lens control unit 20 stores the process of detecting the lens-side image stabilization value at each sample timing and the detected lens-side image stabilization value in the memory unit 26 together with the time stamp.
  • An example of processing and processing of transmitting the lens-side image stabilization value and the time stamp stored in the memory unit 26 to the camera control unit 18 of the camera body 2 to be mounted at a predetermined time point has been given.
  • the camera control unit 18 can appropriately acquire the lens-side image stabilization value corresponding to the time of the frame regardless of the communication speed between the lens control unit 20 and the camera control unit 18. Therefore, the accuracy of the correction information in the metadata MTD1 can be improved.
  • the lens control unit 20 gives an example of performing a process of transmitting the lens-side image stabilization value and the time stamp stored in the memory unit 26 at intermittent timings during the moving image imaging period. rice field.
  • the lens control unit 20 can transmit the lens-side image stabilization value to the camera control unit 18 during video recording, depending on circumstances such as the capacity of the memory unit 26. For example, periodic transmission may be performed, or transmission may be considered every time the amount of data stored in the memory unit 26 reaches a predetermined value.
  • the lens control unit 20 gives an example of performing a process of transmitting the lens-side image stabilization value and the time stamp stored in the memory unit 26 to a time point after the moving image imaging is completed. rice field.
  • the lens-side image stabilization value can be transmitted to the camera control unit 18 when there is a margin in communication after the video recording is completed.
  • the lens control unit 20 may collectively transmit all the lens-side image stabilization values during video recording to the camera control unit 18 after the video is finished, or may transmit periodically or irregularly during video recording. After the video recording is completed, the remaining lens-side image stabilization values that have not been sent may be collectively transmitted. In any case, there is an advantage that the video is transmitted during a period in which there is a margin for communication after the video recording is completed.
  • the lens control unit 20 selects whether to transmit the blur correction value detected at each sample timing to the camera main body unit or to store it in the memory unit 26, and stores it in the storage unit.
  • the blur correction value to be set is stored in the memory unit 26 together with the time stamp, read from the memory unit 26 at a predetermined time, and transmitted to the camera body 2 side together with the time stamp. That is, by transmitting when there is a margin for transmission, storing it when it is expected to be delayed, and transmitting it later, the delay in communication is eliminated and the capacity required for the memory unit 26 is not excessive. can do.
  • control unit 40 describes an example of recording the information (IMU data) detected by the blur detection unit 34 as metadata.
  • IMU data the information detected by the blur detection unit 34
  • the shaking affecting the actual image can be determined from the metadata. This makes it possible to change the shaking in various ways.
  • the present technology can also adopt the following configurations.
  • An image pickup device provided with a control unit that generates correction information including a second blur correction value related to the blur correction function as metadata associated with the captured image.
  • the control unit uses the second blur correction value received from the lens barrel as the correction information.
  • the first blur correction function performs blur correction of a high frequency component
  • the second blur correction function performs blur correction of a low frequency component.
  • the lens barrel is configured to be removable from the camera body.
  • the control unit performs blur correction of high-frequency components by the first blur correction function based on the determination of the communication speed with the mounted lens barrel, and is low by the second blur correction function.
  • the image pickup apparatus according to any one of (1) to (3) above, which controls to perform blur correction of frequency components.
  • the second blur correction value at each sample timing is stored in the storage unit together with the time information, and at a predetermined time point, the second blur correction value stored in the storage unit and the time information are controlled.
  • the control unit performs a process of converting the second blur correction value received from the lens barrel into metadata corresponding to a frame of a moving image based on the time information.
  • Imaging device (6)
  • the control unit uses the correction information of the second image stabilization value received from the lens barrel and the second image stabilization value generated by interpolation processing using the received second image stabilization value.
  • the image pickup apparatus according to any one of (1) to (5) above.
  • the control unit The first blur correction function controls the blur correction of the high frequency component, and the second blur correction function controls the blur correction of the low frequency component.
  • the image pickup apparatus according to any one of (1) to (6) above, wherein the frequency range of the low frequency component is set based on the communication speed with the lens barrel side.
  • the control unit The first blur correction function controls the blur correction of the high frequency component, and the second blur correction function controls the blur correction of the low frequency component.
  • the image pickup apparatus according to (5) above, wherein the frequency range of a low frequency component is set based on the storage capacity of the storage unit.
  • the control unit The image pickup apparatus according to any one of (1) to (8) above, which performs a process of recording the communication speed information between the lens barrel and the camera body as metadata on a recording medium.
  • the image stabilization function that displaces the image stabilization lens and Memory and A process of detecting a blur correction value related to the blur correction function at each sample timing, a process of storing the detected blur correction value in the storage unit together with time information, and a process of storing the detected blur in the storage unit at a predetermined time point.
  • a lens barrel device including a control unit that performs a process of transmitting a correction value and the time information to a camera body unit to which the lens is mounted.
  • (11) The lens barrel device according to (10) above, wherein the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit at intermittent timings during the moving image imaging period.
  • the lens barrel device according to (10) or (11) above, wherein the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit to a time point after the moving image imaging is completed.
  • the control unit For the image stabilization value detected at each sample timing, select whether to send it to the camera body or store it in the storage unit.
  • the blur correction value stored in the storage unit is stored in the storage unit together with the time information, and at a predetermined time point, it is read from the storage unit and transmitted to the camera main body unit together with the time information.
  • the lens barrel device according to any one of 10) to (12).
  • the image stabilization function that displaces the image stabilization lens and Memory and As a transmission method in a lens barrel device equipped with The process of detecting the image stabilization value related to the image stabilization function at each sample timing, A process of storing the detected image stabilization value in the storage unit together with time information, A process of transmitting the image stabilization value and the time information stored in the storage unit to the camera body unit to which the camera is mounted at a predetermined time point. How to send.
  • Image pickup device 2 Camera body 3 Lens lens barrel 5, 6 Image processing device 10 Lens system 10a Zoom lens 10b Aperture mechanism 10c Image stabilization lens mechanism 10d Focus lens 11 Shutter 12 Image pickup element unit 13 Camera signal processing unit 14 Recording control unit 15 Display unit 16 Output unit 17 Operation unit 18 Camera control unit 19 Memory unit 20 Lens control unit 21 Zoom drive unit 22 Aperture drive unit 23 Correction lens drive unit 24 Focus drive unit 25 Blur detection unit 26 Memory unit 27 Communication control unit 30 Imaging surface Camera shake correction unit 31 Shutter drive unit 32 Correction unit drive unit 33 Communication control unit 34 Shake detection unit 35 Electronic camera shake correction control unit 36 Shake correction metadata processing unit 40 Control unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

In this imaging device, processing is performed for generating, as metadata associated with a captured image, correction information including: a first camera shake correction value for a first camera shake correction function by which the positional relationship between an optical image incident via a lens and an output captured image is corrected; and a second camera shake correction value for a second camera shake correction function provided to a lens tube comprising a lens.

Description

撮像装置、レンズ鏡筒装置、撮像方法、送信方法Imaging device, lens barrel device, imaging method, transmission method
 本技術は撮像装置とその撮像方法、レンズ鏡筒装置とその送信方法に関し、特にブレ補正データの処理に関する。 This technology relates to an image pickup device and its image pickup method, a lens barrel device and its transmission method, and particularly to the processing of image stabilization data.
 例えば交換レンズ式カメラなどとして、カメラ本体部(カメラボディ)とレンズ鏡筒によって構成され、記録媒体に動画記録ができる撮像装置が知られている。
 このような撮像装置では、カメラボディ内のブレ補正機能がメカニカルに動くことによってブレ補正するものや、レンズ鏡筒内のブレ補正機能がメカニカルに動くことによってブレ補正を行うものがある。また撮像素子からの画像信号の読出範囲をブレに応じて変更したり画像信号処理において画像の切り出し範囲を変化させたりする電子的なブレ補正機能も知られている。
For example, as an interchangeable lens type camera, there is known an image pickup device that is composed of a camera body (camera body) and a lens barrel and can record moving images on a recording medium.
In such an image pickup device, there are those that perform image stabilization by mechanically moving the image stabilization function in the camera body and those that perform image stabilization by mechanically moving the image stabilization function in the lens barrel. Further, there is also known an electronic image stabilization function that changes the reading range of an image signal from an image sensor according to blurring and changes the cropping range of an image in image signal processing.
 下記特許文献1にはレンズ鏡筒側とカメラボディ側でそれぞれブレ補正を行う構成が開示されている。 Patent Document 1 below discloses a configuration in which image stabilization is performed on the lens barrel side and the camera body side, respectively.
WO2018/025639号公報WO2018 / 025639 Gazette
 昨今、ユーザがスマートフォンやタブレットなどの携帯端末、或いはカメラ自体やパーソナルコンピュータなどを用いて多様な画像撮像や画像調整等を手軽に行うことができる環境にある。この場合に、撮像時の手ブレの影響を高精度に除去することや、或いは逆に画像に積極的に揺れを加えて演出効果を得るようにする場合もある。
 そこで本開示では、撮像後の動画について、画像の揺れの付加や除去を行うことを想定し、このために撮像装置において適切な情報が保存されるようにする技術を提案する。
Nowadays, there is an environment in which a user can easily perform various image imaging and image adjustment using a mobile terminal such as a smartphone or tablet, a camera itself, a personal computer, or the like. In this case, the influence of camera shake during imaging may be removed with high accuracy, or conversely, the image may be positively shaken to obtain an effect.
Therefore, in the present disclosure, it is assumed that the shaking of the image is added or removed from the moving image after imaging, and a technique for storing appropriate information in the imaging device for this purpose is proposed.
 本技術に係る撮像装置は、レンズを介して入射された光学像と出力撮像画像との位置関係を補正する第1のブレ補正機能に係る第1のブレ補正値と、前記レンズを備えるレンズ鏡筒に設けられた第2のブレ補正機能に係る第2のブレ補正値を含む補正情報を、撮像画像に関連付けられるメタデータとして生成する制御部を備える。
 第1のブレ補正機能は本体側で光学像と出力撮像画像(最終的に撮像装置から出力される画像)との位置関係を補正する機能である。第2のブレ補正機能はレンズ鏡筒側に設けられている機能である。このようにレンズ鏡筒側とカメラ本体側のそれぞれに、メカニカルな或いは電子的なブレ補正機能を備える場合において、レンズ鏡筒側とカメラ本体部側のそれぞれのブレ補正値を含む補正情報が、メタデータとして撮像している動画に関連づけられるようにする。例えばメタデータは画像データに関連づけられる状態で記録媒体に記録される。
The image pickup apparatus according to the present technology includes a first blur correction value related to a first blur correction function for correcting the positional relationship between an optical image incident via a lens and an output captured image, and a lens mirror provided with the lens. It is provided with a control unit that generates correction information including a second blur correction value related to the second blur correction function provided in the cylinder as metadata associated with the captured image.
The first blur correction function is a function of correcting the positional relationship between the optical image and the output image captured image (the image finally output from the image pickup device) on the main body side. The second image stabilization function is a function provided on the lens barrel side. In this way, when the lens barrel side and the camera body side each have a mechanical or electronic image stabilization function, the correction information including the respective image stabilization values on the lens barrel side and the camera body side can be obtained. To be associated with the video being captured as metadata. For example, metadata is recorded on a recording medium in a state associated with image data.
 上記した本技術に係る撮像装置においては、前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値を、前記補正情報とすることが考えられる。
 レンズ鏡筒側の第2のブレ補正機能に係る第2のブレ補正値は、レンズ鏡筒からカメラ本体部に送信されてくる。制御部はこれをメタデータに含ませるようにする。
In the image pickup apparatus according to the present technology described above, it is conceivable that the control unit uses the second blur correction value received from the lens barrel as the correction information.
The second image stabilization value related to the second image stabilization function on the lens barrel side is transmitted from the lens barrel to the camera body. The control unit includes this in the metadata.
 上記した本技術に係る撮像装置においては、前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われることが考えられる。
 撮像装置に加わった手ブレ等による揺れについて高周波成分と低周波成分に分け、本体側で高周波成分についてのブレ補正が行われ、レンズ鏡筒側で低周波成分のブレ補正が行われるようにする。
In the image pickup apparatus according to the present technology described above, it is conceivable that the first blur correction function performs the blur correction of the high frequency component, and the second blur correction function performs the blur correction of the low frequency component.
The shaking caused by camera shake, etc. applied to the image pickup device is divided into high-frequency components and low-frequency components, and the high-frequency components are corrected on the main unit side and the low-frequency components are corrected on the lens barrel side. ..
 上記した本技術に係る撮像装置においては、前記レンズ鏡筒はカメラ本体部に対して着脱可能とされる構成であり、前記制御部は、装着された前記レンズ鏡筒との間の通信速度の判定に基づいて、前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御することが考えられる。
 例えば本体側との通信速度が遅いレンズ鏡筒が装着された場合に、撮像装置に加わった手ブレ等による揺れについて高周波成分と低周波成分に分け、本体側で高周波成分についてのブレ補正が行われ、レンズ鏡筒側で低周波成分のブレ補正が行われるようにする。
In the image pickup apparatus according to the present technology described above, the lens barrel is configured to be removable from the camera body, and the control unit has a communication speed between the mounted lens barrel and the lens barrel. Based on the determination, it is conceivable to control the first blur correction function to perform blur correction of the high frequency component and the second blur correction function to perform blur correction of the low frequency component.
For example, when a lens barrel with a slow communication speed with the main body is attached, the shaking caused by camera shake etc. applied to the image pickup device is divided into high frequency components and low frequency components, and the main body side performs image stabilization. Therefore, the image stabilization of low frequency components is performed on the lens barrel side.
 上記した本技術に係る撮像装置においては、前記レンズ鏡筒では、各サンプルタイミングにおける前記第2のブレ補正値を時刻情報とともに記憶部に記憶し、所定時点で、記憶部に記憶した前記第2のブレ補正値と前記時刻情報を前記制御部に送信する処理を行い、前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値を前記時刻情報に基づいて、動画のフレームに対応するメタデータとする処理を行うことが考えられる。
 レンズ鏡筒側は、第2のブレ補正値を本体側に逐次送信するのではなく、記憶部に記憶して、ある時点で送信するようにする。
In the image pickup apparatus according to the present technology described above, in the lens barrel, the second image stabilization value at each sample timing is stored in the storage unit together with the time information, and the second image stabilization value stored in the storage unit at a predetermined time point. The image stabilization value and the time information are transmitted to the control unit, and the control unit converts the second image stabilization value received from the lens barrel into a frame of a moving image based on the time information. It is conceivable to perform processing with the corresponding metadata.
The lens barrel side does not sequentially transmit the second image stabilization value to the main body side, but stores it in the storage unit and transmits it at a certain point in time.
 上記した本技術に係る撮像装置においては、前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値と、該受信した第2のブレ補正値を用いた補間処理で生成した前記第2のブレ補正値を、前記補正情報とすることが考えられる。
 例えばレンズ鏡筒側から送信されてくる第2のブレ補正値が、サンプリングレートが低いものである場合などに、補間処理による第2のブレ補正値も生成できるようにする。
In the image pickup apparatus according to the present technology described above, the control unit is generated by an interpolation process using the second image stabilization value received from the lens barrel and the received second image stabilization value. It is conceivable that the second blur correction value is used as the correction information.
For example, when the second blur correction value transmitted from the lens barrel side has a low sampling rate, the second blur correction value by interpolation processing can also be generated.
 上記した本技術に係る撮像装置においては、前記制御部は、前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御するとともに、低周波成分の周波数範囲を前記レンズ鏡筒側との間の通信速度に基づいて設定することが考えられる。
 レンズ鏡筒側で低周波成分のブレ補正が行われるようにする場合の、その低周波成分とする周波数範囲を通信速度に応じて設定する。
In the image pickup apparatus according to the present technology described above, in the control unit, the blur correction of the high frequency component is performed by the first blur correction function, and the blur correction of the low frequency component is performed by the second blur correction function. It is conceivable to set the frequency range of the low frequency component based on the communication speed with the lens barrel side.
When blur correction of low frequency components is performed on the lens barrel side, the frequency range for the low frequency components is set according to the communication speed.
 上記した本技術に係る撮像装置においては、前記制御部は、前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御するとともに、低周波成分の周波数範囲を前記記憶部の記憶容量に基づいて設定することが考えられる。
 レンズ鏡筒側で低周波成分のブレ補正が行われるようにする場合の、その低周波成分とする周波数範囲を、記憶部の記憶容量、例えば第2のブレ補正値の記憶可能容量に基づいて設定する。
In the image pickup apparatus according to the present technology described above, in the control unit, the blur correction of the high frequency component is performed by the first blur correction function, and the blur correction of the low frequency component is performed by the second blur correction function. It is conceivable to set the frequency range of the low frequency component based on the storage capacity of the storage unit.
When blur correction of a low frequency component is performed on the lens barrel side, the frequency range of the low frequency component is determined based on the storage capacity of the storage unit, for example, the storable capacity of the second blur correction value. Set.
 上記した本技術に係る撮像装置においては、前記制御部は、前記レンズ鏡筒とカメラ本体部との間の通信速度情報をメタデータとして記録媒体に記録させる処理を行うことが考えられる。
 第1のブレ補正値と第2のブレ補正値に加えて、レンズ鏡筒側とカメラ本体部側の通信速度情報もメタデータとして記録されるようにする。
In the image pickup apparatus according to the present technology described above, it is conceivable that the control unit performs a process of recording the communication speed information between the lens barrel and the camera body as metadata on a recording medium.
In addition to the first image stabilization value and the second image stabilization value, the communication speed information on the lens barrel side and the camera body side is also recorded as metadata.
 本技術に係るレンズ鏡筒装置は、ブレ補正レンズを変位させるブレ補正機能と、記憶部と、各サンプルタイミングで前記ブレ補正機能に係るブレ補正値を検出する処理と、検出した前記ブレ補正値を時刻情報とともに前記記憶部に記憶する処理と、所定時点で、前記記憶部に記憶した前記ブレ補正値と前記時刻情報を、装着先であるカメラ本体部に送信する処理を行う制御部と、を備える。
 レンズ鏡筒側にメカニカルなブレ補正機能を備える場合において、そのブレ補正値を時刻情報とともに一時的に記憶した上で、カメラ本体側に送信する。
The lens barrel device according to the present technology has a blur correction function for displaced the blur correction lens, a storage unit, a process for detecting a blur correction value related to the blur correction function at each sample timing, and the detected blur correction value. A control unit that stores the image in the storage unit together with the time information, and a control unit that transmits the image stabilization value and the time information stored in the storage unit to the camera body unit to which the lens is mounted. To prepare for.
When the lens barrel side is equipped with a mechanical image stabilization function, the image stabilization value is temporarily stored together with the time information and then transmitted to the camera body side.
 上記した本技術に係るレンズ鏡筒装置においては、前記制御部は、前記記憶部に記憶した前記ブレ補正値と時刻情報を、動画撮像期間において間欠的なタイミングで送信する処理を行うようにすることが考えられる。
 レンズ鏡筒側の制御部は、動画記録中の期間に、ブレ補正値を記憶部に記憶しながら、例えば定期的あるいは不定期にカメラ本体側に送信する。
In the lens barrel device according to the present technology described above, the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit at intermittent timings during the moving image imaging period. Is possible.
The control unit on the lens barrel side stores the image stabilization value in the storage unit during the period during video recording, and transmits the image stabilization value to the camera body, for example, periodically or irregularly.
 上記した本技術に係るレンズ鏡筒装置においては、前記制御部は、前記記憶部に記憶した前記ブレ補正値と時刻情報を、動画撮像が終了した後の時点に送信する処理を行うようにすることが考えられる。
 レンズ鏡筒側の制御部は、動画記録が終了した後に、記憶部に蓄積されたブレ補正値をカメラ本体側に送信する。
In the lens barrel device according to the present technology described above, the control unit performs a process of transmitting the blur correction value and the time information stored in the storage unit to a time point after the moving image imaging is completed. Is possible.
The control unit on the lens barrel side transmits the image stabilization value stored in the storage unit to the camera body side after the moving image recording is completed.
 上記した本技術に係るレンズ鏡筒装置においては、前記制御部は、各サンプルタイミングで検出されたブレ補正値について、前記カメラ本体部に送信するか、前記記憶部に記憶するかを選択し、前記記憶部に記憶させるとしたブレ補正値については、時刻情報とともに前記記憶部に記憶させ、所定時点で、前記記憶部から読み出して前記時刻情報とともに前記カメラ本体部に送信する処理を行うようにすることが考えられる。
 レンズ鏡筒側の制御部は、動画記録中もブレ補正値の送信を行うが、何らかの事情で送信が不適とする場合は、記憶部に記憶させ、後の時点で送信する。
In the lens barrel device according to the present technology described above, the control unit selects whether to transmit the blur correction value detected at each sample timing to the camera body unit or store it in the storage unit. The blur correction value stored in the storage unit is stored in the storage unit together with the time information, read from the storage unit at a predetermined time point, and transmitted to the camera main body unit together with the time information. It is conceivable to do.
The control unit on the lens barrel side transmits the image stabilization value even during video recording, but if transmission is inappropriate for some reason, it is stored in the storage unit and transmitted at a later point in time.
 本技術に係る撮像方法は、レンズを介して入射された光学像と出力撮像画像との位置関係を補正する第1のブレ補正機能に係る第1のブレ補正値と、前記レンズを備えるレンズ鏡筒に設けられた第2のブレ補正機能に係る第2のブレ補正値を含む補正情報を、撮像画像に関連付けられるメタデータとして生成する処理を撮像装置が行う。
 これにより画像撮像の際に、レンズ鏡筒側と本体側の両方のブレ補正値がメタデータから参照できるようにする。
The imaging method according to the present technology includes a first image stabilization value related to a first image stabilization function for correcting the positional relationship between an optical image incident through a lens and an output image image, and a lens mirror provided with the lens. The image pickup apparatus performs a process of generating correction information including a second blur correction value related to the second blur correction function provided in the cylinder as metadata associated with the captured image.
This makes it possible to refer to the image stabilization values on both the lens barrel side and the main body side from the metadata when capturing an image.
 本技術に係る送信方法は、ブレ補正レンズを変位させるブレ補正機能と、記憶部とを備えたレンズ鏡筒装置が、各サンプルタイミングで前記ブレ補正機能に係るブレ補正値を検出する処理と、検出した前記ブレ補正値を時刻情報とともに前記記憶部に記憶する処理と、所定時点で、前記記憶部に記憶した前記ブレ補正値と前記時刻情報を、装着先であるカメラ本体部に送信する処理とを行う。これにより通信速度に関わらず適切にカメラ本体側に情報送信を行うようにする。 The transmission method according to the present technology includes a process in which a lens barrel device provided with a blur correction function for displacement of a blur correction lens and a storage unit detects a blur correction value related to the blur correction function at each sample timing. A process of storing the detected image stabilization value together with time information in the storage unit, and a process of transmitting the image stabilization value and the time information stored in the storage unit at a predetermined time point to the camera body unit to which the lens is mounted. And do. As a result, information is appropriately transmitted to the camera body side regardless of the communication speed.
本技術の実施の形態の撮像装置と画像処理装置の説明図である。It is explanatory drawing of the image pickup apparatus and image processing apparatus of embodiment of this technique. 実施の形態の撮像装置と画像処理装置のデータの流れの説明図である。It is explanatory drawing of the data flow of the image pickup apparatus and the image processing apparatus of embodiment. 実施の形態の撮像装置の構成例のブロック図である。It is a block diagram of the configuration example of the image pickup apparatus of an embodiment. 実施の形態の撮像装置の補正処理の説明図である。It is explanatory drawing of the correction process of the image pickup apparatus of embodiment. 実施の形態のメタデータの説明図である。It is explanatory drawing of the metadata of embodiment. 実施の形態の画像処理装置の機能の説明図である。It is explanatory drawing of the function of the image processing apparatus of embodiment. 実施の形態のブレ補正に関する設定処理例のフローチャートである。It is a flowchart of the setting processing example which concerns on the blur correction of an embodiment. 第1の実施の形態のブレ補正に関する処理例のフローチャートである。It is a flowchart of the processing example which concerns on the blur correction of 1st Embodiment. 第1の実施の形態のブレ補正に関する処理例のフローチャートである。It is a flowchart of the processing example which concerns on the blur correction of 1st Embodiment. 実施の形態のIMUデータの記録のフローチャートである。It is a flowchart of recording of IMU data of embodiment. 第2の実施の形態のブレ補正に関する処理例のフローチャートである。It is a flowchart of the processing example which concerns on the blur correction of 2nd Embodiment. 第2の実施の形態のブレ補正に関する処理例のフローチャートである。It is a flowchart of the processing example which concerns on the blur correction of 2nd Embodiment. 第3の実施の形態のブレ補正に関する処理例のフローチャートである。It is a flowchart of the processing example which concerns on the blur correction of 3rd Embodiment. 第4の実施の形態のブレ補正に関する処理例のフローチャートである。It is a flowchart of the processing example which concerns on the blur correction of 4th Embodiment. 第5の実施の形態の通信速度情報の記録のフローチャートである。It is a flowchart of recording of communication speed information of 5th Embodiment. 第6の実施の形態の通信速度情報の記録のフローチャートである。6 is a flowchart of recording communication speed information according to the sixth embodiment.
 以下、実施の形態を次の順序で説明する。
<1.撮像装置と画像処理装置による揺れ変更>
<2.撮像装置の構成及びメタデータ>
<3.画像処理装置の機能>
<4.ブレ補正に関する設定処理>
<5.第1の実施の形態>
<6.第2の実施の形態>
<7.第3の実施の形態>
<8.第4の実施の形態>
<9.第5の実施の形態>
<10.第6の実施の形態>
<11.まとめ及び変形例>
Hereinafter, embodiments will be described in the following order.
<1. Shake change by image pickup device and image processing device>
<2. Imaging device configuration and metadata>
<3. Functions of image processing equipment>
<4. Setting process related to image stabilization>
<5. First Embodiment>
<6. Second Embodiment>
<7. Third Embodiment>
<8. Fourth Embodiment>
<9. Fifth Embodiment>
<10. 6th Embodiment>
<11. Summary and modification>
<1.撮像装置と画像処理装置による揺れ変更>
 図1は、実施の形態の撮像装置1と、撮像装置1で撮像された画像ファイルMFを取得する画像処理装置(5,6)としての例を示している。
<1. Shake change by image pickup device and image processing device>
FIG. 1 shows an example of the image pickup apparatus 1 of the embodiment and an image processing apparatus (5, 6) for acquiring an image file MF imaged by the image pickup apparatus 1.
 図では、携帯端末7やパーソナルコンピュータ8が、画像処理装置5,6として機能する例を示している。図示していないが、他にも、画像編集専用装置、クラウドサーバ、テレビジョン装置、ビデオ記録再生装置など各種の機器が画像処理装置5、6として想定される。これらの機器は、画像処理装置5、6のいずれとしても機能できる。 The figure shows an example in which the mobile terminal 7 and the personal computer 8 function as the image processing devices 5 and 6. Although not shown, various other devices such as an image editing dedicated device, a cloud server, a television device, and a video recording / playback device are assumed as the image processing devices 5 and 6. These devices can function as any of the image processing devices 5 and 6.
 画像処理装置5は、撮像装置1から取得した画像データに対して一次的に揺れ変更処理を行う機器とする。
 一方、画像処理装置6は、他の画像処理装置で既に揺れ変更処理が行われた画像データについて二次的に揺れ変更処理を行う機器とする。
The image processing device 5 is a device that temporarily performs a shake change process on the image data acquired from the image pickup device 1.
On the other hand, the image processing device 6 is a device that secondarily performs the shaking change processing on the image data that has already been shake-changing processing by another image processing device.
 なお「揺れ」とは動画を構成する画像のフレーム間の揺れ(interframe shake)を指す。撮像装置1で撮像された画像における手ブレ(camera shake)等に起因する画像の揺れや、画像処理により意図的に付加した揺れなど、フレーム間で生じる振動成分(フレーム間での画像の揺らぎ)を広く指すものとする。
 撮像装置1での撮像時の手ブレ等に起因する「揺れ」を指す場合には「手ブレ」の用語も用いる。撮像装置1内で行われる、手ブレ等(撮像装置1を手で持たずに固定配置しているときに加わった振動等も含む)による画像の揺れを低減する補正については「手ブレ補正」と呼び、画像処理装置5,6における「揺れ変更」の処理と区別する。
Note that "shake" refers to a shake between frames (interframe shake) of images constituting a moving image. Vibration components that occur between frames, such as image shake caused by camera shake in the image captured by the image pickup device 1 and shake intentionally added by image processing (image fluctuation between frames). Is broadly referred to.
The term "camera shake" is also used when referring to "shaking" caused by camera shake or the like during imaging with the image pickup apparatus 1. "Image stabilization" is used for corrections performed in the image pickup device 1 to reduce image shake due to camera shake, etc. (including vibrations applied when the image pickup device 1 is fixedly placed without being held by hand). It is distinguished from the process of "shaking change" in the image processing devices 5 and 6.
 「揺れ変更(interframe shake modification)」は、画像に生じている揺れの低減や、画像に揺れを付加することなど、画像における揺れの状態を変化させることをいう。
 この「揺れ変更」には次の「揺れ除去(interframe shake reduction)」「揺れ演出(interframe shake production)」が含まれるものとする。
"Interframe shake modification" refers to changing the state of shaking in an image, such as reducing the shaking occurring in the image or adding shaking to the image.
This "shake change" shall include the following "interframe shake reduction" and "interframe shake production".
 「揺れ除去」は、画像処理装置5,6で、撮像時の手ブレなどにより画像に生じている揺れを無くすこと(揺れの全部除去)、もしくは低減すること(揺れの一部除去)を指す。 "Shake removal" refers to eliminating or reducing (totally removing) or reducing (partially removing) shaking that occurs in an image due to camera shake during imaging in the image processing devices 5 and 6. ..
 「揺れ演出」は、画像処理装置5,6で、画像の揺れの状態を変化させることを指す。この揺れ演出として揺れを低減させる場合もあり、その意味で結果として「揺れ除去」と同様となることもあるが、本実施の形態ではユーザの操作又は自動制御により揺れの変化量が指示され、該指示に応じて画像の揺れ状態を変化させることをいう。
 例えば撮像時に生じた揺れをユーザ指示等に応じて低減又は増加させたり、新たに揺れを付加させたりすることが「揺れ演出」に該当する。
 なお、揺れ演出の目的の一例としては、動画のシーンに迫力を与えるため、わざと画像を揺らすことなどが想定される。
The “shaking effect” refers to changing the shaking state of the image with the image processing devices 5 and 6. In some cases, the shaking is reduced as this shaking effect, and in that sense, it may be the same as "sway removal". However, in the present embodiment, the amount of change in the shaking is instructed by the user's operation or automatic control. It means changing the shaking state of the image according to the instruction.
For example, reducing or increasing the shaking generated at the time of imaging according to a user instruction or the like, or adding new shaking corresponds to "shaking effect".
As an example of the purpose of the shaking effect, it is assumed that the image is intentionally shaken in order to give power to the moving image scene.
 図1における撮像装置1は、いわゆるデジタルスチルカメラ、あるいはデジタルビデオカメラとされ、少なくとも動画撮像が可能なものとされる。 The image pickup device 1 in FIG. 1 is a so-called digital still camera or a digital video camera, and is capable of at least moving image.
 撮像装置1のカメラ本体部をカメラボディ2として示している。
 レンズ鏡筒3は、いわゆる交換レンズとして機能するもので、撮像装置1のカメラ本体部(カメラボディ2)に対して着脱可能とされている。ユーザは、ユースケースに応じてレンズ鏡筒3を取り替えて使用できる。
 なお実施の形態では、このような交換レンズ式の撮像装置1を想定するが、本開示の技術は、レンズ鏡筒3がカメラボディ2から取り外すことができないタイプのものでも適用できる。
The camera body of the image pickup apparatus 1 is shown as the camera body 2.
The lens barrel 3 functions as a so-called interchangeable lens, and is detachable from the camera body (camera body 2) of the image pickup apparatus 1. The user can replace and use the lens barrel 3 according to the use case.
In the embodiment, such an interchangeable lens type image pickup apparatus 1 is assumed, but the technique of the present disclosure can be applied to a type in which the lens barrel 3 cannot be removed from the camera body 2.
 撮像装置1は、動画撮像を行い、動画撮像によって得られた画像ファイルMFを有線通信や無線通信を介して画像処理装置5としての携帯端末7やパーソナルコンピュータ8などに転送することができる。あるいは撮像装置1はメモリカードなどの記録媒体に画像ファイルMFを記録し、携帯端末7やパーソナルコンピュータ8がメモリカードから画像ファイルMFを読み込むことができるものでもよい。
 また画像ファイルMFは、動画としての画像データともに、画像データに対応された付加情報であるメタデータも含まれている。
The image pickup device 1 can perform moving image imaging, and transfer the image file MF obtained by the moving image imaging to a mobile terminal 7 as an image processing device 5, a personal computer 8 or the like via wired communication or wireless communication. Alternatively, the image pickup device 1 may record the image file MF on a recording medium such as a memory card, and the mobile terminal 7 or the personal computer 8 may be able to read the image file MF from the memory card.
Further, the image file MF includes not only the image data as a moving image but also the metadata which is the additional information corresponding to the image data.
 図2は撮像装置1、画像処理装置5、画像処理装置6における情報伝送の様子を示している。
 撮像装置1から画像処理装置5に対しては、画像データVD1とメタデータMTD1が、有線通信、無線通信、或いは記録媒体を介して伝送される。
  画像データVD1とメタデータMTD1は、例えば画像ファイルMFとして伝送される情報である。
 本実施の形態の場合、メタデータMTD1には、例えば撮像時の手ブレ補正に関する情報が含まれる。
FIG. 2 shows a state of information transmission in the image pickup apparatus 1, the image processing apparatus 5, and the image processing apparatus 6.
The image data VD1 and the metadata MTD1 are transmitted from the image pickup device 1 to the image processing device 5 via wired communication, wireless communication, or a recording medium.
The image data VD1 and the metadata MTD1 are information transmitted as, for example, an image file MF.
In the case of the present embodiment, the metadata MTD1 includes, for example, information regarding camera shake correction at the time of imaging.
 画像処理装置5は、画像データVD1とメタデータMTD1を受けて各種の処理を行うことができる。
 例えば画像処理装置5は、メタデータMTD1に含まれる手ブレ補正に関する情報等を用いて画像データVD1に対する揺れ変更処理を行うことができる。
 上述のように揺れ変更とは、手ブレ補正をキャンセルして元々の揺れのある画像に戻したり、より高度な揺れ除去を行ったり、演出のために画像に揺れを付加したりする処理である。
The image processing device 5 can receive the image data VD1 and the metadata MTD1 and perform various processing.
For example, the image processing apparatus 5 can perform the shake change processing for the image data VD1 by using the information related to the camera shake correction included in the metadata MTD1.
As described above, the shake change is a process of canceling the image stabilization and returning to the original image with shake, performing more advanced shake removal, and adding shake to the image for production. ..
  画像処理装置5は、揺れ変更処理等を行った画像データVD2と、メタデータMTD2を、さらに他の画像処理装置6に転送することができる。
 この場合に、メタデータMTD2として、揺れ変更処理等に関する情報が付加されていることで、画像処理装置6でも多様な揺れ変更を行うことができる。
The image processing device 5 can transfer the image data VD2 that has undergone the shake change processing and the like and the metadata MTD2 to another image processing device 6.
In this case, since the metadata MTD2 is added with information related to the shaking change processing and the like, the image processing apparatus 6 can also perform various shaking changes.
 本実施の形態では、このような情報伝送を想定したうえで、少なくとも画像処理装置5での揺れ変更を適切に行うことができるようにする。このための撮像装置1における撮像時のメタデータ記録に注目して説明していく。
In the present embodiment, on the assumption of such information transmission, at least the shaking change in the image processing apparatus 5 can be appropriately performed. For this purpose, we will focus on the metadata recording at the time of imaging in the imaging device 1.
<2.撮像装置の構成及びメタデータ>
 図3に撮像装置1、及びレンズ鏡筒3の構成例を示している。
<2. Imaging device configuration and metadata>
FIG. 3 shows a configuration example of the image pickup apparatus 1 and the lens barrel 3.
  レンズ鏡筒3には複数の光学部品を有するレンズ系10が形成される。例えばレンズ系10は、ズームレンズ10a、絞り機構10b、手ブレ補正レンズ機構10c、フォーカスレンズ10d等を備える。
 手ブレ補正レンズ機構10cは、手ブレに対してレンズをメカニカルに駆動することで、画像に生じる揺れを低減する機構である。
A lens system 10 having a plurality of optical components is formed on the lens barrel 3. For example, the lens system 10 includes a zoom lens 10a, an aperture mechanism 10b, an image stabilization lens mechanism 10c, a focus lens 10d, and the like.
The image stabilization lens mechanism 10c is a mechanism that reduces the shaking that occurs in an image by mechanically driving the lens against camera shake.
 被写体からの光(入射光)はこのようなレンズ系10、及びカメラボディ2におけるシャッター11を介して撮像素子部12に集光される。 The light (incident light) from the subject is focused on the image sensor unit 12 via the lens system 10 and the shutter 11 in the camera body 2.
 撮像素子部12は、例えば、CMOS(Complementary Metal Oxide Semiconductor)型やCCD(Charge Coupled Device)型などのイメージセンサ(撮像素子)を有して構成される。
  この撮像素子部12では、イメージセンサで受光した光を光電変換して得た電気信号について、例えばCDS(Correlated Double Sampling)処理、AGC(Automatic Gain Control)処理などを実行し、さらにA/D(Analog/Digital)変換処理を行う。そしてデジタルデータとしての撮像信号を、後段のカメラ信号処理部13に出力する。
The image sensor unit 12 includes, for example, an image sensor (image sensor) such as a CMOS (Complementary Metal Oxide Semiconductor) type or a CCD (Charge Coupled Device) type.
The image sensor unit 12 executes, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, and the like on the electric signal obtained by photoelectric conversion of the light received by the image sensor, and further performs A / D (A / D). Analog / Digital) Performs conversion processing. Then, the image pickup signal as digital data is output to the camera signal processing unit 13 in the subsequent stage.
 撮像素子部12に対しては、撮像面手ブレ補正ユニット30が設けられている。
 この撮像面手ブレ補正ユニット30は、手ブレ等に対してイメージセンサをメカニカルに移動させることで画像の揺れを補正する機構とされている。
An image pickup surface camera shake correction unit 30 is provided for the image pickup element unit 12.
The image stabilization unit 30 is a mechanism for correcting image shake by mechanically moving the image sensor in response to camera shake or the like.
 カメラ信号処理部13は、例えばDSP(Digital Signal Processor)等により画像処理プロセッサとして構成される。このカメラ信号処理部13は、撮像素子部12からのデジタル信号(撮像画像信号)に対して、各種の信号処理を施す。例えばカメラプロセスとしてカメラ信号処理部13は、前処理、同時化処理、YC生成処理、各種の補正処理、解像度変換処理、コーデック処理等を行う。 The camera signal processing unit 13 is configured as an image processing processor by, for example, a DSP (Digital Signal Processor) or the like. The camera signal processing unit 13 performs various signal processing on the digital signal (image pickup image signal) from the image pickup element unit 12. For example, as a camera process, the camera signal processing unit 13 performs preprocessing, simultaneous processing, YC generation processing, various correction processing, resolution conversion processing, codec processing, and the like.
  前処理では、撮像素子部12からの撮像画像信号に対して、R,G,Bの黒レベルを所定のレベルにクランプするクランプ処理や、R,G,Bの色チャンネル間の補正処理等を行う。
  同時化処理では、各画素についての画像データが、R,G,B全ての色成分を有するようにする色分離処理を施す。例えば、ベイヤー配列のカラーフィルタを用いた撮像素子の場合は、色分離処理としてデモザイク処理が行われる。
  YC生成処理では、R,G,Bの画像データから、輝度(Y)信号および色(C)信号を生成(分離)する。
  解像度変換処理では、各種の信号処理が施された画像データに対して、解像度変換処理を実行する。
In the preprocessing, a clamping process for clamping the black level of R, G, B to a predetermined level, a correction process between the color channels of R, G, B, etc. are performed on the captured image signal from the image sensor unit 12. conduct.
In the simultaneous processing, a color separation processing is performed so that the image data for each pixel has all the color components of R, G, and B. For example, in the case of an image sensor using a Bayer array color filter, demosaic processing is performed as color separation processing.
In the YC generation process, a luminance (Y) signal and a color (C) signal are generated (separated) from the image data of R, G, and B.
In the resolution conversion process, the resolution conversion process is executed for the image data to which various signal processes have been performed.
 レンズ系10からカメラ信号処理部13において行われる各種補正処理について図4に例を挙げる。図4では手ブレ補正レンズ機構10c及び撮像面手ブレ補正ユニット30で行われる光学手ブレ補正(optical image stabilization)とともに、カメラ信号処理部13で行われる補正処理を、その実行順序により例示している。 FIG. 4 shows an example of various correction processes performed from the lens system 10 to the camera signal processing unit 13. FIG. 4 exemplifies the correction processing performed by the camera signal processing unit 13 together with the optical image stabilization performed by the camera shake correction lens mechanism 10c and the image stabilization unit 30 according to the execution order. There is.
 処理F1の光学手ブレ補正として、手ブレ補正レンズ機構10cによるレンズ防振や撮像面手ブレ補正ユニット30によるボディ防振が行われる。
 例えば手ブレ補正レンズ機構10cのヨー方向、ピッチ方向のシフトによるレンズ防振としての手ブレ補正や、撮像面手ブレ補正ユニット30によるイメージセンサのヨー方向、ピッチ方向のシフトによるボディ防振としての手ブレ補正が行われることで、手ブレの影響を物理的にキャンセルした状態で被写体の像がイメージセンサに結像するようにされる。
 このレンズ防振とボディ防振は一方のみを実行する場合もあり、双方を実行する場合もある。
 なお、手ブレ補正としては、以上の光学手ブレ補正とは別に電子手ブレ補正(electrical image stabilization)が行われる場合もある。
As the optical image stabilization of the processing F1, lens vibration isolation by the image stabilization lens mechanism 10c and body vibration isolation by the image pickup surface image stabilization unit 30 are performed.
For example, camera shake correction as lens vibration isolation by shifting the yaw direction and pitch direction of the camera shake correction lens mechanism 10c, and body vibration isolation by shifting the image sensor yaw direction and pitch direction by the image stabilization unit 30. By performing the image stabilization, the image of the subject is formed on the image sensor in a state where the influence of the camera shake is physically canceled.
In some cases, this lens vibration isolation and body vibration isolation are performed only in one case, and in other cases, both are performed.
In addition to the above optical image stabilization, electronic image stabilization may be performed as the image stabilization.
 カメラ信号処理部13では処理F2から処理F6までの処理が各画素に対する空間座標変換により行われる。
 処理F2ではレンズ歪み補正が行われる。
 処理F3では電子手ブレ補正の1つの要素としてのフォーカルプレーン歪み補正が行われる。なお、これは例えばCMOS型のイメージセンサによりローリングシャッター方式の読み出しが行われる場合の歪みを補正するものとなる。
In the camera signal processing unit 13, processing from processing F2 to processing F6 is performed by spatial coordinate conversion for each pixel.
In the process F2, lens distortion correction is performed.
In the process F3, focal plane distortion correction is performed as one element of electronic image stabilization. It should be noted that this corrects the distortion when the rolling shutter method is read out by, for example, a CMOS type image sensor.
 処理F4ではロール補正が行われる。即ち電子手ブレ補正の1つの要素としてのロール成分の補正が行われる。
 処理F5では電子手ブレ補正によって生じる台形歪み分に対する台形歪み補正が行われる。電子手ブレ補正によって生じる台形歪み分とは、画像の中央から離れた場所を切り出すことにより生じるパース歪みである。
 処理F6では、電子手ブレ補正の1つの要素としてのピッチ方向、ヨー方向のシフトや切り出しが行われる。
 例えば以上の手順で手ブレ補正、レンズ歪み補正、台形歪み補正が行われることになる。
 なお、ここで挙げた処理の全てを実施することは必須ではなく処理の順番も適宜入れ替えても構わない。
Roll correction is performed in the process F4. That is, the roll component is corrected as one element of the electronic image stabilization.
In the process F5, trapezoidal distortion correction is performed for the trapezoidal distortion amount generated by the electronic image stabilization. The trapezoidal distortion caused by electronic image stabilization is perspective distortion caused by cutting out a place away from the center of the image.
In the process F6, shift and cutout in the pitch direction and the yaw direction are performed as one element of the electronic image stabilization.
For example, camera shake correction, lens distortion correction, and trapezoidal distortion correction are performed by the above procedure.
It is not essential to carry out all of the processes listed here, and the order of the processes may be changed as appropriate.
 図3のカメラ信号処理部13におけるコーデック処理では、以上の各種処理が施された画像データについて、例えば記録用や通信用の符号化処理、ファイル生成を行う。例えばMPEG-4準拠の動画・音声の記録に用いられているMP4フォーマットなどとしての画像ファイルMFの生成を行う。また静止画ファイルとしてJPEG(Joint Photographic Experts Group)、TIFF(Tagged Image File Format)、GIF(Graphics Interchange Format)等の形式のファイル生成を行うことも考えられる。 In the codec processing in the camera signal processing unit 13 of FIG. 3, for example, coding processing for recording and communication and file generation are performed on the image data subjected to the above various processing. For example, an image file MF is generated as an MP4 format used for recording MPEG-4 compliant video / audio. It is also conceivable to generate files in formats such as JPEG (Joint Photographic Experts Group), TIFF (Tagged Image File Format), and GIF (Graphics Interchange Format) as still image files.
 なお図3では音声処理系については図示を省略しているが、実際には音声収録系、音声処理系を有し、画像ファイルMFには動画としての画像データとともに音声データも含まれるようにしてもよい。 Although the audio processing system is not shown in FIG. 3, it actually has an audio recording system and an audio processing system, and the image file MF includes the audio data as well as the image data as a moving image. May be good.
  カメラ制御部18はCPU(Central Processing Unit)を備えたマイクロコンピュータ(演算処理装置)により構成される。
 メモリ部19は、カメラ制御部18が処理に用いる情報等を記憶する。図示するメモリ部19としては、例えばROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなど包括的に示している。
The camera control unit 18 is composed of a microcomputer (arithmetic processing unit) provided with a CPU (Central Processing Unit).
The memory unit 19 stores information and the like used for processing by the camera control unit 18. As the illustrated memory unit 19, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and the like are comprehensively shown.
 メモリ部19におけるRAMは、カメラ制御部18のCPUの各種データ処理の際の作業領域として、データやプログラム等の一時的な格納に用いられる。
  メモリ部19におけるROMやフラッシュメモリ(不揮発性メモリ)は、CPUが各部を制御するためのOS(Operating System)や、画像ファイル等のコンテンツファイルの他、各種動作のためのアプリケーションプログラムや、ファームウエア等の記憶に用いられる。
 メモリ部19はカメラ制御部18としてのマイクロコンピュータチップに内蔵されるメモリ領域であってもよいし、別体のメモリチップにより構成されてもよい。
The RAM in the memory unit 19 is used for temporarily storing data, programs, and the like as a work area for various data processing of the CPU of the camera control unit 18.
The ROM and flash memory (nonvolatile memory) in the memory unit 19 include an OS (Operating System) for the CPU to control each unit, content files such as image files, application programs for various operations, and firmware. It is used for memory of etc.
The memory unit 19 may be a memory area built in the microcomputer chip as the camera control unit 18, or may be configured by a separate memory chip.
 カメラ制御部18はメモリ部19のROMやフラッシュメモリ等に記憶されたプログラムを実行することで、この撮像装置1の全体及びレンズ鏡筒3を制御する。
  例えばカメラ制御部18は、撮像素子部12のシャッタースピードの制御、カメラ信号処理部13における各種信号処理の指示、ユーザの操作に応じた撮像動作や記録動作、記録した画像ファイルの再生動作、レンズ鏡筒3におけるズーム、フォーカス、絞り調整等のレンズ系10の動作、ユーザインタフェース動作等について、必要各部の動作を制御する。
The camera control unit 18 controls the entire image pickup apparatus 1 and the lens barrel 3 by executing a program stored in the ROM of the memory unit 19, the flash memory, or the like.
For example, the camera control unit 18 controls the shutter speed of the image sensor unit 12, gives instructions for various signal processing in the camera signal processing unit 13, captures and records operations according to user operations, reproduces recorded image files, and lenses. The operation of each necessary part is controlled with respect to the operation of the lens system 10 such as zoom, focus, and aperture adjustment in the lens barrel 3, the user interface operation, and the like.
 またカメラ制御部18は、カメラ信号処理部13で処理された画像データについての各種処理や出力制御も行う。
 カメラ制御部18は、画像データを電子手ブレ補正制御部35により電子手ブレ補正の処理を実行させることができる。
 またカメラ制御部18は、ブレ補正メタデータ処理部36でブレ補正に関するメタデータ生成を実行させる。カメラ制御部18は、ブレ補正に関する情報を含む各種の情報からなるメタデータを生成し、画像ファイルMFに関連する情報として記録する制御も行う。
 またカメラ制御部18は、通信制御部33を介してレンズ鏡筒3側のレンズ制御部20との通信を行う。
The camera control unit 18 also performs various processing and output control on the image data processed by the camera signal processing unit 13.
The camera control unit 18 can execute the electronic image stabilization process on the image data by the electronic image stabilization control unit 35.
Further, the camera control unit 18 causes the image stabilization metadata processing unit 36 to execute metadata generation related to image stabilization. The camera control unit 18 also controls to generate metadata including various information including information related to image stabilization and record it as information related to the image file MF.
Further, the camera control unit 18 communicates with the lens control unit 20 on the lens barrel 3 side via the communication control unit 33.
 なお図3では、電子手ブレ補正制御部35、ブレ補正メタデータ処理部36はカメラ制御部18とは別ブロックで示しているが、これらはカメラ制御部18を構成するマイクロコンピュータにより実現される機能と考えることができる。そこで説明上、カメラ制御部18、電子手ブレ補正制御部35、ブレ補正メタデータ処理部36をまとめて「制御部40」と呼ぶ。但しこれらが別体の演算処理装置により構成されてもよい。 In FIG. 3, the electronic image stabilization control unit 35 and the image stabilization metadata processing unit 36 are shown in separate blocks from the camera control unit 18, but these are realized by the microcomputer constituting the camera control unit 18. It can be thought of as a function. Therefore, for the sake of explanation, the camera control unit 18, the electronic image stabilization control unit 35, and the image stabilization metadata processing unit 36 are collectively referred to as a “control unit 40”. However, these may be configured by a separate arithmetic processing unit.
  記録制御部14は、例えば不揮発性メモリによる記録媒体に対して記録再生を行う。記録制御部14は例えば記録媒体に対し動画データや静止画データ等の画像ファイルMFやサムネイル画像等を記録する処理を行う。
  記録制御部14の実際の形態は多様に考えられる。例えば記録制御部14は、撮像装置1に内蔵されるフラッシュメモリとその書込/読出回路として構成されてもよいし、撮像装置1に着脱できる記録媒体、例えばメモリカード(可搬型のフラッシュメモリ等)に対して記録再生アクセスを行うカード記録再生部による形態でもよい。また撮像装置1に内蔵されている形態としてHDD(Hard Disk Drive)などとして実現されることもある。
The recording control unit 14 records and reproduces, for example, a recording medium using a non-volatile memory. The recording control unit 14 performs a process of recording an image file MF such as moving image data or still image data, a thumbnail image, or the like on a recording medium, for example.
The actual form of the recording control unit 14 can be considered in various ways. For example, the recording control unit 14 may be configured as a flash memory built in the image pickup device 1 and a write / read circuit thereof, or a recording medium that can be attached to and detached from the image pickup device 1, such as a memory card (portable flash memory, etc.). ) May be in the form of a card recording / playback unit that performs recording / playback access. Further, it may be realized as an HDD (Hard Disk Drive) or the like as a form built in the image pickup apparatus 1.
 表示部15はユーザに対して各種表示を行う表示部であり、例えば撮像装置1の筐体に配置される液晶パネル(LCD:Liquid Crystal Display)や有機EL(Electro-Luminescence)ディスプレイ等のディスプレイデバイスによる表示パネルやビューファインダーとされる。
 表示部15は、カメラ制御部18の指示に基づいて表示画面上に各種表示を実行させる。
 例えば表示部15は、記録制御部14において記録媒体から読み出された画像データの再生画像を表示させる。
 また表示部15にはカメラ信号処理部13で表示用に解像度変換された撮像画像の画像データが供給され、表示部15はカメラ制御部18の指示に応じて、当該撮像画像の画像データに基づいて表示を行う場合がある。これにより構図確認中の撮像画像である、いわゆるスルー画(被写体のモニタリング画像)が表示される。
 また表示部15はカメラ制御部18の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を画面上に実行させる。
The display unit 15 is a display unit that displays various displays to the user, and is a display device such as a liquid crystal panel (LCD: Liquid Crystal Display) or an organic EL (Electro-Luminescence) display arranged in the housing of the image pickup device 1, for example. It is said to be a display panel or viewfinder.
The display unit 15 causes various displays to be executed on the display screen based on the instructions of the camera control unit 18.
For example, the display unit 15 displays a reproduced image of image data read from a recording medium by the recording control unit 14.
Further, the display unit 15 is supplied with image data of the captured image whose resolution has been converted for display by the camera signal processing unit 13, and the display unit 15 is based on the image data of the captured image according to the instruction of the camera control unit 18. May be displayed. As a result, a so-called through image (subject monitoring image), which is an captured image during composition confirmation, is displayed.
Further, the display unit 15 causes various operation menus, icons, messages, etc., that is, display as a GUI (Graphical User Interface) to be executed on the screen based on the instruction of the camera control unit 18.
  出力部16は、外部機器との間のデータ通信やネットワーク通信を有線又は無線で行う。
  例えば外部の表示装置、記録装置、再生装置等に対して撮像画像データ(静止画ファイルや動画ファイル)の送信出力を行う。
  また出力部16はネットワーク通信部であるとして、例えばインターネット、ホームネットワーク、LAN(Local Area Network)等の各種のネットワークによる通信を行い、ネットワーク上のサーバ、端末等との間で各種データ送受信を行うようにしてもよい。
The output unit 16 performs data communication and network communication with an external device by wire or wirelessly.
For example, the image data (still image file or moving image file) is transmitted and output to an external display device, recording device, playback device, or the like.
Further, assuming that the output unit 16 is a network communication unit, it communicates with various networks such as the Internet, a home network, and a LAN (Local Area Network), and transmits / receives various data to / from a server, a terminal, etc. on the network. You may do so.
 操作部17は、ユーザが各種操作入力を行うための入力デバイスを総括して示している。具体的には操作部17は撮像装置1の筐体に設けられた各種の操作子(キー、ダイヤル、タッチパネル、タッチパッド等)を示している。
 操作部17によりユーザの操作が検知され、入力された操作に応じた信号はカメラ制御部18へ送られる。
The operation unit 17 collectively shows input devices for the user to perform various operation inputs. Specifically, the operation unit 17 shows various controls (keys, dials, touch panels, touch pads, etc.) provided in the housing of the image pickup apparatus 1.
The operation unit 17 detects the user's operation, and the signal corresponding to the input operation is sent to the camera control unit 18.
 シャッター駆動部31はカメラ制御部18の指示に基づいてシャッター11を駆動する。 The shutter drive unit 31 drives the shutter 11 based on the instruction of the camera control unit 18.
 補正ユニット駆動部32は、カメラ制御部18の指示に基づいて撮像面手ブレ補正ユニット30を駆動し、光学手ブレ補正のために撮像素子部12におけるイメージセンサを変位させる。 The correction unit drive unit 32 drives the image stabilization unit 30 based on the instruction of the camera control unit 18, and displaces the image sensor in the image sensor unit 12 for optical image stabilization.
 ブレ検出部34はカメラボディ2に加わる揺れを検出するセンサを示している。ブレ検出部34としては例えばIMU( inertial measurement unit:慣性計測装置)が搭載されており、例えばピッチ-、ヨー、ロールの3軸の角速度(ジャイロ)センサで角速度を検出し、加速度センサで加速度を検出することができる。
 なお、ブレ検出部34は、撮像時の手ブレを検出することができるセンサを含んでいればよく、ジャイロセンサと加速度センサの双方を備えている必要は無い。
The blur detection unit 34 shows a sensor that detects the vibration applied to the camera body 2. As the blur detection unit 34, for example, an IMU (inertial measurement unit) is mounted. For example, an angular velocity is detected by a three-axis angular velocity (gyro) sensor of pitch-, yaw, and roll, and acceleration is detected by an acceleration sensor. Can be detected.
The blur detection unit 34 may include a sensor capable of detecting camera shake during imaging, and does not need to include both a gyro sensor and an acceleration sensor.
 レンズ鏡筒3においては、例えばマイクロコンピュータによるレンズ制御部20が搭載されている。
 カメラボディ2にレンズ鏡筒3が装着された状態では、カメラ制御部18とレンズ制御部20は、通信制御部27,33を介して相互に通信を行うことができる。
 通信制御部27,33はレンズ鏡筒3がカメラボディ2に装着されることで有線接続されて通信を行う。但し双方が無線通信を行う構成とされてもよい。
In the lens barrel 3, for example, a lens control unit 20 by a microcomputer is mounted.
When the lens barrel 3 is attached to the camera body 2, the camera control unit 18 and the lens control unit 20 can communicate with each other via the communication control units 27 and 33.
The communication control units 27 and 33 are connected by wire when the lens barrel 3 is attached to the camera body 2 to perform communication. However, both may be configured to perform wireless communication.
 レンズ制御部20とカメラ制御部18は、ある通信速度をもって、定常的に双方向のデータ通信のやりとりを行っている。
 例えばカメラ制御部18は、レンズ制御部20に対して、ズームレンズ10a、フォーカスレンズ10d、絞り機構10b、手ブレ補正レンズ機構10cの駆動指示を行う。レンズ制御部20はこれらの駆動指示に応じてレンズ系10の動作を実行させる。
 またレンズ制御部20はカメラ制御部18に対して、レンズの歪み補正情報、焦点距離情報、手ブレ補正レンズ機構10cの補正レンズの位置などを送信する。
The lens control unit 20 and the camera control unit 18 constantly exchange bidirectional data communication at a certain communication speed.
For example, the camera control unit 18 instructs the lens control unit 20 to drive the zoom lens 10a, the focus lens 10d, the aperture mechanism 10b, and the camera shake correction lens mechanism 10c. The lens control unit 20 executes the operation of the lens system 10 in response to these drive instructions.
Further, the lens control unit 20 transmits the distortion correction information of the lens, the focal length information, the position of the correction lens of the camera shake correction lens mechanism 10c, and the like to the camera control unit 18.
 レンズ鏡筒3には、例えばズームレンズ10aを駆動するモータ及びモータドライバを有するズーム駆動部21、絞り機構10bを駆動するモータ及びモータドライバを有する絞り駆動部22、手ブレ補正レンズ機構10cを駆動するモータ及びモータドライバを有する補正レンズ駆動部23、フォーカスレンズ10dを駆動するモータ及びモータドライバを有するフォーカス駆動部24が設けられている。
 これらズーム駆動部21、絞り駆動部22、補正レンズ駆動部23、フォーカス駆動部24は、カメラ制御部18からの指示に基づくレンズ制御部20の指示に応じて駆動電流を対応するモータに印加する。これによりズーム動作、絞り開閉動作、光学手ブレ補正動作、フォーカス動作が実行される。
The lens barrel 3 drives, for example, a zoom drive unit 21 having a motor and a motor driver for driving the zoom lens 10a, an aperture drive unit 22 having a motor and a motor driver for driving the aperture mechanism 10b, and a camera shake correction lens mechanism 10c. A correction lens drive unit 23 having a motor and a motor driver, and a focus drive unit 24 having a motor and a motor driver for driving the focus lens 10d are provided.
The zoom drive unit 21, the aperture drive unit 22, the correction lens drive unit 23, and the focus drive unit 24 apply a drive current to the corresponding motor in response to an instruction from the lens control unit 20 based on an instruction from the camera control unit 18. .. As a result, a zoom operation, an aperture opening / closing operation, an optical image stabilization operation, and a focus operation are executed.
 メモリ部26は、レンズ制御部20が処理に用いる情報等を記憶する。メモリ部26としては、例えばROM、RAM、フラッシュメモリなど包括的に示している。メモリ部26は、レンズ制御部20がカメラ制御部18に送信する情報を一時的に保存する用途に用いられる場合がある。 The memory unit 26 stores information and the like used for processing by the lens control unit 20. The memory unit 26 comprehensively shows, for example, a ROM, a RAM, a flash memory, and the like. The memory unit 26 may be used for temporarily storing information transmitted by the lens control unit 20 to the camera control unit 18.
 ブレ検出部25はレンズ鏡筒3内で揺れを検出するセンサを示しており、例えばカメラボディ2側のブレ検出部34と同様に、IMUが搭載されることが想定される。なおレンズ鏡筒3内にブレ検出部34が搭載されない場合も想定される。 The blur detection unit 25 indicates a sensor that detects vibration in the lens barrel 3, and it is assumed that an IMU is mounted in the same manner as the blur detection unit 34 on the camera body 2 side, for example. It is also assumed that the blur detection unit 34 is not mounted in the lens barrel 3.
 続いて撮像装置1から画像処理装置5に伝送される画像ファイルMFの内容とメタデータの内容を説明する。
 図5Aは画像ファイルMFに含まれるデータを示している。図示のように画像ファイルMFには「ヘッダー」「サウンド」「ムービー」「メタデータ」としての各種のデータが含まれる。
Subsequently, the contents of the image file MF and the contents of the metadata transmitted from the image pickup apparatus 1 to the image processing apparatus 5 will be described.
FIG. 5A shows the data included in the image file MF. As shown in the figure, the image file MF includes various data as "header", "sound", "movie", and "metadata".
 「ヘッダー」には、ファイル名、ファイルサイズ等の情報とともにメタデータの有無を示す情報などが記述される。
 「サウンド」は動画とともに収録された音声データである。例えば2チャネルステレオ音声データが格納される。
 「ムービー」は動画データであり、動画を構成する各フレーム(#1、#2、#3・・・)としての画像データで構成される。
 「メタデータ」としては、動画を構成する各フレーム(#1、#2、#3・・・)に対応づけられた付加情報が記述される。
In the "header", information such as a file name and a file size as well as information indicating the presence or absence of metadata are described.
"Sound" is audio data recorded with a moving image. For example, 2-channel stereo audio data is stored.
The "movie" is moving image data, and is composed of image data as each frame (# 1, # 2, # 3 ...) constituting the moving image.
As the "metadata", additional information associated with each frame (# 1, # 2, # 3, ...) Constituting the moving image is described.
 メタデータの内容例を図5Bに示す。例えば1つのフレームに対して、IMUデータ、座標変換パラメータHP、タイミング情報TM、カメラパラメータCPが記述される。なお、これらはメタデータ内容の一部であり、これ以外の情報もあり得る。また、図示するいずれかの情報が含まれない場合もある。
 また図5Bには破線により、メタデータに通信速度情報が含まれる場合を示しているが、これは後述する第5、第6の実施の形態の処理を行う場合である。
An example of the content of the metadata is shown in FIG. 5B. For example, IMU data, coordinate conversion parameter HP, timing information TM, and camera parameter CP are described for one frame. It should be noted that these are part of the metadata content, and other information may be possible. In addition, any of the information shown in the figure may not be included.
Further, FIG. 5B shows a case where the communication speed information is included in the metadata by the broken line, which is the case where the processing of the fifth and sixth embodiments described later is performed.
 IMUデータとしては、ジャイロ(角速度データ)、アクセル(加速度データ)、サンプリングレートが記述される。
 ブレ検出部34、25として撮像装置1に搭載されるIMUでは、角速度データと加速度データを所定のサンプリングレートで出力している。一般に、このサンプリングレートは撮像画像のフレームレートより高く、このため1フレーム期間に多くのIMUデータサンプルが得られるものとなっている。
As the IMU data, a gyro (angular velocity data), an accelerator (acceleration data), and a sampling rate are described.
The IMU mounted on the image pickup apparatus 1 as the blur detection units 34 and 25 outputs the angular velocity data and the acceleration data at a predetermined sampling rate. Generally, this sampling rate is higher than the frame rate of the captured image, so that many IMU data samples can be obtained in one frame period.
 そのため角速度データとしては、図5Cに示すジャイロサンプル#1、ジャイロサンプル#2・・・ジャイロサンプル#nというように、1フレームについてn個のサンプルが対応づけられる。
 また加速度データとしても、アクセルサンプル#1、アクセルサンプル#2・・・アクセルサンプル#mというように、1フレームについてm個のサンプルが対応づけられる。
 n=mの場合もあるし、n≠mの場合もある。
 なお、ここではメタデータは各フレームに対応づけられる例で説明しているが、例えばIMUデータはフレームとは完全に同期しない場合もある。そのような場合、例えば各フレームの時間情報と関連する時間情報を、タイミング情報TMにおけるIMUサンプルタイミングオフセットとして持つようにされる。
Therefore, as the angular velocity data, n samples are associated with each frame, such as gyro sample # 1, gyro sample # 2, ... Gyro sample # n shown in FIG. 5C.
Also, as acceleration data, m samples are associated with each frame, such as accelerator sample # 1, accelerator sample # 2, ... accelerator sample # m.
In some cases, n = m, and in some cases, n ≠ m.
Although the metadata is described here in the example of being associated with each frame, for example, the IMU data may not be completely synchronized with the frame. In such a case, for example, the time information associated with the time information of each frame is provided as the IMU sample timing offset in the timing information TM.
 座標変換パラメータHPは、画像内の各画素の座標変換を伴う補正に用いるパラメータの総称としている。例えばレンズ歪みのような非線形な座標変換も含む。
 そして、座標変換パラメータHPとは、少なくとも、レンズ歪み補正パラメータ、台形歪み補正パラメータ、フォーカルプレーン歪み補正パラメータ、電子手ブレ補正パラメータ、光学手ブレ補正パラメータを含みうる用語としている。
The coordinate conversion parameter HP is a general term for parameters used for correction accompanied by coordinate conversion of each pixel in an image. It also includes non-linear coordinate transformations such as lens distortion.
The coordinate conversion parameter HP is a term that can include at least a lens distortion correction parameter, a trapezoidal distortion correction parameter, a focal plane distortion correction parameter, an electronic camera shake correction parameter, and an optical camera shake correction parameter.
 レンズ歪み補正パラメータは、樽型収差、糸巻き型収差などの歪みをどのように補正したかを直接または間接的に把握しレンズ歪補正前の画像に戻すための情報となる。 The lens distortion correction parameter is information for directly or indirectly grasping how the distortion such as barrel aberration and pincushion aberration is corrected and returning to the image before the lens distortion correction.
 台形歪み補正パラメータは、電子手ブレ補正によって切り出し領域を中央からずらすことで生じる台形歪みを補正するときの補正量であり、電子手ブレ補正の補正量に応じた値ともなる。 The trapezoidal distortion correction parameter is a correction amount for correcting trapezoidal distortion caused by shifting the cutout area from the center by electronic image stabilization, and is also a value corresponding to the correction amount for electronic image stabilization.
 フォーカルプレーン歪み補正パラメータは、フォーカルプレーン歪みに対してライン毎の補正量を示す値となる。 The focal plane distortion correction parameter is a value indicating the amount of correction for each line with respect to the focal plane distortion.
 電子手ブレ補正及び光学手ブレ補正に関しては、ヨー、ピッチ、ロールの各軸方向についての補正量を示すパラメータとなる。 Regarding electronic image stabilization and optical image stabilization, it is a parameter that indicates the amount of correction in each axial direction of yaw, pitch, and roll.
 ここで本実施の形態においては、図3で述べたように、光学手ブレ補正の機構として、手ブレ補正レンズ機構10cと撮像面手ブレ補正ユニット30が設けられている。そのため光学手ブレ補正の補正量を示す補正情報としては、例えば図5Dのようにボディ側ブレ補正値とレンズ側ブレ補正値が記録される。
 ボディ側ブレ補正値とは、撮像面手ブレ補正ユニット30におけるブレ補正値である。
 レンズ側ブレ補正値とは、手ブレ補正レンズ機構10cにおけるブレ補正値である。
Here, in the present embodiment, as described in FIG. 3, as the optical image stabilization mechanism, the image stabilization lens mechanism 10c and the image stabilization unit 30 are provided. Therefore, as the correction information indicating the correction amount of the optical image stabilization, for example, the body side image stabilization value and the lens side image stabilization value are recorded as shown in FIG. 5D.
The body-side image stabilization value is an image stabilization value in the image stabilization unit 30.
The lens-side image stabilization value is an image stabilization value in the camera shake correction lens mechanism 10c.
 これらのブレ補正値は、実際の撮像面手ブレ補正ユニット30や手ブレ補正レンズ機構10cの補正実行値とされることが想定される。この補正実効値とは、撮像面手ブレ補正ユニット30や手ブレ補正レンズ機構10cに設けられている位置センサによって検出される、実際の補正により変化する位置情報や、前のフレームからの位置情報の変位量など、光学手ブレ補正として行われた実際の変位を表す値である。 It is assumed that these image stabilization values are the correction execution values of the actual image pickup surface image stabilization unit 30 and the image stabilization lens mechanism 10c. This correction effective value is the position information that changes due to the actual correction, which is detected by the position sensor provided in the image stabilization unit 30 and the camera shake correction lens mechanism 10c, and the position information from the previous frame. It is a value representing the actual displacement performed as optical image stabilization, such as the amount of displacement of.
 あるいは、これらのブレ補正値は、カメラ制御部18が補正ユニット駆動部32に出力した補正指示値や、カメラ制御部18がレンズ制御部20を介して補正レンズ駆動部23に送信した補正指示値であってもよい。これらの補正指示値に応じた位置や位置の変位量となるように撮像面手ブレ補正ユニット30や手ブレ補正レンズ機構10cが駆動されるためである。 Alternatively, these blur correction values are a correction instruction value output by the camera control unit 18 to the correction unit drive unit 32, or a correction instruction value transmitted by the camera control unit 18 to the correction lens drive unit 23 via the lens control unit 20. It may be. This is because the image pickup surface camera shake correction unit 30 and the camera shake correction lens mechanism 10c are driven so that the position and the displacement amount of the position correspond to these correction instruction values.
 なお、レンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正、電子手ブレ補正の各パラメータについては、座標変換パラメータと総称しているが、これらの補正処理は、撮像素子部12のイメージセンサの各画素に結像した像に対する補正処理であって、各画素の座標変換を伴う補正処理のパラメータであるためである。
 また説明上、光学手ブレ補正の補正情報も座標変換パラメータの1つとしているが、これは、光学手ブレ補正においてフレーム間成分の揺れの補正は各画素の座標変換を伴う処理となるためである。
 つまり、これらのパラメータを用いて逆補正を行えば、レンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正、電子手ブレ補正、光学手ブレ補正が施された画像データを、各補正処理前、即ち、撮像素子部12のイメージセンサに結像したときの状態に戻すことができる。
The parameters of lens distortion correction, trapezoidal distortion correction, focal plane distortion correction, and electronic camera shake correction are collectively referred to as coordinate conversion parameters, but these correction processes are performed by each of the image sensors of the image sensor unit 12. This is because it is a correction process for the image formed on the pixel and is a parameter of the correction process accompanied by the coordinate conversion of each pixel.
Also, for the sake of explanation, the correction information for optical image stabilization is also one of the coordinate conversion parameters, because in optical image stabilization, the correction of the fluctuation of the inter-frame component is a process that involves coordinate conversion of each pixel. be.
That is, if the reverse correction is performed using these parameters, the image data to which the lens distortion correction, the trapezoidal distortion correction, the focal plane distortion correction, the electronic camera shake correction, and the optical camera shake correction are performed is performed before each correction processing, that is, It is possible to return to the state when the image was formed on the image sensor of the image sensor unit 12.
 またレンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正の各パラメータについては、被写体からの光学像自体が光学的に歪んだ状態で撮像された画像である場合に対する歪み補正処理であり、それぞれ光学歪み補正を目的とするものであるため、光学歪み補正パラメータと総称している。
 つまり、これらのパラメータを用いて逆補正を行えば、レンズ歪み補正、台形歪み補正、フォーカルプレーン歪み補正が施された画像データを、光学歪み補正前の状態に戻すことができる。
In addition, each parameter of lens distortion correction, trapezoidal distortion correction, and focal plane distortion correction is distortion correction processing for the case where the optical image itself from the subject is an image captured in an optically distorted state, and each is optical distortion. Since it is intended for correction, it is collectively referred to as an optical distortion correction parameter.
That is, if the reverse correction is performed using these parameters, the image data to which the lens distortion correction, the trapezoidal distortion correction, and the focal plane distortion correction have been performed can be returned to the state before the optical distortion correction.
 メタデータにおけるタイミング情報TMとしては、露光時間(シャッタースピード)、露光開始タイミング、読み出し時間(幕速)、露光フレーム数(長秒露光情報)、IMUサンプルオフセット、フレームレートの各情報が含まれる。
 これらは主に各フレームのラインとIMUデータを対応づけるために用いられる。
 但しイメージセンサ12aがCCDの場合やグローバルシャッター方式のCMOSの場合であっても、 電子シャッターやメカシャッターを用いて露光重心がずれる場合は、露光開始タイミングと幕速も用いて露光重心に合わせた補正が可能となる。
The timing information TM in the metadata includes each information of exposure time (shutter speed), exposure start timing, readout time (curtain speed), number of exposure frames (long exposure information), IMU sample offset, and frame rate.
These are mainly used to associate the line of each frame with the IMU data.
However, even if the image sensor 12a is a CCD or a global shutter type CMOS, if the exposure center of gravity shifts using an electronic shutter or mechanical shutter, the exposure start timing and curtain speed are also used to match the exposure center of gravity. Correction is possible.
 メタデータにおけるカメラパラメータCPとしては、画角(焦点距離)、ズーム位置、レンズ歪み情報が記述される。
The angle of view (focal length), zoom position, and lens distortion information are described as the camera parameter CP in the metadata.
<3.画像処理装置の機能>
 画像処理装置5では、撮像装置1で撮像により生成した画像ファイルMFについて揺れ変更処理を行うことができる。
 このための画像処理装置5の機能構成を図6に示している。なお画像処理装置6も同様の構成を持つことが想定される。
<3. Functions of image processing equipment>
In the image processing device 5, the shake change processing can be performed on the image file MF generated by the image pickup by the image pickup device 1.
The functional configuration of the image processing apparatus 5 for this purpose is shown in FIG. It is assumed that the image processing device 6 also has a similar configuration.
 画像処理装置5は、図1の携帯端末7やパーソナルコンピュータ8等の情報処理装置とされることが考えられるが、その場合、アプリケーションプログラムにより例えば図6のような機能が形成される。
 例えば画像処理装置5は、補正キャンセル部51、揺れ演出部52、処理設定部53、ユーザインタフェース部54としての機能を備える。なお、「ユーザインタフェース」は「UI」とも表記し、ユーザインタフェース部54は、以下「UI部54」と表記する。
The image processing device 5 may be an information processing device such as the mobile terminal 7 or the personal computer 8 shown in FIG. 1. In that case, the function as shown in FIG. 6 is formed by the application program.
For example, the image processing device 5 has functions as a correction canceling unit 51, a shaking effect unit 52, a processing setting unit 53, and a user interface unit 54. The "user interface" is also referred to as "UI", and the user interface unit 54 is hereinafter referred to as "UI unit 54".
 補正キャンセル部51や揺れ演出部52は、画像に何らかの揺れ変更を施す機能である。 The correction canceling unit 51 and the shaking effecting unit 52 are functions for changing the shaking of the image.
 補正キャンセル部51は、撮像装置1で施した光学手ブレ補正や電子手ブレ補正をキャンセルして、手ブレ補正が施されていない状態、即ち画像に元々の手ブレによる揺れが生じている状態に戻すような揺れ変更を行う機能である。
 あるいは、補正キャンセル部51は、手ブレ補正レンズ機構10cによる補正のみをキャンセルする処理、撮像面手ブレ補正ユニット30による補正のみをキャンセルする処理、電子手ブレ補正のみをキャンセルする処理などを行うこともできる。
The correction canceling unit 51 cancels the optical image stabilization and the electronic image stabilization applied by the image pickup apparatus 1, and the image stabilization is not applied, that is, the image is shaken due to the original image stabilization. It is a function to change the shaking like returning to.
Alternatively, the correction canceling unit 51 performs a process of canceling only the correction by the camera shake correction lens mechanism 10c, a process of canceling only the correction by the image pickup surface camera shake correction unit 30, a process of canceling only the electronic camera shake correction, and the like. You can also.
 揺れ演出部52は、ユーザが入力したパラメータや指示に応じて、画像データの揺れの状態を変更する処理を行う機能である。
 この揺れ演出部52は、例えば補正キャンセル部51におけるキャンセル処理が施されていない画像データVD1や、あるいは補正キャンセル部51によるキャンセル処理後の画像データVD1に対して、揺れの追加や除去などの揺れ演出処理を行うことができる。
 揺れ演出処理としては、画像の揺れを低減したり、撮像装置1の手ブレ補正よりも高精度に揺れ除去を行ったり、あるいは画像に揺れを加えたりする処理が想定される。
The shaking effect unit 52 is a function of performing a process of changing the shaking state of the image data according to a parameter or an instruction input by the user.
The shaking effecting unit 52 may add or remove shaking to, for example, the image data VD1 that has not been canceled by the correction canceling unit 51, or the image data VD1 that has been canceled by the correction canceling unit 51. Directing processing can be performed.
As the shaking effect processing, it is assumed that the shaking of the image is reduced, the shaking is removed with higher accuracy than the camera shake correction of the image pickup apparatus 1, or the shaking is added to the image.
 UI部54は、補正キャンセルや揺れ変更に関する操作子をユーザに対して提示させるとともに操作子による操作情報を取得する処理を行う機能である。 The UI unit 54 is a function that causes the user to present an operator regarding correction cancellation and shaking change, and also performs a process of acquiring operation information by the operator.
 処理設定部53は、メタデータMTD1に基づいて補正キャンセルのための処理パラメータを設定し、補正キャンセル部51の処理を実行させる。また処理設定部53はUI部54で検出したユーザ操作やメタデータMTD1に応じて揺れ変更のための処理パラメータを設定し、揺れ演出部52の処理を実行させる。 The processing setting unit 53 sets the processing parameters for correction cancellation based on the metadata MTD1 and executes the processing of the correction cancellation unit 51. Further, the processing setting unit 53 sets the processing parameters for changing the shaking according to the user operation detected by the UI unit 54 and the metadata MTD1, and causes the processing of the shaking effect unit 52 to be executed.
 このような画像処理装置5により、ユーザは撮像装置1によって得た画像ファイルMFについて所望の揺れ変更を施すことができる。
 特にメタデータMTD1に光学手ブレ補正の情報が含まれていることで、手ブレ補正レンズ機構10cによる補正と、撮像面手ブレ補正ユニット30による補正をそれぞれ認識し、それぞれに応じた処理が可能となる。例えば手ブレ補正のキャンセルや、適度な揺れの追加などが可能となる。
With such an image processing device 5, the user can make desired fluctuation changes to the image file MF obtained by the image pickup device 1.
In particular, since the metadata MTD1 contains information on optical image stabilization, it is possible to recognize the correction by the image stabilization lens mechanism 10c and the correction by the image stabilization unit 30, and perform processing according to each. It becomes. For example, it is possible to cancel the image stabilization and add an appropriate amount of shaking.
<4.ブレ補正に関する設定処理>
 本実施の形態の撮像装置1では、レンズ鏡筒3における手ブレ補正レンズ機構10cと、カメラボディ2における撮像面手ブレ補正ユニット30のそれぞれで手ブレ補正が行われる。レンズ鏡筒3側と、カメラボディ2側の両方の手ブレ補正を同時に機能させることで、可動範囲を広く使えるなどメリットがある。
 また動画撮像の際に、動きのデータログを動画に画像との時系列を合わせた状態でメタデータとして保存しておくことで、後でそのメタデータを利用できる動画ができる。例えばIMUデータを保存することが考えられる。
 加えて、図5Dにボディ側ブレ補正値、レンズ側ブレ補正値として示したように、レンズ鏡筒3側とカメラボディ2側の手ブレ補正に係る情報をメタデータに記録しておくことで、手ブレ補正をかけながら記録した動画に対しても、後から手ブレ補正をキャンセルしたり、切り出しによってレンズやボディで取り切れなかった更に大きなブレを取ったりすることもできる。
<4. Setting process related to image stabilization>
In the image pickup apparatus 1 of the present embodiment, camera shake correction is performed by the camera shake correction lens mechanism 10c in the lens barrel 3 and the camera shake correction unit 30 on the image pickup surface in the camera body 2. By simultaneously functioning the image stabilization on both the lens barrel 3 side and the camera body 2 side, there are merits such as wide range of movement.
Also, when capturing a moving image, by saving the motion data log as metadata in a state where the moving data is matched with the image in time series, it is possible to create a moving image in which the metadata can be used later. For example, it is conceivable to store IMU data.
In addition, as shown in FIG. 5D as the body side image stabilization value and the lens side image stabilization value, by recording the information related to the image stabilization on the lens barrel 3 side and the camera body 2 side in the metadata. Even for videos recorded while applying image stabilization, it is possible to cancel the image stabilization later, or to remove even larger image stabilization that could not be removed by the lens or body by cutting out.
 ここで、カメラボディ2側で動画を記録する際には、カメラ制御部18は、ボディ側ブレ補正値はそのままメタデータとして保存しやすいが、レンズ側ブレ補正値は、レンズ制御部20との間の通信により受信し、それをメタデータとすることになる。 Here, when recording a moving image on the camera body 2 side, the camera control unit 18 can easily save the body side image stabilization value as metadata as it is, but the lens side image stabilization value is the same as that of the lens control unit 20. It will be received by communication between them and will be used as metadata.
 このような撮像装置1において、レンズ鏡筒3側で低周波成分の手ブレ補正を行い、カメラボディ2側で高周波成分の補正を行うようにすることが考えられる。
 レンズ鏡筒3側とカメラボディ2側で合わせて手ブレ補正を行う場合、単純にレンズ鏡筒3側とカメラボディ2側でそれぞれ移動量の半分ずつ動かすということも考えられるが、これを、周波数成分ごとに分けることとする。
 高周波成分を補正する側は移動量が少なく、低周波成分を補正する側は移動量が大きくなることが多い。そこで単純に考えると、高周波成分を補正するのは可動域が狭い方、低周波成分を補正するのは可動域が広いほうとするなどという振り分け方も考えられるが、本実施の形態では、可動域の事情ではなく、レンズ鏡筒3側が低周波成分を受け持つようにする。これはレンズ側ブレ補正値が、レンズ制御部20とカメラ制御部18の間の通信(以下「レンズ-ボディ間通信」ともいう)でカメラ制御部18に送られてくることも関連する。
In such an image pickup apparatus 1, it is conceivable that the camera shake correction of the low frequency component is performed on the lens barrel 3 side and the high frequency component is corrected on the camera body 2 side.
When performing image stabilization on the lens barrel 3 side and the camera body 2 side together, it is conceivable to simply move the lens barrel 3 side and the camera body 2 side by half the amount of movement. It will be divided for each frequency component.
The side that corrects the high frequency component often has a small amount of movement, and the side that corrects the low frequency component often has a large amount of movement. Therefore, if we think simply, we can think of a way of allocating the high frequency component to the narrow range of motion and the low frequency component to the wide range of motion, but in this embodiment, it is movable. The lens barrel 3 side is responsible for the low frequency component, not the circumstances of the range. This is also related to the fact that the lens-side image stabilization value is sent to the camera control unit 18 by communication between the lens control unit 20 and the camera control unit 18 (hereinafter, also referred to as “lens-body communication”).
 レンズ鏡筒3側で手ブレの低周波成分を補正することで、単位時間当たりに動く手ブレ補正レンズ機構10cの動きの変化が、高周波成分を補正する場合に比べて小さくなる。動きの変化が小さいということはレンズ側ブレ補正値としてのデータが、ある程度間欠的でも失われる変化が小さい。このため、低周波成分を補正した際の手ブレ補正レンズ機構10cの動きを精度よく表現するために必要なサンプリングレートも下げることができる。すると、レンズ制御部20からカメラ制御部18に送信するレンズ側ブレ補正値としては、低サンプリングレートであっても十分な精度をもったデータを送ることができることになる。これは通信データ量を下げるという利点(仮に通信が高速であっても少ないデータ量で送信できる)や、通信が低速度の際でも精度を下げずにレンズ側ブレ補正値を送ることができるという利点がある。 By correcting the low frequency component of camera shake on the lens barrel 3 side, the change in the movement of the camera shake correction lens mechanism 10c that moves per unit time becomes smaller than when the high frequency component is corrected. The small change in motion means that the data as the lens-side image stabilization value is small even if it is intermittent to some extent. Therefore, it is possible to reduce the sampling rate required to accurately express the movement of the camera shake correction lens mechanism 10c when the low frequency component is corrected. Then, as the lens-side image stabilization value transmitted from the lens control unit 20 to the camera control unit 18, it is possible to send data with sufficient accuracy even at a low sampling rate. This has the advantage of reducing the amount of communication data (even if communication is high speed, it can be transmitted with a small amount of data), and even when communication is low speed, it is possible to send the lens side blur correction value without reducing the accuracy. There are advantages.
 このような周波数成分の割り当てを行うために、例えばカメラ制御部18は、動画撮像に関して図7のような設定処理を行う。 In order to allocate such frequency components, for example, the camera control unit 18 performs the setting process as shown in FIG. 7 for moving image imaging.
 図7のステップS1でカメラ制御部18は、メタデータ記録を行うか否かで処理を分岐する。例えばユーザの操作や、あるいは外部からの設定情報などに応じていずれかが選択される。メタデータ記録を行わないモードとされるときは、以降の処理は実行しない。 In step S1 of FIG. 7, the camera control unit 18 branches the process depending on whether or not metadata recording is performed. For example, one of them is selected according to the user's operation or the setting information from the outside. When the mode is set to not record metadata, the subsequent processing is not executed.
 メタデータ記録を行うモードであるときは、カメラ制御部18はステップS2で、動画撮像にともなってメタデータ記録を行う設定とする。
 ステップS3でカメラ制御部18は、手ブレ補正をオンとするか否かで処理を分岐する。例えばユーザの設定操作に応じていずれかを判定する。手ブレ補正を行わない場合は図7の処理を終える。
In the mode of performing metadata recording, the camera control unit 18 is set in step S2 to perform metadata recording with moving image imaging.
In step S3, the camera control unit 18 branches the process depending on whether or not the image stabilization is turned on. For example, one of them is determined according to the setting operation of the user. When the camera shake correction is not performed, the process of FIG. 7 is completed.
 手ブレ補正を行う場合は、カメラ制御部18はステップS4で、カメラボディ2側で手ブレ補正を行うか否かで処理を分岐する。これは例えばユーザの設定あるいはアプリケーションプログラムの指定などに応じて選択される。 When performing image stabilization, the camera control unit 18 branches the process in step S4 depending on whether or not the camera body 2 performs image stabilization. This is selected according to, for example, a user setting or an application program specification.
 カメラボディ2側で手ブレ補正を行う場合は、カメラ制御部18はステップS5で、ボディ側ブレ補正値をメタデータとして記録する設定とする。 When performing camera shake correction on the camera body 2 side, the camera control unit 18 is set to record the body side shake correction value as metadata in step S5.
 ステップS6でカメラ制御部18は、カメラボディ2側とレンズ鏡筒3側の両方で手ブレ補正を行うか否かで処理を分岐する。これも例えばユーザの設定あるいはアプリケーションプログラムの指定などに応じて選択される。
 また装着されているレンズ鏡筒3が、手ブレ補正レンズ機構10cを備えないレンズ鏡筒の場合もあり得る。その場合は、カメラボディ2側のみの手ブレ補正が選択される。
 レンズ鏡筒3側で手ブレ補正を行わない場合は図7の処理を終える。
In step S6, the camera control unit 18 branches the process depending on whether or not the camera shake correction is performed on both the camera body 2 side and the lens barrel 3 side. This is also selected according to, for example, a user setting or an application program specification.
Further, the mounted lens barrel 3 may be a lens barrel that does not have the camera shake correction lens mechanism 10c. In that case, image stabilization is selected only on the camera body 2 side.
If the camera shake correction is not performed on the lens barrel 3 side, the process of FIG. 7 is completed.
 カメラボディ2側とレンズ鏡筒3側の両方で手ブレ補正を行う場合は、カメラ制御部18はステップS7で、周波数成分毎の分担を行うか否かを判定する。
 この判定としては、次のような例が考えられる。
When performing camera shake correction on both the camera body 2 side and the lens barrel 3 side, the camera control unit 18 determines in step S7 whether or not to share each frequency component.
The following examples can be considered as this determination.
 まず、カメラボディ2側とレンズ鏡筒3側の両方で手ブレ補正を行う場合は、常に周波数成分での分担を行うことが考えられる。
 これにより、常にレンズ-ボディ間通信の事情にかかわらず、上述の有効な動作が実行できる。
 またユーザの選択操作に応じて決めてもよい。
First, when performing camera shake correction on both the camera body 2 side and the lens barrel 3 side, it is conceivable to always share the frequency components.
As a result, the above-mentioned effective operation can always be performed regardless of the circumstances of the lens-body communication.
Further, it may be decided according to the user's selection operation.
 また、レンズ鏡筒3の機種、型番、種別、製造年、ソフトウェアバージョン、などに応じて周波数成分での分担を行うか否かを判定することが考えられる。
 即ちレンズ鏡筒3の機種等から通信性能を判定し、通信速度性能が所定以上であれば、周波数成分での分担を行わず、通信速度性能が所定以上でなければ、つまり通信速度が遅い場合は、周波数成分での分担を行うようにする。
Further, it is conceivable to determine whether or not to share the frequency components according to the model, model number, type, year of manufacture, software version, etc. of the lens barrel 3.
That is, when the communication performance is determined from the model of the lens barrel 3 and the communication speed performance is equal to or higher than a predetermined value, the frequency components are not shared and the communication speed performance is not higher than the predetermined value, that is, the communication speed is slow. Is to share the frequency components.
 また、カメラ制御部18が、レンズ鏡筒3が接続された状態でレンズ制御部20との通信を行った結果として通信速度(例えばbps:bits per second)を計測し、通信速度が所定値以上であれば周波数成分での分担を行わず、通信速度性能が所定値以上でなければ、つまり通信速度が遅い場合は、周波数成分での分担を行うようにしてもよい。 Further, the camera control unit 18 measures the communication speed (for example, bps: bits per second) as a result of communicating with the lens control unit 20 with the lens barrel 3 connected, and the communication speed is equal to or higher than a predetermined value. If this is the case, the frequency component may not be shared, and if the communication speed performance is not equal to or higher than a predetermined value, that is, the communication speed is slow, the frequency component may be used for sharing.
 なお、周波数成分での分担を行うか否かを図7の設定処理で決定するものとして説明しているが、この周波数成分での分担を行うか否かが、任意に切り替えられてもよいし、例えば動画記録中に切り替えられるようにしてもよい。 Although it is described that whether or not the frequency component is shared is determined by the setting process of FIG. 7, whether or not the frequency component is shared may be arbitrarily switched. For example, it may be possible to switch during video recording.
 周波数成分での分担を行わない場合は、カメラ制御部18はステップS9に進む。
 周波数成分での分担を行う場合は、カメラ制御部18はステップS8において、周波数範囲を設定する。即ちレンズ鏡筒3側に担当させる低周波成分としてのブレの周波数の範囲、及びカメラボディ2側で担当する高周波成分としてのブレの周波数の範囲を設定してからステップS9に進む。
If the frequency component is not shared, the camera control unit 18 proceeds to step S9.
When sharing the frequency components, the camera control unit 18 sets the frequency range in step S8. That is, after setting the range of the blur frequency as the low frequency component in charge of the lens barrel 3 side and the range of the blur frequency as the high frequency component in charge of the camera body 2, the process proceeds to step S9.
 ステップS8における低周波/高周波の切りわけの周波数は、次のように決定することが考えられる。
 まず、ユーザの指定操作に応じて決定することが考えられる。
 またレンズ鏡筒3の機種、型番、種別、製造年、ソフトウェアバージョンなどに応じて周波数を決めることが考えられる。即ちこれらから判定される通信速度や手ブレ補正レンズ機構10cの可動範囲や周波数応答特性などに応じて、適切な周波数を決定する。
 また実測したレンズ-ボディ間の通信速度に応じて決定するようにしてもよい。
 また、後述の第2,第3の実施の形態の処理の場合においては、レンズ鏡筒3側のメモリ部26の容量やレンズ側ブレ補正値の記録可能時間に応じて周波数を決めることも適切となる。
It is conceivable that the low frequency / high frequency separation frequency in step S8 is determined as follows.
First, it is conceivable to make a decision according to the user's designated operation.
Further, it is conceivable to determine the frequency according to the model, model number, type, year of manufacture, software version, etc. of the lens barrel 3. That is, an appropriate frequency is determined according to the communication speed determined from these, the movable range of the camera shake correction lens mechanism 10c, the frequency response characteristic, and the like.
Further, it may be determined according to the actually measured communication speed between the lens and the body.
Further, in the case of the processing of the second and third embodiments described later, it is also appropriate to determine the frequency according to the capacity of the memory unit 26 on the lens barrel 3 side and the recordable time of the lens side image stabilization value. It becomes.
 ステップS9でカメラ制御部18は、レンズ鏡筒3側のメモリ部26に、レンズ側ブレ補正値のデータを一時的に保存する動作モードとするか否かを選択する。この動作については第2,第3の実施の形態で説明するが、レンズ制御部20は、取得したレンズ側ブレ補正値を、一旦メモリ部26に記憶させ、所定の時点でカメラ制御部18に送信するようにするものである。
 このような動作モードを選択するか否かは、ユーザの操作に応じたものとしてもよいし、レンズ鏡筒3の機種、型番、種別、製造年、ソフトウェアバージョンなどから判定される通信速度、あるいは通信速度の実測値に基づいて決定してもよい。
In step S9, the camera control unit 18 selects whether or not to set the operation mode in which the data of the lens-side image stabilization value is temporarily stored in the memory unit 26 on the lens barrel 3 side. This operation will be described in the second and third embodiments, but the lens control unit 20 temporarily stores the acquired lens-side image stabilization value in the memory unit 26, and the camera control unit 18 at a predetermined time point. It is intended to be sent.
Whether or not to select such an operation mode may be determined according to the user's operation, the communication speed determined from the model, model number, type, year of manufacture, software version, etc. of the lens barrel 3, or It may be determined based on the measured value of the communication speed.
 このような動作モードを設定しない場合は、カメラ制御部18はステップS13に進む。このようなメモリ部26を介した送信動作を行う場合は、カメラ制御部18はステップS10において、送信タイミング設定を行う。
 第2,第3の実施の形態で述べるが、送信タイミングとしては、定期的な送信、不定期な送信、メモリ部26の蓄積容量に応じたタイミング、動画記録終了時、などが想定される。このような送信タイミングとしてどのタイミングで送信を行うかを設定することになる。
If such an operation mode is not set, the camera control unit 18 proceeds to step S13. When performing such a transmission operation via the memory unit 26, the camera control unit 18 sets the transmission timing in step S10.
Although described in the second and third embodiments, it is assumed that the transmission timing includes periodic transmission, irregular transmission, timing according to the storage capacity of the memory unit 26, and the end of video recording. As such a transmission timing, it is necessary to set at what timing the transmission is performed.
 ステップS13でカメラ制御部18は、レンズ側ブレ補正値についてレンズ-ボディ間通信で受信し、それをメタデータとして記録する設定を行う。即ちこの場合はステップS5の設定と合わせて、ボディ側ブレ補正値とレンズ側ブレ補正値の両方を補正情報としてメタデータに含ませるようにすることになる。 In step S13, the camera control unit 18 receives the lens-side image stabilization value by lens-body communication and sets it to be recorded as metadata. That is, in this case, both the body-side image stabilization value and the lens-side image stabilization value are included in the metadata as correction information in combination with the setting in step S5.
 なおステップS4の段階で、カメラボディ2側で手ブレ補正を行わないと判定された場合は、カメラ制御部18はステップS11で、レンズ鏡筒3側のみで手ブレ補正を行う設定とする。そしてカメラ制御部18はステップS12で、レンズ側ブレ補正値をメモリ部26に一時記憶するモードとするか否かを選択し、当該モードとするときはステップS10に進み、当該モードとしないときはステップS13に進む。
If it is determined in step S4 that camera shake correction is not performed on the camera body 2 side, the camera control unit 18 is set to perform camera shake correction only on the lens barrel 3 side in step S11. Then, in step S12, the camera control unit 18 selects whether or not to set the mode for temporarily storing the lens-side image stabilization value in the memory unit 26, proceeds to step S10 when the mode is set, and when the mode is not set. The process proceeds to step S13.
<5.第1の実施の形態>
 第1の実施の形態としての動画記録中における制御部40(主にカメラ制御部18、ブレ補正メタデータ処理部36)の処理例を図8、図9で説明する。
 なおこの例は、カメラ制御部18は、カメラボディ2側と高周波成分の手ブレ補正、レンズ鏡筒3側で低周波成分の手ブレ補正を行う設定としている場合の処理例である。
 またレンズ鏡筒3側では、レンズ制御部20が、レンズ側ブレ補正値をメモリ部26に一時記憶せずに、リアルタイムで送信してくるものとする。
<5. First Embodiment>
8 and 9 show a processing example of the control unit 40 (mainly the camera control unit 18 and the image stabilization metadata processing unit 36) during video recording as the first embodiment.
In this example, the camera control unit 18 is set to perform camera shake correction of high frequency components on the camera body 2 side and camera shake correction of low frequency components on the lens barrel 3 side.
Further, on the lens barrel 3 side, it is assumed that the lens control unit 20 transmits the lens side image stabilization value in real time without temporarily storing it in the memory unit 26.
 図8は、制御部40が動画記録時において各フレームのタイミング毎に実行するブレ補正に関する処理例となる。図9は、レンズ制御部20からの受信に応じた処理例である。 FIG. 8 is an example of processing related to image stabilization executed by the control unit 40 at each frame timing during video recording. FIG. 9 is an example of processing according to reception from the lens control unit 20.
 ステップS101で制御部40は、ブレ量を検出する。例えばブレ検出部34によるIMUデータから、前フレームと現在フレームのタイミング間で生じた揺れの量を検出する。この場合、レンズ鏡筒3内のブレ検出部25のIMUデータを参照してもよい。 In step S101, the control unit 40 detects the amount of blurring. For example, from the IMU data by the blur detection unit 34, the amount of shaking generated between the timings of the previous frame and the current frame is detected. In this case, the IMU data of the blur detection unit 25 in the lens barrel 3 may be referred to.
 ステップS102で制御部40は、図7のステップS8における周波数成分の分担の設定(分担する周波数範囲の設定)に従って、ブレの高周波成分と低周波成分を抽出する。 In step S102, the control unit 40 extracts the high frequency component and the low frequency component of the blur according to the setting of the frequency component sharing (setting of the shared frequency range) in step S8 of FIG. 7.
 ステップS103で制御部40は、ボディ側ブレ補正量を演算する。ボディ側ブレ補正量とは、撮像面手ブレ補正ユニット30により実行させる補正量であり、ステップS102で抽出したブレの高周波成分に対応する補正量とする。
 またステップS104で制御部40は、レンズ側ブレ補正量を演算する。レンズ側ブレ補正量とは、手ブレ補正レンズ機構10cにより実行させる補正量であり、ステップS102で抽出したブレの低周波成分に対応する補正量とする。
 例えば制御部40は、ステップS101で検出した撮像装置1に加わったブレ量についての高周波成分と、低周波成分に基づいて、撮像面手ブレ補正ユニット30と手ブレ補正レンズ機構10cを、それぞれどれだけ動作させればブレ補正ができるかを算出し、それぞれに対するブレ補正量を設定する。
In step S103, the control unit 40 calculates the body-side image stabilization amount. The body-side image stabilization amount is a correction amount executed by the image pickup surface camera shake correction unit 30, and is a correction amount corresponding to the high-frequency component of the blur extracted in step S102.
Further, in step S104, the control unit 40 calculates the lens-side image stabilization amount. The lens-side image stabilization amount is a correction amount executed by the camera shake correction lens mechanism 10c, and is a correction amount corresponding to the low frequency component of the blur extracted in step S102.
For example, the control unit 40 selects the image stabilization unit 30 and the image stabilization lens mechanism 10c based on the high-frequency component and the low-frequency component of the amount of blur added to the image pickup device 1 detected in step S101. Calculate whether blur correction can be performed by operating only, and set the blur correction amount for each.
 ステップS105で制御部40は、ブレ補正量に応じた補正指示値を送信する。
 即ち高周波のブレに対する補正量の補正を実行させるための位置や位置変位量を指示する補正指示値を補正ユニット駆動部32に送信し、低周波のブレに対する補正を実行させるための位置や位置変位量を指示する補正指示値をレンズ制御部20に送信する。
 これにより補正ユニット駆動部32は、高周波成分のブレに対応する撮像面手ブレ補正ユニット30の駆動を行う。
 またレンズ制御部20は補正レンズ駆動部23に補正指示値を送信し、補正レンズ駆動部23は、低周波成分のブレに対応する手ブレ補正レンズ機構10cの駆動を行う。
 これによりレンズ鏡筒3側とカメラボディ2側の両方で、光学手ブレ補正が行われ、撮像装置1に加わった手ブレ等による画像の揺れを低減するように機能する。
In step S105, the control unit 40 transmits a correction instruction value according to the blur correction amount.
That is, the position and the position displacement for instructing the correction amount for the high frequency blur are transmitted to the correction unit drive unit 32 to indicate the position and the position displacement amount, and the position and the position displacement for executing the correction for the low frequency blur. The correction instruction value indicating the amount is transmitted to the lens control unit 20.
As a result, the correction unit drive unit 32 drives the image pickup surface camera shake correction unit 30 corresponding to the blur of the high frequency component.
Further, the lens control unit 20 transmits a correction instruction value to the correction lens drive unit 23, and the correction lens drive unit 23 drives the camera shake correction lens mechanism 10c corresponding to the blur of the low frequency component.
As a result, optical image stabilization is performed on both the lens barrel 3 side and the camera body 2 side, and it functions to reduce image shake due to camera shake or the like applied to the image pickup apparatus 1.
 ステップS106で制御部40は、ボディ側ブレ補正値をメタデータとする処理を行う。このボディ側ブレ補正値は、現在のフレームに対応して記録される。
 一方、レンズ側ブレ補正値については、制御部40は、レンズ制御部20からの受信を待機することになる。
 図9のステップS121でレンズ制御部20からのレンズ側ブレ補正値の受信を待機し、受信があったら、ステップS122で、レンズ側ブレ補正値をメタデータとする処理を行う。
In step S106, the control unit 40 performs a process of using the body-side image stabilization value as metadata. This body-side image stabilization value is recorded corresponding to the current frame.
On the other hand, regarding the lens-side image stabilization value, the control unit 40 waits for reception from the lens control unit 20.
In step S121 of FIG. 9, reception of the lens-side image stabilization value from the lens control unit 20 is waited for, and if there is reception, processing is performed in step S122 to use the lens-side image stabilization value as metadata.
 以上のステップS106,S122でメタデータとしてセットされるボディ側ブレ補正値とレンズ側ブレ補正値は、それぞれ個別に、あるいは同時に、現在のフレームに対応づけられて、メタデータとして、記録制御部14において記録媒体に記録される。 The body-side image stabilization value and the lens-side image stabilization value set as metadata in the above steps S106 and S122 are individually or simultaneously associated with the current frame, and are recorded as metadata in the recording control unit 14. Is recorded on a recording medium.
 以上のようにメタデータが記録されることで、例えば画像処理装置5では、各フレームの画像情報に対して、ブレ補正をおこなった分、即ちボディ側ブレ補正値で示される補正量、及びレンズ側ブレ補正値で示される補正量を相殺することができる。また画像処理で歪み補正がなされている場合も、メタデータMTD1の情報を用いて、歪み補正が行われていない場合の状態を作り出し、ブレ補正や歪み補正が行われなかったとする場合の画像を作り出すことができる。 By recording the metadata as described above, for example, in the image processing device 5, the image information of each frame is subjected to image stabilization, that is, the amount of correction indicated by the body-side image stabilization value, and the lens. The amount of correction indicated by the side shake correction value can be offset. Also, even when distortion correction is performed by image processing, the information in the metadata MTD1 is used to create a state when distortion correction is not performed, and an image when blur correction or distortion correction is not performed is created. Can be created.
 その上で、図5Cのように記録されたIMUデータを用いれば、ジャイロセンサ、加速度センサの情報から、カメラボディ2のブレ量を再算出し、上記のブレ補正や歪み補正が行われなかった場合の状態の画像に対して、改めてブレ補正や歪み補正を行うことができる。つまり過去に撮像された動画データに対して、後からブレ補正を実現することもできる。 Then, using the IMU data recorded as shown in FIG. 5C, the amount of blurring of the camera body 2 was recalculated from the information of the gyro sensor and the acceleration sensor, and the above-mentioned blurring correction and distortion correction were not performed. It is possible to perform blur correction and distortion correction again for the image in the state of the case. That is, it is possible to realize image stabilization later on the moving image data captured in the past.
 なお、図10には制御部40によるIMUデータの処理を示している。
 制御部40は所定のサンプリングタイミング毎にステップS161で、ブレ検出部34で検出されるIMUデータを取り込み、ステップS162でメタデータとして記録するための処理を行う。図5Cで説明したようにIMUデータは必ずしも動画のフレームタイミングとは同期していないため、例えば1フレームにつき複数のIMUデータがメタデータとして記録されるように制御することになる。
 これにより時系列のIMUデータと動画のフレームが関連づけられる。
 このようなIMUデータのメタデータとしての記録は、以下説明する各実施の形態の場合でも実行されることが想定される。
Note that FIG. 10 shows the processing of IMU data by the control unit 40.
The control unit 40 takes in the IMU data detected by the blur detection unit 34 in step S161 at each predetermined sampling timing, and performs a process for recording as metadata in step S162. As described with reference to FIG. 5C, the IMU data is not necessarily synchronized with the frame timing of the moving image, and therefore, for example, it is controlled so that a plurality of IMU data are recorded as metadata per frame.
As a result, the time-series IMU data and the frame of the moving image are associated with each other.
It is assumed that such recording of IMU data as metadata is performed even in the case of each embodiment described below.
<6.第2の実施の形態>
 第2の実施の形態として、レンズ制御部20がメモリ部26にレンズ側ブレ補正値を一時記憶させながら送信する例を説明する。なお以降、既述の処理については同一のステップ番号を付し、詳細な重複説明は避ける。
<6. Second Embodiment>
As a second embodiment, an example in which the lens control unit 20 transmits the lens side image stabilization value while temporarily storing it in the memory unit 26 will be described. From now on, the same step numbers will be assigned to the above-mentioned processes, and detailed duplicate explanations will be avoided.
 ボディ側ブレ補正値やレンズ側ブレ補正値は、最終的に動画のメタデータとして記録されればよい。そのため、レンズ制御部20は、レンズ側ブレ補正値をリアルタイムで送らずに、メモリ部26に一時的に保存しておいて、レンズ-ボディ間通信に余裕があるときに送るということも考えられる。 The body-side image stabilization value and the lens-side image stabilization value may be finally recorded as metadata of the moving image. Therefore, it is conceivable that the lens control unit 20 does not send the lens-side image stabilization value in real time, but temporarily stores it in the memory unit 26 and sends it when there is a margin in the lens-body communication. ..
 この場合、レンズ鏡筒3側で低周波成分のブレ補正を行っているのであれば、単位時間あたりに動く手ブレ補正レンズ機構10cの動きの変化が、高周波成分を補正する場合に比べて小さくなり、その周波数に応じて、レンズ側ブレ補正値のデータ量をある程度間引いても精度は保たれる。
 また、そのため、レンズ鏡筒3側で動かす低周波成分に応じてデータを間引いた形でレンズ側ブレ補正値を保存でき、メモリ部26に一時の記憶容量削減の利点も得られる。
In this case, if the low frequency component blur correction is performed on the lens barrel 3 side, the change in the movement of the camera shake correction lens mechanism 10c that moves per unit time is smaller than that when the high frequency component is corrected. Therefore, the accuracy is maintained even if the amount of data of the lens-side image stabilization value is thinned out to some extent according to the frequency.
Further, for this reason, the lens side image stabilization value can be stored in the form of thinning out the data according to the low frequency component moved on the lens barrel 3 side, and the memory unit 26 also has the advantage of temporarily reducing the storage capacity.
 また、そもそもレンズ-ボディ間通信がとても遅く、その通信間隔で手ブレ補正レンズ機構10cの動きをサンプリングすると、失われてしまう時間あたりの動きの変化が大きく、データとしての精度を保った状態のレンズ側ブレ補正値をカメラボディ2側に対してリアルタイムに送ることができない場合にも、メモリ部26に一時保存しておいて後から送信するという処理は有用である。 In addition, the lens-body communication is very slow in the first place, and if the movement of the camera shake correction lens mechanism 10c is sampled at that communication interval, the change in movement per time that is lost is large, and the accuracy as data is maintained. Even when the lens-side image stabilization value cannot be sent to the camera body 2 side in real time, the process of temporarily storing it in the memory unit 26 and transmitting it later is useful.
 このような観点から、レンズ制御部20は動画撮像中などに、図11の処理を行う。
 ステップS201でレンズ制御部20は、送信タイミングであるか否かを判定する。この送信タイミングとは、図7のステップS10で設定したタイミングである。
 図7の処理でカメラ制御部18によって、定期的な送信、不定期な送信、メモリ部26の蓄積容量に応じたタイミング、動画記録終了時、などが設定され、レンズ制御部20に通知される。レンズ制御部20は、通知された設定内容に応じて、レンズ側ブレ補正値の送信タイミングを設定し、ステップS201では、現在そのタイミングであるか否かを判定する。
From this point of view, the lens control unit 20 performs the processing of FIG. 11 during moving image imaging and the like.
In step S201, the lens control unit 20 determines whether or not it is the transmission timing. This transmission timing is the timing set in step S10 of FIG.
In the process of FIG. 7, the camera control unit 18 sets periodic transmission, irregular transmission, timing according to the storage capacity of the memory unit 26, the end of video recording, and the like, and notifies the lens control unit 20. .. The lens control unit 20 sets the transmission timing of the lens-side image stabilization value according to the notified setting content, and in step S201, determines whether or not it is the current timing.
 送信タイミングでなければ、レンズ制御部20はステップS202に進み、手ブレ補正レンズ機構10cにおける補正実行値としてのレンズ側ブレ補正値を検出する。そしてステップS203で、今回検出したレンズ側ブレ補正値を、現在時刻(現在のフレームに対応する時刻)を示すタイムスタンプと関連づけてメモリ部26に記憶する。
 レンズ側ブレ補正値と動画のフレームを関連づけるために、タイムスタンプもセットにしてカメラボディ2側送信する必要があるためである。
If it is not the transmission timing, the lens control unit 20 proceeds to step S202 and detects a lens-side image stabilization value as a correction execution value in the camera shake correction lens mechanism 10c. Then, in step S203, the lens-side image stabilization value detected this time is stored in the memory unit 26 in association with the time stamp indicating the current time (time corresponding to the current frame).
This is because it is necessary to set the time stamp and transmit it on the camera body 2 side in order to associate the lens side image stabilization value with the frame of the moving image.
 なお、上述の第1の実施の形態のようにレンズ側ブレ補正値をリアルタイムで送る場合でも多少の遅延はあり得る。そのため、第1の実施の形態の場合も、レンズ側ブレ補正値はタイムスタンプとセットで送信することが望ましい。
 また、第2の実施の形態のように一時記憶した後に送信する場合は、レンズ側ブレ補正値をタイムスタンプと共に送ることが必要となる。
Even when the lens-side image stabilization value is sent in real time as in the first embodiment described above, there may be some delay. Therefore, even in the case of the first embodiment, it is desirable that the lens-side image stabilization value is transmitted as a set with the time stamp.
Further, in the case of transmission after temporary storage as in the second embodiment, it is necessary to send the lens-side image stabilization value together with the time stamp.
 送信タイミングとなったときは、レンズ制御部20はステップS204に進み、メモリ部26に記録されているレンズ側ブレ補正値をタイムスタンプと共にカメラ制御部18に送信する処理を行う。 When the transmission timing is reached, the lens control unit 20 proceeds to step S204 and performs a process of transmitting the lens-side image stabilization value recorded in the memory unit 26 to the camera control unit 18 together with the time stamp.
 この図11の処理により、設定された送信タイミングとなると、メモリ部26に記憶されている複数サンプルのレンズ側ブレ補正値が、まとめてカメラ制御部18に送信されることになる。
 例えば定期的なタイミングとして、一定時間毎に、一括送信が行われる。また不定期タイミングとして、何らかのトリガに応じて一括送信が行われる。定期的あるいは、不定期に一括送信することで、リアルタイムでレンズ側ブレ補正値を逐次送信する場合よりも送信機会を減らすことになり、通信負荷を下げることができる。
 またメモリ部26におけるレンズ側ブレ補正値の記憶容量に応じたタイミングで一括送信が行われることもある。これにより、レンズ側ブレ補正値をメモリ部26に記憶しきれなくなるような事態を避けることができる。
 また動画撮像終了後に一括送信されることもある。これにより通信に余裕がある時点に送信を行うことができる。
 これらの送信タイミングは併用されてもよい。
When the transmission timing is set by the process of FIG. 11, the lens-side image stabilization values of the plurality of samples stored in the memory unit 26 are collectively transmitted to the camera control unit 18.
For example, as a periodic timing, batch transmission is performed at regular intervals. In addition, as an irregular timing, batch transmission is performed in response to some trigger. By performing batch transmission periodically or irregularly, the transmission opportunity can be reduced as compared with the case where the lens-side image stabilization value is sequentially transmitted in real time, and the communication load can be reduced.
In addition, batch transmission may be performed at a timing according to the storage capacity of the lens-side image stabilization value in the memory unit 26. As a result, it is possible to avoid a situation in which the lens-side image stabilization value cannot be stored in the memory unit 26.
In addition, it may be transmitted all at once after the video imaging is completed. As a result, transmission can be performed when there is a margin in communication.
These transmission timings may be used together.
 カメラボディ2の制御部40では、動画記録時において、上述の図8の処理と共に、図12の処理を行う。
 制御部40は、図12のステップS140でレンズ制御部20からのレンズ側ブレ補正値の受信を待機する。
 レンズ制御部20からのレンズ側ブレ補正値の受信があったら、ステップS141で、レンズ側ブレ補正値をメタデータとする処理を行う。このとき、各レンズ側ブレ補正値に対応してタイムスタンプが送信されてくる。このため制御部40は、受信した各レンズ側ブレ補正値について、それぞれタイムスタンプを用いて、動画のどのフレームに対応するレンズ側ブレ補正値であるかを判定し、その判定したフレームに対応するメタデータとする。
The control unit 40 of the camera body 2 performs the process of FIG. 12 in addition to the process of FIG. 8 described above when recording a moving image.
The control unit 40 waits for the lens side image stabilization value to be received from the lens control unit 20 in step S140 of FIG.
When the lens-side image stabilization value is received from the lens control unit 20, in step S141, a process of using the lens-side image stabilization value as metadata is performed. At this time, a time stamp is transmitted corresponding to each lens-side image stabilization value. Therefore, the control unit 40 determines which frame of the moving image corresponds to the lens-side image stabilization value for each received lens-side image stabilization value, and corresponds to the determined frame. It is metadata.
 図8のステップS106、及び図12のステップS141でメタデータとしてセットされるボディ側ブレ補正値とレンズ側ブレ補正値は、それぞれ個別に、あるいは同時に、現在のフレームに対応づけられて、メタデータとして、記録制御部14において記録媒体に記録される。 The body-side image stabilization value and the lens-side image stabilization value set as metadata in step S106 of FIG. 8 and step S141 of FIG. 12 are individually or simultaneously associated with the current frame and are metadata. Is recorded on the recording medium in the recording control unit 14.
 なお第1の実施の形態のように、レンズ側ブレ補正値をリアルタイムで送信するか、第2の実施の形態のように一時記憶して設定したタイミングで送信するかを、ユーザが選べるようにしても良い。
 一時記憶して後から送信することで上記のように通信負荷の点で利点がある一方、リアルタイムに送信することで、レンズ鏡筒3側のメモリ部26を削減できたり、後から送信することによる送信時間やメタデータ処理時間を削減できたりするなどのメリットもある。そこで状況に応じてユーザに選択させることも適切となる。
It should be noted that the user can select whether to transmit the lens-side image stabilization value in real time as in the first embodiment or to temporarily store and transmit the lens-side image stabilization value at a set timing as in the second embodiment. May be.
While temporarily storing and transmitting later has an advantage in terms of communication load as described above, by transmitting in real time, the memory unit 26 on the lens barrel 3 side can be reduced or transmitted later. There are also merits such as reduction of transmission time and metadata processing time. Therefore, it is also appropriate to let the user select according to the situation.
<7.第3の実施の形態>
 第3の実施の形態は、リアルタイム送信と、一時記憶後の送信を併用する例である。
 図13にレンズ制御部20の処理を示す。
<7. Third Embodiment>
The third embodiment is an example in which real-time transmission and transmission after temporary storage are used in combination.
FIG. 13 shows the processing of the lens control unit 20.
 ステップS201Aでレンズ制御部20は、メモリ部26に記憶したレンズ側ブレ補正値の一括送信タイミングであるか否かを判定する。
 送信タイミングでなければ、レンズ制御部20はステップS202に進み、手ブレ補正レンズ機構10cにおける補正実行値としてのレンズ側ブレ補正値を検出する。
In step S201A, the lens control unit 20 determines whether or not it is the batch transmission timing of the lens-side image stabilization values stored in the memory unit 26.
If it is not the transmission timing, the lens control unit 20 proceeds to step S202 and detects a lens-side image stabilization value as a correction execution value in the camera shake correction lens mechanism 10c.
 ステップS230でレンズ制御部20は、現在、送信余裕のある状況か否かを判定する。例えば現在の通信速度、送信すべきデータ量等の状況から、送信余裕の有無を判定する。
 送信余裕があれば、レンズ制御部20はステップS231に進み、今回検出したレンズ側ブレ補正値を、タイムスタンプと共にカメラ制御部18に送信する。
 一方、送信余裕がなければ、ステップS232で、今回検出したレンズ側ブレ補正値を、現在時刻(現在のフレームに対応する時刻)を示すタイムスタンプと関連づけてメモリ部26に記憶する。
In step S230, the lens control unit 20 determines whether or not there is a transmission margin at present. For example, it is determined whether or not there is a transmission margin based on the current communication speed, the amount of data to be transmitted, and the like.
If there is a transmission margin, the lens control unit 20 proceeds to step S231 and transmits the lens-side image stabilization value detected this time to the camera control unit 18 together with the time stamp.
On the other hand, if there is no transmission margin, in step S232, the lens-side image stabilization value detected this time is stored in the memory unit 26 in association with a time stamp indicating the current time (time corresponding to the current frame).
 ステップS201で送信タイミングとなったときは、レンズ制御部20はステップS204に進み、メモリ部26に記録されているレンズ側ブレ補正値をタイムスタンプと共にカメラ制御部18に送信する処理を行う。 When the transmission timing is reached in step S201, the lens control unit 20 proceeds to step S204 and performs a process of transmitting the lens-side image stabilization value recorded in the memory unit 26 to the camera control unit 18 together with the time stamp.
 この図13の処理により、レンズ側ブレ補正値について、リアルタイム送信と、一時記憶した後の一括送信が併用される。いずれもタイムスタンプとペアにされることで、制御部40側では、適切に動画のフレームと対応づけてメタデータ化することができる。
 リアルタイム送信を併用することで、メモリ部26の容量も少なくてすむという利点もある。
By the process of FIG. 13, real-time transmission and batch transmission after temporary storage are used together for the lens-side image stabilization value. By pairing both with the time stamp, the control unit 40 can appropriately associate it with the frame of the moving image and convert it into metadata.
By using the real-time transmission together, there is an advantage that the capacity of the memory unit 26 can be reduced.
<8.第4の実施の形態>
 第4の実施の形態として、制御部40がレンズ側ブレ補正値の補間を行う例を述べる。
 レンズ制御部20からカメラ制御部18に送信したレンズ側ブレ補正値は、サンプリングレートが遅く、動画と結びつける際に、時系列上欠落している場合もある。つまり全てのフレームに対応づけられなくなることも想定される。そこで、補間処理によりレンズ側ブレ補正値を生成する。
<8. Fourth Embodiment>
As a fourth embodiment, an example in which the control unit 40 interpolates the lens-side image stabilization value will be described.
The lens-side image stabilization value transmitted from the lens control unit 20 to the camera control unit 18 has a slow sampling rate, and may be missing in time series when it is linked to a moving image. In other words, it is expected that all frames will not be supported. Therefore, the lens-side image stabilization value is generated by interpolation processing.
 図14に制御部40の処理例を示す。制御部40は動画記録中、又は動画記録終了後に、動画の各フレームを対象として図14の処理を行う。
 ステップS130で制御部40は、現在対象としているフレームに対応するレンズ側ブレ補正値が受信されているか否かを判定する。
 もし対応するレンズ側ブレ補正値が存在しなければ、ステップS131に進んで、補間処理により対象フレームに対応するレンズ側ブレ補正値を生成する。例えば前後のフレームにおけるレンズ側ブレ補正値を用いた直線補間処理などで補間を行う。
FIG. 14 shows a processing example of the control unit 40. The control unit 40 performs the processing of FIG. 14 for each frame of the moving image during the moving image recording or after the moving image recording is completed.
In step S130, the control unit 40 determines whether or not the lens-side image stabilization value corresponding to the currently targeted frame has been received.
If the corresponding lens-side image stabilization value does not exist, the process proceeds to step S131, and the lens-side image stabilization value corresponding to the target frame is generated by interpolation processing. For example, interpolation is performed by linear interpolation processing using the lens-side image stabilization value in the front and rear frames.
 ステップS121では、受信したレンズ側ブレ補正値、もしくは補間処理で生成したレンズ側ブレ補正値を、メタデータとする処理を行う。 In step S121, the received lens-side image stabilization value or the lens-side image stabilization value generated by the interpolation processing is used as metadata.
 このようにすることで、サンプリングレートを低くした場合も、各フレームに対応するレンズ側ブレ補正値をメタデータとして残すことができる。
 また、特に手ブレ補正レンズ機構10cが低周波成分の手ブレ補正を行うもので、細かい位置変化が少ないことで、直線補間等によって得たレンズ側ブレ補正値も比較的精度の高いものとなり、これを用いて画像処理装置5でも適切な揺れ変更を実現できる。
By doing so, even when the sampling rate is lowered, the lens-side image stabilization value corresponding to each frame can be left as metadata.
In particular, the camera shake correction lens mechanism 10c corrects camera shake of low-frequency components, and since there are few small changes in position, the lens-side image stabilization value obtained by linear interpolation or the like is also relatively accurate. Using this, the image processing device 5 can also realize an appropriate shake change.
<9.第5の実施の形態>
 第5の実施の形態は、ボディ側ブレ補正値とレンズ側ブレ補正値の両方をメタデータとして記録する場合において、レンズ側ブレ補正値の信頼性を示すことができるようにするものである。
 ここまで述べてきたように、制御部40は、レンズ側ブレ補正値については、レンズ制御部20からの通知を待機する必要がある。
<9. Fifth Embodiment>
The fifth embodiment makes it possible to show the reliability of the lens-side image stabilization value when both the body-side image stabilization value and the lens-side image stabilization value are recorded as metadata.
As described above, the control unit 40 needs to wait for the notification from the lens control unit 20 regarding the lens-side image stabilization value.
 なお、第5の実施の形態でも、上述した第1から第4の実施の形態と同様に、レンズ鏡筒3の手ブレ補正レンズ機構10cの補正量もカメラ制御部18側で設定して補正指示値をレンズ制御部20に送信するものとしてもよいが、レンズ鏡筒3側ではレンズ制御部20が手ブレ補正レンズ機構10cの補正量を設定するようにしてもよい。
 即ちカメラ制御部18はブレ検出部34の検出値に応じて、撮像面手ブレ補正ユニット30の補正量を設定してカメラボディ2側の光学手ブレ補正を実行し、レンズ制御部20はブレ検出部25の検出値に応じて、手ブレ補正レンズ機構10cの補正量を設定してレンズ鏡筒3側の光学手ブレ補正を実行するような例である。
Also in the fifth embodiment, the correction amount of the camera shake correction lens mechanism 10c of the lens barrel 3 is also set and corrected on the camera control unit 18 side as in the first to fourth embodiments described above. The indicated value may be transmitted to the lens control unit 20, but on the lens barrel 3 side, the lens control unit 20 may set the correction amount of the camera shake correction lens mechanism 10c.
That is, the camera control unit 18 sets the correction amount of the image stabilization unit 30 according to the detection value of the blur detection unit 34, executes the optical camera shake correction on the camera body 2 side, and the lens control unit 20 performs the blur correction. This is an example in which the correction amount of the camera shake correction lens mechanism 10c is set according to the detection value of the detection unit 25, and the optical camera shake correction on the lens barrel 3 side is executed.
 いずれにしても制御部40は、ボディ側ブレ補正値と、レンズ制御部20から送信されてくるレンズ側ブレ補正値を、メタデータとする。
 この場合に、制御部40では、図15Aのような処理を行い、また画像処理装置5において図15Bのような処理が行われるようにする。
In any case, the control unit 40 uses the body-side image stabilization value and the lens-side image stabilization value transmitted from the lens control unit 20 as metadata.
In this case, the control unit 40 performs the processing as shown in FIG. 15A, and the image processing apparatus 5 performs the processing as shown in FIG. 15B.
 図15Aは制御部40が、通信速度の情報(例えばbps)をメタデータとして記録する処理を行う例である。
 ステップS401で制御部40は、レンズ-ボディ間通信の通信速度、つまりレンズ制御部20とカメラ制御部18の間の通信速度情報を検出し、保持する。
 ステップS402で制御部40は、画像データとともに通信速度の情報をメタデータに記録する(図5Bの破線部参照)。
FIG. 15A is an example in which the control unit 40 performs a process of recording communication speed information (for example, bps) as metadata.
In step S401, the control unit 40 detects and holds the communication speed of the lens-body communication, that is, the communication speed information between the lens control unit 20 and the camera control unit 18.
In step S402, the control unit 40 records the communication speed information in the metadata together with the image data (see the broken line portion in FIG. 5B).
 なお、通信速度の変動の要因が、レンズ鏡筒3の種別によることが支配的であれば、例えば通信速度は1つの動画について1回記録しておけばよい。
 もし、動画記録中に通信速度が変動する要因があるのであれば、各フレームに関連づけて通信速度をメタデータとして記録することが考えられる。
If the cause of the fluctuation of the communication speed is dominated by the type of the lens barrel 3, for example, the communication speed may be recorded once for one moving image.
If there is a factor that causes the communication speed to fluctuate during video recording, it is conceivable to record the communication speed as metadata in association with each frame.
 画像ファイルMFを処理する画像処理装置5では、図15Bの処理を行う。
 画像処理装置5はステップS501で画像ファイルMFとしての画像データVD1及びメタデータMTD1を取得する。例えば記録媒体から画像ファイルMFを読み出す。あるいは撮像装置1から送信された画像ファイルMFを受信する。
The image processing apparatus 5 that processes the image file MF performs the processing of FIG. 15B.
The image processing apparatus 5 acquires the image data VD1 and the metadata MTD1 as the image file MF in step S501. For example, the image file MF is read from the recording medium. Alternatively, the image file MF transmitted from the image pickup apparatus 1 is received.
 ステップS502で画像処理装置5は、メタデータMTD1に含まれる通信速度の情報を抽出し、閾値と比較する。この閾値は、レンズ制御部20とカメラ制御部18の間の通信速度が、速い状態であったか遅い状態であったかを判定する閾値である。換言すれば、この閾値は、メタデータMTD1に含まれているレンズ側ブレ補正値が、揺れ変更処理への使用に適しているか否かを判定するための閾値である。 In step S502, the image processing device 5 extracts the communication speed information included in the metadata MTD1 and compares it with the threshold value. This threshold value is a threshold value for determining whether the communication speed between the lens control unit 20 and the camera control unit 18 is in a fast state or a slow state. In other words, this threshold value is a threshold value for determining whether or not the lens-side image stabilization value included in the metadata MTD1 is suitable for use in the shake change processing.
 通信速度が閾値より大きければ、画像処理装置5は、当該画像ファイルMFの撮像装置1における撮像時に、レンズ制御部20とカメラ制御部18の間で高速な通信が行われており、レンズ側ブレ補正値の信頼性が維持されているとして、ステップS503に進み、対応可能フラグを生成する。
 その場合は、画像処理装置5はステップS505で対応可能フラグに基づいて処理設定を行う。具体的には、ボディ側ブレ補正値とレンズ側ブレ補正値の両方を用いた揺れ変更処理を行うことができる設定とする。
If the communication speed is higher than the threshold value, the image processing device 5 performs high-speed communication between the lens control unit 20 and the camera control unit 18 at the time of image pickup in the image pickup device 1 of the image file MF, and the lens side blurring occurs. Assuming that the reliability of the correction value is maintained, the process proceeds to step S503 to generate a supportable flag.
In that case, the image processing apparatus 5 sets the processing based on the available flag in step S505. Specifically, the setting is such that the shake change processing can be performed using both the body-side image stabilization value and the lens-side image stabilization value.
 一方、通信速度が閾値より大きくなければ、画像処理装置5は、当該画像ファイルMFの撮像装置1における撮像時に、レンズ制御部20とカメラ制御部18の間の通信が低速であって、レンズ側ブレ補正値の信頼性が維持されていないとして、ステップS504に進み、対応不可フラグを生成する。
 その場合は、画像処理装置5はステップS505で対応不可フラグに基づいて処理設定を行う。例えばレンズ側ブレ補正値については揺れ変更処理に用いることができない設定とする。
On the other hand, if the communication speed is not higher than the threshold value, the image processing device 5 has a low communication speed between the lens control unit 20 and the camera control unit 18 at the time of imaging in the image pickup device 1 of the image file MF, and the lens side. Assuming that the reliability of the blur correction value is not maintained, the process proceeds to step S504 to generate a non-correspondence flag.
In that case, the image processing apparatus 5 sets the processing based on the incompatibility flag in step S505. For example, the lens-side image stabilization value is set so that it cannot be used for the image stabilization process.
 このようにすることで、画像処理装置5において、不適切なレンズ側ブレ補正値を用いた揺れ変更処理が行われないようにすることができる。
By doing so, it is possible to prevent the image processing apparatus 5 from performing the shake change processing using an inappropriate lens-side image stabilization value.
<10.第6の実施の形態>
 第6の実施の形態の制御部40の処理例を図16Aに、また画像処理装置5の処理例を図16Bに示す。これは上記図15A、図15Bと同じ目的の他の処理例である。
<10. 6th Embodiment>
A processing example of the control unit 40 of the sixth embodiment is shown in FIG. 16A, and a processing example of the image processing apparatus 5 is shown in FIG. 16B. This is another processing example having the same purpose as in FIGS. 15A and 15B.
 図16Aは制御部40が、通信速度の情報としてフラグ情報を記録する処理を行う例である。
 ステップS401で制御部40は、レンズ鏡筒3とカメラボディ2の間、つまりレンズ制御部20とカメラ制御部18の間の通信速度(bps)を検出し、保持する。
FIG. 16A is an example in which the control unit 40 performs a process of recording flag information as communication speed information.
In step S401, the control unit 40 detects and holds the communication speed (bps) between the lens barrel 3 and the camera body 2, that is, between the lens control unit 20 and the camera control unit 18.
 ステップS410で制御部40は、通信速度を閾値と比較する。この閾値は、図15Bで述べた閾値と同様で、レンズ制御部20とカメラ制御部18の間の通信速度が、速い状態であったか遅い状態であったかを判定する閾値である。 In step S410, the control unit 40 compares the communication speed with the threshold value. This threshold value is the same as the threshold value described in FIG. 15B, and is a threshold value for determining whether the communication speed between the lens control unit 20 and the camera control unit 18 is in a fast state or a slow state.
 通信速度が閾値より大きければ、制御部40はステップS412に進み、対応可能フラグを生成する。
 通信速度が閾値より大きくなければ、制御部40はステップS413に進み、対応不可フラグを生成する。
 そしてステップS414で制御部40は、画像データとともに通信速度の情報をメタデータに記録する(図5Bの破線部参照)。この場合は対応可能フラグ又は対応不可フラグを通信速度の情報として記録することになる。
If the communication speed is higher than the threshold value, the control unit 40 proceeds to step S412 and generates a supportable flag.
If the communication speed is not higher than the threshold value, the control unit 40 proceeds to step S413 and generates a non-correspondence flag.
Then, in step S414, the control unit 40 records the communication speed information in the metadata together with the image data (see the broken line portion in FIG. 5B). In this case, the supportable flag or the non-supportable flag is recorded as communication speed information.
 画像ファイルMFを処理する画像処理装置5では、図16Bの処理を行う。
 画像処理装置5はステップS501で画像ファイルMFとしての画像データVD1及びメタデータMTD1を取得する。
The image processing apparatus 5 that processes the image file MF performs the processing of FIG. 16B.
The image processing apparatus 5 acquires the image data VD1 and the metadata MTD1 as the image file MF in step S501.
 ステップS510で画像処理装置5は、メタデータMTD1に記録された対応可能フラグ又は対応不可フラグに基づいて処理設定を行う。即ち対応可能フラグが確認できれば、今回の画像ファイルMFについては、ボディ側ブレ補正値とレンズ側ブレ補正値の両方を用いた揺れ変更処理を行うことができる設定とする。
 一方、対応不可フラグが確認されたら、今回の画像ファイルMFについては、レンズ側ブレ補正値は揺れ変更処理に用いることができない設定とする。
In step S510, the image processing apparatus 5 sets the processing based on the available flag or the incompatible flag recorded in the metadata MTD1. That is, if the available flag can be confirmed, the image file MF this time is set so that the shake change processing using both the body side image stabilization value and the lens side image stabilization value can be performed.
On the other hand, if the incompatible flag is confirmed, the lens-side image stabilization value is set so that it cannot be used for the shake change processing for the image file MF this time.
 このようにすることでも、画像処理装置5において、不適切なレンズ側ブレ補正値を用いた揺れ変更処理が行われないようにすることができる。
 メタデータMTD1に含める速度情報としては、例えば1ビットのフラグ情報でもよいため、メタデータMTD1のデータ量削減にも有利となる。
 例えばメタデータMTD1における、ある特定のビットについて、例えば「0」を対応可能フラグ、「1」を対応不可フラグとすればよい。
By doing so, it is possible to prevent the image processing apparatus 5 from performing the shake change processing using an inappropriate lens-side image stabilization value.
As the speed information included in the metadata MTD1, for example, 1-bit flag information may be used, which is advantageous for reducing the amount of data in the metadata MTD1.
For example, for a specific bit in the metadata MTD1, for example, "0" may be a supportable flag and "1" may be a non-correspondence flag.
<11.まとめ及び変形例>
 以上の実施の形態によれば次のような効果が得られる。
  第1から第6の実施の形態で述べたように、撮像装置1は、制御部40において、カメラボディ2の撮像面手ブレ補正ユニット30(第1のブレ補正機能)によるボディ側ブレ補正値(第1のブレ補正値)と、レンズ鏡筒3における手ブレ補正レンズ機構10c(第2のブレ補正機能)によるレンズ側ブレ補正値(第2のブレ補正値)を含む補正情報を生成し、該補正情報を撮像画像に関連付けられるメタデータとする処理を行う。
 これにより、後の時点で例えば画像処理装置5などにおいて、画像の揺れの状態を変更することができる。例えば手ブレ補正レンズ機構10cによるブレ補正と、撮像面手ブレ補正ユニット30によるブレ補正の両方をキャンセルしたり、いずれか一方のみのブレ補正をキャンセルしたりすることができるようになる。また撮像装置1で行ったブレ補正をキャンセルした場合は、画像処理装置5においてより精密な揺れ補正を行ったり、敢えて揺れを付加するような揺れ演出を行ったりすることができる。
 なお、実施の形態では、撮像面手ブレ補正ユニット30と手ブレ補正レンズ機構10cによるメカニカルなブレ防止機能に注目して説明したが、本開示の技術を電子手ブレ補正機能を採用する場合に適用することもできる。例えばレンズ鏡筒3側で手ブレ補正レンズ機構10cによるブレ補正が行われ、カメラボディ2側で電子手ブレ補正を行うような場合、その電子手ブレ補正機能を第1のブレ補正機能、手ブレ補正レンズ機構10cを第2のブレ補正機能と考えればよい。
<11. Summary and modification>
According to the above embodiment, the following effects can be obtained.
As described in the first to sixth embodiments, in the control unit 40, in the control unit 40, the body-side image stabilization value by the image stabilization unit 30 (first image stabilization function) of the image pickup surface of the camera body 2. Generates correction information including (first image stabilization value) and lens-side image stabilization value (second image stabilization value) by the camera shake correction lens mechanism 10c (second image stabilization function) in the lens barrel 3. , Performs processing to convert the correction information into metadata associated with the captured image.
This makes it possible to change the state of image shake at a later point in time, for example, in the image processing device 5. For example, both the image stabilization by the image stabilization lens mechanism 10c and the image stabilization by the image stabilization unit 30 can be canceled, or the image stabilization of only one of them can be canceled. Further, when the blur correction performed by the image pickup device 1 is canceled, the image processing device 5 can perform more precise shake correction or perform a shake effect that intentionally adds shake.
In the embodiment, the mechanical image stabilization function by the image pickup surface image stabilization unit 30 and the image stabilization lens mechanism 10c has been focused on, but the technique of the present disclosure is used when the electronic image stabilization function is adopted. It can also be applied. For example, when image stabilization is performed by the image stabilization lens mechanism 10c on the lens barrel 3 side and electronic image stabilization is performed on the camera body 2 side, the electronic image stabilization function is used as the first image stabilization function, the hand. The image stabilization lens mechanism 10c may be considered as the second image stabilization function.
 実施の形態では、制御部40は、レンズ鏡筒3側から受信したレンズ側ブレ補正値を補正情報としている。
 これによりカメラ制御部18は、レンズ鏡筒3の手ブレ補正レンズ機構10cによるレンズ側ブレ補正値を取得し、メタデータとして記録することができる。特にレンズ側ブレ補正値が補正実行値であることで、精度の高い補正情報をメタデータとして記録することができる。
In the embodiment, the control unit 40 uses the lens-side image stabilization value received from the lens barrel 3 side as the correction information.
As a result, the camera control unit 18 can acquire the image stabilization value on the lens side by the camera shake correction lens mechanism 10c of the lens barrel 3 and record it as metadata. In particular, since the lens-side image stabilization value is the correction execution value, highly accurate correction information can be recorded as metadata.
 実施の形態では、撮像面手ブレ補正ユニット30により高周波成分のブレ補正が行われ、手ブレ補正レンズ機構10cにより低周波成分のブレ補正が行われる例を述べた。
 カメラ制御部18は、レンズ側ブレ補正値についてはレンズ制御部20との間の通信で受信し、そのレンズ側ブレ補正値をメタデータとして記録する。この場合に、レンズ側で低周波成分を補正することで、短時間当たりに動くレンズの動きの変化が高周波成分を補正する場合に比べて小さくなり、精度が維持できるサンプリングレートを下げることができる。
 またこれにより、特に、カメラ制御部18がレンズ制御部20との通信でレンズ側ブレ補正値を受信してメタデータとする場合に、カメラ制御部18とレンズ制御部20の間の通信量を低減できることや、通信が低速度の場合にも情報精度を低下させないという利点が得られる。
In the embodiment, an example is described in which the image stabilization unit 30 performs image stabilization for high-frequency components, and the image stabilization lens mechanism 10c performs image stabilization for low-frequency components.
The camera control unit 18 receives the lens-side image stabilization value by communication with the lens control unit 20, and records the lens-side image stabilization value as metadata. In this case, by correcting the low frequency component on the lens side, the change in the movement of the lens that moves in a short time becomes smaller than when the high frequency component is corrected, and the sampling rate at which accuracy can be maintained can be lowered. ..
Further, in particular, when the camera control unit 18 receives the lens-side image stabilization value in communication with the lens control unit 20 and uses it as metadata, the amount of communication between the camera control unit 18 and the lens control unit 20 is reduced. There are advantages that it can be reduced and that the information accuracy is not reduced even when the communication speed is low.
 実施の形態では、レンズ鏡筒3はカメラボディ2に対して着脱可能とされる構成であり、制御部40は、装着されたレンズ鏡筒3との間の通信速度の判定に基づいて、撮像面手ブレ補正ユニット30により高周波成分のブレ補正が行われ、手ブレ補正レンズ機構10cにより低周波成分のブレ補正が行われるように制御する例を述べた。
 即ちカメラ制御部18は、図7のステップS7の際に、装着されているレンズ鏡筒3について、その種別、或いは通信試行などにより、通信速度を判定して、周波数成分でのブレ補正の振り分けを行うか否かを設定することができる。
 これにより、通信速度が遅いレンズ鏡筒3が装着されているときに、レンズ鏡筒3側で低周波成分のブレ補正をおこなわせるようにすることができる。
 なお、通信速度が十分に早いレンズ鏡筒3が装着されている場合は、このようなブレ補正の振り分けを行わないことで、振り分けのための図8のステップS102の成分抽出などが不要となる。
 但し、通信速度が速いレンズ鏡筒3の場合でも、周波数成分による振り分けを行ってもよく、その場合は通信量を下げるという効果を得ることができる。
In the embodiment, the lens barrel 3 is detachable from the camera body 2, and the control unit 40 takes an image based on the determination of the communication speed with the mounted lens barrel 3. An example has been described in which the face camera shake correction unit 30 performs blur correction of high frequency components, and the camera shake correction lens mechanism 10c controls blur correction of low frequency components.
That is, the camera control unit 18 determines the communication speed of the mounted lens barrel 3 according to the type, communication trial, etc. at the time of step S7 in FIG. 7, and distributes the blur correction according to the frequency component. Can be set whether or not to perform.
As a result, when the lens barrel 3 having a slow communication speed is attached, it is possible to perform blur correction of low frequency components on the lens barrel 3 side.
When the lens barrel 3 having a sufficiently high communication speed is attached, by not performing such image stabilization distribution, it is not necessary to extract the components in step S102 of FIG. 8 for distribution. ..
However, even in the case of the lens barrel 3 having a high communication speed, sorting may be performed according to the frequency component, and in that case, the effect of reducing the communication amount can be obtained.
 第2,第3の実施の形態では、レンズ鏡筒3側で、各サンプルタイミングにおけるレンズ側ブレ補正値をタイムスタンプ(時刻情報)とともにメモリ部26に記憶し、所定時点で、メモリ部26に記憶したレンズ側ブレ補正値とタイムスタンプをカメラ制御部18に送信する処理を行う例を挙げた。この場合、制御部40は、レンズ鏡筒3から受信したレンズ側ブレ補正値をタイムスタンプに基づいて、動画のフレームに対応するメタデータとする処理を行う。タイムスタンプは絶対時刻でもよいが、例えば動画の記録開始時からの経過時間とすればよい。いずれにしても動画のフレームと対応づけられる時刻情報であればよい。
 このようにすることで、レンズ制御部20とカメラ制御部18の間の通信速度にかかわらず、カメラ制御部18は、各フレームに対応する時点のレンズ側ブレ補正値を取得することができる。従って、通信速度にかかわらず、精度のよいブレ補正値をメタデータとして記録できる。また動画記録時の通信処理負担を下げることもできる。
 また手ブレ補正レンズ機構10cが低周波のブレ補正を受け持つことで、レンズ側ブレ補正値のサンプリングレートを下げることができ、これはメモリ部26に記憶するレンズ側ブレ補正値のデータ量も少なくできることにつながる。このためメモリ部26としての容量も過大にならない。またメモリ部26に記憶したレンズ側ブレ補正値をカメラ制御部18に一括送信する場合の送信データ量も過大にならないようにできる。
In the second and third embodiments, on the lens barrel 3 side, the lens side image stabilization value at each sample timing is stored in the memory unit 26 together with the time stamp (time information), and at a predetermined time point, the memory unit 26 stores the image stabilization value. An example of performing a process of transmitting the stored lens-side image stabilization value and the time stamp to the camera control unit 18 has been given. In this case, the control unit 40 performs a process of converting the lens-side image stabilization value received from the lens barrel 3 into metadata corresponding to the frame of the moving image based on the time stamp. The time stamp may be an absolute time, but for example, it may be the elapsed time from the start of recording the moving image. In any case, any time information that can be associated with the frame of the moving image is sufficient.
By doing so, the camera control unit 18 can acquire the lens side image stabilization value at the time corresponding to each frame regardless of the communication speed between the lens control unit 20 and the camera control unit 18. Therefore, it is possible to record an accurate image stabilization value as metadata regardless of the communication speed. It is also possible to reduce the communication processing load when recording a moving image.
Further, since the camera shake correction lens mechanism 10c is in charge of low frequency shake correction, the sampling rate of the lens side shake correction value can be lowered, which means that the amount of data of the lens side shake correction value stored in the memory unit 26 is small. It leads to what you can do. Therefore, the capacity of the memory unit 26 does not become excessive. Further, the amount of transmission data when the lens-side image stabilization value stored in the memory unit 26 is collectively transmitted to the camera control unit 18 can be prevented from becoming excessive.
 第4の実施の形態では、制御部40は、レンズ鏡筒3から受信したレンズ側ブレ補正値と、該受信したレンズ側ブレ補正値を用いた補間処理で生成したレンズ側ブレ補正値を、補正情報とする例を説明した。
 これによりレンズ側ブレ補正値のサンプリングレート等に限らず、例えば動画の各フレームに対応するレンズ側ブレ補正値を得、メタデータとして記録することができる。
In the fourth embodiment, the control unit 40 uses the lens-side image stabilization value received from the lens barrel 3 and the lens-side image stabilization value generated by interpolation processing using the received lens-side image stabilization value. An example of using correction information has been described.
As a result, not only the sampling rate of the lens-side image stabilization value but also the lens-side image stabilization value corresponding to each frame of the moving image can be obtained and recorded as metadata.
 実施の形態では、制御部40は、レンズ鏡筒3側に担当させる低周波成分の周波数範囲をレンズ鏡筒側との間の通信速度に基づいて設定する例を述べた。
 カメラ制御部18とレンズ制御部20の間の通信速度が遅いときほど、レンズ鏡筒3側では、より低周波のブレ補正を受け持たせた方が有利となる。そこで、通信速度に応じて、手ブレ補正レンズ機構10cによるブレ補正を実行させる揺れの低周波数範囲を決めるようにする。これにより、通信速度が遅い場合にでも、メタデータとするレンズ側ブレ補正値の精度を確保しやすくできる。
In the embodiment, the control unit 40 has described an example in which the frequency range of the low frequency component assigned to the lens barrel 3 side is set based on the communication speed with the lens barrel side.
When the communication speed between the camera control unit 18 and the lens control unit 20 is slower, it is more advantageous for the lens barrel 3 side to take charge of lower frequency image stabilization. Therefore, the low frequency range of the shake to be executed by the camera shake correction lens mechanism 10c is determined according to the communication speed. As a result, even when the communication speed is slow, it is possible to easily secure the accuracy of the lens-side image stabilization value as the metadata.
  実施の形態では、制御部40は、レンズ鏡筒3側に担当させる低周波成分の周波数範囲をメモリ部26の記憶容量に基づいて設定する例を述べた。
 レンズ鏡筒3側でレンズ制御部20が、メモリ部26にレンズ側ブレ補正値を記憶していき、所定時点でカメラ制御部18に送信する場合、低周波数のブレ補正を行ってサンプリングレートを下げるほど、メモリ部26に蓄積できるレンズ側ブレ補正値の量が多くなる。そこでメモリ部26の記憶容量に基づいて、手ブレ補正レンズ機構10cによるブレ補正を実行させる揺れの低周波数範囲を決めるようにする。これにより、メモリ部26に蓄積するデータ量の削減や通信機会を少なくすることができる。また動画終了時の一括送信などでも送信するデータ量を削減できるなどの効果を得ることができる。
In the embodiment, the control unit 40 has described an example in which the frequency range of the low frequency component assigned to the lens barrel 3 side is set based on the storage capacity of the memory unit 26.
When the lens control unit 20 stores the lens-side image stabilization value in the memory unit 26 on the lens barrel 3 side and transmits it to the camera control unit 18 at a predetermined time point, low-frequency image stabilization is performed to determine the sampling rate. The lower the value, the larger the amount of lens-side image stabilization value that can be stored in the memory unit 26. Therefore, based on the storage capacity of the memory unit 26, the low frequency range of the shaking to be executed by the image stabilization lens mechanism 10c is determined. As a result, the amount of data stored in the memory unit 26 can be reduced and communication opportunities can be reduced. In addition, it is possible to obtain an effect such as reducing the amount of data to be transmitted even in a batch transmission at the end of a moving image.
 第5、第6の実施の形態で述べた例では、制御部40は、レンズ鏡筒3(レンズ制御部20)とカメラボディ2(カメラ制御部18)の間の通信速度情報をメタデータとして記録媒体に記録させる処理を行うとした。
 これによりレンズ側ブレ補正値の情報が、通信速度の影響を受けているものであるか否かを、メタデータから確認できるものとなる。例えば通信速度が低く、レンズ側ブレ補正値が十分でない場合は、それを用いた補正キャンセル等を行わないといったことも可能となる。
In the example described in the fifth and sixth embodiments, the control unit 40 uses the communication speed information between the lens barrel 3 (lens control unit 20) and the camera body 2 (camera control unit 18) as metadata. It was decided to perform a process of recording on a recording medium.
As a result, it is possible to confirm from the metadata whether or not the information of the lens-side image stabilization value is affected by the communication speed. For example, if the communication speed is low and the lens-side image stabilization value is not sufficient, it is possible not to cancel the correction using it.
 第5の実施の形態では、通信速度情報は、通信速度(例えばbps)を示す値であるとした。これによりレンズ側ブレ補正値の情報が、遅れた情報であるのか否か、或いは遅れの程度などを、メタデータから確認できる。 In the fifth embodiment, the communication speed information is a value indicating the communication speed (for example, bps). This makes it possible to confirm from the metadata whether or not the information on the lens-side image stabilization value is delayed information, or the degree of delay.
 第6の実施の形態では、通信速度情報は、通信速度を所定値と比較した結果情報(対応可能フラグ/対応不可フラグ)であるとした。
 これによりレンズ側ブレ補正値の情報が、遅れた情報であるのか否かを、メタデータから容易に確認できる。
In the sixth embodiment, the communication speed information is the result information (possible flag / non-correspondence flag) in which the communication speed is compared with a predetermined value.
This makes it possible to easily confirm from the metadata whether or not the information on the lens-side image stabilization value is delayed information.
 実施の形態におけるレンズ鏡筒3は、ブレ補正レンズを変位させる手ブレ補正レンズ機構10cと、メモリ部26と、レンズ制御部20を備える。そして第2,第3の実施の形態では、レンズ制御部20は、各サンプルタイミングでレンズ側ブレ補正値を検出する処理と、検出したレンズ側ブレ補正値をタイムスタンプとともにメモリ部26に記憶する処理と、所定時点で、メモリ部26に記憶したレンズ側ブレ補正値とタイムスタンプを、装着先であるカメラボディ2のカメラ制御部18に送信する処理を行う例を挙げた。
 これにより、レンズ制御部20とカメラ制御部18の通信速度にかかわらず、フレームの時刻に対応するレンズ側ブレ補正値を、適切にカメラ制御部18が取得できるようにすることができる。従ってメタデータMTD1における補正情報の精度を向上させることができる。
The lens barrel 3 in the embodiment includes a camera shake correction lens mechanism 10c that displaces the shake correction lens, a memory unit 26, and a lens control unit 20. Then, in the second and third embodiments, the lens control unit 20 stores the process of detecting the lens-side image stabilization value at each sample timing and the detected lens-side image stabilization value in the memory unit 26 together with the time stamp. An example of processing and processing of transmitting the lens-side image stabilization value and the time stamp stored in the memory unit 26 to the camera control unit 18 of the camera body 2 to be mounted at a predetermined time point has been given.
As a result, the camera control unit 18 can appropriately acquire the lens-side image stabilization value corresponding to the time of the frame regardless of the communication speed between the lens control unit 20 and the camera control unit 18. Therefore, the accuracy of the correction information in the metadata MTD1 can be improved.
 第2,第3の実施の形態では、レンズ制御部20は、メモリ部26に記憶したレンズ側ブレ補正値とタイムスタンプを、動画撮像期間において間欠的なタイミングで送信する処理を行う例を挙げた。
 レンズ制御部20は、動画記録中に、メモリ部26の容量などの事情に応じて、レンズ側ブレ補正値をカメラ制御部18に送信できる。例えば定期的な送信でもよいし、メモリ部26に保存したデータ量が所定値に達する毎に送信するなどが考えられる。
In the second and third embodiments, the lens control unit 20 gives an example of performing a process of transmitting the lens-side image stabilization value and the time stamp stored in the memory unit 26 at intermittent timings during the moving image imaging period. rice field.
The lens control unit 20 can transmit the lens-side image stabilization value to the camera control unit 18 during video recording, depending on circumstances such as the capacity of the memory unit 26. For example, periodic transmission may be performed, or transmission may be considered every time the amount of data stored in the memory unit 26 reaches a predetermined value.
 第2,第3の実施の形態では、レンズ制御部20は、メモリ部26に記憶したレンズ側ブレ補正値とタイムスタンプを、動画撮像が終了した後の時点に送信する処理を行う例を挙げた。
 動画記録終了後として通信に余裕が生じたときに、レンズ側ブレ補正値をカメラ制御部18に送信できる。
 なおレンズ制御部20は、動画記録中の全てのレンズ側ブレ補正値を一括して、動画終了後にカメラ制御部18に送信してもよいし、動画記録中に、定期的あるいは不定期の送信を行いながら、動画記録終了後に、送っていない残りのレンズ側ブレ補正値をまとめて送信してもよい。いずれにしても、動画記録終了後の通信に余裕のある期間に送信するという利点が得られる。
In the second and third embodiments, the lens control unit 20 gives an example of performing a process of transmitting the lens-side image stabilization value and the time stamp stored in the memory unit 26 to a time point after the moving image imaging is completed. rice field.
The lens-side image stabilization value can be transmitted to the camera control unit 18 when there is a margin in communication after the video recording is completed.
The lens control unit 20 may collectively transmit all the lens-side image stabilization values during video recording to the camera control unit 18 after the video is finished, or may transmit periodically or irregularly during video recording. After the video recording is completed, the remaining lens-side image stabilization values that have not been sent may be collectively transmitted. In any case, there is an advantage that the video is transmitted during a period in which there is a margin for communication after the video recording is completed.
 第3の実施の形態では、レンズ制御部20は、各サンプルタイミングで検出されたブレ補正値について、カメラ本体部に送信するか、メモリ部26に記憶するかを選択し、前記記憶部に記憶させるとしたブレ補正値については、タイムスタンプとともにメモリ部26に記憶させ、所定時点でメモリ部26から読み出してタイムスタンプとともにカメラボディ2側に送信するものとした。
 即ち送信余裕があるときは送信し、遅れることが想定される場合などは記憶して後に送信することで、通信の遅れを解消するとともに、メモリ部26に要求される容量を過大にしないようにすることができる。
In the third embodiment, the lens control unit 20 selects whether to transmit the blur correction value detected at each sample timing to the camera main body unit or to store it in the memory unit 26, and stores it in the storage unit. The blur correction value to be set is stored in the memory unit 26 together with the time stamp, read from the memory unit 26 at a predetermined time, and transmitted to the camera body 2 side together with the time stamp.
That is, by transmitting when there is a margin for transmission, storing it when it is expected to be delayed, and transmitting it later, the delay in communication is eliminated and the capacity required for the memory unit 26 is not excessive. can do.
 実施の形態では、制御部40は、ブレ検出部34で検出された情報(IMUデータ)をメタデータとして記録する例を述べた。
 実際に撮像装置1に加わる揺れの情報として、IMUデータをメタデータとして記録しておくことで、実際の画像に影響した揺れをメタデータから判定できる。これにより多様な揺れ変更が可能となる。
In the embodiment, the control unit 40 describes an example of recording the information (IMU data) detected by the blur detection unit 34 as metadata.
By recording the IMU data as metadata as the information of the shaking actually applied to the image pickup apparatus 1, the shaking affecting the actual image can be determined from the metadata. This makes it possible to change the shaking in various ways.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお本技術は以下のような構成も採ることができる。
 (1)
 レンズを介して入射された光学像と出力撮像画像との位置関係を補正する第1のブレ補正機能に係る第1のブレ補正値と、前記レンズを備えるレンズ鏡筒に設けられた第2のブレ補正機能に係る第2のブレ補正値を含む補正情報を、撮像画像に関連付けられるメタデータとして生成する制御部を備えた
 撮像装置。
 (2)
 前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値を、前記補正情報とする
 上記(1)に記載の撮像装置。
 (3)
 前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われる
 上記(1)又は(2)に記載の撮像装置。
 (4)
 前記レンズ鏡筒はカメラ本体部に対して着脱可能とされる構成であり、
 前記制御部は、装着された前記レンズ鏡筒との間の通信速度の判定に基づいて、前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御する
 上記(1)から(3)のいずれかに記載の撮像装置。
 (5)
 前記レンズ鏡筒では、各サンプルタイミングにおける前記第2のブレ補正値を時刻情報とともに記憶部に記憶し、所定時点で、記憶部に記憶した前記第2のブレ補正値と前記時刻情報を前記制御部に送信する処理を行い、
 前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値を前記時刻情報に基づいて、動画のフレームに対応するメタデータとする処理を行う
 上記(1)から(3)に記載の撮像装置。
 (6)
 前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値と、該受信した第2のブレ補正値を用いた補間処理で生成した前記第2のブレ補正値を、前記補正情報とする
 上記(1)から(5)のいずれかに記載の撮像装置。
 (7)
 前記制御部は、
 前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御するとともに、
 低周波成分の周波数範囲を前記レンズ鏡筒側との間の通信速度に基づいて設定する
 上記(1)から(6)のいずれかに記載の撮像装置。
 (8)
 前記制御部は、
 前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御するとともに、
 低周波成分の周波数範囲を前記記憶部の記憶容量に基づいて設定する
 上記(5)に記載の撮像装置。
 (9)
 前記制御部は、
 前記レンズ鏡筒とカメラ本体部との間の通信速度情報をメタデータとして記録媒体に記録させる処理を行う
 上記(1)から(8)のいずれかに記載の撮像装置。
 (10)
 ブレ補正レンズを変位させるブレ補正機能と、
 記憶部と、
 各サンプルタイミングで前記ブレ補正機能に係るブレ補正値を検出する処理と、検出した前記ブレ補正値を時刻情報とともに前記記憶部に記憶する処理と、所定時点で、前記記憶部に記憶した前記ブレ補正値と前記時刻情報を、装着先であるカメラ本体部に送信する処理を行う制御部と、を備えた
 レンズ鏡筒装置。
 (11)
 前記制御部は、前記記憶部に記憶した前記ブレ補正値と時刻情報を、動画撮像期間において間欠的なタイミングで送信する処理を行う
 上記(10)に記載のレンズ鏡筒装置。
 (12)
 前記制御部は、前記記憶部に記憶した前記ブレ補正値と時刻情報を、動画撮像が終了した後の時点に送信する処理を行う
 上記(10)又は(11)に記載のレンズ鏡筒装置。
 (13)
 前記制御部は、
 各サンプルタイミングで検出されたブレ補正値について、前記カメラ本体部に送信するか、前記記憶部に記憶するかを選択し、
 前記記憶部に記憶させるとしたブレ補正値については、時刻情報とともに前記記憶部に記憶させ、所定時点で、前記記憶部から読み出して前記時刻情報とともに前記カメラ本体部に送信する処理を行う
 上記(10)から(12)のいずれかに記載のレンズ鏡筒装置。
 (14)
 レンズを介して入射された光学像と出力撮像画像との位置関係を補正する第1のブレ補正機能に係る第1のブレ補正値と、前記レンズを備えるレンズ鏡筒に設けられた第2のブレ補正機能に係る第2のブレ補正値を含む補正情報を、撮像画像に関連付けられるメタデータとして生成する処理を
 撮像装置が行う撮像方法。
 (15)
 ブレ補正レンズを変位させるブレ補正機能と、
 記憶部と、
 を備えたレンズ鏡筒装置における送信方法として、
 各サンプルタイミングで前記ブレ補正機能に係るブレ補正値を検出する処理と、
 検出した前記ブレ補正値を時刻情報とともに前記記憶部に記憶する処理と、
 所定時点で、前記記憶部に記憶した前記ブレ補正値と前記時刻情報を、装着先であるカメラ本体部に送信する処理と、
 を行う送信方法。
The present technology can also adopt the following configurations.
(1)
A first image stabilization value related to a first image stabilization function that corrects the positional relationship between an optical image incident through a lens and an output image image, and a second image stabilizer provided on a lens barrel provided with the lens. An image pickup device provided with a control unit that generates correction information including a second blur correction value related to the blur correction function as metadata associated with the captured image.
(2)
The image pickup apparatus according to (1) above, wherein the control unit uses the second blur correction value received from the lens barrel as the correction information.
(3)
The image pickup apparatus according to (1) or (2) above, wherein the first blur correction function performs blur correction of a high frequency component, and the second blur correction function performs blur correction of a low frequency component.
(4)
The lens barrel is configured to be removable from the camera body.
The control unit performs blur correction of high-frequency components by the first blur correction function based on the determination of the communication speed with the mounted lens barrel, and is low by the second blur correction function. The image pickup apparatus according to any one of (1) to (3) above, which controls to perform blur correction of frequency components.
(5)
In the lens barrel, the second blur correction value at each sample timing is stored in the storage unit together with the time information, and at a predetermined time point, the second blur correction value stored in the storage unit and the time information are controlled. Perform the process of sending to the department
Described in (1) to (3) above, the control unit performs a process of converting the second blur correction value received from the lens barrel into metadata corresponding to a frame of a moving image based on the time information. Imaging device.
(6)
The control unit uses the correction information of the second image stabilization value received from the lens barrel and the second image stabilization value generated by interpolation processing using the received second image stabilization value. The image pickup apparatus according to any one of (1) to (5) above.
(7)
The control unit
The first blur correction function controls the blur correction of the high frequency component, and the second blur correction function controls the blur correction of the low frequency component.
The image pickup apparatus according to any one of (1) to (6) above, wherein the frequency range of the low frequency component is set based on the communication speed with the lens barrel side.
(8)
The control unit
The first blur correction function controls the blur correction of the high frequency component, and the second blur correction function controls the blur correction of the low frequency component.
The image pickup apparatus according to (5) above, wherein the frequency range of a low frequency component is set based on the storage capacity of the storage unit.
(9)
The control unit
The image pickup apparatus according to any one of (1) to (8) above, which performs a process of recording the communication speed information between the lens barrel and the camera body as metadata on a recording medium.
(10)
The image stabilization function that displaces the image stabilization lens and
Memory and
A process of detecting a blur correction value related to the blur correction function at each sample timing, a process of storing the detected blur correction value in the storage unit together with time information, and a process of storing the detected blur in the storage unit at a predetermined time point. A lens barrel device including a control unit that performs a process of transmitting a correction value and the time information to a camera body unit to which the lens is mounted.
(11)
The lens barrel device according to (10) above, wherein the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit at intermittent timings during the moving image imaging period.
(12)
The lens barrel device according to (10) or (11) above, wherein the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit to a time point after the moving image imaging is completed.
(13)
The control unit
For the image stabilization value detected at each sample timing, select whether to send it to the camera body or store it in the storage unit.
The blur correction value stored in the storage unit is stored in the storage unit together with the time information, and at a predetermined time point, it is read from the storage unit and transmitted to the camera main body unit together with the time information. The lens barrel device according to any one of 10) to (12).
(14)
A first image stabilization value related to a first image stabilization function that corrects the positional relationship between an optical image incident through a lens and an output image image, and a second image stabilizer provided on a lens barrel provided with the lens. An imaging method in which an image pickup apparatus performs a process of generating correction information including a second image stabilization value related to an image stabilization function as metadata associated with an image image stabilization.
(15)
The image stabilization function that displaces the image stabilization lens and
Memory and
As a transmission method in a lens barrel device equipped with
The process of detecting the image stabilization value related to the image stabilization function at each sample timing,
A process of storing the detected image stabilization value in the storage unit together with time information,
A process of transmitting the image stabilization value and the time information stored in the storage unit to the camera body unit to which the camera is mounted at a predetermined time point.
How to send.
1 撮像装置
2 カメラボディ
3 レンズ鏡筒
5,6 画像処理装置
10 レンズ系
10a ズームレンズ
10b 絞り機構
10c 手ブレ補正レンズ機構
10d フォーカスレンズ
11 シャッター
12 撮像素子部
13 カメラ信号処理部
14 記録制御部
15 表示部
16 出力部
17 操作部
18 カメラ制御部
19 メモリ部
20 レンズ制御部
21 ズーム駆動部
22 絞り駆動部
23 補正レンズ駆動部
24 フォーカス駆動部
25 ブレ検出部
26 メモリ部
27 通信制御部
30 撮像面手ブレ補正ユニット
31 シャッター駆動部
32 補正ユニット駆動部
33 通信制御部
34 ブレ検出部
35 電子手ブレ補正制御部
36 ブレ補正メタデータ処理部
40 制御部
1 Image pickup device 2 Camera body 3 Lens lens barrel 5, 6 Image processing device 10 Lens system 10a Zoom lens 10b Aperture mechanism 10c Image stabilization lens mechanism 10d Focus lens 11 Shutter 12 Image pickup element unit 13 Camera signal processing unit 14 Recording control unit 15 Display unit 16 Output unit 17 Operation unit 18 Camera control unit 19 Memory unit 20 Lens control unit 21 Zoom drive unit 22 Aperture drive unit 23 Correction lens drive unit 24 Focus drive unit 25 Blur detection unit 26 Memory unit 27 Communication control unit 30 Imaging surface Camera shake correction unit 31 Shutter drive unit 32 Correction unit drive unit 33 Communication control unit 34 Shake detection unit 35 Electronic camera shake correction control unit 36 Shake correction metadata processing unit 40 Control unit

Claims (15)

  1.  レンズを介して入射された光学像と出力撮像画像との位置関係を補正する第1のブレ補正機能に係る第1のブレ補正値と、前記レンズを備えるレンズ鏡筒に設けられた第2のブレ補正機能に係る第2のブレ補正値を含む補正情報を、撮像画像に関連付けられるメタデータとして生成する制御部を備えた
     撮像装置。
    A first image stabilization value related to a first image stabilization function that corrects the positional relationship between an optical image incident through a lens and an output image image, and a second image stabilizer provided on a lens barrel provided with the lens. An image pickup device provided with a control unit that generates correction information including a second blur correction value related to the blur correction function as metadata associated with the captured image.
  2.  前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値を、前記補正情報とする
     請求項1に記載の撮像装置。
    The image pickup apparatus according to claim 1, wherein the control unit uses the second blur correction value received from the lens barrel as the correction information.
  3.  前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われる
     請求項1に記載の撮像装置。
    The image pickup apparatus according to claim 1, wherein the first blur correction function performs blur correction of a high frequency component, and the second blur correction function performs blur correction of a low frequency component.
  4.  前記レンズ鏡筒はカメラ本体部に対して着脱可能とされる構成であり、
     前記制御部は、装着された前記レンズ鏡筒との間の通信速度の判定に基づいて、前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御する
     請求項1に記載の撮像装置。
    The lens barrel has a structure that allows it to be attached to and detached from the camera body.
    The control unit performs blur correction of high-frequency components by the first blur correction function based on the determination of the communication speed with the mounted lens barrel, and is low by the second blur correction function. The image pickup apparatus according to claim 1, wherein the image stabilization of a frequency component is controlled so as to be performed.
  5.  前記レンズ鏡筒では、各サンプルタイミングにおける前記第2のブレ補正値を時刻情報とともに記憶部に記憶し、所定時点で、記憶部に記憶した前記第2のブレ補正値と前記時刻情報を前記制御部に送信する処理を行い、
     前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値を前記時刻情報に基づいて、動画のフレームに対応するメタデータとする処理を行う
     請求項1に記載の撮像装置。
    In the lens barrel, the second blur correction value at each sample timing is stored in the storage unit together with the time information, and at a predetermined time point, the second blur correction value stored in the storage unit and the time information are controlled. Perform the process of sending to the department
    The image pickup apparatus according to claim 1, wherein the control unit performs a process of converting the second blur correction value received from the lens barrel into metadata corresponding to a frame of a moving image based on the time information.
  6.  前記制御部は、前記レンズ鏡筒から受信した前記第2のブレ補正値と、該受信した第2のブレ補正値を用いた補間処理で生成した前記第2のブレ補正値を、前記補正情報とする
     請求項1に記載の撮像装置。
    The control unit uses the correction information of the second image stabilization value received from the lens barrel and the second image stabilization value generated by interpolation processing using the received second image stabilization value. The imaging device according to claim 1.
  7.  前記制御部は、
     前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御するとともに、
     低周波成分の周波数範囲を前記レンズ鏡筒側との間の通信速度に基づいて設定する
     請求項1に記載の撮像装置。
    The control unit
    The first blur correction function controls the blur correction of the high frequency component, and the second blur correction function controls the blur correction of the low frequency component.
    The image pickup apparatus according to claim 1, wherein the frequency range of a low frequency component is set based on the communication speed with the lens barrel side.
  8.  前記制御部は、
     前記第1のブレ補正機能により高周波成分のブレ補正が行われ、前記第2のブレ補正機能により低周波成分のブレ補正が行われるように制御するとともに、
     低周波成分の周波数範囲を前記記憶部の記憶容量に基づいて設定する
     請求項5に記載の撮像装置。
    The control unit
    The first blur correction function controls the blur correction of the high frequency component, and the second blur correction function controls the blur correction of the low frequency component.
    The image pickup apparatus according to claim 5, wherein the frequency range of the low frequency component is set based on the storage capacity of the storage unit.
  9.  前記制御部は、
     前記レンズ鏡筒とカメラ本体部との間の通信速度情報をメタデータとして記録媒体に記録させる処理を行う
     請求項1に記載の撮像装置。
    The control unit
    The image pickup apparatus according to claim 1, wherein a process of recording the communication speed information between the lens barrel and the camera body as metadata on a recording medium.
  10.  ブレ補正レンズを変位させるブレ補正機能と、
     記憶部と、
     各サンプルタイミングで前記ブレ補正機能に係るブレ補正値を検出する処理と、検出した前記ブレ補正値を時刻情報とともに前記記憶部に記憶する処理と、所定時点で、前記記憶部に記憶した前記ブレ補正値と前記時刻情報を、装着先であるカメラ本体部に送信する処理を行う制御部と、を備えた
     レンズ鏡筒装置。
    The image stabilization function that displaces the image stabilization lens and
    Memory and
    A process of detecting a blur correction value related to the blur correction function at each sample timing, a process of storing the detected blur correction value in the storage unit together with time information, and a process of storing the detected blur in the storage unit at a predetermined time point. A lens barrel device including a control unit that performs a process of transmitting a correction value and the time information to a camera body unit to which the lens is mounted.
  11.  前記制御部は、前記記憶部に記憶した前記ブレ補正値と時刻情報を、動画撮像期間において間欠的なタイミングで送信する処理を行う
     請求項10に記載のレンズ鏡筒装置。
    The lens barrel device according to claim 10, wherein the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit at intermittent timings during a moving image imaging period.
  12.  前記制御部は、前記記憶部に記憶した前記ブレ補正値と時刻情報を、動画撮像が終了した後の時点に送信する処理を行う
     請求項10に記載のレンズ鏡筒装置。
    The lens barrel device according to claim 10, wherein the control unit performs a process of transmitting the blur correction value and time information stored in the storage unit at a time point after the end of moving image imaging.
  13.  前記制御部は、
     各サンプルタイミングで検出されたブレ補正値について、前記カメラ本体部に送信するか、前記記憶部に記憶するかを選択し、
     前記記憶部に記憶させるとしたブレ補正値については、時刻情報とともに前記記憶部に記憶させ、所定時点で、前記記憶部から読み出して前記時刻情報とともに前記カメラ本体部に送信する処理を行う
     請求項10に記載のレンズ鏡筒装置。
    The control unit
    For the image stabilization value detected at each sample timing, select whether to send it to the camera body or store it in the storage unit.
    A claim that the blur correction value stored in the storage unit is stored in the storage unit together with time information, and at a predetermined time point, is read from the storage unit and transmitted to the camera main body unit together with the time information. 10. The lens barrel device according to 10.
  14.  レンズを介して入射された光学像と出力撮像画像との位置関係を補正する第1のブレ補正機能に係る第1のブレ補正値と、前記レンズを備えるレンズ鏡筒に設けられた第2のブレ補正機能に係る第2のブレ補正値を含む補正情報を、撮像画像に関連付けられるメタデータとして生成する処理を
     撮像装置が行う撮像方法。
    A first image stabilization value related to a first image stabilization function that corrects the positional relationship between an optical image incident through a lens and an output image image, and a second image stabilizer provided on a lens barrel provided with the lens. An imaging method in which an image pickup apparatus performs a process of generating correction information including a second image stabilization value related to an image stabilization function as metadata associated with an image image stabilization.
  15.  ブレ補正レンズを変位させるブレ補正機能と、
     記憶部と、
     を備えたレンズ鏡筒装置における送信方法として、
     各サンプルタイミングで前記ブレ補正機能に係るブレ補正値を検出する処理と、
     検出した前記ブレ補正値を時刻情報とともに前記記憶部に記憶する処理と、
     所定時点で、前記記憶部に記憶した前記ブレ補正値と前記時刻情報を、装着先であるカメラ本体部に送信する処理と、
     を行う送信方法。
    The image stabilization function that displaces the image stabilization lens and
    Memory and
    As a transmission method in a lens barrel device equipped with
    The process of detecting the image stabilization value related to the image stabilization function at each sample timing,
    A process of storing the detected image stabilization value in the storage unit together with time information,
    A process of transmitting the image stabilization value and the time information stored in the storage unit to the camera body unit to which the camera is mounted at a predetermined time point.
    How to send.
PCT/JP2021/026496 2020-07-21 2021-07-14 Imaging device, lens tube device, imaging method, transmission method WO2022019197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022537954A JPWO2022019197A1 (en) 2020-07-21 2021-07-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-124402 2020-07-21
JP2020124402 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022019197A1 true WO2022019197A1 (en) 2022-01-27

Family

ID=79729482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026496 WO2022019197A1 (en) 2020-07-21 2021-07-14 Imaging device, lens tube device, imaging method, transmission method

Country Status (2)

Country Link
JP (1) JPWO2022019197A1 (en)
WO (1) WO2022019197A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039131A (en) * 2012-08-14 2014-02-27 Canon Inc Imaging system and control method of the same
JP2016012811A (en) * 2014-06-27 2016-01-21 キヤノン株式会社 Imaging apparatus, control method thereof, program and storage medium
WO2017104102A1 (en) * 2015-12-16 2017-06-22 パナソニックIpマネジメント株式会社 Imaging device
JP2019213050A (en) * 2018-06-05 2019-12-12 キヤノン株式会社 Imaging apparatus and imaging system
JP2020046498A (en) * 2018-09-18 2020-03-26 株式会社日立国際電気 Imaging device and tremor-damping method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039131A (en) * 2012-08-14 2014-02-27 Canon Inc Imaging system and control method of the same
JP2016012811A (en) * 2014-06-27 2016-01-21 キヤノン株式会社 Imaging apparatus, control method thereof, program and storage medium
WO2017104102A1 (en) * 2015-12-16 2017-06-22 パナソニックIpマネジメント株式会社 Imaging device
JP2019213050A (en) * 2018-06-05 2019-12-12 キヤノン株式会社 Imaging apparatus and imaging system
JP2020046498A (en) * 2018-09-18 2020-03-26 株式会社日立国際電気 Imaging device and tremor-damping method

Also Published As

Publication number Publication date
JPWO2022019197A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US7889243B2 (en) Imaging device, method of processing captured image signal and computer program
JP5521334B2 (en) Imaging apparatus and imaging method
US10462353B2 (en) Imaging device, imaging method, and storage medium
KR102229152B1 (en) Image photographing appratus
JP2006042399A (en) Imaging apparatus
JP2015177221A (en) Imaging apparatus, imaging method, data recording device, and program
JP5896181B2 (en) Imaging apparatus, imaging control method, and program
WO2022019197A1 (en) Imaging device, lens tube device, imaging method, transmission method
JP2009077265A (en) Imaging apparatus
JP5153350B2 (en) Imaging device
JP5836090B2 (en) Imaging apparatus and control method
WO2022019196A1 (en) Imaging device and imaging method
JP2012133112A (en) Imaging apparatus and imaging method
JP2011078056A (en) Camera
US10038835B2 (en) Image pickup device and still picture generating method
JP6521734B2 (en) Movie recording system, movie recording method
US20240087093A1 (en) Image processing apparatus, image processing method, and program
JP4807446B2 (en) Imaging apparatus, recording control method, and program
JP6218408B2 (en) Image processing apparatus, image processing method, and program
JP5223974B2 (en) Video camera and control method thereof
JP2007072210A (en) Imaging apparatus, its control method, and program
JP4613827B2 (en) Imaging apparatus, control method thereof, and control program
JP6090485B2 (en) Imaging apparatus, imaging control method, and program
US20140029923A1 (en) Image processing apparatus
JP6520566B2 (en) Image recording device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845194

Country of ref document: EP

Kind code of ref document: A1