WO2019157731A1 - 一种随机接入方法及其装置 - Google Patents

一种随机接入方法及其装置 Download PDF

Info

Publication number
WO2019157731A1
WO2019157731A1 PCT/CN2018/076872 CN2018076872W WO2019157731A1 WO 2019157731 A1 WO2019157731 A1 WO 2019157731A1 CN 2018076872 W CN2018076872 W CN 2018076872W WO 2019157731 A1 WO2019157731 A1 WO 2019157731A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
downlink
communication device
subband
sub
Prior art date
Application number
PCT/CN2018/076872
Other languages
English (en)
French (fr)
Inventor
贾树葱
张俊
王哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/076872 priority Critical patent/WO2019157731A1/zh
Priority to CN201880089042.3A priority patent/CN111699747A/zh
Publication of WO2019157731A1 publication Critical patent/WO2019157731A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a random access method and an apparatus thereof.
  • the terminal device (for example, user equipment (UE)) obtains downlink synchronization with the cell through the cell search process to receive downlink data.
  • the terminal device establishes a connection with the cell through a random access procedure and obtains uplink synchronization for uplink transmission.
  • UE user equipment
  • the random access procedure may include the following steps: a.
  • the base station broadcasts the random access configuration information, including the time-frequency resources occupied by the random access channel, the random access preamble used, and the like.
  • the terminal device receives the configuration parameter, and selects and sends a random access preamble when the initial random access procedure needs to be performed.
  • the base station detects a possible random access preamble, and when the base station detects one or more random access preambles, sends a random access response message.
  • the terminal device attempts to receive the random access response message sent by the base station to the pre-configured random access response message receiving window, and if the terminal device fails to receive the random access response message sent by the base station to the terminal, the terminal The device re-initiates the random access procedure. If the terminal device receives the random access response message sent by the base station, the terminal device sends a message 3 on the allocated uplink resource, where the message 3 includes the identifier information of the terminal device. After receiving the message 3 of the terminal device, the base station sends a contention resolution message to the terminal device, where the contention resolution message includes the identifier information of the terminal device. After receiving the contention resolution message, the terminal device determines whether the random access procedure is successful by detecting whether the identifier information carried in the contention resolution message is the same as the identifier information carried in the message 3.
  • the technical problem to be solved by the embodiments of the present application is to provide a random access method and a device thereof, which can shorten the time taken by the random access process, thereby improving the efficiency of the random access process.
  • a first aspect of the embodiments of the present application provides a random access method, including:
  • the first communication device sends a random access preamble to the second communication device by using the first uplink subband of the M uplink subbands of the multiple subband system;
  • the first communication device receives a random access response message from the second communication device through a second downlink sub-band of the N downlink sub-bands of the multi-subband system, where M and N are positive integers, and M>1 or N> 1;
  • the first communication device sends a message three to the second communication device by using a third uplink sub-band of the M uplink sub-bands, where the message three includes the identifier information of the first communication device;
  • the first communication device receives the contention resolution message from the second communication device by using the fourth downlink sub-band of the N downlink sub-bands;
  • the downlink sub-band corresponding to the first uplink sub-band is the first downlink sub-band
  • the uplink sub-band corresponding to the second downlink sub-band is the second uplink sub-band
  • the downlink sub-band corresponding to the third uplink sub-band is the third.
  • the downlink subband, the uplink subband corresponding to the fourth downlink subband is the fourth uplink subband;
  • the first uplink subband, the third uplink subband, the first downlink subband, the second downlink subband, and the fourth downlink subband satisfy at least one of the following conditions:
  • the third uplink subband is different from the first uplink subband.
  • the second downlink subband, at least one of the fourth downlink subbands is different from the first downlink subband.
  • a second aspect of the embodiments of the present application provides a first communication apparatus, including means or means for performing the various steps of the above first aspect.
  • a third aspect of the embodiments of the present application provides a first communication apparatus, including at least one processing element and at least one storage element, wherein at least one storage element is used to store a program and data, and at least one processing element is used to execute the embodiment of the present application.
  • the method provided in one aspect is not limited to one communication apparatus, including at least one processing element and at least one storage element, wherein at least one storage element is used to store a program and data, and at least one processing element is used to execute the embodiment of the present application.
  • a fourth aspect of embodiments of the present application provides a first communication device comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • a fifth aspect of embodiments of the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a sixth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the fifth aspect.
  • the success rate of the first sub-band is greater than the success rate of the first sub-band, and the random access process can be shortened.
  • the time spent can improve the efficiency of the random access process.
  • the random access procedure may be improved. effectiveness.
  • the first communications device sends the random access preamble to the second communications device by using the first uplink subband of the M uplink subbands of the multiple subband system
  • the second communication device receives random access configuration information, where the random access configuration information is used to indicate M1 uplink subbands in the M uplink subbands and N1 downlink subbands in the N downlink subbands.
  • the M1 uplink subbands include a first uplink subband for transmitting a random access preamble
  • the N1 downlink subbands include a second downlink subband for transmitting a random access response message and used to send a contention resolution message.
  • the fourth downlink subband The random access configuration is more flexible by the indication of the random access configuration information.
  • the M1 uplink subbands are used by the first communication device to send a candidate uplink subband of the random access preamble to the second communication device, where the candidate uplink subband refers to
  • the first communication device sends a random access preamble selectable uplink subband set, and the uplink subband set is available for the second communication device to detect, receive the random access preamble and the message 3.
  • the first communication device may select one uplink subband from the candidate uplink subband to transmit a random access preamble, and the second communication device may detect, receive, and receive the random access preamble and the message three on all candidate uplink subbands.
  • the N1 downlink subbands are the candidate downlink subbands for the second communication device to send the random access response message and the contention resolution message to the first communication device, and the candidate downlink subband refers to the second communication device sending the random access response message and the competition.
  • the downlink subband set selectable by the message is solved, and the downlink subband set is available for the first communication device to detect, receive, and receive a random access response message and a contention resolution message. That is, the second communication device may select one downlink sub-band from the candidate downlink sub-band to send a random access response message, select one downlink sub-band from the candidate downlink sub-band to send a contention resolution message, and the first communication device may be in all candidate downlinks.
  • the random access response message and the contention resolution message are detected and received on the subband.
  • the random access response message is used to indicate uplink resource allocation information of K1 uplink subbands in the M uplink subbands, that is, which uplink subbands are available.
  • the first communication device may select a third uplink subband from the K1 uplink subbands, and send a message three using the third uplink subband.
  • the second communication device may be configured to send the message 3 on the K1 uplink sub-band by using the random access response message according to the ratio of the channel on each downlink sub-band being detected as idle and busy, and the M value is large. In this case, the processing complexity of the second communication device can be reduced.
  • the first communication device receives the message triple retransmission scheduling message from the second communication device, the message triple
  • the scheduling message is used to indicate uplink resource allocation information of K2 uplink subbands in the M uplink subbands; the first communication device retransmits to the second communication device by using one of the K2 uplink subbands Send the message three.
  • the second communication device can schedule the K2 uplink sub-bands in the M uplink sub-bands to resend the message 3 to the first communication device by using the message triple retransmission scheduling message, so as to improve the probability that the second communication device successfully receives the message three.
  • the second communication device can improve the listening of multiple uplink subbands by increasing the number of uplink subbands transmitted by the scheduling message three. After that, the success rate is increased, which in turn increases the probability of success of the message triple transmission.
  • the first communication device first listens to M or M1 uplink sub-bands, and then repeats the successful uplink sub-bands with the same probability. Selecting an uplink subband and determining it as the first uplink subband is simple to implement. Similarly, the first communication device can determine the third uplink subband from the K1 uplink subbands in this manner.
  • the first communication device first listens to M or M1 uplink sub-bands, and selects energy detection from the uplink sub-bands that are said to be successful after listening.
  • the uplink subband with the smallest value is determined as the first uplink subband, so that the random access preamble receives less interference when transmitted on the first uplink subband.
  • the first communication device can determine the third uplink subband from the K1 uplink subbands in this manner.
  • a seventh aspect of the embodiments of the present application provides a random access method, including:
  • the second communication device receives the random access preamble from the first communication device by using the first uplink sub-band of the M uplink sub-bands of the multi-subband system;
  • the second communication device sends a random access response message to the first communication device through the second downlink sub-band of the N downlink sub-bands of the multi-subband system, where M and N are positive integers, and M>1 or N> 1;
  • the second communication device receives the message three from the first communication device by using the third uplink sub-band of the M uplink sub-bands, where the message three includes the identification information of the first communication device;
  • the second communication device sends a contention resolution message to the first communication device by using a fourth downlink sub-band of the N downlink sub-bands;
  • the downlink sub-band corresponding to the first uplink sub-band is the first downlink sub-band
  • the uplink sub-band corresponding to the second downlink sub-band is the second uplink sub-band
  • the downlink sub-band corresponding to the third uplink sub-band is the third.
  • the downlink subband, the uplink subband corresponding to the fourth downlink subband is the fourth uplink subband;
  • the first uplink subband, the third uplink subband, the first downlink subband, the second downlink subband, and the fourth downlink subband satisfy at least one of the following conditions:
  • the third uplink subband is different from the first uplink subband.
  • the second downlink subband, at least one of the fourth downlink subbands is different from the first downlink subband.
  • An eighth aspect of the embodiments of the present application provides a second communication apparatus, including means or means for performing the steps of the seventh aspect above.
  • a ninth aspect of the embodiments of the present application provides a second communication apparatus, including at least one processing element and at least one storage element, wherein at least one storage element is used to store a program and data, and at least one processing element is used to execute the embodiment of the present application.
  • the methods provided in the seven aspects are provided in the seven aspects.
  • a tenth aspect of the embodiments of the present application provides a second communication apparatus comprising at least one processing element (or chip) for performing the method of the above seventh aspect.
  • An eleventh embodiment of the present application provides a program for performing the method of the above seventh aspect when executed by a processor.
  • a twelfth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, including the program of the eleventh aspect.
  • the success rate of the first sub-band is greater than the success rate of the first sub-band, and the random access process can be shortened.
  • the time spent can improve the efficiency of the random access process.
  • the random access procedure may be improved. effectiveness.
  • the second communication device receives the random access preamble from the first communication device by using the first uplink sub-band of the M uplink sub-bands of the multi-subband system Before the code, the random access configuration information is sent to the first communication device.
  • the random access configuration information For a description of the random access configuration information, refer to the description in the first aspect, and details are not described herein again.
  • the first communication sends a message triple retransmission scheduling message, where the message triple retransmission scheduling message is used to indicate uplink resource allocation information of K2 uplink subbands in the M uplink subbands, that is, allocates K2 uplink subbands for the first communication device to retransmit Message three.
  • the second communication device receives the retransmission of the message three from the first communication device by one of the K2 uplink subbands, that is, receives the message three retransmitted by the first communication device.
  • the second communication device retransmits the scheduling message by message triple transmission in order to increase the probability of successfully receiving the message three.
  • the second communication device can increase the number of uplink subbands transmitted by the scheduling message three to improve the uplink subbands. After listening to the success rate, the probability of improving the success of the message triple transmission is carried out.
  • the second communication device first listens to N or N1 downlink sub-bands, and then repeats the successful downlink sub-band with the same probability. Selecting a downlink subband and determining it as the second downlink subband is simple to implement. Similarly, the second communication device can determine the fourth downlink subband from the N downlink subbands in this manner.
  • the second communication device first listens to N or N1 downlink sub-bands, and selects energy from the succeeding downlink sub-bands after listening first.
  • the downlink subband with the smallest detection value is determined as the second downlink subband, so that the random access response message receives less interference when transmitted on the second downlink subband.
  • the second communication device can determine the fourth downlink subband from the N downlink subbands in this manner.
  • At least two first communication devices transmit the same random access preamble to the second communication device using the same time-frequency resource, and the second communication
  • the second communication device sends a contention resolution message to each of the first communication devices
  • the contention resolution message includes at least two pieces of identification information, and any two pieces of identification information are different.
  • the second communication device A contention resolution message sent by a communication device includes two different identification information.
  • the first communication device sends the message three to occupy different sub-bands, and the different first communication devices are distinguished to improve the efficiency of the random access process.
  • Figure 1 is a schematic diagram of the principle of listening first
  • FIG. 2 is a schematic diagram of carrier aggregation
  • FIG. 3 is a schematic diagram of a contention based random access procedure
  • FIG. 4 is a schematic flowchart diagram of a random access method according to an embodiment of the present disclosure.
  • FIG. 5a is a schematic diagram of the embodiment shown in FIG. 4 applied in a time division duplex scenario
  • FIG. 5b is a schematic diagram of the embodiment shown in FIG. 4 applied in a frequency division duplex scenario
  • FIG. 6 is a schematic diagram of a logical structure of a first communications apparatus according to an embodiment of the present disclosure
  • FIG. 7 is a simplified schematic diagram of a physical structure of a first communications apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a logical structure of a second communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a simplified schematic diagram of a physical structure of a second communication apparatus according to an embodiment of the present application.
  • Listening before talk means that the device that needs to transmit data needs to detect the wireless environment of the wireless carrier before transmitting data on a certain wireless carrier to determine whether other devices are transmitting data. .
  • LBT Listening before talk
  • the device that needs to transmit data detects that the energy on a certain wireless carrier is less than the threshold, the device may be considered to be successful on the wireless carrier; if the device detects that the energy on the wireless carrier is greater than the threshold, the device may be considered as The device failed the LBT on the wireless carrier.
  • the LBT is applied to the scene of the unlicensed spectrum, and the scene corresponding to the licensed spectrum may not be LBT.
  • the first communication device may be a processing chip/element of the terminal device or the terminal device.
  • the terminal device may be a UE, a mobile station (MS), a mobile terminal (MT), etc., and is a device that provides voice and/or data connectivity to the user, for example, has a wireless connection function.
  • Handheld devices in-vehicle devices, etc.
  • some examples of terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • augmented reality, AR equipment
  • wireless terminals in industrial control wireless terminals in selfdriving, wireless terminals in remote medical surgery, in smart grids
  • a wireless terminal a wireless terminal in transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the second communication device may be a processing chip/element of the access network device or the access network device.
  • the access network is a part of the network that connects the terminal device to the wireless network.
  • An access network device is a device in a radio access network, and may also be referred to as a base station.
  • some examples of access network devices are: a base station in a 5G system, a transmission reception point (TRP), an evolved Node B (eNB), and a radio network controller (RNC).
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • HNB home base station
  • BBU baseband unit
  • Wifi wireless fidelity access point
  • the message sent by the base station to the UE is called a downlink message, and the message sent by the UE to the base station is called an uplink message.
  • the message sent by the first communication device to the second communication device is an uplink message
  • the message sent by the second communication device to the first communication device is a downlink message.
  • Multi-subband system means that the working bandwidth of a communication device (such as a UE, a base station, etc.) is divided into a plurality of consecutive sub-bands or a plurality of sub-bands that are discontinuous, and the communication device can use one or more sub-bands and corresponding
  • the communication device communicates, for example, the UE can communicate with the base station using one or more sub-bands.
  • the random access method provided by the embodiment of the present application can be applied to a multi-subband system.
  • the multi-subband system may be a carrier aggregation (CA) system, and the sub-band is a component carrier (CC).
  • Multi subband may be fifth-generation system of mobile communication (5 th -generation, 5G) more portions of bandwidth (bandwidth part, BWP) new radio (new radio, NR) system is a cell, sub-band that is BWP .
  • 5G fifth-generation system of mobile communication
  • BWP bandwidth part
  • new radio new radio
  • a cell that is composed of one uplink subband and one downlink subband in a multi-subband system and capable of providing communication services for the terminal device is referred to as a subband pair.
  • the downlink subband that forms the subband pair with the uplink subband 1 is the subband 1
  • the downlink subband corresponding to the uplink subband 1 may be referred to as the downlink subband 1;
  • the downlink subband 2 constitutes the subband of the subband pair
  • the band is the uplink sub-band 2
  • the uplink sub-band corresponding to the downlink sub-band 2 may be referred to as the uplink sub-band 2.
  • the subband pair can be either a CC pair or a BWP pair.
  • a CC pair is composed of an uplink CC and a downlink CC, and the CC pair is a cell capable of providing communication services for the terminal device.
  • the downlink CC that forms the CC pair with the uplink CC1 is the downlink CC1
  • the downlink CC corresponding to the uplink CC1 may be the downlink CC1
  • the uplink CC that forms the CC pair with the downlink CC2 is the uplink CC2
  • the uplink CC corresponding to the downlink CC2 may be referred to as the uplink CC corresponding to the downlink CC2.
  • the uplink CC2 For the uplink CC2.
  • the carrier aggregation technology can aggregate multiple CCs together to achieve a larger transmission bandwidth than a single unit carrier, and can effectively improve the uplink and downlink transmission rates. See the carrier aggregation diagram shown in Figure 2.
  • Each of the four CCs shown in FIG. 2 can be used for uplink or downlink transmission in a time division duplexing (TDD) manner.
  • the four CCs shown in FIG. 2 can also be used for uplink or downlink transmission in a frequency division duplexing (FDD) manner, for example, CC1 and CC2 are used for uplink transmission, and CC3 and CC4 are used for downlink transmission.
  • FDD frequency division duplexing
  • a carrier aggregation scenario of a long term evolution (LTE) system only one CC (applied to a TDD scenario) or one CC pair (applied to an FDD scenario) among a plurality of CCs is used as a primary CC or a primary CC of the UE. Yes, the UE can only initiate random access on the primary CC or the primary CC pair.
  • LTE long term evolution
  • one of the CCs (for example, CC1) is the primary CC of the UE, and the UE can only send each uplink message of the random access on the CC1.
  • the downlink messages of the random access can also be sent to the UE only on CC1.
  • CC1 and CC2 are used for uplink transmission
  • CC3 and CC4 are used for downlink transmission
  • the base station configures a CC pair for the UE (for example, ⁇ CC1, CC3 ⁇ )
  • the UE can only send each uplink message of the random access on the CC1
  • the base station can only send the downlink messages of the random access to the UE on the CC3.
  • the carrier aggregation scenario of the NR system is similar to the carrier aggregation scenario of the LTE system, and the UE can only initiate random access on the primary CC or the primary CC pair.
  • the carrier aggregation scenario of the NR system is different from the carrier aggregation scenario of the LTE system in that the NR can allocate two primary CC pairs to the UE according to the channel conditions of the UE in the cell: the uplink channel has good quality (low path loss).
  • the UE is assigned a primary CC pair ⁇ CC01, CC01' ⁇ ; in the case of a poor uplink channel quality (high path loss), the UE is assigned another primary CC pair ⁇ CC01, CC02 ⁇ .
  • the two primary CC pairs are a major feature of the supplementary uplink (SUL) in the NR system.
  • SUL supplementary uplink
  • CC01 is a downlink CC
  • CC01' and CC02 are uplink CCs
  • CC01 and CC01' in a TDD scenario may be the same CC
  • CC01 and CC01' are different CCs in an FDD scenario.
  • the reason for assigning two primary CC pairs to the UE according to the UE channel quality is because the path loss of the signal in the high frequency band (for example, the 3.5 GHz band) is larger than the path loss in the low frequency band (for example, the 1.8 GHz band), and the maximum transmit power that the base station can support.
  • the second primary CC pair is selected for initial random access, thereby reducing the impact of path loss on the initial random access.
  • a SUL scenario that is, a scenario in which two primary CC pairs ( ⁇ CC01, CC01' ⁇ and ⁇ CC01, CC02 ⁇ ) are configured for a TDD scenario and an FDD scenario.
  • the frequencies of CC01 and CC01' are different, and the frequencies of CC01 and CC02 are different.
  • CC01 and CC01' have the same frequency
  • CC01 and CC02 have different frequencies
  • CC01 and CC01' have different frequencies
  • CC01 and CC02 have the same frequency.
  • the embodiments of the present application may refer to two uplink CCs in the SUL scenario, namely, CC01' and CC02, respectively, as a high frequency uplink CC and an auxiliary uplink CC.
  • Unlicensed spectrum also known as unlicensed spectrum, refers to the spectrum that can be used by any terminal equipment.
  • Authorized spectrum refers to the spectrum owned by authorized terminal equipment.
  • the first uplink subband which is an uplink subband occupied by the first communication device to the second communication device by using the random access preamble.
  • the downlink subband corresponding to the first uplink subband is the first downlink subband.
  • the second downlink subband is a downlink subband occupied by the second communication device to send the random access response message to the first communication device.
  • the uplink subband corresponding to the second downlink subband is the second uplink subband.
  • the third uplink subband transmits the uplink subband occupied by the message three to the second communication device by the first communication device.
  • the downlink subband corresponding to the third uplink subband is the third downlink subband.
  • the fourth downlink subband transmits a downlink subband occupied by the second communication device to the first communication device for the contention resolution message.
  • the uplink subband corresponding to the fourth downlink subband is the fourth uplink subband.
  • the random access method provided by the embodiment of the present application is a contention-based random access method, and the contention-based random access procedure is described in detail below. Please refer to FIG. 3, which is a schematic diagram of a contention based random access procedure.
  • the base station sends random access configuration information to the UE. Accordingly, the UE receives random access configuration information from the base station.
  • the base station broadcasts random access configuration information to UEs in the cell.
  • the random access configuration information includes a time-frequency resource occupied by the random access channel, a random access preamble used, and a backoff indicator when the random access procedure fails.
  • the time-frequency resource occupied by the access channel may be a starting position, a subframe number, a period, and the like of a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the back-off value is used to indicate that the first communication device that fails the random access re-initiates the random access after the time indicated by the back-off value, thereby reducing the number of terminal devices that initiate the contention-based random access. The resulting collision problem.
  • the UE sends a random access preamble to the base station. Accordingly, the UE receives a random access preamble from the base station.
  • the UE receives the random access configuration information broadcast by the base station, if the random access procedure needs to be initiated, the UE selects the time-frequency resource and sends the random access preamble.
  • the random access preamble may also be referred to as message one.
  • the base station sends a random access response message to the UE. Accordingly, the UE receives a random access response message from the base station.
  • the base station detects the random access preamble on the time-frequency resource that the UE sends the random access preamble. After the base station detects one or more random access preambles, the random access response message is sent, and the random access response message carries an uplink grant (UL grant) allocated to the UE, and carries a new one. The fallback value of the UE will update the backoff value if the random access response message is received.
  • the random access response message may also be referred to as message two.
  • the random access response message may be in response to multiple random access preambles, and the multiple random access preambles may use the same time-frequency location, but the content of the multiple random access preamble transmissions (ie, preamble) Can be different.
  • the random access response message is used to respond to a set of random access preambles, the time-frequency positions of the set of random access preambles being the same, but the preambles used are different.
  • the format of the random access response message includes a field indicating a backoff value, a field indicating a random access preamble identifier, a field indicating uplink resource allocation information, a field indicating a timing advance (TA), and a wireless indicating the temporary cell.
  • the UE sends a message three to the base station. Accordingly, the base station receives message three from the UE.
  • the UE After transmitting the random access preamble, the UE determines a random access-radio network temporary identity (RA-RNTI) according to the time-frequency resource used for sending the random access preamble.
  • RA-RNTI random access-radio network temporary identity
  • the UE uses the RA-RNTI after a certain time to listen to the random access response message sent by the second communication device in a configured listening window time.
  • the UE If the UE does not receive the random access response message sent by the base station, the UE re-initiates the random access procedure, and selects the timing of re-initiating the random access procedure according to the indication of the backoff value.
  • the timing may be that the random access preamble is transmitted at a fixed time-frequency resource, that is, the random access preamble can only be sent on the fixed time-frequency resources, and the positions of the time-frequency resources can be broadcast by the random access configuration information.
  • the timing may also refer to sending a fixed symbol on a fixed time slot of the random access preamble, that is, the random access preamble can only be sent on a fixed symbol on a fixed time slot, and the fixed symbol on the fixed time slot can be configured by random access. Information broadcasting.
  • the UE If the UE receives the random access response message sent by the base station, the UE sends the message 3 using the uplink resource in the random access response message allocation, and the message 3 carries the identifier information of the UE.
  • the UE After the UE sends the message 3 according to the allocated uplink resource, the UE attempts to receive the contention resolution message or the message triple retransmission scheduling message within the timer time. When receiving the message triple retransmission scheduling message, the UE resends the message III to the base station and initializes the timer.
  • the base station After the UE sends the message 3 according to the allocated uplink resource, the base station detects whether the message 3 is received on the uplink resource allocated to the UE. If the base station does not receive the message 3 on the resource, the base station sends a message triple retransmission scheduling message to the UE.
  • the identifier information of the UE carried in the message 3 is used for conflict resolution.
  • the identity information of the UE is a cell-radio network temporary identity (C-RNTI).
  • C-RNTI cell-radio network temporary identity
  • the identifier information of the UE is a system architecture evolution temporary mobile subscriber identity number (S-TMSI) or a random number.
  • S-TMSI is an identifier assigned by the core network to the UE.
  • the message three carries the S-TMSI; in the case that the UE does not allocate the S-TMSI, the message three carries the random number.
  • the base station sends a contention resolution message to the UE. Accordingly, the UE receives a contention resolution message from the base station.
  • the base station When the base station receives the message 3 sent by the UE, that is, when the base station successfully decodes the message 3, the base station sends a contention resolution message to the terminal device, where the contention resolution message carries the identity information of the UE.
  • the UE detects whether the identity information of the UE carried by the contention resolution message is the same as the identity information carried by the message 3 sent by the UE. If they are the same, the random access is successful; if not, then Competitive random access failed.
  • the contention resolution message can also be referred to as message four.
  • the UE If the UE does not receive the contention resolution message carrying the identity information of the UE or does not receive the message triple retransmission scheduling message, the UE considers that the random access fails, and the UE will re-initiate the random access procedure and follow the fallback. The value indicates when the random access procedure is re-initiated.
  • the contention-based random access procedure shown in Figure 3 is applied to an unlicensed spectrum communication system and is affected by the LBT.
  • the UE attempts to send a random access preamble on multiple CCs, and after a successful LBT on a certain CC, a random access preamble is sent, after which the base station sends a random access response message, the UE sends a message 3, and the base station sends the message.
  • the contention resolution message needs to be performed on the CC.
  • the UE attempts to send a random access preamble on multiple uplink CCs, and after the LBT succeeds on an uplink CC, the random access preamble is sent, and then the base station sends a random access response message and a contention resolution message.
  • the downlink CC corresponding to the uplink CC is performed, and the UE sends the message 3 to be performed on the uplink CC.
  • the message sent by the base station to the UE and the message sent by the UE to the base station need to use the same CC or the same CC pair, which may cause the random access process to take a long time.
  • the embodiment of the present application provides a random access method and a device thereof, and arranges each uplink message and each downlink message in a random access process on multiple sub-bands.
  • the sub-bands for transmitting each message may be in a many-to-many relationship.
  • the success rate of LBTs on multiple sub-bands is greater than the success rate of LBTs on a single sub-band, which can shorten the time spent in the random access process and improve the random access process. effectiveness.
  • the random access method and apparatus provided by the embodiments of the present application can be applied to a multi-subband system of an unlicensed spectrum, and can also be applied to a multi-subband system of a licensed spectrum.
  • the random access method provided by the embodiment of the present application is described in detail below, and the random access method may be a contention-based random access method.
  • FIG. 4 is a schematic flowchart of a random access method according to an embodiment of the present disclosure. The method may include, but is not limited to, the following steps:
  • Step S401 The first communications device sends a random access preamble to the second communications device by using the first uplink subband of the M uplink subbands of the multiple subband system.
  • the second communication device receives the random access preamble from the first communication device through the first uplink subband.
  • Step S402 the second communication device sends a random access response message to the first communication device by using a second downlink sub-band of the N downlink sub-bands of the multi-subband system.
  • the first communication device receives the random access response message from the second communication device through the second downlink subband.
  • Step S403 the first communication device sends a message three to the second communication device by using a third uplink sub-band of the M uplink sub-bands, where the message three includes the identification information of the first communication device.
  • the second communication device receives the message three from the first communication device via the third uplink subband.
  • Step S404 the second communication device sends a contention resolution message to the first communication device by using the fourth downlink sub-band of the N downlink sub-bands.
  • the first communication device receives the contention resolution message from the second communication device via the fourth downlink subband.
  • M and N are positive integers, and M>1 or N>1.
  • the first uplink subband is one of the M uplink subbands
  • the second downlink subband is one of the N downlink subbands
  • the third uplink subband is the M uplink subband.
  • the fourth downlink sub-band is one of the N downlink sub-bands.
  • the second communications device may send random access configuration information to the first communications device, where the random access configuration information includes a time-frequency resource occupied by the random access channel, and a random access preamble used. And the fallback value when the random access process fails.
  • the second communication device may transmit the random access configuration information to the first communication device by means of a broadcast.
  • the second communication device may perform LBT on the N downlink sub-bands and broadcast random access configuration information on all downlink sub-bands in which the LBT succeeds.
  • the random access configuration information is further used to indicate M1 uplink subbands in the M uplink subbands and N1 downlink subbands in the N downlink subbands, where M1 ⁇ M, N1 ⁇ N.
  • the M1 uplink subbands include a first uplink subband
  • the N1 downlink subbands include a second downlink subband and a fourth downlink subband.
  • the M1 uplink subbands are used by the first communication device to send the candidate uplink subband of the random access preamble to the second communication device, and the N1 downlink subbands are the second communication device to send the random access response message to the first communication device. And the candidate downlink subband of the contention resolution message.
  • the candidate uplink sub-band refers to the uplink sub-band set selectable by the first communication device to send the random access preamble, and the uplink sub-band set is available for the second communication device to detect and receive the random access preamble and the message 3.
  • the candidate downlink sub-band refers to a downlink sub-band set that the second communication device sends a random access response message and a contention resolution message, and the downlink sub-band set is available for the first communication device to detect and receive the random access response message and Competition resolved messages.
  • one of the M1 uplink subbands is used by the first communication device to send the random access preamble to the second communication device, and the second communication device can detect and receive the random on the M1 uplink subbands. Access the preamble and message three.
  • One of the N1 downlink subbands is used by the second communication device to send a random access response message to the first communication device, and one of the N1 downlink subbands is used for the second communication device to the first communication
  • the device sends a contention resolution message, and the first communication device can detect and receive the random access response message and the contention resolution message on the N1 downlink subbands.
  • the random access configuration information can be used to indicate that the M1 uplink subbands in the M uplink subbands can be used by the first communication device to send the random access preamble to the second communication device, and the first communication device can obtain the uplink from the M1.
  • the second communication device may select one downlink sub-band from the N1 downlink sub-bands to send a random access response message, and select one downlink sub-band from the N1 downlink sub-bands to send a contention resolution message.
  • the communication device may select one of the plurality of LBT successful subbands by the following selection methods, the selected subband being used to transmit the message.
  • the communication device may be the first communication device or the second communication device.
  • Choice mode 1 The communication device selects one sub-band from the successful sub-bands of the LBT with the same probability. For example, if the number of successful sub-bands of the LBT is three, the communication device selects one sub-band from the three sub-bands that are successful in LBT with a probability of 1/3. For another example, if the number of successful sub-bands of the LBT is 1, the communication device selects the sub-band of the successful LBT with a probability of 1/1. It can be understood that the probability that each LBT successful sub-band is selected is the same. This method is simple to implement.
  • the communication device selects the subband with the smallest energy detection value from the successful subbands of the LBT.
  • the communication device determines whether the LBT succeeds or the LBT fails by detecting the amount of energy on the sub-band.
  • the energy detection value of the sub-band is less than the threshold, and the smaller the energy detection value when the LBT is performed by a certain sub-band, the smaller the total power of the interference signal plus the noise signal on the sub-band, the message is in the sub-band.
  • the interference received when transmitting on the tape is smaller.
  • the communication device selects the sub-band used for receiving the message from the sub-bands that are successful in the LBT. If the sub-band used for the LBT does not include the sub-band used to receive the message, the selection mode is one or the second mode or the second mode is selected. Mode 4 selects a subband in the successful subband of LBT.
  • the subband used by the communication device to receive the message is subband 1
  • the subband with successful LBT includes subband 1
  • the communication device selects subband 1 to send the message.
  • the sub-band used by the first communication device to receive the random access configuration information is the sub-band 1.
  • the LBT is performed on the multiple sub-bands, and the sub-band with the successful LBT includes the sub-band.
  • the first communication device selects subband 1 to transmit a random access preamble.
  • the sub-band used by the second communication device to receive the random access preamble is the sub-band 2
  • the second communication device performs the LBT on the multiple sub-bands when the random access response message needs to be sent, and the sub-band of the LBT success includes Subband 2
  • the second communication device selects subband 2 to transmit a random access preamble.
  • the communication device randomly selects one sub-band from the successful sub-bands of the LBT.
  • Step S401 is introduced below:
  • the first communication device may select the first uplink sub-band from the uplink sub-bands successfully succeeded by the LBT in the M or M1 uplink sub-bands according to the selection mode 1 or the selection mode 2 or the selection mode 3 or the selection mode 4, and the first uplink sub-band
  • the corresponding downlink subband is the first downlink subband.
  • Step S402 is introduced below:
  • the second communication device sends a random access response message to the first communication device through the second downlink subband when detecting the random access preamble transmitted by the first communication device.
  • the second communication device may select the second downlink sub-band from the downlink sub-bands in which the LBT succeeds in the N or N1 downlink sub-bands according to the selection mode 1 or the selection mode 2 or the selection mode 3 or the selection mode 4 .
  • the uplink subband corresponding to the second downlink subband is the second uplink subband, and the number of the second uplink subband is one or two.
  • the random access response message is used to indicate the uplink resource allocation information of the K1 uplink subbands in the M uplink subbands, that is, the uplink resources of the K1 uplink subbands that the second communication device allocates to the first communication device.
  • step S403 The following describes step S403:
  • the first communications device performs LBT on the K1 uplink subbands according to the uplink resource allocation information of the K1 uplink subbands indicated by the random access response message, and determines the third uplink from the K1 uplink subbands.
  • the subband transmits a message three to the second communication device through the third uplink subband.
  • the message 3 carries the identifier information of the first communication device, and the identifier information may be a C-RNTI, or may be an S-TMSI or a random number.
  • the first communication device may select the third uplink sub-band from the LBT successful uplink sub-bands in the K1 uplink sub-bands according to the selection mode 1 or the selection mode 2 or the selection mode 3 or the selection mode 4, and the third uplink sub-band corresponds to The downlink subband is the third downlink subband.
  • Step S404 is introduced below:
  • the second communication device When the second communication device receives the message three, that is, if the second communication device successfully decodes and obtains the message three, the second communication device sends a contention resolution message to the first communication device by using the fourth downlink sub-band, and the contention resolution message carries the first message. Identification information of the communication device.
  • the second communication device exchanges information with the core network device and performs a corresponding function when the message 3 is received. After the interaction is completed, the contention resolution message is sent to the first communication device by using the fourth downlink sub-band.
  • the first communication device detects whether the identity information carried by the contention resolution message is the same as the identity information carried by the message 3, and if the information is the same, the first communication device competes for random access success; The same, the first communication device competes for random access unsuccessful.
  • the second communication device may select the fourth downlink sub-band from the downlink sub-bands in which the LBT succeeds in the N or N1 downlink sub-bands according to the selection mode 1 or the selection mode 2 or the selection mode 3 or the selection mode 4 .
  • the uplink subband corresponding to the fourth downlink subband is the fourth uplink subband, and the number of the fourth uplink subband is one or two.
  • the second communication device does not receive the message three from the first communication device (may be the case where the second communication device does not receive the message three within the timer time, the second communication device may also decode the message three)
  • the second communication device transmits a message triple retransmission schedule message to the first communication device.
  • the message triple-transmission scheduling message is used to indicate the uplink resource allocation information of the K2 uplink sub-bands in the M uplink sub-bands, that is, the uplink resources of the K2 uplink sub-bands that the second communication device allocates to the first communication device.
  • the message triple retransmission scheduling message is sent, and the second communication device can be detected as idle according to the updated channel on each downlink sub-band.
  • the busy ratio scheduling K2 uplink sub-bands with a higher idle ratio among the M uplink sub-bands to be sent to the first communication device.
  • One of the K2 uplink subbands is used by the first communication device to resend the message three.
  • the first communication device When receiving the message triple retransmission scheduling message, the first communication device performs LBT on the K2 uplink subbands according to the uplink resource allocation information of the K2 uplink subbands indicated by the message triple retransmission scheduling message, and performs uplink from K2 An uplink subband is determined in the subband, and the message three is retransmitted to the second communication device by the uplink subband, that is, message three is sent again.
  • the second communication device can increase the success rate of the LBT on the multiple uplink sub-bands by increasing the number of uplink sub-bands transmitted by the scheduling message three, and improve the probability of successful triple-transmission of the message.
  • the message triple-transmission scheduling message is used to indicate the uplink resource allocation information of the K3 uplink sub-bands in the M uplink sub-bands, that is, the uplink resources of the K3 uplink sub-bands that the second communication device allocates to the first communication device. For example, K2 ⁇ K3.
  • the first communication device performs LBT on the K3 uplink subbands according to the uplink resource allocation information of the K3 uplink subbands indicated by the message triple retransmission scheduling message, and performs uplink from K3.
  • An uplink subband is determined in the subband, and the message three is retransmitted to the second communication device by the uplink subband. Repeat here until the number of times the message triple retransmission scheduling message is sent reaches the maximum number of retransmission schedules.
  • the message is retransmitted by the message triple transmission, which is beneficial to improve the probability that the second communication device successfully receives the message 3.
  • the third uplink sub-band is different from the first uplink sub-band, that is, the first communications device sends the random access preamble and the message three through different uplink sub-bands.
  • the LBT success rate is improved, thereby shortening the time consuming of the random access process and improving the efficiency of the random access process.
  • the second downlink subband, at least one of the fourth downlink subbands is different from the first downlink subband, that is, the second downlink subband is different from the first downlink subband, or The fourth downlink subband is different from the first downlink subband, or the second downlink subband and the fourth downlink subband are different from the first downlink subband.
  • at least one of the downlink sub-band occupied by the second communication device and the downlink sub-band occupied by the transmission of the contention resolution message is different from the first downlink sub-band.
  • the LBT success rate is improved, thereby shortening the random access.
  • the time consuming of the process can increase the efficiency of the random access process.
  • the third uplink subband is different from the first uplink subband, and at least one of the second downlink subband and the fourth downlink subband is different from the first downlink subband.
  • each uplink message and each downlink message in the random access process on multiple sub-bands, the time of the random access process can be shortened, and the random access process can be improved. effectiveness.
  • FIG. 5a is a schematic diagram of the embodiment shown in FIG. 4 applied in a TDD scenario.
  • the first communication device and the second communication device use the resources on the sub-band in a TDD manner, that is, the first communication device and the second communication device can transmit and receive messages in TDD manner on all sub-bands.
  • each upstream subband is the same subband as its corresponding downstream subband.
  • the second communication device performs LBT on the sub-band 1, the sub-band 2, the sub-band 3, and the sub-band 4, and broadcasts random access configuration information on the sub-band 2 and sub-band 3 on which the LBT succeeds.
  • the first communication device performs LBT on the sub-band 1, the sub-band 2, the sub-band 3, and the sub-band 4 in the case of receiving the random access configuration information, and transmits the random to the second communication device on the sub-band 3 where the LBT succeeds. Access the preamble. If the LBT succeeds in multiple sub-bands, the first communication device may select one of the plurality of LBT successful sub-bands according to the selection mode one or the selection mode two or the selection mode three or the selection mode four. If the selection mode 3 is adopted, the sub-bands used for receiving the random access configuration information are selected from the plurality of sub-bands with successful LBT.
  • the second communication device performs LBT on the sub-band 1, the sub-band 2, the sub-band 3, and the sub-band 4 in the case of receiving the random access preamble, and transmits the random to the first communication device on the sub-band 4 with successful LBT. Access response message. If the LBT succeeds in multiple sub-bands, the second communication device may select one of the plurality of LBT successful sub-bands according to the selection mode one or the selection mode two or the selection mode three or the selection mode four. If the selection mode 3 is adopted, the subbands used for receiving the random access preamble are selected from the plurality of successful subbands of the LBT.
  • the random access response message includes allocating a time-frequency resource for transmitting the message three to the first communication device.
  • the first communication device After transmitting the random access preamble, the first communication device attempts to receive the random access response message according to the pre-configured random access response message receiving window on the subband 1, the subband 2, the subband 3, and the subband 4. If the communication device does not receive the random access response message in the receiving window, the random access procedure is re-initiated; if the first communication device receives the random access response message in the receiving window, the random access response message indicates The LBT is performed on the subband, and the message three is sent on the subband 4 of the LBT success.
  • the sub-band 4 may be selected from one of the plurality of LBT successful sub-bands according to the selection mode one or the selection mode two or the selection mode three or the selection mode four.
  • Message 3 carries the identification information of the first communication device.
  • the second communication device performs LBT on the sub-band 1, the sub-band 2, the sub-band 3, and the sub-band 4, and transmits a contention resolution message on the sub-band 1 with successful LBT, and the contention resolution message is carried. Identification information.
  • the first communication device detects whether the identity information carried by the contention resolution message is the same as the identity information carried by the message 3. If the information is the same, the contention is successful; if not, the contention is random. Failure failed.
  • FIG. 5b is a schematic diagram of the embodiment shown in FIG. 4 applied in an FDD scenario.
  • the first communication device and the second communication device divide all sub-bands into an uplink sub-band and a downlink sub-band by using an FDD method, and the first communication device and the second communication device use an uplink sub-band by using an FDD method [upstream sub-band 1, uplink sub-band Band 2] and the downlink subband [downstream subband 1, downlink subband 2] resources.
  • FDD method upstream sub-band 1, uplink sub-band Band 2
  • the second communication device performs LBT on the two downlink sub-bands, and broadcasts random access configuration information on the downlink sub-band 1 that is successfully LBT.
  • the first communication device When receiving the random access configuration information, the first communication device performs LBT on the two uplink sub-bands, and transmits the random access preamble to the second communication device on the uplink sub-band 2 that is successful on the LBT. If there are multiple uplink sub-carriers, the first communication device may select one uplink sub-band from the sub-bands successfully succeeded by the plurality of LBTs according to the selection mode one or the selection mode two or the selection mode four.
  • the second communication device When receiving the random access preamble, the second communication device performs LBT on the two downlink sub-bands, and sends a random access response message to the first communication device on the downlink sub-band 2 with successful LBT. If there are multiple downlink sub-bands, the second communication device may select one downlink sub-band from the sub-bands that are successfully downlinked by multiple LBTs according to the selection mode one or the selection mode two or the selection mode four.
  • the random access response message includes a time-frequency resource that can be used to transmit the message three in the K1 uplink sub-bands allocated for the first communication device, where K1 ⁇ M.
  • the first communication device After the first communication device sends the random access preamble, the first communication device does not receive the random access response message according to the pre-configured random access response message receiving window on the two downlink sub-bands. Re-initiating the random access procedure to the random access response message; if the first communication device receives the random access response message in the receiving window, performing LBT on the K1 uplink sub-band indicated by the random access response message And send message three on the successful uplink sub-band 1 of the LBT.
  • the uplink sub-band 1 may be an uplink sub-band selected by the first communication device according to the selection mode 1 or the selection mode 2 or the selection mode 4, from the uplink sub-bands in which the LBT succeeds in the K1 uplink sub-bands.
  • Message 3 carries the identification information of the first communication device.
  • the second communication device When receiving the message 3, the second communication device performs LBT on the two downlink sub-bands, and sends a contention resolution message on the downlink sub-band 2 that is successful on the LBT, and the contention resolution message carries the identification information.
  • the first communication device detects whether the identity information carried by the contention resolution message is the same as the identity information carried by the message 3. If the information is the same, the contention is successful; if not, the contention is random. Failure failed.
  • FIG. 4, FIG. 5a, and FIG. 5b are applied to the scenario of the unlicensed spectrum, and the LBT is performed.
  • the LBT may not be performed.
  • the first communication device may select one uplink sub-band from the M uplink sub-bands as the first uplink sub-band, and the second communication device may perform the N downlink sub-bands. Selecting one downlink subband as the second downlink subband in the band; for example, in FIG. 5a, the first communication device may select one subband from the 4 subbands to transmit the random access preamble, and the second communication device may select the subband from the 4 subbands. Select one to send a random access response message.
  • the first communications device may randomly select one uplink subband from multiple uplink subbands to send a random access preamble or message three, and the second communications device may randomly go from multiple downlinks.
  • a downlink subband is selected in the subband to send a random access response message or a contention resolution message.
  • the communication device can select one sub-band for transmitting the message according to the selection mode one or the selection mode two or the selection mode three or the selection mode four.
  • the communication device may select one of the plurality of sub-bands for transmitting the message in the following two options:
  • the communication device selects one of the plurality of sub-bands with the same probability. For example, four sub-bands, the communication device selects one sub-band from the four sub-bands with a probability of 1/4.
  • the communication device randomly selects one sub-band from the plurality of sub-bands.
  • the first communication device receives the random access configuration information, and learns that the random access preamble can be transmitted in four uplink CCs [CC1, CC2, CC3, CC4], and needs to be in four downlink CCs [CC1, CC2, CC3, CC4] listens, receives random access response messages, and competes for resolving messages.
  • the first communication device performs LBT on the four uplink CCs [CC1, CC2, CC3, CC4], and the LBT succeeds on CC1 and CC2, and selects the CC1 to send the random access preamble according to the selection mode, that is, 1/2 Probability selection CC1 sends a random access preamble.
  • the second communication device transmits a random access response message to the first communication device upon receiving the random access preamble.
  • the second communication device performs LBT on the four downlink CCs [CC1, CC2, CC3, CC4], and the LBT succeeds on CC3 and CC4, and selects the CC4 to send the random access response message according to the selection mode, and the random access response message
  • the uplink resource allocated for the first communication device is used to indicate that the first communication device can send the message three on 4 CCs [CC1, CC2, CC3, CC4].
  • the first communication device When the first communication device transmits the random access preamble, it attempts to receive the random access response message on the four downlink CCs [CC1, CC2, CC3, CC4], and receives the random access on the CC4. Response message.
  • the first communication device will perform LBT on the four uplink CCs [CC1, CC2, CC3, CC4].
  • the first communication device successfully succeeds in LBT on CC1 and CC3, and selects CC3 to send message three according to the selection mode.
  • the second communication device After receiving the message three on CC3, the second communication device performs LBT on the four downlink CCs [CC1, CC2, CC3, CC4], and the LBT succeeds on CC3, CC4, and selects CC4 to the first communication device. Send a contention resolution message.
  • the difference between the random access procedure based on the example 2 and the random access procedure based on the example 1 has the following points, and the rest of the same parts can be referred to the specific description of the random access procedure based on the example 1.
  • the selection mode is different, in the example 2, according to the selection mode 2, select a CC from the successful CC of the LBT;
  • the first communication device performs LBT on the three uplink CCs [CC1, CC2, CC4] when receiving the random access configuration information; the first communication device receives the random access response message.
  • LBT on three uplink CCs [CC1, CC2, CC4];
  • the second communication device performs LBT on the three downlink CCs [CC1, CC2, CC4] in the case of receiving the random access preamble; the second communication device receives the message three , performing LBT on 3 downlink CCs [CC1, CC2, CC4];
  • the message 3 sent by the first communication device cannot be received by the second communication device due to interference in the wireless channel, and the second communication device does not receive the message 3 on [CC1, CC2, CC4].
  • the second communication device performs LBT on [CC1, CC2, CC4], and selects CC4 to send a message triple retransmission scheduling message according to the second selection mode;
  • the first communication device after receiving the message triple retransmission scheduling message, the first communication device indicates that K2 is 4 because the message triple retransmission scheduling message indicates that the first communication device is in four uplink CCs [CC1, CC2, CC3, CC4] Perform LBT on it.
  • the random access procedure based on Example 3 is different from the example 2 random access procedure in that, in Example 3, after receiving the message triple retransmission scheduling message, the first communication apparatus indicates that K2 is 2 due to the message triple retransmission scheduling message. Therefore, the first communication device performs LBT on the two uplink CCs [CC2, CC4]. The rest of the same part can be referred to the specific description of the random access procedure based on Example 2.
  • the first communication device receives the random access configuration information from CC1 and CC3, and knows that the random access preamble can be transmitted in four uplink CCs [CC1, CC2, CC3, CC4], and needs to be in four downlink CCs [CC1] , CC2, CC3, CC4] listen, receive random access response messages, and compete for resolution messages.
  • the first communication device performs LBT on the four uplink CCs [CC1, CC2, CC3, CC4], and the LBT succeeds on CC1 and CC2, and selects CC1 to send the random access preamble according to the selection mode three, that is, CC1 simultaneously satisfies the selection of the LBT. This condition satisfies the condition that the random access configuration information is received on CC1.
  • the second communication device transmits a random access response message to the first communication device when CC1 receives the random access preamble.
  • the second communication device performs LBT on the four downlink CCs [CC1, CC2, CC3, CC4], the LBT succeeds on CC3 and CC4, and the LBT on the CC1 that receives the random access preamble from the second communication device is unsuccessful, so
  • the second communication device selects CC4 from CC3 and CC4 to send a random access response message according to the selection mode.
  • the uplink resource allocated to the first communication device in the random access response message is used to indicate that the first communication device can send on the four CCs. Message three.
  • the first communication device When the first communication device transmits the random access preamble, it attempts to receive the random access response message on the four downlink CCs [CC1, CC2, CC3, CC4], and receives the random access on the CC4. Response message.
  • the first communication device will perform LBT on the four uplink CCs [CC1, CC2, CC3, CC4].
  • the first communication device successfully succeeds in LBT on CC1 and CC3, and selects CC3 to send message three according to the selection mode.
  • the second communication device After receiving the message three on CC3, the second communication device performs LBT on the four downlink CCs [CC1, CC2, CC3, CC4], and the LBT succeeds on CC3 and CC4, and selects the CC3 direction according to the selection mode three.
  • the first communication device transmits a contention resolution message.
  • the first communication device selects one CC from the CCs with successful LBT according to the selection mode three, and sends a random access preamble on the CC, indicating that the first communication device is on the CC.
  • the channel is idle. Since the second communication device sends the random access configuration information through the CC, indicating that the second communication device is idle on the CC for a short period of time, when the first communication device sends the random access preamble, The communication device may be idle on the CC. Therefore, the first communication device selects the CC to send the random access preamble, which not only ensures that the first communication device can successfully send the random access preamble, but also improves the second communication. The probability that the device receives the random access preamble.
  • the random access procedure based on Example 5 is different from the random access procedure based on Example 1 in that Example 5 is applied to the scenario of FDD, and Example 1 is applied to the scenario of TDD.
  • the random access procedure based on Example 5 can be seen in the description of Figure 5b.
  • the random access procedure based on Example 6 is different from the random access procedure based on Example 5 in that the example 6 adopts the selection mode 2, and the example 5 adopts the selection mode one. Also, there is only one uplink CC [upstream CC1] in the example 6.
  • the random access procedure based on Example 7 differs from the random access procedure based on Example 1 in that Example 7 is applied to a scenario of licensed spectrum, and Example 1 is applied to a scenario of an unlicensed spectrum.
  • the first communication device selects an uplink CC to send a random access preamble from the four uplink CCs [CC1, CC2, CC3, CC4] according to the selection mode, and selects one from the four uplink CCs [CC1 according to the selection manner.
  • CC2, CC3, CC4 select one uplink CC to send message three; the second communication device selects one downlink CC to send a random access response message according to the selection mode of one from four downlink CCs [CC1, CC2, CC3, CC4], according to The selection method 1 'selects one downlink CC to send a contention resolution message from 4 downlink CCs [CC1, CC2, CC3, CC4].
  • the first communication device and the second communication device do not perform LBT in the random access procedure based on Example 7.
  • the message is more important than the random access response message or the contention resolution message, and the second communication device may select the remaining subbands.
  • One of the subbands sends a random access response message or a contention resolution message.
  • Example 8 may have two first communication devices whose random access procedure is as follows:
  • the first communication device 1 and the first communication device 2 receive the random access configuration information, and both know that the random access preamble can be transmitted in two uplink CCs [uplink CC1, uplink CC2], and need to be in two downlink CCs [ The downlink CC1 and the downlink CC2] listen and receive the random access response message, and the contention resolution message.
  • the first communication device 1 selects the uplink CC1 to transmit the random access preamble according to the selection mode 1 on the two uplink CCs [uplink CC1, uplink CC2], and the first communication device 2 also selects the uplink CC1 according to the selection mode. Send a random access preamble.
  • the first communication device 1 and the first communication device 2 use the same time-frequency resource on the same uplink CC1 (for example, the time-frequency resource can represent (x2, y3), x2 represents the time domain resource location, and y3 represents the frequency domain resource location)
  • a random access preamble the preamble sequence of the random access preamble is R3.
  • there are multiple time-frequency resources for random access preamble on one CC for example, (x1, y1), (x2, y1), etc.), and there are multiple preamble sequences (for example, R1, R2, etc.);
  • a communication device randomly selects resources and preamble sequences, and may choose the same.
  • the second communication device After the second communication device receives the preamble sequence R3 on the (x2, y3) time-frequency resource on the uplink CC1, the second communication device transmits a random access response message. Both the first communication device 1 and the first communication device 2 receive the random access response message.
  • the second communication device When the first communication device 1 and the first communication device 2 simultaneously transmit the preamble sequence R3 using the (x2, y3) time-frequency resources on the CC1, the second communication device is on the (x2, y3) time-frequency resource on the uplink CC1.
  • the code is from a first communication device.
  • the second communication device sends a random access response message to respond to the first communication device. It can be understood that the random access response message sent by the second communication device is used to respond to the (x2, y3) time-frequency resource on the uplink CC1.
  • the preamble sequence R3 is received.
  • the first communication device 1 and the first communication device 2 both consider that the random access preamble is transmitted for itself according to the random access response message (since the first communication device 1 and the first communication device 2 are on the uplink CC1 ( X2, y3)
  • the preamble sequence R3 is transmitted on the time-frequency resource, and the random access response message is used to receive the preamble sequence R3) on the (x2, y3) time-frequency resource on the uplink CC1, so the first communication device Both the first communication device 2 and the first communication device 2 transmit the message three according to the information indicated by the random access response message.
  • the first communication device 1 selects one of the uplink CC1 transmission messages 3 according to the selection mode, and the first communication device 2 selects the uplink CC2 transmission message three according to the selection mode (which happens to be the first communication device 1 and the first A communication device 2 selects a different uplink CC to send a message 3).
  • the second communication device After the second communication device receives two messages 3 on the uplink CC1 and the uplink CC2, it is determined that two first communication devices transmit the same preamble sequence on the same random access preamble time-frequency resource. . Therefore, the second communication device needs to indicate the contention resolution information of the two first communication devices in the contention resolution message, and assign the two first communication devices different C-RNTIs (normally, a first communication is indicated in the contention resolution message)
  • the identification information of the device, and the TC-RNTI in the random access response message is upgraded to C-RNTI). That is, the contention resolution message includes at least two C-RNTIs, wherein each of the at least two C-RNTIs is an identifier of a first communication device.
  • the second communication device learns that there is no higher priority service on the two downlink CCs, and selects the downlink CC2 with the same probability on the two downlink CCs to send the same contention resolution message to the first communication device 1 and the first communication device 2,
  • the contention resolution message indicates contention resolution information for the two first communication devices and assigns different C-RNTIs to the two first communication devices.
  • the plurality of first communications devices use the same time-frequency resource to send the same random access preamble to the second communications device, and both consider that the random access response message is a random access sent for itself.
  • the message is sent using the uplink resource indicated by the random access response message.
  • the plurality of first communication devices use the same subband to collide, and the second communication The device can only successfully receive one (non-collision is not serious) or zero message three.
  • the second communication device allocates K1 uplink sub-band transmission messages 3 for the first communication device, and the sub-bands occupied by the plurality of first communication devices to send the message 3 are separable, thereby The second communication device can successfully receive multiple messages three, thereby improving the efficiency of the random access process.
  • the secondary uplink CC can be a CC pair with the downlink CC1
  • the high-frequency uplink CC can be a CC pair with the downlink CC1.
  • the first communication device receives the random access configuration information, and learns that the random access preamble can be transmitted on the two uplink CCs, and the two downlink CCs need to be monitored and received, and the random access response message is received, and the contention resolution message is received.
  • the first communication device selects the auxiliary uplink CC or the high frequency uplink CC according to the channel quality, that is, selects the high frequency uplink CC when the channel quality is good, and selects the auxiliary uplink CC when the channel quality is poor. It is assumed that the first communication device selects the high frequency uplink CC to transmit the random access preamble.
  • the second communication device transmits a random access response message to the first communication device upon receiving the random access preamble.
  • one downlink CC (downlink CC1) is served with higher priority (highly reliable low latency service, emergency system broadcast information) And the second communication device sends a random access response message on the remaining downlink CC2, and the uplink resource allocated by the first communication device in the random access response message is used to indicate that the first communication device sends on the high frequency uplink CC.
  • Message 3 The random access preamble and the message 3 in the SUL scenario use the same type of uplink CC, that is, the random access preamble and the message three use the same or different high frequency uplink CC, or the random access preamble and the message three are used.
  • the first communication device selects the high frequency uplink CC to send the random access preamble and the message three; if the channel quality is not good, the first communication device selects The secondary uplink CC sends a random access preamble and a message (3).
  • the first communication device transmits the random access preamble, it attempts to receive the random access response message on the two downlink CCs, and receives the random access response message on the downlink CC2. Next, the first communication device transmits a message three on the high frequency uplink CC.
  • the second communication device After receiving the message 3 on the high frequency uplink CC, the second communication device does not have a higher priority service on the two downlink CCs, and selects the downlink CC1 to the first communication device with the same probability on the two downlink CCs. Send a contention resolution message.
  • the above nine examples are described by using a carrier aggregation scenario as an example.
  • the above nine examples may also be applied to a scenario in which multiple BWPs exist in one cell in a 5G NR system.
  • FIG. 6 is a schematic diagram of a logical structure of a first communications apparatus provided by an embodiment of the present application.
  • the first communications apparatus 60 may include a sending unit 601 and a receiving unit 602.
  • the sending unit 601 is configured to send, by using the first uplink subband of the M uplink subbands of the multiple subband system, a random access preamble to the second communications apparatus;
  • the receiving unit 602 is configured to receive, by using the second downlink subband of the N downlink subbands of the multiple subband system, a random access response message, where M and N are positive integers, and M>1 or N>1;
  • the sending unit 601 is further configured to send a message 3 to the second communications device by using a third uplink sub-band of the M uplink sub-bands, where the message 3 includes the identifier information of the first communications device;
  • the receiving unit 602 is further configured to receive a contention resolution message from the second communications device by using the fourth downlink subband of the N downlink subbands;
  • the downlink sub-band corresponding to the first uplink sub-band is the first downlink sub-band
  • the uplink sub-band corresponding to the second downlink sub-band is the second uplink sub-band
  • the downlink sub-band corresponding to the third uplink sub-band is the third.
  • the downlink subband, the uplink subband corresponding to the fourth downlink subband is the fourth uplink subband;
  • the first uplink subband, the third uplink subband, the first downlink subband, the second downlink subband, and the fourth downlink subband satisfy at least one of the following conditions:
  • the third uplink subband is different from the first uplink subband.
  • the second downlink subband, at least one of the fourth downlink subbands is different from the first downlink subband.
  • the sending unit 802 is further configured to receive random access configuration information from the second communications apparatus, where the random access configuration information is used to indicate M1 uplink subbands and N in the M uplink subbands.
  • the M1 uplink subbands are the candidate uplink subbands for the first communication device to send the random access preamble
  • the candidate uplink subband refers to the uplink subband set that the first communication device sends the random access preamble to select
  • the uplink subband set is available for the second communication device to detect, receive the random access preamble and the message 3. That is, the first communication device may select one uplink subband from the candidate uplink subband to transmit a random access preamble, and the second communication device may detect and receive the random access response message and the contention resolution message on all candidate uplink subbands.
  • the N1 downlink subbands are used to send the random downlink response message and the candidate downlink subband of the contention resolution message, and the candidate downlink subband refers to the second communication device sending the random access response message and the contention resolution message.
  • the downlink subband set is available, and the downlink subband set is available for the first communications device to detect, receive, and receive a random access response message and a contention resolution message. That is, the second communication device may select one downlink sub-band from the candidate downlink sub-band to send a random access response message, select one downlink sub-band from the candidate downlink sub-band to send a contention resolution message, and the first communication device may be in all candidate downlinks.
  • the random access preamble and message three are detected and received on the subband.
  • the random access response message is used to indicate uplink resource allocation information of K1 uplink subbands in the M uplink subbands, and the third uplink subband is one uplink of the K1 uplink subbands. Subband.
  • the receiving unit 602 is further configured to receive a message triple retransmission scheduling message from the second communications apparatus, where the message triple retransmission scheduling message is used to indicate uplink of the K2 uplink subbands in the M uplink subbands.
  • Resource allocation information
  • the sending unit 601 is further configured to resend the message three to the second communications device by using one of the K2 uplink subbands. Among them, K1 ⁇ K2.
  • the sending unit 601 is configured to perform step S401 and step S403 in the embodiment shown in FIG. 4, and the receiving unit 602 is configured to execute step S402 and step S404 in the embodiment shown in FIG.
  • the first communication device 60 shown in FIG. 6 further includes a processing unit 603, configured to select a first uplink subband from the M or M1 uplink subbands, so that the sending unit 601 passes the first uplink subband to the second communication device. Send a random access preamble.
  • the processing unit 603 is further configured to select a third uplink subband from the K1 uplink subbands, so that the sending unit 601 sends the message III to the second communications device by using the third uplink subband.
  • FIG. 7 is a simplified schematic diagram of a physical structure of a first communications apparatus provided by an embodiment of the present application.
  • the first communications apparatus 70 includes a transceiver 701 and a memory 703, and further includes a processor 702.
  • the transceiver 701, the processor 702, and the memory 703 may be connected to one another via a bus 704, or may be connected in other manners.
  • the related functions implemented by the transmitting unit 601 and the receiving unit 602 shown in FIG. 6 can be implemented by the transceiver 701.
  • the memory 703 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), or A compact disc read-only memory (CD-ROM) for storing related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • CD-ROM compact disc read-only memory
  • the transceiver 701 is configured to transmit data and/or signaling, as well as receive data and/or signaling.
  • the second communication device is in communication, the random access preamble and the message three are sent to the second communication device, and the random access response message and the contention resolution message are received from the second communication device, that is, the execution map is executed. Step S401 to step S404 in the illustrated embodiment.
  • the processor 702 may include one or more processors, for example, including one or more central processing units (CPUs).
  • the processor 702 may be a single core CPU, and It can be a multi-core CPU.
  • the processor 702 is configured to select the first uplink subband and the third uplink subband from the M or M1 uplink subbands, so that the transceiver 701 passes the first uplink subband to the second communication.
  • the device sends a random access preamble, and sends a message three to the second communication device through the third uplink subband.
  • the memory 703 is used to store program codes and data of the first communication device 70.
  • Figure 7 only shows a simplified design of the first communication device.
  • the first communication device may also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, communication units, etc., and all devices that can implement the present application are Within the scope of protection of this application.
  • FIG. 8 is a schematic diagram showing the logical structure of a second communication device provided by an embodiment of the present application.
  • the second communication device 80 may include a receiving unit 801 and a sending unit 802.
  • the receiving unit 801 is configured to receive, by using the first uplink subband of the M uplink subbands of the multiple subband system, the random access preamble from the first communications device;
  • the sending unit 802 is configured to send, by using the second downlink subband of the N downlink subbands of the multiple subband system, a random access response message, where M and N are positive integers, and M>1 or N>1;
  • the receiving unit 801 is further configured to receive, by using a third uplink sub-band of the M uplink sub-bands, the message three from the first communications device, where the message three includes the identifier information of the first communications device;
  • the sending unit 802 is further configured to send a contention resolution message to the first communications device by using the fourth downlink subband of the N downlink subbands;
  • the downlink sub-band corresponding to the first uplink sub-band is the first downlink sub-band
  • the uplink sub-band corresponding to the second downlink sub-band is the second uplink sub-band
  • the downlink sub-band corresponding to the third uplink sub-band is the third.
  • the downlink subband, the uplink subband corresponding to the fourth downlink subband is the fourth uplink subband;
  • the first uplink subband, the third uplink subband, the first downlink subband, the second downlink subband, and the fourth downlink subband satisfy at least one of the following conditions:
  • the third uplink subband is different from the first uplink subband.
  • the second downlink subband, at least one of the fourth downlink subbands is different from the first downlink subband.
  • the sending unit 802 is further configured to send random access configuration information to the first communications device, where the random access configuration information is used to indicate M1 uplink subbands and N in the M uplink subbands.
  • the M1 uplink subbands are the candidate uplink subbands for the first communication device to send the random access preamble
  • the candidate uplink subband refers to the uplink subband set that the first communication device sends the random access preamble to select
  • the uplink subband set is available for the second communication device to detect, receive the random access preamble and the message 3. That is, the first communication device may select one uplink subband from the candidate uplink subband to transmit a random access preamble, and the second communication device may detect and receive the random access response message and the contention resolution message on all candidate uplink subbands.
  • the N1 downlink subbands are used to send the random downlink response message and the candidate downlink subband of the contention resolution message, and the candidate downlink subband refers to the second communication device sending the random access response message and the contention resolution message.
  • the downlink subband set is available, and the downlink subband set is available for the first communications device to detect, receive, and receive a random access response message and a contention resolution message. That is, the second communication device may select one downlink sub-band from the candidate downlink sub-band to send a random access response message, select one downlink sub-band from the candidate downlink sub-band to send a contention resolution message, and the first communication device may be in all candidate downlinks.
  • the random access preamble and message three are detected and received on the subband.
  • the random access response message is used to indicate uplink resource allocation information of K1 uplink subbands in the M uplink subbands, and the third uplink subband is one uplink of the K1 uplink subbands. Subband.
  • the sending unit 802 is further configured to send a message triple retransmission scheduling message to the first communication device, where the message triple retransmission scheduling message is used. And indicating uplink resource allocation information of K2 uplink subbands in the M uplink subbands;
  • the receiving unit 801 is further configured to receive a retransmission of the message three from the first communications device by using one of the K2 uplink subbands. Among them, K1 ⁇ K2.
  • the receiving unit 801 is configured to perform step S401 and step S403 in the embodiment shown in FIG. 4, and the sending unit 802 is configured to perform step S402 and step S404 in the embodiment shown in FIG.
  • the second communication device 80 shown in FIG. 8 further includes a processing unit 803, configured to select a second downlink subband from the N or N1 downlink subbands, so that the sending unit 802 passes the second downlink subband to the first communication device. Send a random access response message.
  • the processing unit 603 is further configured to select a fourth downlink subband from the N or N1 downlink subbands, so that the sending unit 802 sends a contention resolution message to the first communications device by using the fourth downlink subband.
  • FIG. 9 is a simplified schematic diagram of a physical structure of a second communications apparatus provided by an embodiment of the present application.
  • the second communications apparatus 90 includes a transceiver 901 and a memory 903, and further includes a processor 902.
  • the transceiver 901, the processor 902, and the memory 903 may be connected to one another via a bus 904, or may be connected in other manners.
  • the related functions implemented by the receiving unit 801 and the transmitting unit 802 shown in FIG. 8 can be implemented by the transceiver 901.
  • the memory 903 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), or A compact disc read-only memory (CD-ROM) for storing related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • CD-ROM compact disc read-only memory
  • the transceiver 901 is configured to transmit data and/or signaling, as well as receive data and/or signaling.
  • the first communication device is in communication
  • the random access preamble and the message three are received from the first communication device
  • the random access response message and the contention resolution message are sent to the second communication device, that is, the execution map is executed. Step S401 to step S404 in the illustrated embodiment.
  • the processor 902 may include one or more processors, for example, including one or more central processing units (CPUs).
  • the processor 902 may be a single core CPU, It can be a multi-core CPU.
  • the processor 902 is configured to select the second downlink subband and the fourth downlink subband from the N or N1 downlink subbands, so that the transceiver 901 passes the second downlink subband to the first communication.
  • the device sends a random access response message, and sends a contention resolution message to the first communication device through the fourth downlink subband.
  • the memory 903 is used to store program codes and data of the second communication device 90.
  • Figure 9 only shows a simplified design of the second communication device.
  • the second communication device may also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, communication units, etc., and all devices that can implement the present application are Within the scope of protection of this application.
  • the embodiment of the present application further provides a communication system including at least one first communication device and at least one second communication device.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.
  • yet another embodiment of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another embodiment of the present application also provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种随机接入方法及其装置,其中方法包括如下步骤:第一通信装置通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随机接入前导码;第一通信装置通过多子带系统的N个下行子带中的第二下行子带从第二通信装置接收随机接入响应消息,其中,M和N为正整数,且M>1或N>1;第一通信装置通过M个上行子带中的第三上行子带向第二通信装置发送消息三,消息三包括第一通信装置的标识信息;第一通信装置通过N个下行子带中的第四下行子带从第二通信装置接收竞争解决消息。采用本申请实施例,可以缩短随机接入过程耗费的时间,进而可以提高随机接入过程的效率。

Description

一种随机接入方法及其装置 技术领域
本申请实施例涉及通信技术领域,具体涉及一种随机接入方法及其装置。
背景技术
终端设备(例如用户设备(userequipment,UE))通过小区搜索过程与小区取得下行同步,以接收下行数据。终端设备通过随机接入过程与小区建立连接并获得上行同步,以进行上行传输。
随机接入过程可包括如下步骤:a,基站广播随机接入配置信息,包括随机接入信道占用的时频资源、使用的随机接入前导码等。b,终端设备接收这个配置参数,当需要执行初始随机接入过程时,选择并发送随机接入前导码。c,然后基站检测可能的随机接入前导码,当基站检测到一个或多个随机接入前导码后,发送随机接入响应消息。d,然后终端设备在预先配置的随机接入响应消息接收窗口内,尝试接收基站向其发送的随机接入响应消息,如果终端设备未能收到基站发送给它的随机接入响应消息,终端设备重新发起随机接入过程;如果终端设备收到基站发送给它的随机接入响应消息,终端设备在分配的上行资源上发送消息三,其中消息三包括终端设备的标识信息。e,基站接收到终端设备的消息三后,向终端设备发送竞争解决消息,其中竞争解决消息包括终端设备的标识信息。终端设备在接收到竞争解决消息后,通过检测竞争解决消息携带的标识信息与消息三携带的标识信息是否相同,来确定随机接入过程是否成功。
在通信系统中,上述随机接入过程中的各个消息所需使用的信道,被更高优先级的业务或者其它系统占用或干扰的情况下,会减少各个消息的发送时机,进而导致随机接入过程耗费较长的时间。
发明内容
本申请实施例所要解决的技术问题在于,提供一种随机接入方法及其装置,可以缩短随机接入过程耗费的时间,进而可以提高随机接入过程的效率。
本申请实施例第一方面提供一种随机接入方法,包括:
第一通信装置通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随机接入前导码;
第一通信装置通过多子带系统的N个下行子带中的第二下行子带从第二通信装置接收随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
第一通信装置通过M个上行子带中的第三上行子带向第二通信装置发送消息三,消息三包括第一通信装置的标识信息;
第一通信装置通过N个下行子带中的第四下行子带从第二通信装置接收竞争解决消息;
其中,第一上行子带对应的下行子带为第一下行子带,第二下行子带对应的上行子带为第二上行子带,第三上行子带对应的下行子带为第三下行子带,第四下行子带对应的上行子带为第四上行子带;
第一上行子带,第三上行子带,第一下行子带,第二下行子带和第四下行子带至少满足如下条件之一:
第三上行子带与第一上行子带不相同;或,
第二下行子带,第四下行子带中至少一个与第一下行子带不相同。
本申请实施例第二方面提供一种第一通信装置,包括用于执行以上第一方面各个步骤的单元或手段(means)。
本申请实施例第三方面提供一种第一通信装置,包括至少一个处理元件和至少一个存储元件,其中至少一个存储元件用于存储程序和数据,至少一个处理元件用于执行本申请实施例第一方面中提供的方法。
本申请实施例第四方面提供一种第一通信装置,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请实施例第五方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请实施例第六方面提供一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
可见,在以上第一至第六方面,通过将随机接入过程中的各个上行消息、各个下行消息安排在多个子带上,可以缩短随机接入过程耗费的时间,进而可以提高随机接入过程的效率。
将第一方面提供的方法应用在免授权频谱的多子带系统中,多个子带上先听后说的成功率大于单一子带上先听后说的成功率,进而可以缩短随机接入过程耗费的时间,可以提高随机接入过程的效率。
将第一方面提供的方法应用在授权频谱的多子带系统中,在多个第一通信装置使用相同的时频资源发送相同的随机接入前导码的情况下,可以提高随机接入过程的效率。
结合第一至第六方面,在一种可能实现的方式中,第一通信装置通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随机接入前导码之前,从第二通信装置接收随机接入配置信息,该随机接入配置信息用于指示M个上行子带中的M1个上行子带以及N个下行子带中的N1个下行子带。其中,M1个上行子带包括用于发送随机接入前导码的第一上行子带,N1个下行子带包括用于发送随机接入响应消息的第二下行子带和用于发送竞争解决消息的第四下行子带。通过随机接入配置信息的指示,使得随机接入配置更加灵活。
结合第一至第六方面,在一种可能实现的方式中,M1个上行子带为第一通信装置向第二通信装置发送随机接入前导码的候选上行子带,候选上行子带指的是第一通信装置发送随机接入前导码可选择的上行子带集合,且该上行子带集合可供第二通信装置检测、接收随机接入前导码和消息三。第一通信装置可从候选上行子带中选择一个上行子带发送随机接入前导码,并且第二通信装置可在所有候选上行子带上检测、接收随机接入前导码和消息三。
N1个下行子带为第二通信装置向第一通信装置发送随机接入响应消息和竞争解决消息的候选下行子带,候选下行子带指的是第二通信装置发送随机接入响应消息和竞争解决 消息可选择的下行子带集合,且该下行子带集合可供第一通信装置检测、接收随机接入响应消息和竞争解决消息。即第二通信装置可从候选下行子带中选择一个下行子带发送随机接入响应消息,从候选下行子带中选择一个下行子带发送竞争解决消息,并且第一通信装置可在所有候选下行子带上检测和接收随机接入响应消息和竞争解决消息。
结合第一至第六方面,在一种可能实现的方式中,随机接入响应消息用于指示M个上行子带中的K1个上行子带的上行资源分配信息,即指示哪些上行子带可用于发送消息三。第一通信装置可以从K1个上行子带中选择出第三上行子带,使用第三上行子带发送消息三。
第二通信装置可以根据各个下行子带上的信道被检测为空闲及繁忙的比例,通过随机接入响应消息调度第一通信装置可以在K1上行子带上发送消息三,在M数值较大的情况下,可以降低第二通信装置的处理复杂度。
结合第一至第六方面,在一种可能实现的方式中,在第二通信装置未接收到消息三的情况下,第一通信装置从第二通信装置接收消息三重传调度消息,该消息三重传调度消息用于指示M个上行子带中的K2个上行子带的上行资源分配信息;第一通信装置通过所述K2个上行子带中的一个上行子带向所述第二通信装置重新发送所述消息三。第二通信装置通过消息三重传调度消息,可以调度M个上行子带中的K2个上行子带给第一通信装置重新发送消息三,以便提高第二通信装置成功接收消息三的概率。
结合第一至第六方面,在一种可能实现的方式中,K1≤K2,第二通信装置可通过增加调度消息三传输的上行子带的个数,来提高多个上行子带上先听后说成功率,进而提高消息三重传成功的概率。
结合第一至第六方面,在一种可能实现的方式中,第一通信装置对M个或M1个上行子带进行先听后说,以相同概率从先听后说成功的上行子带中选择一个上行子带,将其确定为第一上行子带,实现简单。同理,第一通信装置可按照该方式从K1个上行子带中确定第三上行子带。
结合第一至第六方面,在一种可能实现的方式中,第一通信装置对M个或M1个上行子带进行先听后说,从先听后说成功的上行子带中选择能量检测值最小的上行子带,将其确定为第一上行子带,使得随机接入前导码在第一上行子带上传输时受到的干扰较小。同理,第一通信装置可按照该方式从K1个上行子带中确定第三上行子带。
本申请实施例第七方面提供一种随机接入方法,包括:
第二通信装置通过多子带系统的M个上行子带中的第一上行子带从第一通信装置接收随机接入前导码;
第二通信装置通过多子带系统的N个下行子带中的第二下行子带向第一通信装置发送随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
第二通信装置通过M个上行子带中的第三上行子带从第一通信装置接收消息三,消息三包括第一通信装置的标识信息;
第二通信装置通过N个下行子带中的第四下行子带向第一通信装置发送竞争解决消息;
其中,第一上行子带对应的下行子带为第一下行子带,第二下行子带对应的上行子带 为第二上行子带,第三上行子带对应的下行子带为第三下行子带,第四下行子带对应的上行子带为第四上行子带;
第一上行子带,第三上行子带,第一下行子带,第二下行子带和第四下行子带至少满足如下条件之一:
第三上行子带与第一上行子带不相同;或,
第二下行子带,第四下行子带中至少一个与第一下行子带不相同。
本申请实施例第八方面提供一种第二通信装置,包括用于执行以上第七方面各个步骤的单元或手段(means)。
本申请实施例第九方面提供一种第二通信装置,包括至少一个处理元件和至少一个存储元件,其中至少一个存储元件用于存储程序和数据,至少一个处理元件用于执行本申请实施例第七方面中提供的方法。
本申请实施例第十方面提供一种第二通信装置,包括用于执行以上第七方面的方法的至少一个处理元件(或芯片)。
本申请实施例第十一方面提供一种程序,该程序在被处理器执行时用于执行以上第七方面的方法。
本申请实施例第十二方面提供一种程序产品,例如计算机可读存储介质,包括第十一方面的程序。
可见,在以上第七至第十二方面,通过将随机接入过程中的各个上行消息、各个下行消息安排在多个子带上,可以缩短随机接入过程耗费的时间,进而可以提高随机接入过程的效率。
将第七方面提供的方法应用在免授权频谱的多子带系统中,多个子带上先听后说的成功率大于单一子带上先听后说的成功率,进而可以缩短随机接入过程耗费的时间,可以提高随机接入过程的效率。
将第七方面提供的方法应用在授权频谱的多子带系统中,在多个第一通信装置使用相同的时频资源发送相同的随机接入前导码的情况下,可以提高随机接入过程的效率。
结合第七至第十二方面,在一种可能实现的方式中,第二通信装置通过多子带系统的M个上行子带中的第一上行子带从第一通信装置接收随机接入前导码之前,向所述第一通信装置发送随机接入配置信息。随机接入配置信息的描述可参见第一方面中的描述,在此不再赘述。
结合第七至第十二方面,在一种可能实现的方式中,若第二通信装置未从第一通信装置接收到消息三,即第二通信装置未成功译码消息三,向第一通信装置发送消息三重传调度消息,消息三重传调度消息用于指示M个上行子带中的K2个上行子带的上行资源分配信息,即为第一通信装置分配K2个上行子带用于重新发送消息三。第二通信装置通过K2个上行子带中的一个上行子带从第一通信装置接收消息三的重传,即接收第一通信装置重新发送的消息三。第二通信装置通过消息三重传调度消息,以便提高成功接收消息三的概率。
结合第七至第十二方面,在一种可能实现的方式中,K1≤K2,第二通信装置可通过增加调度消息三传输的上行子带的个数,来提高多个上行子带上先听后说成功率,进行提高 消息三重传成功的概率。
结合第七至第十二方面,在一种可能实现的方式中,第二通信装置对N个或N1个下行子带进行先听后说,以相同概率从先听后说成功的下行子带中选择一个下行子带,将其确定为第二下行子带,实现简单。同理,第二通信装置可按照该方式从N个下行子带中确定第四下行子带。
结合第七至第十二方面,在一种可能实现的方式中,第二通信装置对N个或N1个下行子带进行先听后说,从先听后说成功的下行子带中选择能量检测值最小的下行子带,将其确定为第二下行子带,使得随机接入响应消息在第二下行子带上传输时受到的干扰较小。同理,第二通信装置可按照该方式从N个下行子带中确定第四下行子带。
结合第七至第十二方面,在一种可能实现的方式中,在至少两个第一通信装置使用相同的时频资源向第二通信装置发送相同的随机接入前导码,且第二通信装置接收到至少两个消息三的情况下,第二通信装置向每个第一通信装置发送竞争解决消息,该竞争解决消息包括至少两个标识信息,并且任意两个标识信息不相同。例如,存在两个第一通信装置使用相同的时频资源向第二通信装置发送相同的随机接入前导码,且第二通信装置接收到两个消息三的情况下,第二通信装置向第一通信装置发送的竞争解决消息中包括两个不相同的标识信息。这样在该情况下,通过第一通信装置发送消息三占用不同的子带,将不同的第一通信装置进行区分,以提高随机接入过程的效率。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为先听后说的原理示意图;
图2为载波聚合示意图;
图3为基于竞争的随机接入过程的示意图;
图4为本申请实施例提供的一种随机接入方法的流程示意图;
图5a为图4所示实施例应用在时分双工场景下的示意图;
图5b为图4所示实施例应用在频分双工场景下的示意图;
图6为本申请实施例提供的第一通信装置的逻辑结构示意图;
图7为本申请实施例提供的第一通信装置的实体结构简化示意图;
图8为本申请实施例提供的第二通信装置的逻辑结构示意图;
图9为本申请实施例提供的第二通信装置的实体结构简化示意图。
具体实施方式
下面将对本申请实施例涉及的名词或术语进行介绍:
(1)先听后说(listen before talk,LBT)是指需要传输数据的装置在某一无线载波上发送数据之前需要对该无线载波的无线环境进行检测,以确定是否有其它装置正在传输数据。当检测到该无线载波上的能量大于门限时,认为有其它装置正在传输数据,该装置将避让一段时间后再尝试发送数据;当检测到该无线载波上的能量小于门限时,认为该无线载波处于空闲状态,该装置在该无线载波上发送数据,可参见图1所示的先听后说的原理 示意图。
若需要传输数据的装置检测到某一无线载波上的能量小于门限时,可认为该装置在该无线载波上LBT成功;反之,若该装置检测到该无线载波上的能量大于门限时,可认为该装置在该无线载波上LBT失败。
LBT应用于免授权频谱的场景,而对应授权频谱的场景,则可以不进行LBT。
(2)第一通信装置,可以为终端设备或终端设备的处理芯片/元件等。其中,终端设备可以为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
(3)第二通信装置,可以为接入网设备或接入网设备的处理芯片/元件等。其中,接入网是网络中将终端设备接入到无线网络的部分。接入网设备为无线接入网中的设备,又可以称为基站。目前,一些接入网设备的举例为:5G系统中的基站、传输接收点(transmission reception point,TRP)、演进型节点B(evolvedNode B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolvedNodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
基站向UE发送的消息称为下行消息,UE向基站发送的消息称为上行消息。应用在本申请实施例中,第一通信装置向第二通信装置发送的消息为上行消息,第二通信装置向第一通信装置发送的消息为下行消息。
(4)多子带系统,是指通信装置(例如UE、基站等)的工作带宽被分成了连续的多个子带或者不连续的多个子带,通信装置可以使用一个或多个子带与对应的通信装置进行通信,例如UE可以使用一个或多个子带与基站进行通信。本申请实施例提供的随机接入方法可以应用于多子带系统中。
多子带系统可以是载波聚合(carrier aggregation,CA)系统,子带即为成员载波(component carrier,CC)。多子带系统也可以是第五代移动通信(5 th-generation,5G)新无线(new radio,NR)系统中一个小区中的多个带宽部分(bandwidth part,BWP),子带即为BWP。
本申请实施例将多子带系统中,一个上行子带与一个下行子带组成的,能够为终端设备提供通信服务的小区称为子带对。若与上行子带1组成子带对的下行子带为子带1,则可以称上行子带1对应的下行子带为下行子带1;若与下行子带2组成子带对的上行子带为上行子带2,则可以称下行子带2对应的上行子带为上行子带2。子带对可以是CC对,也可以是BWP对。
以CC为例,一个CC对由一个上行CC和一个下行CC组成,该CC对为一个能够为终端设备提供通信服务的小区。若与上行CC1组成CC对的下行CC为下行CC1,则可以称上行CC1对应的下行CC为下行CC1;若与下行CC2组成CC对的上行CC为上行CC2,则可以称下行CC2对应的上行CC为上行CC2。
其中,载波聚合技术可以将多个CC聚合在一起,实现比单一单元载波更大的传输带宽,可以有效提高上下行传输速率。可参见图2所示的载波聚合示意图。
图2所示4个CC中的每个CC可以时分双工(time division duplexing,TDD)的方式用于上行或下行传输。图2所示的4个CC也可以频分双工(frequency division duplexing,FDD)的方式用于上行或下行传输,例如CC1和CC2用于上行传输,CC3和CC4用于下行传输。
目前,长期演进(long term evolution,LTE)系统的载波聚合场景中,多个CC中,只有一个CC(应用于TDD场景)或者一个CC对(应用于FDD场景)作为UE的主CC或主CC对,UE只能在主CC或主CC对上发起随机接入。
例如,图2所示的4个CC采用TDD方式供上下行传输时,其中的一个CC(例如CC1)作为UE的主CC,那么UE只能在CC1上发送随机接入的各个上行消息,基站也只能在CC1上向UE发送随机接入的各个下行消息。
再例如,图2所示的4个CC采用FDD方式供上下行传输时,假设CC1和CC2用于上行传输,CC3和CC4用于下行传输,基站会为UE配置一个CC对(例如{CC1,CC3})作为UE的主CC对,那么UE只能在CC1上发送随机接入的各个上行消息,基站也只能在CC3上向UE发送随机接入的各个下行消息。
目前,NR系统的载波聚合场景与LTE系统的载波聚合场景相似,UE只能在主CC上或主CC对上发起随机接入。NR系统的载波聚合场景与LTE系统的载波聚合场景不同之处在于,NR中可以按照UE在小区中的信道条件为UE分配两个主CC对:在上行信道质量较好(路径损耗低)的情况下,为UE分配一个主CC对{CC01,CC01’};在上行信道质量较差(路径损耗高)的情况下,为UE分配另一个主CC对{CC01,CC02}。两个主CC对是NR系统中辅助上行载波(supplementary uplink,SUL)的一个主要特性。
其中,CC01为下行CC,CC01’和CC02为上行CC,TDD场景中CC01和CC01’可以为相同CC,而FDD场景中CC01和CC01’为不同CC。按照UE信道质量给UE分配两种主CC对的原因是因为高频频段(例如3.5GHz频段)的信号的路径损耗大于低频频段(例如1.8GHz频段)的路径损耗,基站最大能够支持的发送功率较高,能够弥补随机接入过程中高频频段较大的路径损耗,而UE能够支持的发送功率较低,不能够弥补随机接入过程中高频频段较大的路径损耗,因此上行信道质量不好(路径损耗高)的情况下,选取第二种主CC对进行初始随机接入,从而降低路径损耗对初始随机接入的影响。
SUL场景,即配置两个主CC对({CC01,CC01’}和{CC01,CC02})的场景,适用于TDD场景和FDD场景。在FDD场景中,CC01与CC01’的频率不同,CC01与CC02的频率不同。在TDD场景中,CC01与CC01’的频率相同,CC01与CC02的频率不同;或者,CC01与CC01’的频率不同,CC01与CC02的频率相同。
为了描述方便,本申请实施例可以将SUL场景中的两个上行CC,即CC01’和CC02, 分别称为高频上行CC和辅助上行CC。
(5)免授权频谱,也可以称为非授权频谱,是指任何终端设备都可以使用的频谱。授权频谱,是指授权终端设备所拥有的频谱。
(6)第一上行子带,为第一通信装置向第二通信装置发送随机接入前导码所占用的上行子带。第一上行子带对应的下行子带为第一下行子带。
第二下行子带,为第二通信装置向第一通信装置发送随机接入响应消息所占用的下行子带。第二下行子带对应的上行子带为第二上行子带。
第三上行子带,为第一通信装置向第二通信装置发送消息三所占用的上行子带。第三上行子带对应的下行子带为第三下行子带。
第四下行子带,为第二通信装置向第一通信装置发送竞争解决消息所占用的下行子带。第四下行子带对应的上行子带为第四上行子带。
本申请实施例提供的随机接入方法为基于竞争的随机接入方法,下面将基于竞争的随机接入过程进行详细介绍。请参见图3,为基于竞争的随机接入过程的示意图。
1、基站向UE发送随机接入配置信息。相应地,UE从基站接收随机接入配置信息。
基站向小区内的UE广播随机接入配置信息。其中,随机接入配置信息包括随机接入信道占用的时频资源、使用的随机接入前导码和随机接入过程中失败时的回退值(the backoffindicator)等。接入信道占用的时频资源可以为物理随机接入信道(physical random access channel,PRACH)的起始位置、子帧号、周期等参数。
其中,回退值用于指示随机接入失败的第一通信装置,在回退值所指示的时间之后,重新发起随机接入,从而减少发起基于竞争的随机接入的终端设备数目过多而导致的碰撞问题。
2、UE向基站发送随机接入前导码。相应地,UE从基站接收随机接入前导码。
UE在接收到基站广播的随机接入配置信息的情况下,在需要发起随机接入过程的情况下,选择时频资源并发送随机接入前导码。随机接入前导码也可以称为消息一。
3、基站向UE发送随机接入响应消息。相应地,UE从基站接收随机接入响应消息。
基站在UE发送随机接入前导码的时频资源上检测随机接入前导码。当基站检测到一个或多个随机接入前导码后,发送随机接入响应消息,随机接入响应消息中携带分配给该UE的上行资源(uplink grant,UL grant),并且还携带了一个新的回退值,UE在接收到该随机接入响应消息的情况下会对该回退值更新。随机接入响应消息也可以称为消息二。
其中,随机接入响应消息可以响应多个随机接入前导码,这多个随机接入前导码可以使用相同的时频位置,但是这多个随机接入前导码传输的内容(即前导码)可以不同。换言之,随机接入响应消息用于响应一组随机接入前导码,这组随机接入前导码的时频位置相同,但是所使用的前导码不同。
随机接入响应消息的格式中包括指示回退值的字段、指示随机接入前导码标识的字段、指示上行资源分配信息的字段、指示定时提前(timing advance,TA)的字段和指示临时小区无线网络临时标识(temporary cell-radio network temporary identity,TC-RNTI)的字段。
4、UE向基站发送消息三。相应地,基站从UE接收消息三。
UE在发送完随机接入前导码之后,根据发送随机接入前导码所使用的时频资源,确定 一个随机接入无线网络临时标识(random access-radio network temporary identity,RA-RNTI)。UE在一定时间之后使用RA-RNTI,在一个配置的监听窗口时间内,监听第二通信装置下发的随机接入响应消息。
如果UE未接收到基站发送的随机接入响应消息,则UE重新发起随机接入过程,并且按照回退值的指示选择重新发起随机接入过程的时机。该时机可以是指发送随机接入前导码固定的时频资源,即随机接入前导码只能在这些固定的时频资源上发送,这些时频资源的位置可由随机接入配置信息广播。时机也可以是指发送随机接入前导码固定时隙上的固定符号,即随机接入前导码只能在固定时隙上的固定符号上发送,固定时隙上的固定符号可由随机接入配置信息广播。
如果UE接收到基站发送的随机接入响应消息,则UE使用随机接入响应消息分配中的上行资源发送消息三,消息三中携带着UE的标识信息。
UE按照分配的上行资源发送消息三之后,UE在定时器时间内,尝试接收竞争解决消息或者消息三重传调度消息。UE在接收到消息三重传调度消息的情况下,重新向基站发送消息三并对定时器初始化。
UE按照分配的上行资源发送消息三之后,基站在给UE分配的上行资源上检测是否接收到消息三。若基站在该资源上未接收到消息三,则向UE发送消息三重传调度消息。
其中,消息三所携带的UE的标识信息用于冲突解决。
对于无线资源控制(radio resource control,RRC)连接态的UE而言,UE的标识信息是小区无线网络临时标识(cell-radio network temporary identity,C-RNTI)。
对于RRC空闲态的UE而言,UE的标识信息为临时移动用户识别码(system architecture evolution temporary mobile subscriber identity number,S-TMSI)或一个随机数。其中,S-TMSI是核心网为UE分配的标识。在UE分配了S-TMSI的情况下,消息三携带S-TMSI;在UE未分配S-TMSI的情况下,消息三携带随机数。
5、基站向UE发送竞争解决消息。相应地,UE从基站接收竞争解决消息。
基站在接收到UE发送的消息三的情况下,即在基站成功译码得到消息三的情况下,向终端设备发送竞争解决消息,竞争解决消息携带UE的标识信息。UE在接收到竞争解决消息的情况下,检测竞争解决消息所携带的UE的标识信息是否与其发送的消息三所携带的标识信息相同,若相同,则竞争随机接入成功;若不相同,则竞争随机接入失败。竞争解决消息也可以称为消息四。
在定时器时间内,若UE没有接收到携带UE的标识信息的竞争解决消息或者没有接收到消息三重传调度消息,则认为随机接入失败,UE将重新发起随机接入过程,并且按照回退值指示选择随机接入过程重新发起的时机。
图3所示的基于竞争的随机接入过程应用在免授权频谱的通信系统中,会受到LBT的影响。在TDD场景中,UE尝试在多个CC上发送随机接入前导码,在某个CC上LBT成功后发送随机接入前导码,之后基站发送随机接入响应消息、UE发送消息三以及基站发送竞争解决消息都需要在该CC上进行。在FDD场景中,UE尝试在多个上行CC上发送随机接入前导码,在某个上行CC上LBT成功后发送随机接入前导码,之后基站发送随机接入响应消息和竞争解决消息需要在该上行CC对应的下行CC上进行,UE发送消息三需要 在该上行CC上进行。换言之,基站向UE发送的消息以及UE向基站发送的消息需要使用同一CC或同一CC对,这样便会导致随机接入过程耗费较长的时间。
鉴于目前随机接入过程存在耗时较长的弊端,本申请实施例提供一种随机接入方法及其装置,将随机接入过程中的各个上行消息、各个下行消息安排在多个子带上,传输各个消息的子带可以是多对多的关系,多个子带上LBT的成功率大于单一子带上LBT的成功率,进而可以缩短随机接入过程耗费的时间,可以提高随机接入过程的效率。
本申请实施例提供的随机接入方法及其装置可以应用于免授权频谱的多子带系统中,也可以应用于授权频谱的多子带系统中。
下面将对本申请实施例提供的随机接入方法进行详细介绍,该随机接入方法可以是基于竞争的随机接入方法。
请参见图4,为本申请实施例提供的随机接入方法的流程示意图,该方法可以包括但不限于如下步骤:
步骤S401,第一通信装置通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随机接入前导码。相应地,第二通信装置通过第一上行子带从第一通信装置接收随机接入前导码。
步骤S402,第二通信装置通过多子带系统的N个下行子带中的第二下行子带向第一通信装置发送随机接入响应消息。相应地,第一通信装置通过第二下行子带从第二通信装置接收随机接入响应消息。
步骤S403,第一通信装置通过M个上行子带中的第三上行子带向第二通信装置发送消息三,消息三包括第一通信装置的标识信息。相应地,第二通信装置通过第三上行子带从第一通信装置接收消息三。
步骤S404,第二通信装置通过N个下行子带中的第四下行子带向第一通信装置发送竞争解决消息。相应地,第一通信装置通过第四下行子带从第二通信装置接收竞争解决消息。
其中,M和N为正整数,且M>1或N>1。
在一个示例中,第一上行子带是M个上行子带中的一个子带,第二下行子带是N个下行子带中的一个子带,第三上行子带是M个上行子带中的一个子带,第四下行子带是N个下行子带中的一个子带。
在一个示例中,在步骤S401之前,第二通信装置可向第一通信装置发送随机接入配置信息,随机接入配置信息包括随机接入信道占用的时频资源、使用的随机接入前导码和随机接入过程中失败时的回退值等。
第二通信装置可通过广播的方式向第一通信装置发送随机接入配置信息。第二通信装置可在N个下行子带上进行LBT,并在LBT成功的所有下行子带上广播随机接入配置信息。
在一个示例中,随机接入配置信息还用于指示M个上行子带中的M1个上行子带以及N个下行子带中的N1个下行子带,M1≤M,N1≤N。其中,M1个上行子带包括第一上行子带,N1个下行子带包括第二下行子带和第四下行子带。
其中,M1个上行子带为第一通信装置向第二通信装置发送随机接入前导码的候选上行子带,N1个下行子带为第二通信装置向第一通信装置发送随机接入响应消息和竞争解决消 息的候选下行子带。
候选上行子带指的是第一通信装置发送随机接入前导码可选择的上行子带集合,且该上行子带集合可供第二通信装置检测、接收随机接入前导码和消息三。候选下行子带指的是第二通信装置发送随机接入响应消息和竞争解决消息可选择的下行子带集合,且该下行子带集合可供第一通信装置检测、接收随机接入响应消息和竞争解决消息。
可以理解的是,M1个上行子带中的一个上行子带用于第一通信装置向第二通信装置发送随机接入前导码,第二通信装置可在M1个上行子带上检测和接收随机接入前导码和消息三。N1个下行子带中的一个下行子带用于第二通信装置向第一通信装置发送随机接入响应消息,N1个下行子带中的一个下行子带用于第二通信装置向第一通信装置发送竞争解决消息,第一通信装置可在N1个下行子带上检测和接收随机接入响应消息和竞争解决消息。换言之,随机接入配置信息可用于指示M个上行子带中的M1个上行子带可以用于第一通信装置向第二通信装置发送随机接入前导码,第一通信装置可从M1个上行子带中选择一个上行子带发送随机接入前导码;可用于指示N个下行子带中的N1个下行子带可以用于第二通信装置向第一通信装置发送随机接入响应消息和竞争解决消息,第二通信装置可从N1个下行子带中选择一个下行子带发送随机接入响应消息,可从N1个下行子带中选择一个下行子带发送竞争解决消息。
通过随机接入配置信息对M1个上行子带和N1个下行子带进行指示,使得随机接入配置更加灵活。例如,M=4,即4个上行子带,在其中一个上行子带传输高优先级业务的情况下,第二通信装置可以配置第一通信装置在其余3个上行子带上发送随机接入前导码,即M1=3;而在4个上行子带都不传输高优先级业务的情况下,第二通信装置可以配置第一通信装置在4个上行子带上发送随机接入前导码,即M1=4。
在一个示例中,通信装置可通过如下几种选择方式从多个LBT成功的子带中选择一个子带,所选择的子带用于发送消息。该通信装置可以是第一通信装置,也可以是第二通信装置。
选择方式一:通信装置以相同概率从LBT成功的子带中选择一个子带。例如,LBT成功的子带数量为3,则通信装置以1/3的概率从这3个LBT成功的子带中选择一个子带。再例如,LBT成功的子带数量为1,则通信装置以1/1的概率选择这个LBT成功的子带。可以理解的是,每个LBT成功的子带被选择的概率相同。该种方式实现简单。
选择方式二,通信装置从LBT成功的子带中选择能量检测值最小的子带。通信装置在对某个子带进行LBT时,是通过检测该子带上的能量大小来确定LBT成功还是LBT失败。在LBT成功的情况下,子带的能量检测值小于门限,某个子带进行LBT时的能量检测值越小,表明该子带上的干扰信号加噪声信号的总功率越小,消息在该子带上发送时受到的干扰越小。
选择方式三,通信装置从LBT成功的子带中选择接收消息所使用的子带,若LBT成功的子带中不包括接收消息所使用的子带,则按照选择方式一或选择方式二或选择方式四在LBT成功的子带中选择一个子带。在TDD场景中,通信装置接收消息所使用的子带为子带1,LBT成功的子带包括子带1,那么通信装置选择子带1发送消息。例如,第一通信装置接收随机接入配置信息所使用的子带为子带1,第一通信装置在需要发送随机接入前 导码时,对多个子带进行LBT,LBT成功的子带包括子带1,那么第一通信装置选择子带1发送随机接入前导码。再例如,第二通信装置接收随机接入前导码所使用的子带为子带2,第二通信装置在需要发送随机接入响应消息时,对多个子带进行LBT,LBT成功的子带包括子带2,那么第二通信装置选择子带2发送随机接入前导码。
选择方式四,通信装置从LBT成功的子带中随机选择一个子带。
下面对步骤S401进行介绍:
第一通信装置可按照选择方式一或选择方式二或选择方式三或选择方式四,从M个或M1个上行子带中LBT成功的上行子带中选择第一上行子带,第一上行子带对应的下行子带为第一下行子带。
下面对步骤S402进行介绍:
第二通信装置在检测到第一通信装置发送的随机接入前导码的情况下,通过第二下行子带向第一通信装置发送随机接入响应消息。
第二通信装置可按照选择方式一或选择方式二或选择方式三或选择方式四,从N个或N1个下行子带中LBT成功的下行子带中选择第二下行子带。第二下行子带对应的上行子带为第二上行子带,第二上行子带的数量为一个或两个。
其中,随机接入响应消息用于指示M个上行子带中的K1个上行子带的上行资源分配信息,即指示第二通信装置为第一通信装置分配的K1个上行子带的上行资源。
下面对步骤S403进行介绍:
在一个示例中,第一通信装置根据随机接入响应消息所指示的K1个上行子带的上行资源分配信息,对K1个上行子带进行LBT,并从K1个上行子带中确定第三上行子带,通过第三上行子带向第二通信装置发送消息三。
其中,消息三携带第一通信装置的标识信息,该标识信息可以是C-RNTI,也可以是S-TMSI或一个随机数。
第一通信装置可按照选择方式一或选择方式二或选择方式三或选择方式四,从K1个上行子带中LBT成功的上行子带中选择第三上行子带,第三上行子带对应的下行子带为第三下行子带。
下面对步骤S404进行介绍:
第二通信装置在接收到消息三的情况下,即第二通信装置成功译码得到消息三的情况下,通过第四下行子带向第一通信装置发送竞争解决消息,竞争解决消息携带第一通信装置的标识信息。
在一个示例中,第二通信装置在接收到消息三的情况下,与核心网设备交互信息并执行相应的功能,交互完成后,通过第四下行子带向第一通信装置发送竞争解决消息。
第一通信装置在接收到竞争解决消息的情况下,检测竞争解决消息所携带的标识信息与消息三所携带的标识信息是否相同,若相同,则第一通信装置竞争随机接入成功;若不相同,则第一通信装置竞争随机接入不成功。
第二通信装置可按照选择方式一或选择方式二或选择方式三或选择方式四,从N个或N1个下行子带中LBT成功的下行子带中选择第四下行子带。第四下行子带对应的上行子带为第四上行子带,第四上行子带的数量为一个或两个。
在第二通信装置没有从第一通信装置接收到消息三的情况下(可以是第二通信装置在定时器时间内未接收到消息三的情况,也可以是第二通信装置对消息三译码失败的情况),第二通信装置向第一通信装置发送消息三重传调度消息。该消息三重传调度消息用于指示M个上行子带中的K2个上行子带的上行资源分配信息,即指示第二通信装置为第一通信装置分配的K2个上行子带的上行资源。可以理解的是,在第二通信装置没有从第一通信装置接收到消息三的情况下,发送消息三重传调度消息,第二通信装置可以根据更新的各个下行子带上的信道被检测为空闲及繁忙的比例,调度M个上行子带中空闲比例较高的K2个上行子带给第一通信装置。K2个上行子带中的一个上行子带用于第一通信装置重新发送消息三。
第一通信装置在接收到消息三重传调度消息的情况下,根据消息三重传调度消息所指示的K2个上行子带的上行资源分配信息,对K2个上行子带进行LBT,并从K2个上行子带中确定一个上行子带,通过该上行子带向第二通信装置重新发送消息三,即再次发送消息三。
其中,K1≤K2。第二通信装置可通过增加调度消息三传输的上行子带的个数,来提高多个上行子带上LBT成功率,进行提高消息三重传成功概率。
若第二通信装置依然未接收到第一通信装置重发的消息三,则第二通信装置再次向第一通信装置发送消息三重传调度消息。该消息三重传调度消息用于指示M个上行子带中的K3个上行子带的上行资源分配信息,即指示第二通信装置为第一通信装置分配的K3个上行子带的上行资源。例如,K2≤K3。第一通信装置在接收到消息三重传调度消息的情况下,根据消息三重传调度消息所指示的K3个上行子带的上行资源分配信息,对K3个上行子带进行LBT,并从K3个上行子带中确定一个上行子带,通过该上行子带向第二通信装置重新发送消息三。按此重复,直到消息三重传调度消息的发送次数达到最大重传调度次数。
通过消息三重传调度消息,有利于提高第二通信装置成功接收消息三的概率。
在一个示例中,上述第三上行子带与上述第一上行子带不相同,即第一通信装置通过不同的上行子带发送随机接入前导码和消息三。相比在同一上行子带上发送随机接入前导码和消息三的情况,LBT成功率有所提高,进而可以缩短随机接入过程的耗时,可以提高随机接入过程的效率。
在一个示例中,上述第二下行子带,上述第四下行子带中至少一个与上述第一下行子带不相同,即第二下行子带与第一下行子带不相同,或者第四下行子带与第一下行子带不相同,或者第二下行子带、第四下行子带与第一下行子带不相同。换言之,第二通信装置发送随机接入响应消息所占用的下行子带和发送竞争解决消息所占用的下行子带中的至少一个与第一下行子带不相同。相比在发送随机接入前导码和消息三所占用的上行子带对应的下行子带上发送随机接入响应消息和竞争解决消息的情况,LBT成功率有所提高,进而可以缩短随机接入过程的耗时,可以提高随机接入过程的效率。
在一个示例中,上述第三上行子带与上述第一上行子带不相同,且上述第二下行子带,上述第四下行子带中至少一个与上述第一下行子带不相同。
在图4所示的实施例中,通过将随机接入过程中的各个上行消息、各个下行消息安排在多个子带上,进而可以缩短随机接入过程的耗时,可以提高随机接入过程的效率。
图5a为图4所示实施例应用在TDD场景下的示意图。第一通信装置和第二通信装置采用TDD方式使用子带上的资源,即第一通信装置、第二通信装置能在所有子带上以TDD方式发送和接收消息。
图5a中,M=N=4,且每个上行子带与其对应的下行子带为相同的子带。
第二通信装置对子带1、子带2、子带3和子带4进行LBT,并在LBT成功的子带2和子带3上广播随机接入配置信息。
第一通信装置在接收到随机接入配置信息的情况下,对子带1、子带2、子带3和子带4进行LBT,并在LBT成功的子带3上向第二通信装置发送随机接入前导码。若LBT成功的子带有多个,则第一通信装置可按照选择方式一或选择方式二或选择方式三或选择方式四,从多个LBT成功的子带中选择一个。若采用选择方式三,则从这多个LBT成功的子带中选择接收随机接入配置信息所使用的子带。
第二通信装置在接收到随机接入前导码的情况下,对子带1、子带2、子带3和子带4进行LBT,并在LBT成功的子带4上向第一通信装置发送随机接入响应消息。若LBT成功的子带有多个,则第二通信装置可按照选择方式一或选择方式二或选择方式三或选择方式四,从多个LBT成功的子带中选择一个。若采用选择方式三,则从这多个LBT成功的子带中选择接收随机接入前导码所使用的子带。随机接入响应消息包括为第一通信装置分配发送消息三的时频资源。
第一通信装置在发送随机接入前导码之后,在子带1、子带2、子带3和子带4上按照预先配置的随机接入响应消息接收窗口尝试接收随机接入响应消息,若第一通信装置在接收窗口内未接收到随机接入响应消息,则重新发起随机接入过程;若第一通信装置在接收窗口内接收到随机接入响应消息,则在随机接入响应消息所指示的子带上进行LBT,并在LBT成功的子带4上发送消息三。子带4可以是按照选择方式一或选择方式二或选择方式三或选择方式四,从多个LBT成功的子带中选择一个。消息三携带第一通信装置的标识信息。
第二通信装置在接收到消息三的情况下,在子带1、子带2、子带3和子带4上进行LBT,并在LBT成功的子带1上发送竞争解决消息,竞争解决消息携带标识信息。
第一通信装置在接收到竞争解决消息的情况下,检测竞争解决消息携带的标识信息与消息三携带的标识信息是否相同,若相同,则竞争随机接入成功;若不相同,则竞争随机接入失败。
图5b为图4所示实施例应用在FDD场景下的示意图。第一通信装置和第二通信装置采用FDD方式将所有子带分为上行子带和下行子带,第一通信装置、第二通信装置采用FDD方式使用上行子带[上行子带1,上行子带2]和下行子带[下行子带1,下行子带2]上的资源。图5b中,M=2,N=2。
第二通信装置对2个下行子带进行LBT,并在LBT成功的下行子带1上广播随机接入配置信息。
第一通信装置在接收到随机接入配置信息的情况下,对2个上行子带进行LBT,并在LBT成功的上行子带2上向第二通信装置发送随机接入前导码。若LBT成功的上行子带有多个,则第一通信装置可按照选择方式一或选择方式二或选择方式四,从多个LBT成功上 行的子带中选择一个上行子带。
第二通信装置在接收到随机接入前导码的情况下,对2个下行子带进行LBT,并在LBT成功的下行子带2上向第一通信装置发送随机接入响应消息。若LBT成功的下行子带有多个,则第二通信装置可按照选择方式一或选择方式二或选择方式四,从多个LBT成功下行的子带中选择一个下行子带。随机接入响应消息包括为第一通信装置分配的K1个上行子带中可用于发送消息三的时频资源,K1≤M。
第一通信装置在发送随机接入前导码之后,在2个下行子带上按照预先配置的随机接入响应消息接收窗口尝试接收随机接入响应消息,若第一通信装置在接收窗口内未接收到随机接入响应消息,则重新发起随机接入过程;若第一通信装置在接收窗口内接收到随机接入响应消息,则在随机接入响应消息所指示的K1个上行子带上进行LBT,并在LBT成功的上行子带1上发送消息三。上行子带1可以是第一通信装置按照选择方式一或选择方式二或选择方式四,从K1个上行子带中LBT成功的上行子带中选择的一个上行子带。消息三携带第一通信装置的标识信息。
第二通信装置在接收到消息三的情况下,在2个下行子带上进行LBT,并在LBT成功的下行子带2上发送竞争解决消息,竞争解决消息携带标识信息。
第一通信装置在接收到竞争解决消息的情况下,检测竞争解决消息携带的标识信息与消息三携带的标识信息是否相同,若相同,则竞争随机接入成功;若不相同,则竞争随机接入失败。
需要说明的是,图4、图5a以及图5b应用于免授权频谱的场景,进行了LBT。针对授权频谱的场景,可以不进行LBT,例如,图4中第一通信装置可从M个上行子带中选择一个上行子带作为第一上行子带,第二通信装置可从N个下行子带中选择一个下行子带作为第二下行子带;再例如,图5a中第一通信装置可从4个子带中选择一个子带发送随机接入前导码,第二通信装置可从4个子带中选择一个发送随机接入响应消息。可以理解的是,在授权频谱的场景中,第一通信装置可随机从多个上行子带中选择一个上行子带发送随机接入前导码或消息三,第二通信装置可随机从多个下行子带中选择一个下行子带发送随机接入响应消息或竞争解决消息。
可以理解的是,在免授权频谱的场景中,通信装置可按照选择方式一或选择方式二或选择方式三或选择方式四选择一个子带用于发送消息。在授权频谱的场景中,通信装置可按照以下两种选择方式从多个子带中选择一个子带用于发送消息:
选择方式一’,通信装置以相同概率从多个子带中选择一个子带。例如,4个子带,通信装置以1/4的概率从这4个子带中选择一个子带。
选择方式二’,通信装置从多个子带中随机选择一个子带。
下面将以9个示例对图4所示的实施例进行进一步介绍。
示例1:M=M1=K1=K2=4,N=N1=4,TDD,免授权频谱,选择方式一
M1=4,随机接入配置信息用于指示4个上行CC[CC1,CC2,CC3,CC4]中的4个上行CC[CC1,CC2,CC3,CC4]用于传输随机接入前导码;N1=4,随机接入配置信息用于指示4个下行CC[CC1,CC2,CC3,CC4]中的4个下行CC[CC1,CC2,CC3,CC4]用于传输随机接入响应消息、竞争解决消息;K1=4,随机接入响应消息用于指示第一通信装置 可在4个上行CC[CC1,CC2,CC3,CC4]上传输消息三。
基于示例1的随机接入过程如下:
(1)第一通信装置接收随机接入配置信息,获知能够在4个上行CC[CC1,CC2,CC3,CC4]发送随机接入前导码,需要在4个下行CC[CC1,CC2,CC3,CC4]监听、接收随机接入响应消息,竞争解决消息。
第一通信装置在4个上行CC[CC1,CC2,CC3,CC4]上进行LBT,在CC1和CC2上LBT成功,按照选择方式一选择其中的CC1发送随机接入前导码,即以1/2概率选择CC1发送随机接入前导码。
(2)第二通信装置在接收到随机接入前导码的情况下,向第一通信装置发送随机接入响应消息。
第二通信装置在4个下行CC[CC1,CC2,CC3,CC4]上进行LBT,在CC3和CC4上LBT成功,按照选择方式一选择其中的CC4发送随机接入响应消息,随机接入响应消息中为第一通信装置分配的上行资源用于指示第一通信装置可以在4个CC[CC1,CC2,CC3,CC4]上发送消息三。
(3)第一通信装置发送完随机接入前导码的情况下,在4个下行CC[CC1,CC2,CC3,CC4]上尝试接收随机接入响应消息,并且在CC4上接收到随机接入响应消息。第一通信装置将在4个上行CC[CC1,CC2,CC3,CC4]上进行LBT。
接下来第一通信装置在CC1和CC3上LBT成功,按照选择方式一选择了其中的CC3发送消息三。
(4)第二通信装置在CC3上接收到消息三之后,在4个下行CC[CC1,CC2,CC3,CC4]上进行LBT,并且在CC3,CC4上LBT成功,选择CC4向第一通信装置发送竞争解决消息。
示例2:M=4,M1=3,K1=3,K2=4,N=4,N1=3,TDD,免授权频谱,选择方式二
M1=3,随机接入配置信息用于指示4个上行CC[CC1,CC2,CC3,CC4]中的3个上行CC[CC1,CC2,CC4]用于传输随机接入前导码;N1=3,随机接入配置信息用于指示4个下行CC[CC1,CC2,CC3,CC4]中的4个下行CC[CC1,CC2,CC3,CC4]用于传输随机接入响应消息、竞争解决消息;K1=3,随机接入响应消息用于指示第一通信装置可在3个上行CC[CC1,CC2,CC4]上传输消息三。
基于示例2的随机接入过程与基于示例1随机接入过程的不同之处有以下几点,其余相同部分可参见基于示例1的随机接入过程的具体描述。
a,选择方式不同,示例2中按照选择方式二从LBT成功的CC中选择一个CC;
b,示例2中,第一通信装置在接收到随机接入配置信息的情况下,在3个上行CC[CC1,CC2,CC4]上进行LBT;第一通信装置在接收到随机接入响应消息的情况下,在3个上行CC[CC1,CC2,CC4]上进行LBT;
c,示例2中,第二通信装置在接收到随机接入前导码的情况下,在3个下行CC[CC1,CC2,CC4]上进行LBT;第二通信装置在接收到消息三的情况下,在3个下行CC[CC1,CC2,CC4]上进行LBT;
d,示例2中,第一通信装置发送的消息三由于无线信道中的干扰而无法被第二通信装 置接收,第二通信装置在[CC1,CC2,CC4]上都没有接收到消息三,第二通信装置在[CC1,CC2,CC4]上进行LBT,按照选择方式二选择CC4发送消息三重传调度消息;
e,示例2中,第一通信装置在接收到消息三重传调度消息之后,由于消息三重传调度消息指示K2为4,因此第一通信装置在4个上行CC[CC1,CC2,CC3,CC4]上进行LBT。
示例3:M=4,M1=3,K1=3,K2=2,N=4,N1=3,TDD,免授权频谱,选择方式二
M1=3,随机接入配置信息用于指示4个上行CC[CC1,CC2,CC3,CC4]中的3个上行CC[CC1,CC2,CC4]用于传输随机接入前导码;N1=3,随机接入配置信息用于指示4个下行CC[CC1,CC2,CC3,CC4]中的3个下行CC[CC1,CC2,CC4]用于传输随机接入响应消息、竞争解决消息;K1=3,随机接入响应消息用于指示第一通信装置可在3个上行CC[CC1,CC2,CC4]上传输消息三。
基于示例3的随机接入过程与基于示例2随机接入过程的不同之处在于:示例3中,第一通信装置在接收到消息三重传调度消息之后,由于消息三重传调度消息指示K2为2,因此第一通信装置在2个上行CC[CC2,CC4]上进行LBT。其余相同部分可参见基于示例2的随机接入过程的具体描述。
示例4:M=M1=K1=K2=4,N=N1=4,TDD,免授权频谱,选择方式三
M1=4,随机接入配置信息用于指示4个上行CC[CC1,CC2,CC3,CC4]中的4个上行CC[CC1,CC2,CC3,CC4]用于传输随机接入前导码;N1=4,随机接入配置信息用于指示4个下行CC[CC1,CC2,CC3,CC4]中的4个下行CC[CC1,CC2,CC3,CC4]用于传输随机接入响应消息、竞争解决消息;K1=4,随机接入响应消息用于指示第一通信装置可在4个上行CC[CC1,CC2,CC3,CC4]上传输消息三。
基于示例4的随机接入过程如下:
(1)第一通信装置从CC1,CC3上接收随机接入配置信息,获知能够在4个上行CC[CC1,CC2,CC3,CC4]发送随机接入前导码,需要在4个下行CC[CC1,CC2,CC3,CC4]监听、接收随机接入响应消息,竞争解决消息。
第一通信装置在4个上行CC[CC1,CC2,CC3,CC4]上进行LBT,在CC1和CC2上LBT成功,按照选择方式三选择CC1发送随机接入前导码,即CC1同时满足选择LBT成功这一条件,又满足在CC1上接收到随机接入配置信息这一条件。
(2)第二通信装置在CC1接收到随机接入前导码的情况下,向第一通信装置发送随机接入响应消息。
第二通信装置在4个下行CC[CC1,CC2,CC3,CC4]上进行LBT,在CC3和CC4上LBT成功,而第二通信装置接收随机接入前导码的CC1上LBT不成功,因此第二通信装置按照选择方式一从CC3和CC4中选择CC4发送随机接入响应消息,随机接入响应消息中为第一通信装置分配的上行资源用于指示第一通信装置可以在4个CC上发送消息三。
(3)第一通信装置发送完随机接入前导码的情况下,在4个下行CC[CC1,CC2,CC3,CC4]上尝试接收随机接入响应消息,并且在CC4上接收到随机接入响应消息。第一通信装置将在4个上行CC[CC1,CC2,CC3,CC4]上进行LBT。
接下来第一通信装置在CC1和CC3上LBT成功,按照选择方式一选择了其中的CC3发送消息三。
(4)第二通信装置在CC3上接收到消息三之后,在4个下行CC[CC1,CC2,CC3,CC4]上进行LBT,并且在CC3,CC4上LBT成功,按照选择方式三选择CC3向第一通信装置发送竞争解决消息。
在基于示例4的随机接入过程中,第一通信装置按照选择方式三从LBT成功的CC中选择一个CC,并在该CC上发送随机接入前导码,说明第一通信装置在该CC上信道空闲。由于第二通信装置是通过该CC发送随机接入配置信息,说明第二通信装置在该CC上信道在较短一段时间之内空闲,在第一通信装置发送随机接入前导码的时刻,第二通信装置在该CC上信道有可能空闲,因此,第一通信装置选择该CC发送随机接入前导码,不仅能够保证第一通信装置能够成功发送随机接入前导码,还能提高第二通信装置接收到随机接入前导码的概率。
示例5:M=M1=K1=K2=2,N=N1=2,FDD,免授权频谱,选择方式一
M1=2,随机接入配置信息用于指示2个上行CC[上行CC1,上行CC2]中的2个上行CC[上行CC1,上行CC2]用于传输随机接入前导码;N1=2,随机接入配置信息用于指示2个下行CC[下行CC1,下行CC2]中的2个下行CC[下行CC1,下行CC2]用于传输随机接入响应消息、竞争解决消息;K1=2,随机接入响应消息用于指示第一通信装置可在2个上行CC[上行CC1,上行CC2]上传输消息三。
基于示例5的随机接入过程与基于示例1的随机接入过程的不同之处在于,示例5应用在FDD的场景,而示例1应用在TDD的场景。基于示例5的随机接入过程可参见图5b的描述。
示例6:M=M1=K1=K2=1,N=N1=2,FDD,免授权频谱,选择方式二
M1=1,随机接入配置信息用于指示1个上行CC[上行CC1]中的1个上行CC[上行CC1]用于传输随机接入前导码;N1=2,随机接入配置信息用于指示2个下行CC[下行CC1,下行CC2]中的2个下行CC[下行CC1,下行CC2]用于传输随机接入响应消息、竞争解决消息;K1=1,随机接入响应消息用于指示第一通信装置可在1个上行CC[上行CC1]上传输消息三。
基于示例6的随机接入过程与基于示例5的随机接入过程的不同之处在于,示例6采用选择方式二,而示例5采用选择方式一。并且,示例6中只有一个上行CC[上行CC1]。
示例7:M=M1=K1=K2=4,N=N1=4,TDD,授权频谱,选择方式一’
基于示例7的随机接入过程与基于示例1的随机接入过程的不同之处在于,示例7应用于授权频谱的场景,而示例1应用于免授权频谱的场景。示例7中,第一通信装置按照选择方式一’从4个上行CC[CC1,CC2,CC3,CC4]选择一个上行CC发送随机接入前导码,按照选择方式一’从4个上行CC[CC1,CC2,CC3,CC4]选择一个上行CC发送消息三;第二通信装置按照选择方式一’从4个下行CC[CC1,CC2,CC3,CC4]选择一个下行CC发送随机接入响应消息,按照选择方式一’从4个下行CC[CC1,CC2,CC3,CC4]选择一个下行CC发送竞争解决消息。换言之,基于示例7的随机接入过程中第一通信装置和第二通信装置不进行LBT。
在授权频谱的场景中,当4个下行子带中某些子带被某些消息占用时,该消息比随机接入响应消息或竞争解决消息更重要,第二通信装置可以选择剩余的子带中的一个子带发 送随机接入响应消息或竞争解决消息。
示例8:M=M1=K1=K2=2,N=N1=2,FDD,授权频谱,选择方式一’
示例8可有两个第一通信装置,其随机接入过程如下:
(1)第一通信装置1和第一通信装置2接收随机接入配置信息,均获知能够在2个上行CC[上行CC1,上行CC2]发送随机接入前导码,需要在2个下行CC[下行CC1,下行CC2]监听、接收随机接入响应消息,竞争解决消息。
第一通信装置1在2个上行CC[上行CC1,上行CC2]上按照选择方式一’选择其中的上行CC1发送随机接入前导码,第一通信装置2也按照选择方式一’选择了上行CC1发送随机接入前导码。
第一通信装置1和第一通信装置2使用了相同上行CC1上相同的时频资源(例如该时频资源可表示(x2,y3),x2表示时域资源位置,y3表示频域资源位置)和随机接入前导码,该随机接入前导码的前导码序列为R3。(通常一个CC上随机接入前导码的时频资源有多个(例如(x1,y1),(x2,y1)等),前导码序列有多个(例如R1,R2等);但是不同第一通信装置随机选择资源和前导码序列,可能会选到相同的。)
(2)第二通信装置在上行CC1上的(x2,y3)时频资源上接收到前导码序列R3后,第二通信装置发送随机接入响应消息。第一通信装置1和第一通信装置2都接收该随机接入响应消息。
当第一通信装置1和第一通信装置2同时使用CC1上的(x2,y3)时频资源发送前导码序列R3时,第二通信装置在上行CC1上的(x2,y3)时频资源上接收到前导码序列R3,但是第二通信装置无法获知这个随机接入前导码是由两个第一通信装置发送的随机接入前导码的叠加,即第二通信装置通常认为这个随机接入前导码来自一个第一通信装置。第二通信装置会发送随机接入响应消息来响应这个第一通信装置,可以理解的是,第二通信装置发送的随机接入响应消息用于响应上行CC1上的(x2,y3)时频资源上接收到前导码序列R3。
(3)第一通信装置1和第一通信装置2发送完随机接入前导码的情况下,在2个下行CC[下行CC1,下行CC2]上尝试接收随机接入响应消息,并且均在下行CC2上接收到随机接入响应消息。第一通信装置1和第一通信装置2均认为根据随机接入响应消息是针对自己所发送的随机接入前导码(由于第一通信装置1和第一通信装置2的在上行CC1上的(x2,y3)时频资源上发送了前导码序列R3,而随机接入响应消息用于响应上行CC1上的(x2,y3)时频资源上接收到前导码序列R3),因此第一通信装置1和第一通信装置2都按照随机接入响应消息指示的信息发送消息三。
接下来第一通信装置1按照选择方式一’选择了其中的上行CC1发送消息三,第一通信装置2按照选择方式一’选择了其中的上行CC2发送消息三(恰巧第一通信装置1和第一通信装置2选择了不同的上行CC发送消息三)。
(4)第二通信装置在上行CC1和上行CC2上接收到两个消息三之后,判断出有两个第一通信装置在相同的随机接入前导码时频资源上发送了相同的前导码序列。因此第二通信装置需要在竞争解决消息中指示两个第一通信装置的竞争解决信息,并且给两个第一通信装置分配不同的C-RNTI(通常情况下竞争解决消息中指示一个第一通信装置的标识信 息,并且将随机接入响应消息中的TC-RNTI升级为C-RNTI)。也就是说,竞争解决消息包括至少两个C-RNTI,其中,该至少两个C-RNTI中的每个C-RNTI是一个第一通信装置的标识。
第二通信装置获知在2个下行CC上没有更高优先级的业务,在2个下行CC上以相同概率选择下行CC2向第一通信装置1和第一通信装置2发送同一个竞争解决消息,该竞争解决消息指示两个第一通信装置的竞争解决信息,并且给两个第一通信装置分配不同的C-RNTI。
至此,两个第一通信装置随机接入成功。
在授权频谱的场景中,在多个第一通信装置使用相同的时频资源向第二通信装置发送相同的随机接入前导码,且都认为随机接入响应消息是针对自己发送的随机接入前导码的情况下,使用随机接入响应消息所指示的上行资源发送消息三,当发送消息三的子带只有一个的情况下,多个第一通信装置使用同一子带会冲突,第二通信装置只能成功接收一个(冲突不严重)或零个消息三。而本申请实施例,在授权频谱的场景中,第二通信装置为第一通信装置分配K1个上行子带传输消息三,多个第一通信装置发送消息三所占用的子带可分开,从而第二通信装置可成功接收到多个消息三,进而提高随机接入过程的效率。
示例9:M=2,M1=2,K1=1,K2=1,N=2,N1=2,FDD,授权频谱+SUL
在SUL场景中,配置了两个CC对,即辅助上行CC可与下行CC1为一个CC对,高频上行CC可与下行CC1为一个CC对。
M1=2,随机接入配置信息用于指示2个上行CC[辅助上行CC,高频上行CC]用于传输随机接入前导码;N1=2,随机接入配置信息用于指示2个下行CC[下行CC1,下行CC2]用于传输随机接入响应消息、竞争解决消息;K1=1,随机接入响应消息用于指示第一通信装置可在1个上行CC上传输消息三。
基于示例9的随机接入过程如下:
(1)第一通信装置接收随机接入配置信息,获知能够在2个上行CC发送随机接入前导码,需要在2个下行CC监听、接收随机接入响应消息,竞争解决消息。
第一通信装置按照信道质量选择辅助上行CC或高频上行CC,即在信道质量好的情况下选择高频上行CC,在信道质量差的情况下选择辅助上行CC。假设第一通信装置选择高频上行CC发送随机接入前导码。
(2)第二通信装置在接收到随机接入前导码的情况下,向第一通信装置发送随机接入响应消息。
第二通信装置向第一通信装置发送随机接入响应消息的2个下行CC中,有1个下行CC(下行CC1)被更高优先级的业务(高可靠低时延业务,紧急系统广播信息)等占用,第二通信装置在剩余的下行CC2上发送随机接入响应消息,随机接入响应消息中为第一通信装置分配的上行资源用于指示第一通信装置在高频上行CC上发送消息三(SUL场景中随机接入前导码和消息三使用相同类型的上行CC,即随机接入前导码和消息三使用相同或者不同的高频上行CC,或者随机接入前导码和消息三使用相同或者不同的辅助上行CC,因为信道质量好的情况下,第一通信装置会选择高频上行CC发随机接入前导码和消息三;信道质量不好的情况下,第一通信装置会选择辅助上行CC发随机接入前导码和消息三)。
(3)第一通信装置发送完随机接入前导码的情况下,在2个下行CC上尝试接收随机接入响应消息,并且在下行CC2上接收到随机接入响应消息。接下来第一通信装置在高频上行CC上发送消息三。
(4)第二通信装置在高频上行CC上接收到消息三之后,在2个下行CC上没有更高优先级的业务,在2个下行CC上以相同概率选择下行CC1向第一通信装置发送竞争解决消息。
需要说明的是,上述9个示例以载波聚合场景为例进行介绍,也可以将上述9个示例应用在5G NR系统中一个小区中存在多个BWP的场景。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图6,是本申请实施例提供的第一通信装置的逻辑结构示意图,该第一通信装置60可以包括发送单元601和接收单元602。
发送单元601,用于通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随机接入前导码;
接收单元602,用于通过多子带系统的N个下行子带中的第二下行子带从第二通信装置接收随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
发送单元601,还用于通过M个上行子带中的第三上行子带向第二通信装置发送消息三,消息三包括第一通信装置的标识信息;
接收单元602,还用于通过N个下行子带中的第四下行子带从第二通信装置接收竞争解决消息;
其中,第一上行子带对应的下行子带为第一下行子带,第二下行子带对应的上行子带为第二上行子带,第三上行子带对应的下行子带为第三下行子带,第四下行子带对应的上行子带为第四上行子带;
第一上行子带,第三上行子带,第一下行子带,第二下行子带和第四下行子带至少满足如下条件之一:
第三上行子带与第一上行子带不相同;或,
第二下行子带,第四下行子带中至少一个与第一下行子带不相同。
在一种可能的实现方式中,发送单元802还用于从第二通信装置接收随机接入配置信息,随机接入配置信息用于指示M个上行子带中的M1个上行子带以及N个下行子带中的N1个下行子带,M1个上行子带包括第一上行子带,N1个下行子带包括第二下行子带和第四下行子带,其中,M1≤M,N1≤N。
其中,M1个上行子带为第一通信装置发送随机接入前导码的候选上行子带,候选上行子带指的是第一通信装置发送随机接入前导码可选择的上行子带集合,且该上行子带集合可供第二通信装置检测、接收随机接入前导码和消息三。即第一通信装置可从候选上行子带中选择一个上行子带发送随机接入前导码,并且第二通信装置可在所有候选上行子带上检测和接收随机接入响应消息和竞争解决消息。N1个下行子带为第二通信装置发送随机接入响应消息和竞争解决消息的候选下行子带,候选下行子带指的是第二通信装置发送随机接入响应消息和竞争解决消息可选择的下行子带集合,且该下行子带集合可供第一通信装 置检测、接收随机接入响应消息和竞争解决消息。即第二通信装置可从候选下行子带中选择一个下行子带发送随机接入响应消息,从候选下行子带中选择一个下行子带发送竞争解决消息,并且第一通信装置可在所有候选下行子带上检测和接收随机接入前导码和消息三。
在一种可能的实现方式中,随机接入响应消息用于指示M个上行子带中的K1个上行子带的上行资源分配信息;第三上行子带为K1个上行子带中的一个上行子带。
在一种可能的实现方式中,接收单元602,还用于从第二通信装置接收消息三重传调度消息,消息三重传调度消息用于指示M个上行子带中的K2个上行子带的上行资源分配信息;
发送单元601,还用于通过K2个上行子带中的一个上行子带向第二通信装置重新发送消息三。其中,K1≤K2。
上述发送单元601用于执行图4所示实施例中的步骤S401和步骤S403,上述接收单元602用于执行图4所示实施例中的步骤S402和步骤S404。
图6所示的第一通信装置60还包括处理单元603,用于从M个或M1个上行子带中选择第一上行子带,以便发送单元601通过第一上行子带向第二通信装置发送随机接入前导码。处理单元603还用于从K1个上行子带中选择第三上行子带,以便发送单元601通过第三上行子带向第二通信装置发送消息三。
请参见图7,是本申请实施例提供的第一通信装置的实体结构简化示意图,该第一通信装置70包括收发器701和存储器703,还包括处理器702。收发器701、处理器702和存储器703可以通过总线704相互连接,也可以通过其它方式相连接。图6所示的发送单元601和接收单元602所实现的相关功能可以通过收发器701来实现。
存储器703包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器703用于相关指令及数据。
收发器701用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,与第二通信装置进行通信,向第二通信装置发送随机接入前导码和消息三,从第二通信装置接收随机接入响应消息和竞争解决消息,即执行图4所示实施例中的步骤S401-步骤S404。
处理器702可以包括是一个或多个处理器,例如包括一个或多个中央处理器(central processing unit,CPU),在处理器702是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。应用在本申请实施例中,处理器702用于从M个或M1个上行子带中选择第一上行子带和第三上行子带,以便收发器701通过第一上行子带向第二通信装置发送随机接入前导码,通过第三上行子带向第二通信装置发送消息三。
存储器703用于存储第一通信装置70的程序代码和数据。
关于收发器701所执行的步骤,具体可参见图4所示实施例的描述,在此不再赘述。
可以理解的是,图7仅仅示出了第一通信装置的简化设计。在实际应用中,第一通信装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器、通信单元等,而所有可以实现本申请的装置都在本申请的保护范围之内。
请参见图8,是本申请实施例提供的第二通信装置的逻辑结构示意图,该第二通信装置80可以包括接收单元801和发送单元802。
接收单元801,用于通过多子带系统的M个上行子带中的第一上行子带从第一通信装置接收随机接入前导码;
发送单元802,用于通过多子带系统的N个下行子带中的第二下行子带向第一通信装置发送随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
接收单元801,还用于通过M个上行子带中的第三上行子带从第一通信装置接收消息三,消息三包括第一通信装置的标识信息;
发送单元802,还用于通过N个下行子带中的第四下行子带向第一通信装置发送竞争解决消息;
其中,第一上行子带对应的下行子带为第一下行子带,第二下行子带对应的上行子带为第二上行子带,第三上行子带对应的下行子带为第三下行子带,第四下行子带对应的上行子带为第四上行子带;
第一上行子带,第三上行子带,第一下行子带,第二下行子带和第四下行子带至少满足如下条件之一:
第三上行子带与第一上行子带不相同;或,
第二下行子带,第四下行子带中至少一个与第一下行子带不相同。
在一种可能的实现方式中,发送单元802还用于向第一通信装置发送随机接入配置信息,随机接入配置信息用于指示M个上行子带中的M1个上行子带以及N个下行子带中的N1个下行子带,M1个上行子带包括第一上行子带,N1个下行子带包括第二下行子带和第四下行子带,其中,M1≤M,N1≤N。
其中,M1个上行子带为第一通信装置发送随机接入前导码的候选上行子带,候选上行子带指的是第一通信装置发送随机接入前导码可选择的上行子带集合,且该上行子带集合可供第二通信装置检测、接收随机接入前导码和消息三。即第一通信装置可从候选上行子带中选择一个上行子带发送随机接入前导码,并且第二通信装置可在所有候选上行子带上检测和接收随机接入响应消息和竞争解决消息。N1个下行子带为第二通信装置发送随机接入响应消息和竞争解决消息的候选下行子带,候选下行子带指的是第二通信装置发送随机接入响应消息和竞争解决消息可选择的下行子带集合,且该下行子带集合可供第一通信装置检测、接收随机接入响应消息和竞争解决消息。即第二通信装置可从候选下行子带中选择一个下行子带发送随机接入响应消息,从候选下行子带中选择一个下行子带发送竞争解决消息,并且第一通信装置可在所有候选下行子带上检测和接收随机接入前导码和消息三。
在一种可能的实现方式中,随机接入响应消息用于指示M个上行子带中的K1个上行子带的上行资源分配信息;第三上行子带为K1个上行子带中的一个上行子带。
在一种可能的实现方式中,若接收单元801未从第一通信装置接收到消息三,则发送单元802,还用于向第一通信装置发送消息三重传调度消息,消息三重传调度消息用于指示M个上行子带中的K2个上行子带的上行资源分配信息;
接收单元801,还用于通过K2个上行子带中的一个上行子带从第一通信装置接收消息 三的重传。其中,K1≤K2。
上述接收单元801用于执行图4所示实施例中的步骤S401和步骤S403,上述发送单元802用于执行图4所示实施例中的步骤S402和步骤S404。
图8所示的第二通信装置80还包括处理单元803,用于从N个或N1个下行子带中选择第二下行子带,以便发送单元802通过第二下行子带向第一通信装置发送随机接入响应消息。处理单元603还用于从N个或N1个下行子带中选择第四下行子带,以便发送单元802通过第四下行子带向第一通信装置发送竞争解决消息。
请参见图9,是本申请实施例提供的第二通信装置的实体结构简化示意图,该第二通信装置90包括收发器901和存储器903,还包括处理器902。收发器901、处理器902和存储器903可以通过总线904相互连接,也可以通过其它方式相连接。图8所示的接收单元801和发送单元802所实现的相关功能可以通过收发器901来实现。
存储器903包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器903用于相关指令及数据。
收发器901用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,与第一通信装置进行通信,从第一通信装置接收随机接入前导码和消息三,向第二通信装置发送随机接入响应消息和竞争解决消息,即执行图4所示实施例中的步骤S401-步骤S404。
处理器902可以包括是一个或多个处理器,例如包括一个或多个中央处理器(central processing unit,CPU),在处理器902是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。应用在本申请实施例中,处理器902用于从N个或N1个下行子带中选择第二下行子带和第四下行子带,以便收发器901通过第二下行子带向第一通信装置发送随机接入响应消息,通过第四下行子带向第一通信装置发送竞争解决消息。
存储器903用于存储第二通信装置90的程序代码和数据。
关于收发器901所执行的步骤,具体可参见图4所示实施例的描述,在此不再赘述。
可以理解的是,图9仅仅示出了第二通信装置的简化设计。在实际应用中,第二通信装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器、通信单元等,而所有可以实现本申请的装置都在本申请的保护范围之内。
本申请实施例还提供了一种通信系统,包括至少一个第一通信装置和至少一个第二通信装置。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。因此,本申请又一实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请又一实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时, 使得计算机执行上述各方面所述的方法。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。

Claims (26)

  1. 一种随机接入方法,其特征在于,包括:
    第一通信装置通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随机接入前导码;
    所述第一通信装置通过所述多子带系统的N个下行子带中的第二下行子带从所述第二通信装置接收随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
    所述第一通信装置通过所述M个上行子带中的第三上行子带向所述第二通信装置发送消息三,所述消息三包括所述第一通信装置的标识信息;
    所述第一通信装置通过所述N个下行子带中的第四下行子带从所述第二通信装置接收竞争解决消息;
    其中,所述第一上行子带对应的下行子带为第一下行子带,所述第二下行子带对应的上行子带为第二上行子带,所述第三上行子带对应的下行子带为第三下行子带,所述第四下行子带对应的上行子带为第四上行子带;
    所述第一上行子带,所述第三上行子带,所述第一下行子带,所述第二下行子带和所述第四下行子带至少满足如下条件之一:
    所述第三上行子带与所述第一上行子带不相同;或,
    所述第二下行子带,所述第四下行子带中至少一个与所述第一下行子带不相同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信装置通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随机接入前导码之前,还包括:
    所述第一通信装置从所述第二通信装置接收随机接入配置信息,所述随机接入配置信息用于指示所述M个上行子带中的M1个上行子带以及所述N个下行子带中的N1个下行子带,所述M1个上行子带包括所述第一上行子带,所述N1个下行子带包括所述第二下行子带和所述第四下行子带,其中,M1≤M,N1≤N。
  3. 根据权利要求2所述的方法,其特征在于,所述M1个上行子带为所述第一通信装置发送所述随机接入前导码的候选上行子带,所述N1个下行子带为所述第二通信装置发送所述随机接入响应消息和所述竞争解决消息的候选下行子带。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述随机接入响应消息用于指示所述M个上行子带中的K1个上行子带的上行资源分配信息;所述第三上行子带为所述K1个上行子带中的一个上行子带。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一通信装置通过所述N个下行子带中的第四下行子带从所述第二通信装置接收竞争解决消息之前,所述第一通信装置通过所述M个上行子带中的第三上行子带向所述第二通信装置发送消息三之后,所述方法还包括:
    所述第一通信装置从所述第二通信装置接收消息三重传调度消息,所述消息三重传调度消息用于指示所述M个上行子带中的K2个上行子带的上行资源分配信息;
    所述第一通信装置通过所述K2个上行子带中的一个上行子带向所述第二通信装置重新发送所述消息三。
  6. 根据权利要求5所述的方法,其特征在于,K1≤K2。
  7. 一种随机接入方法,其特征在于,包括:
    第二通信装置通过多子带系统的M个上行子带中的第一上行子带从第一通信装置接收随机接入前导码;
    所述第二通信装置通过所述多子带系统的N个下行子带中的第二下行子带向所述第一通信装置发送随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
    所述第二通信装置通过所述M个上行子带中的第三上行子带从所述第一通信装置接收消息三,所述消息三包括所述第一通信装置的标识信息;
    所述第二通信装置通过所述N个下行子带中的第四下行子带向所述第一通信装置发送竞争解决消息;
    其中,所述第一上行子带对应的下行子带为第一下行子带,所述第二下行子带对应的上行子带为第二上行子带,所述第三上行子带对应的下行子带为第三下行子带,所述第四下行子带对应的上行子带为第四上行子带;
    所述第一上行子带,所述第三上行子带,所述第一下行子带,所述第二下行子带和所述第四下行子带至少满足如下条件之一:
    所述第三上行子带与所述第一上行子带不相同;或,
    所述第二下行子带,所述第四下行子带中至少一个与所述第一下行子带不相同。
  8. 根据权利要求7所述的方法,其特征在于,所述第二通信装置通过多子带系统的M个上行子带中的第一上行子带从第一通信装置接收随机接入前导码之前,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送随机接入配置信息,所述随机接入配置信息用于指示所述M个上行子带中的M1个上行子带以及所述N个下行子带中的N1个下行子带,所述M1个上行子带包括所述第一上行子带,所述N1个下行子带包括所述第二下行子带和所述第四下行子带,其中,M1≤M,N1≤N。
  9. 根据权利要求8所述的方法,其特征在于,所述M1个上行子带为所述第一通信装置发送所述随机接入前导码的候选上行子带,所述N1个下行子带为所述第二通信装置发送所述随机接入响应消息和所述竞争解决消息的候选下行子带。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述随机接入响应消息用于指示所述M个上行子带中的K1个上行子带的上行资源分配信息;所述第三上行子带为所述K1个上行子带中的一个上行子带。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二通信装置未从所述第一通信装置接收到所述消息三,则向所述第一通信装置发送消息三重传调度消息,所述消息三重传调度消息用于指示所述M个上行子带中的K2个上行子带的上行资源分配信息;
    所述第二通信装置通过所述K2个上行子带中的一个上行子带从所述第一通信装置接收所述消息三的重传。
  12. 根据权利要求11所述的方法,其特征在于,K1≤K2。
  13. 一种第一通信装置,其特征在于,包括:
    发送单元,通过多子带系统的M个上行子带中的第一上行子带向第二通信装置发送随 机接入前导码;
    接收单元,通过所述多子带系统的N个下行子带中的第二下行子带从所述第二通信装置接收随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
    所述发送单元,还用于通过所述M个上行子带中的第三上行子带向所述第二通信装置发送消息三,所述消息三包括所述第一通信装置的标识信息;
    所述接收单元,还用于通过所述N个下行子带中的第四下行子带从所述第二通信装置接收竞争解决消息;
    其中,所述第一上行子带对应的下行子带为第一下行子带,所述第二下行子带对应的上行子带为第二上行子带,所述第三上行子带对应的下行子带为第三下行子带,所述第四下行子带对应的上行子带为第四上行子带;
    所述第一上行子带,所述第三上行子带,所述第一下行子带,所述第二下行子带和所述第四下行子带至少满足如下条件之一:
    所述第三上行子带与所述第一上行子带不相同;或,
    所述第二下行子带,所述第四下行子带中至少一个与所述第一下行子带不相同。
  14. 根据权利要求13所述的第一通信装置,其特征在于,
    所述接收单元,还用于从所述第二通信装置接收随机接入配置信息,所述随机接入配置信息用于指示所述M个上行子带中的M1个上行子带以及所述N个下行子带中的N1个下行子带,所述M1个上行子带包括所述第一上行子带,所述N1个下行子带包括所述第二下行子带和所述第四下行子带,其中,M1≤M,N1≤N。
  15. 根据权利要求14所述的第一通信装置,其特征在于,所述M1个上行子带为所述第一通信装置发送所述随机接入前导码的候选上行子带,所述N1个下行子带为所述第二通信装置发送所述随机接入响应消息和所述竞争解决消息的候选下行子带。
  16. 根据权利要求13-15任一项所述的第一通信装置,其特征在于,所述随机接入响应消息用于指示所述M个上行子带中的K1个上行子带的上行资源分配信息;所述第三上行子带为所述K1个上行子带中的一个上行子带。
  17. 根据权利要求13-16任一项所述的第一通信装置,其特征在于,
    所述接收单元,还用于从所述第二通信装置接收消息三重传调度消息,所述消息三重传调度消息用于指示所述M个上行子带中的K2个上行子带的上行资源分配信息;
    所述发送单元,还用于通过所述K2个上行子带中的一个上行子带向所述第二通信装置重新发送所述消息三。
  18. 根据权利要求17所述的第一通信装置,其特征在于,K1≤K2。
  19. 一种第二通信装置,其特征在于,包括:
    接收单元,用于通过多子带系统的M个上行子带中的第一上行子带从第一通信装置接收随机接入前导码;
    发送单元,用于通过所述多子带系统的N个下行子带中的第二下行子带向所述第一通信装置发送随机接入响应消息,其中,M和N为正整数,且M>1或N>1;
    所述接收单元,还用于通过所述M个上行子带中的第三上行子带从所述第一通信装置接收消息三,所述消息三包括所述第一通信装置的标识信息;
    所述发送单元,还用于通过所述N个下行子带中的第四下行子带向所述第一通信装置发送竞争解决消息;
    其中,所述第一上行子带对应的下行子带为第一下行子带,所述第二下行子带对应的上行子带为第二上行子带,所述第三上行子带对应的下行子带为第三下行子带,所述第四下行子带对应的上行子带为第四上行子带;
    所述第一上行子带,所述第三上行子带,所述第一下行子带,所述第二下行子带和所述第四下行子带至少满足如下条件之一:
    所述第三上行子带与所述第一上行子带不相同;或,
    所述第二下行子带,所述第四下行子带中至少一个与所述第一下行子带不相同。
  20. 根据权利要求19所述的第二通信装置,其特征在于,
    所述发送单元,还用于向所述第一通信装置发送随机接入配置信息,所述随机接入配置信息用于指示所述M个上行子带中的M1个上行子带以及所述N个下行子带中的N1个下行子带,所述M1个上行子带包括所述第一上行子带,所述N1个下行子带包括所述第二下行子带和所述第四下行子带,其中,M1≤M,N1≤N。
  21. 根据权利要求20所述的第二通信装置,其特征在于,所述M1个上行子带为所述第一通信装置发送所述随机接入前导码的候选上行子带,所述N1个下行子带为所述第二通信装置发送所述随机接入响应消息和所述竞争解决消息的候选下行子带。
  22. 根据权利要求19-21任一项所述的第二通信装置,其特征在于,所述随机接入响应消息用于指示所述M个上行子带中的K1个上行子带的上行资源分配信息;所述第三上行子带为所述K1个上行子带中的一个上行子带。
  23. 根据权利要求19-22任一项所述的第二通信装置,其特征在于,
    所述发送单元,还用于若所述接收单元未从所述第一通信装置接收到所述消息三,则向所述第一通信装置发送消息三重传调度消息,所述消息三重传调度消息用于指示所述M个上行子带中的K2个上行子带的上行资源分配信息;
    所述接收单元,还用于通过所述K2个上行子带中的一个上行子带从所述第一通信装置接收所述消息三的重传。
  24. 根据权利要求23所述的第二通信装置,其特征在于,K1≤K2。
  25. 一种计算机可读存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被模块执行时使所述模块执行如权利要求1-6任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被模块执行时使所述模块执行如权利要求7-12任一项所述的方法。
PCT/CN2018/076872 2018-02-14 2018-02-14 一种随机接入方法及其装置 WO2019157731A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/076872 WO2019157731A1 (zh) 2018-02-14 2018-02-14 一种随机接入方法及其装置
CN201880089042.3A CN111699747A (zh) 2018-02-14 2018-02-14 一种随机接入方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076872 WO2019157731A1 (zh) 2018-02-14 2018-02-14 一种随机接入方法及其装置

Publications (1)

Publication Number Publication Date
WO2019157731A1 true WO2019157731A1 (zh) 2019-08-22

Family

ID=67620150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076872 WO2019157731A1 (zh) 2018-02-14 2018-02-14 一种随机接入方法及其装置

Country Status (2)

Country Link
CN (1) CN111699747A (zh)
WO (1) WO2019157731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115734202A (zh) * 2021-08-31 2023-03-03 华为技术有限公司 旁链路通信方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387600A (zh) * 2010-09-06 2012-03-21 普天信息技术研究院有限公司 一种宽带集群通信系统中随机接入的方法
CN104812083A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 用于随机接入过程的方法和装置
CN106559874A (zh) * 2015-09-24 2017-04-05 华为技术有限公司 一种子带调度方法、装置
WO2017179784A1 (ko) * 2016-04-14 2017-10-19 엘지전자 주식회사 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
US20170367120A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Random access procedures in next gen networks
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
JP5129863B2 (ja) * 2008-02-25 2013-01-30 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるランダムアクセス実行方法
KR101962245B1 (ko) * 2011-09-23 2019-03-27 삼성전자 주식회사 광대역 단말과 협대역 단말을 함께 운용하는 무선통신시스템에서 협대역 단말의 시스템 접속 방법 및 장치
KR102039957B1 (ko) * 2015-06-03 2019-11-05 후아웨이 테크놀러지 컴퍼니 리미티드 주파수 도메인 자원들의 구성을 위한 방법 및 디바이스
CN113194514A (zh) * 2015-10-13 2021-07-30 华为技术有限公司 一种子带切换的方法、设备及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387600A (zh) * 2010-09-06 2012-03-21 普天信息技术研究院有限公司 一种宽带集群通信系统中随机接入的方法
CN104812083A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 用于随机接入过程的方法和装置
CN106559874A (zh) * 2015-09-24 2017-04-05 华为技术有限公司 一种子带调度方法、装置
WO2017179784A1 (ko) * 2016-04-14 2017-10-19 엘지전자 주식회사 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
US20170367120A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Random access procedures in next gen networks
CN107690173A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 一种随机接入方法和设备

Also Published As

Publication number Publication date
CN111699747A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
EP3818768B1 (en) Method and user equipment for performing random access channel procedure for unlicensed operation
US10462824B2 (en) Wireless communication system, and base station side and user equipment side device and method
US20210068154A1 (en) Channel sensing method, related device, and system
EP3100545B1 (en) Inter-group control of semi-persistent channel occupation for device-to-device (d2d) wireless communications
WO2021223240A1 (zh) 资源选择方法、装置、设备及存储介质
JP7282182B2 (ja) Ra-rnti処理方法及び装置
US11382142B2 (en) Random access method and device, storage medium, and electronic device
WO2016183813A1 (zh) Mtc设备接入方法、基站和系统
US20170231007A1 (en) Inhibition mechanism for device-to-device (d2d) communication
CN115066031B (zh) 侧行通信的方法及装置
JP2022553584A (ja) チャネルアクセス指示方法及び装置
CN110856267B (zh) 一种通信方法及设备
CN107295567B (zh) 一种基于帧结构的无线资源冲突检测方法
WO2022017490A1 (zh) 随机接入方法、配置方法及相关设备
CN109803442B (zh) 一种同步信号的发送方法、网络设备及终端设备
WO2012021131A1 (en) Common control channel design and coexistence mechanism for tv white space
WO2020224648A1 (zh) 一种分配资源的方法、基站及终端
JP2024503370A (ja) ランダムアクセス方法及び装置
WO2019157731A1 (zh) 一种随机接入方法及其装置
EP3573400B1 (en) Method for reassigning root sequence index and apparatus therefor
CN113573401B (zh) 通信方法、装置及系统
US12035335B2 (en) Sidelink communication method and apparatus
US11997699B2 (en) Sidelink communication method and apparatus
CN111867126A (zh) 随机接入方法和装置
WO2023178675A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906022

Country of ref document: EP

Kind code of ref document: A1