WO2022019048A1 - Image generation apparatus and head-up display - Google Patents

Image generation apparatus and head-up display Download PDF

Info

Publication number
WO2022019048A1
WO2022019048A1 PCT/JP2021/024175 JP2021024175W WO2022019048A1 WO 2022019048 A1 WO2022019048 A1 WO 2022019048A1 JP 2021024175 W JP2021024175 W JP 2021024175W WO 2022019048 A1 WO2022019048 A1 WO 2022019048A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
image
light source
liquid crystal
Prior art date
Application number
PCT/JP2021/024175
Other languages
French (fr)
Japanese (ja)
Inventor
典子 佐藤
匡紘 堀
遥介 中山
幸平 望月
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2022538656A priority Critical patent/JPWO2022019048A1/ja
Publication of WO2022019048A1 publication Critical patent/WO2022019048A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present disclosure relates to an image generator and a head-up display provided with the image generator.
  • Patent Document 1 discloses a head-up display in which an image luminous flux emitted by an image forming unit is reflected on a windshield by a reflecting mirror to display a virtual image to an occupant.
  • the image forming unit the light transmitted through the liquid crystal display device is emitted from the image forming unit as an image luminous flux.
  • a predetermined virtual image is displayed in the area where the virtual image can be displayed.
  • the light leaked from the liquid crystal display device may be visually recognized as if the area other than the virtual image in the virtual image displayable area shines faintly.
  • the brightness of the virtual image displayable area becomes higher than the ambient brightness, and the outline of the virtual image displayable area becomes conspicuous, which gives a sense of discomfort to the occupants of the vehicle and distracts the occupants' attention. There was a fear.
  • the image generator is an image generator that generates an image of a head-up display.
  • Light source and A liquid crystal device having a rectangular display area and forming light so as to generate the image by the light emitted from the light source.
  • An optical member for dimming light corresponding to at least one side of the display region is provided.
  • the image generator of the present disclosure since the optical member corresponding to at least one side of the display area is provided, the outline of the display area becomes inconspicuous in the dimmed portion. Therefore, it is possible to suppress giving a sense of discomfort to the occupants of the vehicle.
  • the image generator is An image generator that generates multiple images for a head-up display.
  • With the first light source With the second light source Information different from the information shown by the first image due to the light emitted from the second light source and the first region forming the light for generating the first image by the light emitted from the first light source.
  • a liquid crystal device having a second region forming light to generate a second image for showing, and a liquid crystal device.
  • a first optical element that irradiates the first region of the liquid crystal device with light emitted from the first light source, and a second optical beam that irradiates the second region of the liquid crystal device with light emitted from the second light source. It is equipped with an element.
  • an optical system (light source and optical element) is provided corresponding to an image showing information (content) displayed by the head-up display. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device other than the region forming the image to be displayed. As a result, it is possible to suppress the area other than the virtual image to be displayed from shining faintly in the virtual image displayable area displayed by the head-up display, and it is possible to make the outline of the virtual image displayable area inconspicuous.
  • the head-up display of the present disclosure is A head-up display provided on a vehicle and configured to display a plurality of images toward the occupants of the vehicle.
  • At least one reflecting unit that reflects the light emitted by the image generator, and It includes a control unit that individually controls the emission timing of the first light source and the second light source.
  • an optical system (light source and optical element) is provided according to an image showing information (content) displayed by the head-up display. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device other than the region forming the image to be displayed. As a result, it is possible to suppress the area other than the virtual image to be displayed from shining faintly in the virtual image displayable area displayed by the head-up display, and it is possible to make the outline of the virtual image displayable area inconspicuous.
  • an image generation device capable of making the outline of a virtual image displayable area inconspicuous, and a head-up display provided with the image generation device.
  • FIG. 1 is a schematic diagram showing the configuration of the head-up display (HUD) of the present disclosure.
  • FIG. 2 is an image generation device for the head-up display shown in FIG. 1, and is a schematic cross-sectional view in the left-right direction of the image generation device according to the first embodiment.
  • FIG. 3 is a perspective view of the liquid crystal device of the image generator.
  • FIG. 4 is a diagram showing an example of a visual field area of a vehicle occupant.
  • FIG. 5 is a plan view of the optical member of the image generator.
  • FIG. 6 is a plan view of a modification 1 of the optical member of the image generator.
  • FIG. 7 is a plan view of a modification 2 of the optical member of the image generator.
  • FIG. 8 is a schematic cross-sectional view in the left-right direction of the image generator according to the second embodiment.
  • FIG. 9 is a plan view of the optical member of the image generator shown in FIG.
  • FIG. 10 is a schematic cross-sectional view in the left-right direction of a modified example of the image generator.
  • FIG. 11 is a plan view of the second optical member of the image generator shown in FIG.
  • FIG. 12 is a perspective view of a modified example of the liquid crystal device.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the image generator according to the third embodiment.
  • FIG. 14 is a plan view of the light source substrate of FIG.
  • FIG. 15 is a plan view of the liquid crystal device of FIG.
  • FIG. 16 is a diagram showing an example of a visual field area of a vehicle occupant.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the image generator according to the fourth embodiment.
  • horizontal direction In the description of the present embodiment, for convenience of explanation, "horizontal direction”, “vertical direction”, and “front-back direction” may be appropriately referred to. These directions are relative directions set for the HUD (Head-Up Display) 20 shown in FIG.
  • the "left-right direction” is a direction including the “left direction” and the “right direction”.
  • the "vertical direction” is a direction including “upward” and “downward”.
  • the "front-back direction” is a direction including the "forward direction” and the "backward direction”.
  • the left-right direction is a direction orthogonal to the up-down direction and the front-back direction.
  • FIG. 1 is a schematic view of the HUD 20 as viewed from the side surface side of the vehicle 1.
  • the HUD 20 has at least a part of the HUD 20 located inside the vehicle 1.
  • the HUD 20 is installed at a predetermined position in the room of the vehicle 1.
  • the HUD 20 may be located within the dashboard of vehicle 1.
  • the HUD 20 is configured to display the information as an image toward the occupants of the vehicle 1 so that the predetermined information is superimposed on the real space outside the vehicle 1 (particularly, the surrounding environment in front of the vehicle 1). ing.
  • the information displayed by the HUD 20 is, for example, vehicle traveling information related to the traveling of the vehicle 1 and / or peripheral environment information related to the surrounding environment of the vehicle 1 (particularly, information related to an object existing outside the vehicle 1). ) Etc.
  • the HUD 20 is an AR display that functions as a visual interface between the vehicle 1 and the occupants.
  • the HUD 20 includes a HUD main body 21.
  • the HUD main body 21 has a main body housing 22 and an exit window 23.
  • the emission window 23 is made of a transparent plate that allows visible light to pass through.
  • the HUD main body 21 has an image generator (PGU) 24, a control unit 25, a concave mirror 26 (an example of a reflection unit), and a plane mirror 28 inside the main body housing 22.
  • PGU image generator
  • control unit 25 an example of a reflection unit
  • a plane mirror 28 inside the main body housing 22.
  • the image generation device 24 is configured to emit light for generating at least one image displayed by the HUD 20 toward the occupant of the vehicle 1.
  • the image is a 2D image or a 3D image for displaying predetermined information (content).
  • the image generation device 24 can emit light for generating a change image that changes depending on the situation of the vehicle 1, for example.
  • the image generation device 24 is installed in the main body housing 22 so as to emit light upward.
  • the control unit 25 controls the operation of each unit of the HUD 20.
  • the control unit 25 is connected to the vehicle control unit (not shown) of the vehicle 1, and operates the image generation device 24 based on, for example, vehicle travel information and surrounding environment information transmitted from the vehicle control unit.
  • a control signal for control is generated, and the generated control signal is transmitted to the image generator 24.
  • the control unit 25 is equipped with a processor such as a CPU (Central Processing Unit) and a memory, and the processor executes a computer program read from the memory to control the operation of the image generator 24 and the like.
  • a processor such as a CPU (Central Processing Unit) and a memory
  • the plane mirror 28 is arranged on the optical path of the light emitted from the image generation device 24. Specifically, the plane mirror 28 is arranged above the image generation device 24, and is configured to reflect the light emitted from the image generation device 24 toward the concave mirror 26.
  • the concave mirror 26 is arranged on the optical path of the light emitted from the image generator 24 and reflected by the plane mirror 28. Specifically, the concave mirror 26 is arranged in the main body housing 22 on the front side of the image generator 24 and the plane mirror 28. The concave mirror 26 is configured to reflect the light emitted from the image generator 24 toward the windshield 18 (for example, the front window of the vehicle 1).
  • the concave mirror 26 has a reflecting surface curved in a concave shape in order to form a predetermined image, and reflects an image of light emitted from the image generation device 24 and formed at a predetermined magnification.
  • the concave mirror 26 may have, for example, a drive mechanism 27, and may be configured to be able to change the position and orientation of the concave mirror 26 based on a control signal transmitted from the control unit 25.
  • the light emitted from the image generator 24 is reflected by the plane mirror 28 and the concave mirror 26 and emitted from the exit window 23 of the HUD main body 21.
  • the light emitted from the exit window 23 of the HUD main body 21 irradiates the windshield 18.
  • a part of the light emitted from the exit window 23 to the windshield 18 is reflected toward the occupant's viewpoint E.
  • the occupant recognizes the light emitted from the HUD main body 21 as a virtual image (predetermined image) formed at a predetermined distance in front of the windshield 18.
  • the occupant can see the virtual image object I formed by the predetermined image on the road located outside the vehicle. It can be visually recognized as if it were floating.
  • the occupant's viewpoint E may be either the occupant's left eye viewpoint or the right eye viewpoint.
  • the viewpoint E may be defined as the midpoint of a line segment connecting the viewpoint of the left eye and the viewpoint of the right eye.
  • the position of the occupant's viewpoint E can be specified, for example, based on image data acquired by a camera arranged inside the vehicle 1.
  • the position of the viewpoint E of the occupant may be updated at a predetermined cycle, or may be determined only once when the vehicle 1 is started.
  • a predetermined image is projected so as to be a virtual image of a single distance arbitrarily determined.
  • a 3D image stereo image
  • a plurality of predetermined images that are the same as or different from each other are projected so as to be virtual images at different distances.
  • the distance of the virtual image object I (distance from the viewpoint E of the occupant to the virtual image) adjusts the distance from the image generation device 24 to the viewpoint E of the occupant (for example, the distance between the image generation device 24 and the concave mirror 26). It can be adjusted as appropriate by adjusting).
  • the configuration in which the light emitted from the image generator 24 is reflected twice by the plane mirror 28 and the concave mirror 26 has been described, but there is no plane mirror 28 and only the concave mirror 26 is arranged and the light is reflected once. It may be configured as such.
  • FIG. 2 is a schematic cross-sectional view in the left-right direction showing the configuration of the image generation device 24A.
  • the image generator 24A includes a light source 111, a lens 120 (optical element), a liquid crystal device 130, and a diffusion sheet 140A (optical member).
  • the lens 120 is arranged above the light source 111.
  • the liquid crystal device 130 is arranged above the lens 120.
  • the diffusion sheet 140A is arranged between the lens 120 and the liquid crystal device 130.
  • the light source 111 is, for example, a laser light source or an LED light source.
  • the laser light source is, for example, an RGB laser light source configured to emit a red laser light, a green light laser light, and a blue laser light, respectively.
  • the LED light source is, for example, a white LED light source.
  • the light source 111 is mounted on the light source substrate 110.
  • the light source 111 includes a first light source 111A and a second light source 111B.
  • the first light source 111A and the second light source 111B are arranged on the light source substrate 110 at a distance of a certain distance in the left-right direction.
  • the light source substrate 110 is, for example, a printed circuit board on which wiring of an electric circuit is printed on the surface or inside of a base substrate made of an insulator.
  • the light source substrate 110 is electrically connected to the control unit 25.
  • the lens 120 is, for example, an aspherical convex lens in which both the incident surface 122 on which the light from the light source 111 is incident and the exit surface 123 on which the incident light is emitted are formed in a convex shape.
  • the lens 120 is configured to transmit the light emitted from the light source 111 and emit it toward the liquid crystal device 130.
  • the lens 120 has a first region 121A that transmits the first light emitted from the first light source 111A and a second region 121B that transmits the second light emitted from the second light source 111B. is doing.
  • the first region 121A is an aspherical convex lens corresponding to the first light source 111A.
  • the second region 121B is an aspherical convex lens corresponding to the second light source 111B.
  • the incident surface 122A of the first region 121A and the incident surface 122B of the second region 121B are convex incident surfaces slightly bulging downward.
  • the exit surface 123A of the first region 121A and the exit surface 123B of the second region 121B are convex exit surfaces that bulge upward.
  • the right part of the first region 121A arranged on the left side and the left part of the second region 121B arranged on the right side are combined.
  • the lens 120 has, for example, a lens holder (FIG. 2) so that the center of the light emitting surface of the first light source 111A is the focal position of the first region 121A and the center of the light emitting surface of the second light source 111B is the focal position of the second region 121B. Not shown).
  • the diffusion sheet 140A is, for example, a resin thin film sheet containing an OHP sheet.
  • the diffusion sheet 140A is arranged between the lens 120 and the liquid crystal device 130 so as to face the liquid crystal device 130.
  • the diffusion sheet 140A is configured to dim a part of the light emitted from the lens 120.
  • the other part of the light emitted from the lens 120 passes through the diffusion sheet 140A.
  • the light that has passed through the diffusion sheet 140A travels to the liquid crystal device 130. Further details of the diffusion sheet 140A will be described later with reference to FIG.
  • the liquid crystal device 130 forms light for generating a predetermined image by the light passing through the diffusion sheet 140A.
  • the liquid crystal device 130 is attached to the upper surface of the PGU housing (not shown), for example, with the light emitting surface for emitting light for generating an image facing upward of the image generating device 24A.
  • the liquid crystal device 130 has, for example, a liquid crystal panel 131 and a drive circuit (not shown). Each of the pixels constituting the liquid crystal panel 131 is controlled by a drive circuit so that the light transmitted through the lens 120 is transmitted and the light is not transmitted. By controlling the transmission and blocking of light for each pixel, light for generating a predetermined image is formed.
  • FIG. 3 is a perspective view of the liquid crystal panel 131 of the liquid crystal device 130.
  • the liquid crystal panel has a rectangular image-formable region (image-formable region, display region) A.
  • image-formable region A the long side of one (front side in FIG. 3) is side A1, the long side of the other (rear side in FIG. 3) is side A2, and the short side of one (left side in FIG. 3).
  • A4 be the short side of the side A3 and the other (right side in FIG. 3).
  • the outer circumference of the image-formable region A includes two long sides A1 and A2 and two short sides A3 and A4.
  • FIG. 4 is a diagram showing an example of the visual field area V of the occupant in a state where the virtual image object I1 is displayed so as to be superimposed on the real space outside the vehicle 1 by the HUD 20.
  • the field of view region V shown in FIG. 4 includes a part of the vehicle 1 (bonnet or the like).
  • a virtual image object I1 showing vehicle speed information is displayed as an example of display.
  • the liquid crystal device 130 controls light transmission and blocking for each pixel constituting the liquid crystal panel 131 so that the virtual image object I1 is displayed at a predetermined position in the virtual image displayable area R, and an image showing vehicle speed information. Form the light to produce.
  • the square frame shown by the broken line indicates the position of the virtual image displayable area R for convenience, and the frame does not actually exist.
  • the virtual image displayable region R corresponds to the image formable region A shown in FIGS. 2 and 3 in the liquid crystal device 130.
  • the image formable region A in the liquid crystal device 130 is a region in which the pixels constituting the liquid crystal panel 131 are formed, and the virtual image displayable region R corresponds to the shape of the liquid crystal panel 131.
  • FIG. 5 shows a plan view of the diffusion sheet 140A.
  • the diffusion sheet 140A has a rectangular shape corresponding to the rectangular image-forming region A.
  • the long side of one front side in FIG. 5
  • the long side of the other rear side in FIG. 5
  • the short side of one left side in FIG. 5
  • the other short side is 144.
  • the corner portion formed by the side 141 and the side 143 is the corner 145
  • the corner portion formed by the side 141 and the side 144 is the corner 146
  • the corner portion formed by the side 142 and the side 143 is the corner 147 and the side 142.
  • Let 148 be the corner portion formed by the side 144 and the side 144.
  • the side 141 of the diffusion sheet 140A corresponds to the side A1 of the image formable region A of the liquid crystal panel 131.
  • the side 142 of the diffusion sheet 140A corresponds to the side A2 of the image-formable region A of the liquid crystal panel 131.
  • the side 143 of the diffusion sheet 140A corresponds to the side A3 of the image-formable region A of the liquid crystal panel 131.
  • the side 144 of the diffusion sheet 140A corresponds to the side A4 of the image-formable region A of the liquid crystal panel 131.
  • the shape of the diffusion sheet 140A may correspond to the shape of the image-formable region A, and is not limited to the rectangular shape.
  • the shape of the diffusion sheet 140A may be, for example, an elliptical shape.
  • the diffusion sheet 140A includes a side 141, two corners 145 and a corner 146, a region P1 that dims a part of the light from the lens 120, and a center of the diffusion sheet 140A, and diffuses the light from the lens 120. It has a region Q1 that allows the light to pass through without causing the light to pass through.
  • the dimming rate of light in the region P1 is higher than the dimming rate of light in the region Q1.
  • the light diffusivity in the region P1 is larger than the light diffusivity in the region Q1.
  • the light diffusivity of the region P1 is 50%, and the light diffusivity of the region Q1 is less than 5%.
  • the size of the region Q1 is a size capable of transmitting the entire light forming the virtual image object I1.
  • the region P1 of the diffusion sheet 140A fine irregularities are formed on at least one surface of the resin thin film sheet which is the base layer.
  • the unevenness may be formed on both sides of the resin thin film sheet.
  • the light diffusivity in the region P1 is determined based on the shape and density of the unevenness and the height from the resin thin film sheet. Due to this unevenness, a part of the light emitted from the lens 120 is diffused in all directions as it passes through the region P1. Since a part of the light passing through the region P1 is diffused in a direction other than the liquid crystal device 130, the light reaching the liquid crystal device 130 is reduced, and as a result, the light incident on the liquid crystal device 130 is dimmed. In this example, since the region P1 is a region including the side 141 and the corners 145 and 146, the light corresponding to the side A1 of the corresponding image-formable region A is dimmed.
  • a general image generator Z not provided with the diffusion sheet 140A will be described.
  • a liquid crystal device forms light for forming a predetermined image by controlling transmission and blocking of light transmitted through a lens for each pixel constituting the liquid crystal panel.
  • a region other than the virtual image object I1 may be visually recognized as faintly shining in the virtual image displayable region R shown in FIG.
  • the image generation device Z the outer peripheral portion of the image forming region of the liquid crystal device is also irradiated with light in the same manner as the other portions, so that the contour of the virtual image displayable region R may be conspicuous.
  • the light transmitted through the lens reaches the contour of the image-formable region A of the liquid crystal panel without being diffused, so that the light is inside the contour of the virtual image displayable region R.
  • the contour of the virtual image displayable region R becomes conspicuous due to a difference between the brightness and the brightness outside the contour.
  • the diffusion sheet 140A diffuses and dims the light that has passed through the region P1 of the diffusion sheet 140A among the light transmitted through the lens 120. Since the region P1 is located at a position corresponding to the side A1 constituting the contour of the image formable region A of the liquid crystal panel 131, the light forming the side A1 is dimmed, and as a result, the virtual image displayable region corresponding to the side A1 is displayed. The light on one side of R is also dimmed. Therefore, there is little difference between the brightness inside the contour of the virtual image displayable region R and the brightness outside the contour, and the contour of the virtual image displayable region R is not conspicuous.
  • the image generation device 24A of this example includes the diffusion sheet 140A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous.
  • the region P1 of the diffusion sheet 140A of this example includes not only the sides 141 but also the corners 145 and 146.
  • the contours of the two corners of the virtual image displayable region R corresponding to these two corners 145 and 146 are also inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the dimming rate of the light corresponding to the side A1 of the image-formable region A that is, the dimming rate of the light of the region P1 is the dimming of the light of the region Q1 including the center of the diffusion sheet 140A. Higher than the rate. More specifically, the light diffusivity of the region P1 is higher than the light diffusivity of the region Q1. Therefore, the diffusion sheet 140A of this example can make the outline of one side of the virtual image displayable region R inconspicuous while ensuring the amount of light without diffusing the light forming the virtual image object I1 in the region Q1.
  • the region P1 of the diffusion sheet 140A is a region including the side 141 and the corners 145 and 146, but the position of the region P1 is not limited to the location.
  • the region P1 may be arranged at a position where the light forming the virtual image object I1 is not dimmed.
  • FIG. 6 shows a plan view of the diffusion sheet 140B as a modification 1.
  • the same or corresponding components as the diffusion sheet 140A according to FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • the region P1'of the diffusion sheet 140B is a region including all four sides 141, 142, 143, 144 and four corners 145, 146, 147, 148, and forms the virtual image object I1. It is placed in a position that does not dimm the light.
  • the light diffusivity in the region P1' is larger than the light diffusivity in the region Q1, for example, 50%.
  • the region P1' is arranged at a position corresponding to the entire outer circumference of the image-formable region A, and the diffusion sheet 140B is configured to dimm the light corresponding to the entire outer circumference of the image-formable region A.
  • the diffusion sheet 140B dims the light corresponding to the entire outer periphery of the image formable region A, a part of the light forming the contour of the image formable region A is dimmed. By dimming a part of the light forming the contour of the image-formable region A, the contour of the corresponding virtual image displayable region R becomes inconspicuous.
  • the region P1'of the diffusion sheet 140B of this example includes not only the four sides 141 to 144 but also the four corners 145 to 148.
  • the contours of the four corners of the virtual image displayable region R corresponding to these four corners are also inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the region P1'and the region Q1 are arranged on one resin thin film sheet, but the form of the diffusion sheet 140B is not limited to this.
  • the form of the diffusion sheet 140B may be a donut-shaped sheet composed of only the region P1'.
  • the portion of the region Q1 is hollowed out from the resin thin film sheet and is a space. Also in this case, since the light diffusivity in the region P1'is larger than the light diffusivity in the portion (space) of the region Q1, the same effect as described above can be obtained.
  • FIG. 7 shows a plan view of the diffusion sheet 140C as a modification 2.
  • the same or corresponding components as the diffusion sheet 140A according to FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • the diffusion sheet 140C has a region P2, a region P3, and a region P4.
  • Region P2 is arranged to include all four sides 141, 142, 143, 144 and four corners 145, 146, 147, 148.
  • the region P4 is inside the region P2 and is arranged so as to surround the region Q1.
  • the region P3 is arranged between the regions P2 and the region P4.
  • Each region is arranged at a position where the light forming the virtual image object I1 is not dimmed. In this example, each region is arranged at a position corresponding to the outer periphery of the image-formable region A, but may be arranged at a position corresponding to only one side of the image-formable region A.
  • the light diffusivity of the region P4 is higher than the light diffusivity of the region Q1, for example, 10%.
  • the light diffusivity of the region P3 is higher than the light diffusivity of the region P4, for example, 20%.
  • the light diffusivity of the region P2 is higher than the light diffusivity of the region P3, for example, 50%.
  • the light diffusivity of the diffusing sheet 140C gradually decreases from the region P2 located on the outer periphery of the diffusing sheet 140C toward the region Q1 located in the center.
  • the density of fine irregularities is low in the region P4, the density of fine irregularities is high in the region P2, the density of the fine irregularities in the region P3 is lower than the density of the irregularities in the region P2, and the density of the irregularities in the region P4. It is higher than the density of.
  • the diffusion rate of the light of the diffusion sheet 140C gradually decreases from the outer periphery of the diffusion sheet toward the center, so that the light forming the contour of the image-formable region A extends from the center to the outer periphery. Gradually more diffused. Since the amount of light forming the contour of the image-formable region A decreases from the center to the outer periphery, the brightness in the virtual image displayable region R also gradually changes from the center to the outer periphery, and the virtual image can be displayed. The outline of the area R is inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the diffusion sheets 140A, 140B and 140C have been described as optical members that dimming a part of the light corresponding to one side A1 of the image-formable region A, the optical members are not limited to the diffusion sheet.
  • the optical member that dims a part of the light may be a transmission sheet 150A.
  • the transmission sheet 150A will be described with reference to FIGS. 2 to 7.
  • the structure of the transmissive sheet 150A is the diffusion sheet 140A in terms of the arrangement position (between the lens 120 and the liquid crystal device 130), the shape (rectangular shape), and the form (regions Q1, P1, P1', P2, P3, P4). Since it has the same structure as that of, the duplicate description is omitted.
  • the transmissive sheet 150A is, for example, a resin thin film sheet containing an OHP sheet.
  • the light transmittance in the region P1 is smaller than the light transmittance in the region Q1.
  • the light transmittance of the region P1 is 50%, and the light transmittance of the region Q1 is 95% or more.
  • a colored layer is covered with at least one surface of the resin thin film sheet which is the base layer (FIG. 5).
  • the color of the colored layer is, for example, gray.
  • the colored layer may be formed on both sides of the resin thin film.
  • the transmittance of light in the region P1 is determined based on the color intensity of the colored layer.
  • the image generation device 24A of this example includes the transmission sheet 150A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the optical member of this example includes the transmissive sheet 150B (FIG. 6) configured to dimming the light corresponding to the entire outer periphery of the image-forming region A, and the light of the transmissive sheet 150C.
  • the transmissive sheet 150C (FIG. 7) may be configured such that the transmittance of the transmissive sheet 150C gradually increases from the region P2 located on the outer periphery of the transmissive sheet 150C toward the region Q1 located in the center.
  • the color of the colored layer is light in the region P4, the color of the colored layer is dark in the region P2, and the color of the colored layer in the region P3 is lighter than the color of the colored layer in the region P2. It is darker than the color of the colored layer in P4.
  • the optical member that dims a part of the light corresponding to one side A1 of the image formable region A may be the absorption sheet 160A.
  • the absorption sheet 160A will be described with reference to FIGS. 2 to 7.
  • the structure of the absorption sheet 160A is the diffusion sheet 140A in terms of the arrangement position (between the lens 120 and the liquid crystal device 130), the shape (rectangular shape), and the form (regions Q1, P1, P1', P2, P3, P4). Since it has the same structure as that of, the duplicate description is omitted.
  • the absorption sheet 160A is, for example, a resin thin film sheet containing an OHP sheet.
  • the light absorption rate in the region P1 is larger than the light absorption rate in the region Q1.
  • the light absorption rate of the region P1 is 50%, and the light absorption rate of the region Q1 is less than 5%.
  • a colored layer is covered with at least one surface of the resin thin film sheet which is the base layer (FIG. 5).
  • the color of the colored layer is, for example, black.
  • the colored layer may be formed on both sides of the resin thin film.
  • the light absorption rate in the region P1 is determined based on the color intensity of the colored layer.
  • the image generation device 24A of this example includes the absorption sheet 160A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the optical member of this example includes the absorption sheet 160B (FIG. 6) configured to dimming the light corresponding to the entire outer periphery of the image-forming region A, and the light of the absorption sheet 160C.
  • the absorbent sheet 160C (FIG. 7) may be configured such that the absorption rate of the absorbent sheet 160C gradually decreases from the region P2 located on the outer periphery of the absorbent sheet 160C toward the region Q1 located in the center.
  • the color of the colored layer is light in the region P4
  • the color of the colored layer is dark in the region P2
  • the color of the colored layer in the region P3 is lighter than the color of the colored layer in the region P2. It is darker than the color of the colored layer in P4.
  • the optical member that dims a part of the light corresponding to one side A1 of the image formable region A may be the reflective sheet 170A.
  • the reflective sheet 170A will be described with reference to FIGS. 2 to 7.
  • the structure of the reflective sheet 170A is the same as that of the diffusion sheet 140A in terms of the arrangement position (between the lens 120 and the liquid crystal device), the shape (rectangular shape), and the form (regions Q1, P1, P1', P2, P3, P4). Since it is the same as the structure, duplicate explanations will be omitted.
  • the reflective sheet 170A is, for example, a resin thin film sheet containing an OHP sheet.
  • the reflectance of light in the region P1 is larger than the reflectance of light in the region Q1.
  • the reflectance of light in region P1 is 50%, and the reflectance of light in region Q1 is less than 5%.
  • the region P1 of the reflective sheet 170A is covered with a metal film on at least one surface of the resin thin film sheet which is the base layer (FIG. 5).
  • the metal film is formed by, for example, metal vapor deposition on a resin thin film sheet.
  • the metal is, for example, aluminum.
  • the metal film may be formed on both sides of the resin thin film.
  • the reflectance of light in the region P1 is determined based on the film thickness of the metal film. Due to this metal film, a part of the light emitted from the lens 120 is reflected when it is incident on the region P1. Since a part of the light incident on the region P1 is reflected by the metal film, the light reaching the liquid crystal device 130 is reduced, and as a result, the light incident on the liquid crystal device 130 is dimmed.
  • the image generation device 24A of this example includes the reflective sheet 170A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the optical member of this example includes the reflective sheet 170B (FIG. 6) configured to dimm the light corresponding to the entire outer periphery of the image-forming region A, and the light of the reflective sheet 170C.
  • the reflective sheet 170C (FIG. 7) may be configured such that the reflectance of the reflective sheet 170C gradually decreases from the region P2 located on the outer periphery of the reflective sheet 170C toward the region Q1 located in the center.
  • the film thickness of the metal film is thin in the region P4, the film thickness of the metal film is thick in the region P2, and the film thickness of the metal film in the region P3 is larger than the film thickness of the metal film in the region P2. It is also thin and thicker than the film thickness of the metal film in the region P4.
  • FIG. 8 is a schematic cross-sectional view in the left-right direction showing the configuration of the image generation device 24B.
  • the same or corresponding components as those of the image generator 24A according to FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the image generator 24B includes a light source 111, a lens 120 (optical element), a liquid crystal device 130, and a diffusion sheet 140A (optical member).
  • the diffusion sheet 140A is arranged between the lens 120 and the liquid crystal device 130.
  • the liquid crystal device 130 is arranged between the lens 120 and the diffusion sheet 140A.
  • the diffusion sheet 140A is arranged above the liquid crystal device 130, and is light that has passed through both the lens 120 and the liquid crystal device 130, and is a part of the light corresponding to at least one side of the image-forming region A. Is configured to be dimmed.
  • the optical member of the image generation device 24B is not limited to the diffusion sheet 140A.
  • the optical member includes a diffusion sheet 140B configured to dimming light corresponding to the entire outer periphery of the image-formable region A, and a diffusion sheet in which the dimming rate of light gradually decreases from the outer periphery toward the center. It may be 140C.
  • the optical member may be a transmission sheet 150A, 150B, 150C, an absorption sheet 160A, 160B, 160C, or a reflection sheet 170A, 170B, 170C.
  • the diffusion sheet 140A is one of the light corresponding to at least one side A1 of the image formable region A.
  • the part can be dimmed.
  • dimming a part of the light forming the side A1 the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced.
  • the outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the dimming rate of the light corresponding to the side A1 of the image-formable region A is the reduction of the light of the region Q1 including the center of the diffusion sheet 140A. Higher than the light rate. Therefore, the diffusion sheet 140A of this example can make the outline of one side of the virtual image displayable region R inconspicuous while ensuring the amount of light without diffusing the light forming the virtual image object I1 in the region Q1.
  • the optical member that dims a part of the light may be the cover 180A of the housing 180 of the image generator 24B.
  • the housing 180 is formed, for example, by resin molding, and is configured to accommodate and support the light source substrate 110, the lens 120, and the liquid crystal device 130.
  • the cover 180A is part of the housing 180 and is located above the liquid crystal device 130 and is configured to dimming at least a portion of the light that has passed through both the lens 120 and the liquid crystal device 130.
  • the cover 180A may be configured to completely block light that has passed through both the lens 120 and the liquid crystal device 130.
  • the cover 180A may be integrally formed with the housing 180, or may be a separate member from the housing 180.
  • the cover 180A may be a transparent member, may be colored gray or black, or may be metal-deposited on the surface facing the liquid crystal device 130 (lower surface in FIG. 8).
  • FIG. 9 is a plan view of the cover 180A as an example of the optical member.
  • the cover 180A includes four sides 181 to 184, four corners 185 to 188, a region P5 for dimming the light from the liquid crystal device 130, and a center of the cover 180A, the liquid crystal device 130. It has a region Q1 through which light from the light is transmitted without dimming.
  • the region Q1 is a space for passing the light forming the virtual image object I1.
  • the region P5 of the cover 180A is configured to dimm the light that has passed through both the lens 120 and the liquid crystal device 130 and corresponds to the entire outer circumference of the image-forming region A.
  • the cover 180A in FIG. 9 shows an example of dimming the light corresponding to the entire outer periphery of the image formable region A, but the cover 180A reduces a part of the light corresponding to at least one side of the image formable region A. It may be configured to shine.
  • the cover 180A dims the light corresponding to the entire outer periphery of the image formable region A, a part of the light forming the contour of the image formable region A is dimmed.
  • the contour of the corresponding virtual image displayable region R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • FIG. 10 shows a schematic cross-sectional view in the left-right direction showing the configuration of the image generation device 24C as a modification 3.
  • the same or corresponding components as those of the image generator 24A according to FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the image generation device 24C includes a first diffusion sheet 140A (first optical member) and a second diffusion sheet 140D (second optical member).
  • the first diffusion sheet 140A is located below the liquid crystal device 130 and is arranged between the lens 120 and the liquid crystal device 130.
  • the second diffusion sheet 140D is arranged above the liquid crystal device 130. In other words, the liquid crystal device 130 is arranged between the first diffusion sheet 140A and the second diffusion sheet 140D.
  • the second diffusion sheet 140D is arranged so as to overlap the first diffusion sheet 140A in the vertical direction.
  • FIG. 11 shows a plan view of the second diffusion sheet 140D.
  • the second diffusion sheet 140D has the same shape as the first diffusion sheet 140A, and includes sides 141 to 144 and corners 145 to 148.
  • the first diffusing sheet 140A includes a side 141, two corners 145 and a corner 146, a region P1 that dims a part of the light from the lens 120, and a center of the diffusing sheet 140A, and includes light from the lens 120.
  • the second diffusion sheet 140D includes a side 142, two corners 147 and a corner 148, a region P6 for dimming a part of the light from the liquid crystal device 130, and a center of the second diffusion sheet 140D. It has a region Q2 for transmitting light from the liquid crystal device 130 without diffusing it.
  • the light diffusivity of the region P1 and the light diffusivity of the region P6 are both 50%, and the light diffusivity of the region Q1 and the light diffusivity of the region Q2 are both less than 5%.
  • the size of the overlapping region of the region Q1 and the region Q2 in the vertical direction is a size capable of transmitting the entire light forming the virtual image object I1. Both the region P1 and the region P6 are formed with fine irregularities, and diffuse the passing light in all directions.
  • the operation of the light of the image generator 24C will be described.
  • the light that has passed through the lens 120 first enters the first diffusion sheet 140A.
  • the region P1 dims the light corresponding to the side A1 (one side) of the image-formable region A.
  • the light that has passed through the region P1 or the region Q1 passes through the liquid crystal device 130 and is incident on the second diffusion sheet 140D.
  • the region P2 dims the light corresponding to the side A2 (other side) of the image-formable region A.
  • the light emitted from the lens 120 is dimmed by the first diffusion sheet 140A and the second diffusion sheet 140D, and as a result, corresponds to both the sides A1 and the sides A2 of the image-formable region A. The light is dimmed.
  • the image generation device 24C of this example corresponds to the first diffusion sheet 140A that dims a part of the light corresponding to one side A1 of the image formable region A and the other side A2 of the image formable region A. Since the second diffusion sheet 140D that dims a part of the light to be formed is provided, a part of the light forming the side A1 and the side A2 of the image-forming region A is dimmed. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
  • the image generator 24C includes a first diffusion sheet 140A and a second diffusion sheet 140D as optical members, but the optical member is not limited to the diffusion sheet.
  • the optical member may be any of a transmission sheet 150D, an absorption sheet 160D, a reflection sheet 170D, and a cover 180A. Further, the combination of the two optical members is not limited to the two diffusion sheets.
  • the first optical member may be a diffusion sheet, a transmissive sheet, an absorbent sheet, or a reflective sheet
  • the second optical member may be any of a transmissive sheet, an absorbent sheet, a reflective sheet, and a cover.
  • the liquid crystal device 130 of the present embodiment has one image-formable region A, but the number of image-formable regions is not limited to one.
  • FIG. 12 is a perspective view of a modified example of the liquid crystal device 130. As shown in FIG. 12, the liquid crystal device may have a plurality of image-formable regions B, C, and D.
  • the optical member is configured to dim a part of the light corresponding to one side or the entire outer circumference of each of the plurality of image-forming regions B, C, and D.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the image generator 24D according to the third embodiment.
  • FIG. 14 is a plan view of the light source substrate 110 of FIG. 13 as viewed from above.
  • FIG. 15 is a plan view of the liquid crystal device 130 of FIG. 13 as viewed from above.
  • the image generator 24D includes a light source substrate 110, a first optical system 220, a second optical system 230, a third optical system 240, and a liquid crystal device 130.
  • the first optical system 220 includes a first light source 221 and a first lens 222.
  • the second optical system 230 includes a second light source 231 and a second lens 232.
  • the second light source 231 includes a light source 231A and a light source 231B.
  • the third optical system 240 includes a third light source 241 and a third lens 242.
  • the light source substrate 110 is an example of a substrate.
  • the first lens 222 is an example of the first optical element.
  • the second lens 232 is an example of a second optical element.
  • Each of the first light source 221 and the second light source 231 and the third light source 241 is, for example, an LED light source or a laser light source.
  • the first light source 221 and the second light source 231 and the third light source 241 are mounted on the light source substrate 110.
  • the first light source 221 and the second light source 231 and the third light source 241 are arranged apart from each other in the left-right direction, for example, as illustrated in FIG.
  • the emission timings of the first light source 221 and the second light source 231 and the third light source 241 are individually controlled by the control unit 25.
  • Each of the first light source 221 and the second light source 231 and the third light source 241 may be composed of, for example, a plurality of light emitting units (light sources).
  • the first lens 222 is arranged above the first light source 221.
  • the first lens 222 is configured to transmit or reflect light incident from the first light source 221 and emit it toward the liquid crystal device 130.
  • the first lens 222 is, for example, a plano-convex aspherical lens in which the incident surface on which the light from the first light source 221 is incident is a plane and the exit surface on which the incident light is emitted is convex.
  • the first lens 222 is attached to a lens holder (not shown) so that, for example, the center of the light emitting surface of the first light source 221 is the focal position of the first lens 222.
  • the center of the light emitting surface of the first light source 221 is located near the focal point of the first lens 222 as long as the distortion and blurring of the image formed by the HUD 20 are within an acceptable range. It may be arranged as such.
  • the second lens 232 is arranged above the second light source 231.
  • the second lens 232 is configured to transmit or reflect the light incident from the second light source 231 and emit it toward the liquid crystal device 130.
  • the second lens 232 is, for example, a plano-convex aspherical lens in which the incident surface on which the light from the second light source 231 is incident is a plane and the exit surface on which the incident light is emitted is convex.
  • the second lens 232 is attached to the lens holder, for example, so that the center of the light emitting surface of the second light source 231 is the focal position of the second lens 232.
  • the center of the light emitting surface of the second light source 231 is located near the focal point of the second lens 232 as long as the distortion or blurring of the image formed by the HUD 20 is within an acceptable range. It may be arranged as such.
  • the third lens 242 is arranged above the third light source 241.
  • the third lens 242 is configured to transmit or reflect the light incident from the third light source 241 and emit it toward the liquid crystal device 130.
  • the third lens 242 is, for example, a plano-convex aspherical lens in which the incident surface on which the light from the third light source 241 is incident is a plane and the exit surface on which the incident light is emitted is convex.
  • the third lens 242 is attached to the lens holder, for example, so that the center of the light emitting surface of the third light source 241 is the focal position of the third lens 242.
  • the center of the light emitting surface of the third light source 241 is located near the focal point of the third lens 242 as long as the distortion or blurring of the image formed by the HUD 20 is within an acceptable range. It may be arranged as such.
  • the liquid crystal device 130 is arranged above the first lens 222, the second lens 232, and the third lens 242.
  • the liquid crystal device 130 is attached to a PGU housing (not shown) with a light emitting surface for emitting light for generating an image directed upward of the image generating device 24D.
  • the liquid crystal device 130 forms light for generating a plurality of images by the light emitted from the first optical system 220, the light emitted from the second optical system 230, and the light emitted from the third optical system 240. It is configured to emit light.
  • Each of the pixels constituting the liquid crystal panel 131 of the liquid crystal device 130 is in a state in which light emitted from the first optical system 220, the second optical system 230, or the third optical system 240 is transmitted or not transmitted by a drive circuit. Be controlled.
  • the liquid crystal device 130 has a first region 130A forming light for generating a first image and a second region 130B forming light for generating a second image. And has a third region 130C that forms the light for generating the third image.
  • the first image, the second image, and the third image are images showing different information.
  • the first region 130A, the second region 130B, and the third region 130C are arranged apart from each other in the left-right direction.
  • FIG. 15 shows an example of an image generated by light emitted from each of the first region 130A, the second region 130B, and the third region 130C.
  • the first image is, for example, an image showing information on the legal speed of the road on which the vehicle 1 is traveling.
  • the second image is, for example, an image showing information on the traveling direction of the vehicle 1.
  • the third image is, for example, an image showing information on the traveling speed of the current vehicle 1.
  • the first optical system 220 is configured to irradiate the first region 130A with light. That is, the light emitted from the first light source 221 is applied to the first region 130A by the first lens 222. By controlling the transmission and blocking of the light emitted from the first optical system 220 for each pixel corresponding to the first region 130A, the light for generating the first image is formed in the first region 130A.
  • the second optical system 230 is configured to irradiate the second region 130B with light. That is, the light emitted from the second light source 231 is applied to the second region 130B by the second lens 232. By controlling the transmission and blocking of the light emitted from the second optical system 230 for each pixel corresponding to the second region 130B, light for generating a second image is formed in the second region 130B.
  • the third optical system 240 is configured to irradiate the third region 130C with light. That is, the light emitted from the third light source 241 is irradiated to the third region 130C by the third lens 242. By controlling the transmission and blocking of the light emitted from the third optical system 240 for each pixel corresponding to the third region 130C, light for generating a third image is formed in the third region 130C. ..
  • the emission timings of the first light source 221 and the second light source 231 and the third light source 241 can be controlled by the control unit 25 so as to be linked with the operation control of the pixels constituting the liquid crystal panel 131.
  • the control unit 25 controls so that only the light source corresponding to the image to be displayed by the HUD 20 is turned on.
  • FIG. 16 is a diagram showing an example of the occupant's visual field area V in a state where a plurality of virtual image objects are displayed so as to be superimposed on the real space outside the vehicle 1 by the HUD 20.
  • the field of view region V shown in FIG. 16 includes a part of the vehicle 1 (bonnet or the like).
  • FIG. 16 shows a virtual image object when light for generating a plurality of images shown in FIG. 15 is emitted from the liquid crystal device 130. That is, the virtual image object IA indicating the information on the legal speed of the road on which the vehicle 1 is traveling, the virtual image object IB indicating the traveling direction of the vehicle 1, and the virtual image object IC indicating the information on the traveling speed of the current vehicle 1 are the virtual image object IC of the vehicle 1. It is displayed in front.
  • the square frame shown by the alternate long and short dash line indicates the position of the area R where the virtual image can be displayed for convenience, and the frame does not actually exist.
  • the virtual image displayable region R is included.
  • the area other than the virtual image objects IA, IB, and IC is visually recognized as faintly shining.
  • the brightness of the virtual image displayable area R becomes higher than the ambient brightness, and the outline of the virtual image displayable area R may be conspicuous.
  • the image generation device 24D is provided with independent optical systems corresponding to images showing information (contents) displayed by the HUD 20. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device 130 other than the region forming the image to be displayed. As a result, it is possible to suppress the areas other than the virtual image object IA, the virtual image object IB, and the virtual image object IC to be displayed in the virtual image displayable area R displayed by the HUD 20 from shining faintly, and the contour of the virtual image displayable area R can be suppressed. Can be made inconspicuous.
  • the first lens 222, the second lens 232, and the third lens 242 are used as optical elements for irradiating the liquid crystal device 130 with light.
  • the liquid crystal device 130 can be irradiated with the light from the first light source 221 and the second light source 231 and the third light source 241 with a simple configuration.
  • the first light source 221 and the second light source 231 and the third light source 241 are arranged side by side in the arrangement direction of the first region 130A, the second region 130B, and the third region 130C. As a result, it is possible to suppress an increase in the area of the light source substrate 110.
  • the emission timings of the first light source 221 and the second light source 231 and the third light source 241 are individually controlled by the control unit 25.
  • the control unit 25 can control the first light source 221 to be turned on and the second light source 231 and the third light source 241 not to be turned on.
  • the control unit 25 can control the second light source 231 to be turned on and the first light source 221 and the third light source 241 not to be turned on.
  • the control unit 25 can control the third light source 241 to be turned on and the first light source 221 and the second light source 231 not to be turned on.
  • the ends of the first region 130A, the second region 130B, and the third region 130C are the upper ends of the liquid crystal panel 131, which is a region capable of forming an image of the liquid crystal device 130. It is located inward away from the portion (the end in the front direction in FIG. 15). That is, the light emitted from the first light source 221 is irradiated below the upper end portion of the liquid crystal panel 131 by the first lens 222. The light emitted from the second light source 231 is irradiated below the upper end portion of the liquid crystal panel 131 by the second lens 232.
  • the light emitted from the third light source 241 is irradiated below the upper end portion of the liquid crystal panel 131 by the third lens 242. Further, a length displaced downward (backward in FIG. 15) from the upper end of the liquid crystal panel 131 of the first region 130A, a length displaced downward from the upper end of the liquid crystal panel 131 of the second region 130B, and a third. The lengths of the region 130C deviated downward from the upper end of the liquid crystal panel 131 are different from each other.
  • the end of at least one of the first region 130A, the second region 130B, and the third region 130C is located away from the upper end portion or the left and right end portions of the liquid crystal panel 131. You may. Even in this case, even when the area other than the virtual image objects IA, IB, and IC shines faintly in the virtual image displayable region R displayed by the HUD 20, the faintly shining contour becomes uneven instead of a straight line, and the contour can be made inconspicuous. ..
  • the first lens 222, the second lens 232 and the third lens 242 are plano-convex aspherical lenses.
  • the first lens 222, the second lens 232, and the third lens 242 may include lenses having other shapes, such as an aspherical convex lens having both an incident surface and an emitted surface formed in a convex shape.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the image generation device 24E according to the fourth embodiment.
  • the same reference numbers are assigned to the same members as the members constituting the image generation device 24D of the third embodiment, and the description thereof will be omitted for convenience.
  • the image generator 24E includes a light source substrate 110, a first optical system 320, a second optical system 330, a third optical system 340, and a liquid crystal device 130.
  • the first optical system 320 includes a first light source 221 and a first reflector 322.
  • the second optical system 330 includes a second light source 231 and a second reflector 332.
  • the second light source 231 includes a light source 231A and a light source 231B.
  • the third optical system 340 includes a third light source 241 and a third reflector 342.
  • the first reflector 322 is an example of the first optical element.
  • the second reflector 332 is an example of a second optical element.
  • the first reflector 322 is arranged above the first light source 221.
  • the first reflector 322 is configured to reflect the light incident from the first light source 221 and emit it toward the first region 130A of the liquid crystal device 130.
  • the first reflector 322 has, for example, a reflecting surface made of a flat surface.
  • the second reflector 332 is arranged above the second light source 231.
  • the second reflector 332 is configured to reflect the light incident from the second light source 231 and emit it toward the second region 130B of the liquid crystal device 130.
  • the second reflector 332 has, for example, a reflecting surface made of a flat surface.
  • the third reflector 342 is arranged above the third light source 241.
  • the third reflector 342 is configured to reflect the light incident from the third light source 241 and emit it toward the third region 130C of the liquid crystal device 130.
  • the third reflector 342 has, for example, a reflecting surface made of a flat surface.
  • independent optical systems are provided corresponding to images showing information (contents) displayed by the HUD 20. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device 130 other than the region forming the image to be displayed.
  • the first reflector 322, the second reflector 332, and the third reflector 342 are used as the optical elements, the light from the first light source 221 and the second light source 231 and the third light source 241 can be transferred to the liquid crystal device 130 by a simple configuration. It can be irradiated.
  • the light emitted from the image generator 24 is configured to be reflected by the concave mirror 26 and irradiated to the windshield 18, but the present invention is not limited to this.
  • the light reflected by the concave mirror 26 may be applied to a combiner (not shown) provided inside the windshield 18.
  • the combiner is composed of, for example, a transparent plastic disc. A part of the light emitted from the image generator 24 of the HUD main body 21 to the combiner is reflected toward the viewpoint E of the occupant as in the case of irradiating the windshield 18 with light.
  • first optical element and the second optical element, the first lens 222 and the second lens 232 are separately formed.
  • first lens 222 and the second lens 232 may be integrally formed as a single member.
  • first optical element and the second optical element, the first reflector 322 and the second reflector 332 may be integrally formed as a single member.
  • the liquid crystal device 130 has a first region 130A, a second region 130B, and a third region 130C as regions for forming light for generating an image.
  • the liquid crystal device 130 may have two regions or four or more regions. The number of optical systems can be appropriately changed according to the number of regions.
  • the first region 130A, the second region 130B, and the third region 130C are arranged apart from each other in the left-right direction.
  • the first region 130A, the second region 130B, and the third region 130C may be arranged apart from each other in the vertical direction, the horizontal direction, and the vertical direction, for example.
  • the arrangement of the light source, the lens or the reflector can be appropriately changed depending on the arrangement of the first region 130A, the second region 130B and the third region 130C.
  • the second region 130B is larger than the first region 130A and the third region 130C.
  • the second region 130B may be of the same size as, for example, the first region 130A and the third region 130C.
  • the number of light sources and the size of the lens or reflector can be appropriately changed according to the size of the corresponding region of the liquid crystal device 130.
  • the light emitted from the first optical systems 220 and 320 is applied to the first region 130A
  • the light emitted from the second optical systems 230 and 330 is applied to the second region 130B.
  • the light emitted from the optical systems 240 and 340 irradiates the third region 130C. That is, in the liquid crystal device 130, the range in which the light is irradiated by the first optical systems 220 and 320 and the range in which the light is irradiated by the second optical systems 230 and 330 do not overlap, and the second optical systems 230 and 330 do not overlap.
  • the range irradiated with light by the third optical system 240, 340 does not overlap with the range irradiated with light by the third optical system 240, 340.
  • the light emitted from the first optical systems 220 and 320 is irradiated in a wider range than the first region 130A, and the light emitted from the second optical systems 230 and 330 is emitted from the second region 130B.
  • the light emitted from the third optical system 240, 340 can be irradiated in a wider range than the third region 130C.
  • the range irradiated by the first optical systems 220 and 320 and the range irradiated by the second optical systems 230 and 330 may partially overlap.
  • the range illuminated by the second optical systems 230, 330 and the range illuminated by the third optical systems 240, 340 may partially overlap.
  • the light in the overlapping range is weaker than the light emitted to the center of each optical system, so that the boundary between the first image and the second image becomes inconspicuous, and the boundary between the second image and the third image becomes inconspicuous. It becomes inconspicuous.
  • the contour of the region where the first image corresponding to the first region 130A can be formed can be made inconspicuous.
  • the contour of the region where the second image corresponding to the second region 130B can be formed and the contour of the region where the third image corresponding to the third region 130C can be formed can be made inconspicuous.
  • the image generators 24D and 24E may include, for example, a heat sink provided on the back surface of the light source substrate 110.
  • the heat sink can dissipate heat generated from the light source substrate 110.
  • the image generation devices 24D and 24E may include a diffusion sheet or the like between the optical system and the liquid crystal device 130.
  • the first reflector 322, the second reflector 332, and the third reflector 342 have a reflecting surface made of a flat surface.
  • the first reflector 322, the second reflector 332, and the third reflector 342 may have a reflecting surface made of a spheroidal surface or the like.
  • the HUD 20 has a plane mirror 28 and a concave mirror 26 as reflectors, and the light emitted from the image generator 24 is reflected twice and reaches the windshield 18.
  • the HUD 20 has only a concave mirror 26 as a reflector, and the light emitted from the image generator 24 may be reflected once and reach the windshield 18.

Abstract

This image generation apparatus (24), which generates an image on a head-up display (20), comprises a light source (111), a liquid crystal device (130), an optical element (120), and an optical member (140A). The liquid crystal device (130) has a display region (A) having a rectangular shape, and forms light so as to generate an image using light emitted from the light source (111). The optical element (120) irradiates the liquid crystal device (130) with the light emitted from the light source (111). The optical member (140A) dims light corresponding to at least one edge of the display region (A).

Description

画像生成装置及びヘッドアップディスプレイImage generator and head-up display
 本開示は、画像生成装置及び当該画像生成装置を備えたヘッドアップディスプレイに関する。 The present disclosure relates to an image generator and a head-up display provided with the image generator.
 特許文献1には、映像形成ユニットが出射する映像光束を反射鏡によりフロントガラスに反射させ、乗員に対して虚像を表示するヘッドアップディスプレイを開示している。映像形成ユニットにおいて、液晶表示装置を透過した光が映像光束として映像形成ユニットから出射される。液晶表示装置により光を透過あるいは遮光することにより、虚像を表示可能な領域内において所定の虚像が表示される。 Patent Document 1 discloses a head-up display in which an image luminous flux emitted by an image forming unit is reflected on a windshield by a reflecting mirror to display a virtual image to an occupant. In the image forming unit, the light transmitted through the liquid crystal display device is emitted from the image forming unit as an image luminous flux. By transmitting or blocking light by the liquid crystal display device, a predetermined virtual image is displayed in the area where the virtual image can be displayed.
日本国特開2019-207263号公報Japanese Patent Application Laid-Open No. 2019-207263
 ところで、上記のようなヘッドアップディスプレイにおいて、液晶表示装置から漏れた光によって、虚像表示可能領域内における虚像以外の領域が薄く光るように視認される場合がある。特に車両周囲の外光が弱い場合、虚像表示可能領域の輝度が周囲の輝度よりも高くなり、虚像表示可能領域の輪郭が目立つことにより、車両の乗員に違和感を与え、乗員の注意が反れるおそれがあった。 By the way, in a head-up display as described above, the light leaked from the liquid crystal display device may be visually recognized as if the area other than the virtual image in the virtual image displayable area shines faintly. In particular, when the outside light around the vehicle is weak, the brightness of the virtual image displayable area becomes higher than the ambient brightness, and the outline of the virtual image displayable area becomes conspicuous, which gives a sense of discomfort to the occupants of the vehicle and distracts the occupants' attention. There was a fear.
 本開示は、虚像表示可能領域の輪郭を目立たなくさせることが可能な画像生成装置、及び当該画像生成装置を備えたヘッドアップディスプレイを提供することを目的とする。 It is an object of the present disclosure to provide an image generation device capable of making the outline of a virtual image displayable area inconspicuous, and a head-up display provided with the image generation device.
 本開示の一側面に係る画像生成装置は、ヘッドアップディスプレイの画像を生成する画像生成装置であって、
 光源と、
 長方形状の表示領域を有し、前記光源から出射された光により前記画像を生成するよう光を形成する液晶デバイスと、
 前記光源から出射された光を前記液晶デバイスへ照射する光学素子と、
 前記表示領域の少なくとも一辺に相当する光を減光する光学部材と、を備える。
The image generator according to one aspect of the present disclosure is an image generator that generates an image of a head-up display.
Light source and
A liquid crystal device having a rectangular display area and forming light so as to generate the image by the light emitted from the light source.
An optical element that irradiates the liquid crystal device with light emitted from the light source, and
An optical member for dimming light corresponding to at least one side of the display region is provided.
 本開示の画像生成装置によれば、表示領域の少なくとも一辺に相当する光を減光する光学部材が設けられているため、光が減光された部分において、表示領域の輪郭は目立たなくなる。したがって、車両の乗員に違和感を与えることが抑制される。 According to the image generator of the present disclosure, since the optical member corresponding to at least one side of the display area is provided, the outline of the display area becomes inconspicuous in the dimmed portion. Therefore, it is possible to suppress giving a sense of discomfort to the occupants of the vehicle.
 本開示の他の側面に係る画像生成装置は、
 ヘッドアップディスプレイの複数の画像を生成する画像生成装置であって、
 第一光源と、
 第二光源と、
 前記第一光源から出射された光により第一画像を生成するための光を形成する第一領域と、前記第二光源から出射された光により前記第一画像により示される情報とは異なる情報を示すための第二画像を生成するための光を形成する第二領域を有する液晶デバイスと、
 前記第一光源から出射された光を前記液晶デバイスの前記第一領域へ照射する第一光学素子と
 前記第二光源から出射された光を前記液晶デバイスの前記第二領域へ照射する第二光学素子と、を備えている。
The image generator according to another aspect of the present disclosure is
An image generator that generates multiple images for a head-up display.
With the first light source
With the second light source
Information different from the information shown by the first image due to the light emitted from the second light source and the first region forming the light for generating the first image by the light emitted from the first light source. A liquid crystal device having a second region forming light to generate a second image for showing, and a liquid crystal device.
A first optical element that irradiates the first region of the liquid crystal device with light emitted from the first light source, and a second optical beam that irradiates the second region of the liquid crystal device with light emitted from the second light source. It is equipped with an element.
 上記の構成によれば、ヘッドアップディスプレイにより表示される情報(コンテンツ)を示す画像に対応して光学系(光源および光学素子)が設けられている。したがって、液晶デバイスにおいて表示すべき画像を形成する領域以外の部分に光が到達することを抑制することができる。これにより、ヘッドアップディスプレイにより表示される虚像表示可能領域内において表示すべき虚像以外の領域が薄く光ることを抑制することができ、虚像表示可能領域の輪郭を目立たなくさせることができる。 According to the above configuration, an optical system (light source and optical element) is provided corresponding to an image showing information (content) displayed by the head-up display. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device other than the region forming the image to be displayed. As a result, it is possible to suppress the area other than the virtual image to be displayed from shining faintly in the virtual image displayable area displayed by the head-up display, and it is possible to make the outline of the virtual image displayable area inconspicuous.
 本開示のヘッドアップディスプレイは、
 車両に設けられ、複数の画像を前記車両の乗員に向けて表示するように構成されたヘッドアップディスプレイであって、
 上記いずれかの画像生成装置と、
 前記画像生成装置により出射された光を反射させる少なくとも一つの反射部と、
 前記第一光源および前記第二光源の出射タイミングを個別に制御する制御部と、を備えている。
The head-up display of the present disclosure is
A head-up display provided on a vehicle and configured to display a plurality of images toward the occupants of the vehicle.
With any of the above image generators,
At least one reflecting unit that reflects the light emitted by the image generator, and
It includes a control unit that individually controls the emission timing of the first light source and the second light source.
 上記の構成によれば、ヘッドアップディスプレイにより表示される情報(コンテンツ)を示す画像に応じて光学系(光源および光学素子)が設けられている。したがって、液晶デバイスにおいて表示すべき画像を形成する領域以外の部分に光が到達することを抑制することができる。これにより、ヘッドアップディスプレイにより表示される虚像表示可能領域内において表示すべき虚像以外の領域が薄く光ることを抑制することができ、虚像表示可能領域の輪郭を目立たなくさせることができる。 According to the above configuration, an optical system (light source and optical element) is provided according to an image showing information (content) displayed by the head-up display. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device other than the region forming the image to be displayed. As a result, it is possible to suppress the area other than the virtual image to be displayed from shining faintly in the virtual image displayable area displayed by the head-up display, and it is possible to make the outline of the virtual image displayable area inconspicuous.
 本開示によれば、虚像表示可能領域の輪郭を目立たなくさせることが可能な画像生成装置、及び当該画像生成装置を備えたヘッドアップディスプレイを提供することができる。 According to the present disclosure, it is possible to provide an image generation device capable of making the outline of a virtual image displayable area inconspicuous, and a head-up display provided with the image generation device.
図1は、本開示のヘッドアップディスプレイ(HUD)の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of the head-up display (HUD) of the present disclosure. 図2は、図1に示すヘッドアップディスプレイの画像生成装置であって、第一実施形態に係る画像生成装置の左右方向断面模式図である。FIG. 2 is an image generation device for the head-up display shown in FIG. 1, and is a schematic cross-sectional view in the left-right direction of the image generation device according to the first embodiment. 図3は、画像生成装置の液晶デバイスの斜視図である。FIG. 3 is a perspective view of the liquid crystal device of the image generator. 図4は、車両の乗員の視野領域の一例を示す図である。FIG. 4 is a diagram showing an example of a visual field area of a vehicle occupant. 図5は、画像生成装置の光学部材の平面図である。FIG. 5 is a plan view of the optical member of the image generator. 図6は、画像生成装置の光学部材の変形例1の平面図である。FIG. 6 is a plan view of a modification 1 of the optical member of the image generator. 図7は、画像生成装置の光学部材の変形例2の平面図である。FIG. 7 is a plan view of a modification 2 of the optical member of the image generator. 図8は、第二実施形態に係る画像生成装置の左右方向断面模式図である。FIG. 8 is a schematic cross-sectional view in the left-right direction of the image generator according to the second embodiment. 図9は、図8に示す画像生成装置の光学部材の平面図である。FIG. 9 is a plan view of the optical member of the image generator shown in FIG. 図10は、画像生成装置の変形例の左右方向断面模式図である。FIG. 10 is a schematic cross-sectional view in the left-right direction of a modified example of the image generator. 図11は、図10に示す画像生成装置の第二の光学部材の平面図である。FIG. 11 is a plan view of the second optical member of the image generator shown in FIG. 図12は、液晶デバイスの変形例の斜視図である。FIG. 12 is a perspective view of a modified example of the liquid crystal device. 図13は、第三実施形態に係る画像生成装置の構成を示す断面模式図である。FIG. 13 is a schematic cross-sectional view showing the configuration of the image generator according to the third embodiment. 図14は、図13の光源基板の平面図である。FIG. 14 is a plan view of the light source substrate of FIG. 図15は、図13の液晶デバイスの平面図である。FIG. 15 is a plan view of the liquid crystal device of FIG. 図16は、車両の乗員の視野領域の一例を示す図である。FIG. 16 is a diagram showing an example of a visual field area of a vehicle occupant. 図17は、第四実施形態に係る画像生成装置の構成を示す断面模式図である。FIG. 17 is a schematic cross-sectional view showing the configuration of the image generator according to the fourth embodiment.
 以下、本開示の実施形態(以下、本実施形態という。)について図面を参照しながら説明する。本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。 Hereinafter, an embodiment of the present disclosure (hereinafter referred to as the present embodiment) will be described with reference to the drawings. The dimensions of each member shown in this drawing may differ from the actual dimensions of each member for convenience of explanation.
 本実施形態の説明では、説明の便宜上、「左右方向」、「上下方向」、「前後方向」について適宜言及する場合がある。これらの方向は、図1に示すHUD(Head-Up Display)20について設定された相対的な方向である。ここで、「左右方向」は、「左方向」および「右方向」を含む方向である。「上下方向」は、「上方向」および「下方向」を含む方向である。「前後方向」は、「前方向」および「後方向」を含む方向である。左右方向は、図1では示されていないが、上下方向および前後方向に直交する方向である。 In the description of the present embodiment, for convenience of explanation, "horizontal direction", "vertical direction", and "front-back direction" may be appropriately referred to. These directions are relative directions set for the HUD (Head-Up Display) 20 shown in FIG. Here, the "left-right direction" is a direction including the "left direction" and the "right direction". The "vertical direction" is a direction including "upward" and "downward". The "front-back direction" is a direction including the "forward direction" and the "backward direction". Although not shown in FIG. 1, the left-right direction is a direction orthogonal to the up-down direction and the front-back direction.
 図1は、HUD20を車両1の側面側から見た模式図である。HUD20は、少なくともHUD20の一部が車両1の内部に位置する。具体的には、HUD20は、車両1の室内の所定箇所に設置されている。例えば、HUD20は、車両1のダッシュボード内に配置されてもよい。 FIG. 1 is a schematic view of the HUD 20 as viewed from the side surface side of the vehicle 1. The HUD 20 has at least a part of the HUD 20 located inside the vehicle 1. Specifically, the HUD 20 is installed at a predetermined position in the room of the vehicle 1. For example, the HUD 20 may be located within the dashboard of vehicle 1.
 HUD20は、所定の情報が車両1の外部の現実空間(特に、車両1の前方の周辺環境)と重畳されるように、当該情報を車両1の乗員に向けて画像として表示するように構成されている。HUD20によって表示される情報は、例えば、車両1の走行に関連した車両走行情報及び/又は車両1の周辺環境に関連した周辺環境情報(特に、車両1の外部に存在する対象物に関連した情報)等である。HUD20は、車両1と乗員との間の視覚的インターフェースとして機能するARディスプレイである。 The HUD 20 is configured to display the information as an image toward the occupants of the vehicle 1 so that the predetermined information is superimposed on the real space outside the vehicle 1 (particularly, the surrounding environment in front of the vehicle 1). ing. The information displayed by the HUD 20 is, for example, vehicle traveling information related to the traveling of the vehicle 1 and / or peripheral environment information related to the surrounding environment of the vehicle 1 (particularly, information related to an object existing outside the vehicle 1). ) Etc. The HUD 20 is an AR display that functions as a visual interface between the vehicle 1 and the occupants.
 図1に示すように、HUD20は、HUD本体部21を備える。HUD本体部21は、本体ハウジング22と、出射窓23とを有する。出射窓23は可視光を透過させる透明板で構成されている。HUD本体部21は、本体ハウジング22の内部に、画像生成装置(PGU)24と、制御部25と、凹面鏡26(反射部の一例)と、平面鏡28と、を有する。 As shown in FIG. 1, the HUD 20 includes a HUD main body 21. The HUD main body 21 has a main body housing 22 and an exit window 23. The emission window 23 is made of a transparent plate that allows visible light to pass through. The HUD main body 21 has an image generator (PGU) 24, a control unit 25, a concave mirror 26 (an example of a reflection unit), and a plane mirror 28 inside the main body housing 22.
 画像生成装置24は、HUD20により車両1の乗員に向けて表示される少なくとも一つの画像を生成するための光を出射するように構成されている。画像は、所定の情報(コンテンツ)を表示するための2D画像または3D画像である。画像生成装置24は、例えば、車両1の状況に応じて変化する変化画像を生成するための光を出射可能である。画像生成装置24は、本体ハウジング22内において、光を上方に出射するように設置されている。 The image generation device 24 is configured to emit light for generating at least one image displayed by the HUD 20 toward the occupant of the vehicle 1. The image is a 2D image or a 3D image for displaying predetermined information (content). The image generation device 24 can emit light for generating a change image that changes depending on the situation of the vehicle 1, for example. The image generation device 24 is installed in the main body housing 22 so as to emit light upward.
 制御部25は、HUD20の各部の動作を制御する。制御部25は、車両1の車両制御部(図示せず)に接続されており、例えば、車両制御部から送信される車両走行情報や周辺環境情報等に基づいて、画像生成装置24の動作を制御するための制御信号を生成し、生成された制御信号を画像生成装置24に送信する。制御部25は、CPU(Central Processing Unit)等のプロセッサとメモリが搭載され、メモリから読みだしたコンピュータプログラムをプロセッサが実行して、画像生成装置24等の動作を制御する。 The control unit 25 controls the operation of each unit of the HUD 20. The control unit 25 is connected to the vehicle control unit (not shown) of the vehicle 1, and operates the image generation device 24 based on, for example, vehicle travel information and surrounding environment information transmitted from the vehicle control unit. A control signal for control is generated, and the generated control signal is transmitted to the image generator 24. The control unit 25 is equipped with a processor such as a CPU (Central Processing Unit) and a memory, and the processor executes a computer program read from the memory to control the operation of the image generator 24 and the like.
 平面鏡28は、画像生成装置24から出射される光の光路上に配置されている。具体的には、平面鏡28は、画像生成装置24の上方に配置され、画像生成装置24から出射された光を凹面鏡26に向けて反射するように構成されている。 The plane mirror 28 is arranged on the optical path of the light emitted from the image generation device 24. Specifically, the plane mirror 28 is arranged above the image generation device 24, and is configured to reflect the light emitted from the image generation device 24 toward the concave mirror 26.
 凹面鏡26は、画像生成装置24から出射されて平面鏡28により反射された光の光路上に配置されている。具体的には、凹面鏡26は、本体ハウジング22内において、画像生成装置24及び平面鏡28の前側に配置されている。凹面鏡26は、画像生成装置24から出射された光をウインドシールド18(例えば、車両1のフロントウィンドウ)に向けて反射するように構成されている。凹面鏡26は、所定の画像を形成するために凹状に湾曲した反射面を有し、画像生成装置24から出射され結像された光の像を所定の倍率で反射させる。凹面鏡26は、例えば駆動機構27を有し、制御部25から送信される制御信号に基づいて凹面鏡26の位置及び向きを変化させることができるように構成されていてもよい。 The concave mirror 26 is arranged on the optical path of the light emitted from the image generator 24 and reflected by the plane mirror 28. Specifically, the concave mirror 26 is arranged in the main body housing 22 on the front side of the image generator 24 and the plane mirror 28. The concave mirror 26 is configured to reflect the light emitted from the image generator 24 toward the windshield 18 (for example, the front window of the vehicle 1). The concave mirror 26 has a reflecting surface curved in a concave shape in order to form a predetermined image, and reflects an image of light emitted from the image generation device 24 and formed at a predetermined magnification. The concave mirror 26 may have, for example, a drive mechanism 27, and may be configured to be able to change the position and orientation of the concave mirror 26 based on a control signal transmitted from the control unit 25.
 画像生成装置24から出射された光は、平面鏡28及び凹面鏡26で反射されてHUD本体部21の出射窓23から出射される。HUD本体部21の出射窓23から出射された光は、ウインドシールド18に照射される。出射窓23からウインドシールド18に照射された光の一部は、乗員の視点Eに向けて反射される。この結果、乗員は、HUD本体部21から出射された光をウインドシールド18の前方の所定の距離において形成される虚像(所定の画像)として認識する。このように、HUD20によって表示される画像がウインドシールド18を通して車両1の前方の現実空間に重畳される結果、乗員は、所定の画像により形成される虚像オブジェクトIが車両外部に位置する道路上に浮いているように視認することができる。 The light emitted from the image generator 24 is reflected by the plane mirror 28 and the concave mirror 26 and emitted from the exit window 23 of the HUD main body 21. The light emitted from the exit window 23 of the HUD main body 21 irradiates the windshield 18. A part of the light emitted from the exit window 23 to the windshield 18 is reflected toward the occupant's viewpoint E. As a result, the occupant recognizes the light emitted from the HUD main body 21 as a virtual image (predetermined image) formed at a predetermined distance in front of the windshield 18. As a result of the image displayed by the HUD 20 being superimposed on the real space in front of the vehicle 1 through the windshield 18, the occupant can see the virtual image object I formed by the predetermined image on the road located outside the vehicle. It can be visually recognized as if it were floating.
 ここで、乗員の視点Eは、乗員の左目の視点又は右目の視点のいずれかであってもよい。または、視点Eは、左目の視点と右目の視点を結んだ線分の中点として規定されてもよい。乗員の視点Eの位置は、例えば、車両1の内部に配置されたカメラによって取得された画像データに基づいて特定されうる。乗員の視点Eの位置は、所定の周期で更新されてもよいし、車両1の起動時に一回だけ決定されてもよい。 Here, the occupant's viewpoint E may be either the occupant's left eye viewpoint or the right eye viewpoint. Alternatively, the viewpoint E may be defined as the midpoint of a line segment connecting the viewpoint of the left eye and the viewpoint of the right eye. The position of the occupant's viewpoint E can be specified, for example, based on image data acquired by a camera arranged inside the vehicle 1. The position of the viewpoint E of the occupant may be updated at a predetermined cycle, or may be determined only once when the vehicle 1 is started.
 なお、虚像オブジェクトIとして2D画像(平面画像)を形成する場合には、所定の画像を任意に定めた単一距離の虚像となるように投影する。虚像オブジェクトIとして3D画像(立体画像)を形成する場合には、互いに同一または互いに異なる複数の所定の画像をそれぞれ異なる距離の虚像となるように投影する。また、虚像オブジェクトIの距離(乗員の視点Eから虚像までの距離)は、画像生成装置24から乗員の視点Eまでの距離を調整する(例えば画像生成装置24と凹面鏡26との間の距離を調整する)ことによって適宜調整可能である。 When a 2D image (planar image) is formed as a virtual image object I, a predetermined image is projected so as to be a virtual image of a single distance arbitrarily determined. When a 3D image (stereoscopic image) is formed as a virtual image object I, a plurality of predetermined images that are the same as or different from each other are projected so as to be virtual images at different distances. Further, the distance of the virtual image object I (distance from the viewpoint E of the occupant to the virtual image) adjusts the distance from the image generation device 24 to the viewpoint E of the occupant (for example, the distance between the image generation device 24 and the concave mirror 26). It can be adjusted as appropriate by adjusting).
 また本例では、画像生成装置24から出射された光が平面鏡28と凹面鏡26とで2回反射される構成を説明したが、平面鏡28は無く凹面鏡26のみが配置され、光が1回反射される構成としてもよい。 Further, in this example, the configuration in which the light emitted from the image generator 24 is reflected twice by the plane mirror 28 and the concave mirror 26 has been described, but there is no plane mirror 28 and only the concave mirror 26 is arranged and the light is reflected once. It may be configured as such.
(第一実施形態)
 図2から図7を参照して、第一実施形態に係る画像生成装置24Aについて説明する。
 図2は、画像生成装置24Aの構成を示す左右方向断面模式図である。
(First Embodiment)
The image generation device 24A according to the first embodiment will be described with reference to FIGS. 2 to 7.
FIG. 2 is a schematic cross-sectional view in the left-right direction showing the configuration of the image generation device 24A.
 図2に示すように、画像生成装置24Aは、光源111と、レンズ120(光学素子)と、液晶デバイス130と、拡散シート140A(光学部材)を備えている。レンズ120は、光源111の上側に配置される。液晶デバイス130は、レンズ120の上側に配置される。拡散シート140Aは、レンズ120と液晶デバイス130の間に配置される。 As shown in FIG. 2, the image generator 24A includes a light source 111, a lens 120 (optical element), a liquid crystal device 130, and a diffusion sheet 140A (optical member). The lens 120 is arranged above the light source 111. The liquid crystal device 130 is arranged above the lens 120. The diffusion sheet 140A is arranged between the lens 120 and the liquid crystal device 130.
 光源111は、例えば、レーザ光源またはLED光源である。レーザ光源は、例えば、赤色レーザ光と、緑光レーザ光と、青色レーザ光をそれぞれ出射するように構成されたRGBレーザ光源である。LED光源は、例えば、白色のLED光源である。光源111は、光源基板110に搭載されている。本例においては、光源111は、第一光源111Aと第二光源111Bを備えている。第一光源111Aと第二光源111Bは、光源基板110上において、左右方向に一定の距離だけ離隔して配置されている。光源基板110は、例えば、絶縁体からなるベース基板の表面や内部に電気回路の配線がプリントされたプリント基板である。光源基板110は、制御部25に電気的に接続されている。 The light source 111 is, for example, a laser light source or an LED light source. The laser light source is, for example, an RGB laser light source configured to emit a red laser light, a green light laser light, and a blue laser light, respectively. The LED light source is, for example, a white LED light source. The light source 111 is mounted on the light source substrate 110. In this example, the light source 111 includes a first light source 111A and a second light source 111B. The first light source 111A and the second light source 111B are arranged on the light source substrate 110 at a distance of a certain distance in the left-right direction. The light source substrate 110 is, for example, a printed circuit board on which wiring of an electric circuit is printed on the surface or inside of a base substrate made of an insulator. The light source substrate 110 is electrically connected to the control unit 25.
 レンズ120は、例えば、光源111からの光が入射される入射面122及び当該入射した光が出射される出射面123のいずれも凸面状に形成された非球面凸レンズである。レンズ120は、光源111から出射された光を透過させて液晶デバイス130に向けて出射するように構成されている。 The lens 120 is, for example, an aspherical convex lens in which both the incident surface 122 on which the light from the light source 111 is incident and the exit surface 123 on which the incident light is emitted are formed in a convex shape. The lens 120 is configured to transmit the light emitted from the light source 111 and emit it toward the liquid crystal device 130.
 本例においては、レンズ120は、第一光源111Aから出射された第一光を透過する第一領域121Aと、第二光源111Bから出射された第二光を透過する第二領域121Bとを有している。第一領域121Aは、第一光源111Aに対応した非球面凸レンズである。第二領域121Bは、第二光源111Bに対応した非球面凸レンズである。第一領域121Aの入射面122A及び第二領域121Bの入射面122Bは、下方にやや膨らんだ凸状の入射面である。第一領域121Aの出射面123A及び第二領域121Bの出射面123Bは、上方に膨らんだ凸状の出射面である。左側に配置される第一領域121Aにおける右側の一部分と、右側に配置される第二領域121Bにおける左側の一部分とが結合されている。レンズ120は、例えば、第一光源111Aの発光面中心が第一領域121Aの焦点位置となるとともに第二光源111Bの発光面中心が第二領域121Bの焦点位置となるように、レンズホルダ(図示せず)に取り付けられている。 In this example, the lens 120 has a first region 121A that transmits the first light emitted from the first light source 111A and a second region 121B that transmits the second light emitted from the second light source 111B. is doing. The first region 121A is an aspherical convex lens corresponding to the first light source 111A. The second region 121B is an aspherical convex lens corresponding to the second light source 111B. The incident surface 122A of the first region 121A and the incident surface 122B of the second region 121B are convex incident surfaces slightly bulging downward. The exit surface 123A of the first region 121A and the exit surface 123B of the second region 121B are convex exit surfaces that bulge upward. The right part of the first region 121A arranged on the left side and the left part of the second region 121B arranged on the right side are combined. The lens 120 has, for example, a lens holder (FIG. 2) so that the center of the light emitting surface of the first light source 111A is the focal position of the first region 121A and the center of the light emitting surface of the second light source 111B is the focal position of the second region 121B. Not shown).
 拡散シート140Aは、例えばOHPシートを含む樹脂薄膜シートである。本例では、拡散シート140Aは、レンズ120と液晶デバイス130の間であって、液晶デバイス130に対向するように配置される。拡散シート140Aは、レンズ120から照射された光の一部を減光するように構成されている。レンズ120から照射された光の他の一部は、拡散シート140Aを通過する。拡散シート140Aを通過した光は、液晶デバイス130に進む。拡散シート140Aの更なる詳細は、図5を参照して後述する。 The diffusion sheet 140A is, for example, a resin thin film sheet containing an OHP sheet. In this example, the diffusion sheet 140A is arranged between the lens 120 and the liquid crystal device 130 so as to face the liquid crystal device 130. The diffusion sheet 140A is configured to dim a part of the light emitted from the lens 120. The other part of the light emitted from the lens 120 passes through the diffusion sheet 140A. The light that has passed through the diffusion sheet 140A travels to the liquid crystal device 130. Further details of the diffusion sheet 140A will be described later with reference to FIG.
 液晶デバイス130は、拡散シート140Aを通過した光により所定の画像を生成するための光を形成する。液晶デバイス130は、例えば、画像を生成する光を出射するための光出射面を画像生成装置24Aの上方へ向けた状態でPGUハウジング(図示せず)の上面部に取り付けられている。 The liquid crystal device 130 forms light for generating a predetermined image by the light passing through the diffusion sheet 140A. The liquid crystal device 130 is attached to the upper surface of the PGU housing (not shown), for example, with the light emitting surface for emitting light for generating an image facing upward of the image generating device 24A.
 液晶デバイス130は、例えば、液晶パネル131と駆動回路(図示せず)を有している。液晶パネル131を構成する画素の各々は、駆動回路により、レンズ120を透過した光を透過させる状態と光を透過させない状態に制御される。画素ごとに光の透過と遮断が制御されることにより、所定の画像を生成するための光が形成される。 The liquid crystal device 130 has, for example, a liquid crystal panel 131 and a drive circuit (not shown). Each of the pixels constituting the liquid crystal panel 131 is controlled by a drive circuit so that the light transmitted through the lens 120 is transmitted and the light is not transmitted. By controlling the transmission and blocking of light for each pixel, light for generating a predetermined image is formed.
 図3は、液晶デバイス130の液晶パネル131の斜視図である。図3に示すように、液晶パネルは長方形状の画像形成可能領域(画像を形成可能な領域、表示領域)Aを有する。画像形成可能領域Aにおいて、一方(図3においては前側)の長辺を辺A1、他方(図3においては後側)の長辺を辺A2、一方(図3においては左側)の短辺を辺A3、他方(図3においては右側)の短辺をA4とする。本例において、画像形成可能領域Aの外周とは、二つの長辺A1、A2及び二つの短辺A3、A4を含む。 FIG. 3 is a perspective view of the liquid crystal panel 131 of the liquid crystal device 130. As shown in FIG. 3, the liquid crystal panel has a rectangular image-formable region (image-formable region, display region) A. In the image-formable region A, the long side of one (front side in FIG. 3) is side A1, the long side of the other (rear side in FIG. 3) is side A2, and the short side of one (left side in FIG. 3). Let A4 be the short side of the side A3 and the other (right side in FIG. 3). In this example, the outer circumference of the image-formable region A includes two long sides A1 and A2 and two short sides A3 and A4.
 図4は、HUD20により、虚像オブジェクトI1が車両1の外部の現実空間と重畳されるように表示された状態での乗員の視野領域Vの一例を示す図である。なお、図4に示す視野領域V内には、車両1の一部(ボンネットなど)が含まれている。 FIG. 4 is a diagram showing an example of the visual field area V of the occupant in a state where the virtual image object I1 is displayed so as to be superimposed on the real space outside the vehicle 1 by the HUD 20. The field of view region V shown in FIG. 4 includes a part of the vehicle 1 (bonnet or the like).
 乗員の視野領域Vには、表示の一例として、車速情報を示す虚像オブジェクトI1が表示されている。液晶デバイス130は、虚像表示可能領域R内の所定の位置に虚像オブジェクトI1が表示されるように、液晶パネル131を構成する画素ごとに光の透過と遮断を制御して、車速情報を示す画像を生成するための光を形成する。なお、破線で示す四角枠は、便宜上、虚像表示可能領域Rの位置を表示したものであって、実際には枠は存在しない。虚像表示可能領域Rは、液晶デバイス130において図2および図3に示す画像形成可能領域Aに対応している。本例においては、液晶デバイス130における画像形成可能領域Aは液晶パネル131を構成する画素が形成されている領域であり、虚像表示可能領域Rは液晶パネル131の形状に対応している。 In the visual field area V of the occupant, a virtual image object I1 showing vehicle speed information is displayed as an example of display. The liquid crystal device 130 controls light transmission and blocking for each pixel constituting the liquid crystal panel 131 so that the virtual image object I1 is displayed at a predetermined position in the virtual image displayable area R, and an image showing vehicle speed information. Form the light to produce. The square frame shown by the broken line indicates the position of the virtual image displayable area R for convenience, and the frame does not actually exist. The virtual image displayable region R corresponds to the image formable region A shown in FIGS. 2 and 3 in the liquid crystal device 130. In this example, the image formable region A in the liquid crystal device 130 is a region in which the pixels constituting the liquid crystal panel 131 are formed, and the virtual image displayable region R corresponds to the shape of the liquid crystal panel 131.
 次に、本例の拡散シート140Aの説明をする。図5は拡散シート140Aの平面図を示す。図5に示すように、拡散シート140Aは、長方形状の画像形成可能領域Aに対応して、長方形状を有する。拡散シート140Aにおいて、一方(図5においては前側)の長辺を辺141、他方(図5においては後側)の長辺を辺142、一方(図5においては左側)の短辺を辺143、他方(図5においては右側)の短辺を144とする。辺141と辺143とによって形成される角部分を角145、辺141と辺144とによって形成される角部分を角146、辺142と辺143とによって形成される角部分を角147、辺142と辺144とによって形成される角部分を148とする。 Next, the diffusion sheet 140A of this example will be described. FIG. 5 shows a plan view of the diffusion sheet 140A. As shown in FIG. 5, the diffusion sheet 140A has a rectangular shape corresponding to the rectangular image-forming region A. In the diffusion sheet 140A, the long side of one (front side in FIG. 5) is side 141, the long side of the other (rear side in FIG. 5) is side 142, and the short side of one (left side in FIG. 5) is side 143. The other short side (on the right side in FIG. 5) is 144. The corner portion formed by the side 141 and the side 143 is the corner 145, the corner portion formed by the side 141 and the side 144 is the corner 146, and the corner portion formed by the side 142 and the side 143 is the corner 147 and the side 142. Let 148 be the corner portion formed by the side 144 and the side 144.
 拡散シート140Aの辺141は、液晶パネル131の画像形成可能領域Aの辺A1に対応している。拡散シート140Aの辺142は、液晶パネル131の画像形成可能領域Aの辺A2に対応している。拡散シート140Aの辺143は、液晶パネル131の画像形成可能領域Aの辺A3に対応している。拡散シート140Aの辺144は、液晶パネル131の画像形成可能領域Aの辺A4に対応している。なお、拡散シート140Aの形状は画像形成可能領域Aの形状に対応していればよく、長方形状に限定されない。拡散シート140Aの形状は、例えば楕円形状でもよい。 The side 141 of the diffusion sheet 140A corresponds to the side A1 of the image formable region A of the liquid crystal panel 131. The side 142 of the diffusion sheet 140A corresponds to the side A2 of the image-formable region A of the liquid crystal panel 131. The side 143 of the diffusion sheet 140A corresponds to the side A3 of the image-formable region A of the liquid crystal panel 131. The side 144 of the diffusion sheet 140A corresponds to the side A4 of the image-formable region A of the liquid crystal panel 131. The shape of the diffusion sheet 140A may correspond to the shape of the image-formable region A, and is not limited to the rectangular shape. The shape of the diffusion sheet 140A may be, for example, an elliptical shape.
 拡散シート140Aは、辺141と、二つの角145及び角146を含み、レンズ120からの光の一部を減光する領域P1と、拡散シート140Aの中央を含み、レンズ120からの光を拡散させることなく透過させる領域Q1とを有する。領域P1における光の減光率は、領域Q1における光の減光率よりも高い。本例においては、領域P1における光の拡散率は、領域Q1における光の拡散率よりも大きい。例えば領域P1の光の拡散率は50%であり、領域Q1の光の拡散率は5%未満である。領域Q1の大きさは、虚像オブジェクトI1を形成する光全体を透過可能な大きさである。 The diffusion sheet 140A includes a side 141, two corners 145 and a corner 146, a region P1 that dims a part of the light from the lens 120, and a center of the diffusion sheet 140A, and diffuses the light from the lens 120. It has a region Q1 that allows the light to pass through without causing the light to pass through. The dimming rate of light in the region P1 is higher than the dimming rate of light in the region Q1. In this example, the light diffusivity in the region P1 is larger than the light diffusivity in the region Q1. For example, the light diffusivity of the region P1 is 50%, and the light diffusivity of the region Q1 is less than 5%. The size of the region Q1 is a size capable of transmitting the entire light forming the virtual image object I1.
 拡散シート140Aの領域P1には、基層である樹脂薄膜シートの少なくとも一つの面に、微細な凸凹が形成されている。凸凹は樹脂薄膜シートの両面に形成されてもよい。凹凸の形状や密度、樹脂薄膜シートからの高さに基づき、領域P1における光の拡散率が定まる。この凸凹により、レンズ120から照射された光の一部は、領域P1を通過する際にあらゆる方向に拡散される。領域P1を通過した光の一部は液晶デバイス130以外の方向に拡散されるため、液晶デバイス130に到達する光は減り、結果として液晶デバイス130に入射される光は減光される。本例においては、領域P1は、辺141と、角145及び角146を含む領域であるため、対応する画像形成可能領域Aの辺A1に相当する光が減光される。 In the region P1 of the diffusion sheet 140A, fine irregularities are formed on at least one surface of the resin thin film sheet which is the base layer. The unevenness may be formed on both sides of the resin thin film sheet. The light diffusivity in the region P1 is determined based on the shape and density of the unevenness and the height from the resin thin film sheet. Due to this unevenness, a part of the light emitted from the lens 120 is diffused in all directions as it passes through the region P1. Since a part of the light passing through the region P1 is diffused in a direction other than the liquid crystal device 130, the light reaching the liquid crystal device 130 is reduced, and as a result, the light incident on the liquid crystal device 130 is dimmed. In this example, since the region P1 is a region including the side 141 and the corners 145 and 146, the light corresponding to the side A1 of the corresponding image-formable region A is dimmed.
 比較として、拡散シート140Aを備えていない一般的な画像生成装置Zを説明する。一般的に、液晶デバイスは、液晶パネルを構成する画素ごとにレンズを透過した光の透過と遮断を制御することにより、所定の画像を形成するための光を形成する。しかしながら、例えば、液晶デバイスの液晶パネルにおいて光が遮断されるべき画素から光が漏れると、図4に示される虚像表示可能領域R内において虚像オブジェクトI1以外の領域が薄く光るように視認される恐れがある。画像生成装置Zでは、液晶デバイスの画像形成領域においてその外周部にも他の部分と同様に光が照射されるので、虚像表示可能領域Rの輪郭が目立つおそれがある。拡散シート140Aを備えていない画像生成装置Zでは、レンズを透過した光は、拡散されることなく液晶パネルの画像形成可能領域Aの輪郭に到達するため、虚像表示可能領域Rの輪郭の内側の輝度と輪郭の外側の輝度とに差が生じて、虚像表示可能領域Rの輪郭が目立つおそれがある。 As a comparison, a general image generator Z not provided with the diffusion sheet 140A will be described. In general, a liquid crystal device forms light for forming a predetermined image by controlling transmission and blocking of light transmitted through a lens for each pixel constituting the liquid crystal panel. However, for example, when light leaks from a pixel to which light should be blocked in a liquid crystal panel of a liquid crystal device, a region other than the virtual image object I1 may be visually recognized as faintly shining in the virtual image displayable region R shown in FIG. There is. In the image generation device Z, the outer peripheral portion of the image forming region of the liquid crystal device is also irradiated with light in the same manner as the other portions, so that the contour of the virtual image displayable region R may be conspicuous. In the image generator Z not provided with the diffusion sheet 140A, the light transmitted through the lens reaches the contour of the image-formable region A of the liquid crystal panel without being diffused, so that the light is inside the contour of the virtual image displayable region R. There is a possibility that the contour of the virtual image displayable region R becomes conspicuous due to a difference between the brightness and the brightness outside the contour.
 しかしながら本例の画像生成装置24Aにおいては、拡散シート140Aが、レンズ120を透過した光のうち、拡散シート140Aの領域P1を通過する光を拡散し、減光する。領域P1は液晶パネル131の画像形成可能領域Aの輪郭を構成する辺A1に対応する位置にあるため、当該辺A1を形成する光が減光され、その結果辺A1に対応する虚像表示可能領域Rの一辺の光も減光される。したがって、虚像表示可能領域Rの輪郭の内側の輝度と輪郭の外側の輝度とに差が生じにくく、虚像表示可能領域Rの輪郭が目立ちにくい。 However, in the image generation device 24A of this example, the diffusion sheet 140A diffuses and dims the light that has passed through the region P1 of the diffusion sheet 140A among the light transmitted through the lens 120. Since the region P1 is located at a position corresponding to the side A1 constituting the contour of the image formable region A of the liquid crystal panel 131, the light forming the side A1 is dimmed, and as a result, the virtual image displayable region corresponding to the side A1 is displayed. The light on one side of R is also dimmed. Therefore, there is little difference between the brightness inside the contour of the virtual image displayable region R and the brightness outside the contour, and the contour of the virtual image displayable region R is not conspicuous.
 このように本例の画像生成装置24Aは、画像形成可能領域Aの一辺A1に相当する光の一部を減光する拡散シート140Aを備えるため、画像形成可能領域Aの辺A1を形成する光の一部が減光される。辺A1を形成する光の一部が減光されることで、辺A1に対応する虚像表示可能領域Rの一辺の内側と、当該一辺の外側とで輝度の差が少なくなり、虚像表示可能領域Rの一辺の輪郭は目立たなくなる。特に本例の拡散シート140Aの領域P1は辺141だけでなく角145及び角146も含んでいる。本例の拡散シート140Aは、虚像表示可能領域Rの一辺の輪郭に加え、これら二つの角145及び角146に対応する虚像表示可能領域Rの二つの角の輪郭も目立たなくする。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, since the image generation device 24A of this example includes the diffusion sheet 140A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. In particular, the region P1 of the diffusion sheet 140A of this example includes not only the sides 141 but also the corners 145 and 146. In the diffusion sheet 140A of this example, in addition to the contour of one side of the virtual image displayable region R, the contours of the two corners of the virtual image displayable region R corresponding to these two corners 145 and 146 are also inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
 本例の拡散シート140Aでは、画像形成可能領域Aの辺A1に相当する光の減光率、すなわち領域P1の光の減光率は、拡散シート140Aの中央を含む領域Q1の光の減光率よりも高い。より具体的には、領域P1の光の拡散率は、領域Q1の光の拡散率よりも高い。したがって、本例の拡散シート140Aは、領域Q1においては虚像オブジェクトI1を形成する光を拡散させないで光の光量を確保しつつ、虚像表示可能領域Rの一辺の輪郭を目立たなくすることができる。 In the diffusion sheet 140A of this example, the dimming rate of the light corresponding to the side A1 of the image-formable region A, that is, the dimming rate of the light of the region P1 is the dimming of the light of the region Q1 including the center of the diffusion sheet 140A. Higher than the rate. More specifically, the light diffusivity of the region P1 is higher than the light diffusivity of the region Q1. Therefore, the diffusion sheet 140A of this example can make the outline of one side of the virtual image displayable region R inconspicuous while ensuring the amount of light without diffusing the light forming the virtual image object I1 in the region Q1.
(変形例1)
 拡散シート140Aの領域P1は、辺141と、角145及び角146を含む領域であるが、領域P1の位置は当該場所に限定されない。領域P1は、虚像オブジェクトI1を形成する光を減光しない位置に配置されればよい。図6は、変形例1として拡散シート140Bの平面図を示す。図5に係る拡散シート140Aと同一または対応する構成要素には同様の符号を付すとともに、説明は省略する。
(Modification 1)
The region P1 of the diffusion sheet 140A is a region including the side 141 and the corners 145 and 146, but the position of the region P1 is not limited to the location. The region P1 may be arranged at a position where the light forming the virtual image object I1 is not dimmed. FIG. 6 shows a plan view of the diffusion sheet 140B as a modification 1. The same or corresponding components as the diffusion sheet 140A according to FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
 図6に示すように、拡散シート140Bの領域P1’は四つの辺141、142、143、144及び四つの角145、146、147、148全てを含む領域であって、虚像オブジェクトI1を形成する光を減光しない位置に配置されている。領域P1’における光の拡散率は、領域Q1における光の拡散率よりも大きく、例えば50%である。領域P1’は画像形成可能領域Aの外周全周に対応する位置に配置されており、拡散シート140Bは画像形成可能領域Aの外周全てに相当する光を減光するよう構成されている。 As shown in FIG. 6, the region P1'of the diffusion sheet 140B is a region including all four sides 141, 142, 143, 144 and four corners 145, 146, 147, 148, and forms the virtual image object I1. It is placed in a position that does not dimm the light. The light diffusivity in the region P1'is larger than the light diffusivity in the region Q1, for example, 50%. The region P1'is arranged at a position corresponding to the entire outer circumference of the image-formable region A, and the diffusion sheet 140B is configured to dimm the light corresponding to the entire outer circumference of the image-formable region A.
 このように、拡散シート140Bは画像形成可能領域Aの外周全てに相当する光を減光するため、画像形成可能領域Aの輪郭を形成する光の一部が減光される。画像形成可能領域Aの輪郭を形成する光の一部が減光されることで、対応する虚像表示可能領域Rの輪郭は目立たなくなる。特に本例の拡散シート140Bの領域P1’は四つの辺141から144だけでなく四つの角145から148も含んでいる。本例の拡散シート140Bは、虚像表示可能領域Rの四辺の輪郭に加え、これら四つ角に対応する虚像表示可能領域Rの四つの角の輪郭も目立たなくする。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, since the diffusion sheet 140B dims the light corresponding to the entire outer periphery of the image formable region A, a part of the light forming the contour of the image formable region A is dimmed. By dimming a part of the light forming the contour of the image-formable region A, the contour of the corresponding virtual image displayable region R becomes inconspicuous. In particular, the region P1'of the diffusion sheet 140B of this example includes not only the four sides 141 to 144 but also the four corners 145 to 148. In the diffusion sheet 140B of this example, in addition to the contours of the four sides of the virtual image displayable region R, the contours of the four corners of the virtual image displayable region R corresponding to these four corners are also inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
 なお、本例の拡散シート140Bでは、一枚の樹脂薄膜シートに領域P1’及び領域Q1が配置されているが、拡散シート140Bの形態はこれに限定されない。拡散シート140Bの形態は、領域P1’のみで構成された、ドーナツ形状のシートでもよい。領域Q1の部分は樹脂薄膜シートからくりぬかれており、空間である。この場合においても、領域P1’における光の拡散率は、領域Q1の部分(空間)における光の拡散率よりも大きいため、上記と同様の効果が得られる。 In the diffusion sheet 140B of this example, the region P1'and the region Q1 are arranged on one resin thin film sheet, but the form of the diffusion sheet 140B is not limited to this. The form of the diffusion sheet 140B may be a donut-shaped sheet composed of only the region P1'. The portion of the region Q1 is hollowed out from the resin thin film sheet and is a space. Also in this case, since the light diffusivity in the region P1'is larger than the light diffusivity in the portion (space) of the region Q1, the same effect as described above can be obtained.
(変形例2)
 拡散シート140A及び拡散シート140Bはそれぞれ、入射された光の一部を減光する領域P1及びP1’を一つずつ有しているが、領域P1の数は一つに限定されない。図7は、変形例2として、拡散シート140Cの平面図を示す。図5に係る拡散シート140Aと同一または対応する構成要素には同様の符号を付すとともに、説明は省略する。
(Modification 2)
The diffusion sheet 140A and the diffusion sheet 140B each have one region P1 and one P1'that dimming a part of the incident light, but the number of regions P1 is not limited to one. FIG. 7 shows a plan view of the diffusion sheet 140C as a modification 2. The same or corresponding components as the diffusion sheet 140A according to FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
 図7に示すように、拡散シート140Cは、領域P2,領域P3,領域P4を有する。領域P2は、四つの辺141、142、143、144及び四つの角145、146、147、148全てを含むように配置されている。領域P4は、領域P2の内側であって、領域Q1を囲うように配置されている。領域P3は、領域P2と領域P4の間に配置されている。いずれの領域も虚像オブジェクトI1を形成する光を減光しない位置に配置されている。本例では、各領域は画像形成可能領域Aの外周に対応する位置に配置されているが、画像形成可能領域Aの一辺のみに対応する位置に配置されてもよい。 As shown in FIG. 7, the diffusion sheet 140C has a region P2, a region P3, and a region P4. Region P2 is arranged to include all four sides 141, 142, 143, 144 and four corners 145, 146, 147, 148. The region P4 is inside the region P2 and is arranged so as to surround the region Q1. The region P3 is arranged between the regions P2 and the region P4. Each region is arranged at a position where the light forming the virtual image object I1 is not dimmed. In this example, each region is arranged at a position corresponding to the outer periphery of the image-formable region A, but may be arranged at a position corresponding to only one side of the image-formable region A.
 領域P4の光の拡散率は、領域Q1の光の拡散率よりも高く、例えば10%である。領域P3の光の拡散率は、領域P4の光の拡散率よりも高く、例えば20%である。領域P2の光の拡散率は、領域P3の光の拡散率よりも高く、例えば50%である。言い換えると、拡散シート140Cの光の拡散率は、拡散シート140Cの外周に位置する領域P2から中央に位置する領域Q1に向けて徐々に小さくなっている。例えば、領域P4では微細な凸凹の密度が低く、領域P2では微細な凸凹の密度が高く、領域P3では微細な凸凹の密度が、領域P2での凸凹の密度よりも低く、領域P4での凸凹の密度よりも高くなっている。 The light diffusivity of the region P4 is higher than the light diffusivity of the region Q1, for example, 10%. The light diffusivity of the region P3 is higher than the light diffusivity of the region P4, for example, 20%. The light diffusivity of the region P2 is higher than the light diffusivity of the region P3, for example, 50%. In other words, the light diffusivity of the diffusing sheet 140C gradually decreases from the region P2 located on the outer periphery of the diffusing sheet 140C toward the region Q1 located in the center. For example, the density of fine irregularities is low in the region P4, the density of fine irregularities is high in the region P2, the density of the fine irregularities in the region P3 is lower than the density of the irregularities in the region P2, and the density of the irregularities in the region P4. It is higher than the density of.
 このように、拡散シート140Cの光の拡散率は、拡散シートの外周から中央に向けて徐々に小さくなっているため、画像形成可能領域Aの輪郭を形成する光は、中央から外周に亘って徐々により拡散される。画像形成可能領域Aの輪郭を形成する光の光量が、中央から外周に向かって少なくなるため、虚像表示可能領域R内の輝度も中央から外周に向かって緩やかに変化することとなり、虚像表示可能領域Rの輪郭が目立ちにくい。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, the diffusion rate of the light of the diffusion sheet 140C gradually decreases from the outer periphery of the diffusion sheet toward the center, so that the light forming the contour of the image-formable region A extends from the center to the outer periphery. Gradually more diffused. Since the amount of light forming the contour of the image-formable region A decreases from the center to the outer periphery, the brightness in the virtual image displayable region R also gradually changes from the center to the outer periphery, and the virtual image can be displayed. The outline of the area R is inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
(その他の変形例)
 画像形成可能領域Aの一辺A1に相当する光の一部を減光する光学部材として、拡散シート140A、140B及び140Cを説明したが、光学部材は拡散シートに限定されない。光の一部を減光する光学部材は、透過シート150Aでもよい。以下、図2から図7を参照して、透過シート150Aの説明をする。なお、透過シート150Aの構造は、配置位置(レンズ120と液晶デバイス130の間)や形状(長方形状)、形態(領域Q1、P1、P1’、P2、P3、P4)の点で拡散シート140Aの構造と同じであるため、重複する説明は省略する。
(Other variants)
Although the diffusion sheets 140A, 140B and 140C have been described as optical members that dimming a part of the light corresponding to one side A1 of the image-formable region A, the optical members are not limited to the diffusion sheet. The optical member that dims a part of the light may be a transmission sheet 150A. Hereinafter, the transmission sheet 150A will be described with reference to FIGS. 2 to 7. The structure of the transmissive sheet 150A is the diffusion sheet 140A in terms of the arrangement position (between the lens 120 and the liquid crystal device 130), the shape (rectangular shape), and the form (regions Q1, P1, P1', P2, P3, P4). Since it has the same structure as that of, the duplicate description is omitted.
 透過シート150Aは、例えばOHPシートを含む樹脂薄膜シートである。透過シート150Aにおいて、領域P1における光の透過率は、領域Q1における光の透過率よりも小さい。例えば領域P1の光の透過率は50%であり、領域Q1の光の透過率は95%以上である。 The transmissive sheet 150A is, for example, a resin thin film sheet containing an OHP sheet. In the transmissive sheet 150A, the light transmittance in the region P1 is smaller than the light transmittance in the region Q1. For example, the light transmittance of the region P1 is 50%, and the light transmittance of the region Q1 is 95% or more.
 透過シート150Aの領域P1には、基層である樹脂薄膜シートの少なくとも一つの面に、着色層が覆われている(図5)。着色層の色は例えば灰色である。着色層は樹脂薄膜の両面に形成されてもよい。着色層の色の濃さに基づき、領域P1における光の透過率が定まる。この着色層により、レンズ120から照射された光の一部は、領域P1を通過する際に吸収される。領域P1を通過した光の一部は着色層に吸収されるため、液晶デバイス130に到達する光は減り、結果として液晶デバイス130に入射される光は減光される。 In the region P1 of the transmission sheet 150A, a colored layer is covered with at least one surface of the resin thin film sheet which is the base layer (FIG. 5). The color of the colored layer is, for example, gray. The colored layer may be formed on both sides of the resin thin film. The transmittance of light in the region P1 is determined based on the color intensity of the colored layer. By this colored layer, a part of the light emitted from the lens 120 is absorbed as it passes through the region P1. Since a part of the light that has passed through the region P1 is absorbed by the colored layer, the light that reaches the liquid crystal device 130 is reduced, and as a result, the light that is incident on the liquid crystal device 130 is dimmed.
 このように本例の画像生成装置24Aは、画像形成可能領域Aの一辺A1に相当する光の一部を減光する透過シート150Aを備えるため、画像形成可能領域Aの辺A1を形成する光の一部が減光される。辺A1を形成する光の一部が減光されることで、辺A1に対応する虚像表示可能領域Rの一辺の内側と、当該一辺の外側とで輝度の差が少なくなり、虚像表示可能領域Rの一辺の輪郭は目立たなくなる。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, since the image generation device 24A of this example includes the transmission sheet 150A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
 なお本例の光学部材は、透過シート150Aの変形例として、画像形成可能領域Aの外周全てに相当する光を減光するよう構成された透過シート150B(図6)や、透過シート150Cの光の透過率が、透過シート150Cの外周に位置する領域P2から中央に位置する領域Q1に向けて徐々に大きくなるよう構成されている透過シート150C(図7)であってもよい。透過シート150Cにおいては、例えば、領域P4では着色層の色が薄く、領域P2では着色層の色が濃く、領域P3では着色層の色が、領域P2での着色層の色よりも薄く、領域P4での着色層の色よりも濃くなっている。 As a modification of the transmissive sheet 150A, the optical member of this example includes the transmissive sheet 150B (FIG. 6) configured to dimming the light corresponding to the entire outer periphery of the image-forming region A, and the light of the transmissive sheet 150C. The transmissive sheet 150C (FIG. 7) may be configured such that the transmittance of the transmissive sheet 150C gradually increases from the region P2 located on the outer periphery of the transmissive sheet 150C toward the region Q1 located in the center. In the transmission sheet 150C, for example, the color of the colored layer is light in the region P4, the color of the colored layer is dark in the region P2, and the color of the colored layer in the region P3 is lighter than the color of the colored layer in the region P2. It is darker than the color of the colored layer in P4.
 画像形成可能領域Aの一辺A1に相当する光の一部を減光する光学部材は、吸収シート160Aでもよい。以下、図2から図7を参照して、吸収シート160Aの説明をする。なお、吸収シート160Aの構造は、配置位置(レンズ120と液晶デバイス130の間)や形状(長方形状)、形態(領域Q1、P1、P1’、P2、P3、P4)の点で拡散シート140Aの構造と同じであるため、重複する説明は省略する。 The optical member that dims a part of the light corresponding to one side A1 of the image formable region A may be the absorption sheet 160A. Hereinafter, the absorption sheet 160A will be described with reference to FIGS. 2 to 7. The structure of the absorption sheet 160A is the diffusion sheet 140A in terms of the arrangement position (between the lens 120 and the liquid crystal device 130), the shape (rectangular shape), and the form (regions Q1, P1, P1', P2, P3, P4). Since it has the same structure as that of, the duplicate description is omitted.
 吸収シート160Aは、例えばOHPシートを含む樹脂薄膜シートである。吸収シート160Aにおいて、領域P1における光の吸収率は、領域Q1における光の吸収率よりも大きい。例えば領域P1の光の吸収率は50%であり、領域Q1の光の吸収率は5%未満である。 The absorption sheet 160A is, for example, a resin thin film sheet containing an OHP sheet. In the absorption sheet 160A, the light absorption rate in the region P1 is larger than the light absorption rate in the region Q1. For example, the light absorption rate of the region P1 is 50%, and the light absorption rate of the region Q1 is less than 5%.
 吸収シート160Aの領域P1には、基層である樹脂薄膜シートの少なくとも一つの面に、着色層が覆われている(図5)。着色層の色は例えば黒色である。着色層は樹脂薄膜の両面に形成されてもよい。着色層の色の濃さに基づき、領域P1における光の吸収率が定まる。この着色層により、レンズ120から照射された光の一部は、領域P1を通過する際に吸収される。領域P1を通過した光の一部は着色層に吸収されるため、液晶デバイス130に到達する光は減り、結果として液晶デバイス130に入射される光は減光される。 In the region P1 of the absorption sheet 160A, a colored layer is covered with at least one surface of the resin thin film sheet which is the base layer (FIG. 5). The color of the colored layer is, for example, black. The colored layer may be formed on both sides of the resin thin film. The light absorption rate in the region P1 is determined based on the color intensity of the colored layer. By this colored layer, a part of the light emitted from the lens 120 is absorbed as it passes through the region P1. Since a part of the light that has passed through the region P1 is absorbed by the colored layer, the light that reaches the liquid crystal device 130 is reduced, and as a result, the light that is incident on the liquid crystal device 130 is dimmed.
 このように本例の画像生成装置24Aは、画像形成可能領域Aの一辺A1に相当する光の一部を減光する吸収シート160Aを備えるため、画像形成可能領域Aの辺A1を形成する光の一部が減光される。辺A1を形成する光の一部が減光されることで、辺A1に対応する虚像表示可能領域Rの一辺の内側と、当該一辺の外側とで輝度の差が少なくなり、虚像表示可能領域Rの一辺の輪郭は目立たなくなる。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, since the image generation device 24A of this example includes the absorption sheet 160A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
 なお本例の光学部材は、吸収シート160Aの変形例として、画像形成可能領域Aの外周全てに相当する光を減光するよう構成された吸収シート160B(図6)や、吸収シート160Cの光の吸収率が、吸収シート160Cの外周に位置する領域P2から中央に位置する領域Q1に向けて徐々に小さくなるよう構成されている吸収シート160C(図7)であってもよい。吸収シート160Cにおいては、例えば、領域P4では着色層の色が薄く、領域P2では着色層の色が濃く、領域P3では着色層の色が、領域P2での着色層の色よりも薄く、領域P4での着色層の色よりも濃くなっている。 As a modification of the absorption sheet 160A, the optical member of this example includes the absorption sheet 160B (FIG. 6) configured to dimming the light corresponding to the entire outer periphery of the image-forming region A, and the light of the absorption sheet 160C. The absorbent sheet 160C (FIG. 7) may be configured such that the absorption rate of the absorbent sheet 160C gradually decreases from the region P2 located on the outer periphery of the absorbent sheet 160C toward the region Q1 located in the center. In the absorption sheet 160C, for example, the color of the colored layer is light in the region P4, the color of the colored layer is dark in the region P2, and the color of the colored layer in the region P3 is lighter than the color of the colored layer in the region P2. It is darker than the color of the colored layer in P4.
 画像形成可能領域Aの一辺A1に相当する光の一部を減光する光学部材は、反射シート170Aでもよい。以下、図2から図7を参照して、反射シート170Aの説明をする。なお、反射シート170Aの構造は、配置位置(レンズ120と液晶デバイスの間)や形状(長方形状)、形態(領域Q1、P1、P1’、P2、P3、P4)の点で拡散シート140Aの構造と同じであるため、重複する説明は省略する。 The optical member that dims a part of the light corresponding to one side A1 of the image formable region A may be the reflective sheet 170A. Hereinafter, the reflective sheet 170A will be described with reference to FIGS. 2 to 7. The structure of the reflective sheet 170A is the same as that of the diffusion sheet 140A in terms of the arrangement position (between the lens 120 and the liquid crystal device), the shape (rectangular shape), and the form (regions Q1, P1, P1', P2, P3, P4). Since it is the same as the structure, duplicate explanations will be omitted.
 反射シート170Aは、例えばOHPシートを含む樹脂薄膜シートである。反射シート170Aにおいて、領域P1における光の反射率は、領域Q1における光の反射率よりも大きい。例えば領域P1の光の反射率は50%であり、領域Q1の光の反射率は5%未満である。 The reflective sheet 170A is, for example, a resin thin film sheet containing an OHP sheet. In the reflective sheet 170A, the reflectance of light in the region P1 is larger than the reflectance of light in the region Q1. For example, the reflectance of light in region P1 is 50%, and the reflectance of light in region Q1 is less than 5%.
 反射シート170Aの領域P1には、基層である樹脂薄膜シートの少なくとも一つの面に、金属膜が覆われている(図5)。金属膜は、例えば樹脂薄膜シートに金属蒸着されて形成される。金属は例えばアルミニウムである。金属膜は樹脂薄膜の両面に形成されてもよい。金属膜の膜厚に基づき、領域P1における光の反射率が定まる。この金属膜により、レンズ120から照射された光の一部は、領域P1に入射された際に反射される。領域P1に入射した光の一部は金属膜に反射されるため、液晶デバイス130に到達する光は減り、結果として液晶デバイス130に入射される光は減光される。 The region P1 of the reflective sheet 170A is covered with a metal film on at least one surface of the resin thin film sheet which is the base layer (FIG. 5). The metal film is formed by, for example, metal vapor deposition on a resin thin film sheet. The metal is, for example, aluminum. The metal film may be formed on both sides of the resin thin film. The reflectance of light in the region P1 is determined based on the film thickness of the metal film. Due to this metal film, a part of the light emitted from the lens 120 is reflected when it is incident on the region P1. Since a part of the light incident on the region P1 is reflected by the metal film, the light reaching the liquid crystal device 130 is reduced, and as a result, the light incident on the liquid crystal device 130 is dimmed.
 このように本例の画像生成装置24Aは、画像形成可能領域Aの一辺A1に相当する光の一部を減光する反射シート170Aを備えるため、画像形成可能領域Aの辺A1を形成する光の一部が減光される。辺A1を形成する光の一部が減光されることで、辺A1に対応する虚像表示可能領域Rの一辺の内側と、当該一辺の外側とで輝度の差が少なくなり、虚像表示可能領域Rの一辺の輪郭は目立たなくなる。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, since the image generation device 24A of this example includes the reflective sheet 170A that dims a part of the light corresponding to one side A1 of the image formable region A, the light forming the side A1 of the image formable region A is provided. Part of is dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
 なお本例の光学部材は、反射シート170Aの変形例として、画像形成可能領域Aの外周全てに相当する光を減光するよう構成された反射シート170B(図6)や、反射シート170Cの光の反射率が、反射シート170Cの外周に位置する領域P2から中央に位置する領域Q1に向けて徐々に小さくなるよう構成されている反射シート170C(図7)であってもよい。反射シート170Cにおいては、例えば、領域P4では金属膜の膜厚が薄く、領域P2では金属膜の膜厚が厚く、領域P3では金属膜の膜厚が、領域P2での金属膜の膜厚よりも薄く、領域P4での金属膜の膜厚よりも厚くなっている。 As a modification of the reflective sheet 170A, the optical member of this example includes the reflective sheet 170B (FIG. 6) configured to dimm the light corresponding to the entire outer periphery of the image-forming region A, and the light of the reflective sheet 170C. The reflective sheet 170C (FIG. 7) may be configured such that the reflectance of the reflective sheet 170C gradually decreases from the region P2 located on the outer periphery of the reflective sheet 170C toward the region Q1 located in the center. In the reflective sheet 170C, for example, the film thickness of the metal film is thin in the region P4, the film thickness of the metal film is thick in the region P2, and the film thickness of the metal film in the region P3 is larger than the film thickness of the metal film in the region P2. It is also thin and thicker than the film thickness of the metal film in the region P4.
(第二実施形態)
 図8及び図9を参照して、第二実施形態に係る画像生成装置24Bについて説明する。図8は、画像生成装置24Bの構成を示す左右方向断面模式図である。図2に係る画像生成装置24Aと同一または対応する構成要素には同様の符号を付すとともに、説明は省略する。
(Second embodiment)
The image generation device 24B according to the second embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is a schematic cross-sectional view in the left-right direction showing the configuration of the image generation device 24B. The same or corresponding components as those of the image generator 24A according to FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
 図8に示すように、画像生成装置24Bは、光源111と、レンズ120(光学素子)と、液晶デバイス130と、拡散シート140A(光学部材)を備えている。第一実施形態に係る画像生成装置24Aでは、拡散シート140Aは、レンズ120と液晶デバイス130の間に配置されていた。第二実施形態に係る画像生成装置24Bでは、液晶デバイス130が、レンズ120と拡散シート140Aの間に配置されている。言い換えると、拡散シート140Aは、液晶デバイス130の上方に配置されており、レンズ120及び液晶デバイス130の両方を通過した光であって、画像形成可能領域Aの少なくとも一辺に相当する光の一部を減光するよう構成されている。なお画像生成装置24Bの光学部材は、拡散シート140Aに限定されない。光学部材は、画像形成可能領域Aの外周全てに相当する光を減光するよう構成されている拡散シート140Bや、外周から中央に向かって徐々に光の減光率が小さくなっている拡散シート140Cでもよい。光学部材は、透過シート150A,150B、150Cでも、吸収シート160A,160B,160Cでも、反射シート170A,170B,170Cでもよい。 As shown in FIG. 8, the image generator 24B includes a light source 111, a lens 120 (optical element), a liquid crystal device 130, and a diffusion sheet 140A (optical member). In the image generation device 24A according to the first embodiment, the diffusion sheet 140A is arranged between the lens 120 and the liquid crystal device 130. In the image generation device 24B according to the second embodiment, the liquid crystal device 130 is arranged between the lens 120 and the diffusion sheet 140A. In other words, the diffusion sheet 140A is arranged above the liquid crystal device 130, and is light that has passed through both the lens 120 and the liquid crystal device 130, and is a part of the light corresponding to at least one side of the image-forming region A. Is configured to be dimmed. The optical member of the image generation device 24B is not limited to the diffusion sheet 140A. The optical member includes a diffusion sheet 140B configured to dimming light corresponding to the entire outer periphery of the image-formable region A, and a diffusion sheet in which the dimming rate of light gradually decreases from the outer periphery toward the center. It may be 140C. The optical member may be a transmission sheet 150A, 150B, 150C, an absorption sheet 160A, 160B, 160C, or a reflection sheet 170A, 170B, 170C.
 このように本例の画像生成装置24Bの液晶デバイス130は、レンズ120と拡散シート140Aの間に配置されているため、拡散シート140Aは画像形成可能領域Aの少なくとも一辺A1に相当する光の一部を減光することができる。辺A1を形成する光の一部が減光されることで、辺A1に対応する虚像表示可能領域Rの一辺の内側と、当該一辺の外側とで輝度の差が少なくなり、虚像表示可能領域Rの一辺の輪郭は目立たなくなる。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, since the liquid crystal device 130 of the image generation device 24B of this example is arranged between the lens 120 and the diffusion sheet 140A, the diffusion sheet 140A is one of the light corresponding to at least one side A1 of the image formable region A. The part can be dimmed. By dimming a part of the light forming the side A1, the difference in brightness between the inside of one side of the virtual image displayable area R corresponding to the side A1 and the outside of the side is reduced, and the virtual image displayable area is reduced. The outline of one side of R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
 さらに本例の拡散シート140Aも、画像形成可能領域Aの辺A1に相当する光の減光率、すなわち領域P1の光の減光率は、拡散シート140Aの中央を含む領域Q1の光の減光率よりも高い。したがって、本例の拡散シート140Aは、領域Q1においては虚像オブジェクトI1を形成する光を拡散させないで光の光量を確保しつつ、虚像表示可能領域Rの一辺の輪郭を目立たなくすることができる。 Further, in the diffusion sheet 140A of this example as well, the dimming rate of the light corresponding to the side A1 of the image-formable region A, that is, the dimming rate of the light of the region P1 is the reduction of the light of the region Q1 including the center of the diffusion sheet 140A. Higher than the light rate. Therefore, the diffusion sheet 140A of this example can make the outline of one side of the virtual image displayable region R inconspicuous while ensuring the amount of light without diffusing the light forming the virtual image object I1 in the region Q1.
 光の一部を減光する光学部材は、画像生成装置24Bのハウジング180のカバー180Aでもよい。ハウジング180は、例えば樹脂成型によって形成され、光源基板110や、レンズ120及び液晶デバイス130を収容し、支持するよう構成されている。カバー180Aは、ハウジング180の一部であって、液晶デバイス130の上方に配置されており、レンズ120及び液晶デバイス130の両方を通過した光の少なくとも一部を減光するよう構成されている。カバー180Aは、レンズ120及び液晶デバイス130の両方を通過した光を完全に遮光するように構成されていてもよい。カバー180Aは、ハウジング180と一体的に形成されてもよいし、ハウジング180と別部材でもよい。カバー180Aは透明部材でもよいし、灰色あるいは黒色に着色されていてもよし、液晶デバイス130に対向する面(図8において下面)に金属蒸着が施されてもよい。 The optical member that dims a part of the light may be the cover 180A of the housing 180 of the image generator 24B. The housing 180 is formed, for example, by resin molding, and is configured to accommodate and support the light source substrate 110, the lens 120, and the liquid crystal device 130. The cover 180A is part of the housing 180 and is located above the liquid crystal device 130 and is configured to dimming at least a portion of the light that has passed through both the lens 120 and the liquid crystal device 130. The cover 180A may be configured to completely block light that has passed through both the lens 120 and the liquid crystal device 130. The cover 180A may be integrally formed with the housing 180, or may be a separate member from the housing 180. The cover 180A may be a transparent member, may be colored gray or black, or may be metal-deposited on the surface facing the liquid crystal device 130 (lower surface in FIG. 8).
 図9は光学部材の一例としてカバー180Aの平面図である。図9に示すように、カバー180Aは四つの辺181~184、四つの角185~188を含み、液晶デバイス130からの光を減光させる領域P5と、カバー180Aの中央を含み、液晶デバイス130からの光を減光することなく透過させる領域Q1とを有する。領域Q1は、虚像オブジェクトI1を形成する光を通過させるよう空間となっている。カバー180Aの領域P5は、レンズ120及び液晶デバイス130の両方を通過した光であって、画像形成可能領域Aの外周全てに相当する光を減光するよう構成されている。なお図9のカバー180Aは画像形成可能領域Aの外周全てに相当する光を減光する例を示しているが、カバー180Aは画像形成可能領域Aの少なくとも一辺に相当する光の一部を減光するよう構成されていてもよい。 FIG. 9 is a plan view of the cover 180A as an example of the optical member. As shown in FIG. 9, the cover 180A includes four sides 181 to 184, four corners 185 to 188, a region P5 for dimming the light from the liquid crystal device 130, and a center of the cover 180A, the liquid crystal device 130. It has a region Q1 through which light from the light is transmitted without dimming. The region Q1 is a space for passing the light forming the virtual image object I1. The region P5 of the cover 180A is configured to dimm the light that has passed through both the lens 120 and the liquid crystal device 130 and corresponds to the entire outer circumference of the image-forming region A. Note that the cover 180A in FIG. 9 shows an example of dimming the light corresponding to the entire outer periphery of the image formable region A, but the cover 180A reduces a part of the light corresponding to at least one side of the image formable region A. It may be configured to shine.
 このように、カバー180Aは画像形成可能領域Aの外周全てに相当する光を減光するため、画像形成可能領域Aの輪郭を形成する光の一部が減光される。画像形成可能領域Aの輪郭を形成する光の一部が減光されることで、対応する虚像表示可能領域Rの輪郭は目立たなくなる。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, since the cover 180A dims the light corresponding to the entire outer periphery of the image formable region A, a part of the light forming the contour of the image formable region A is dimmed. By dimming a part of the light forming the contour of the image-formable region A, the contour of the corresponding virtual image displayable region R becomes inconspicuous. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
(変形例3)
 第一実施形態に係る画像生成装置24A及び第二実施形態に係る画像生成装置24Bはそれぞれ、一つの光学部材を備えていたが、光学部材の数は一つに限らない。図10は、変形例3として、画像生成装置24Cの構成を示す左右方向断面模式図を示す。図2に係る画像生成装置24Aと同一または対応する構成要素には同様の符号を付すとともに、説明は省略する。
(Modification 3)
The image generation device 24A according to the first embodiment and the image generation device 24B according to the second embodiment each include one optical member, but the number of optical members is not limited to one. FIG. 10 shows a schematic cross-sectional view in the left-right direction showing the configuration of the image generation device 24C as a modification 3. The same or corresponding components as those of the image generator 24A according to FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
 図10に示すように、画像生成装置24Cは、第一拡散シート140A(第一の光学部材)と第二拡散シート140D(第二の光学部材)を備える。第一拡散シート140Aは、液晶デバイス130の下方であって、レンズ120と液晶デバイス130の間に配置されている。第二拡散シート140Dは、液晶デバイス130の上方に配置されている。言い換えると、液晶デバイス130は、第一拡散シート140Aと第二拡散シート140Dの間に配置されている。第二拡散シート140Dは上下方向において、第一拡散シート140Aに重なるように配置されている。図11に第二拡散シート140Dの平面図を示す。図11に示すように第二拡散シート140Dは、第一拡散シート140Aと同じ形状であり、辺141~144、角145~148を備える。 As shown in FIG. 10, the image generation device 24C includes a first diffusion sheet 140A (first optical member) and a second diffusion sheet 140D (second optical member). The first diffusion sheet 140A is located below the liquid crystal device 130 and is arranged between the lens 120 and the liquid crystal device 130. The second diffusion sheet 140D is arranged above the liquid crystal device 130. In other words, the liquid crystal device 130 is arranged between the first diffusion sheet 140A and the second diffusion sheet 140D. The second diffusion sheet 140D is arranged so as to overlap the first diffusion sheet 140A in the vertical direction. FIG. 11 shows a plan view of the second diffusion sheet 140D. As shown in FIG. 11, the second diffusion sheet 140D has the same shape as the first diffusion sheet 140A, and includes sides 141 to 144 and corners 145 to 148.
 第一拡散シート140Aは、辺141と、二つの角145及び角146を含み、レンズ120からの光の一部を減光する領域P1と、拡散シート140Aの中央を含み、レンズ120からの光を拡散させることなく透過させる領域Q1とを有する。一方、第二拡散シート140Dは、辺142と、二つの角147及び角148を含み、液晶デバイス130からの光の一部を減光する領域P6と、第二拡散シート140Dの中央を含み、液晶デバイス130からの光を拡散させることなく透過させる領域Q2とを有する。例えば領域P1の光の拡散率及び領域P6の光の拡散率はともに50%であり、領域Q1の光の拡散率及び領域Q2の光の拡散率はともに5%未満である。上下方向における領域Q1及び領域Q2の重複する領域の大きさは、虚像オブジェクトI1を形成する光全体を透過可能な大きさである。領域P1及び領域P6はともに微細な凸凹が形成されており、通過する光をあらゆる方向に拡散させる。 The first diffusing sheet 140A includes a side 141, two corners 145 and a corner 146, a region P1 that dims a part of the light from the lens 120, and a center of the diffusing sheet 140A, and includes light from the lens 120. Has a region Q1 that allows light to pass through without being diffused. On the other hand, the second diffusion sheet 140D includes a side 142, two corners 147 and a corner 148, a region P6 for dimming a part of the light from the liquid crystal device 130, and a center of the second diffusion sheet 140D. It has a region Q2 for transmitting light from the liquid crystal device 130 without diffusing it. For example, the light diffusivity of the region P1 and the light diffusivity of the region P6 are both 50%, and the light diffusivity of the region Q1 and the light diffusivity of the region Q2 are both less than 5%. The size of the overlapping region of the region Q1 and the region Q2 in the vertical direction is a size capable of transmitting the entire light forming the virtual image object I1. Both the region P1 and the region P6 are formed with fine irregularities, and diffuse the passing light in all directions.
 画像生成装置24Cの光の動作を説明する。レンズ120を通過した光はまず、第一拡散シート140Aに入射する。第一拡散シート140Aに入射された光のうち、領域P1を通過する光の一部は微細な凸凹により拡散され、領域Q1を通過する光は拡散されることなく通過する。ここで、領域P1は画像形成可能領域Aの辺A1(一辺)に相当する光を減光する。 The operation of the light of the image generator 24C will be described. The light that has passed through the lens 120 first enters the first diffusion sheet 140A. Of the light incident on the first diffusion sheet 140A, a part of the light passing through the region P1 is diffused by fine irregularities, and the light passing through the region Q1 passes without being diffused. Here, the region P1 dims the light corresponding to the side A1 (one side) of the image-formable region A.
 次に領域P1あるいは領域Q1を通過した光は、液晶デバイス130を通過して、第二拡散シート140Dに入射する。第二拡散シート140Dに入射された光のうち、領域P6を通過する光の一部は微細な凸凹により拡散され、領域Q2を通過する光は拡散されることなく通過する。ここで領域P2は画像形成可能領域Aの辺A2(他の辺)に相当する光を減光する。以上のようにして、レンズ120から照射された光は、第一拡散シート140A及び第二拡散シート140Dによって減光され、その結果、画像形成可能領域Aの辺A1及び辺A2の両方に相当する光が減光される。 Next, the light that has passed through the region P1 or the region Q1 passes through the liquid crystal device 130 and is incident on the second diffusion sheet 140D. Of the light incident on the second diffusion sheet 140D, a part of the light passing through the region P6 is diffused by fine irregularities, and the light passing through the region Q2 passes without being diffused. Here, the region P2 dims the light corresponding to the side A2 (other side) of the image-formable region A. As described above, the light emitted from the lens 120 is dimmed by the first diffusion sheet 140A and the second diffusion sheet 140D, and as a result, corresponds to both the sides A1 and the sides A2 of the image-formable region A. The light is dimmed.
 このように本例の画像生成装置24Cは、画像形成可能領域Aの一辺A1に相当する光の一部を減光する第一拡散シート140A及び、画像形成可能領域Aの他の辺A2に相当する光の一部を減光する第二拡散シート140Dを備えるため、画像形成可能領域Aの辺A1及び辺A2を形成する光の一部が減光される。したがって、虚像オブジェクトI1を視認する車両1の乗員に対して違和感を与えることが抑制される。 As described above, the image generation device 24C of this example corresponds to the first diffusion sheet 140A that dims a part of the light corresponding to one side A1 of the image formable region A and the other side A2 of the image formable region A. Since the second diffusion sheet 140D that dims a part of the light to be formed is provided, a part of the light forming the side A1 and the side A2 of the image-forming region A is dimmed. Therefore, it is possible to suppress giving a sense of discomfort to the occupant of the vehicle 1 who visually recognizes the virtual image object I1.
 本例において画像生成装置24Cは、光学部材として、第一拡散シート140A及び第二拡散シート140Dを備えるが、光学部材は拡散シートに限定されない。光学部材は、透過シート150D、吸収シート160D、反射シート170D、カバー180Aのいずれでもよい。また、二つの光学部材の組み合わせは、二つの拡散シートに限定されない。第一の光学部材が、拡散シート、透過シート、吸収シート、反射シートで、第二の光学部材が、透過シート、吸収シート、反射シート、カバーのいずれでもよい。 In this example, the image generator 24C includes a first diffusion sheet 140A and a second diffusion sheet 140D as optical members, but the optical member is not limited to the diffusion sheet. The optical member may be any of a transmission sheet 150D, an absorption sheet 160D, a reflection sheet 170D, and a cover 180A. Further, the combination of the two optical members is not limited to the two diffusion sheets. The first optical member may be a diffusion sheet, a transmissive sheet, an absorbent sheet, or a reflective sheet, and the second optical member may be any of a transmissive sheet, an absorbent sheet, a reflective sheet, and a cover.
 以上、本開示の実施形態について説明をしたが、本開示の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。
 例えば、本実施形態の液晶デバイス130は一つの画像形成可能領域Aを有するが、画像形成可能領域の数は一つに限定されない。図12は液晶デバイス130の変形例の斜視図である。図12に示すように液晶デバイスは、複数の画像形成可能領域B,C,Dを有してもよい。この場合、光学部材はこれら複数の画像形成可能領域B,C,Dのそれぞれの一辺あるいは外周全てに相当する光の一部を減光するように構成されている。本開示の技術的範囲は請求の範囲に記載された発明の範囲およびその均等の範囲に基づいて定められるべきである。
Although the embodiments of the present disclosure have been described above, it goes without saying that the technical scope of the present disclosure should not be construed as being limited by the description of the present embodiments. It will be appreciated by those skilled in the art that this embodiment is merely an example and various embodiments can be modified within the scope of the invention described in the claims.
For example, the liquid crystal device 130 of the present embodiment has one image-formable region A, but the number of image-formable regions is not limited to one. FIG. 12 is a perspective view of a modified example of the liquid crystal device 130. As shown in FIG. 12, the liquid crystal device may have a plurality of image-formable regions B, C, and D. In this case, the optical member is configured to dim a part of the light corresponding to one side or the entire outer circumference of each of the plurality of image-forming regions B, C, and D. The technical scope of the present disclosure should be determined based on the scope of the invention described in the claims and the scope thereof.
(第三実施形態)
 図13から図16を参照して、第三実施形態に係る画像生成装置24Dについて説明する。図13は、第三実施形態に係る画像生成装置24Dの構成を示す断面模式図である。図14は、図13の光源基板110を上方から見た平面図である。図15は、図13の液晶デバイス130を上方から見た平面図である。
(Third embodiment)
The image generation device 24D according to the third embodiment will be described with reference to FIGS. 13 to 16. FIG. 13 is a schematic cross-sectional view showing the configuration of the image generator 24D according to the third embodiment. FIG. 14 is a plan view of the light source substrate 110 of FIG. 13 as viewed from above. FIG. 15 is a plan view of the liquid crystal device 130 of FIG. 13 as viewed from above.
 図13に示すように、画像生成装置24Dは、光源基板110と、第一光学系220と、第二光学系230と、第三光学系240と、液晶デバイス130を備えている。第一光学系220は、第一光源221と第一レンズ222を備えている。第二光学系230は、第二光源231と第二レンズ232を備えている。本例においては、第二光源231は、光源231Aと光源231Bを備えている。第三光学系240は、第三光源241と第三レンズ242を備えている。光源基板110は、基板の一例である。第一レンズ222は、第一光学素子の一例である。第二レンズ232は、第二光学素子の一例である。 As shown in FIG. 13, the image generator 24D includes a light source substrate 110, a first optical system 220, a second optical system 230, a third optical system 240, and a liquid crystal device 130. The first optical system 220 includes a first light source 221 and a first lens 222. The second optical system 230 includes a second light source 231 and a second lens 232. In this example, the second light source 231 includes a light source 231A and a light source 231B. The third optical system 240 includes a third light source 241 and a third lens 242. The light source substrate 110 is an example of a substrate. The first lens 222 is an example of the first optical element. The second lens 232 is an example of a second optical element.
 第一光源221、第二光源231および第三光源241の各々は、例えば、LED光源またはレーザ光源である。第一光源221、第二光源231および第三光源241は、光源基板110の上に搭載されている。第一光源221、第二光源231および第三光源241は、例えば、図14に例示されるように、左右方向に離隔して配置されている。第一光源221、第二光源231および第三光源241の出射タイミングは、制御部25により個別に制御される。第一光源221、第二光源231および第三光源241の各々は、例えば、複数の発光部(光源)から構成されてもよい。 Each of the first light source 221 and the second light source 231 and the third light source 241 is, for example, an LED light source or a laser light source. The first light source 221 and the second light source 231 and the third light source 241 are mounted on the light source substrate 110. The first light source 221 and the second light source 231 and the third light source 241 are arranged apart from each other in the left-right direction, for example, as illustrated in FIG. The emission timings of the first light source 221 and the second light source 231 and the third light source 241 are individually controlled by the control unit 25. Each of the first light source 221 and the second light source 231 and the third light source 241 may be composed of, for example, a plurality of light emitting units (light sources).
 第一レンズ222は、第一光源221の上側に配置される。第一レンズ222は、第一光源221から入射される光を透過または反射して液晶デバイス130に向けて出射するように構成されている。第一レンズ222は、例えば、第一光源221からの光が入射される入射面が平面で当該入射した光が出射される出射面が凸面状に形成された平凸非球面レンズである。第一レンズ222は、例えば、第一光源221の発光面中心が第一レンズ222の焦点位置となるように、レンズホルダ(図示せず)に取り付けられている。第一光源221および第一レンズ222は、HUD20により形成される画像のゆがみやぼけなどが許容できる範囲内であれば、第一光源221の発光面中心が第一レンズ222の焦点近傍に位置するように、配置されてもよい。 The first lens 222 is arranged above the first light source 221. The first lens 222 is configured to transmit or reflect light incident from the first light source 221 and emit it toward the liquid crystal device 130. The first lens 222 is, for example, a plano-convex aspherical lens in which the incident surface on which the light from the first light source 221 is incident is a plane and the exit surface on which the incident light is emitted is convex. The first lens 222 is attached to a lens holder (not shown) so that, for example, the center of the light emitting surface of the first light source 221 is the focal position of the first lens 222. In the first light source 221 and the first lens 222, the center of the light emitting surface of the first light source 221 is located near the focal point of the first lens 222 as long as the distortion and blurring of the image formed by the HUD 20 are within an acceptable range. It may be arranged as such.
 第二レンズ232は、第二光源231の上側に配置される。第二レンズ232は、第二光源231から入射される光を透過または反射して液晶デバイス130に向けて出射するように構成されている。第二レンズ232は、例えば、第二光源231からの光が入射される入射面が平面で当該入射した光が出射される出射面が凸面状に形成された平凸非球面レンズである。第二レンズ232は、例えば、第二光源231の発光面中心が第二レンズ232の焦点位置となるように、レンズホルダに取り付けられている。第二光源231および第二レンズ232は、HUD20により形成される画像のゆがみやぼけなどが許容できる範囲内であれば、第二光源231の発光面中心が第二レンズ232の焦点近傍に位置するように、配置されてもよい。 The second lens 232 is arranged above the second light source 231. The second lens 232 is configured to transmit or reflect the light incident from the second light source 231 and emit it toward the liquid crystal device 130. The second lens 232 is, for example, a plano-convex aspherical lens in which the incident surface on which the light from the second light source 231 is incident is a plane and the exit surface on which the incident light is emitted is convex. The second lens 232 is attached to the lens holder, for example, so that the center of the light emitting surface of the second light source 231 is the focal position of the second lens 232. In the second light source 231 and the second lens 232, the center of the light emitting surface of the second light source 231 is located near the focal point of the second lens 232 as long as the distortion or blurring of the image formed by the HUD 20 is within an acceptable range. It may be arranged as such.
 第三レンズ242は、第三光源241の上側に配置される。第三レンズ242は、第三光源241から入射される光を透過または反射して液晶デバイス130に向けて出射するように構成されている。第三レンズ242は、例えば、第三光源241からの光が入射される入射面が平面で当該入射した光が出射される出射面が凸面状に形成された平凸非球面レンズである。第三レンズ242は、例えば、第三光源241の発光面中心が第三レンズ242の焦点位置となるように、レンズホルダに取り付けられている。第三光源241および第三レンズ242は、HUD20により形成される画像のゆがみやぼけなどが許容できる範囲内であれば、第三光源241の発光面中心が第三レンズ242の焦点近傍に位置するように、配置されてもよい。 The third lens 242 is arranged above the third light source 241. The third lens 242 is configured to transmit or reflect the light incident from the third light source 241 and emit it toward the liquid crystal device 130. The third lens 242 is, for example, a plano-convex aspherical lens in which the incident surface on which the light from the third light source 241 is incident is a plane and the exit surface on which the incident light is emitted is convex. The third lens 242 is attached to the lens holder, for example, so that the center of the light emitting surface of the third light source 241 is the focal position of the third lens 242. In the third light source 241 and the third lens 242, the center of the light emitting surface of the third light source 241 is located near the focal point of the third lens 242 as long as the distortion or blurring of the image formed by the HUD 20 is within an acceptable range. It may be arranged as such.
 液晶デバイス130は、第一レンズ222、第二レンズ232および第三レンズ242の上側に配置される。液晶デバイス130は、画像を生成する光を出射するための光出射面を画像生成装置24Dの上方へ向けた状態でPGUハウジング(図示せず)に取り付けられている。液晶デバイス130は、第一光学系220から出射された光、第二光学系230から出射された光および第三光学系240から出射された光により複数の画像を生成するための光を形成して出射するように構成されている。液晶デバイス130の液晶パネル131を構成する画素の各々は、駆動回路により、第一光学系220、第二光学系230または第三光学系240から出射された光を透過させる状態と透過させない状態に制御される。 The liquid crystal device 130 is arranged above the first lens 222, the second lens 232, and the third lens 242. The liquid crystal device 130 is attached to a PGU housing (not shown) with a light emitting surface for emitting light for generating an image directed upward of the image generating device 24D. The liquid crystal device 130 forms light for generating a plurality of images by the light emitted from the first optical system 220, the light emitted from the second optical system 230, and the light emitted from the third optical system 240. It is configured to emit light. Each of the pixels constituting the liquid crystal panel 131 of the liquid crystal device 130 is in a state in which light emitted from the first optical system 220, the second optical system 230, or the third optical system 240 is transmitted or not transmitted by a drive circuit. Be controlled.
 液晶デバイス130は、図13及び図15に示されるように、第一画像を生成するための光を形成する第一領域130Aと、第二画像を生成するための光を形成する第二領域130Bと、第三画像を生成するための光を形成する第三領域130Cを有している。第一画像、第二画像および第三画像はそれぞれ異なる情報を示す画像である。本例においては、第一領域130A、第二領域130Bおよび第三領域130Cは、左右方向に離隔して配置されている。 As shown in FIGS. 13 and 15, the liquid crystal device 130 has a first region 130A forming light for generating a first image and a second region 130B forming light for generating a second image. And has a third region 130C that forms the light for generating the third image. The first image, the second image, and the third image are images showing different information. In this example, the first region 130A, the second region 130B, and the third region 130C are arranged apart from each other in the left-right direction.
 なお、図15において、破線で示す四角枠は、便宜上、第一領域130A、第二領域130Bまたは第三領域130Cの位置を表示したものであって、実際には枠は存在しない。図15では、第一領域130A、第二領域130Bおよび第三領域130Cの各々から出射される光により生成される画像の一例を示している。第一画像は、例えば、車両1が走行中の道路の法定速度の情報を示す画像である。第二画像は、例えば、車両1の進行方向の情報を示す画像である。第三画像は、例えば、現在の車両1の走行速度の情報を示す画像である。 Note that, in FIG. 15, the square frame shown by the broken line indicates the positions of the first region 130A, the second region 130B, or the third region 130C for convenience, and the frame does not actually exist. FIG. 15 shows an example of an image generated by light emitted from each of the first region 130A, the second region 130B, and the third region 130C. The first image is, for example, an image showing information on the legal speed of the road on which the vehicle 1 is traveling. The second image is, for example, an image showing information on the traveling direction of the vehicle 1. The third image is, for example, an image showing information on the traveling speed of the current vehicle 1.
 第一光学系220は、第一領域130Aに光を照射するように構成されている。すなわち第一光源221から出射された光は、第一レンズ222により第一領域130Aに照射される。第一領域130Aに対応する画素ごとに第一光学系220から出射された光の透過と遮断が制御されることにより、第一領域130Aにおいて第一画像を生成するための光が形成される。 The first optical system 220 is configured to irradiate the first region 130A with light. That is, the light emitted from the first light source 221 is applied to the first region 130A by the first lens 222. By controlling the transmission and blocking of the light emitted from the first optical system 220 for each pixel corresponding to the first region 130A, the light for generating the first image is formed in the first region 130A.
 第二光学系230は、第二領域130Bに光を照射するように構成されている。すなわち第二光源231から出射された光は、第二レンズ232により第二領域130Bに照射される。第二領域130Bに対応する画素ごとに第二光学系230から出射された光の透過と遮断が制御されることにより、第二領域130Bにおいて第二画像を生成するための光が形成される。 The second optical system 230 is configured to irradiate the second region 130B with light. That is, the light emitted from the second light source 231 is applied to the second region 130B by the second lens 232. By controlling the transmission and blocking of the light emitted from the second optical system 230 for each pixel corresponding to the second region 130B, light for generating a second image is formed in the second region 130B.
 第三光学系240は、第三領域130Cに光を照射するように構成されている。すなわち第三光源241から出射された光は、第三レンズ242により第三領域130Cに照射される。第三領域130Cに対応する画素ごとに第三光学系240から出射された光の透過と遮断が制御されることにより、第三領域130Cにおいて、第三画像を生成するための光が形成される。 The third optical system 240 is configured to irradiate the third region 130C with light. That is, the light emitted from the third light source 241 is irradiated to the third region 130C by the third lens 242. By controlling the transmission and blocking of the light emitted from the third optical system 240 for each pixel corresponding to the third region 130C, light for generating a third image is formed in the third region 130C. ..
 第一光源221、第二光源231および第三光源241の出射タイミングは、液晶パネル131を構成する画素の動作制御と連動するように、制御部25により制御されうる。例えば、制御部25は、HUD20により表示すべき画像に対応する光源のみが点灯するように制御する。 The emission timings of the first light source 221 and the second light source 231 and the third light source 241 can be controlled by the control unit 25 so as to be linked with the operation control of the pixels constituting the liquid crystal panel 131. For example, the control unit 25 controls so that only the light source corresponding to the image to be displayed by the HUD 20 is turned on.
 図16は、HUD20により、複数の虚像オブジェクトが車両1の外部の現実空間と重畳されるように表示された状態での乗員の視野領域Vの一例を示す図である。なお、図16に示す視野領域V内には、車両1の一部(ボンネットなど)が含まれている。 FIG. 16 is a diagram showing an example of the occupant's visual field area V in a state where a plurality of virtual image objects are displayed so as to be superimposed on the real space outside the vehicle 1 by the HUD 20. The field of view region V shown in FIG. 16 includes a part of the vehicle 1 (bonnet or the like).
 図16では、液晶デバイス130から図15に示される複数の画像を生成するための光が出射された場合の虚像オブジェクトを示している。すなわち、車両1が走行中の道路の法定速度の情報を示す虚像オブジェクトIA、車両1の進行方向を示す虚像オブジェクトIB、および現在の車両1の走行速度の情報を示す虚像オブジェクトICが車両1の前方に表示されている。なお、一点鎖線で示す四角枠は、便宜上、虚像を表示可能な領域Rの位置を表示したものであって、実際には枠は存在しない。 FIG. 16 shows a virtual image object when light for generating a plurality of images shown in FIG. 15 is emitted from the liquid crystal device 130. That is, the virtual image object IA indicating the information on the legal speed of the road on which the vehicle 1 is traveling, the virtual image object IB indicating the traveling direction of the vehicle 1, and the virtual image object IC indicating the information on the traveling speed of the current vehicle 1 are the virtual image object IC of the vehicle 1. It is displayed in front. The square frame shown by the alternate long and short dash line indicates the position of the area R where the virtual image can be displayed for convenience, and the frame does not actually exist.
 例えば、液晶デバイス130の画像を形成可能な領域に対して一つの光学系から光が照射される場合、液晶パネル131において光が遮断されるべき画素から光が漏れると、虚像表示可能領域R内において虚像オブジェクトIA、IB,IC以外の領域が薄く光るように視認されるおそれがある。特に車両1の周囲の外光が弱い場合、虚像表示可能領域Rの輝度が周囲の輝度よりも高くなり、虚像表示可能領域Rの輪郭が目立つおそれがある。 For example, when light is irradiated from one optical system to a region where an image of the liquid crystal device 130 can be formed, if light leaks from a pixel to which the light should be blocked in the liquid crystal panel 131, the virtual image displayable region R is included. There is a possibility that the area other than the virtual image objects IA, IB, and IC is visually recognized as faintly shining. In particular, when the external light around the vehicle 1 is weak, the brightness of the virtual image displayable area R becomes higher than the ambient brightness, and the outline of the virtual image displayable area R may be conspicuous.
 画像生成装置24Dにおいては、HUD20により表示される情報(コンテンツ)を示す画像に対応してそれぞれ独立した光学系が設けられている。したがって、液晶デバイス130において表示すべき画像を形成する領域以外の部分に光が到達することを抑制することができる。これにより、HUD20により表示される虚像表示可能領域R内において表示すべき虚像オブジェクトIA、虚像オブジェクトIBおよび虚像オブジェクトIC以外の領域が薄く光ることを抑制することができ、虚像表示可能領域Rの輪郭を目立たなくさせることができる。 The image generation device 24D is provided with independent optical systems corresponding to images showing information (contents) displayed by the HUD 20. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device 130 other than the region forming the image to be displayed. As a result, it is possible to suppress the areas other than the virtual image object IA, the virtual image object IB, and the virtual image object IC to be displayed in the virtual image displayable area R displayed by the HUD 20 from shining faintly, and the contour of the virtual image displayable area R can be suppressed. Can be made inconspicuous.
 第三実施形態では、液晶デバイス130へ光を照射する光学素子として第一レンズ222、第二レンズ232および第三レンズ242が用いられている。これにより、簡単な構成により第一光源221、第二光源231および第三光源241からの光を液晶デバイス130に照射させることができる。 In the third embodiment, the first lens 222, the second lens 232, and the third lens 242 are used as optical elements for irradiating the liquid crystal device 130 with light. Thereby, the liquid crystal device 130 can be irradiated with the light from the first light source 221 and the second light source 231 and the third light source 241 with a simple configuration.
 第三実施形態では、第一光源221、第二光源231および第三光源241は、第一領域130A、第二領域130Bおよび第三領域130Cの配置方向に並んで配置されている。これにより、光源基板110の面積の増大を抑制することができる。 In the third embodiment, the first light source 221 and the second light source 231 and the third light source 241 are arranged side by side in the arrangement direction of the first region 130A, the second region 130B, and the third region 130C. As a result, it is possible to suppress an increase in the area of the light source substrate 110.
 第三実施形態では、第一光源221、第二光源231および第三光源241の出射タイミングは、制御部25により個別に制御される。制御部25は、例えば、第一画像を生成するための光を形成する場合、第一光源221を点灯させて、第二光源231および第三光源241は点灯させないように制御しうる。制御部25は、例えば、第二画像を生成するための光を形成する場合、第二光源231を点灯させて、第一光源221および第三光源241は点灯させないように、制御しうる。制御部25は、例えば、第三画像を生成するための光を形成する場合、第三光源241を点灯させて、第一光源221および第二光源231は点灯させないように、制御しうる。 In the third embodiment, the emission timings of the first light source 221 and the second light source 231 and the third light source 241 are individually controlled by the control unit 25. For example, when forming light for generating a first image, the control unit 25 can control the first light source 221 to be turned on and the second light source 231 and the third light source 241 not to be turned on. For example, when forming light for generating a second image, the control unit 25 can control the second light source 231 to be turned on and the first light source 221 and the third light source 241 not to be turned on. For example, when forming light for generating a third image, the control unit 25 can control the third light source 241 to be turned on and the first light source 221 and the second light source 231 not to be turned on.
 これにより、第一画像、第二画像および第三画像のうち表示しない画像に対応する光源から光を出射させないように制御することができるので、液晶デバイス130において表示しない画像に対応する領域にも光が到達することを抑制することができる。結果として、HUD20により表示される虚像表示可能領域R内において表示すべき虚像オブジェクトIA、虚像オブジェクトIBまたは虚像オブジェクトIC以外の領域が薄く光ることを抑制することができ、虚像表示可能領域Rの輪郭を目立たなくさせることができる。 As a result, it is possible to control the light from the light source corresponding to the image not to be displayed among the first image, the second image and the third image, so that the area corresponding to the image not to be displayed in the liquid crystal device 130 can also be controlled. It is possible to suppress the arrival of light. As a result, it is possible to suppress the area other than the virtual image object IA, the virtual image object IB, or the virtual image object IC to be displayed in the virtual image displayable area R displayed by the HUD 20 from shining faintly, and the contour of the virtual image displayable area R can be suppressed. Can be made inconspicuous.
 第三実施形態では、図15に示されるように、第一領域130A、第二領域130Bおよび第三領域130Cの端部は、液晶デバイス130の画像を形成可能な領域である液晶パネル131の上端部(図15において前方向の端部)から離れて内側に位置している。すなわち、第一光源221から出射された光は、第一レンズ222により、液晶パネル131の上端部よりも下方に照射される。第二光源231から出射された光は、第二レンズ232により、液晶パネル131の上端部よりも下方に照射される。第三光源241から出射された光は、第三レンズ242により、液晶パネル131の上端部よりも下方に照射される。さらに、第一領域130Aの液晶パネル131の上端部から下方(図15において後方向)にずれた長さ、第二領域130Bの液晶パネル131の上端部から下方にずれた長さ、および第三領域130Cの液晶パネル131の上端部から下方にずれた長さは、それぞれ異なっている。 In the third embodiment, as shown in FIG. 15, the ends of the first region 130A, the second region 130B, and the third region 130C are the upper ends of the liquid crystal panel 131, which is a region capable of forming an image of the liquid crystal device 130. It is located inward away from the portion (the end in the front direction in FIG. 15). That is, the light emitted from the first light source 221 is irradiated below the upper end portion of the liquid crystal panel 131 by the first lens 222. The light emitted from the second light source 231 is irradiated below the upper end portion of the liquid crystal panel 131 by the second lens 232. The light emitted from the third light source 241 is irradiated below the upper end portion of the liquid crystal panel 131 by the third lens 242. Further, a length displaced downward (backward in FIG. 15) from the upper end of the liquid crystal panel 131 of the first region 130A, a length displaced downward from the upper end of the liquid crystal panel 131 of the second region 130B, and a third. The lengths of the region 130C deviated downward from the upper end of the liquid crystal panel 131 are different from each other.
 したがって、図16に示されるように、HUD20により表示される虚像表示可能領域Rにおいて、液晶パネル131の第一領域130A、第二領域130Bおよび第三領域130Cにおいて光が遮断されるべき画素から光が漏れることにより、虚像オブジェクトIA、IB,IC以外の領域が薄く光る場合でも、薄く光る輪郭は直線ではなく凸凹となり、輪郭を目立たなくさせることができる。 Therefore, as shown in FIG. 16, in the virtual image displayable region R displayed by the HUD 20, light is emitted from the pixels to which light should be blocked in the first region 130A, the second region 130B, and the third region 130C of the liquid crystal panel 131. Even when the area other than the virtual image objects IA, IB, and IC shines faintly, the faintly shining contour becomes uneven instead of a straight line, and the contour can be made inconspicuous.
 なお、上記の第三実施形態において、第一領域130A、第二領域130Bおよび第三領域130Cの少なくともいずれか一つの領域の端部が、液晶パネル131の上端部または左右端部から離れて位置してもよい。この場合でも、HUD20により表示される虚像表示可能領域Rにおいて、虚像オブジェクトIA、IB,IC以外の領域が薄く光る場合でも、薄く光る輪郭は直線ではなく凸凹となり、輪郭を目立たなくさせることができる。 In the third embodiment described above, the end of at least one of the first region 130A, the second region 130B, and the third region 130C is located away from the upper end portion or the left and right end portions of the liquid crystal panel 131. You may. Even in this case, even when the area other than the virtual image objects IA, IB, and IC shines faintly in the virtual image displayable region R displayed by the HUD 20, the faintly shining contour becomes uneven instead of a straight line, and the contour can be made inconspicuous. ..
 上記の第三実施形態において、第一レンズ222、第二レンズ232および第三レンズ242は、平凸非球面レンズである。しかしながら、第一レンズ222、第二レンズ232および第三レンズ242は、入射面および出射面のいずれも凸面状に形成された非球面凸レンズなど、他の形状のレンズも含みうる。 In the third embodiment described above, the first lens 222, the second lens 232 and the third lens 242 are plano-convex aspherical lenses. However, the first lens 222, the second lens 232, and the third lens 242 may include lenses having other shapes, such as an aspherical convex lens having both an incident surface and an emitted surface formed in a convex shape.
(第四実施形態)
 次に、図17を参照して、第四実施形態に係る画像生成装置24Eについて説明する。図17は、第四実施形態に係る画像生成装置24Eの構成を示す断面模式図である。尚、第四実施形態において、第三実施形態の画像生成装置24Dを構成する部材と同一の部材については、同一の参照番号を付与し、便宜上、その説明は省略する。
(Fourth Embodiment)
Next, the image generation device 24E according to the fourth embodiment will be described with reference to FIG. FIG. 17 is a schematic cross-sectional view showing the configuration of the image generation device 24E according to the fourth embodiment. In the fourth embodiment, the same reference numbers are assigned to the same members as the members constituting the image generation device 24D of the third embodiment, and the description thereof will be omitted for convenience.
 図17に示すように、画像生成装置24Eは、光源基板110と、第一光学系320と、第二光学系330と、第三光学系340と、液晶デバイス130を備えている。第一光学系320は、第一光源221と第一リフレクタ322を備えている。第二光学系330は、第二光源231と第二リフレクタ332を備えている。本例においては、第二光源231は、光源231Aと光源231Bを備えている。第三光学系340は、第三光源241と第三リフレクタ342を備えている。第一リフレクタ322は、第一光学素子の一例である。第二リフレクタ332は、第二光学素子の一例である。 As shown in FIG. 17, the image generator 24E includes a light source substrate 110, a first optical system 320, a second optical system 330, a third optical system 340, and a liquid crystal device 130. The first optical system 320 includes a first light source 221 and a first reflector 322. The second optical system 330 includes a second light source 231 and a second reflector 332. In this example, the second light source 231 includes a light source 231A and a light source 231B. The third optical system 340 includes a third light source 241 and a third reflector 342. The first reflector 322 is an example of the first optical element. The second reflector 332 is an example of a second optical element.
 第一リフレクタ322は、第一光源221の上側に配置される。第一リフレクタ322は、第一光源221から入射される光を反射して液晶デバイス130の第一領域130Aに向けて出射するように構成されている。第一リフレクタ322は、例えば、平面からなる反射面を有している。第一領域130Aに対応する液晶パネル131の画素ごとに第一光学系320から出射された光の透過と遮断が制御されることにより、第一領域130Aにおいて第一画像を生成するための光が形成される。 The first reflector 322 is arranged above the first light source 221. The first reflector 322 is configured to reflect the light incident from the first light source 221 and emit it toward the first region 130A of the liquid crystal device 130. The first reflector 322 has, for example, a reflecting surface made of a flat surface. By controlling the transmission and blocking of the light emitted from the first optical system 320 for each pixel of the liquid crystal panel 131 corresponding to the first region 130A, the light for generating the first image in the first region 130A is generated. It is formed.
 第二リフレクタ332は、第二光源231の上側に配置される。第二リフレクタ332は、第二光源231から入射される光を反射して液晶デバイス130の第二領域130Bに向けて出射するように構成されている。第二リフレクタ332は、例えば、平面からなる反射面を有している。第二領域130Bに対応する液晶パネル131の画素ごとに第二光源231から出射された光の透過と遮断が制御されることにより、第二領域130Bにおいて第二画像を生成するための光が形成される。 The second reflector 332 is arranged above the second light source 231. The second reflector 332 is configured to reflect the light incident from the second light source 231 and emit it toward the second region 130B of the liquid crystal device 130. The second reflector 332 has, for example, a reflecting surface made of a flat surface. By controlling the transmission and blocking of the light emitted from the second light source 231 for each pixel of the liquid crystal panel 131 corresponding to the second region 130B, light for generating a second image is formed in the second region 130B. Will be done.
 第三リフレクタ342は、第三光源241の上側に配置される。第三リフレクタ342は、第三光源241から入射される光を反射して液晶デバイス130の第三領域130Cに向けて出射するように構成されている。第三リフレクタ342は、例えば、平面からなる反射面を有している。第三領域130Cに対応する液晶パネル131の画素ごとに第三光源241から出射された光の透過と遮断が制御されることにより、第三領域130Cにおいて、第三画像を生成するための光が形成される。 The third reflector 342 is arranged above the third light source 241. The third reflector 342 is configured to reflect the light incident from the third light source 241 and emit it toward the third region 130C of the liquid crystal device 130. The third reflector 342 has, for example, a reflecting surface made of a flat surface. By controlling the transmission and blocking of the light emitted from the third light source 241 for each pixel of the liquid crystal panel 131 corresponding to the third region 130C, the light for generating the third image is generated in the third region 130C. It is formed.
 画像生成装置24Eによれば、HUD20により表示される情報(コンテンツ)を示す画像に対応してそれぞれ独立した光学系が設けられている。したがって、液晶デバイス130において表示すべき画像を形成する領域以外の部分に光が到達することを抑制することができる。 According to the image generation device 24E, independent optical systems are provided corresponding to images showing information (contents) displayed by the HUD 20. Therefore, it is possible to prevent the light from reaching a portion of the liquid crystal device 130 other than the region forming the image to be displayed.
 光学素子として第一リフレクタ322、第二リフレクタ332および第三リフレクタ342が用いられているので、簡単な構成により第一光源221、第二光源231および第三光源241からの光を液晶デバイス130に照射させることができる。 Since the first reflector 322, the second reflector 332, and the third reflector 342 are used as the optical elements, the light from the first light source 221 and the second light source 231 and the third light source 241 can be transferred to the liquid crystal device 130 by a simple configuration. It can be irradiated.
 上記の実施形態では、画像生成装置24から出射された光は、凹面鏡26で反射されてウインドシールド18に照射されるように構成されているが、これに限られない。例えば、凹面鏡26で反射された光は、ウインドシールド18の内側に設けたコンバイナ(不図示)に照射されるようにしてもよい。コンバイナは、例えば、透明なプラスチックディスクで構成される。HUD本体部21の画像生成装置24からコンバイナに照射された光の一部は、ウインドシールド18に光を照射した場合と同様に、乗員の視点Eに向けて反射される。 In the above embodiment, the light emitted from the image generator 24 is configured to be reflected by the concave mirror 26 and irradiated to the windshield 18, but the present invention is not limited to this. For example, the light reflected by the concave mirror 26 may be applied to a combiner (not shown) provided inside the windshield 18. The combiner is composed of, for example, a transparent plastic disc. A part of the light emitted from the image generator 24 of the HUD main body 21 to the combiner is reflected toward the viewpoint E of the occupant as in the case of irradiating the windshield 18 with light.
 上記の実施形態において、第一光学素子および第二光学素子である第一レンズ222および第二レンズ232は、別々に形成されている。しかしながら、第一レンズ222および第二レンズ232は、単一部材として一体的に形成されてもよい。同様に、第一光学素子および第二光学素子である第一リフレクタ322および第二リフレクタ332は、単一部材として一体的に形成されてもよい。 In the above embodiment, the first optical element and the second optical element, the first lens 222 and the second lens 232, are separately formed. However, the first lens 222 and the second lens 232 may be integrally formed as a single member. Similarly, the first optical element and the second optical element, the first reflector 322 and the second reflector 332, may be integrally formed as a single member.
 上記の実施形態では、液晶デバイス130は、画像を生成する光を形成する領域として、第一領域130A、第二領域130Bおよび第三領域130Cを有している。しかしながら、液晶デバイス130は、2つの領域また4つ以上の領域を有しうる。光学系の数は、領域の数に対応して適宜変更しうる。 In the above embodiment, the liquid crystal device 130 has a first region 130A, a second region 130B, and a third region 130C as regions for forming light for generating an image. However, the liquid crystal device 130 may have two regions or four or more regions. The number of optical systems can be appropriately changed according to the number of regions.
 第一領域130A、第二領域130Bおよび第三領域130Cは、左右方向に離隔して配置されている。しかしながら、第一領域130A、第二領域130Bおよび第三領域130Cは、例えば、上下方向や左右方向及び上下方向に離隔して配置されうる。光源やレンズまたはリフレクタの配置は、第一領域130A、第二領域130Bおよび第三領域130Cの配置に応じて適宜変更しうる。 The first region 130A, the second region 130B, and the third region 130C are arranged apart from each other in the left-right direction. However, the first region 130A, the second region 130B, and the third region 130C may be arranged apart from each other in the vertical direction, the horizontal direction, and the vertical direction, for example. The arrangement of the light source, the lens or the reflector can be appropriately changed depending on the arrangement of the first region 130A, the second region 130B and the third region 130C.
 第二領域130Bは、第一領域130Aおよび第三領域130Cよりも大きい。しかしながら、第二領域130Bは、例えば、第一領域130Aおよび第三領域130Cと同程度の大きさでもよい。光源の数やレンズまたはリフレクタの大きさは、液晶デバイス130の対応する領域の大きさに応じて適宜変更しうる。 The second region 130B is larger than the first region 130A and the third region 130C. However, the second region 130B may be of the same size as, for example, the first region 130A and the third region 130C. The number of light sources and the size of the lens or reflector can be appropriately changed according to the size of the corresponding region of the liquid crystal device 130.
 上記の実施形態では、第一光学系220,320から出射された光は第一領域130Aに照射され、第二光学系230,330から出射された光は第二領域130Bに照射され、第三光学系240,340から出射された光は第三領域130Cに照射されている。すなわち、液晶デバイス130において、第一光学系220,320により光が照射される範囲と第二光学系230,330により光が照射される範囲は重複しておらず、第二光学系230,330により光が照射される範囲と第三光学系240,340により光が照射される範囲は重複していない。しかしながら、液晶デバイス130において、第一光学系220,320から出射された光は第一領域130Aよりも広い範囲で照射され、第二光学系230,330から出射された光は第二領域130Bよりも広い範囲で照射され、第三光学系240,340から出射された光は第三領域130Cよりも広い範囲で照射されうる。これにより、第一光学系220,320により光が照射される範囲と第二光学系230,330により光が照射される範囲は、部分的に重複しうる。第二光学系230,330により光が照射される範囲と第三光学系240,340により光が照射される範囲は部分的に重複しうる。この場合、重複する範囲の光は各光学系の中央に照射される光より弱いので、第一画像と第二画像の間の境界が目立たなくなり、第二画像と第三画像の間の境界が目立たなくなる。また、HUD20により表示される虚像表示可能領域R内において第一領域130Aに対応する第一画像を形成可能な領域の輪郭を目立たなくさせることができる。同様に、第二領域130Bに対応する第二画像を形成可能な領域の輪郭および第三領域130Cに対応する第三画像を形成可能な領域の輪郭を目立たなくさせることができる。 In the above embodiment, the light emitted from the first optical systems 220 and 320 is applied to the first region 130A, and the light emitted from the second optical systems 230 and 330 is applied to the second region 130B. The light emitted from the optical systems 240 and 340 irradiates the third region 130C. That is, in the liquid crystal device 130, the range in which the light is irradiated by the first optical systems 220 and 320 and the range in which the light is irradiated by the second optical systems 230 and 330 do not overlap, and the second optical systems 230 and 330 do not overlap. The range irradiated with light by the third optical system 240, 340 does not overlap with the range irradiated with light by the third optical system 240, 340. However, in the liquid crystal device 130, the light emitted from the first optical systems 220 and 320 is irradiated in a wider range than the first region 130A, and the light emitted from the second optical systems 230 and 330 is emitted from the second region 130B. Is also irradiated in a wide range, and the light emitted from the third optical system 240, 340 can be irradiated in a wider range than the third region 130C. As a result, the range irradiated by the first optical systems 220 and 320 and the range irradiated by the second optical systems 230 and 330 may partially overlap. The range illuminated by the second optical systems 230, 330 and the range illuminated by the third optical systems 240, 340 may partially overlap. In this case, the light in the overlapping range is weaker than the light emitted to the center of each optical system, so that the boundary between the first image and the second image becomes inconspicuous, and the boundary between the second image and the third image becomes inconspicuous. It becomes inconspicuous. Further, in the virtual image displayable region R displayed by the HUD 20, the contour of the region where the first image corresponding to the first region 130A can be formed can be made inconspicuous. Similarly, the contour of the region where the second image corresponding to the second region 130B can be formed and the contour of the region where the third image corresponding to the third region 130C can be formed can be made inconspicuous.
 上記の実施形態において、画像生成装置24D、24Eは、例えば光源基板110の裏面に設けられたヒートシンクを備えてもよい。ヒートシンクにより、光源基板110から発生する熱を放熱されうる。また、画像生成装置24D、24Eは、光学系と液晶デバイス130の間に拡散シートなどを備えてもよい。 In the above embodiment, the image generators 24D and 24E may include, for example, a heat sink provided on the back surface of the light source substrate 110. The heat sink can dissipate heat generated from the light source substrate 110. Further, the image generation devices 24D and 24E may include a diffusion sheet or the like between the optical system and the liquid crystal device 130.
 上記の実施形態において、第一リフレクタ322、第二リフレクタ332および第三リフレクタ342は、平面からなる反射面を有している。しかしながら、第一リフレクタ322、第二リフレクタ332および第三リフレクタ342は、回転楕円面などからなる反射面を有してもよい。 In the above embodiment, the first reflector 322, the second reflector 332, and the third reflector 342 have a reflecting surface made of a flat surface. However, the first reflector 322, the second reflector 332, and the third reflector 342 may have a reflecting surface made of a spheroidal surface or the like.
 上記の実施形態において、HUD20は、反射鏡として平面鏡28および凹面鏡26を有しており、画像生成装置24から出射された光は2回反射されてウインドシールド18に到達する。しかしながら、HUD20は、反射鏡として凹面鏡26のみを有し、画像生成装置24から出射された光は1回反射されてウインドシールド18に到達してもよい。 In the above embodiment, the HUD 20 has a plane mirror 28 and a concave mirror 26 as reflectors, and the light emitted from the image generator 24 is reflected twice and reaches the windshield 18. However, the HUD 20 has only a concave mirror 26 as a reflector, and the light emitted from the image generator 24 may be reflected once and reach the windshield 18.
 本出願は、2020年7月20日出願の日本出願第2020-123770号、2020年7月22日出願の日本出願第2020-125571号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This application claims priority under Japanese Application No. 2020-123770 filed on July 20, 2020 and Japanese Application No. 2020-125571 filed on July 22, 2020, and is described in the Japanese application. All the contents described are used.

Claims (18)

  1.  ヘッドアップディスプレイの画像を生成する画像生成装置であって、
     光源と、
     長方形状の表示領域を有し、前記光源から出射された光により前記画像を生成するよう光を形成する液晶デバイスと、
     前記光源から出射された光を前記液晶デバイスへ照射する光学素子と、
     前記表示領域の少なくとも一辺に相当する光を減光する光学部材と、を備える画像生成装置。
    An image generator that generates images for head-up displays.
    Light source and
    A liquid crystal device having a rectangular display area and forming light so as to generate the image by the light emitted from the light source.
    An optical element that irradiates the liquid crystal device with light emitted from the light source, and
    An image generation device including an optical member that dims light corresponding to at least one side of the display area.
  2.  前記光学部材は、前記表示領域の外周全てに相当する光を減光する、請求項1に記載の画像生成装置。 The image generation device according to claim 1, wherein the optical member dims light corresponding to the entire outer circumference of the display area.
  3.  前記光学部材の、前記表示領域の少なくとも一辺に相当する光の減光率は、前記光学部材の中央における光の減光率よりも高い、請求項1または2に記載の画像生成装置。 The image generation device according to claim 1 or 2, wherein the dimming rate of light corresponding to at least one side of the display area of the optical member is higher than the dimming rate of light in the center of the optical member.
  4.  前記光学部材は、前記表示領域の少なくとも一辺に相当する前記光の一部を透過させる透過シートである、請求項3に記載の画像生成装置。 The image generation device according to claim 3, wherein the optical member is a transmission sheet that transmits a part of the light corresponding to at least one side of the display area.
  5.  前記光学部材は、前記表示領域の少なくとも一辺に相当する前記光の一部を拡散させる拡散シートである、請求項3に記載の画像生成装置。 The image generation device according to claim 3, wherein the optical member is a diffusion sheet that diffuses a part of the light corresponding to at least one side of the display area.
  6.  前記光学部材は、前記表示領域の少なくとも一辺に相当する前記光の一部を吸収する吸収シートである、請求項3に記載の画像生成装置。 The image generation device according to claim 3, wherein the optical member is an absorption sheet that absorbs a part of the light corresponding to at least one side of the display area.
  7.  前記光学部材は、前記表示領域の少なくとも一辺に相当する前記光の一部を反射する反射シートである、請求項3に記載の画像生成装置。 The image generation device according to claim 3, wherein the optical member is a reflective sheet that reflects a part of the light corresponding to at least one side of the display area.
  8.  前記光学部材は、前記液晶デバイスから出射された光の一部を遮光するカバーである、請求項1または2に記載の画像生成装置。 The image generation device according to claim 1 or 2, wherein the optical member is a cover that shields a part of light emitted from the liquid crystal device.
  9.  前記表示領域の一辺に相当する光を減光する第一の光学部材と、
     前記第一の光学部材に重なるように配置され、前記表示領域の前記一辺に相当する光を減光する第二の光学部材と、を備える、請求項1から8の何れか一項に記載の画像生成装置。
    The first optical member that dims the light corresponding to one side of the display area, and
    The second item according to any one of claims 1 to 8, further comprising a second optical member which is arranged so as to overlap the first optical member and dims the light corresponding to the one side of the display area. Image generator.
  10.  前記表示領域の一辺に相当する光を減光する第一の光学部材と、
     前記第一の光学部材に重なるように配置され、前記表示領域の他の辺に相当する光を減光する第二の光学部材と、を備える請求項1、3から8の何れか一項に記載の画像生成装置。
    The first optical member that dims the light corresponding to one side of the display area, and
    The item according to any one of claims 1, 3 to 8, further comprising a second optical member which is arranged so as to overlap the first optical member and dims the light corresponding to the other side of the display area. The image generator described.
  11.  ヘッドアップディスプレイの複数の画像を生成する画像生成装置であって、
     第一光源と、
     第二光源と、
     前記第一光源から出射された光により第一画像を生成するための光を形成する第一領域と、前記第二光源から出射された光により前記第一画像により示される情報とは異なる情報を示すための第二画像を生成するための光を形成する第二領域を有する液晶デバイスと、
     前記第一光源から出射された光を前記液晶デバイスの前記第一領域へ照射する第一光学素子と
     前記第二光源から出射された光を前記液晶デバイスの前記第二領域へ照射する第二光学素子と、を備えている、画像生成装置。
    An image generator that generates multiple images for a head-up display.
    With the first light source
    With the second light source
    Information different from the information shown by the first image due to the light emitted from the second light source and the first region forming the light for generating the first image by the light emitted from the first light source. A liquid crystal device having a second region forming light to generate a second image for showing, and a liquid crystal device.
    The first optical element that irradiates the first region of the liquid crystal device with the light emitted from the first light source, and the second optics that irradiates the second region of the liquid crystal device with the light emitted from the second light source. An image generator, comprising an element.
  12.  前記第一光学素子は、前記第一光源から出射された光が透過する第一レンズであり、
     前記第二光学素子は、前記第二光源から出射された光が透過する第二レンズである、請求項11に記載の画像生成装置。
    The first optical element is a first lens through which light emitted from the first light source is transmitted.
    The image generation device according to claim 11, wherein the second optical element is a second lens through which light emitted from the second light source is transmitted.
  13.  前記第一光学素子は、前記第一光源から出射された光を反射する第一リフレクタであり、
     前記第二光学素子は、前記第二光源から出射された光を反射する第二リフレクタである、請求項11に記載の画像生成装置。
    The first optical element is a first reflector that reflects light emitted from the first light source.
    The image generation device according to claim 11, wherein the second optical element is a second reflector that reflects light emitted from the second light source.
  14.  前記第一光源および前記第二光源の出射タイミングは個別に制御される、請求項11から13の何れか一項に記載の画像生成装置。 The image generation device according to any one of claims 11 to 13, wherein the emission timings of the first light source and the second light source are individually controlled.
  15.  前記第一光源と前記第二光源が搭載される基板を備えており、
     前記第一光源と前記第二光源は、前記第一領域および前記第二領域の配置方向に並んで配置される、請求項11から14の何れか一項に記載の画像生成装置。
    A substrate on which the first light source and the second light source are mounted is provided.
    The image generation device according to any one of claims 11 to 14, wherein the first light source and the second light source are arranged side by side in the arrangement direction of the first region and the second region.
  16.  前記第一光源から出射された光および前記第二光源から出射された光の少なくとも一方は、前記液晶デバイスの端部よりも内側に照射される、請求項11から15の何れか一項に記載の画像生成装置。 13. Image generator.
  17.  前記液晶デバイスにおいて、前記第一光学素子により前記第一光源より出射された光が照射される範囲と前記第二光学素子により前記第二光源により出射された光が照射される範囲は、部分的に重複する、請求項11から16の何れか一項に記載の画像生成装置。 In the liquid crystal device, the range in which the light emitted from the first light source by the first optical element is irradiated and the range in which the light emitted by the second light source by the second optical element is irradiated are partially. The image generator according to any one of claims 11 to 16, which overlaps with the above.
  18.  車両に設けられ、複数の画像を前記車両の乗員に向けて表示するように構成されたヘッドアップディスプレイであって、
     請求項11から17の何れか一項に記載の画像生成装置と、
     前記画像生成装置により出射された光を反射させる少なくとも一つの反射部と、
     前記第一光源および前記第二光源の出射タイミングを個別に制御する制御部と、を備えている、ヘッドアップディスプレイ。
    A head-up display provided on a vehicle and configured to display a plurality of images toward the occupants of the vehicle.
    The image generator according to any one of claims 11 to 17.
    At least one reflecting unit that reflects the light emitted by the image generator, and
    A head-up display including a control unit that individually controls the emission timing of the first light source and the second light source.
PCT/JP2021/024175 2020-07-20 2021-06-25 Image generation apparatus and head-up display WO2022019048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022538656A JPWO2022019048A1 (en) 2020-07-20 2021-06-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020123770 2020-07-20
JP2020-123770 2020-07-20
JP2020125571 2020-07-22
JP2020-125571 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019048A1 true WO2022019048A1 (en) 2022-01-27

Family

ID=79729436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024175 WO2022019048A1 (en) 2020-07-20 2021-06-25 Image generation apparatus and head-up display

Country Status (2)

Country Link
JP (1) JPWO2022019048A1 (en)
WO (1) WO2022019048A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323316A (en) * 1992-05-20 1993-12-07 Canon Inc Back light device
US20060066508A1 (en) * 2001-01-16 2006-03-30 Walck Scott D Image display system utilizing light emitting material
JP2008089753A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Semiconductor laser light source unit
JP2015045735A (en) * 2013-08-28 2015-03-12 日本精機株式会社 Backlight unit, and display device
JP2015099186A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Display device for vehicle
WO2016027705A1 (en) * 2014-08-20 2016-02-25 日本精機株式会社 Liquid crystal display device and head-up display device
JP2016071062A (en) * 2014-09-29 2016-05-09 株式会社 オルタステクノロジー Head-up display device
WO2018055722A1 (en) * 2016-09-23 2018-03-29 マクセル株式会社 Video projection lighting device
JP2018075983A (en) * 2016-11-10 2018-05-17 日本精機株式会社 Head-up display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323316A (en) * 1992-05-20 1993-12-07 Canon Inc Back light device
US20060066508A1 (en) * 2001-01-16 2006-03-30 Walck Scott D Image display system utilizing light emitting material
JP2008089753A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Semiconductor laser light source unit
JP2015045735A (en) * 2013-08-28 2015-03-12 日本精機株式会社 Backlight unit, and display device
JP2015099186A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Display device for vehicle
WO2016027705A1 (en) * 2014-08-20 2016-02-25 日本精機株式会社 Liquid crystal display device and head-up display device
JP2016071062A (en) * 2014-09-29 2016-05-09 株式会社 オルタステクノロジー Head-up display device
WO2018055722A1 (en) * 2016-09-23 2018-03-29 マクセル株式会社 Video projection lighting device
JP2018075983A (en) * 2016-11-10 2018-05-17 日本精機株式会社 Head-up display device

Also Published As

Publication number Publication date
JPWO2022019048A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP5287828B2 (en) Head-up display device
WO2010103596A1 (en) Head-up display device
WO2018131444A1 (en) Head-up display device
EP3290990B1 (en) Head-up display device
JP2012163705A (en) Head-up display device
JP2007086387A (en) On-vehicle display device
JP2015161732A (en) Display light projection optical device
JP7087981B2 (en) Virtual image display device
CN113661432B (en) Head-up display device
CN112444974A (en) Head-up display device, imaging system and vehicle
JP2016180922A (en) Head-up display device
CN211375182U (en) Head-up display device, imaging system and vehicle
WO2022019048A1 (en) Image generation apparatus and head-up display
TWI802087B (en) Image generating unit and head-up display therefor
WO2021246201A1 (en) Vehicular display device
US10641457B2 (en) Vehicular lamp
JP2022156070A (en) image projection device
JP3785461B2 (en) Head-up display method
WO2023042609A1 (en) Image generation apparatus and head-up display
JP7447162B2 (en) Vehicle display device
JP2015060015A (en) Head-up display device
WO2020226129A1 (en) Vehicular lamp
JP7433716B2 (en) heads up display device
EP4071541B1 (en) Vehicle display device
US20230097752A1 (en) Display device, head-up display, and mobile object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846915

Country of ref document: EP

Kind code of ref document: A1