WO2022017297A1 - 热泵系统 - Google Patents

热泵系统 Download PDF

Info

Publication number
WO2022017297A1
WO2022017297A1 PCT/CN2021/106901 CN2021106901W WO2022017297A1 WO 2022017297 A1 WO2022017297 A1 WO 2022017297A1 CN 2021106901 W CN2021106901 W CN 2021106901W WO 2022017297 A1 WO2022017297 A1 WO 2022017297A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
heat exchanger
pump system
heat pump
throttle
Prior art date
Application number
PCT/CN2021/106901
Other languages
English (en)
French (fr)
Inventor
邱燮宁
肖天龙
吕略
张小燕
徐菁菁
Original Assignee
约克广州空调冷冻设备有限公司
江森自控泰科知识产权控股有限责任合伙公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 约克广州空调冷冻设备有限公司, 江森自控泰科知识产权控股有限责任合伙公司 filed Critical 约克广州空调冷冻设备有限公司
Priority to US18/016,016 priority Critical patent/US20230213249A1/en
Priority to EP21847138.1A priority patent/EP4187177A4/en
Publication of WO2022017297A1 publication Critical patent/WO2022017297A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0276Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using six-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the present application relates to the field of air conditioning, in particular to a heat pump system.
  • the heat pump system includes a compressor, two heat exchangers, a throttling device and a four-way valve, which can meet the requirements of providing air-conditioning cooling and cooling capacity to the outside world and providing air-conditioning heating and heat supply to the outside world.
  • this heat pump system has fewer operating modes. Therefore, there is a need for a heat pump system that can provide the outside world with air-conditioning cooling and cooling capacity, provide air-conditioning heating and heating capacity to the outside world, provide hot water heating and heating capacity to the outside world, and provide hot water supply while providing air-conditioning cooling and cooling capacity to the outside world. Multiple working modes of thermal heat.
  • the present application provides a heat pump system, which includes a compressor, a first heat exchanger, a second heat exchanger, a third heat exchanger, and a six-way valve.
  • the compressor includes a suction port and a discharge port.
  • the first heat exchanger is arranged in the first flow path.
  • the second heat exchanger is arranged in the second flow path.
  • the third heat exchanger is arranged in the third flow path.
  • the first circulation path, the second circulation path and the third circulation path are parallel paths, and the first end of the first circulation path, the first end of the second circulation path and the The first end of the third flow path is connected to the six-way valve and controllably communicates with the suction port and the discharge port of the compressor through the six-way valve.
  • the second end of the first circulation path, the second end of the second circulation path and the second end of the third circulation path are connected to a common path intersection.
  • the six-way valve includes six ports, one of the six ports communicates with the discharge port of the compressor, and two of the six ports communicate with the compressor The other three ports communicate with the first end of the first circulation path, the first end of the second circulation path and the first end of the third circulation path, respectively.
  • the six-way valve includes a first port, a second port, a third port, a fourth port, a fifth port and a sixth port, wherein the first port is connected to the exhaust gas of the compressor
  • the second port is connected with the first end of the third circulation path
  • the third port is connected with the suction port of the compressor
  • the fourth port is connected with the first end of the second circulation path.
  • the first end is connected
  • the fifth port is connected with the suction port of the compressor
  • the sixth port is connected with the first end of the first flow path.
  • the six-way valve has a first state, a second state, and a third state, and the six-way valve is configured such that when the six-way valve is in the first state, the first port and the third Two ports communicate with each other, the third port communicates with the sixth port, and the fourth port communicates with the fifth port; when the six-way valve is in the second state, the second port communicates with the third port is in communication, the first port is in communication with the fourth port, the fifth port is in communication with the sixth port; and when the six-way valve is in the third state, the third port is in communication The port communicates with the fourth port, the second port communicates with the fifth port, and the first port communicates with the sixth port.
  • the heat pump system further includes a first throttling device, a second throttling device and a third throttling device.
  • the first throttle device is disposed in the first flow path, and the first throttle device includes a first throttle inlet and a first throttle outlet.
  • the second throttle device is disposed in the second flow path, and the second throttle device includes a second throttle inlet and a second throttle outlet.
  • the third throttle device is disposed in the third flow path, and the third throttle device includes a third throttle inlet and a third throttle outlet.
  • the first throttle inlet, the second throttle inlet and the third throttle inlet are connected to the path intersection.
  • the heat pump system further includes a first bypass, a second bypass, and a third bypass, and the first bypass, the second bypass, and the third bypass are respectively provided in the first bypass, the second bypass, and the third bypass.
  • the first control valve, the second control valve and the third control valve The first end of the first bypass is connected to the first throttle outlet, the first end of the second bypass is connected to the second throttle outlet, and the first end of the third bypass is connected to the first throttle outlet.
  • Three throttle outlet connections, the second end of the first bypass, the second end of the second bypass and the second end of the third bypass are connected to a common bypass junction to respectively
  • the first, second, and third throttle devices are controllably bypassed, thereby allowing the first heat exchanger, the second heat exchanger, and the third Three heat exchangers can each be in fluid communication with the bypass junction.
  • the first control valve, the second control valve and the third control valve are one-way valves. wherein the first control valve is configured to enable fluid flow from the first heat exchanger through the first bypass to the bypass junction, and the second control valve is configured to enable fluid flow From the second heat exchanger through the second bypass to the bypass junction, the third control valve is configured to enable flow from the third heat exchanger to pass through the third bypass Road flow to the bypass junction.
  • the heat pump system can realize a plurality of operation modes, and the plurality of operation modes include an individual cooling mode.
  • the six-way valve is held in the first state, the third control valve and the second throttling device are opened, and the first control valve, the second control valve, the first throttle device and the third throttle device are closed so that the compressor, the third heat exchanger, the second throttle device and the The second heat exchanger is connected in the refrigerant loop.
  • the heat pump system can realize a plurality of operation modes, and the plurality of operation modes include an independent heating mode.
  • the six-way valve is held in the second state, the second control valve and the third throttle are opened, and the first the control valve, the third control valve, the first throttling device and the second throttling device are closed so that the compressor, the second heat exchanger, the third throttling device and the third heat exchanger is connected in the refrigerant loop.
  • the heat pump system can implement a plurality of working modes, and the plurality of working modes include an independent heating water mode.
  • the six-way valve is maintained in the third state, the first control valve and the third throttling device are opened, and the first control valve is opened.
  • the second control valve, the third control valve, the first throttle device and the second throttle device are closed, so that the compressor, the first heat exchanger, the third throttle device are closed.
  • the device and said third heat exchanger are connected in a refrigerant loop.
  • the heat pump system can implement multiple working modes, and the multiple working modes include cooling and water heating modes.
  • the six-way valve is held in the third state, the first control valve and the second throttle are opened, and the The second control valve, the third control valve, the first throttle and the third throttle are closed so that the compressor, the first heat exchanger, the second throttle The flow device and the second heat exchanger are connected in a refrigerant loop.
  • the heat pump system can implement multiple working modes, and the multiple working modes include hot water heating and defrosting modes.
  • the six-way valve is maintained in the first state, the third control valve and the first throttling device are opened, and all the first control valve, the third control valve, the second throttle device and the third throttle device are closed so that the compressor, the third heat exchanger, the first throttle A flow device and the first heat exchanger are connected in a refrigerant loop.
  • the piping of each component in the heat pump system of the present application is simple, the integration is high, the installation difficulty is small, the pressure drop of suction and exhaust is small, and the control logic is simple.
  • FIG. 1 is a system diagram of a heat pump system according to a first embodiment of the present application
  • FIG. 2 is a schematic diagram of the communication connection between the control device and each component in the heat pump system shown in FIG. 1;
  • Fig. 3 is the schematic internal structure diagram of the control device in Fig. 2;
  • FIG. 4 is a system diagram of the heat pump system shown in FIG. 1 in a single cooling mode
  • FIG. 5 is a system diagram of the heat pump system shown in FIG. 1 in a single heating mode
  • FIG. 6 is a system diagram of the heat pump system shown in FIG. 1 under a single hot water heating mode
  • FIG. 7 is a system diagram of the heat pump system shown in FIG. 1 under hot water heating and defrosting modes
  • FIG. 8 is a system diagram of the heat pump system shown in FIG. 1 under cooling and water heating modes
  • FIG. 9 is a system diagram of a heat pump system of a second embodiment of the present application.
  • FIG. 1 is a system diagram of a heat pump system 100 according to a first embodiment of the present application, to illustrate various components in the heat pump system and their connection relationships.
  • the heat pump system 100 includes a compressor 108 , a first heat exchanger 101 , a second heat exchanger 102 , a third heat exchanger 103 , a six-way valve 140 , a first throttle device 131 , and a second heat exchanger 103 .
  • the connecting lines shown in Figure 1 between the various components represent connecting lines.
  • the heat pump system 100 includes a first flow path, a second flow path, and a third flow path.
  • the first circulation path, the second circulation path and the third circulation path are parallel paths.
  • the first heat exchanger 101 and the first throttling device 131 are arranged in series in the first circulation path
  • the second heat exchanger 102 and the second throttling device 132 are arranged in series in the second circulation path
  • the regulator 103 and the third throttling device 133 are arranged in series in the third flow path.
  • the second flow port 114 of the first heat exchanger 101 is connected to the first throttle outlet of the first throttle device 131
  • the second flow port 116 of the second heat exchanger 102 is connected to the second throttle device
  • the second throttle outlet of 132 is connected
  • the second flow port 118 of the third heat exchanger 103 is connected to the third throttle outlet of the third throttle device 133 .
  • the first end of the first flow path, the first end of the second flow path and the first end of the third flow path are all connected to the six-way valve 140 .
  • the second ends of the first flow path, the second flow path and the third flow path are connected to a common path intersection A.
  • the six-way valve 140 includes a first port 141 , a second port 142 , a third port 143 , a fourth port 144 , a fifth port 145 and a sixth port 146 .
  • the first end of the first flow path is connected to the sixth port 146
  • the first end of the second flow path is connected to the fourth port 144
  • the first end of the third flow path is connected to the second port 142 .
  • the first flow port 113 of the first heat exchanger 101 communicates with the sixth port 146
  • the first flow port 115 of the second heat exchanger 102 communicates with the fourth port 144
  • the third heat exchanger 103 The first flow port 117 communicates with the second port 142 .
  • the first throttle inlet of the first throttle device 131 , the second throttle inlet of the second throttle device 132 and the third throttle inlet of the third throttle device 133 communicate with the path intersection point A.
  • the first throttling device 131 , the second throttling device 132 and the third throttling device 133 can all be controllably opened or closed.
  • the compressor 108 has an intake port 111 and an exhaust port 112 .
  • the exhaust port 112 is connected to the first port 141 of the six-way valve 140 through a connecting pipeline, so that the exhaust port 112 communicates with the first port 141 of the six-way valve 140 .
  • the suction port 111 is connected to the third port 143 and the fifth port 145 of the six-way valve 140 through a connecting pipeline, so that the suction port 111 communicates with the third port 143 and the fifth port 145 of the six-way valve 140 .
  • the six-way valve 140 includes a first flow passage 151 , a second flow passage 152 and a third flow passage 153 (see FIGS. 4-6 ), and has a first state, a second state and a third state.
  • the six-way valve 140 is configured such that when the six-way valve 140 is in the first state, the first port 141 and the second port 142 are in fluid communication through the first flow passage 151 and the third port 143 and the sixth port 146 are in fluid communication through the second flow
  • the passage 152 is in fluid communication, and the fourth port 144 and the fifth port 145 are in fluid communication through the third flow passage 153 (see FIG.
  • the heat pump system 100 also includes a first bypass, a second bypass, and a third bypass.
  • the first end of the first bypass is connected between the second flow port 114 of the first heat exchanger 101 and the first throttle outlet of the first throttle device 131, so that the first end of the first bypass is connected to the first throttle outlet of the first throttle device 131.
  • the second flow ports 114 of a heat exchanger 101 communicate with each other.
  • the first end of the second bypass is connected between the second flow port 116 of the second heat exchanger 102 and the second throttle outlet of the second throttle device 132 such that the first end of the second bypass is connected to the first end of the second bypass.
  • the second flow ports 116 of the two heat exchangers 102 communicate with each other.
  • the first end of the third bypass is connected between the second flow port 118 of the third heat exchanger 103 and the third throttle outlet of the third throttle device 133, so that the first end of the third bypass is connected to the first end of the third bypass.
  • the second flow ports 118 of the three heat exchangers 103 communicate with each other.
  • the second ends of the first bypass, the second bypass and the third bypass are connected to a common bypass junction B, so that the second flow port 114 of the first heat exchanger 101, the second heat exchanger 102
  • the second flow port 116 of the third heat exchanger 103 and the second flow port 118 of the third heat exchanger 103 can communicate with the bypass junction B through the first bypass, the second bypass and the third bypass, respectively.
  • the path junction A and the bypass junction B are the same point.
  • the heat pump system 100 further includes a first control valve 121 provided in the first bypass, a second control valve 122 provided in the second bypass, and a third control valve 123 provided in the third bypass, respectively for Control the connection and disconnection of the first bypass, the second bypass and the third bypass.
  • the first control valve 121 , the second control valve 122 and the third control valve 123 are one-way valves.
  • the first control valve 121 is configured to enable fluid (eg, refrigerant) to flow from the second flow port 114 of the first heat exchanger 101 to the bypass junction B through the first bypass.
  • the second control valve 122 is configured to enable fluid (eg, refrigerant) to flow from the second flow port 116 of the second heat exchanger 102 to the bypass junction B through the second bypass.
  • the third control valve 123 is configured to enable fluid (eg, refrigerant) to flow from the second flow port 118 of the third heat exchanger 103 to the bypass junction B through the third bypass.
  • first control valve 121, the second control valve 122 and the third control valve 123 can also be configured as other types of valves, which can controllably connect or disconnect the upstream and downstream valves. Open it.
  • the first heat exchanger 101 is a water-side heat exchanger. When used as a condenser, it can be used to provide users with hot water. It can also be used as an evaporator.
  • the second heat exchanger 102 is an air side heat exchanger. It can act as a condenser/evaporator for providing heat/cooling to the user.
  • the third heat exchanger 103 is an air side heat exchanger. It includes a fan 104 . It can act as a condenser/evaporator to dissipate heat/cold to the outside world.
  • first heat exchanger 101 the second heat exchanger 102 and the third heat exchanger 103 are only illustrative.
  • the heat exchanger 102 and the third heat exchanger 103 may be any form of heat exchanger.
  • the third heat exchanger 103 may be a ground source heat exchanger, a water source heat exchanger, or the like.
  • FIG. 2 is a schematic diagram of the communication connection between the control device 202 and various components in the heat pump system 100 shown in FIG. 1 .
  • the heat pump system 100 includes a control device 202 .
  • the control device 202 is connected in communication with the compressor 108, the six-way valve 140, the first throttle device 131, the second throttle device 132, the third throttle device 133 and the fan 104 through the connections 274, 275, 276, 277, 278, and 279, respectively.
  • the control device 202 can control the opening and closing of the compressor 108, control the six-way valve 140 to be in the first state, the second state or the third state, control the first throttle device 131, the second throttle device 132 and the third throttle device 131.
  • the opening and closing of the three throttling devices 133, and the opening and closing of the control fan 104 are examples of the control fan 104.
  • FIG. 3 is a schematic internal structure diagram of the control device 202 in FIG. 2 .
  • the control device 202 includes a bus 302, a processor 304, an input interface 308, an output interface 312, and a memory 318 having a control program.
  • Various components in the control device 202 including the processor 304 , the input interface 308 , the output interface 312 and the memory 318 are communicatively connected to the bus 302 , so that the processor 304 can control the operation of the input interface 308 , the output interface 312 and the memory 318 .
  • memory 318 is used to store programs, instructions, and data
  • processor 304 reads programs, instructions, and data from memory 318 and can write data to memory 318 .
  • the processor 304 controls the operation of the input interface 308 and the output interface 312 by executing the programs and instructions read from the memory 318 .
  • the output interface 312 is connected by
  • the input interface 308 receives the operation request and other operation parameters of the heat pump system 100 through the connection 309 .
  • Processor 304 controls the operation of heat pump system 100 by executing programs and instructions in memory 318 . More specifically, the control device 202 can receive an operation request for controlling the heat pump system 100 through the input interface 308 (such as sending a request through the control panel), and send a control signal to each controlled component through the output interface 312, so that the heat pump system 100 can Operates in a variety of work modes and can switch between each work mode.
  • the heat pump system 100 of the present application realizes the independent cooling mode and the independent heating mode through specific control of the six-way valve 140 , the first throttling device 131 , the second throttling device 132 , the third throttling device 133 and the fan 104 . , multiple working modes including independent hot water heating mode, cooling and hot water heating mode, and hot water heating and defrosting mode.
  • the connection relationship of each component in the heat pump system 100 of the present application is simple, and the control logic is simple.
  • FIG. 4-8 are system diagrams of the heat pump system 100 shown in FIG. 1 to illustrate the refrigerant loop of the heat pump system 100 when operating in different operating modes, wherein the arrows indicate the flow direction and flow path of the refrigerant.
  • Each working mode shown in Figure 4-8 is described in detail below:
  • FIG. 4 is a system diagram of the heat pump system 100 shown in FIG. 1 in a cooling-only mode. As shown in FIG. 4 , through the control of the control device 202, the six-way valve 140 is in the first state, the second throttle device 132 is opened, the first throttle device 131 and the third throttle device 133 are closed, and the Fan 104 is turned on.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with air, thereby changing the high-temperature and high-pressure gaseous refrigerant into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the third control valve 123 , the path intersection A and the second throttle device 132 in sequence.
  • the high-pressure liquid refrigerant flows through the second throttling device 132 to become low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 102 .
  • the low-temperature and low-pressure refrigerant exchanges heat with the fluid with a higher temperature on the customer side, thereby reducing the temperature of the fluid on the customer side, so as to provide the customer side with a lower temperature fluid (for example, for providing air conditioning) cold water).
  • the low-temperature and low-pressure refrigerant changes into a low-pressure gaseous refrigerant after exchanging heat with the user-side fluid in the second heat exchanger 102 .
  • the low-pressure gaseous refrigerant passes through the fourth port 144, the third flow channel 153 and the fifth port 145 of the six-way valve 140 in sequence, and then enters the compressor 108 from the suction port 111 of the compressor 108 again, becoming a high-temperature and high-pressure gaseous refrigerant, to complete the refrigerant cycle.
  • the compressor 108, the third heat exchanger 103, the second throttling device 132, and the second heat exchanger 102 are connected in the refrigerant loop.
  • the third heat exchanger 103 is used as a condenser, and the second heat exchanger 102 is used as an evaporator.
  • the first heat exchanger 101 is not in the refrigerant loop.
  • the refrigerant does not flow into the first heat exchanger 101 from the second flow port 114 .
  • the first flow port 113 of the first heat exchanger 101 is in fluid communication with the suction port 111 of the compressor 108 through the second flow passage 152, at least a part of the refrigerant accumulated in the first heat exchanger 101 can After passing through the first flow port 113 , the sixth port 146 , the second flow passage 152 , and the third port 143 of the first heat exchanger 101 in sequence, it flows into the compressor 108 from the suction port 111 of the compressor 108 .
  • FIG. 5 is a system diagram of the heat pump system 100 shown in FIG. 1 in a heating-only mode. As shown in FIG. 5, through the control of the control device 202, the six-way valve 140 is placed in the second state, the third throttle device 133 is opened, the first throttle device 131 and the second throttle device 132 are closed, and the Fan 104 is turned on.
  • the high temperature and high pressure gaseous refrigerant exchanges heat with the lower temperature fluid on the user side, thereby increasing the temperature of the user side fluid to provide the user with the higher temperature fluid (for example, for providing A/C hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side fluid in the second heat exchanger 102 .
  • the high-pressure liquid refrigerant After flowing out from the second heat exchanger 102 , the high-pressure liquid refrigerant passes through the second control valve 122 , the path intersection A and the third throttle device 133 in sequence.
  • the high-pressure liquid refrigerant flows through the third throttling device 133 to become low-temperature and low-pressure refrigerant, and then flows to the third heat exchanger 103 .
  • the low temperature and low pressure refrigerant exchanges heat with air, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the second port 142, the first flow channel 151 and the third port 143 of the six-way valve 140 in sequence, and then enters the compressor 108 from the suction port 111 of the compressor 108 again, and becomes a high-temperature and high-pressure gaseous refrigerant, to complete the refrigerant cycle.
  • the compressor 108, the second heat exchanger 102, the third throttling device 133 and the third heat exchanger 103 are connected in the refrigerant loop.
  • the second heat exchanger 102 is used as a condenser
  • the third heat exchanger 103 is used as an evaporator.
  • the first heat exchanger 101 is not in the refrigerant loop.
  • the refrigerant does not flow into the first heat exchanger 101 from the second flow port 114 .
  • the first flow port 113 of the first heat exchanger 101 is in fluid communication with the suction port 111 of the compressor 108 through the third flow passage 153, at least a part of the refrigerant accumulated in the first heat exchanger 101 can After passing through the first flow port 113 , the sixth port 146 , the third flow passage 153 , and the fifth port 145 of the first heat exchanger 101 in sequence, it flows into the compressor 108 from the suction port 111 of the compressor 108 .
  • FIG. 6 is a system diagram of the heat pump system 100 shown in FIG. 1 in an independent hot water heating mode. As shown in FIG. 6 , through the control of the control device 202, the six-way valve 140 is placed in the third state, the third throttle device 133 is opened, the first throttle device 131 and the second throttle device 132 are closed, and the Fan 104 is turned on.
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the discharge port 112 of the compressor 108 flows to the first heat exchanger 101 through the first port 141 , the third circulation channel 153 and the sixth port 146 of the six-way valve 140 in sequence.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with the fluid with a lower temperature on the user side, thereby increasing the temperature of the fluid on the user side, so as to provide the user with a fluid with a higher temperature (for example, for providing domestic hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side fluid in the first heat exchanger 101 .
  • the high-pressure liquid refrigerant passes through the first control valve 121 , the path intersection A and the third throttle device 133 in sequence.
  • the high-pressure liquid refrigerant flows through the third throttling device 133 to become low-temperature and low-pressure refrigerant, and then flows to the third heat exchanger 103 .
  • the low temperature and low pressure refrigerant exchanges heat with air, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the second port 142, the second flow channel 152 and the fifth port 145 of the six-way valve 140 in sequence, and then enters the compressor 108 from the suction port 111 of the compressor 108 again, and becomes a high-temperature and high-pressure gaseous refrigerant, to complete the refrigerant cycle.
  • the compressor 108, the first heat exchanger 101, the third throttle device 133 and the third heat exchanger 103 are connected in the refrigerant loop.
  • the first heat exchanger 101 is used as a condenser, and the third heat exchanger 103 is used as an evaporator.
  • the second heat exchanger 102 is not in the refrigerant loop.
  • the refrigerant does not flow into the second heat exchanger 102 from the second flow port 116 .
  • the first flow port 115 of the second heat exchanger 102 is in fluid communication with the suction port 111 of the compressor 108 through the first flow passage 151, at least a part of the refrigerant accumulated in the second heat exchanger 102 can After passing through the first flow port 115 , the fourth port 144 , the first flow passage 151 and the third port 143 of the second heat exchanger 102 in this order, it flows into the compressor 108 from the suction port 111 of the compressor 108 .
  • the heat pump system 100 When the third heat exchanger 103 in the heat pump system 100 adopts the air-side heat exchanger (ie, the air source heat exchanger) shown in FIG. 1 , the heat pump system 100 also includes a hot water heating and defrosting mode. This is because when the heat pump system 100 is in the above-mentioned independent hot water heating mode and the air-side heat exchanger is in a low temperature and high humidity environment, the water vapor in the air in the environment will condense on the third heat exchanger 103 after contacting the low temperature third heat exchanger 103 . Frost is formed on the heat exchanger 103 , which will affect the heat exchange efficiency of the third heat exchanger 103 .
  • the control device 202 can determine whether the frost formed on the third heat exchanger 103 affects the heat exchange efficiency of the third heat exchanger 103 . If the control device 202 determines that the frost formed on the third heat exchanger 103 will affect the heat exchange efficiency of the third heat exchanger 103, the control device 202 switches the heat pump system 100 to the following mode of heating water and defrosting. As an example, the control device 202 may determine whether to switch to the hot water heating and defrosting mode according to the current ambient temperature and system state parameters.
  • FIG. 7 is a system diagram of the heat pump system 100 shown in FIG. 1 in a hot water heating and defrosting mode. As shown in FIG. 7 , through the control of the control device 202, the six-way valve 140 is in the first state, the first throttle device 131 is opened, the second throttle device 132 and the third throttle device 133 are closed, and the Fan 104 is turned off.
  • the high temperature and high pressure gaseous refrigerant transfers heat to the frost condensed on the third heat exchanger 103, thereby defrosting the frost.
  • the fan 104 in the third heat exchanger 103 is not started.
  • the high-temperature and high-pressure gaseous refrigerant turns into a high-pressure liquid refrigerant in the third heat exchanger 103 and then sequentially passes through the third control valve 123 , the path intersection A and the first throttle device 131 .
  • the high-pressure liquid refrigerant flows through the first throttling device 131 to become low-temperature and low-pressure refrigerant, and then flows to the first heat exchanger 101 .
  • the low temperature and low pressure refrigerant exchanges heat with the fluid on the user side in the first heat exchanger 101, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the sixth port 146, the second flow passage 152 and the third port 143 of the six-way valve 140 in sequence, and then enters the compressor 108 from the suction port 111 of the compressor 108, and becomes a high-temperature and high-pressure gaseous refrigerant, to complete the refrigerant cycle.
  • the compressor 108, the third heat exchanger 103, the first throttle device 131 and the first heat exchanger 101 are connected in the refrigerant loop.
  • the third heat exchanger 103 is used as a condenser, and the first heat exchanger 101 is used as an evaporator.
  • the second heat exchanger 102 is not in the refrigerant loop.
  • the refrigerant does not flow into the second heat exchanger 102 from the second flow port 116 .
  • the first flow port 115 of the second heat exchanger 102 is in fluid communication with the suction port 111 of the compressor 108 through the third flow passage 153, at least a part of the refrigerant accumulated in the second heat exchanger 102 is also After passing through the first flow port 115 , the fourth port 144 , the third flow passage 153 , and the fifth port 145 of the second heat exchanger 102 in sequence, it flows into the compressor 108 from the suction port 111 of the compressor 108 .
  • control device 202 may switch the working mode back to the hot water heating mode alone, so as to continue to provide a higher temperature fluid to the user side through the first heat exchanger 101 (for example, for supplying domestic hot water).
  • the third heat exchanger 103 in the independent heating mode shown in FIG. 5 also needs to be defrosted.
  • the control device 202 can determine whether the frost formed on the third heat exchanger 103 affects the heat exchange efficiency of the third heat exchanger 103 . If the control device 202 determines that the frost formed on the third heat exchanger 103 will affect the heat exchange efficiency of the third heat exchanger 103, the control device 202 switches the heat pump system 100 to the following mode of heating water and defrosting.
  • the pipeline connection relationship of each component is the same as that in the independent cooling mode shown in FIG. 4 , therefore, the hot water making and defrosting modes are described with reference to FIG. 4 .
  • the six-way valve 140 is in the first state, the second throttle device 132 is opened, the first throttle device 131 and the third throttle device 133 are closed, and the Fan 104 is turned off.
  • the high temperature and high pressure gaseous refrigerant transfers heat to the frost condensed on the third heat exchanger 103, thereby defrosting the frost.
  • the fan 104 in the third heat exchanger 103 is not started.
  • the high-temperature and high-pressure gaseous refrigerant turns into a high-pressure liquid refrigerant in the third heat exchanger 103 and then sequentially passes through the third control valve 123 , the path intersection A and the second throttle device 132 .
  • the high-pressure liquid refrigerant flows through the second throttling device 132 to become low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 102 .
  • the low temperature and low pressure refrigerant exchanges heat with the fluid on the user side in the second heat exchanger 102, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the fourth port 144, the third flow channel 153 and the fifth port 145 of the six-way valve 140 in sequence, and then enters the compressor 108 from the suction port 111 of the compressor 108 again, becoming a high-temperature and high-pressure gaseous refrigerant, to complete the refrigerant cycle.
  • the compressor 108, the third heat exchanger 103, the second throttling device 132 and the second heat exchanger 102 are connected in the refrigerant loop when the heat pump system 100 is in the heating and defrosting mode.
  • the third heat exchanger 103 is used as a condenser, and the second heat exchanger 102 is used as an evaporator.
  • the first heat exchanger 101 is not in the refrigerant loop.
  • the refrigerant does not flow into the first heat exchanger 101 from the second flow port 114 .
  • the first flow port 113 of the first heat exchanger 101 is in fluid communication with the suction port 111 of the compressor 108 through the second flow passage 152, at least a part of the refrigerant accumulated in the first heat exchanger 101 can After passing through the first flow port 113 , the sixth port 146 , the second flow passage 152 , and the third port 143 of the first heat exchanger 101 in sequence, it flows into the compressor 108 from the suction port 111 of the compressor 108 .
  • the control device 202 can switch the working mode back to the heating-only mode, so that the second heat exchanger 102 can continue to provide the user side with a higher temperature fluid (for example, for the provision of air-conditioned hot water).
  • FIG. 8 is a system diagram of the heat pump system 100 shown in FIG. 1 in a cooling and water heating mode. As shown in FIG. 8 , through the control of the control device 202, the six-way valve 140 is placed in the third state, the second throttle device 132 is opened, the first throttle device 131 and the third throttle device 133 are closed, and the Fan 104 is turned off.
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the discharge port 112 of the compressor 108 flows to the first heat exchanger 101 through the first port 141 , the third circulation channel 153 and the sixth port 146 of the six-way valve 140 in sequence.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with the fluid with a lower temperature on the user side, thereby increasing the temperature of the fluid on the user side, so as to provide the user with a fluid with a higher temperature (for example, for providing domestic hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side fluid in the first heat exchanger 101 .
  • the high-pressure liquid refrigerant After flowing out of the first heat exchanger 101 , the high-pressure liquid refrigerant passes through the first control valve 121 , the path intersection A and the second throttle device 132 in sequence.
  • the high-pressure liquid refrigerant flows through the second throttling device 132 to become low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 102 .
  • the low temperature and low pressure refrigerant exchanges heat with the fluid with a higher temperature on the user side, thereby reducing the temperature of the fluid on the user side, so as to provide the user with a lower temperature fluid (for example, for providing air conditioning cold water) ).
  • the low-temperature and low-pressure refrigerant changes into a low-pressure gaseous refrigerant after exchanging heat with the user-side fluid in the second heat exchanger 102 .
  • the low-pressure gaseous refrigerant passes through the fourth port 144, the first flow channel 151 and the third port 143 of the six-way valve 140 in sequence, and then enters the compressor 108 from the suction port 111 of the compressor 108 again, becoming a high-temperature and high-pressure gaseous refrigerant, to complete the refrigerant cycle.
  • the compressor 108, the first heat exchanger 101, the second throttling device 132 and the second heat exchanger 102 are connected in the refrigerant loop.
  • the first heat exchanger 101 serves as a condenser
  • the second heat exchanger 102 serves as an evaporator.
  • the third heat exchanger 103 is not in the refrigerant loop.
  • the refrigerant does not flow into the third heat exchanger 103 from the second flow port 118 .
  • the first flow port 117 of the third heat exchanger 103 is in fluid communication with the suction port 111 of the compressor 108 through the second flow passage 152, at least a part of the refrigerant accumulated in the third heat exchanger 103 can be After passing through the first flow port 117 , the second port 142 , the second flow passage 152 , and the fifth port 145 of the third heat exchanger 103 in sequence, it flows into the compressor 108 from the suction port 111 of the compressor 108 .
  • the heat pump system 100 of the present application can realize multiple working modes by controlling the six-way valve 140 and three circulation paths (ie, the first circulation path, the second circulation path and the third circulation path). More specifically, the control device 202 only needs to control the six-way valve 140 , the first throttle device 131 , the second throttle device 132 and the third throttle device 133 .
  • the piping of each component in the heat pump system 100 is simple, the integration is high, the installation difficulty is small, the pressure drop of suction and exhaust is small, and the control logic is simple.
  • FIG. 9 is a system diagram of a heat pump system 900 according to the second embodiment of the application.
  • the heat pump system 900 shown in FIG. 9 is substantially the same as the heat pump system 100 shown in FIG. 1 , and the similarities will not be repeated here.
  • the heat pump system 900 shown in FIG. 9 further includes additional components, and the path junction A and the bypass junction B in the heat pump system 900 are two different points.
  • the path junction A and the bypass junction B are in fluid communication with the connection of the pipeline through additional components.
  • the heat pump system 900 further includes a liquid accumulator 901 , a filter drier 902 , an additional heat exchanger 903 and an additional throttling device 904 .
  • the accumulator 901 is used to adjust the amount of refrigerant in the heat pump system 900 .
  • the filter drier 902 is used to filter dust and debris from the refrigerant and to remove moisture from the refrigerant.
  • the additional heat exchanger 903 and the additional throttling device 904 can form an economizer, thereby increasing the efficiency of the heat pump system 900 .
  • the inlet of the accumulator 901 is connected to the bypass junction B.
  • the inlet of the accumulator 901 is connected to the inlet of the filter drier 902 .
  • the outlet of the filter drier 902 is connected to the first flow port 911 of the additional heat exchanger 903 and is connected to the throttling inlet of the additional throttling device 904 .
  • the second flow port 912 of the additional heat exchanger 903 is connected to a compression chamber (not shown) in the compressor 108 .
  • the third flow opening 913 of the additional heat exchanger 903 is connected to the throttle outlet of the additional throttle device 904 .
  • the fourth flow port 914 of the additional heat exchanger 903 is connected to the path junction A.
  • the first flow port 911 is in fluid communication with the fourth flow port 914, and a first flow path is formed in the additional heat exchanger 903;
  • the second flow port 912 is in fluid communication with the third flow port 912
  • Port 913 is in fluid communication and forms a second flow path in additional heat exchanger 903 .
  • the fluid in the first flow path can exchange heat with the fluid in the second flow path.
  • the heat pump system 900 can implement a plurality of operating modes in the heat pump system 100 through controls similar to those in the heat pump system 100 , which will not be repeated here. Regardless of which operating mode the heat pump system 900 is in, the fluid flowing out of the control valves (ie, the first control valve 121 , the second control valve 122 and the third control valve 123 ) is high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows through the accumulator 901 and the drying filter 902 in sequence and then divides into two paths. All the way from the throttling inlet of the additional throttling device 904 through the additional throttling device 904 .
  • the high-pressure liquid refrigerant becomes a low-temperature and low-pressure refrigerant at the additional throttling device 904 and flows into the additional heat exchanger 903 from the third flow port 913 of the additional heat exchanger 903 .
  • the other path enters the additional heat exchanger 903 from the first flow port 911 .
  • the fluid entering the additional heat exchanger 903 from the first flow port 911 is further cooled by the fluid flowing into the additional heat exchanger 903 from the third flow port 913, and then flows out through the fourth flow port 914, and then passes through
  • the path intersection A flows to the throttle devices (ie, the first throttle device 131 , the second throttle device 132 and the third throttle device 133 ).
  • the fluid flowing into the additional heat exchanger 903 from the third flow port 913 is heated and then flows to a compression chamber (not shown) in the compressor 108 through the second flow port 912 .
  • the setting of the economizer can make the temperature of the refrigerant flowing through the throttling device (ie, the first throttling device 131 , the second throttling device 132 and the third throttling device 133 ) lower on the one hand, and lower the temperature on the other hand.
  • the exhaust temperature of the compressor 108 increases the efficiency of the heat pump system 100 .
  • the embodiment of the present application shows a six-way valve 140 with a specific communication structure
  • the six-way valve includes six ports, one of which is communicated with the discharge port 112 of the compressor 108, two of the six ports are communicated with the suction port 111 of the compressor 108, and the remaining three ports are respectively connected with the first port 112 of the compressor 108.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本申请提供了一种热泵系统,包括压缩机、第一换热器、第二换热器第三换热器以及六通阀。压缩机包括吸气口和排气口。第一换热器设置在第一流通路径中。第二换热器设置在第二流通路径中。第三换热器设置在第三流通路径中。其中,第一流通路径、第二流通路径和第三流通路径为并行的路径,第一流通路径的第一端、第二流通路径的第一端和第三流通路径的第一端连接至六通阀,并通过六通阀与压缩机的吸气口和排气口可控地连通。其中,第一流通路径的第二端、第二流通路径的第二端和第三流通路径的第二端连接至一个共同的路径交汇点。本申请的热泵系统中各部件的管路简单,集成度高,安装难度小,吸排气的压降小,并且控制逻辑简易。

Description

热泵系统 技术领域
本申请涉及空调领域,尤其涉及热泵系统。
背景技术
热泵系统包括压缩机、两个换热器、节流装置和四通阀,能够满足向外界提供空调供冷冷量和向外界提供空调供热热量。然而,这种热泵系统工作模式较少。因此,需要一种热泵系统,能够满足向外界提供空调供冷冷量、向外界提供空调供热热量、向外界提供热水供热热量以及向外界提供空调供冷冷量的同时提供热水供热热量的多个工作模式。
发明内容
为了实现上述目的,本申请提供了一种热泵系统,包括压缩机、第一换热器、第二换热器第三换热器以及六通阀。所述压缩机包括吸气口和排气口。所述第一换热器设置在第一流通路径中。所述第二换热器设置在第二流通路径中。所述第三换热器设置在第三流通路径中。其中,所述第一流通路径、所述第二流通路径和所述第三流通路径为并行的路径,所述第一流通路径的第一端、所述第二流通路径的第一端和所述第三流通路径的第一端连接至所述六通阀,并通过所述六通阀与所述压缩机的吸气口和排气口可控地连通。其中,所述第一流通路径的第二端、所述第二流通路径的第二端和所述第三流通路径的第二端连接至一个共同的路径交汇点。
根据上述热泵系统,所述六通阀包括六个端口,所述六个端口中的一个端口与所述压缩机的排气口连通,所述六个端口中的两个端口与所述压缩机的吸气口连通,其余三个端口分别与所述第一流通路径的第一端、所述第二流通路径的第一端和所述第三流通路径的第一端连通。
根据上述热泵系统,所述六通阀包括第一端口、第二端口、第三端口、第四端口、第五端口和第六端口,其中,所述第一端口与所述压缩机的排气口连接,所述第二端口与所述第三流通路径的第一端连接,所述第三端口与所述压缩机的吸气口连接,所述第四端口与所述第二流通路径的第一端连接,所述第五端口与所述压缩机的吸气口连接,所述第六端口与所述第一流通路径的第一端连接。所述六通阀具有第一状态、第二状态和第三状态,所述六通 阀被配置为:当所述六通阀处于所述第一状态时,所述第一端口和所述第二端口连通,所述第三端口和所述第六端口连通,所述第四端口和所述第五端口连通;当所述六通阀处于所述第二状态时,所述第二端口与所述第三端口连通,所述第一端口与第四端口连通,所述第五端口和所述第六端口连通;并且当所述六通阀处于所述第三状态时,所述第三端口和所述第四端口连通,所述第二端口和所述第五端口连通,所述第一端口和所述第六端口连通。
根据上述热泵系统,所述热泵系统还包括第一节流装置、第二节流装置以及第三节流装置。所述第一节流装置设置在第一流通路径中,所述第一节流装置包括第一节流入口和第一节流出口。所述第二节流装置设置在第二流通路径中,所述第二节流装置包括第二节流入口和第二节流出口。所述第三节流装置设置在第三流通路径中,所述第三节流装置包括第三节流入口和第三节流出口。其中,所述第一节流入口、所述第二节流入口和所述第三节流入口与所述路径交汇点连接。
根据上述热泵系统,所述热泵系统还包括第一旁路、第二旁路、第三旁路以及分别设置在所述第一旁路、所述第二旁路和所述第三旁路中的第一控制阀、第二控制阀和第三控制阀。其中,所述第一旁路的第一端与第一节流出口连接,所述第二旁路的第一端与第二节流出口连接,所述第三旁路的第一端与第三节流出口连接,所述第一旁路的第二端、所述第二旁路的第二端和所述第三旁路的第二端连接至一个共同的旁路交汇点,以分别可控地绕过所述第一节流装置、所述第二节流装置和所述第三节流装置,从而使所述第一换热器、所述第二换热器以及所述第三换热器能够分别与所述旁路交汇点流体连通。
根据上述热泵系统,所述第一控制阀、所述第二控制阀和所述第三控制阀为单向阀。其中,所述第一控制阀被配置为能够使流体从所述第一换热器经过所述第一旁路流至所述旁路交汇点,所述第二控制阀被配置为能够使流体从所述第二换热器经过所述第二旁路流至所述旁路交汇点,所述第三控制阀被配置为能够使流体从所述第三换热器经过所述第三旁路流至所述旁路交汇点。
根据上述热泵系统,所述热泵系统能够实现多个工作模式,所述多个工作模式包括单独制冷模式。所述热泵系统在所述单独制冷模式中时,所述六通阀被保持在所述第一状态,所述第三控制阀和所述第二节流装置被打开,并且所述第一控制阀、所述第二控制阀、所述第一节流装置和所述第三节流装置被关闭,以使得所述压缩机、所述第三换热器、所述第二节流装置和所述第二换热器连接在制冷剂环路中。
根据上述热泵系统,所述热泵系统能够实现多个工作模式,所述多个工作模式包括单独制热模式。所述热泵系统在所述单独制热模式中时,所述六通阀被保持在所述第二状态,所述第二控制阀和所述第三节流装置被打开,并且所述第一控制阀、所述第三控制阀、所述第一节流装置和所述第二节流装置被关闭,以使得所述压缩机、所述第二换热器、所述第三节流装置和所述第三换热器连接在制冷剂环路中。
根据上述热泵系统,所述热泵系统能够实现多个工作模式,所述多个工作模式包括单独制热水模式。所述热泵系统在所述单独制热水模式中时,所述六通阀被保持在所述第三状态,所述第一控制阀和所述第三节流装置被打开,并且所述第二控制阀、所述第三控制阀、所述第一节流装置和所述第二节流装置被关闭,以使得所述压缩机、所述第一换热器、所述第三节流装置和所述第三换热器连接在制冷剂环路中。
根据上述热泵系统,所述热泵系统能够实现多个工作模式,所述多个工作模式包括制冷与制热水模式。所述热泵系统在所述制冷与制热水模式中时,所述六通阀被保持在所述第三状态,所述第一控制阀和所述第二节流装置被打开,并且所述第二控制阀、所述第三控制阀、所述第一节流装置和所述第三节流装置被关闭,以使得所述压缩机、所述第一换热器、所述第二节流装置和所述第二换热器连接在制冷剂环路中。
根据上述热泵系统,所述热泵系统能够实现多个工作模式,所述多个工作模式包括制热水与化霜模式。所述热泵系统在所述制热水与化霜模式中时,所述六通阀被保持在所述第一状态,所述第三控制阀和所述第一节流装置被打开,并且所述第一控制阀、所述第三控制阀、所述第二节流装置和所述第三节流装置被关闭,以使得所述压缩机、所述第三换热器所述第一节流装置和所述第一换热器连接在制冷剂环路中。
本申请的热泵系统中各部件的管路简单,集成度高,安装难度小,吸排气的压降小,并且控制逻辑简易。
通过考虑下面的具体实施方式、附图和权利要求,本申请的其它的特征、优点和实施例可以被阐述或变得显而易见。此外,应当理解,上述发明内容和下面的具体实施方式均为示例性的,并且旨在提供进一步的解释,而不限制要求保护的本申请的范围。然而,具体实施方式和具体实例仅指示本申请的优选实施例。对于本领域的技术人员来说,在本申请的精神和范围内的各种变化和修改将通过该具体实施方式变得显而易见。
附图说明
本申请的特征和优点可通过参照附图阅读以下详细说明得到更好地理解,在整个附图中,相同的附图标记表示相同的部件,其中:
图1是本申请的第一实施例的热泵系统的系统图;
图2为图1所示的热泵系统中控制装置与各部件的通讯连接示意图;
图3是图2中控制装置示意性的内部结构图;
图4是图1所示的热泵系统在单独制冷模式下的系统图;
图5是图1所示的热泵系统在单独制热模式下的系统图;
图6是图1所示的热泵系统在单独制热水模式下的系统图;
图7是图1所示的热泵系统在制热水与化霜模式下的系统图;
图8是图1所示的热泵系统在制冷与制热水模式下的系统图;
图9是本申请的第二实施例的热泵系统的系统图。
具体实施方式
下面将参考构成本说明书一部分的附图对本发明的各种具体实施方式进行描述。应该理解的是,本申请中所使用的诸如“第一”和“第二”等序数词仅仅用于区分和标识,而不具有任何其他含义,如未特别指明则不表示特定的顺序,也不具有特定的关联性。例如,术语“第一换热器”本身并不暗示“第二换热器”的存在,术语“第二换热器”本身也不暗示“第一换热器”的存在。
图1是本申请的第一实施例的热泵系统100的系统图,以示出热泵系统中各部件及其连接关系。如图1所示,热泵系统100包括压缩机108、第一换热器101、第二换热器102、第三换热器103、六通阀140、第一节流装置131、第二节流装置132、第三节流装置133,以及以下将要介绍的其他数个阀。图1所示的在各个部件(包括压缩机108、三个换热器、六通阀140、三个节流装置和其他各个阀)之间的连线表示连接管路。
热泵系统100包括第一流通路径、第二流通路径和第三流通路径。其中,第一流通路径、第二流通路径和第三流通路径是并行的路径。第一换热器101和第一节流装置131串联地设 置在第一流通路径中,第二换热器102和第二节流装置132串联地设置在第二流通路径中,第三换热器103和第三节流装置133串联地设置在第三流通路径中。具体来说,第一换热器101的第二流通口114与第一节流装置131的第一节流出口相连接,第二换热器102的第二流通口116与第二节流装置132的第二节流出口相连接,第三换热器103的第二流通口118与第三节流装置133的第三节流出口相连接。
第一流通路径的第一端、第二流通路径和第三流通路径的第一端都连接至六通阀140。第一流通路径、第二流通路径和第三流通路径的第二端连接至一个共同的路径交汇点A。具体来说,六通阀140包括第一端口141、第二端口142、第三端口143、第四端口144、第五端口145和第六端口146。第一流通路径的第一端与第六端口146相连接,第二流通路径的第一端与第四端口144相连接,第三流通路径的第一端与第二端口142相连接。也就是说,第一换热器101的第一流通口113与第六端口146相连通,第二换热器102的第一流通口115与第四端口144相连通,第三换热器103的第一流通口117与第二端口142相连通。第一节流装置131的第一节流入口、第二节流装置132的第二节流入口和第三节流装置133的第三节流入口与路径交汇点A相连通。在本申请的实施例中,第一节流装置131、第二节流装置132和第三节流装置133均能够被控制地开启或关闭。
压缩机108具有吸气口111和排气口112。排气口112通过连接管路与六通阀140的第一端口141相连接,以使得排气口112与六通阀140的第一端口141相连通。吸气口111通过连接管路与六通阀140的第三端口143和第五端口145相连接,以使得吸气口111与六通阀140的第三端口143和第五端口145相连通。
六通阀140包括第一流通通道151、第二流通通道152和第三流通通道153(参见图4-6),并且具有第一状态、第二状态和第三状态。六通阀140被配置为:当六通阀140处于第一状态时,第一端口141和第二端口142通过第一流通通道151流体连通,第三端口143和第六端口146通过第二流通通道152流体连通,第四端口144和第五端口145通过第三流通通道153流体连通(参见图4);当六通阀140处于第二状态时,第二端口142与第三端口143通过第一流通通道151流体连通,第一端口141与第四端口144通过第二流通通道152流体连通,第五端口145和第六端口146通过第三流通通道153流体连通(参见图5);并且当六通阀140处于第三状态时,第三端口143和第四端口144通过第一流通通道151流体连通,第二端口142和第五端口145通过第二流通通道152流体连通,第一端口141和和第六端口146通过第三流通通道153流体连通(参见图6)。
热泵系统100还包括第一旁路、第二旁路和第三旁路。第一旁路的第一端连接在第一换热器101的第二流通口114与第一节流装置131的第一节流出口之间,以使得第一旁路的第一端与第一换热器101的第二流通口114相连通。第二旁路的第一端连接在第二换热器102的第二流通口116与第二节流装置132的第二节流出口之间,以使得第二旁路的第一端与第二换热器102的第二流通口116相连通。第三旁路的第一端连接在第三换热器103的第二流通口118与第三节流装置133的第三节流出口之间,以使得第三旁路的第一端与第三换热器103的第二流通口118相连通。第一旁路、第二旁路和第三旁路的第二端连接至一个共同的旁路交汇点B,以使得第一换热器101的第二流通口114、第二换热器102的第二流通口116和第三换热器103的第二流通口118能够分别通过第一旁路、第二旁路和第三旁路与旁路交汇点B连通。在本实施例中,路径交汇点A与旁路交汇点B为同一点。
热泵系统100还包括设置在第一旁路中的第一控制阀121、设置在第二旁路中的第二控制阀122以及设置在第三旁路中的第三控制阀123,分别用于控制第一旁路、第二旁路和第三旁路的连通和断开。在本申请的实施例中,第一控制阀121、第二控制阀122和第三控制阀123为单向阀。第一控制阀121被配置为能够使流体(例如,制冷剂)从第一换热器101的第二流通口114经过第一旁路流至旁路交汇点B。第二控制阀122被配置为能够使流体(例如,制冷剂)从第二换热器102的第二流通口116经过第二旁路流至旁路交汇点B。第三控制阀123被配置为能够使流体(例如,制冷剂)从第三换热器103的第二流通口118经过第三旁路流至旁路交汇点B。
但本领域的技术人员可以理解,第一控制阀121、第二控制阀122和第三控制阀123也可以设置为其他类型的阀,其能够使阀上游与下游之间可控地连通或断开即可。
在本申请的实施例中,第一换热器101为水侧换热器。其作为冷凝器时,能够用于为用户提供热水。其也可以作为蒸发器使用。第二换热器102为空气侧换热器。其能够作为冷凝器/蒸发器,用于为用户提供热量/冷量。第三换热器103为空气侧换热器。其包括风机104。其能够作为冷凝器/蒸发器,用于向外界散发热量/冷量。
本领域的技术人员可以理解,上述第一换热器101、第二换热器102和第三换热器103的类型只是示意性的,在其他示例中,第一换热器101、第二换热器102和第三换热器103可以为任意形式的换热器。例如,第三换热器103可以为地源型换热器、水源型换热器等。
图2为图1所示的热泵系统100中控制装置202与各部件的通讯连接示意图。如图2所示,热泵系统100包括控制装置202。控制装置202通过连接274,275,276,277,278,279分别与 压缩机108、六通阀140、第一节流装置131、第二节流装置132、第三节流装置133和风机104通讯连接。其中,控制装置202能够控制控制压缩机108的开启与关闭,控制六通阀140处于第一状态、第二状态或第三状态,控制第一节流装置131、第二节流装置132和第三节流装置133的开启和关闭,以及控制风机104的开启与关闭。
图3是图2中控制装置202示意性的内部结构图。如图3所示,控制装置202包括总线302、处理器304、输入接口308、输出接口312以及具有控制程序的存储器318。控制装置202中各个部件,包括处理器304、输入接口308、输出接口312以及存储器318与总线302通讯相连,使得处理器304能够控制输入接口308、输出接口312以及存储器318的运行。具体地说,存储器318用于存储程序、指令和数据,而处理器304从存储器318读取程序、指令和数据,并且能向存储器318写入数据。通过执行存储器318读取程序和指令,处理器304控制输入接口308、输出接口312的运行。如图3所示,输出接口312通过连接
274,275,276,277,278,279分别与压缩机108、六通阀140、第一节流装置131、第二节流装置132、第三节流装置133和风机104通讯连接。输入接口308通过连接309接收热泵系统100的运行请求与其他运行参数。通过执行存储器318中的程序和指令,处理器304控制热泵系统100的运行。更具体地说,控制装置202可以通过输入接口308接收控制热泵系统100的运行请求(如通过控制面板发送请求),并通过输出接口312向各被控制部件发出控制信号,从而使得热泵系统100能够以多种工作模式运行并可以在各个工作模式之间进行切换。
本申请的热泵系统100通过对六通阀140、第一节流装置131、第二节流装置132、第三节流装置133和风机104的具体控制,以实现单独制冷模式、单独制热模式、单独制热水模式、制冷与制热水模式以及制热水与化霜模式在内的多个工作模式。本申请的热泵系统100中各部件的连接关系简单,并且控制逻辑简易。
图4-8是图1所示的热泵系统100的系统图,以示出热泵系统100在不同工作模式下运行时的制冷剂环路,其中箭头表示制冷剂的流向和流动路径。下面详述图4-8所示的各个工作模式:
图4是图1所示的热泵系统100在单独制冷模式下的系统图。如图4所示,通过控制装置202的控制,使六通阀140处于第一状态,使第二节流装置132开启,使第一节流装置131和第三节流装置133关闭,并且使风机104开启。
具体来说,从压缩机108的排气口112流出的高温高压气态制冷剂依次通过六通阀140的第一端口141、第一流通通道151和第二端口142流至第三换热器103。在第三换热器103 中,高温高压气态制冷剂与空气换热,从而将高温高压气态制冷剂变为高压液态制冷剂。高压液态制冷剂从第三换热器103流出后依次通过第三控制阀123、路径交汇点A和第二节流装置132。高压液态制冷剂流经第二节流装置132后成为低温低压制冷剂,随后流至第二换热器102。在第二换热器102中,低温低压制冷剂与用户侧的温度较高的流体进行换热,从而降低用户侧流体的温度,以为用户侧提供温度较低的流体(例如,用于提供空调冷水)。低温低压制冷剂在第二换热器102中与用户侧流体换热后变为低压气态的制冷剂。低压气态的制冷剂依次通过六通阀140的第四端口144、第三流通通道153和第五端口145后再次从压缩机108的吸气口111进入压缩机108,成为高温高压气态制冷剂,以完成制冷剂的循环。
由此,当热泵系统100处于单独制冷模式中时,压缩机108、第三换热器103、第二节流装置132和第二换热器102连接在制冷剂环路中。其中,第三换热器103作为冷凝器,第二换热器102作为蒸发器。第一换热器101不在制冷剂环路中。
需要说明的是,由于此时第一节流装置131被关闭,因此制冷剂不会从第二流通口114流入第一换热器101。此外,由于第一换热器101的第一流通口113通过第二流通通道152与压缩机108的吸气口111流体连通,因此积存在第一换热器101中的制冷剂的至少一部分能够依次通过第一换热器101的第一流通口113、第六端口146、第二流通通道152和第三端口143后,从压缩机108的吸气口111流入压缩机108。
图5是图1所示的热泵系统100在单独制热模式下的系统图。如图5所示,通过控制装置202的控制,使六通阀140处于第二状态,使第三节流装置133开启,使第一节流装置131和第二节流装置132关闭,并且使风机104开启。
具体来说,从压缩机108的排气口112流出的高温高压气态制冷剂依次通过六通阀140的第一端口141、第二流通通道152和第四端口144流至第二换热器102。在第二换热器102中,高温高压气态制冷剂与用户侧的温度较低的流体进行换热,从而升高用户侧流体的温度,以为用户提供温度较高的流体(例如,用于提供空调热水)。高温高压气态制冷剂在第二换热器102中与用户侧流体换热后变为高压液态的制冷剂。高压液态制冷剂从第二换热器102流出后依次通过第二控制阀122、路径交汇点A和第三节流装置133。高压液态制冷剂流经第三节流装置133后成为低温低压制冷剂,随后流至第三换热器103。在第三换热器103中,低温低压制冷剂与空气换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过六通阀140的第二端口142、第一流通通道151和第三端口143后再次从压缩机108的吸气口111进入压缩机108,成为高温高压气态制冷剂,以完成制冷剂的循环。
由此,当热泵系统100处于单独制热模式中时,压缩机108、第二换热器102、第三节流装置133和第三换热器103连接在制冷剂环路中。其中,第二换热器102作为冷凝器,第三换热器103作为蒸发器。第一换热器101不在制冷剂环路中。
需要说明的是,由于此时第一节流装置131被关闭,因此制冷剂不会从第二流通口114流入第一换热器101。此外,由于第一换热器101的第一流通口113通过第三流通通道153与压缩机108的吸气口111流体连通,因此积存在第一换热器101中的制冷剂的至少一部分能够依次通过第一换热器101的第一流通口113、第六端口146、第三流通通道153和第五端口145后,从压缩机108的吸气口111流入压缩机108。
图6是图1所示的热泵系统100在单独制热水模式下的系统图。如图6所示,通过控制装置202的控制,使六通阀140处于第三状态,使第三节流装置133开启,使第一节流装置131和第二节流装置132关闭,并且使风机104开启。
具体来说,从压缩机108的排气口112流出的高温高压气态制冷剂依次通过六通阀140的第一端口141、第三流通通道153和第六端口146流至第一换热器101。在第一换热器101中,高温高压气态制冷剂与用户侧的温度较低的流体进行换热,从而升高用户侧流体的温度,以为用户提供温度较高的流体(例如,用于提供生活热水)。高温高压气态制冷剂在第一换热器101中与用户侧流体换热后变为高压液态的制冷剂。高压液态制冷剂从第一换热器101流出后依次通过第一控制阀121、路径交汇点A和第三节流装置133。高压液态制冷剂流经第三节流装置133后成为低温低压制冷剂,随后流至第三换热器103。在第三换热器103中,低温低压制冷剂与空气换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过六通阀140的第二端口142、第二流通通道152和第五端口145后再次从压缩机108的吸气口111进入压缩机108,成为高温高压气态制冷剂,以完成制冷剂的循环。
由此,当热泵系统100处于单独制热水模式中时,压缩机108、第一换热器101、第三节流装置133和第三换热器103连接在制冷剂环路中。其中,第一换热器101作为冷凝器,第三换热器103作为蒸发器。第二换热器102不在制冷剂环路中。
需要说明的是,由于此时第二节流装置132被关闭,因此制冷剂不会从第二流通口116流入第二换热器102。此外,由于第二换热器102的第一流通口115通过第一流通通道151与压缩机108的吸气口111流体连通,因此积存在第二换热器102中的制冷剂的至少一部分能够依次通过第二换热器102的第一流通口115、第四端口144、第一流通通道151和第三端口143后,从压缩机108的吸气口111流入压缩机108。
当热泵系统100中的第三换热器103采用图1所示出的空气侧换热器(即,空气源换热器)时,热泵系统100还包括制热水与化霜模式。这是因为当热泵系统100处于上述单独制热水模式,并且空气侧换热器处于低温高湿度环境时,环境中空气里的水蒸汽接触低温的第三换热器103后会凝结在第三换热器103上形成霜,这将影响第三换热器103的换热效率。因此,当热泵系统100处于上述单独制热水模式时,控制装置202可以判断第三换热器103上形成的霜是否影响第三换热器103的换热效率。如果控制装置202判断第三换热器103上形成的霜会影响第三换热器103的换热效率,控制装置202将热泵系统100切换至下述制热水与化霜模式。作为一个示例,控制装置202可以根据当前的环境温度和系统状态参数来判断是否切换至制热水与化霜模式。
图7是图1所示的热泵系统100在制热水与化霜模式下的系统图。如图7所示,通过控制装置202的控制,使六通阀140处于第一状态,使第一节流装置131开启,使第二节流装置132和第三节流装置133关闭,并且使风机104关闭。
具体来说,从压缩机108的排气口112流出的高温高压气态制冷剂依次通过六通阀140的第一端口141、第一流通通道151和第二端口142流至第三换热器103。在第三换热器103中,高温高压气态制冷剂将热量传递至凝结在第三换热器103上的霜,从而使霜化掉。此时第三换热器103中的风机104不启动。高温高压气态制冷剂在第三换热器103中变为高压液态制冷剂后依次通过第三控制阀123、路径交汇点A和第一节流装置131。高压液态制冷剂流经第一节流装置131后成为低温低压制冷剂,随后流至第一换热器101。在第一换热器101,低温低压制冷剂会与在第一换热器101中的用户侧的流体进行换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过六通阀140的第六端口146、第二流通通道152和第三端口143后,从压缩机108的吸气口111进入压缩机108,成为高温高压气态制冷剂,以完成制冷剂的循环。
由此,当热泵系统100处于制热水与化霜模式中时,压缩机108、第三换热器103、第一节流装置131和第一换热器101连接在制冷剂环路中。其中,第三换热器103作为冷凝器,第一换热器101作为蒸发器。第二换热器102不在制冷剂环路中。
需要说明的是,由于此时第二节流装置132被关闭,因此制冷剂不会从第二流通口116流入第二换热器102。此外,由于第二换热器102的第一流通口115通过第三流通通道153与压缩机108的吸气口111流体连通,因此积存在第二换热器102中的制冷剂的至少一部分 也能够依次通过第二换热器102的第一流通口115、第四端口144、第三流通通道153和第五端口145后,从压缩机108的吸气口111流入压缩机108。
在热泵系统100执行上述制热水与化霜模式一段时间后,控制装置202可以将工作模式切换回单独制热水模式,从而通过第一换热器101继续为用户侧提供温度较高的流体(例如,用于提供生活热水)。
需要说明的是,除了上述单独制热水模式中的第三换热器103需要化霜外,如图5所示的单独制热模式中的第三换热器103也需要化霜。具体来说,当热泵系统100处于上述单独制热模式时,控制装置202可以判断第三换热器103上形成的霜是否影响第三换热器103的换热效率。如果控制装置202判断第三换热器103上形成的霜会影响第三换热器103的换热效率,控制装置202将热泵系统100切换至下述制热水与化霜模式。在制热水与化霜模式中,其各部件的管路连接关系与图4所示的单独制冷模式相同,因此参考图4来描述制热水与化霜模式。如图4所示,通过控制装置202的控制,使六通阀140处于第一状态,使第二节流装置132开启,使第一节流装置131和第三节流装置133关闭,并且使风机104关闭。
具体来说,从压缩机108的排气口112流出的高温高压气态制冷剂依次通过六通阀140的第一端口141、第一流通通道151和第二端口142流至第三换热器103。在第三换热器103中,高温高压气态制冷剂将热量传递至凝结在第三换热器103上的霜,从而使霜化掉。此时第三换热器103中的风机104不启动。高温高压气态制冷剂在第三换热器103中变为高压液态制冷剂后依次通过第三控制阀123、路径交汇点A和第二节流装置132。高压液态制冷剂流经第二节流装置132后成为低温低压制冷剂,随后流至第二换热器102。在第二换热器102中,低温低压制冷剂会与在第二换热器102中的用户侧的流体进行换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过六通阀140的第四端口144、第三流通通道153和第五端口145后再次从压缩机108的吸气口111进入压缩机108,成为高温高压气态制冷剂,以完成制冷剂的循环。
由此,当热泵系统100处于制热水与化霜模式中时,压缩机108、第三换热器103、第二节流装置132和第二换热器102连接在制冷剂环路中。其中,第三换热器103作为冷凝器,第二换热器102作为蒸发器。第一换热器101不在制冷剂环路中。
需要说明的是,由于此时第一节流装置131被关闭,因此制冷剂不会从第二流通口114流入第一换热器101。此外,由于第一换热器101的第一流通口113通过第二流通通道152与压缩机108的吸气口111流体连通,因此积存在第一换热器101中的制冷剂的至少一部分 能够依次通过第一换热器101的第一流通口113、第六端口146、第二流通通道152和第三端口143后,从压缩机108的吸气口111流入压缩机108。
在热泵系统100执行上述制热水与化霜模式一段时间后,控制装置202可以将工作模式切换回单独制热模式,从而通过第二换热器102继续为用户侧提供温度较高的流体(例如,用于提供空调热水)。
图8是图1所示的热泵系统100在制冷与制热水模式下的系统图。如图8所示,通过控制装置202的控制,使六通阀140处于第三状态,使第二节流装置132开启,使第一节流装置131和第三节流装置133关闭,并且使风机104关闭。
具体来说,从压缩机108的排气口112流出的高温高压气态制冷剂依次通过六通阀140的第一端口141、第三流通通道153和第六端口146流至第一换热器101。在第一换热器101中,高温高压气态制冷剂与用户侧的温度较低的流体进行换热,从而升高用户侧流体的温度,以为用户提供温度较高的流体(例如,用于提供生活热水)。高温高压气态制冷剂在第一换热器101中与用户侧流体换热后变为高压液态的制冷剂。高压液态制冷剂从第一换热器101流出后依次通过第一控制阀121、路径交汇点A和第二节流装置132。高压液态制冷剂流经第二节流装置132后成为低温低压制冷剂,随后流至第二换热器102。在第二换热器102中,低温低压制冷剂与用户侧的温度较高的流体进行换热,从而降低用户侧流体的温度,以为用户提供温度较低的流体(例如,用于提供空调冷水)。低温低压制冷剂在第二换热器102中与用户侧流体换热后变为低压气态的制冷剂。低压气态的制冷剂依次通过六通阀140的第四端口144、第一流通通道151和第三端口143后再次从压缩机108的吸气口111进入压缩机108,成为高温高压气态制冷剂,以完成制冷剂的循环。
由此,当热泵系统100处于制冷与制热水模式中时,压缩机108、第一换热器101、第二节流装置132和第二换热器102连接在制冷剂环路中。其中,第一换热器101作为冷凝器,第二换热器102作为蒸发器。第三换热器103不在制冷剂环路中。
需要说明的是,由于此时第三节流装置133被关闭,因此制冷剂不会从第二流通口118流入第三换热器103。此外,由于第三换热器103的第一流通口117通过第二流通通道152与压缩机108的吸气口111流体连通,因此积存在第三换热器103中的制冷剂的至少一部分能够依次通过第三换热器103的第一流通口117、第二端口142、第二流通通道152和第五端口145后,从压缩机108的吸气口111流入压缩机108。
传统的热泵系统为了实现多个工作模式,通常需要至少两个四通阀,或者需要四通阀与三通阀串联形成。这种热泵系统管路复杂,吸排气的压降大,成本高,并且控制逻辑复杂。
然而,本申请的热泵系统100通过对六通阀140以及三个流通路径(即,第一流通路径、第二流通路径和第三流通路径)的控制,即可实现多个工作模式。更具体地说,控制装置202只需对六通阀140、第一节流装置131、第二节流装置132和第三节流装置133进行控制即可。热泵系统100中各部件的管路简单,集成度高,安装难度小,吸排气的压降小,并且控制逻辑简易。
图9为本申请的第二实施例的热泵系统900的系统图。图9所示的热泵系统900与图1所示的热泵系统100大致相同,相同之处此处不再赘述。与图1所示的热泵系统100不同的是,图9所示的热泵系统900还包括附加部件,并且热泵系统900中的路径交汇点A与旁路交汇点B为不同的两点。路径交汇点A与旁路交汇点B通过附加部件与管路的连接流体连通。
如图9所示,热泵系统900还包括储液器901、干燥过滤器902、附加换热器903和附加节流装置904。其中,储液器901用于调整热泵系统900中的制冷剂的量。干燥过滤器902用于过滤制冷剂中的灰尘碎屑以及用于去除制冷剂中的水分。附加换热器903和附加节流装置904能够形成经济器,从而提高热泵系统900的效率。
具体来说,储液器901的入口与旁路交汇点B相连接。储液器901的入口与干燥过滤器902的入口相连接。干燥过滤器902的出口与附加换热器903的第一流通口911相连接,并且与附加节流装置904的节流入口相连接。附加换热器903的第二流通口912与压缩机108中的压缩腔(未示出)相连接。附加换热器903的第三流通口913与附加节流装置904的节流出口相连接。附加换热器903的第四流通口914与路径交汇点A相连接。需要说明的是,在附加换热器903中,第一流通口911与第四流通口914流体连通,并在附加换热器903中形成第一流动路径;第二流通口912与第三流通口913流体连通,并在附加换热器903中形成第二流动路径。第一流动路径中的流体能够与第二流动路径中的流体进行换热。
热泵系统900能够通过与热泵系统100中相似的控制实现热泵系统100中的多个工作模式,此处不再赘述。不论热泵系统900处于哪个工作模式中,从控制阀(即,第一控制阀121、第二控制阀122和第三控制阀123)中流出的流体为高压液态制冷剂。高压液态制冷剂依次流过储液器901和干燥过滤器902后分为两路。一路从附加节流装置904的节流入口通过附加节流装置904。高压液态制冷剂在附加节流装置904处成为低温低压制冷剂后从附加换热器903的第三流通口913流入附加换热器903。另一路从第一流通口911进入附加换热器903。 在附加换热器903中,从第一流通口911进入附加换热器903的流体被从第三流通口913流入附加换热器903的流体进一步冷却后通过第四流通口914流出,随后经过路径交汇点A流向节流装置(即,第一节流装置131、第二节流装置132和第三节流装置133)。而从第三流通口913流入附加换热器903的流体升温后通过第二流通口912流至压缩机108中的压缩腔(未示出)。经济器的设置一方面能够使得流经节流装置(即,第一节流装置131、第二节流装置132和第三节流装置133)的制冷剂的温度更低,另一方面能够降低压缩机108的排气温度,从而提高热泵系统100的效率。
需要说明的是,虽然本申请的实施例中示出了一种具体连通结构的六通阀140,但本领域的技术人员可以理解,任何能够实现上述连通与切换方式的六通阀都在本申请的保护范围内。例如,六通阀包括六个端口,其中一个端口与压缩机108的排气口112连通,六个端口中的两个端口与压缩机108的吸气口111连通,其余三个端口分别与第一流通路径的第一端、第二流通路径和第三流通路径的第一端。
尽管本文中仅对本申请的一些特征进行了图示和描述,但是对本领域技术人员来说可以进行多种改进和变化。因此应该理解,所附的权利要求旨在覆盖所有落入本申请实质精神范围内的上述改进和变化。

Claims (11)

  1. 一种热泵系统,其特征在于:所述热泵系统包括:
    压缩机(108),所述压缩机(108)包括吸气口(111)和排气口(112);
    第一换热器(101),所述第一换热器(101)设置在第一流通路径中;
    第二换热器(102),所述第二换热器(102)设置在第二流通路径中;
    第三换热器(103),所述第三换热器(103)设置在第三流通路径中;以及
    六通阀(140);
    其中,所述第一流通路径、所述第二流通路径和所述第三流通路径为并行的路径,所述第一流通路径的第一端、所述第二流通路径的第一端和所述第三流通路径的第一端连接至所述六通阀(140),并通过所述六通阀(140)与所述压缩机(108)的吸气口(111)和排气口(112)可控地连通;
    其中,所述第一流通路径的第二端、所述第二流通路径的第二端和所述第三流通路径的第二端连接至一个共同的路径交汇点(A)。
  2. 如权利要求1所述的热泵系统,其特征在于:
    所述六通阀(140)包括六个端口,所述六个端口中的一个端口与所述压缩机(108)的排气口(112)连通,所述六个端口中的两个端口与所述压缩机(108)的吸气口(111)连通,其余三个端口分别与所述第一流通路径的第一端、所述第二流通路径的第一端和所述第三流通路径的第一端连通。
  3. 如权利要求2所述的热泵系统,其特征在于:
    所述六通阀(140)包括第一端口(141)、第二端口(142)、第三端口(143)、第四端口(144)、第五端口(145)和第六端口(146),其中,所述第一端口(141)与所述压缩机(108)的排气口(112)连接,所述第二端口(142)与所述第三流通路径的第一端连接,所述第三端口(143)与所述压缩机(108)的吸气口(111)连接,所述第四端口(144)与所述第二流通路径的第一端连接,所述第五端口(145)与所述压缩机(108)的吸气口(111)连接,所述第六端口(146)与所述第一流通路径的第一端连接;
    所述六通阀(140)具有第一状态、第二状态和第三状态,所述六通阀(140)被配置为:当所述六通阀(140)处于所述第一状态时,所述第一端口(141)和所述第二端口(142)连通,所述第三端口(143)和所述第六端口(146)连通,所述第四端口(144)和所述第五端 口(145)连通;当所述六通阀(140)处于所述第二状态时,所述第二端口(142)与所述第三端口(143)连通,所述第一端口(141)与第四端口(144)连通,所述第五端口(145)和所述第六端口(146)连通;并且当所述六通阀(140)处于所述第三状态时,所述第三端口(143)和所述第四端口(144)连通,所述第二端口(142)和所述第五端口(145)连通,所述第一端口(141)和所述第六端口(146)连通。
  4. 如权利要求3所述的热泵系统,其特征在于:所述热泵系统还包括:
    第一节流装置(131),所述第一节流装置(131)设置在第一流通路径中,所述第一节流装置(131)包括第一节流入口和第一节流出口;
    第二节流装置(132),所述第二节流装置(132)设置在第二流通路径中,所述第二节流装置(132)包括第二节流入口和第二节流出口;以及
    第三节流装置(133),所述第三节流装置(133)设置在第三流通路径中,所述第三节流装置(133)包括第三节流入口和第三节流出口;
    其中,所述第一节流入口、所述第二节流入口和所述第三节流入口与所述路径交汇点(A)连接。
  5. 如权利要求4所述的热泵系统,其特征在于:所述热泵系统还包括:
    第一旁路、第二旁路、第三旁路以及分别设置在所述第一旁路、所述第二旁路和所述第三旁路中的第一控制阀(121)、第二控制阀(122)和第三控制阀(123);
    其中,所述第一旁路的第一端与第一节流出口连接,所述第二旁路的第一端与第二节流出口连接,所述第三旁路的第一端与第三节流出口连接,所述第一旁路的第二端、所述第二旁路的第二端和所述第三旁路的第二端连接至一个共同的旁路交汇点(B),以分别可控地绕过所述第一节流装置(131)、所述第二节流装置(132)和所述第三节流装置(133),从而使所述第一换热器(101)、所述第二换热器(102)以及所述第三换热器(103)能够分别与所述旁路交汇点(B)流体连通。
  6. 如权利要求5所述的热泵系统,其特征在于:
    所述第一控制阀(121)、所述第二控制阀(122)和所述第三控制阀(123)为单向阀;
    其中,所述第一控制阀(121)被配置为能够使流体从所述第一换热器(101)经过所述第一旁路流至所述旁路交汇点,所述第二控制阀(122)被配置为能够使流体从所述第二换热 器(102)经过所述第二旁路流至所述旁路交汇点,所述第三控制阀(123)被配置为能够使流体从所述第三换热器(103)经过所述第三旁路流至所述旁路交汇点(B)。
  7. 如权利要求5所述的热泵系统,其特征在于:
    所述热泵系统能够实现多个工作模式,所述多个工作模式包括单独制冷模式;
    所述热泵系统在所述单独制冷模式中时,所述六通阀(140)被保持在所述第一状态,所述第三控制阀(123)和所述第二节流装置(132)被打开,并且所述第一控制阀(121)、所述第二控制阀(122)、所述第一节流装置(131)和所述第三节流装置(133)被关闭,以使得所述压缩机(108)、所述第三换热器(103)、所述第二节流装置(132)和所述第二换热器(102)连接在制冷剂环路中。
  8. 如权利要求5所述的热泵系统,其特征在于:
    所述热泵系统能够实现多个工作模式,所述多个工作模式包括单独制热模式;
    所述热泵系统在所述单独制热模式中时,所述六通阀(140)被保持在所述第二状态,所述第二控制阀(122)和所述第三节流装置(133)被打开,并且所述第一控制阀(121)、所述第三控制阀(123)、所述第一节流装置(131)和所述第二节流装置(132)被关闭,以使得所述压缩机(108)、所述第二换热器(102)、所述第三节流装置(133)和所述第三换热器(103)连接在制冷剂环路中。
  9. 如权利要求5所述的热泵系统,其特征在于:
    所述热泵系统能够实现多个工作模式,所述多个工作模式包括单独制热水模式;
    所述热泵系统在所述单独制热水模式中时,所述六通阀(140)被保持在所述第三状态,所述第一控制阀(121)和所述第三节流装置(133)被打开,并且所述第二控制阀(122)、所述第三控制阀(123)、所述第一节流装置(131)和所述第二节流装置(132)被关闭,以使得所述压缩机(108)、所述第一换热器(101)、所述第三节流装置(133)和所述第三换热器(103)连接在制冷剂环路中。
  10. 如权利要求5所述的热泵系统,其特征在于:
    所述热泵系统能够实现多个工作模式,所述多个工作模式包括制冷与制热水模式;
    所述热泵系统在所述制冷与制热水模式中时,所述六通阀(140)被保持在所述第三状态,所述第一控制阀(121)和所述第二节流装置(132)被打开,并且所述第二控制阀(122)、 所述第三控制阀(123)、所述第一节流装置(131)和所述第三节流装置(133)被关闭,以使得所述压缩机(108)、所述第一换热器(101)、所述第二节流装置(132)和所述第二换热器(102)连接在制冷剂环路中。
  11. 如权利要求5所述的热泵系统,其特征在于:
    所述热泵系统能够实现多个工作模式,所述多个工作模式包括制热水与化霜模式;
    所述热泵系统在所述制热水与化霜模式中时,所述六通阀(140)被保持在所述第一状态,所述第三控制阀(123)和所述第一节流装置(131)被打开,并且所述第一控制阀(121)、所述第三控制阀(123)、所述第二节流装置(132)和所述第三节流装置(133)被关闭,以使得所述压缩机(108)、所述第三换热器(103)所述第一节流装置(131)和所述第一换热器(101)连接在制冷剂环路中。
PCT/CN2021/106901 2020-07-24 2021-07-16 热泵系统 WO2022017297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/016,016 US20230213249A1 (en) 2020-07-24 2021-07-16 Heat pump system
EP21847138.1A EP4187177A4 (en) 2020-07-24 2021-07-16 HEAT PUMP SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010722347.2 2020-07-24
CN202010722347.2A CN113970194B (zh) 2020-07-24 2020-07-24 热泵系统

Publications (1)

Publication Number Publication Date
WO2022017297A1 true WO2022017297A1 (zh) 2022-01-27

Family

ID=79585616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106901 WO2022017297A1 (zh) 2020-07-24 2021-07-16 热泵系统

Country Status (4)

Country Link
US (1) US20230213249A1 (zh)
EP (1) EP4187177A4 (zh)
CN (1) CN113970194B (zh)
WO (1) WO2022017297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719471B2 (en) 2021-09-29 2023-08-08 Johnson Controls Tyco IP Holdings LLP Energy efficient heat pump with heat exchanger counterflow arrangement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115597249A (zh) * 2022-09-05 2023-01-13 约克广州空调冷冻设备有限公司(Cn) 热泵系统
CN115597250A (zh) * 2022-09-06 2023-01-13 约克广州空调冷冻设备有限公司(Cn) 热泵系统和四通阀
CN115468329B (zh) * 2022-09-13 2023-10-13 约克广州空调冷冻设备有限公司 热泵系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092134A (en) * 1989-08-18 1992-03-03 Mitsubishi Denki Kabushiki Kaisha Heating and cooling air conditioning system with improved defrosting
US20090049857A1 (en) * 2006-04-20 2009-02-26 Carrier Corporation Heat pump system having auxiliary water heating and heat exchanger bypass
CN108870803A (zh) * 2017-05-12 2018-11-23 开利公司 热泵系统及其控制方法
CN109595846A (zh) * 2017-09-30 2019-04-09 约克(无锡)空调冷冻设备有限公司 热泵机组及控制热泵机组的方法
CN209800783U (zh) * 2019-02-07 2019-12-17 卢海南 一种具有六通换向阀的热水空调
CN110762888A (zh) * 2019-10-17 2020-02-07 广东纽恩泰新能源科技发展有限公司 一种空气能热泵系统及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324844A (ja) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd 6方向切替弁及びそれを用いた冷凍装置
JP2011202738A (ja) * 2010-03-25 2011-10-13 Toshiba Carrier Corp 空気調和機
CN104374115A (zh) * 2013-08-14 2015-02-25 开利公司 热泵系统、热泵机组及热泵系统的多功能模式控制方法
CN203823897U (zh) * 2014-03-25 2014-09-10 魏学东 一种新型节能冷暖系统
JP6773680B2 (ja) * 2015-11-20 2020-10-21 三菱電機株式会社 冷凍サイクル装置
JP6621686B2 (ja) * 2016-02-26 2019-12-18 株式会社不二工機 六方切換弁
US10830502B2 (en) * 2016-09-13 2020-11-10 Mitsubishi Electric Corporation Air conditioner
CN110530074B (zh) * 2019-08-30 2021-01-19 杭州师范大学钱江学院 一种六通阀、基于六通阀的热交换系统及其热交换方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092134A (en) * 1989-08-18 1992-03-03 Mitsubishi Denki Kabushiki Kaisha Heating and cooling air conditioning system with improved defrosting
US20090049857A1 (en) * 2006-04-20 2009-02-26 Carrier Corporation Heat pump system having auxiliary water heating and heat exchanger bypass
CN108870803A (zh) * 2017-05-12 2018-11-23 开利公司 热泵系统及其控制方法
CN109595846A (zh) * 2017-09-30 2019-04-09 约克(无锡)空调冷冻设备有限公司 热泵机组及控制热泵机组的方法
CN209800783U (zh) * 2019-02-07 2019-12-17 卢海南 一种具有六通换向阀的热水空调
CN110762888A (zh) * 2019-10-17 2020-02-07 广东纽恩泰新能源科技发展有限公司 一种空气能热泵系统及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187177A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719471B2 (en) 2021-09-29 2023-08-08 Johnson Controls Tyco IP Holdings LLP Energy efficient heat pump with heat exchanger counterflow arrangement

Also Published As

Publication number Publication date
US20230213249A1 (en) 2023-07-06
CN113970194B (zh) 2023-01-20
EP4187177A1 (en) 2023-05-31
CN113970194A (zh) 2022-01-25
EP4187177A4 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
WO2022017297A1 (zh) 热泵系统
CN211739588U (zh) 一种可提高换热性能的空调
CN106885405B (zh) 一种空调器系统及其除霜方法
KR101872784B1 (ko) 실외 열교환기
JP7541101B2 (ja) 空気調和装置
CN106225326A (zh) 换热器、空调室外机、热泵系统、控制方法及空调器
WO2024051643A1 (zh) 热泵系统
WO2024051642A1 (zh) 热泵系统和四通阀
CN213480643U (zh) 热泵系统和空调设备
CN206739693U (zh) 一种空调器系统
WO2024074064A1 (zh) 一种间接式多层级余热回收的热泵空调系统及其控制方法
CN210154145U (zh) 空调系统
KR101872783B1 (ko) 실외 열교환기
CN111059732A (zh) 一种空调器及其控制方法
CN208620653U (zh) 一种基于经济器的空调调控结构及空调系统
WO2022007739A1 (zh) 热泵系统
CN115031444A (zh) 热泵系统
CN213514499U (zh) 热泵系统和空调设备
CN201034394Y (zh) 一种空调热泵热水机组
WO2021047158A1 (zh) 空调器及其控制方法
CN206817617U (zh) 空调设备及其多联室内机系统
CN111578450A (zh) 一种空调系统及其除霜方法
CN216924596U (zh) 一种三联供空调热水系统
CN220287825U (zh) 冷媒系统及空调器
CN219243985U (zh) 蒸发器和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021847138

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021847138

Country of ref document: EP

Effective date: 20230224