WO2022017490A1 - 随机接入方法、配置方法及相关设备 - Google Patents

随机接入方法、配置方法及相关设备 Download PDF

Info

Publication number
WO2022017490A1
WO2022017490A1 PCT/CN2021/108082 CN2021108082W WO2022017490A1 WO 2022017490 A1 WO2022017490 A1 WO 2022017490A1 CN 2021108082 W CN2021108082 W CN 2021108082W WO 2022017490 A1 WO2022017490 A1 WO 2022017490A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeated transmission
repeated
pusch
random access
time domain
Prior art date
Application number
PCT/CN2021/108082
Other languages
English (en)
French (fr)
Inventor
李娜
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020237006040A priority Critical patent/KR20230042327A/ko
Priority to EP21846355.2A priority patent/EP4188026A4/en
Publication of WO2022017490A1 publication Critical patent/WO2022017490A1/zh
Priority to US18/155,985 priority patent/US20230156782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a random access method, a configuration method and related equipment.
  • RedCap UE Low-performance terminal
  • RedCap UE refers to some devices with limited capabilities, such as wearable devices, industrial sensors, video surveillance equipment, etc.
  • RedCap UE needs to reduce the complexity in terms of receiving antennas, the number of transmitting antennas, the supported bandwidth, and the time and capability of the terminal to process data and signals.
  • the reduction in the number of transmit antennas and the supported bandwidth of the RedCap UE will lead to a decrease in uplink coverage, which in turn will lead to a larger delay for the RedCap UE to complete the Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • the embodiments of the present application provide a random access method, a configuration method, and related equipment, which can solve the problem of a large delay for a RedCap UE to complete PRACH.
  • a random access method applied to a terminal, and the method includes:
  • the target information in the target random access process is repeatedly transmitted, and the target information includes the physical uplink shared channel PUSCH.
  • a configuration method applied to a network side device, the method includes:
  • Send first configuration information where the first configuration information is used to configure the terminal to repeatedly transmit target information in the target random access process, where the target information includes a physical uplink shared channel PUSCH.
  • a random access apparatus which is applied to a terminal, and the random access apparatus includes:
  • the transmission module is configured to repeatedly transmit the target information in the target random access process, where the target information includes the physical uplink shared channel PUSCH.
  • a configuration device applied to a network side device, including:
  • the first sending module is configured to send first configuration information, where the first configuration information is used to configure the terminal to repeatedly transmit target information in the target random access process, where the target information includes a physical uplink shared channel PUSCH.
  • a terminal in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a network side device in a sixth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the second aspect when executed.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect, or the The steps of the method of the second aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction, and implements the method described in the first aspect. the method described, or implement the method described in the second aspect.
  • the terminal may repeatedly transmit target information in the target random access process, where the target information includes the physical uplink shared channel PUSCH.
  • the target information includes the physical uplink shared channel PUSCH.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • 2a is a flowchart of a four-step random access process based on contention provided by an embodiment of the present application
  • 2b is a flowchart of a non-contention-based four-step random access process provided by an embodiment of the present application
  • 3a is a flowchart of a contention-based two-step random access process provided by an embodiment of the present application
  • 3b is a flowchart of a non-contention-based two-step random access process provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of resource allocation of message A provided by an embodiment of the present application.
  • 6a is one of the schematic diagrams of RO and PO transmission provided by an embodiment of the present application.
  • 6b is the second schematic diagram of RO and PO transmission provided by the embodiment of the present application.
  • Figure 6c is the third schematic diagram of RO and PO transmission provided by the embodiment of the present application.
  • FIG. 7a is one of schematic diagrams of repeated transmission provided by an embodiment of the present application.
  • FIG. 7b is the second schematic diagram of repeated transmission provided by an embodiment of the present application.
  • FIG. 7c is the third schematic diagram of repeated transmission provided by the embodiment of the present application.
  • FIG. 9 is a structural diagram of a random access apparatus provided by an embodiment of the present application.
  • FIG. 10 is a structural diagram of a configuration device provided by an embodiment of the present application.
  • FIG. 11 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 13 is a structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary.
  • Random access/access process Random Access Channel, RACH.
  • the types of random access procedures may include a four-step random access procedure (4-step RACH) and a two-step random access procedure (2-step RACH). Both types of RACH support Contention Based Random Access (CBRA) and Contention Free Random Access (CFRA).
  • CBRA Contention Based Random Access
  • CFRA Contention Free Random Access
  • the flowchart of the contention-based four-step random access procedure can be referred to in FIG. 2a; the flowchart of the non-contention-based four-step random access procedure can be referred to in FIG. 2b.
  • the flowchart of the contention-based two-step random access procedure can be referred to in FIG. 3a; the flowchart of the non-contention-based two-step random access procedure can be referred to in FIG. 3b.
  • the contention-based four-step random access procedure may include the following steps:
  • Step 1 The UE sends message 1 to the base station.
  • the message (Message, Msg) 1 may be regarded as a random access request, and may include a random access preamble (Random Access Preamble).
  • Step 2 The base station sends message 2 to the UE.
  • Message 2 can be regarded as a random access response (Random Access Response, RAR), and can include an uplink grant (Uplink Grant).
  • RAR Random Access Response
  • Uplink Grant Uplink Grant
  • Step 3 The UE sends message 3 to the base station.
  • Msg3 can be regarded as a pre-configured transmission (Scheduled Transmission), which can include the UE identity.
  • Step: 4 The base station sends message 4 to the UE.
  • Msg4 may contain Contention Resolution.
  • the UE receives Msg4 and judges whether the contention is successfully resolved, if successful, the random access procedure is successful, otherwise, the random access procedure is re-initialized.
  • the UE first sends Msg1 to the network, including the preamble; after the UE sends the preamble, it will monitor the Physical Downlink Control Channel (PDCCH) within the RAR time window, and use the fallback downlink control information (Downlink Control Information, DCI) format (format), namely DCI format 1_0, to receive the RAR scheduled by PDCCH scrambled with Random Access Single Cell Radio Network Temporary Identity (RA-RNTI). If the preamble index in the RAR is the same as the preamble index sent by the UE, it is considered that the RAR has been successfully received. At this time, the UE can stop monitoring the RAR and send Msg3 according to the instruction of the grant carried in the RAR.
  • DCI Downlink Control Information
  • Msg3 is transmitted on the Uplink Shared Channel (UL-SCH), and uses the Hybrid Automatic Repeat Request (HARQ) to use the Temporary Cell Single Cell Radio Network Temporary indicated by the RAR.
  • Identity, TC-RNTI scrambles the PDCCH, and uses DCI format 1_0 to schedule the retransmission of Msg3.
  • the UE When the UE successfully decodes the UE Contention Resolution Identity (UE Contention Resolution Identity) contained in the Msg4, the Media Access Control (MAC) control element (control element) When it matches the UE Contention Resolution Identity sent by Msg3, the UE will consider that the random access is successful and set its own cell wireless network temporary identity (Cell Single Cell Radio Network Temporary Identity, C-RNTI) to TC-RNTI, That is, the 4-step random access is completed.
  • UE Contention Resolution Identity UE Contention Resolution Identity
  • MAC Media Access Control
  • frequency hopping signal Frequency hopping flag
  • Physical Uplink Shared Channel PUSCH
  • Frequency domain resource allocation frequency resource allocation
  • Time domain resource allocation time resource allocation
  • Modulation and coding Scheme Modulation and Coding Scheme, MCS
  • PUSCH TPC command TPC command for PUSCH
  • Transmit Power Control Transmit Power Control, TPC
  • Channel State Information Channel State Information
  • the non-contention-based four-step random access procedure may include the following steps:
  • Step 0 The base station sends a random access preamble assignment (Random Access Preamble Assignment) to the UE.
  • a random access preamble assignment Random Access Preamble Assignment
  • Step 1 The UE sends message 1 to the base station.
  • the message (Message, Msg) 1 may be regarded as a random access request, and may include a random access preamble (Random Access Preamble).
  • Step 2 The base station sends message 2 to the UE.
  • Msg 2 can be regarded as a random access response (Random Access Response, RAR).
  • the contention-based two-step random access procedure may include the following steps:
  • Step a The UE sends a message a to the base station.
  • Mag A may contain a random access preamble (Random Access Preamble) and a PUSCH payload (payload).
  • Step b The base station sends message B to the UE.
  • Msg B can contain contention resolution.
  • the UE In the two-step RACH process, the UE first sends Msg A, which consists of two parts, the Physical Random Access Channel (PRACH) preamble and PUSCH.
  • the transmission information of the PUSCH may include UE identification information.
  • the network After the network receives the Msg A sent by the UE, it will send the Msg B to the UE.
  • the network uses the PDCCH scrambled by the Msg B-RNTI, and uses the DCI format 1_0 to schedule the Physical Downlink Shared Channel (PDSCH).
  • the PDSCH can contain the UE-ID.
  • the competition is considered successful, and the HARQ affirmative answer (Ack) of Msg B is fed back to the network.
  • FIG. 4 The time domain resource allocation of MsgA can be seen in FIG. 4 .
  • Figure 4 shows the allocation of the Msg A PUSCH relative to the time domain resources of the Msg A preamble.
  • PRACH configuration period PRACH Configuration Period
  • PRACH occasion PRACH Occasion, RO
  • PUSCH occasion PUSCH Occasion, PO
  • the time domain resources of Msg A PUSCH can be allocated in multiple consecutive time slots (slots), and the first PUSCH transmission opportunity (transmission occasion) in each time slot has the same start symbol and length.
  • each slot may have multiple PUSCH transmission opportunities.
  • the first slot where the first PUSCH is located is located after the PRACH start slot, and is separated by multiple slots, which can be regarded as a time offset (Time Offset).
  • OFDM Orthogonal Frequency Division Multiplex
  • the non-contention-based two-step random access procedure may include the following steps:
  • Step 0 The base station sends a random access preamble and a PUSCH configuration (Random Access Preamble and PUSCH Assignment) to the UE.
  • a random access preamble and a PUSCH configuration Random Access Preamble and PUSCH Assignment
  • Step a The UE sends a message a to the base station.
  • Mag A may contain a random access preamble (Random Access Preamble) and a PUSCH payload (payload).
  • Step b The base station sends message B to the UE.
  • Msg B can be regarded as a random access response (Random Access Response, RAR).
  • the frequency hopping modes supported by Msg.3 and Msg.A PUSCH may include intra-slot Frequency Hopping (intra-slot FH).
  • the unavailable time domain resource may be an invalid resource or a resource configured for downlink transmission, but is not limited thereto.
  • FIG. 5 is a flowchart of a random access method provided by an embodiment of the present application.
  • the random access method in this embodiment of the present application can be applied to a terminal.
  • the random access method may include the following steps:
  • Step 501 Repeatedly transmit the target information in the target random access process, where the target information includes the physical uplink shared channel PUSCH.
  • the target random access process may be the aforementioned four-step random access process, two-step random access process, or other random access process, and the embodiment of the present application does not limit the target random access process Type of process.
  • the number of times of repeated transmission of the target information is greater than 1, which may be specifically determined according to the actual situation, which is not limited in this embodiment of the present application.
  • the repeated transmission of the PUSCH in the target random access process may specifically be: repeating transmission of the message sent through the PUSCH in the target random access process, or, for the PUSCH included in a message in the target random access process Repeat transmission.
  • the repeated transmission of the target information in the target random access process includes at least one of the following:
  • the PUSCH included in the message A in the two-step random access procedure is repeatedly transmitted.
  • the PUSCH included in the target information may be Msg3; in the two-step random access process, the PUSCH included in the target information may be the PUSCH included in Msg A PUSCH.
  • the terminal supports repeated transmission of the target information in the target random access process.
  • the behavior of the terminal performing the repeated transmission of the target information in the target random access process may be stipulated by the network side device or by the protocol.
  • the terminal can repeatedly transmit the target information in the target random access process, where the target information includes the physical uplink shared channel PUSCH.
  • the target information includes the physical uplink shared channel PUSCH.
  • the number of repeated transmissions of the PUSCH included in the target information may be determined in various ways, and the details are as follows:
  • the number of times of repeated transmission of the PUSCH satisfies any of the following:
  • the system information configuration sent by the network side device
  • RRC Radio Resource Control
  • M the number of times of repeated transmission of the PUSCH is hereinafter denoted as M, where M is an integer greater than 1.
  • the M value is configured by the system information, RRC configuration or protocol
  • the M value is used as the number of repeated transmissions of the PUSCH; if the system information and RRC information If the M value is configured, the M value configured by RRC is used as the number of repeated transmissions of the PUSCH; if the M value is not configured in the system information and RRC information, the default value, that is, the M value agreed in the protocol is used as the PUSCH number of repeated transmissions.
  • the terminal When the value of M is the same as the nominal or actual repeated transmission times of the preamble in the target random access process, the terminal supports repeated transmission of the preamble in the target random access process.
  • the number of repeated transmissions may be configured by system information, RRC configuration or agreed by a protocol, but is not limited to this.
  • the nominal number of repeated transmissions of the preamble can be understood as the number of repeated transmissions configured by the preamble, but when the terminal performs repeated transmission of the preamble, it may give up performing some repeated transmissions. Therefore, the terminal actually executes The number of repeated transmissions of the preamble, that is, the actual number of repeated transmissions of the preamble is less than or equal to the nominal number of repeated transmissions of the preamble. It can be seen that the nominal number of repeated transmissions of the preamble includes the repeated transmissions discarded because the transmission resources of the preamble are unavailable; the actual number of repeated transmissions of the preamble does not include the transmission resources due to the preamble. Duplicate transmissions that are discarded when unavailable.
  • the number of repeated transmissions of the PUSCH satisfies any one of the following:
  • the number of repeated transmissions of the PUSCH is indicated by some bits of the second field in the physical layer signaling.
  • a first field is newly added to the physical layer signaling, and the first field is used to indicate the number of times of repeated transmission of the PUSCH.
  • the first field may be coded jointly with other fields originally in the physical layer signaling.
  • the first field may be coded jointly with a Time Domain Resource Assignment (TDRA) field.
  • TDRA Time Domain Resource Assignment
  • the upper layer may also configure the number of repetitions of the PUSCH, that is, the M value, for each row index (Row index).
  • Table 2 Joint coding of the first field and the TDRA field
  • some bits of the second field in the physical layer signaling may be multiplexed to indicate the number of times of repeated transmission of the PUSCH.
  • the M value may be indicated by using the x-bit (bit) most significant bit (the Most Significant Bit, MSB) or the x-bit least significant bit (Least Significant Bit, LSB) of the second field.
  • the second domain may be a frequency resource allocation (frequency resource allocation) domain or an MCS domain, but is not limited thereto.
  • MCS field does not indicate M 2-bit MSB indicates M 2-bit LSB indicates M MCS (M, MCS) (MCS, M)
  • the MCS field may include 5 bits, which may be specifically represented as: (a4, a3, a2, a1, a0).
  • the MCS field is only used to indicate the MCS; in the case of using the 2-bit MSB of the MCS field to indicate M, the MCS field can be used to indicate M and MCS.
  • a4 and a3 indicates M; when using the 2-bit LSB of the MCS field to indicate M, the MCS field can be used to indicate M and MCS, specifically, a1 and a0 can be used to indicate M.
  • the PUSCH includes at least one of an initial transmission PUSCH and a retransmission PUSCH;
  • the number of repeated transmissions of the PUSCH When the number of repeated transmissions of the PUSCH is indicated by physical layer signaling, the number of repeated transmissions of the PUSCH satisfies at least one of the following:
  • the number of repeated transmissions of the initial PUSCH is indicated by the uplink grant indication in the random access response RAR or by the physical downlink control channel PDCCH command that triggers the target random access;
  • the repeated transmission times of the retransmitted PUSCH is indicated by the downlink control information DCI format 1_0 scrambled by the temporary cell wireless network temporary identifier TC-RNTI.
  • the number of repeated transmissions of the initial PUSCH may be indicated by the uplink grant in the RAR; the number of repeated transmissions of the retransmitted PUSCH is determined by the TC-RNTI Scrambled DCI format 1_0 indication.
  • the number of repeated transmissions of the initial PUSCH may be indicated by the PDCCH command that triggers the target random access; the repeated transmission of the retransmitted PUSCH The number of times is indicated by the TC-RNTI scrambled DCI format 1_0.
  • the number of repeated transmissions of the initially transmitted PUSCH may be equal to or different from the number of repeated transmissions of the retransmitted PUSCH.
  • the sum of the number of repeated transmissions of the initially transmitted PUSCH and the number of repeated transmissions of the retransmitted PUSCH may be equal to the aforementioned M value.
  • the target information further includes a preamble.
  • the terminal may also support repeated transmission of the preamble of the target random access procedure.
  • the repeated transmission of the target information in the target random access process includes: repeated transmission of the PUSCH in the target random access process; and repeated transmission of the preamble in the target random access process.
  • the behavior of the terminal performing the repeated transmission of the preamble in the target random access process may be configured by the network side device or agreed by the protocol.
  • the repeated transmission of the preamble in the target random access process may specifically be: repeating transmission of the message including the preamble in the target random access process, or, repeating the transmission of a message included in the target random access process.
  • the preamble is transmitted repeatedly.
  • the repeated transmission of the preamble in the target random access process may include any one of the following: repeating transmission of message 1 in the four-step random access process; The preamble contained in message A is repeatedly transmitted.
  • the preamble included in the target information may be Msg1; in the two-step random access process, the preamble included in the target information may be Msg A The preamble contained in .
  • the repeated transmission of the PUSCH and the preamble may be implemented by repeatedly transmitting the Msg A.
  • the repeated transmission rule of the target information includes any of the following:
  • Rule 1 Repeat transmission with combined pairs, each of which includes a preamble and a PUSCH;
  • Rule 2 The repeated transmission of the preamble is located before the repeated transmission of the PUSCH;
  • Rule 3 The preamble and the PUSCH are crossed for repeated transmission.
  • Rule 1, Rule 2, and Rule 3 may be configured by a network-side device or predetermined by a protocol, and may be specifically determined according to an actual situation, which is not limited in this embodiment of the present application.
  • RO the transmission of one preamble
  • PO the transmission of one PUSCH
  • a RO and a PO are formed into a pair ⁇ RO, PO ⁇ , and then multiple ⁇ RO, PO ⁇ pairs are repeatedly transmitted, such as: ⁇ RO,PO,RO,PO,...,RO,PO ⁇ .
  • the terminal transmits 4 ⁇ RO, PO ⁇ pairs.
  • FIG. 6b the number of ROs and the number of POs are both 2, and the terminal transmits 2 ROs first, and then transmits 2 POs.
  • all ROs are divided into at least two RO groups, and all POs are divided into at least one PO group, each RO group may include one or more ROs, and each PO group may include one or more POs.
  • the first RO group, the first PO group, the second RO group can be transmitted in turn, and so on, until the transmission of all RO combination PO groups is completed, such as: ⁇ RO,RO,PO,PO,PO,RO, RO, PO, PO, PO ⁇ .
  • each RO group includes 2 ROs
  • each PO group includes 2 POs
  • the terminal performs cross-transmission on the 2 ROs combined with the 2 PO groups.
  • the time-frequency resources of the repeated transmission of the target information do not overlap. That is, the time domain resources of RO and PO do not overlap.
  • the repeated transmission of the target information satisfies time division multiplexing (Time Division Multiplexing, TDM).
  • the at least two repeated transmissions satisfy any of the following: One:
  • the second repeated transmission is other repeated transmissions except the first repeated transmission in the at least two repeated transmissions.
  • the terminal may perform only one repeated transmission among the at least two repeated transmissions, and give up performing other repeated transmissions.
  • the first repeated transmission may be any repeated transmission in the at least two repeated transmissions.
  • the first repeated transmission satisfies any of the following:
  • the transmission time of the first repeated transmission configuration is prior to the second repeated transmission
  • the transmission time of the first repeated transmission configuration is later than the second repeated transmission
  • the first repeated transmission is determined by the terminal.
  • the first repeated transmission is the repeated transmission that occurs first in the at least two repeated transmissions.
  • the first repeated transmission is the last repeated transmission of the at least two repeated transmissions.
  • the first repeated transmission may be configured by the network side or agreed by a protocol.
  • the terminal may decide to transmit any one of the at least two repeated transmissions.
  • the network-side device may perform blind detection on the time-frequency resources of the at least two repeated transmissions to detect the first repeated transmission.
  • the time-domain resources for repeated transmission are pre-configured.
  • the time-domain resources configured for the repeated transmission of the target information may all be available time-domain resources. In this way, the realization of the repeated transmission of the target information can be ensured, so that the reliability of the transmission of the target information can be improved.
  • the time domain resource configured for the repeated transmission of the preamble satisfies any of the following:
  • All time-domain resources configured for repeated transmission are available time-domain resources
  • the time domain resources configured for the first repeated transmission are all available time domain resources.
  • the time domain resources configured for the repeated transmission of the target information may include unavailable timing resources.
  • the terminal may perform the repeated transmission of the target information in the following manner:
  • the repeated transmission of the target information satisfies any of the following:
  • Manner 1 in the case that there are unavailable time domain resources in the time domain resources configured for the third repeated transmission, give up the execution of the third repeated transmission;
  • Manner 2 In the case where there are unavailable time domain resources in the time domain resources configured for the third repeated transmission, delay the execution of the third repeated transmission, wherein the time domain resources occupied by the third repeated transmission after the delayed execution are all for available time domain resources.
  • the terminal may directly abandon the repeated transmission.
  • the terminal may postpone the repeated transmission.
  • the delaying the execution of the third repeated transmission includes any of the following:
  • the fourth repeated transmission includes all repeated transmissions in which the configured time domain resources are located after the third repeated transmission.
  • the terminal may regard the third repeated transmission and its subsequent repeated transmissions as a whole, and then postpone the transmission as a whole. It should be understood that, if there are still repeated transmissions in which the configured time domain resources include unavailable time domain resources in the fourth repeated transmission, the repeated transmission may be regarded as a new third repeated transmission, and other repeated transmissions other than the repeated transmission may be used. The repeat transmission is performed as a new fourth repeat transmission, and then the new third repeat transmission and the new fourth repeat transmission are deferred.
  • the terminal is configured to transmit four POs, namely PO1, PO2, PO3 and PO4.
  • the transmission resources of PO2 include unavailable resources, and the terminal may delay transmission of PO2, PO3 and PO4.
  • the terminal may first determine that the configured time domain resources include repeated transmissions of unavailable time domain resources, and then first set the configured time domain resources to all available time domains After all the repeated transmissions of the resources are completed, after that, the transmission of the configured time-domain resources including the repeated transmission of the unavailable time-domain resources is started on the available time-domain resources.
  • the terminal is configured to transmit four POs, namely PO1, PO2, PO3 and PO4.
  • the transmission resources of PO1 and PO3 include unavailable resources, then the terminal can transmit PO2 and PO4, postpone the transmission of PO1 and PO3, and then transmit PO1 and PO3 in available time-frequency resources after PO2 and PO4.
  • the repeated transmission of the PUSCH may include multiple repeated transmission rules (or referred to as repeated transmission types), which are specifically described as follows:
  • the repeated transmission rule of the PUSCH includes any of the following:
  • Repeated transmission type A different repeated transmissions are located in different time slots, and each repeated transmission occupies the same initial time domain resources in the time slot;
  • Repeated transmission type B all repeated transmissions are continuous on time domain resources, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • Repeated transmission type C All repeated transmissions are continuous in time domain resources, there is a guard interval in time domain resources between two adjacent repeated transmissions, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitions transmission;
  • Repeat transmission type D All repeat transmissions are continuous on time domain resources, there is a guard interval on time domain resources between two adjacent repeat transmissions, and the time domain resources of the fifth repeat transmission configuration have unavailable time domain resources , give up the execution of the fifth repeated transmission, or postpone the execution of the fifth repeated transmission;
  • K is an integer greater than 1.
  • the first condition satisfies any of the following:
  • the time domain resource of the fifth repeated transmission configuration spans a time slot boundary
  • M repeated transmissions are located in M slots, and the time resources (starting positions of transmission) occupied by data transmission in each slot are the same.
  • the M repeated transmissions may adopt single-layer transmission.
  • Fig. 7a 4 repeated transmissions are located in 4 time slots, and each repeated transmission occupies the same time domain resources in the time slot.
  • repeated transmission type B it can be understood that all repeated transmissions are continuous on time domain resources: all repeated transmissions are continuous on available time domain resources. If the time domain resource of a certain repeated transmission configuration satisfies the first condition, that is, it crosses the time slot boundary, or includes unavailable time domain resources, the repeated transmission can be divided into K sub-repetitive transmissions according to the timing boundary or the unavailable time domain resources , in some embodiments, the divided repeated transmission may be called a nominal repeated transmission, and the sub-repetitive transmission obtained by dividing the repeated transmission may be called an actual repeated transmission, but it is not limited thereto.
  • the 4 repeated transmissions are continuous, and the time domain resources of the third repeated transmission cross the time slot boundary, then the third repeated transmission can be divided into two sub-repetitive transmissions, denoted as sub-repetitive transmission 1 and sub-repetitive transmission 2 .
  • the difference between repeated transmission type C and repeated transmission type B lies in that there is a guard interval between two adjacent repeated transmissions in repeated transmission type C in time domain resources, while two adjacent repeated transmissions in repeated transmission type B have a guard interval. There may be no guard interval on time domain resources between transmissions.
  • Figure 7c For ease of understanding, please refer to Figure 7c.
  • two consecutive repeated transmissions have a guard interval, four repeated transmissions are continuous except for the guard interval, and the time domain resources of the fourth repeated transmission span the time slot boundary, so the fourth repeated transmission can be It is divided into two sub-repetitive transmissions, denoted as sub-repetitive transmission 1 and sub-repetitive transmission 2.
  • the difference between the repeated transmission type D and the repeated transmission type C is that the fifth repeated transmission in which the configured time domain resources have unavailable time domain resources is handled differently. Specifically, in the repeated transmission type D, if there are repeated transmissions of the configured time domain resources and unavailable time domain resources, the repeated transmission is postponed, or the repeated transmission is abandoned.
  • the manner of deferring the repeated transmission may refer to the foregoing description, which will not be repeated here.
  • the redundant version RV of the repeated transmission of the PUSCH is indicated by at least one item of system information, RRC information and physical layer signaling.
  • the redundant version of the repeated transmission of the PUSCH includes at least one of the following:
  • RV sequence 1 ⁇ 0, 2, 3, 1 ⁇ ;
  • RV sequence 2 ⁇ 0, 3, 0, 3 ⁇ ;
  • RV sequence 3 ⁇ 0, 0, 0, 0 ⁇ ;
  • RV sequence 4 ⁇ a, c, d, b ⁇ ;
  • RV sequence 5 ⁇ a, d, a, d ⁇ ;
  • a includes L 0s
  • b includes L 1s
  • c includes L 2s
  • d includes L 3s
  • L is a positive integer.
  • the value of L is equal to the rounding down of the first ratio or the rounding up of the first ratio
  • the first ratio is a ratio of the number of repeated transmissions of the PUSCH to 4.
  • the repeatedly transmitted beam of the PUSCH satisfies any of the following:
  • the repeated transmission beam of the PUSCH and the repeated transmission beam of the preamble it may be all the repeated transmission beams of the PUSCH and the repeated transmission beam of one preamble;
  • the beam for the repeated transmission of the part of the PUSCH is different from the beam for the repeated transmission of a preamble, and the beams for the repeated transmission of the preamble corresponding to the beams of different parts of the repeated transmission are different, which can be determined according to the actual situation. Do limit.
  • the beam for repeated transmission of the PUSCH and the beam for repeated transmission of the preamble may be configured by the network side or predetermined by a protocol.
  • the beams of different repeated transmissions in the repeated transmission of the PUSCH are the same or different, which may be determined according to the actual situation, which is not limited in this embodiment of the present application.
  • FIG. 8 is a flowchart of a configuration method provided by an embodiment of the present application.
  • the configuration method in the embodiment of the present application is applied to a network side device.
  • the configuration method may include the following steps:
  • Step 801 Send first configuration information, where the first configuration information is used to configure the terminal to repeatedly transmit the target information in the target random access process, where the target information includes the physical uplink shared channel PUSCH.
  • the network side device may send the first configuration information to the terminal, and configure the terminal to repeatedly transmit the target information in the target random access process.
  • the terminal can repeatedly transmit the target information in the target random access process, where the target information includes the physical uplink shared channel PUSCH.
  • the uplink coverage of the PUSCH of the terminal in the target random access process can be enhanced, thereby reducing the time delay for the terminal to complete the target random access process.
  • the PUSCH includes at least one of an initial transmission PUSCH and a retransmission PUSCH;
  • the number of repeated transmissions of the PUSCH satisfies at least one of the following:
  • the number of repeated transmissions of the initial PUSCH is indicated by the uplink grant indication in the random access response RAR or by the physical downlink control channel PDCCH command that triggers the target random access;
  • the repeated transmission times of the retransmitted PUSCH is indicated by the downlink control information DCI format 1_0 scrambled by the temporary cell wireless network temporary identifier TC-RNTI.
  • the number of repeated transmissions of the PUSCH satisfies any one of the following:
  • the number of times of repeated transmission of the PUSCH is indicated by the newly added first field in the physical layer signaling
  • the number of repeated transmissions of the PUSCH is indicated by some bits of the second field in the physical layer signaling.
  • the target information further includes a preamble.
  • the method further includes:
  • the repeated transmission rule of the target information satisfies any of the following:
  • the repeated transmission of the preamble is located before the repeated transmission of the PUSCH;
  • the preamble and the PUSCH are crossed for repeated transmission.
  • the method further includes:
  • the repeated transmission rule of the PUSCH includes any of the following:
  • Different repeated transmissions are located in different time slots, and each repeated transmission occupies the same initial time domain resources in the time slot;
  • All repeated transmissions are continuous on time domain resources, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous on time domain resources, and there is a guard interval on time domain resources between two adjacent repeated transmissions, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous in time domain resources, there is a guard interval in time domain resources between two adjacent repeated transmissions, and in the case where there are unavailable time domain resources in the time domain resources of the fifth repeated transmission configuration, the execution of the above is abandoned. the fifth repeated transmission, or, delaying the execution of the fifth repeated transmission;
  • K is an integer greater than 1.
  • the first condition satisfies any of the following:
  • the time domain resource of the fifth repeated transmission configuration spans a time slot boundary
  • the method further includes:
  • the second indication information includes at least one of the following: system information; RRC information; physical layer signaling.
  • the redundant version of the repeated transmission of the PUSCH includes at least one of the following:
  • RV sequence 1 ⁇ 0, 2, 3, 1 ⁇ ;
  • RV sequence 2 ⁇ 0, 3, 0, 3 ⁇ ;
  • RV sequence 3 ⁇ 0, 0, 0, 0 ⁇ ;
  • RV sequence 4 ⁇ a, c, d, b ⁇ ;
  • RV sequence 5 ⁇ a, d, a, d ⁇ ;
  • a includes L 0s
  • b includes L 1s
  • c includes L 2s
  • d includes L 3s
  • L is a positive integer.
  • the value of L is equal to the rounding down of the first ratio or the rounding up of the first ratio
  • the first ratio is a ratio of the number of repeated transmissions of the PUSCH to 4.
  • the method further includes:
  • the third indication information includes at least one of the following: system information; RRC information; physical layer signaling.
  • beams of different repeated transmissions in the repeated transmission of the PUSCH are the same or different.
  • this embodiment is an embodiment of a network-side device corresponding to the method embodiment in FIG. 5 . Therefore, reference may be made to the relevant description in the method embodiment in FIG. 5 , and the same beneficial effects can be achieved. In order to avoid repeated descriptions, detailed descriptions are omitted here.
  • RedCap UE supports M times (M>1) repeated transmission of 4-step RACH Msg.3 and/or 2-step RACH Msg.A PUSCH.
  • the M value is used; if both the system information and RRC are configured with the M value, the M value configured by the RRC is used; if neither the system information nor the RRC is configured with the M value , then M adopts the default value, which can be predefined as 1 or other integer values greater than 1.
  • the nominal number of transmissions includes transmissions discarded due to unavailable transmission resources for Msg.1/Preamble; the actual number of transmissions excludes transmissions discarded due to unavailable transmission resources for Msg.1/Preamble.
  • the system information configures Msg.1/Preamble for repeated transmission 4 times, denoted as Msg.1#1, Msg.1#2, Msg.1#3 and Msg.1#4; the transmission resources of Msg.1#3 and Downstream SSB transmissions collide, so the transmission of Msg.1#3 is discarded; in this example, the number of nominal transmissions is 4, and the number of actual transmissions is 3.
  • M can be dynamically indicated by L1, that is, physical layer signaling.
  • Option 2 Compress the number of bits in other fields to leave space for indicating M.
  • the base station configures any of the following RACH Occasion (RO) and PUSCH Occasion (PO) time-domain resource allocation structures:
  • RO and PO form a pair, and then repeatedly transmit M ⁇ RO, PO ⁇ pairs, such as ⁇ RO, PO, RO, PO,..., RO, PO ⁇ .
  • the UE does not expect the configured M ⁇ RO, PO ⁇ pairs to have partial or full resource overlap, or, if the M ⁇ RO, PO ⁇ pairs have partial or full resource overlap:
  • the UE transmits ⁇ RO, PO ⁇ that appears first or later in time, and discards ⁇ RO, PO ⁇ that appears later or first in time; or,
  • N and M can be equal.
  • the UE does not expect the configured N ROs and/or M POs to partially or fully overlap in resources, or, if N ROs and/or M POs partially or fully overlap in resources:
  • the UE transmits the RO or PO that appears first or later in time, and discards the RO or PO that appears later or first in time; or,
  • N1, N2, M1, and M2 can be equal.
  • the UE does not expect the configured N ROs and/or M POs to partially or fully overlap in resources, or, if N ROs and/or M POs partially or fully overlap in resources:
  • the UE transmits the RO or PO that appears first or later in time, and discards the RO or PO that appears later or first in time; or,
  • the multiple ROs and POs repeatedly transmitted above are time division multiplexed (TDM).
  • TDM time division multiplexed
  • repetition Type A and repetition Type B can be supported.
  • Repetition Type C and repetition Type D are supported.
  • Repeated transmission is based on slots. K repeated transmissions need to occupy K slots, and the time resources (starting position of transmission) occupied by data transmission in each slot are the same. See Figure 7a for details.
  • Sub-slot-based repeat transmission is introduced, and K nominal repeat transmissions can perform "back-to-back" continuous transmission in a slot.
  • K nominal repeat transmissions can perform "back-to-back" continuous transmission in a slot.
  • repetition Type B Similar to repetition Type B, continuous repeated transmission is performed. When an unavailable symbol is encountered, a repetition can be divided into multiple segments; different from repetition Type B, continuous repeated transmission is no longer 'back-to-back'. , in order to reduce the impact of timing advance uncertainty on PUSCH performance, multiple OFDM symbols are spaced between two adjacent repetitions, which is called a guard interval (GP). See Figure 7c for details.
  • GP guard interval
  • GP guard interval
  • Msg.1/PRACH/Msg.3 and Msg.A PUSCH For repeated transmission of Msg.1/PRACH/Msg.3 and Msg.A PUSCH, if Msg.3 and Msg.A PUSCH use repetition Type A or repetition Type D, if the resources of one of the repetitions are unavailable, then :
  • the determination of the valid resources of the M repeated transmissions always excludes semi-statically configured invalid resources such as downlink symbols or M repeated transmissions of Msg.1/PRACH.
  • the determination of the effective resources for the first transmission always excludes the semi-statically configured invalid resources first.
  • the redundancy version (RV) of Msg.A PUSCH/Msg.3 repeated transmission is indicated by system information and/or RRC and/or L1, i.e. physical layer signaling, in any of the following:
  • RV sequence 1 ⁇ 0,2,3,1 ⁇
  • RV sequence 2 ⁇ 0,3,0,3 ⁇
  • RV sequence 3 ⁇ 0,0,0,0 ⁇
  • RV sequence 4 ⁇ (0,0,...,0),(2,2,...,2),(3,3,...,3),(1,1,...,1) ⁇ ;
  • RV sequence 5 ⁇ (0,0,...,0),(3,3,...,3),(0,0,...,0),(3,3,...,3) ⁇ ;
  • Option 1 Its beam direction is indicated by system information and/or RRC and/or L1, i.e. physical layer signaling, or,
  • Option 2 Msg.A PUSCH/Msg.3
  • the beam for each repeated transmission is the same as the beam for PRACH transmission.
  • M (M>1) Msg.A PUSCH/Msg.3 transmissions can be transmitted using the same beam or different beams.
  • a rule is defined to support M (M>1) repeated transmissions. Including: determination of M; Msg.A (PRACH+PUSCH), the time domain resource structure of its repeated transmission; the repetition type of Msg.3 and Msg.A; the redundant version of repeated transmission; Quasi co-location (QCL).
  • the uplink coverage of PRACH Msg.3 and Msg.A PUSCH is enhanced, and the time delay for users to complete the PRACH process is reduced.
  • the execution subject may be a random access device, or a control module in the random access device for executing the random access method.
  • the random access device provided by the embodiment of the present application is described by taking the random access method performed by the random access device as an example.
  • FIG. 9 is a structural diagram of a random access apparatus provided by an embodiment of the present application.
  • the random access apparatus 900 includes:
  • the transmission module 901 is configured to repeatedly transmit target information in the target random access process, where the target information includes a physical uplink shared channel PUSCH.
  • the transmission module 901 is specifically used for at least one of the following:
  • the PUSCH included in the message A in the two-step random access procedure is repeatedly transmitted.
  • the number of times of repeated transmission of the PUSCH satisfies any of the following:
  • the system information configuration sent by the network side device
  • the radio resource control RRC information configuration sent by the network side device
  • the PUSCH includes at least one of an initial transmission PUSCH and a retransmission PUSCH;
  • the number of repeated transmissions of the PUSCH satisfies at least one of the following:
  • the number of repeated transmissions of the initial PUSCH is indicated by the uplink grant indication in the random access response RAR or by the physical downlink control channel PDCCH command that triggers the target random access;
  • the repeated transmission times of the retransmitted PUSCH is indicated by the downlink control information DCI format 1_0 scrambled by the temporary cell wireless network temporary identifier TC-RNTI.
  • the number of repeated transmissions of the PUSCH satisfies any one of the following:
  • the number of times of repeated transmission of the PUSCH is indicated by the newly added first field in the physical layer signaling
  • the number of repeated transmissions of the PUSCH is indicated by some bits of the second field in the physical layer signaling.
  • the target information further includes a preamble.
  • the repeated transmission rule for the target information includes any of the following:
  • the repeated transmission of the preamble is located before the repeated transmission of the PUSCH;
  • the preamble and the PUSCH are crossed for repeated transmission.
  • the time-frequency resources of the repeated transmission of the target information do not overlap.
  • the at least two repeated transmissions satisfy any one of the following:
  • the second repeated transmission is other repeated transmissions except the first repeated transmission in the at least two repeated transmissions.
  • the first repeated transmission satisfies any of the following:
  • the transmission time of the first repeated transmission configuration is prior to the second repeated transmission
  • the transmission time of the first repeated transmission configuration is later than the second repeated transmission
  • the first repeated transmission is determined by the terminal.
  • the repeated transmission of the target information satisfies time division multiplexing.
  • the repeated transmission of the target information satisfies any of the following:
  • the third repeated transmission is delayed for execution, wherein the time domain resources occupied by the third repeated transmission after the delayed execution are all available when the time domain resources are available. domain resources.
  • the delaying the execution of the third repeated transmission includes any of the following:
  • the fourth repeated transmission includes all repeated transmissions in which the configured time domain resources are located after the third repeated transmission.
  • the time domain resource configured for the repeated transmission of the preamble satisfies any of the following:
  • All time-domain resources configured for repeated transmission are available time-domain resources
  • the time domain resources configured for the first repeated transmission are all available time domain resources.
  • the repeated transmission rule of the PUSCH includes any of the following:
  • Different repeated transmissions are located in different time slots, and each repeated transmission occupies the same initial time domain resources in the time slot;
  • All repeated transmissions are continuous on time domain resources, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous on time domain resources, and there is a guard interval on time domain resources between two adjacent repeated transmissions, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous on the time domain resources, there is a guard interval on the time domain resources between two adjacent repeated transmissions, and in the case where there are unavailable time domain resources in the time domain resources configured for the fifth repeated transmission, the execution of the the fifth repeated transmission, or, delaying the execution of the fifth repeated transmission;
  • K is an integer greater than 1.
  • the first condition satisfies any of the following:
  • the time domain resource of the fifth repeated transmission configuration spans a time slot boundary
  • the redundancy version RV of the repeated transmission of the PUSCH is indicated by at least one of system information, RRC information and physical layer signaling.
  • the redundant version of the repeated transmission of the PUSCH includes at least one of the following:
  • RV sequence 1 ⁇ 0, 2, 3, 1 ⁇ ;
  • RV sequence 2 ⁇ 0, 3, 0, 3 ⁇ ;
  • RV sequence 3 ⁇ 0, 0, 0, 0 ⁇ ;
  • RV sequence 4 ⁇ a, c, d, b ⁇ ;
  • RV sequence 5 ⁇ a, d, a, d ⁇ ;
  • a includes L 0s
  • b includes L 1s
  • c includes L 2s
  • d includes L 3s
  • L is a positive integer.
  • the value of L is equal to the rounding down of the first ratio or the rounding up of the first ratio
  • the first ratio is a ratio of the number of repeated transmissions of the PUSCH to 4.
  • the repeatedly transmitted beam of the PUSCH satisfies any of the following:
  • beams of different repeated transmissions in the repeated transmission of the PUSCH are the same or different.
  • the random access device in this embodiment of the present application may be a device, or may be a component in a terminal, an integrated circuit, or a chip.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the random access device in this embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the random access apparatus 900 provided in this embodiment of the present application can implement each process implemented by the method embodiment in FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • the execution body may be a configuration device, or a control module in the configuration device for executing the configuration method.
  • the configuration device provided by the embodiment of the present application is described by taking the configuration device executing the configuration method as an example.
  • FIG. 10 is a structural diagram of a configuration apparatus provided by an embodiment of the present application.
  • the configuration apparatus 1000 includes:
  • the first sending module 1001 is configured to send first configuration information, where the first configuration information is used to configure the terminal to repeatedly transmit target information in a target random access process, where the target information includes a physical uplink shared channel PUSCH.
  • the first configuration information is used to configure at least one of the following:
  • the terminal repeatedly transmits the message 3 of the four-step random access procedure
  • the terminal repeatedly transmits the PUSCH included in the message A in the two-step random access procedure.
  • the configuration apparatus 1000 further includes:
  • a second sending module configured to send first indication information, where the first indication information is used to indicate the number of repeated transmissions of the PUSCH;
  • the first indication information includes at least one of the following: system information; RRC information; physical layer signaling.
  • the PUSCH includes at least one of an initial transmission PUSCH and a retransmission PUSCH;
  • the number of repeated transmissions of the PUSCH satisfies at least one of the following:
  • the number of repeated transmissions of the initial PUSCH is indicated by the uplink grant indication in the random access response RAR or by the physical downlink control channel PDCCH command that triggers the target random access;
  • the repeated transmission times of the retransmitted PUSCH is indicated by the downlink control information DCI format 1_0 scrambled by the temporary cell wireless network temporary identifier TC-RNTI.
  • the number of repeated transmissions of the PUSCH satisfies any one of the following:
  • the number of times of repeated transmission of the PUSCH is indicated by the newly added first field in the physical layer signaling
  • the number of repeated transmissions of the PUSCH is indicated by some bits of the second field in the physical layer signaling.
  • the target information further includes a preamble.
  • the configuration apparatus 1000 further includes:
  • a third sending module configured to send second configuration information, where the second configuration information is used to configure a repeated transmission rule of the target information
  • the repeated transmission rule of the target information satisfies any of the following:
  • the repeated transmission of the preamble is located before the repeated transmission of the PUSCH;
  • the preamble and the PUSCH are crossed for repeated transmission.
  • the configuration apparatus 1000 further includes:
  • a fourth sending module configured to send third configuration information, where the third configuration information is used to configure the repeated transmission rule of the PUSCH;
  • the repeated transmission rule of the PUSCH includes any of the following:
  • Different repeated transmissions are located in different time slots, and each repeated transmission occupies the same initial time domain resources in the time slot;
  • All repeated transmissions are continuous on time domain resources, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous on time domain resources, and there is a guard interval on time domain resources between two adjacent repeated transmissions, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous on the time domain resources, there is a guard interval on the time domain resources between two adjacent repeated transmissions, and in the case where there are unavailable time domain resources in the time domain resources configured for the fifth repeated transmission, the execution of the the fifth repeated transmission, or, delaying the execution of the fifth repeated transmission;
  • K is an integer greater than 1.
  • the first condition satisfies any of the following:
  • the time domain resource of the fifth repeated transmission configuration spans a time slot boundary
  • the configuration apparatus 1000 further includes:
  • a fifth sending module configured to send second indication information, where the second indication information is used to indicate the redundancy version of the repeated transmission of the PUSCH;
  • the second indication information includes at least one of the following: system information; RRC information; physical layer signaling.
  • the redundant version of the repeated transmission of the PUSCH includes at least one of the following:
  • RV sequence 1 ⁇ 0, 2, 3, 1 ⁇ ;
  • RV sequence 2 ⁇ 0, 3, 0, 3 ⁇ ;
  • RV sequence 3 ⁇ 0, 0, 0, 0 ⁇ ;
  • RV sequence 4 ⁇ a, c, d, b ⁇ ;
  • RV sequence 5 ⁇ a, d, a, d ⁇ ;
  • a includes L 0s
  • b includes L 1s
  • c includes L 2s
  • d includes L 3s
  • L is a positive integer.
  • the value of L is equal to the rounding down of the first ratio or the rounding up of the first ratio
  • the first ratio is a ratio of the number of repeated transmissions of the PUSCH to 4.
  • the configuration apparatus 1000 further includes:
  • a sixth sending module configured to send third indication information, where the third indication information is used to indicate a beam for repeated transmission of the PUSCH:
  • the third indication information includes at least one of the following: system information; RRC information; physical layer signaling.
  • beams of different repeated transmissions in the repeated transmission of the PUSCH are the same or different.
  • the configuration apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a network-side device.
  • the network-side device may include, but is not limited to, the types of the network-side device 12 listed above, which are not specifically limited in this embodiment of the present application.
  • the configuration apparatus 1000 provided in this embodiment of the present application can implement each process implemented by the method embodiment in FIG. 8 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 1100, including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • a communication device 1100 including a processor 1101, a memory 1102, a program or instruction stored in the memory 1102 and executable on the processor 1101,
  • the communication device 1100 is a terminal
  • the program or instruction is executed by the processor 1101
  • each process of the above-described method embodiment in FIG. 5 can be implemented, and the same technical effect can be achieved.
  • the communication device 1100 is a network side device
  • the program or instruction is executed by the processor 1101
  • each process of the above-mentioned method embodiment of Fig. 8 can be realized, and the same technical effect can be achieved. In order to avoid repetition, it is not repeated here.
  • FIG. 12 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1200 includes but is not limited to: a radio frequency unit 1201, a network module 1202, an audio output unit 1203, an input unit 1204, a sensor 1205, a display unit 1206, a user input unit 1207, an interface unit 1208, a memory 1209, a processor 1210 and other components .
  • the terminal 1200 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1210 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1204 may include a graphics processor (Graphics Processing Unit, GPU) 12041 and a microphone 12042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1206 may include a display panel 12061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1207 includes a touch panel 12071 and other input devices 12072 .
  • the touch panel 12071 is also called a touch screen.
  • the touch panel 12071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 12072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 1201 receives the downlink data from the network side device, and then processes it to the processor 1210; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1201 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1209 may be used to store software programs or instructions as well as various data.
  • the memory 1209 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1209 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1210 may include one or more processing units; optionally, the processor 1210 may be integrated into an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc. , the modem processor mainly deals with wireless communication, such as the baseband processor. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1210.
  • the radio frequency unit 1201 is used for:
  • the target information in the target random access process is repeatedly transmitted, and the target information includes the physical uplink shared channel PUSCH.
  • the radio frequency unit 1201 is also used for at least one of the following:
  • the PUSCH included in the message A in the two-step random access procedure is repeatedly transmitted.
  • the number of times of repeated transmission of the PUSCH satisfies any of the following:
  • the system information configuration sent by the network side device
  • the radio resource control RRC information configuration sent by the network side device
  • the PUSCH includes at least one of an initial transmission PUSCH and a retransmission PUSCH;
  • the number of times of repeated transmission of the PUSCH satisfies at least one of the following:
  • the number of repeated transmissions of the initial PUSCH is indicated by the uplink grant indication in the random access response RAR or by the physical downlink control channel PDCCH command that triggers the target random access;
  • the repeated transmission times of the retransmitted PUSCH is indicated by the downlink control information DCI format 1_0 scrambled by the temporary cell wireless network temporary identifier TC-RNTI.
  • the number of repeated transmissions of the PUSCH satisfies any one of the following:
  • the number of times of repeated transmission of the PUSCH is indicated by the newly added first field in the physical layer signaling
  • the number of repeated transmissions of the PUSCH is indicated by some bits of the second field in the physical layer signaling.
  • the target information further includes a preamble.
  • the repeated transmission rule for the target information includes any of the following:
  • the repeated transmission of the preamble is located before the repeated transmission of the PUSCH;
  • the preamble and the PUSCH are crossed for repeated transmission.
  • the time-frequency resources of the repeated transmission of the target information do not overlap.
  • the at least two repeated transmissions satisfy any one of the following:
  • the second repeated transmission is other repeated transmissions except the first repeated transmission in the at least two repeated transmissions.
  • the first repeated transmission satisfies any of the following:
  • the transmission time of the first repeated transmission configuration is prior to the second repeated transmission
  • the transmission time of the first repeated transmission configuration is later than the second repeated transmission
  • the first repeated transmission is determined by the terminal.
  • the repeated transmission of the target information satisfies time division multiplexing.
  • the repeated transmission of the target information satisfies any of the following:
  • the third repeated transmission is delayed for execution, wherein the time domain resources occupied by the third repeated transmission after the delayed execution are all available when the time domain resources are available. domain resources.
  • the delaying the execution of the third repeated transmission includes any of the following:
  • the fourth repeated transmission includes all repeated transmissions in which the configured time domain resources are located after the third repeated transmission.
  • the time domain resource configured for the repeated transmission of the preamble satisfies any of the following:
  • All time-domain resources configured for repeated transmission are available time-domain resources
  • the time domain resources configured for the first repeated transmission are all available time domain resources.
  • the repeated transmission rule of the PUSCH includes any of the following:
  • Different repeated transmissions are located in different time slots, and each repeated transmission occupies the same initial time domain resources in the time slot;
  • All repeated transmissions are continuous on time domain resources, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous on time domain resources, and there is a guard interval on time domain resources between two adjacent repeated transmissions, and when the first condition is satisfied, the fifth repeated transmission is divided into K sub-repetitive transmissions;
  • All repeated transmissions are continuous on the time domain resources, there is a guard interval on the time domain resources between two adjacent repeated transmissions, and in the case where there are unavailable time domain resources in the time domain resources configured for the fifth repeated transmission, the execution of the the fifth repeated transmission, or, delaying the execution of the fifth repeated transmission;
  • K is an integer greater than 1.
  • the first condition satisfies any of the following:
  • the time domain resource of the fifth repeated transmission configuration spans a time slot boundary
  • the redundancy version RV of the repeated transmission of the PUSCH is indicated by at least one of system information, RRC information and physical layer signaling.
  • the redundant version of the repeated transmission of the PUSCH includes at least one of the following:
  • RV sequence 1 ⁇ 0, 2, 3, 1 ⁇ ;
  • RV sequence 2 ⁇ 0, 3, 0, 3 ⁇ ;
  • RV sequence 3 ⁇ 0, 0, 0, 0 ⁇ ;
  • RV sequence 4 ⁇ a, c, d, b ⁇ ;
  • RV sequence 5 ⁇ a, d, a, d ⁇ ;
  • a includes L 0s
  • b includes L 1s
  • c includes L 2s
  • d includes L 3s
  • L is a positive integer.
  • the value of L is equal to the rounding down of the first ratio or the rounding up of the first ratio
  • the first ratio is a ratio of the number of repeated transmissions of the PUSCH to 4.
  • the repeatedly transmitted beam of the PUSCH satisfies any of the following:
  • beams of different repeated transmissions in the repeated transmission of the PUSCH are the same or different.
  • the above-mentioned terminal 1200 can implement each process in the method embodiment of FIG. 5 in the embodiment of the present invention, and achieve the same beneficial effects. To avoid repetition, details are not repeated here.
  • the network device 1300 includes: an antenna 131 , a radio frequency device 132 , and a baseband device 133 .
  • the antenna 131 is connected to the radio frequency device 132 .
  • the radio frequency device 132 receives information through the antenna 131, and sends the received information to the baseband device 133 for processing.
  • the baseband device 133 processes the information to be sent and sends it to the radio frequency device 132, and the radio frequency device 132 processes the received information and sends it out through the antenna 131.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 133 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 133 .
  • the baseband apparatus 133 includes a processor 134 and a memory 135 .
  • the baseband device 133 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 13 , one of the chips is, for example, the processor 134 , which is connected to the memory 135 to call a program in the memory 135 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 133 may further include a network interface 136 for exchanging information with the radio frequency device 132, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: an instruction or program that is stored in the memory 135 and can be run on the processor 134, and the processor 134 calls the instruction or program in the memory 135 to execute the method in the embodiment of FIG. 8 . each process, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • Embodiments of the present invention further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the foregoing random access method embodiment can be achieved, and can achieve the same The technical effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above method embodiment in FIG. 5 or FIG. 8 is implemented, and The same technical effect can be achieved, and in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 5 or
  • the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 5 or
  • Each process of the method embodiment shown in FIG. 8 can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法、配置方法及相关设备,属于通信技术领域。随机接入方法包括:对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。

Description

随机接入方法、配置方法及相关设备
相关申请的交叉引用
本申请主张在2020年7月24日在中国提交的中国专利申请号No.202010724052.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种随机接入方法、配置方法及相关设备。
背景技术
低性能终端(Reduced Capability UE,RedCap UE)指的是一些能力有限的设备,例如可穿戴设备,工业传感器,视频监控设备等。RedCap UE需要在接收天线,发射天线的数目、支持的带宽、终端处理数据和信号的时间及能力等方面降低复杂度。RedCap UE发射天线数目和支持带宽的减少将导致上行的覆盖降低,进而导致RedCap UE完成物理随机接入过程(Physical Random Access Channel,PRACH)的时延较大。
发明内容
本申请实施例提供一种随机接入方法、配置方法及相关设备,能够解决RedCap UE完成PRACH的时延较大的问题。
第一方面,提供了一种随机接入方法,应用于终端,所述方法包括:
对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
第二方面,提供了一种配置方法,应用于网络侧设备,所述方法包括:
发送第一配置信息,所述第一配置信息用于配置终端对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
第三方面,提供了一种随机接入装置,应用于终端,该随机接入装置包括:
传输模块,用于对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
第四方面,提供了一种配置装置,应用于网络侧设备,包括:
第一发送模块,用于发送第一配置信息,所述第一配置信息用于配置终端对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,终端可以对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。这样,可以增强终端在目标随机接入过程中的PUSCH的上行覆盖,进而可以降低终端完成目标随机接入过程的时延。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2a是本申请实施例提供的基于竞争的四步随机接入过程的流程图;
图2b是本申请实施例提供的基于非竞争的四步随机接入过程的流程图;
图3a是本申请实施例提供的基于竞争的两步随机接入过程的流程图;
图3b是本申请实施例提供的基于非竞争的两步随机接入过程的流程图;
图4是本申请实施例提供的消息A的资源分配示意图;
图5是本申请实施例提供的随机接入方法的流程图;
图6a是本申请实施例提供的RO和PO传输的示意图之一;
图6b是本申请实施例提供的RO和PO传输的示意图之二;
图6c是本申请实施例提供的RO和PO传输的示意图之三;
图7a是本申请实施例提供的重复传输的示意图之一;
图7b是本申请实施例提供的重复传输的示意图之二;
图7c是本申请实施例提供的重复传输的示意图之三;
图8是本申请实施例提供的配置方法的流程图;
图9是本申请实施例提供的随机接入装置的结构图;
图10是本申请实施例提供的配置装置的结构图;
图11是本申请实施例提供的通信设备的结构图;
图12是本申请实施例提供的终端的结构图;
图13是本申请实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long  Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集合(Basic Service Set,BSS)、扩展服务集合(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不 限于特定技术词汇。
为了方便理解,以下对本发明实施例涉及的一些内容进行说明:
一、随机接入/访问过程(Random Access Channel,RACH)。
随机访问过程的类型可以包括四步随机接入过程(4-step RACH)和两步随机接入过程(2-step RACH)。两种类型的RACH都支持基于竞争的随机访问(Contention Based Random Access,CBRA)和无竞争的随机访问(Contention Free Random Access,CFRA)。
基于竞争的四步随机接入过程的流程图可以参见图2a;基于非竞争的四步随机接入过程的流程图可以参见图2b。基于竞争的两步随机接入过程的流程图可以参见图3a;基于非竞争的两步随机接入过程的流程图可以参见图3b。
如图2a所示,基于竞争的四步随机接入过程可以包括以下步骤:
步骤1:UE向基站发送消息1。
消息(Message,Msg)1可以视为随机接入请求,可以包含随机接入前导码(Random Access Preamble)。
步骤2:基站向UE发送消息2。
消息2可以视为随机接入响应(Random Access Response,RAR),可以包含上行授权(Uplink Grant)。
步骤3:UE向基站发送消息3。
Msg3可以视为预配置的传输(Scheduled Transmission),可包含UE标识。
步骤:4:基站向UE发送消息4。
Msg4可以包含竞争解决(Contention Resolution)。UE接收到Msg4判断是否竞争解决成功,如果成功则随机接入过程成功,否则重新发起随机接入过程。
对于基于竞争的四步随机接入过程,具体说明如下:
UE首先向网络发送Msg1,包含preamble;UE发送了preamble之后, 将在RAR时间窗内监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),用回退(fallback)下行控制信息(Downlink Control Information,DCI)格式(format),即DCI format 1_0,以接收用随机接入无线网络临时标识(Random Access Single Cell Radio Network Temporary Identity,RA-RNTI)加扰的PDCCH调度的RAR。若该RAR中的前导码索引(preamble index)与UE发送的preamble index相同,则认为成功接收了RAR,此时UE就可以停止监听RAR,并根据RAR中携带的grant的指示,发送Msg3。Msg3在上行共享信道(Uplink Shared Channel,UL-SCH)上传输,并使用混合自动重复请求(Hybrid Automatic Repeat Request,HARQ),用RAR指示的临时小区无线网络临时标识(Temporary Cell Single Cell Radio Network Temporary Identity,TC-RNTI)加扰PDCCH,用DCI format 1_0来调度Msg3的重传。Msg3中需要包含一个重要信息:每个UE唯一的标志。该标志将用于步骤四的冲突解决。网络收到Msg3后,将用TC-RNTI加扰的PDCCH调度Msg4,当UE成功解码出Msg4中包含的UE竞争解决身份(UE Contention Resolution Identity)媒体接入控制(Media Access Control,MAC)控制元素(control element)与Msg3发送的UE Contention Resolution Identity匹配时,UE会认为随机接入成功并将自己的小区无线网络临时标识(Cell Single Cell Radio Network Temporary Identity,C-RNTI)设置成TC-RNTI,即完成4步随机接入。
RAR中携带的grant域如表1所示。
表1:RAR中携带的grant域(RAR grant field)
grant域 比特数
跳频信号 1
PUSCH频域资源分配 14
PUSCH时域资源分配 4
MCS 4
PUSCH的TPC命令 3
CSI请求 1
在表1中,跳频信号(Frequency hopping flag);物理上行共享信道(Physical Uplink Shared Channel,PUSCH);频域资源分配(frequency resource allocation);时域资源分配(time resource allocation);调制和编码方案(Modulation and Coding Scheme,MCS);PUSCH的TPC命令(TPC command for PUSCH);发射功率控制(Transmit Power Control,TPC);信道状态信息(Channel State Information,CSI)。
如图2b所示,基于非竞争的四步随机接入过程可以包括以下步骤:
步骤0:基站向UE发送随机接入前导码配置(Random Access Preamble Assignment)。
步骤1:UE向基站发送消息1。
消息(Message,Msg)1可以视为随机接入请求,可以包含随机接入前导码(Random Access Preamble)。
步骤2:基站向UE发送消息2。
Msg 2可以视为随机接入响应(Random Access Response,RAR)。
如图3a所示,基于竞争的两步随机接入过程可以包括以下步骤:
步骤a:UE向基站发送消息a。
Mag A可以包含随机接入前导码(Random Access Preamble)和PUSCH有效载荷(payload)。
步骤b:基站向UE发送消息B。
Msg B可以包含竞争解决。
对于基于竞争的两步随机接入过程,具体说明如下:
在两步RACH过程中,UE首先发送Msg A,Msg A由物理随机接入过程(Physical Random Access Channel,PRACH)preamble和PUSCH两部分组成。PUSCH的传输信息中可以包含UE标识信息。网络接收到UE发送的Msg A之后,会给UE发送Msg B。网络通过Msg B-RNTI加扰的PDCCH, 用DCI format 1_0调度物理下行控制信道(Physical Downlink Shared Channel,PDSCH),PDSCH中可以包含UE-ID,UE检测到在MSG-A中发送的UE标识之后,则认为竞争解决成功,并向网络反馈Msg B的HARQ肯定回答(Ack)。
MsgA的时域资源分配可以参见图4。图4展示了Msg A PUSCH相对于Msg A preamble的时域资源的分配情况。在图4中,PRACH配置周期(PRACH Configuration Period);PRACH时机(PRACH Occasion,RO);PUSCH时机(PUSCH Occasion,PO)。
Msg A PUSCH的时域资源可以分配在多个连续的时隙(slot)中,且每个时隙中的第一个PUSCH传输时机(transmission occasion)具有相同的起始符号和长度。另外,每个slot中可以有多个PUSCH的传输时机。第一个PUSCH所在的第一个slot位于PRACH开始slot之后,并间隔多个slot,可以视为时间偏移(Time Offset)。值得注意的是,位于同一个slot的相邻两个PUSCH的transmission occasion之间间隔多个正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)符号,这些符号称为保护间隔(Guard Period,GP),主要是为了减少定时提前的不确定性对物理上行共享信道(Physical Uplink Shared Channel,PUSCH)性能的影响。
如图3b所示,基于非竞争的两步随机接入过程可以包括以下步骤:
步骤0:基站向UE发送随机接入前导码和PUSCH配置(Random Access Preamble and PUSCH Assignment)。
步骤a:UE向基站发送消息a。
Mag A可以包含随机接入前导码(Random Access Preamble)和PUSCH有效载荷(payload)。
步骤b:基站向UE发送消息B。
Msg B可以视为随机接入响应(Random Access Response,RAR)。
二、Msg.3和Msg.A PUSCH的跳频。
Msg.3和Msg.A PUSCH支持的跳频模式可以包括时隙内跳频(intra-slot  Frequency Hopping,intra-slot FH)。
在本申请实施例中,不可用时域资源可以是无效资源或配置为用于下行传输的资源,但不仅限于此。
参见图5,图5是本申请实施例提供的随机接入方法的流程图。本申请实施例的随机接入方法可以应用于终端。
如图5所示,随机接入方法可以包括以下步骤:
步骤501、对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
在本申请实施例中,所述目标随机接入过程可以是前述四步随机接入过程、两步随机接入过程或其他随机接入过程,本申请实施例并不限定所述目标随机接入过程的类型。所述目标信息的重复传输次数大于1,具体可根据实际情况决定,本申请实施例对此不做限定。
具体实现时,对目标随机接入过程中的PUSCH进行重复传输具体可以为:对目标随机接入过程中通过PUSCH发送的消息进行重复传输,或,对目标随机接入过程中某消息包含的PUSCH进行重复传输。
可选的,所述对目标随机接入过程中的目标信息进行重复传输包括以下至少一项:
对四步随机接入过程的消息3进行重复传输;
对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
在本可选实施方式中,在四步随机接入过程中,所述目标信息包括的PUSCH可以为Msg3;在两步随机接入过程中,所述目标信息包括的PUSCH可以为Msg A中包含的PUSCH。
在本申请实施例中,终端支持对目标随机接入过程中的目标信息进行重复传输。具体实现时,终端执行所述对目标随机接入过程中的目标信息进行重复传输的行为可以由网络侧设备或由协议约定。
本申请实施例的随机接入方法,终端可以对目标随机接入过程中的目标 信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。这样,可以增强终端在目标随机接入过程中的PUSCH的上行覆盖,进而可以降低终端完成目标随机接入过程的时延。
在本申请实施例中,所述目标信息包括的PUSCH的重复传输次数可以通过多种方式确定,具体说明如下:
可选的,所述PUSCH的重复传输次数满足以下任一项:
由网络侧设备发送的系统信息配置;
由网络侧设备发送的无线资源控制(Radio Resource Control,RRC)信息配置;
由协议约定;
与所述目标随机接入过程中前导码的名义的重复传输次数相同;
与所述目标随机接入过程中前导码的实际的重复传输次数相同;
由物理层信令指示。
具体说明如下:
为方便描述,以下记所述PUSCH的重复传输次数记为M,M为大于1的整数。
在M值由系统信息配置、RRC配置或协议约定的情况下,可选的,若只有系统信息配置了M值,则使用该M值作为所述PUSCH的重复传输次数;若系统信息和RRC信息都配置了M值,则使用RRC配置的M值作为所述PUSCH的重复传输次数;若系统信息和RRC信息都没有配置M值,则采用默认的值,即协议约定的M值作为所述PUSCH的重复传输次数。
在M值与所述目标随机接入过程中前导码的名义或实际的重复传输次数相同的情况下,终端支持对所述目标随机接入过程中的前导码进行重复传输,所述前导码的重复传输次数可以由系统信息配置、RRC配置或协议约定,但不仅限于此。
所述前导码的名义的重复传输次数可以理解为所述前导码配置的重复传 输次数,但终端在进行所述前导码的重复传输时,可能会放弃执行一些重复传输次数,因此,终端实际执行所述前导码的重复传输次数,即所述前导码的实际的重复传输次数小于或等于所述前导码的名义的重复传输次数。可见,所述前导码的名义的重复传输次数包含了由于所述前导码的传输资源不可用而丢弃的重复传输;所述前导码的实际的重复传输次数不包括由于所述前导码的传输资源不可用而丢弃的重复传输。
为方便理解,示例说明如下:
系统信息配置前导码重复传输4次,记为前导码1,前导码2,前导码3和前导码4。若前导码3的传输资源和下行同步信号块(Synchronization Signal and PBCH block,SSB)传输相冲突,前导码3的传输被丢弃,则在该示例中,前导码的名义的重复传输次数是4,实际的重复传输的次数是3。因此,若M值与所述目标随机接入过程中前导码的名义的重复传输次数相同,则M=4;若M值与所述目标随机接入过程中前导码的实际的重复传输次数相同,则M=3。
在M值由物理层,即层1(L1))信令指示的情况下,可选的,所述PUSCH的重复传输次数满足以下任一项:
a)所述PUSCH的重复传输次数由物理层信令中新增的第一域指示;
b)PUSCH的重复传输次数由物理层信令中第二域的部分比特指示。
具体说明如下:
在M值满足a)的情况下,物理层信令中新增有第一域,第一域用于指示所述PUSCH的重复传输次数。所述第一域可以与所述物理层信令原有的其他域联合编码。
可选的,所述第一域可以与时域资源分配(Time Domain Resource Assignment,TDRA)域进行联合编码。高层在配置TDRA(时域资源分配)表时,也可以为每个行索引(Row index)配置所述PUSCH的重复次数,即M值。
为方便理解,结合表2示例说明如下:
表2:所述第一域与TDRA域联合编码
Figure PCTCN2021108082-appb-000001
在表2中,PUSCH映射类型(PUSCH mapping type)。
在M值满足b)的情况下,可以复用物理层信令中第二域的部分比特指示所述PUSCH的重复传输次数。可选的,可以利用第二域的x-比特(bit)最高有效位(the Most Significant Bit,MSB)或x-bit最低有效位(Least Significant Bit,LSB)来指示M值。可选的,所述第二域可以为频域资源分配(frequency resource allocation)域或MCS域,但不仅限于此。
为方便理解,结合表3示例说明如下:
表3:MCS域
MCS域不指示M 2-bit MSB指示M 2-bit LSB指示M
MCS (M,MCS) (MCS,M)
在表3中,MCS域可以包括5个比特,具体可以表现为:(a4,a3,a2,a1,a0)。在MCS域不指示M的情况下,MCS域仅用于指示MCS;在利用MCS域的2-bit MSB指示M的情况下,MCS域可以用于指示M和MCS,具体地,可以利用a4和a3指示M;在利用MCS域的2-bit LSB指示M的情况下,MCS域可以用于指示M和MCS,具体地,可以利用a1和a0指示M。
另外,在本申请实施例中,可选的,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述 PUSCH的重复传输次数满足以下至少一项:
所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
具体实现说明如下:
在所述目标随机接入过程为四步随机接入过程的情况下,所述初传PUSCH的重复传输次数可以由RAR中的上行授权指示;所述重传PUSCH的重复传输次数由TC-RNTI加扰的DCI格式1_0指示。
在所述目标随机接入过程为两步随机接入过程的情况下,所述初传PUSCH的重复传输次数可以由触发所述目标随机接入的PDCCH命令指示;所述重传PUSCH的重复传输次数由TC-RNTI加扰的DCI格式1_0指示。
可以理解的是,所述初传PUSCH的重复传输次数可以与所述重传PUSCH的重复传输次数相等,或不等。所述初传PUSCH的重复传输次数与所述重传PUSCH的重复传输次数的和可以等于前述M值。
在本申请实施例中,可选的,所述目标信息还包括前导码。
也就是说,终端也可以支持所述目标随机接入过程的前导码的重复传输。在此情况下,所述对目标随机接入过程中的目标信息进行重复传输,包括:对目标随机接入过程中的PUSCH进行重复传输;对目标随机接入过程中的前导码进行重复传输。
应理解的是,终端执行所述对目标随机接入过程中的前导码进行重复传输的行为可以由网络侧设备配置或由协议约定。
具体实现时,对目标随机接入过程中的前导码进行重复传输具体可以为:对目标随机接入过程中包含前导码的消息进行重复传输,或,对目标随机接入过程中某消息包含的前导码进行重复传输。
可选的,所述对目标随机接入过程中的前导码进行重复传输,可以包括 以下任一项:对四步随机接入过程的消息1进行重复传输;对两步随机接入过程中的消息A包含的前导码进行重复传输。
在本可选实施方式中,在四步随机接入过程中,所述目标信息包括的前导码可以为Msg1;在两步随机接入过程中,所述目标信息包括的前导码可以为Msg A中包含的前导码。
在所述目标随机接入过程为两步随机接入过程的情况下,可以通过对Msg A进行重复传输实现对所述PUSCH和所述前导码的重复传输。以下对两步随机接入过程中所述PUSCH和所述前导码的重复传输规则进行说明:
可选的,所述目标信息的重复传输规则包括以下任一项:
规则1:以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
规则2:所述前导码的重复传输位于所述PUSCH重复传输之前;
规则3:所述前导码和所述PUSCH交叉进行重复传输。
具体实现时,规则1、规则2和规则3可由网络侧设备配置或由协议预定,具体可根据实际情况决定,本申请实施例对此不做限定。
以下分别对上述三项规则进行说明:
为方便描述,将一个前导码的传输记为RO,一个PUSCH的传输记为PO。
在规则1中,将一个RO和一个PO组成一对{RO,PO},然后对多个{RO,PO}对进行重复传输,如:{RO,PO,RO,PO,…,RO,PO}。
为方便理解,请参阅图6a。在6a中,终端传输了4个{RO,PO}对。
在规则2中,将全部RO作为一个整体,全部PO作为一个整体,先传输全部RO,再传输全部PO,如:{RO,RO,PO,PO,PO,PO}。
为方便理解,请参阅图6b中。在图6b中,RO的个数与PO的个数均为2,终端先传输2个RO,再传输2个PO。
在规则3中,将全部RO划分为至少两个RO组,将全部PO划分为至少一个PO组,每个RO组可以包括一个或多个RO,每个PO组可以包括一个 或多个PO。可以依次传输第一个RO组、第一个PO组、第二个RO组,以此类推,直至完成全部RO组合PO组的传输,如:{RO,RO,PO,PO,PO,RO,RO,PO,PO,PO}。
为方便理解,请参阅图6c。在图6c中,每个RO组包括2个RO,每个PO组包括2个PO,终端对2个RO组合2个PO组进行了交叉传输。
在本申请实施例中,在一种可选实施方式中,所述目标信息的重复传输的时频资源不重叠。也就是说,RO和PO的时域资源不重叠。在另一种可选实施方式中,所述目标信息的重复传输满足时分复用(Time Division Multiplexing,TDM)。
在另一种可选实施方式中,所述目标信息的重复传输中存在至少两次重复传输的时域资源或频域资源有重叠,在此情况下,所述至少两次重复传输满足以下任一项:
执行第一重复传输,放弃执行第二重复传输;
其中,所述第二重复传输为所述至少两次重复传输中除所述第一重复传输之外的其他重复传输。
在本可选实施方式中,对于存在时频资源重叠的至少两次重复传输,终端可以仅执行所述至少两次重复传输中的一次重复传输,并放弃执行其他重复传输。其中,所述第一重复传输可以为所述至少两次重复传输中的任一重复传输。
可选的,所述第一重复传输满足以下任一项:
所述第一重复传输配置的传输时间先于所述第二重复传输;
所述第一重复传输配置的传输时间后于所述第二重复传输;
所述第一重复传输由所述终端决定。
在所述第一重复传输配置的传输时间先于所述第二重复传输的情况下,所述第一重复传输为所述至少两次重复传输中最先出现的重复传输。在所述第一重复传输配置的传输时间后于所述第二重复传输的情况下,所述第一重 复传输为所述至少两次重复传输中最后出现的重复传输。在上述情况下,所述第一重复传输可以由网络侧配置或由协议约定。
在所述第一重复传输由所述终端决定的情况下,终端可以决定传输所述至少两次重复传输中的任一重复传输。网络侧设备可以在所述至少两次重复传输的时频资源上进行盲检,以检测到所述第一重复传输。
在本申请实施例中,重复传输的时域资源预先配置,在一种可选实施方式中,所述目标信息的重复传输配置的时域资源可以均为可用时域资源。这样,可以保证所述目标信息的重复传输的实现,从而可以提高所述目标信息传输的可靠性。
以所述目标信息包括的前导码为例,可选的,所述前导码的重复传输配置的时域资源满足以下任一项:
全部重复传输配置的时域资源均为可用时域资源;
第一个重复传输配置的时域资源均为可用时域资源。
在另一种可选实施方式中,所述目标信息的重复传输配置的时域资源可能包括不可用时序资源,在此情况下,终端可以通过以下方式执行所述目标信息的重复传输:
可选的,所述目标信息的重复传输满足以下任一项:
方式1:在第三重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第三重复传输;
方式2:在第三重复传输配置的时域资源存在不可用时域资源的情况下,将所述第三重复传输推迟执行,其中,推迟执行后的所述第三重复传输占用的时域资源均为可用时域资源。
在方式1中,对于配置的时域资源包括不可用时域资源的重复传输,终端可以直接放弃该次重复传输。
在方式2中,对于配置的时域资源包括不可用时域资源的重复传输,终端可以推迟该次重复传输。
可选的,所述将所述第三重复传输推迟执行,包括以下任一项:
将所述第三重复传输和第四重复传输推迟执行;
在第四重复传输之后执行所述第三重复传输;
其中,所述第四重复传输包括配置的时域资源位于所述第三重复传输之后的全部重复传输。
在将所述第三重复传输和第四重复传输推迟执行的实施方式中,终端可以将所述第三重复传输及其之后的重复传输作为整体,然后将该整体顺延推迟传输。应理解的是,若所述第四重复传输中还存在配置的时域资源包括不可用时域资源的重复传输,可以将该重复传输作为新的第三重复传输,将该重复传输之外的其他重复传输作为新的第四重复传输,然后将新的第三重复传输和新的第四重复传输推迟执行。
为方便理解,示例说明如下:
假设终端配置传输4个PO,分别为PO1、PO2、PO3和PO4。其中,PO2的传输资源包括不可用资源,则终端可以将PO2、PO3和PO4都推迟传输。
在第四重复传输之后执行所述第三重复传输的实施方式中,终端可以先确定配置的时域资源包括不可用时域资源的重复传输,之后,先将配置的时域资源均为可用时域资源的重复传输全部传输完,之后,在可用时域资源上开始传输配置的时域资源包括不可用时域资源的重复传输。
为方便理解,示例说明如下:
假设终端配置传输4个PO,分别为PO1、PO2、PO3和PO4。其中,PO1和PO3的传输资源包括不可用资源,则终端可以传输PO2和PO4,推迟传输PO1和PO3,之后,在PO2和PO4之后的可用时频资源传输PO1和PO3。
在本申请实施例中,PUSCH的重复传输可以包括多种重复传输规则(或称为重复传输类型),具体说明如下:
可选的,所述PUSCH的重复传输规则包括以下任一项:
重复传输类型A:不同重复传输位于不同时隙,且每次重复传输在时隙 中占用的初始时域资源相同;
重复传输类型B:全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
重复传输类型C:全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
重复传输类型D:全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
其中,K为大于1的整数。
可选的,所述第一条件满足包括以下任一项:
所述第五重复传输配置的时域资源跨越时隙边界;
所述第五重复传输配置的时域资源存在不可用时域资源。
以下分别对上述各重复传输类型进行说明。
对于重复传输类型A,M个重复传输位于M个slot,每个slot里数据传输所占用的时间资源(传输的起始位置)都是相同的。可选的,M个重复传输可以采用1层(single-layer)传输。
为方便理解,请参阅图7a。在图7a中,4次重复传输位于4个时隙,其每次重复传输在时隙中占用的时域资源相同。
对于重复传输类型B,全部重复传输在时域资源上连续可以理解为:全部重复传输在可用时域资源上连续。若某个重复传输配置的时域资源满足第一条件,即跨越时隙边界,或,包括不可用时域资源,则可以将该重复传输依据时序边界,或不可用时域资源划分为K个子重复传输,在某些实施方式中,可以称该被划分的重复传输为名义重复传输,该重复传输分割得到的子重复传输可以称为实际重复传输,但不仅限于此。
为方便理解,请参阅7b。在图7b中,4次重复传输连续,第3次重复传输的时域资源跨越时隙边界,则可以将第3次重复传输分割为两个子重复传输,记为子重复传输1和子重复传输2。
对于重复传输类型C,其与重复传输类型B的区别在于:重复传输类型C中的相邻两个重复传输间在时域资源上具有保护间隔,而重复传输类型B中的相邻两个重复传输间在时域资源上可以不具有保护间隔。
为方便理解,请参阅图7c。在图7c中,相邻两个重复传输连续均具有保护间隔,4次重复传输除保护间隔之外连续,第4次重复传输的时域资源跨越时隙边界,则可以将第4次重复传输分割为两个子重复传输,记为子重复传输1和子重复传输2。
对于重复传输类型D,其与重复传输类型C的区别在于,对配置的时域资源存在不可用时域资源的第五重复传输的处理方式不同。具体地,在重复传输类型D中,若存在配置的时域资源存在不可用时域资源的重复传输,则推迟执行该重复传输,或,放弃执行该重复传输。其中,推迟执行重复传输的方式可参见前述描述,此处不再赘述。
以下对本申请实施例中所述PUSCH的重复传输的冗余版本(Redundant Version,RV)进行说明:
可选的,所述PUSCH的重复传输的冗余版本RV由系统信息、RRC信息和物理层信令中的至少一项指示。
可选的,所述PUSCH的重复传输的冗余版本包括以下至少一项:
RV序列1:{0,2,3,1};
RV序列2:{0,3,0,3};
RV序列3:{0,0,0,0};
RV序列4:{a,c,d,b};
RV序列5:{a,d,a,d};
其中,a包括L个0,b包括L个1,c包括L个2,d包括L个3,L为 正整数。
可选的,L的取值等于第一比值的向下取整或第一比值的向上取整;
其中,所述第一比值为所述PUSCH的重复传输次数与4的比值。
L=ceil(M/4),或者,L=floor(M/4)。
以下对本申请实施例中所述PUSCH的重复传输的波束进行说明:
可选的,所述PUSCH的重复传输的波束满足以下任一项:
由系统信息、RRC信息和物理层信令中的至少一项指示;
与前导码的重复传输的波束相同。
具体实现时,在所述PUSCH的重复传输的波束与前导码的重复传输的波束的场景中,可以是所述PUSCH的全部重复传输的波束与一个前导码的重复传输的波束;也可以是所述PUSCH的部分重复传输的波束与一个前导码的重复传输的波束,且不同部分重复传输的波束对应的前导码的重复传输的波束不同,具体可根据实际情况决定,本申请实施例对此不做限定。另外,所述PUSCH的重复传输的波束与前导码的重复传输的波束可以由网络侧配置或协议预定。
可选的,所述PUSCH的重复传输中不同重复传输的波束相同或不同,具体可根据实际情况决定,本申请实施例对此不做限定。
参见图8,图8是本申请实施例提供的配置方法的流程图。本申请实施例的配置方法应用于网络侧设备。
如图8所示,配置方法可以包括以下步骤:
步骤801、发送第一配置信息,所述第一配置信息用于配置终端对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
本申请实施例的配置方法,网络侧设备可以向终端发送第一配置信息,配置终端对目标随机接入过程中的目标信息进行重复传输。这样,终端在接收到所述第一配置信息之后,可以对目标随机接入过程中的目标信息进行重 复传输,所述目标信息包括物理上行共享信道PUSCH。这样,可以增强终端在目标随机接入过程中的PUSCH的上行覆盖,进而可以降低终端完成目标随机接入过程的时延。
可选的,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下至少一项:
所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
可选的,在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下任一项:
所述PUSCH的重复传输次数由物理层信令中新增的第一域指示;
PUSCH的重复传输次数由物理层信令中第二域的部分比特指示。
可选的,所述目标信息还包括前导码。
可选的,在所述目标随机接入过程为两步随机接入过程的情况下,所述方法还包括:
发送第二配置信息,所述第二配置信息用于配置所述目标信息的重复传输规则;
其中,所述目标信息的重复传输规则满足以下任一项:
以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
所述前导码的重复传输位于所述PUSCH重复传输之前;
所述前导码和所述PUSCH交叉进行重复传输。
可选的,所述方法还包括:
发送第三配置信息,所述第三配置信息用于配置所述PUSCH的重复传输规则;
其中,所述PUSCH的重复传输规则包括以下任一项:
不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
其中,K为大于1的整数。
可选的,所述第一条件满足包括以下任一项:
所述第五重复传输配置的时域资源跨越时隙边界;
所述第五重复传输配置的时域资源存在不可用时域资源。
可选的,所述方法还包括:
发送第二指示信息,所述第二指示信息用于指示所述PUSCH的重复传输的冗余版本;
其中,所述第二指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
可选的,所述PUSCH的重复传输的冗余版本包括以下至少一项:
RV序列1:{0,2,3,1};
RV序列2:{0,3,0,3};
RV序列3:{0,0,0,0};
RV序列4:{a,c,d,b};
RV序列5:{a,d,a,d};
其中,a包括L个0,b包括L个1,c包括L个2,d包括L个3,L为正整数。
可选的,L的取值等于第一比值的向下取整或第一比值的向上取整;
其中,所述第一比值为所述PUSCH的重复传输次数与4的比值。
可选的,所述方法还包括:
发送第三指示信息,所述第三指示信息用于指示所述PUSCH的重复传输的波束:
其中,所述第三指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
可选的,所述PUSCH的重复传输中不同重复传输的波束相同或不同。
需要说明的是,本实施例作为与图5方法实施例对应的网络侧设备的实施例,因此,可以参见图5方法实施例中的相关说明,且可以达到相同的有益效果。为了避免重复说明,在此不再赘述。
需要说明的是,本申请实施例中介绍的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本申请实施例不作限定。
为方便理解,示例说明如下:
RedCap UE支持4-step RACH Msg.3和/或2-step RACH Msg.A PUSCH的M次(M>1)重复传输。
一、M的确定。
1)由系统信息和/或RRC信息决定。
可选的,若只有系统信息配置了M,则使用该M值;若系统信息和RRC都配置了该M值,则使用RRC配置的M值;若系统信息和RRC都没有配置了该M值,则M采用默认的值,该值可以预定义为1或其他大于1的整数值。
2)M和PRACH前导序列即Msg.1/Preamble的名义上或者实际的重复传输次数相同。
名义上的传输次数包括了由于Msg.1/Preamble的传输资源不可用而丢弃的传输;实际的传输次数不包括由于Msg.1/Preamble的传输资源不可用而丢弃的传输。
比如系统信息配置Msg.1/Preamble重复传输4次,记为Msg.1#1,Msg.1#2,Msg.1#3和Msg.1#4;其中Msg.1#3的传输资源和下行SSB传输相冲突,因此Msg.1#3的传输被丢弃;在该例中,名义传输的次数是4,实际传输的次数是3。
3)M可以由L1即物理层信令动态指示。
Msg.3的初传,其M由RAR grant指示。
Msg.3的重传,其M由用TC-RNTI加扰的DCI format 1_0指示。
方案1:指示M的域和其他域联合编码;
方案2:压缩其他域的bit数,为指示M留出空间。
二、PRACH和Msg.A PUSCH的重复传输的时频资源分配。
根据RedCap UE的能力,对于2-step RACH Msg.A的重复传输,基站配置如下的任一RACH Occasion(RO)和PUSCH Occasion(PO)的时域资源分配结构:
1)2-step RACH structure#1:RO和PO组成一对,然后重复传输M个{RO,PO}对,如{RO,PO,RO,PO,…,RO,PO}。
UE不期望所配置的M个{RO,PO}对在资源上有部分或全部的重叠,或者,若M个{RO,PO}对在资源上有部分或全部的重叠:
则根据RO或者PO在时间上的资源,UE传输在时间上先出现或者后出现的{RO,PO},放弃在时间上后出现或者先出现的{RO,PO};或者,
传输哪个{RO,PO}取决于UE的实现。
2)2-step RACH structure#2:先连续重复传输N个RO,再连续重复传输M个PO,如N=2,M=4,则{RO,RO,PO,PO,PO,PO}。
可选的,其中N和M可以相等。
UE不期望所配置的N个RO和/或者M个PO在资源上有部分或全部的重叠,或者,若N个RO和/或者M个PO在资源上有部分或全部的重叠:
则根据RO或者PO在时间上的资源,UE传输在时间上先出现或者后出现的RO或者PO,放弃在时间上后出现或者先出现的RO或者PO;或者,
传输哪个RO或者PO取决于UE的实现;
3)2-step RACH structure#3:先连续重复传输N1个RO,再连续重复传输M1个PO,再连续重复传输N2个RO,再连续重复传输M2个PO,其中N1+N2+…=N,M1+M2+…=M.如N1=N2=2,M1=M2=3,则{RO,RO,PO,PO,PO,RO,RO,PO,PO,PO}。
可选的,其中N1,N2,M1,M2可以相等。
UE不期望所配置的N个RO和/或者M个PO在资源上有部分或全部的重叠,或者,若N个RO和/或者M个PO在资源上有部分或全部的重叠:
则根据RO或者PO在时间上的资源,UE传输在时间上先出现或者后出现的RO或者PO,放弃在时间上后出现或者先出现的RO或者PO;或者,
传输哪个RO或者PO取决于UE的实现;
可选的,上述重复传输的多个RO和多个PO是时分复用的(TDM)。
三、Msg.3和Msg.A PUSCH的重复传输类型。
根据RedCap UE的能力,对于Msg.3和Msg.A PUSCH的重复传输,可以支持repetition Type A和repetition Type B。特别的,对于2-step RACH的PUSCH的重复传输,支持Repetition Type C和repetition Type D。
重复传输类型A:
重复传输是基于slot的,K个重复传输需要占用K个slot,每个slot里数据传输所占用的时间资源(传输的起始位置)都是相同的。具体可参见图7a。
重复传输类型B:
引入了基于sub-slot的重复传输,K个名义重复传输(nominal repetition) 可以在一个slot里进行“背靠背”的连续传输。当一个名义传输的时域资源要跨越时隙slot的边界或者该时域资源里存在无效、不可用的资源、符号时,比如下行符号,该名义传输会被slot或无效的资源,符号分割为多个实际重复传输(actual repetition)。具体可参见图7b。
Repetition Type C:
和repetition Type B类似,做连续重复传输,遇到不可用的符号,一个repetition可以被分割为多个segmentation;不同于repetition Type B的地方是,此时连续的重复传输不再是‘背靠背’的,为了减少定时提前的不确定性对PUSCH性能的影响,相邻两个repetition之间会间隔多个OFDM符号,称为保护间隔(GP)。具体可参见图7c。
Repetition Type D:
其特征为:做背靠背的连续,遇到不可用的符号,就放弃或者推迟该次重复传输,此外相邻两个repetition之间会间隔多个OFDM符号,称为保护间隔(GP)。
四、Msg.1/PRACH和Msg.3和Msg.A PUSCH做重复传输时,遇到不可用的资源或者和其他传输有冲突时的解决方法:
对于Msg.1/PRACH/Msg.3和Msg.A PUSCH的重复传输,若Msg.3和Msg.A PUSCH采用的是repetition Type A或者repetition Type D,如果其中某个repetition的资源不可用,则:
放弃该次传输或者;
推迟该次传输到下一个可用的资源上传输。
特别的,对于Msg.1/PRACH的M次重复传输,其M次重复传输的有效资源的确定总是先排除半静态配置的无效资源如下行符号或者对于Msg.1/PRACH的M次重复传输的首次传输,其首次传输的有效资源的确定总是先排除半静态配置的无效资源。
五、应用于Msg.A PUSCH/Msg.3重复传输的冗余版本。
由系统信息和/或RRC和/或L1即物理层信令指示如下的任一中Msg.A PUSCH/Msg.3重复传输的冗余版本(RV):
RV序列1:{0,2,3,1};
RV序列2:{0,3,0,3};
RV序列3:{0,0,0,0};
RV序列4:{(0,0,…,0),(2,2,…,2),(3,3,…,3),(1,1,…,1)};
RV序列5:{(0,0,…,0),(3,3,…,3),(0,0,…,0),(3,3,…,3)};
对于序列4和序列5,其中(x,x,…x),x的个数=ceil(M/4)或者=floor(M/4)。
六、Msg.A PUSCH/Msg.3每个重复传输的波束。
Option 1:由系统信息和/或RRC和/或L1即物理层信令指示其波束方向,或者,
Option 2:Msg.A PUSCH/Msg.3每个重复传输的波束和PRACH传输的波束相同。
对于option 1和option2,M(M>1)个Msg.A PUSCH/Msg.3的传输可以用相同的波束或者不同的波束传输。
在本申请实施例中,终端在发起4-step RACH或2-step RACH时,定义规则支持M(M>1)次重复传输。包括:M的确定;Msg.A(PRACH+PUSCH),其重复传输时域资源结构;Msg.3和Msg.A的重复类型;重复传输冗余版本;Msg.3和Msg.A重复传输的准共址(Quasi co-location,QCL)。
通过本申请实施例,增强了PRACH Msg.3和Msg.A PUSCH的上行覆盖,降低了用户完成PRACH过程的时延。
需要说明的是,本申请实施例提供的随机接入方法,执行主体可以为随机接入装置,或者,该随机接入装置中的用于执行随机接入方法的控制模块。本申请实施例中以随机接入装置执行随机接入方法为例,说明本申请实施例提供的随机接入装置。
参见图9,图9是本申请实施例提供的随机接入装置的结构图。
如图9所示,随机接入装置900包括:
传输模块901,用于对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
可选的,所述传输模块901,具体用于以下至少一项:
对四步随机接入过程的消息3进行重复传输;
对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
可选的,所述PUSCH的重复传输次数满足以下任一项:
由网络侧设备发送的系统信息配置;
由网络侧设备发送的无线资源控制RRC信息配置;
由协议约定;
与所述目标随机接入过程中前导码的名义的重复传输次数相同;
与所述目标随机接入过程中前导码的实际的重复传输次数相同;
由物理层信令指示。
可选的,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下至少一项:
所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
可选的,在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下任一项:
所述PUSCH的重复传输次数由物理层信令中新增的第一域指示;
PUSCH的重复传输次数由物理层信令中第二域的部分比特指示。
可选的,所述目标信息还包括前导码。
可选的,在所述目标随机接入过程为两步随机接入过程的情况下,所述 目标信息的重复传输规则包括以下任一项:
以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
所述前导码的重复传输位于所述PUSCH重复传输之前;
所述前导码和所述PUSCH交叉进行重复传输。
可选的,所述目标信息的重复传输的时频资源不重叠。
可选的,在所述目标信息的重复传输中存在至少两次重复传输的时频资源有重叠的情况下,所述至少两次重复传输满足以下任一项:
执行第一重复传输,放弃执行第二重复传输;
其中,所述第二重复传输为所述至少两次重复传输中除所述第一重复传输之外的其他重复传输。
可选的,所述第一重复传输满足以下任一项:
所述第一重复传输配置的传输时间先于所述第二重复传输;
所述第一重复传输配置的传输时间后于所述第二重复传输;
所述第一重复传输由所述终端决定。
可选的,所述目标信息的重复传输满足时分复用。
可选的,所述目标信息的重复传输满足以下任一项:
在第三重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第三重复传输;
在第三重复传输配置的时域资源存在不可用时域资源的情况下,将所述第三重复传输推迟执行,其中,推迟执行后的所述第三重复传输占用的时域资源均为可用时域资源。
可选的,所述将所述第三重复传输推迟执行,包括以下任一项:
将所述第三重复传输和第四重复传输推迟执行;
在第四重复传输之后执行所述第三重复传输;
其中,所述第四重复传输包括配置的时域资源位于所述第三重复传输之后的全部重复传输。
可选的,所述前导码的重复传输配置的时域资源满足以下任一项:
全部重复传输配置的时域资源均为可用时域资源;
第一个重复传输配置的时域资源均为可用时域资源。
可选的,所述PUSCH的重复传输规则包括以下任一项:
不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
其中,K为大于1的整数。
可选的,所述第一条件满足包括以下任一项:
所述第五重复传输配置的时域资源跨越时隙边界;
所述第五重复传输配置的时域资源存在不可用时域资源。
可选的,所述PUSCH的重复传输的冗余版本RV由系统信息、RRC信息和物理层信令中的至少一项指示。
可选的,所述PUSCH的重复传输的冗余版本包括以下至少一项:
RV序列1:{0,2,3,1};
RV序列2:{0,3,0,3};
RV序列3:{0,0,0,0};
RV序列4:{a,c,d,b};
RV序列5:{a,d,a,d};
其中,a包括L个0,b包括L个1,c包括L个2,d包括L个3,L为正整数。
可选的,L的取值等于第一比值的向下取整或第一比值的向上取整;
其中,所述第一比值为所述PUSCH的重复传输次数与4的比值。
可选的,所述PUSCH的重复传输的波束满足以下任一项:
由系统信息、RRC信息和物理层信令中的至少一项指示;
与前导码的重复传输的波束相同。
可选的,所述PUSCH的重复传输中不同重复传输的波束相同或不同。
本申请实施例中的随机接入装置可以是装置,也可以是终端中的部件、集合成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的随机接入装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的随机接入装置900能够实现图5方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的配置方法,执行主体可以为配置装置,或者,该配置装置中的用于执行配置方法的控制模块。本申请实施例中以配置装置执行配置方法为例,说明本申请实施例提供的配置装置。
参见图10,图10是本申请实施例提供的配置装置的结构图。
如图10所示,配置装置1000包括:
第一发送模块1001,用于发送第一配置信息,所述第一配置信息用于配置终端对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括 物理上行共享信道PUSCH。
可选的,所述第一配置信息,用于配置以下至少一项:
终端对四步随机接入过程的消息3进行重复传输;
终端对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
可选的,所述配置装置1000还包括:
第二发送模块,用于发送第一指示信息,所述第一指示信息用于指示所述PUSCH的重复传输次数;
其中,所述第一指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
可选的,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下至少一项:
所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
可选的,在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下任一项:
所述PUSCH的重复传输次数由物理层信令中新增的第一域指示;
PUSCH的重复传输次数由物理层信令中第二域的部分比特指示。
可选的,所述目标信息还包括前导码。
可选的,在所述目标随机接入过程为两步随机接入过程的情况下,所述配置装置1000还包括:
第三发送模块,用于发送第二配置信息,所述第二配置信息用于配置所述目标信息的重复传输规则;
其中,所述目标信息的重复传输规则满足以下任一项:
以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
所述前导码的重复传输位于所述PUSCH重复传输之前;
所述前导码和所述PUSCH交叉进行重复传输。
可选的,所述配置装置1000还包括:
第四发送模块,用于发送第三配置信息,所述第三配置信息用于配置所述PUSCH的重复传输规则;
其中,所述PUSCH的重复传输规则包括以下任一项:
不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
其中,K为大于1的整数。
可选的,所述第一条件满足包括以下任一项:
所述第五重复传输配置的时域资源跨越时隙边界;
所述第五重复传输配置的时域资源存在不可用时域资源。
可选的,所述配置装置1000还包括:
第五发送模块,用于发送第二指示信息,所述第二指示信息用于指示所述PUSCH的重复传输的冗余版本;
其中,所述第二指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
可选的,所述PUSCH的重复传输的冗余版本包括以下至少一项:
RV序列1:{0,2,3,1};
RV序列2:{0,3,0,3};
RV序列3:{0,0,0,0};
RV序列4:{a,c,d,b};
RV序列5:{a,d,a,d};
其中,a包括L个0,b包括L个1,c包括L个2,d包括L个3,L为正整数。
可选的,L的取值等于第一比值的向下取整或第一比值的向上取整;
其中,所述第一比值为所述PUSCH的重复传输次数与4的比值。
可选的,所述配置装置1000还包括:
第六发送模块,用于发送第三指示信息,所述第三指示信息用于指示所述PUSCH的重复传输的波束:
其中,所述第三指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
可选的,所述PUSCH的重复传输中不同重复传输的波束相同或不同。
本申请实施例中的配置装置可以是装置,也可以是网络侧设备中的部件、集合成电路、或芯片。网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的配置装置1000能够实现图8方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备1100,包括处理器1101,存储器1102,存储在存储器1102上并可在所述处理器1101上运行的程序或指令,例如,该通信设备1100为终端时,该程序或指令被处理器1101执行时实现上述图5方法实施例的各个过程,且能达到相同的技术效果。该通信设备1100为网络侧设备时,该程序或指令被处理器1101执行时实现 上述图8方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图12为实现本申请实施例的一种终端的硬件结构示意图。
该终端1200包括但不限于:射频单元1201、网络模块1202、音频输出单元1203、输入单元1204、传感器1205、显示单元1206、用户输入单元1207、接口单元1208、存储器1209、以及处理器1210等部件。
本领域技术人员可以理解,终端1200还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1210逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1204可以包括图形处理器(Graphics Processing Unit,GPU)12041和麦克风12042,图形处理器12041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1206可包括显示面板12061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板12061。用户输入单元1207包括触控面板12071以及其他输入设备12072。触控面板12071,也称为触摸屏。触控面板12071可包括触摸检测装置和触摸控制器两个部分。其他输入设备12072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1201将来自网络侧设备的下行数据接收后,给处理器1210处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1201包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1209可用于存储软件程序或指令以及各种数据。存储器1209可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储 操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1209可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1210可包括一个或多个处理单元;可选的,处理器1210可集合成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集合成到处理器1210中。
其中,射频单元1201,用于:
对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
可选的,射频单元1201,还用于以下至少一项:
对四步随机接入过程的消息3进行重复传输;
对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
可选的,所述PUSCH的重复传输次数满足以下任一项:
由网络侧设备发送的系统信息配置;
由网络侧设备发送的无线资源控制RRC信息配置;
由协议约定;
与所述目标随机接入过程中前导码的名义的重复传输次数相同;
与所述目标随机接入过程中前导码的实际的重复传输次数相同;
由物理层信令指示。
可选的,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述 PUSCH的重复传输次数满足以下至少一项:
所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
可选的,在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下任一项:
所述PUSCH的重复传输次数由物理层信令中新增的第一域指示;
PUSCH的重复传输次数由物理层信令中第二域的部分比特指示。
可选的,所述目标信息还包括前导码。
可选的,在所述目标随机接入过程为两步随机接入过程的情况下,所述目标信息的重复传输规则包括以下任一项:
以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
所述前导码的重复传输位于所述PUSCH重复传输之前;
所述前导码和所述PUSCH交叉进行重复传输。
可选的,所述目标信息的重复传输的时频资源不重叠。
可选的,在所述目标信息的重复传输中存在至少两次重复传输的时频资源有重叠的情况下,所述至少两次重复传输满足以下任一项:
执行第一重复传输,放弃执行第二重复传输;
其中,所述第二重复传输为所述至少两次重复传输中除所述第一重复传输之外的其他重复传输。
可选的,所述第一重复传输满足以下任一项:
所述第一重复传输配置的传输时间先于所述第二重复传输;
所述第一重复传输配置的传输时间后于所述第二重复传输;
所述第一重复传输由所述终端决定。
可选的,所述目标信息的重复传输满足时分复用。
可选的,所述目标信息的重复传输满足以下任一项:
在第三重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第三重复传输;
在第三重复传输配置的时域资源存在不可用时域资源的情况下,将所述第三重复传输推迟执行,其中,推迟执行后的所述第三重复传输占用的时域资源均为可用时域资源。
可选的,所述将所述第三重复传输推迟执行,包括以下任一项:
将所述第三重复传输和第四重复传输推迟执行;
在第四重复传输之后执行所述第三重复传输;
其中,所述第四重复传输包括配置的时域资源位于所述第三重复传输之后的全部重复传输。
可选的,所述前导码的重复传输配置的时域资源满足以下任一项:
全部重复传输配置的时域资源均为可用时域资源;
第一个重复传输配置的时域资源均为可用时域资源。
可选的,所述PUSCH的重复传输规则包括以下任一项:
不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
其中,K为大于1的整数。
可选的,所述第一条件满足包括以下任一项:
所述第五重复传输配置的时域资源跨越时隙边界;
所述第五重复传输配置的时域资源存在不可用时域资源。
可选的,所述PUSCH的重复传输的冗余版本RV由系统信息、RRC信息和物理层信令中的至少一项指示。
可选的,所述PUSCH的重复传输的冗余版本包括以下至少一项:
RV序列1:{0,2,3,1};
RV序列2:{0,3,0,3};
RV序列3:{0,0,0,0};
RV序列4:{a,c,d,b};
RV序列5:{a,d,a,d};
其中,a包括L个0,b包括L个1,c包括L个2,d包括L个3,L为正整数。
可选的,L的取值等于第一比值的向下取整或第一比值的向上取整;
其中,所述第一比值为所述PUSCH的重复传输次数与4的比值。
可选的,所述PUSCH的重复传输的波束满足以下任一项:
由系统信息、RRC信息和物理层信令中的至少一项指示;
与前导码的重复传输的波束相同。
可选的,所述PUSCH的重复传输中不同重复传输的波束相同或不同。
需要说明的是,本实施例中上述终端1200可实现本发明实施例中图5方法实施例中的各个过程,及达到相同的有益效果,为避免重复,此处不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图13所示,该网络设备1300包括:天线131、射频装置132、基带装置133。天线131与射频装置132连接。在上行方向上,射频装置132通过天线131接收信息,将接收的信息发送给基带装置133进行处理。在下行方向上,基带装置133对要发 送的信息进行处理,并发送给射频装置132,射频装置132对收到的信息进行处理后经过天线131发送出去。
上述频带处理装置可以位于基带装置133中,以上实施例中网络侧设备执行的方法可以在基带装置133中实现,该基带装置133包括处理器134和存储器135。
基带装置133例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器134,与存储器135连接,以调用存储器135中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置133还可以包括网络接口136,用于与射频装置132交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器135上并可在处理器134上运行的指令或程序,处理器134调用存储器135中的指令或程序执行图8方法实施例中的各个过程,并达到相同的技术效果,为避免重复,故不在此赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图5或图8方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所 述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图5或图8方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面集合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (54)

  1. 一种随机接入方法,应用于终端,包括:
    对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
  2. 根据权利要求1所述的方法,其中,所述对目标随机接入过程中的目标信息进行重复传输,包括以下至少一项:
    对四步随机接入过程的消息3进行重复传输;
    对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
  3. 根据权利要求1所述的方法,其中,所述PUSCH的重复传输次数满足以下任一项:
    由网络侧设备发送的系统信息配置;
    由网络侧设备发送的无线资源控制RRC信息配置;
    由协议约定;
    与所述目标随机接入过程中前导码的名义的重复传输次数相同;
    与所述目标随机接入过程中前导码的实际的重复传输次数相同;
    由物理层信令指示。
  4. 根据权利要求3所述的方法,其中,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
    在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下至少一项:
    所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
    所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
  5. 根据权利要求3所述的方法,其中,在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下任一项:
    所述PUSCH的重复传输次数由物理层信令中新增的第一域指示;
    PUSCH的重复传输次数由物理层信令中第二域的部分比特指示。
  6. 根据权利要求1所述的方法,其中,所述目标信息还包括前导码。
  7. 根据权利要求6所述的方法,其中,在所述目标随机接入过程为两步随机接入过程的情况下,所述目标信息的重复传输规则包括以下任一项:
    以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
    所述前导码的重复传输位于所述PUSCH重复传输之前;
    所述前导码和所述PUSCH交叉进行重复传输。
  8. 根据权利要求7所述的方法,其中,所述目标信息的重复传输的时频资源不重叠。
  9. 根据权利要求7所述的方法,其中,在所述目标信息的重复传输中存在至少两次重复传输的时频资源有重叠的情况下,所述至少两次重复传输满足以下任一项:
    执行第一重复传输,放弃执行第二重复传输;
    其中,所述第二重复传输为所述至少两次重复传输中除所述第一重复传输之外的其他重复传输。
  10. 根据权利要求9所述的方法,其中,所述第一重复传输满足以下任一项:
    所述第一重复传输配置的传输时间先于所述第二重复传输;
    所述第一重复传输配置的传输时间后于所述第二重复传输;
    所述第一重复传输由所述终端决定。
  11. 根据权利要求7所述的方法,其中,所述目标信息的重复传输满足时分复用。
  12. 根据权利要求6所述的方法,其中,所述目标信息的重复传输满足以下任一项:
    在第三重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第三重复传输;
    在第三重复传输配置的时域资源存在不可用时域资源的情况下,将所述第三重复传输推迟执行,其中,推迟执行后的所述第三重复传输占用的时域资源均为可用时域资源。
  13. 根据权利要求12所述的方法,其中,所述将所述第三重复传输推迟执行,包括以下任一项:
    将所述第三重复传输和第四重复传输推迟执行;
    在第四重复传输之后执行所述第三重复传输;
    其中,所述第四重复传输包括配置的时域资源位于所述第三重复传输之后的全部重复传输。
  14. 根据权利要求6所述的方法,其中,所述前导码的重复传输配置的时域资源满足以下任一项:
    全部重复传输配置的时域资源均为可用时域资源;
    第一个重复传输配置的时域资源均为可用时域资源。
  15. 根据权利要求1所述的方法,其中,所述PUSCH的重复传输规则包括以下任一项:
    不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
    全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
    其中,K为大于1的整数。
  16. 根据权利要求15所述的方法,其中,所述第一条件满足包括以下任 一项:
    所述第五重复传输配置的时域资源跨越时隙边界;
    所述第五重复传输配置的时域资源存在不可用时域资源。
  17. 根据权利要求1所述的方法,其中,所述PUSCH的重复传输的冗余版本RV由系统信息、RRC信息和物理层信令中的至少一项指示。
  18. 根据权利要求1所述的方法,其中,所述PUSCH的重复传输的冗余版本包括以下至少一项:
    RV序列1:{0,2,3,1};
    RV序列2:{0,3,0,3};
    RV序列3:{0,0,0,0};
    RV序列4:{a,c,d,b};
    RV序列5:{a,d,a,d};
    其中,a包括L个0,b包括L个1,c包括L个2,d包括L个3,L为正整数。
  19. 根据权利要求18所述的方法,其中,L的取值等于第一比值的向下取整或第一比值的向上取整;
    其中,所述第一比值为所述PUSCH的重复传输次数与4的比值。
  20. 根据权利要求1所述的方法,其中,所述PUSCH的重复传输的波束满足以下任一项:
    由系统信息、RRC信息和物理层信令中的至少一项指示;
    与前导码的重复传输的波束相同。
  21. 根据权利要求1所述的方法,其中,所述PUSCH的重复传输中不同重复传输的波束相同或不同。
  22. 一种配置方法,应用于网络侧设备,包括:
    发送第一配置信息,所述第一配置信息用于配置终端对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
  23. 根据权利要求22所述的方法,其中,所述第一配置信息,用于配置 以下至少一项:
    终端对四步随机接入过程的消息3进行重复传输;
    终端对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
  24. 根据权利要求22所述的方法,还包括:
    发送第一指示信息,所述第一指示信息用于指示所述PUSCH的重复传输次数;
    其中,所述第一指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
  25. 根据权利要求24所述的方法,其中,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
    在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下至少一项:
    所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
    所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
  26. 根据权利要求24所述的方法,其中,在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下任一项:
    所述PUSCH的重复传输次数由物理层信令中新增的第一域指示;
    PUSCH的重复传输次数由物理层信令中第二域的部分比特指示。
  27. 根据权利要求22所述的方法,其中,所述目标信息还包括前导码。
  28. 根据权利要求27所述的方法,其中,在所述目标随机接入过程为两步随机接入过程的情况下,所述方法还包括:
    发送第二配置信息,所述第二配置信息用于配置所述目标信息的重复传输规则;
    其中,所述目标信息的重复传输规则满足以下任一项:
    以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
    所述前导码的重复传输位于所述PUSCH重复传输之前;
    所述前导码和所述PUSCH交叉进行重复传输。
  29. 根据权利要求22所述的方法,还包括:
    发送第三配置信息,所述第三配置信息用于配置所述PUSCH的重复传输规则;
    其中,所述PUSCH的重复传输规则包括以下任一项:
    不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
    全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
    其中,K为大于1的整数。
  30. 根据权利要求29所述的方法,其中,所述第一条件满足包括以下任一项:
    所述第五重复传输配置的时域资源跨越时隙边界;
    所述第五重复传输配置的时域资源存在不可用时域资源。
  31. 根据权利要求22所述的方法,还包括:
    发送第二指示信息,所述第二指示信息用于指示所述PUSCH的重复传输的冗余版本;
    其中,所述第二指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
  32. 根据权利要求31所述的方法,其中,所述PUSCH的重复传输的冗余版本包括以下至少一项:
    RV序列1:{0,2,3,1};
    RV序列2:{0,3,0,3};
    RV序列3:{0,0,0,0};
    RV序列4:{a,c,d,b};
    RV序列5:{a,d,a,d};
    其中,a包括L个0,b包括L个1,c包括L个2,d包括L个3。
  33. 根据权利要求32所述的方法,其中,L的取值等于第一比值的向下取整或第一比值的向上取整;
    其中,所述第一比值为所述PUSCH的重复传输次数与4的比值。
  34. 根据权利要求22所述的方法,还包括:
    发送第三指示信息,所述第三指示信息用于指示所述PUSCH的重复传输的波束:
    其中,所述第三指示信息包括以下至少一项:系统信息;RRC信息;物理层信令。
  35. 根据权利要求34所述的方法,其中,所述PUSCH的重复传输中不同重复传输的波束相同或不同。
  36. 一种随机接入装置,应用于终端,包括:
    传输模块,用于对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
  37. 根据权利要求36所述的随机接入装置,其中,所述传输模块,具体用于以下至少一项:
    对四步随机接入过程的消息3进行重复传输;
    对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
  38. 根据权利要求36所述的随机接入装置,其中,所述PUSCH的重复传输次数满足以下任一项:
    由网络侧设备发送的系统信息配置;
    由网络侧设备发送的无线资源控制RRC信息配置;
    由协议约定;
    与所述目标随机接入过程中前导码的名义的重复传输次数相同;
    与所述目标随机接入过程中前导码的实际的重复传输次数相同;
    由物理层信令指示。
  39. 根据权利要求38所述的随机接入装置,其中,所述PUSCH包括初传PUSCH和重传PUSCH中的至少一项;
    在所述PUSCH的重复传输次数由物理层信令指示的情况下,所述PUSCH的重复传输次数满足以下至少一项:
    所述初传PUSCH的重复传输次数由随机接入响应RAR中的上行授权指示或由触发所述目标随机接入的物理下行控制信道PDCCH命令指示;
    所述重传PUSCH的重复传输次数由临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI格式1_0指示。
  40. 根据权利要求36所述的随机接入装置,其中,所述目标信息还包括前导码。
  41. 根据权利要求40所述的随机接入装置,其中,在所述目标随机接入过程为两步随机接入过程的情况下,所述目标信息的重复传输规则包括以下任一项:
    以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
    所述前导码的重复传输位于所述PUSCH重复传输之前;
    所述前导码和所述PUSCH交叉进行重复传输。
  42. 根据权利要求40所述的随机接入装置,其中,所述目标信息的重复传输满足以下任一项:
    在第三重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第三重复传输;
    在第三重复传输配置的时域资源存在不可用时域资源的情况下,将所述 第三重复传输推迟执行,其中,推迟执行后的所述第三重复传输占用的时域资源均为可用时域资源。
  43. 根据权利要求36所述的随机接入装置,其中,所述PUSCH的重复传输规则包括以下任一项:
    不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
    全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
    其中,K为大于1的整数。
  44. 一种配置装置,应用于网络侧设备,包括:
    第一发送模块,用于发送第一配置信息,所述第一配置信息用于配置终端对目标随机接入过程中的目标信息进行重复传输,所述目标信息包括物理上行共享信道PUSCH。
  45. 根据权利要求44所述的配置装置,其中,所述第一配置信息,用于配置以下至少一项:
    终端对四步随机接入过程的消息3进行重复传输;
    终端对两步随机接入过程中的消息A包含的PUSCH进行重复传输。
  46. 根据权利要求44所述的配置装置,其中,所述目标信息还包括前导码。
  47. 根据权利要求46所述的配置装置,其中,在所述目标随机接入过程为两步随机接入过程的情况下,所述配置装置还包括:
    第三发送模块,用于发送第二配置信息,所述第二配置信息用于配置所述目标信息的重复传输规则;
    其中,所述目标信息的重复传输规则满足以下任一项:
    以组合对进行重复传输,每个所述组合对包括一个前导码和一个PUSCH;
    所述前导码的重复传输位于所述PUSCH重复传输之前;
    所述前导码和所述PUSCH交叉进行重复传输。
  48. 根据权利要求44所述的配置装置,还包括:
    第四发送模块,用于发送第三配置信息,所述第三配置信息用于配置所述PUSCH的重复传输规则;
    其中,所述PUSCH的重复传输规则包括以下任一项:
    不同重复传输位于不同时隙,且每次重复传输在时隙中占用的初始时域资源相同;
    全部重复传输在时域资源上连续,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第一条件满足的情况下,第五重复传输分割为K个子重复传输;
    全部重复传输在时域资源上连续,相邻两个重复传输间在时域资源上具有保护间隔,且在第五重复传输配置的时域资源存在不可用时域资源的情况下,放弃执行所述第五重复传输,或,将所述第五重复传输推迟执行;
    其中,K为大于1的整数。
  49. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至21任一项所述的随机接入方法的步骤。
  50. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求22至35任一项所述的配置方法的步骤。
  51. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至21任一项所述的随机接入方法的步骤,或者实现如权利要求22至35任一项所述的配置方法的步骤。
  52. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至21任一项所述的随机接入方法的步骤,或者实现如权利要求22至35任一项所述的配置方法的步骤。
  53. 一种终端,所述终端被配置为用于执行如权利要求1至21任一项所述的随机接入方法的步骤。
  54. 一种网络侧设备,所述网络侧设备被配置为用于执行如权利要求22至35任一项所述的配置方法的步骤。
PCT/CN2021/108082 2020-07-24 2021-07-23 随机接入方法、配置方法及相关设备 WO2022017490A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237006040A KR20230042327A (ko) 2020-07-24 2021-07-23 랜덤 액세스 방법, 구성 방법 및 관련 장치
EP21846355.2A EP4188026A4 (en) 2020-07-24 2021-07-23 RANDOM ACCESS METHOD, CONFIGURATION METHOD AND ASSOCIATED DEVICE
US18/155,985 US20230156782A1 (en) 2020-07-24 2023-01-18 Random access method, configuration method, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010724052.9 2020-07-24
CN202010724052.9A CN113973395B (zh) 2020-07-24 2020-07-24 随机接入方法、配置方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/155,985 Continuation US20230156782A1 (en) 2020-07-24 2023-01-18 Random access method, configuration method, and related device

Publications (1)

Publication Number Publication Date
WO2022017490A1 true WO2022017490A1 (zh) 2022-01-27

Family

ID=79585898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108082 WO2022017490A1 (zh) 2020-07-24 2021-07-23 随机接入方法、配置方法及相关设备

Country Status (5)

Country Link
US (1) US20230156782A1 (zh)
EP (1) EP4188026A4 (zh)
KR (1) KR20230042327A (zh)
CN (1) CN113973395B (zh)
WO (1) WO2022017490A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116996931A (zh) * 2022-04-25 2023-11-03 维沃移动通信有限公司 信息上报方法、装置、终端、网络侧设备及介质
WO2024082338A1 (en) * 2022-11-02 2024-04-25 Lenovo (Beijing) Limited Method and apparatus of supporting physical uplink control channel (pucch) repetition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581925A (zh) * 2013-10-29 2015-04-29 电信科学技术研究院 一种覆盖增强机制下的定时维护方法及装置
CN104812083A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 用于随机接入过程的方法和装置
CN107210903A (zh) * 2015-03-11 2017-09-26 三星电子株式会社 用于低成本用户设备的下行链路控制信道的传输
CN108476539A (zh) * 2016-01-29 2018-08-31 成均馆大学校产学协力团 在物联网环境中考虑覆盖等级和子载波间隔配置和/或多频配置的随机接入方法
US20190215872A1 (en) * 2017-11-15 2019-07-11 Lg Electronics Inc. Method for performing early data transmission in random access procedure in wireless communication system and apparatus therefor
WO2019216818A1 (en) * 2018-05-10 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Signaling mechanism for message and physical uplink shared channel repetitions
CN110574479A (zh) * 2019-08-02 2019-12-13 北京小米移动软件有限公司 随机接入消息发送方法、装置及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3138349B1 (en) * 2014-06-13 2018-08-29 Apple Inc. Enhanced prach scheme for power savings, range improvement and improved detection
EP3180955B1 (en) * 2014-08-15 2019-08-14 Interdigital Patent Holdings, Inc. Supporting random access and paging procedures for reduced capability wtrus in an lte system
US10555297B2 (en) * 2016-03-31 2020-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission timing control
CN108347789B (zh) * 2017-01-24 2021-01-05 华为技术有限公司 一种随机接入方法及装置
WO2019039860A1 (ko) * 2017-08-22 2019-02-28 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581925A (zh) * 2013-10-29 2015-04-29 电信科学技术研究院 一种覆盖增强机制下的定时维护方法及装置
CN104812083A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 用于随机接入过程的方法和装置
CN107210903A (zh) * 2015-03-11 2017-09-26 三星电子株式会社 用于低成本用户设备的下行链路控制信道的传输
CN108476539A (zh) * 2016-01-29 2018-08-31 成均馆大学校产学协力团 在物联网环境中考虑覆盖等级和子载波间隔配置和/或多频配置的随机接入方法
US20190215872A1 (en) * 2017-11-15 2019-07-11 Lg Electronics Inc. Method for performing early data transmission in random access procedure in wireless communication system and apparatus therefor
WO2019216818A1 (en) * 2018-05-10 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Signaling mechanism for message and physical uplink shared channel repetitions
CN110574479A (zh) * 2019-08-02 2019-12-13 北京小米移动软件有限公司 随机接入消息发送方法、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Correction on Msg3 PUSCH Repetition for CE mode B", 3GPP TSG-RAN WG1 MEETING #88BIS R1-1705137, 7 April 2017 (2017-04-07), XP051251772 *
See also references of EP4188026A4 *

Also Published As

Publication number Publication date
US20230156782A1 (en) 2023-05-18
CN113973395A (zh) 2022-01-25
EP4188026A4 (en) 2024-01-03
CN113973395B (zh) 2024-01-26
EP4188026A1 (en) 2023-05-31
KR20230042327A (ko) 2023-03-28

Similar Documents

Publication Publication Date Title
CN109997405B (zh) 用于执行随机接入信道进程的方法及其用户设备
WO2019086039A1 (zh) 通信方法及装置
WO2020017525A1 (ja) 基地局装置、端末装置、および、通信方法
US20190327769A1 (en) Method and apparatus for processing beam failure recovery
WO2020017391A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019242604A1 (zh) 随机接入方法、终端设备及网络侧设备
CN111357227A (zh) 具有带宽部分切换的随机接入
US20230156782A1 (en) Random access method, configuration method, and related device
CN113767677B (zh) 非许可频带中的随机接入消息重传
BR112021002427A2 (pt) método, aparelho, dispositivo de acesso randômico e dispositivo de armazenamento
CN115997466A (zh) 用于小数据传输的方法和装置
US20220022265A1 (en) Communicating between a terminal and a wireless network node
CN114616911A (zh) 信息指示方法及装置
CN111565462A (zh) 用于确定信号发送时机的方法及设备
TWI734066B (zh) 處理頻寬部分的裝置及方法
WO2022012618A1 (zh) 资源确定方法、装置及终端
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
US11937310B2 (en) Handling timing conflicts involving random access procedure messages
WO2022152254A1 (zh) 上行传输的方法、终端及网络侧设备
CN113439467B (zh) 在终端和无线网络节点之间的通信
KR20220097971A (ko) 신호 전송 방법 및 통신 장치
CN114651497A (zh) 随机接入过程中的竞争解决
WO2019157731A1 (zh) 一种随机接入方法及其装置
RU2787015C1 (ru) Терминал, система беспроводной связи и способ связи
CN112770405B (zh) 传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237006040

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021846355

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021846355

Country of ref document: EP

Effective date: 20230224