WO2022017257A1 - 一种刹车盘磨损区的识别方法及磨损识别系统 - Google Patents
一种刹车盘磨损区的识别方法及磨损识别系统 Download PDFInfo
- Publication number
- WO2022017257A1 WO2022017257A1 PCT/CN2021/106578 CN2021106578W WO2022017257A1 WO 2022017257 A1 WO2022017257 A1 WO 2022017257A1 CN 2021106578 W CN2021106578 W CN 2021106578W WO 2022017257 A1 WO2022017257 A1 WO 2022017257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- depth value
- laser line
- area
- line
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
Definitions
- the invention relates to the field of brake discs, in particular to a method for identifying wear areas of a brake disc and a wear identifying system.
- the brake disc When the car is traveling, the brake disc also rotates. When braking is required, the brake caliper clamps the brake disc to generate braking force, which in turn plays the role of deceleration or parking. Brake discs have good braking effect and are easier to maintain than drum brakes. Therefore, brake discs are widely used in automobile braking.
- the present invention provides a method and a wear identification system for identifying the wear area of the brake disc, which can accurately identify the wear area and the non-wear area on the surface of the brake disc. And the operation is more convenient and the user experience is improved.
- an embodiment of the present invention provides a method for identifying a wear area of a brake disc, which is applied to a wear identification system.
- the wear identification system includes a laser, a camera, and a bracket, and the laser and the camera are both fixed to the bracket.
- the laser is used to output laser light to the surface of the brake disc, and the method includes:
- the laser line is divided into a first laser line and a second laser line according to the depth value, the depth value of the first laser line is greater than the depth value of the second laser line; and the depth of the first laser line The depth value is less than the preset threshold;
- the worn area and the unworn area of the brake disc surface are identified.
- calculating the sequence of camera coordinates of the laser line according to:
- the determining the depth value of the laser line along the laser projection direction according to the camera coordinate sequence includes:
- the depth value of the laser line along the laser projection direction is obtained.
- identifying the worn area and the unworn area on the surface of the brake disc according to the imaging positions of the first laser line and the second laser line in the image includes:
- the detection surface where the brake disc is located includes a background area, the background area is an area outside the surface of the brake disc, and the depth value of the third laser line is greater than the first preset threshold, so
- the method also includes:
- the background region is identified according to the imaging position of the third laser line in the image.
- the method further includes:
- the wear depth of the brake disc surface is calculated.
- the laser coordinate sequence includes a first laser coordinate sequence and the second laser coordinate sequence, and the calculation is performed according to a depth value of the first laser line and a depth value of the second laser line
- the wear depth of the brake disc surface including:
- the wear depth of the surface of the brake disc is calculated.
- the method further includes:
- the depth value determine the laser coordinate sequence corresponding to the depth value, and obtain a third laser coordinate sequence
- the embodiment of the present invention provides a kind of wear identification system, is applied to brake disc, comprises:
- the laser is used to output laser light to the surface of the brake disc to form a laser line;
- a camera fixed on the bracket, and the camera is used for taking an image including the laser line;
- a controller comprising at least one processor and a memory, both in communication with the at least one processor, the memory storing instructions executable by the at least one processor, the instructions being executed by the at least one processor At least one processor executes to enable the at least one processor to perform the method as described above.
- a filter is also included;
- the filter is arranged on the viewfinder lens of the camera, wherein the wavelength of the light source that the filter allows to pass is the same as the wavelength of the laser output by the laser.
- the display is connected in communication with the controller for displaying the image captured by the camera, the worn area and the unworn area.
- the present invention has at least the following beneficial effects: the method for identifying the wear area of the brake disc in the present invention is applied to a wear identification system, and the method for identifying the wear area of the brake disc includes first acquiring an image captured by a camera. Including the laser line formed by the laser projected on the detection surface where the brake disc is located, calculate the camera coordinate sequence of the laser line, determine the depth value of the laser line projected to the surface of the brake disc according to the camera coordinate sequence, and then divide the laser line into the first according to the depth value.
- the laser line and the second laser line, the depth value of the first laser line is greater than the depth value of the second laser line; and the depth value of the first laser line is less than the preset threshold value; finally according to the first laser line and the second laser line in the image
- the imaging position in the disc is used to identify worn and unworn areas of the disc surface. Therefore, even if the laser projection area is limited and only covers one unworn area and one worn area, the identification method of the worn area of the brake disc can distinguish the laser lines into different laser lines according to different depth values, and then according to different laser lines in the image It can accurately identify the worn and unworn areas on the surface of the brake disc, and the operation is more convenient and the user experience is improved.
- FIG. 1a is a schematic structural diagram of a wear identification system provided by an embodiment of the present invention.
- Fig. 1b is a schematic diagram of the internal circuit structure of a wear identification system provided by an embodiment of the present invention.
- FIG. 2 is a schematic flowchart of a method for identifying a wear area of a brake disc according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of a laser coordinate system and a camera coordinate system provided by an embodiment of the present invention
- FIG. 4 is a schematic flowchart of a method for identifying a wear area of a brake disc according to another embodiment of the present invention.
- Fig. 5 is the schematic flow chart of step S28 in Fig. 4;
- FIG. 6 is a schematic diagram of a first depth straight line and a second depth straight line provided by an embodiment of the present invention
- FIG. 7 is a schematic diagram of a first depth straight line and a second depth straight line provided by another embodiment of the present invention.
- FIG. 8 is a schematic flowchart of a method for identifying a wear area of a brake disc according to another embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of a device for identifying a wear area of a brake disc provided by an embodiment of the present invention.
- FIG. 10 is a schematic diagram of a hardware structure of a controller according to an embodiment of the present invention.
- FIGS. 1a and 1b are a schematic structural diagram and a schematic diagram of a circuit structure of a wear identification system provided by an embodiment of the present invention.
- the wear identification system is applied to a brake disc, and the wear identification system 100 includes a bracket 101.
- Laser 102, camera 103 and controller 104, the laser 102 is fixed on the bracket 101, and the laser output by the laser 102 is projected on the detection surface where the brake disc is located to form a laser line, wherein the detection surface where the brake disc is located includes the surface area of the brake disc , and can also include areas other than the surface of the brake disc, the background area.
- the camera 103 is fixed on the bracket 101, and the camera 103 is used to capture an image containing laser lines. Different laser lines have different imaging positions in the image, and points on different laser lines have different pixel coordinates in the image. Therefore, the controller 104 can identify the worn area and the unworn area of the brake disc surface according to the imaging positions of different laser lines in the image.
- the wear identification system 100 further includes a filter (not shown in the figure), and the filter is arranged on the viewfinder lens of the camera 103 , wherein the wavelength of the light source that the filter allows to pass is the same as the wavelength of the light source output by the laser 102 .
- the wavelengths of the lasers are the same, so the filter can filter the ambient light entering the camera, etc., and only keep the light signal output by the laser 102 to enter the viewfinder lens of the camera 103 .
- the wear identification system 100 further includes a display 105, which is connected in communication with the controller 104 for displaying the image captured by the camera 103, and can also display the wear area of the brake disc surface represented by different laser lines and unworn areas.
- the controller 104 is electrically connected to the laser 102, the camera 103, and the display 105, respectively.
- the controller 104 can be arranged in the bracket 101 or an external controller.
- the controller 104 is used as the control core of the wear identification system 100 to control the laser 102 in the wear identification system 100 to project the laser light on the detection surface where the brake disc is located.
- the camera 103 is controlled to acquire an image including the laser line and some business logic processing, such as a method for identifying a wear area of a brake disc provided in the following embodiment.
- the controller 104 may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), microcontroller, ARM (Acorn RISC Machine) or other available Program logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of these components. Also, the controller 104 may be any conventional processor, controller, microcontroller, or state machine. The controller 104 may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a DSP, and/or any other such configuration.
- the wear identification system 100 can be a handheld device.
- the user holds the bracket 101 of the wear system and places it on the surface of the brake disc for measurement and identification.
- FIG. 2 is a method for identifying a wear area of a brake disc provided by an embodiment of the present invention.
- the method for identifying a wear area of a brake disc is applied to a wear identification system. As shown in FIG. 2, the wear area of the brake disc is shown in FIG. 2.
- the identification method S20 includes:
- the bracket of the wear system When it is necessary to identify the worn area and the unworn area, the bracket of the wear system is placed on the surface of the brake disc, and the controller controls the laser to output a laser of a specific wavelength band.
- the laser is projected on the detection surface where the brake disc is located to form a laser line, and the laser When projected on the worn and unworn areas of the brake disc surface, different laser lines can be formed, and the camera's framing camera captures an image containing the laser lines.
- the laser output from the laser may be a green line laser in the 520 nm band or a red line laser in the 650 nm band.
- the viewfinder lens of the camera may be a 1MP-2MP high-definition camera.
- the laser lines in the image are different laser lines. According to the depth value of the laser line projected to the detection surface where the brake disc is located, the obtained laser lines are divided into different laser lines. At the same time, the imaging positions of different laser lines in the image Different, according to the difference of the imaging position, the area represented by the laser line can be identified.
- the depth value is obtained by calculating the camera coordinate sequence of the laser line, and then determining the depth value of the laser line projected to the detection surface where the brake disc is located according to the camera coordinate sequence.
- the camera coordinate sequence of the laser line is calculated based on the pixel coordinate sequence of the laser line. Specifically, at least two reference points on the laser line are first obtained, and it is determined that the at least two reference points on the laser line are in The pixel coordinate sequence in the image is converted into a camera coordinate sequence.
- the pixel coordinate sequence includes at least two pixel coordinates.
- the specific calculation formula for converting pixel coordinates into camera coordinates is as follows:
- the depth value of the laser line along the laser projection direction can be obtained.
- the specific method of obtaining the depth value according to the camera coordinate sequence is: first Perform projection transformation on the camera coordinate sequence to obtain a laser coordinate sequence, the laser coordinate sequence is the coordinates in the laser coordinate system, the laser coordinate system is the laser emission origin, the normal vector of the laser plane, and the laser projection direction. As shown in Figure 3, assuming that OL is the origin of the laser, the divergence angle is ⁇ , the projection direction is yL, the normal vector of the laser plane is n, xL is perpendicular to n and yL, and is the same as the distance between the laser plane and the brake disc surface.
- the direction of the intersection line is parallel
- Oc is the center of the camera coordinate system
- xc and yc are the x and y coordinate directions of the image
- the camera coordinate system follows the right-hand coordinate system rule
- the angle between the camera's shooting direction Zc and the normal vector n of the laser plane is ⁇
- ⁇ size is 60 to 65 degrees.
- the coordinate system composed of xL, yL and vector n is the laser coordinate system.
- the yL in the laser coordinate sequence is the depth value of the laser line along the laser projection direction. Therefore, the depth value of the laser line along the laser projection direction can be obtained according to the laser coordinate sequence.
- the laser lines contained in the image are distinguished into different laser lines according to the depth value.
- the depth value of the laser line projected to the unworn area in the laser projection direction is smaller than that of the laser line formed by the projection to the worn area
- the depth value in the laser projection direction is small, that is, the yL coordinate value of the point projected on the laser line formed by the unworn area is smaller than the yL coordinate value of the point projected on the laser line formed by the worn area.
- the wear depth of the brake disc there is also a limit range, that is, the yL coordinate value of the point projected onto the laser line formed by the wear area has a limit range. Therefore, the laser line is divided into the first laser line and the second laser line according to the depth value. The depth value of the line is greater than the depth value of the second laser line, and the depth value of the first laser line is smaller than a preset depth threshold, wherein the preset depth threshold may be determined in advance according to prior information. Therefore, even if the laser projection area is limited, covering only one unworn area and one worn area, the method can differentiate the laser lines into different laser lines by different depth values.
- the worn area and the unworn area of the brake disc surface are identified.
- the plane area where the first laser line is located is determined as a worn area
- the plane area where the second laser line is located is determined as an unworn area.
- the method of identifying the wear area of the brake disc can form laser lines by projecting the laser onto the detection surface where the brake disc is located. Different laser lines can be formed by projecting on different surface areas, and then the image containing the laser lines can be captured by the camera. , distinguish the laser lines into different laser lines according to the acquired depth value of the laser lines, and finally identify the worn and unworn areas of the brake disc surface according to the imaging position of the laser lines in the image. Therefore, even if the laser projection area is limited, the identification method can still distinguish the laser lines into different laser lines according to different depth values, and then accurately identify the worn areas and undeveloped areas of the brake disc surface according to the imaging positions of different laser lines in the image. Wear area, and the operation is more convenient to improve the user experience.
- the detection surface where the brake disc is located also includes a background area.
- the laser When the laser is projected, it can also be projected on an area other than the brake disc, that is, on the background area.
- the camera captures an image, the laser may be projected on the background.
- the laser line formed by the area is also photographed. The laser line will cause errors in the identification of the worn area and the unworn area. It is also necessary to identify the area corresponding to the laser line. Therefore, referring to Figure 4, the method also includes:
- the coordinate yL of the point on the laser line projected to the background area along the laser projection direction varies greatly, and the coordinate value far exceeds the yL corresponding to the laser line in the unworn area and the laser line in the worn area. Coordinate value.
- the laser line corresponding to the depth value is determined as the third laser line, and then the third laser line is determined according to the imaging position of the third laser line in the image
- the plane area where the line is located is the background area.
- the method also includes:
- the average depth value of the first laser line and the average depth value of the second laser line, and the difference between the two average depth values can be taken. , is the wear depth of the brake disc surface.
- the wear depth of the brake disc surface may be calculated according to the depth straight line fitted by the laser coordinate sequence.
- the laser coordinate sequence includes a first laser coordinate sequence and the second laser coordinate sequence.
- the laser coordinate sequence corresponding to the laser line is the first laser coordinate sequence
- the laser coordinate sequence corresponding to the second laser line is the second laser coordinate sequence.
- Step S28 further includes:
- the abscissa axis of the first depth line and the second depth line are both the xL axis, and the ordinate axis is both the yL axis. Therefore, the first depth line and the second depth line in the xL axis and the yL axis can be obtained respectively.
- the horizontal axis of the first depth straight line and the second depth straight line can represent the distance between the point of the laser line and the origin of the laser coordinate system, and the vertical axis can represent the depth value of the first depth straight line and the second depth straight line. Therefore, if ideally, The first depth straight line and the second depth straight line are shown in FIG. 6. It can be drawn from the figure that the depth value and the depth difference between the first depth straight line L1 and the second depth straight line L2, the depth value of the depth straight line is larger, the The corresponding area is the worn area. The depth value of the depth line is smaller, and the corresponding area is the unworn area.
- the depth value of the first depth line L1 is smaller than that of the second depth line L2, and the first depth line L2 has a smaller depth value.
- the area corresponding to L1 is the unworn area, and the area corresponding to the second depth straight line L2 is the worn area. According to the depth difference between the first depth straight line and the second depth straight line, the wear depth of the brake disc surface can be calculated.
- the position of the camera's viewfinder lens and the laser may be deviated, and the angle may be deviated.
- the obtained first depth line and second depth line are shown in Figure 7, then in the calculation
- the coordinate system can be rotated, and the horizontal axis can be rotated to a position parallel to one of the straight lines.
- the horizontal axis can be rotated to be parallel to the first depth straight line L1.
- the difference between the vertical axis coordinates corresponding to the first depth straight line L1 and the second depth straight line L2 is the depth difference, that is, the wear depth of the brake disc surface.
- the laser lines formed by the laser projecting to the wear area are all on the same plane, but for a brake disc with patterns or heat dissipation holes in the non-wear area, the laser lines projected to the wear area are in the same plane.
- the laser may also hit the pattern or heat dissipation hole.
- the depth value corresponding to the laser line hitting the pattern or heat dissipation hole is large. If this part of the depth value is also used to identify the wear area, it will cause errors in the identification result. Therefore, in order to reduce the error of identifying the wear area and identify the wear area more accurately, after obtaining the depth value of the laser line along the laser projection direction according to the laser coordinate sequence, please refer to FIG. 8 , the method S20 further includes:
- the above voting method can be used to separate the coordinates of the laser line formed by the laser hitting the plane of the wear area.
- the depth value is divided into multiple depth value intervals, and the number of votes in each segment is initialized to 0, and the depth value of each laser coordinate in the laser projection direction is compared with each depth value interval.
- the number of votes in the depth value interval is increased by one, and the vote number represents the number of depth values falling into the depth value interval.
- the depth value corresponding to the depth value interval with the most number or the most votes, the laser coordinate sequence corresponding to these depth values is the laser coordinate of the point on the laser line formed by hitting the plane of the wear area.
- the laser coordinate sequence is acquired, the laser line corresponding to the part of the laser coordinate sequence is the first laser line, and the plane area corresponding to the first laser line is the wear area. This method can identify the wear area more accurately, with smaller errors and improved accuracy.
- the brake disc wear area identification method can distinguish the laser lines into different laser lines according to different depth values, and then accurately identify the brakes according to the imaging positions of different laser lines in the image.
- the worn area and the unworn area of the disc surface are more convenient to operate and improve the user experience.
- the device 200 for identifying a wear area of a brake disc includes a first acquisition module 21 for acquiring an image captured by the camera.
- the image includes a laser line formed by projecting the laser on the detection surface where the brake disc is located; the first calculation module 22 is used to calculate the camera coordinate sequence of the laser line; the first determination module 23 is used to calculate the camera coordinate sequence according to the camera The coordinate sequence determines the depth value of the laser line projected to the surface of the brake disc; the distinguishing module 24 is used to divide the laser line into a first laser line and a second laser line according to the depth value, the first laser line The depth value of the laser line is greater than the depth value of the second laser line; and the depth value of the first laser line is less than a preset threshold value; the first identification module 25 The imaging position of the two laser lines in the image identifies the worn area and the unworn area on the surface of the brake disc.
- the identification device of the wear area of the brake disc can form a laser line by projecting the laser to the detection surface where the brake disc is located, and projecting to different surface areas can form different laser lines, and then use the camera to capture the laser beam containing the According to the obtained depth value of the laser line, the laser line is divided into different laser lines, and finally, according to the imaging position of the laser line in the image, the worn area and the unworn area of the brake disc surface are identified. Therefore, even if the laser projection area is limited, the identification method can still distinguish the laser lines into different laser lines according to different depth values, and then accurately identify the worn areas and undeveloped areas of the brake disc surface according to the imaging positions of different laser lines in the image. Wear area, and the operation is more convenient to improve the user experience.
- the first calculation module 22 includes: a first acquisition unit and a first conversion unit, where the first acquisition unit is configured to acquire at least two reference points on the laser line, and determine the pixel coordinate sequences of at least two reference points in the image; the first conversion unit is configured to convert the pixel coordinate sequence into a camera coordinate sequence.
- the first determination module 23 includes: a transformation unit, configured to perform projective transformation on the camera coordinate sequence to obtain a laser coordinate sequence, where the laser coordinate sequence is all coordinates in a laser coordinate system; the second acquisition The unit is configured to acquire the depth value of the laser line along the laser projection direction according to the laser coordinate sequence.
- the first identification module 25 is specifically configured to determine that the plane area where the first laser line is located is the worn area; and determine that the plane area where the second laser line is located is the unworn area.
- the detection surface where the brake disc is located includes a background area, the background area is an area outside the surface of the brake disc, the depth value of the third laser line is greater than the first preset threshold, the The identification device for the wear area of the brake disc further includes a determination module 26 for determining a third laser line according to the depth value, and the depth value of the third laser line is greater than the first preset threshold; the second identification module 27, for identifying the background area according to the imaging position of the third laser line in the image.
- the apparatus for identifying the wear area of the brake disc further includes a second calculation module 28 for calculating the brake disc according to the depth value of the first laser line and the depth value of the second laser line The depth of wear on the surface.
- the laser coordinate sequence includes a first laser coordinate sequence and the second laser coordinate sequence
- the second calculation module 28 is specifically configured to fit a first depth straight line according to the first laser coordinate sequence, so The first depth straight line represents the depth value of the first laser line along the laser projection direction; a second depth straight line is fitted according to the second laser coordinate sequence, and the second depth straight line represents the second laser line The depth value along the laser projection direction; according to the first depth straight line and the second depth straight line, calculate the wear depth of the surface of the brake disc.
- the apparatus for identifying the wear area of the brake disc further includes a second obtaining module 29, which is specifically configured to segment the depth value to obtain multiple depth value intervals; compare the depth value with the multiple depth value intervals. The depth value intervals are compared one by one; the number of the depth values falling into each of the depth value intervals is separately counted; and the depth value corresponding to the depth value interval with the largest number is obtained.
- the identification device of the wear area of the brake disc can form laser lines by projecting the laser to the detection surface where the brake disc is located, and projecting to different surface areas can form different laser lines, and then use the camera to capture images containing the laser lines.
- the obtained depth value of the laser line distinguishes the laser line into different laser lines, and finally, according to the imaging position of the laser line in the image, the worn area and the unworn area of the brake disc surface are identified. Therefore, even if the laser projection area is limited, the identification method can still distinguish the laser lines into different laser lines according to different depth values, and then accurately identify the worn areas and undeveloped areas of the brake disc surface according to the imaging positions of different laser lines in the image. Wear area, and the operation is more convenient to improve the user experience.
- FIG. 10 is a schematic structural diagram of a controller according to an embodiment of the present invention.
- the controller 300 includes one or more processors 31 and a memory 32 .
- one processor 31 is taken as an example in FIG. 10 .
- the processor 31 and the memory 32 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 10 .
- the memory 32 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the method for identifying the wear area of the brake disc in the embodiment of the present invention.
- the processor 31 executes various functional applications and data processing of the identification device of the brake disc wear area by running the non-volatile software programs, instructions and modules stored in the memory 32, that is, to realize the brake disc provided by the above method embodiments. A method of identifying a wear area and the functions of each module or unit of the above device embodiment.
- Memory 32 may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device. In some embodiments, memory 32 may optionally include memory located remotely from processor 31 , which may be connected to processor 31 via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
- the program instructions/modules are stored in the memory 32, and when executed by the one or more processors 31, execute the method for identifying the wear area of the brake disc in any of the above method embodiments.
- Embodiments of the present invention also provide a non-transitory computer-readable storage medium, where the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, such as One processor 31 in FIG. 10 can cause the above-mentioned one or more processors to execute the method for identifying the wear area of the brake disc in any of the above-mentioned method embodiments.
- Embodiments of the present invention further provide a non-volatile computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, a process in FIG. 10
- the device 31 can cause the above one or more processors to execute the method for identifying the wear area of the brake disc in any of the above method embodiments.
- An embodiment of the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, and when the program instructions are controlled When the controller is executed, the controller is made to execute any one of the methods for identifying the wear area of the brake disc.
- each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
- the computer program can be stored in a non-transitory computer.
- the computer program includes program instructions, and when the program instructions are executed by the UAV, the UAV can be made to execute the processes of the embodiments of the above methods.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM) or the like.
- the method for identifying the wear area of the brake disc can accurately identify the wear area and the unworn area on the surface of the brake disc through the difference in the imaging positions of the laser lines formed on the surface of the brake disc, and can accurately measure the wear area and the unworn area.
- the wear level is more convenient, and the user experience is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种刹车盘磨损区的识别方法(S20)以及磨损识别系统(100),首先获取相机(103)拍摄的图像,图像包含激光投射在刹车盘所在检测面而形成的激光线(S21),计算激光线的相机(103)坐标序列(S22),根据相机(103)坐标序列确定激光线投射至刹车盘表面的深度值(S23),再根据深度值将激光线分为第一激光线与第二激光线,其中,第一激光线的深度值大于第二激光线的深度值,且第一激光线的深度值小于预设阈值(S24),最后根据第一激光线和第二激光线在图像中的成像位置,识别刹车盘表面的磨损区和未磨损区(S25)。因此,即使激光投射区域有限,仍然能够根据深度值将激光线区分为不同的激光线,进而根据不同激光线在图像中的成像位置,精准识别磨损区和未磨损区,提升用户体验。
Description
本申请要求于2020年7月24日提交中国专利局、申请号为202010723359.7、申请名称为“一种刹车盘磨损区的识别方法及磨损识别系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及刹车盘领域,特别是涉及一种刹车盘磨损区的识别方法及磨损识别系统。
在车子行进过程中,刹车盘也随着转动,当需要刹车制动时,制动卡钳夹住刹车盘而产生制动力,进而起到减速或者停车的作用。刹车盘制动效果好,且比鼓形刹车更易维护,因此,刹车盘被广泛用于汽车制动。
在刹车盘的使用过程中,其表面会产生磨损,传统上的刹车盘磨损区识别,均依赖于使用卡尺测量,再根据测量结果进行识别,而实现卡尺测量需要拆卸轮胎轮辋,时间长、操作不方便、且测量精度也受人判断的影响,测量精度不高,进而导致识别不精准。即使采用激光器进行测量刹车盘表面区域,也会因激光投射区域有限,覆盖刹车盘表面的磨损区和未磨损区的数量有限,而导致不能精准识别刹车盘磨损区。
发明内容
本发明实施例至少在一定程度上解决上述技术问题之一,为此本发明提供一种刹车盘磨损区的识别方法及磨损识别系统,其能够精准识别刹车盘表面的磨损区和未磨损区,且操作更加方便,提升用户体验。
第一方面,本发明实施例提供一种刹车盘磨损区的识别方法,应用于磨损识别系统,所述磨损识别系统包括激光器、相机以及支架,所述激光器和所述相机均固定于所述支架,所述激光器用于输出激光至刹车盘表面,所述方法包括:
获取所述相机拍摄的图像,所述图像包含所述激光投射在所述刹车盘所在 检测面而形成的激光线;
计算所述激光线的相机坐标序列;
根据所述相机坐标序列确定所述激光线投射至所述刹车盘表面的深度值;
根据所述深度值将所述激光线分为第一激光线与第二激光线,所述第一激光线的深度值大于所述第二激光线的深度值;且所述第一激光线的深度值小于预设阈值;
根据所述第一激光线和所述第二激光线在所述图像中的成像位置,识别所述刹车盘表面的磨损区和未磨损区。
在一些实施例中,所述根据计算所述激光线的相机坐标序列,包括:
获取所述激光线上的至少两个参考点,并确定所述激光线上的至少两个参考点在所述图像中的像素坐标序列;
将所述像素坐标序列转换为相机坐标序列。
在一些实施例中,所述根据所述相机坐标序列确定所述激光线沿所述激光投射方向的深度值,包括:
将所述相机坐标序列进行投影变换,得到激光坐标序列,所述激光坐标序列均为激光坐标系下的坐标;
根据所述激光坐标序列,获取所述激光线沿所述激光投射方向的深度值。
在一些实施例中,所述根据所述第一激光线和所述第二激光线在所述图像中的成像位置,识别所述刹车盘表面的磨损区和未磨损区,包括:
确定所述第一激光线所在平面区域为所述磨损区;
确定所述第二激光线所在平面区域为所述未磨损区。
在一些实施例中,所述刹车盘所在检测面包括背景区域,所述背景区域为所述刹车盘表面以外的区域,所述第三激光线的深度值大于所述第一预设阈值,所述方法还包括:
根据所述深度值确定第三激光线,所述第三激光线的深度值大于所述第一预设阈值;
根据所述第三激光线在所述图像中的成像位置,识别所述背景区域。
在一些实施例中,所述方法还包括:
根据所述第一激光线的深度值和所述第二激光线的深度值,计算所述刹车 盘表面的磨损深度。
在一些实施例中,所述激光坐标序列包括第一激光坐标序列和所述第二激光坐标序列,所述根据所述第一激光线的深度值和所述第二激光线的深度值,计算所述刹车盘表面的磨损深度,包括:
根据所述第一激光坐标序列拟合第一深度直线,所述第一深度直线表征所述第一激光线沿所述激光投射方向的深度值;
根据所述第二激光坐标序列拟合第二深度直线,所述第二深度直线表征所述第二激光线沿所述激光投射方向的深度值;
根据所述第一深度直线和所述第二深度直线,计算所述刹车盘表面的磨损深度。
在一些实施例中,在所述根据所述激光坐标序列,获取所述激光线沿所述激光投射方向的深度值之后,还包括:
将所述深度值进行分段,获得多个深度值区间;
将所述深度值与所述多个深度值区间一一进行比较;
分别统计落入每个所述深度值区间的所述深度值的个数;
获取落入个数最多的所述深度值区间对应的所述深度值;
根据所述深度值,确定所述深度值对应的所述激光坐标序列,得到第三激光坐标序列;
根据所述第三激光坐标序列拟合第三深度直线,确定所述第三深度直线对应的所述激光线所在平面区域为所述磨损区。
第二方面,本发明实施例提供一种磨损识别系统,应用于刹车盘,包括:
支架;
激光器,固定于所述支架上,所述激光器用于输出激光至所述刹车盘表面,形成激光线;
相机,固定于所述支架上,所述相机用于拍摄包含所述激光线的图像;
控制器,包括至少一个处理器以及存储器,所述存储器和相机均与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
在一些实施例中,还包括滤波片;
所述滤波片设置于所述相机的取景镜头上,其中,所述滤波片允许通过的光源的波长与所述激光器所输出的激光的波长相同。
在一些实施例中,还包括显示器;
所述显示器与所述控制器通信连接,用于显示所述相机拍摄的图像、磨损区域以及未磨损区域。
本发明与现有技术相比至少具有以下有益效果:本发明中的刹车盘磨损区的识别方法,应用于磨损识别系统,该刹车盘磨损区的识别方法包括首先获取相机拍摄的图像,该图像包含激光投射在刹车盘所在检测面而形成的激光线,计算激光线的相机坐标序列,根据相机坐标序列确定激光线投射至刹车盘表面的深度值,然后根据深度值将激光线分为第一激光线与第二激光线,第一激光线的深度值大于第二激光线的深度值;且第一激光线的深度值小于预设阈值;最后根据第一激光线和第二激光线在图像中的成像位置,识别刹车盘表面的磨损区和未磨损区。因此,即使激光投射区域有限,仅仅覆盖一个未磨损区域和一个磨损区域,该刹车盘磨损区的识别方法能够根据不同的深度值将激光线区分为不同的激光线,进而根据不同激光线在图像中的成像位置,精准识别刹车盘表面的磨损区和未磨损区,且操作更加方便,提升用户体验。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a是本发明实施例提供的一种磨损识别系统的结构示意图;
图1b是本发明实施例提供的一种磨损识别系统内部电路结构示意图;
图2是本发明实施例提供的一种刹车盘磨损区的识别方法的流程示意图;
图3是本发明实施例提供的一种激光坐标系和相机坐标系的示意图;
图4是本发明另一实施例提供的一种刹车盘磨损区的识别方法的流程示意图;
图5是图4中步骤S28的流程示意图;
图6是本发明实施例提供的一种第一深度直线和第二深度直线的示意图;
图7是本发明另一实施例提供的一种第一深度直线和第二深度直线的示意图;
图8是本发明另一实施例提供的一种刹车盘磨损区的识别方法的流程示意图;
图9是本发明实施例提供的一种刹车盘磨损区的识别装置的结构示意图;
图10是本发明实施例提供的一种控制器硬件结构示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。再者,本发明所采用的“第一”、“第二”、“第三”等字样并不对数据和执行次序进行限定,仅是对功能和作用基本相同的相同项或相似项进行区分。
请一并参阅图1a和图1b,图1a和图1b是本发明实施例提供的一种磨损识别系统结构示意图和电路结构示意图,该磨损识别系统应用于刹车盘,该磨损识别系统100包括支架101、激光器102、相机103以及控制器104,激光器102固定于支架101上,激光器102所输出的激光投射在刹车盘所在检测面,形成激光线,其中,刹车盘所在检测面包括刹车盘表面区域,还可以包括刹车盘表面以外的区域,即背景区域。相机103固定于支架101上,相机103用于拍摄包含激光线的图像,不同的激光线在图像中的成像位置不同,不同激光线上的点,在图像中的像素坐标也不同,因此控制器104可以根据不同的激光线在图像中的成像位置,识别刹车盘表面的磨损区和未磨损区。
在一些实施例中,该磨损识别系统100还包括滤波片(图中未示出),滤波片设置于相机103的取景镜头上,其中,滤波片允许通过的光源的波长与激光器102所输出的激光的波长相同,因此,该滤波片可以过滤进入相机的环境光等,只保留激光器102所输出的光信号进入相机103的取景镜头。
在一些实施例中,该磨损识别系统100还包括显示器105,该显示器105与控制器104通信连接,用于显示相机103拍摄的图像,还可以显示不同激光线所代表的刹车盘表面的磨损区域以及未磨损区域。
在一些实施例中,控制器104分别与激光器102、相机103以及显示器105电连接。控制器104可以设置于支架101内,也可以是外部控制器,控制器104作为磨损识别系统100的控制核心,用于控制磨损识别系统100中的激光器102将激光投射在刹车盘所在检测面,控制相机103获取包含激光线的图像以及一些业务逻辑处理,例如下述实施例提供的一种刹车盘磨损区的识别方法。
在一些实施例中,控制器104可以为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、单片机、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。还有,控制器104还可以是任何传统处理器、控制器、微控制器或状态机。控制器104也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP和/或任何其它这种配置。
对于上述激光器102和相机103,由于激光器102和相机103均固定于支架101,激光器102和相机103的位置相对固定,当支架101移动时,相机103和激光器102同步移动。由于所述相机103和激光器102同步移动,因此,所述激光器102在相机103的相机坐标系中的位置不会变化,同理的,所述激光器102所输出的激光平面在相机坐标系的位置也不会变化。
同时,该磨损识别系统100可以为手持式设备,当需要识别磨损区和未磨损区时,用户手持该磨损系统的支架101,将其放于刹车盘表面,进而进行测量和识别。
请参阅图图2,图2是本发明实施例提供的一种刹车盘磨损区的识别方法, 该刹车盘磨损区的识别方法应用于磨损识别系统,如图2所示,该刹车盘磨损区的识别方法S20包括:
S21、获取所述相机拍摄的图像,所述图像包含所述激光投射在所述刹车盘所在检测面而形成的激光线;
S22、计算所述激光线的相机坐标序列;
S23、根据所述相机坐标序列确定所述激光线投射至所述刹车盘所在检测面的深度值;
S24、根据所述深度值将所述激光线分为第一激光线与第二激光线,所述第一激光线的深度值大于所述第二激光线的深度值;且所述第一激光线的深度值小于预设阈值;
S25、根据所述第一激光线和所述第二激光线在所述图像中的成像位置,识别所述刹车盘表面的磨损区和未磨损区。
当需要识别磨损区和未磨损区时,将磨损系统的支架放于刹车盘表面,控制器控制激光器输出特定波段的激光,所述激光投射在刹车盘所在检测面而形成激光线,并且,激光投射在刹车盘表面的磨损区和未磨损区时,可以形成不同的激光线,相机的取景摄像头拍摄包含该激光线的图像。在一些实施例中,激光器输出的激光可以为520nm波段的绿色线激光或者650nm波段的红色线激光。在一些实施例中,相机的取景镜头可以为100万~200万高清摄像头。
图像中的激光线为不同的激光线,根据激光线投射至刹车盘所在检测面的深度值,将获取到的激光线区分为不同的激光线,同时,不同的激光线在图像中成像的位置不同,根据该成像位置的差异,可以识别出激光线所代表的区域。
深度值的获取是通过计算激光线的相机坐标序列,再根据相机坐标序列确定激光线投射至刹车盘所在检测面的深度值。在一些实施例中,通过激光线的像素坐标序列计算其相机坐标序列,具体地,首先获取所述激光线上的至少两个参考点,并确定所述激光线上的至少两个参考点在所述图像中的像素坐标序列,再将所述像素坐标序列转换为相机坐标序列,像素坐标序列包括至少两个像素坐标,将像素坐标转换为相机坐标的具体计算公式方式如下:
(u,ν)为所述激光线上的点在所述图像中的像素坐标,(x
c,y
c,z
c)为所述激光线上的点的相机坐标,其中,所述内参矩阵A为已知数。
将激光线上的像素坐标序列转换为相机坐标序列以后,可以获取所述激光线沿所述激光投射方向的深度值,在一些实施例中,根据相机坐标序列获取深度值的具体方式为:首先将所述相机坐标序列进行投影变换,得到激光坐标序列,所述激光坐标序列为激光坐标系下的坐标,激光坐标系是激光发射原点和激光平面的法向向量,以及激光投射方向组成的坐标系,如图3所示,假定OL是激光器的发射原点,发散角为θ,投射方向为yL,激光平面的法向量为n,xL垂直于n与yL,且与激光平面与刹车盘表面的交线方向平行,Oc是相机坐标系的中心,xc、yc为图像的x与y坐标方向,相机坐标系遵从右手坐标系规则,相机的拍摄方向Zc和激光平面法向量n的夹角为α,α大小为60~65度。其中,xL、yL以及向量n组成的坐标系即为激光坐标系。激光坐标序列中的yL即为激光线沿所述激光投射方向的深度值,因此,根据所述激光坐标序列可以获取所述激光线沿所述激光投射方向的深度值。
然后再通过一些先验知识或者一些算法,根据深度值将图像中包含的激光线区分为不同的激光线。在一些实施例中,由于激光器到未磨损区域的投射深度比到磨损区域的投射深度小,则投射到未磨损区域形成的激光线在激光投射方向的深度值比投射到磨损区域形成的激光线在激光投射方向的深度值小,即投射到未磨损区域形成的激光线上的点的yL坐标值比投射到磨损区域形成的激光线上的点的yL坐标值小,另外,刹车盘磨损深度也有一个限度范围,即投射到磨损区域形成的激光线上的点的yL坐标值有一个限度范围,因此,根据深度值将激光线分为第一激光线与第二激光线,其中第一激光线的深度值大于第二激光线的深度值,并且第一激光线的深度值小于预设深度阈值,其中,预设深度阈值可以根据先验信息提前确定。因此,即使即使激光投射区域有限,仅仅覆盖一个未磨损区域和一个磨损区域,该方法也可以通过不同的深度值,将激光线区分为不同的激光线。
最后,根据第一激光线和第二激光线在图像中的成像位置,识别刹车盘表面的磨损区和未磨损区。其中,确定第一激光线所在的平面区域为磨损区,确定第二激光线所在的平面区域为未磨损区。
综上所述,该刹车盘磨损区的识别方法可以通过激光器投射到刹车盘所在检测面而形成激光线,投射到不同的表面区域可以形成不同的激光线,再通过相机拍摄包含激光线的图像,根据获取到的激光线的深度值将激光线区分为不同的激光线,最后根据激光线在图像中的成像位置,识别刹车盘表面的磨损区和未磨损区。因此,即使激光投射区域有限,该识别方法仍然能够根据不同的深度值将激光线区分为不同的激光线,进而根据不同激光线在图像中的成像位置,精准识别刹车盘表面的磨损区和未磨损区,且操作更加方便,提升用户体验。
在一些实施例中,所述刹车盘所在检测面还包括背景区域,激光投射时,还可以投射在刹车盘以外的区域,即投射在背景区域,相机拍摄图像时,可能会把激光投射在背景区域而形成的激光线也拍摄进去,该激光线会对磨损区和未磨损区的识别造成误差,同样需要把该激光线对应的区域识别出来。因此,请参阅图4,该方法还包括:
S26、根据所述深度值确定第三激光线,所述第三激光线的深度值大于所述第一预设阈值;
S27、根据所述第三激光线在所述图像中的成像位置,识别所述背景区域。
根据先验信息可以得知,投射到背景区域的激光线上点沿激光投射方向的坐标yL变化比较大,且该坐标值远远超过未磨损区的激光线和磨损区的激光线对应的yL坐标值。基于上述先验信息,若所述深度值大于第一预设阈值,则确定该深度值对应的激光线为第三激光线,进而根据第三激光线在图像中的成像位置,确定第三激光线所在平面区域为所述背景区域。
在一些实施例中,不仅需要识别出磨损区和未磨损区,还需要评估刹车盘表面的磨损程度,若磨损程度较大,则需要更换刹车盘。具体地,该方法还包括:
S28、根据第一激光线的深度值和第二激光线的深度值,计算刹车盘表面的磨损深度。
若第一激光线和第二激光线上的不同的点对应的深度值不同,则可以取第一激光线的平均深度值和第二激光线的平均深度值,两个平均深度值的差值, 则为刹车盘表面的磨损深度。
在一些实施例中,可以根据激光坐标序列拟合的深度直线进行计算刹车盘表面的磨损深度,具体地,所述激光坐标序列包括第一激光坐标序列和所述第二激光坐标序列,第一激光线对应的激光坐标序列为第一激光坐标序列,第二激光线对应的激光坐标序列为第二激光坐标序列,请参阅图5,步骤S28还包括:
S281、根据所述第一激光坐标序列拟合第一深度直线,所述第一深度直线表征所述第一激光线沿所述激光投射方向的深度值;
S282、根据所述第二激光坐标序列拟合第二深度直线,所述第二深度直线表征所述第二激光线沿所述激光投射方向的深度值;
S283、根据所述第一深度直线和所述第二深度直线,计算所述刹车盘表面的磨损深度。
第一深度直线和第二深度直线的横坐标轴均为xL轴,纵坐标轴均为yL轴,因此,可以通过xL轴和yL轴中的第一深度直线和第二深度直线,可以分别获取第一激光线和第二激光线沿激光投射方向的深度值。拟合深度直线的方法有多种,在本发明实施例中,可以通过最小二乘法来进行拟合直线。
第一深度直线和第二深度直线的横轴可以代表激光线的点离激光坐标系原点的距离,纵轴可以代表第一深度直线和第二深度直线的深度值,因此,若理想情况下,第一深度直线和第二深度直线如图6所示,从图中可以得出,第一深度直线L1和第二深度直线L2的深度值以及深度差异,深度直线的深度值较大的,其对应的区域为磨损区,深度直线的深度值较小的,其对应的区域为未磨损区,在该图中,第一深度直线L1比第二深度直线L2的深度值小,第一深度直线L1对应的区域为未磨损区,第二深度直线L2对应的区域为磨损区,根据第一深度直线和第二深度直线的深度差异,可以计算出刹车盘表面的磨损深度。
但在实际工程测量中,相机的取景镜头和激光器的位置可能会有所偏差,角度也可能会有所偏差,得出的第一深度直线和第二深度直线如图7所示,那么在计算第一深度直线L1和第二深度直线L2的深度差异时,可以将坐标系进行旋转,将横轴旋转至与其中一条直线平行的位置,例如,将横轴旋转至与第 一深度直线L1平行,且位于第一深度直线L1下方的位置,那么此时第一深度直线L1和第二深度直线L2对应的纵轴坐标之间的差异,即为深度差异,即刹车盘表面的磨损深度。
在一些实施例中,对于普通刹车盘来说,激光投射至磨损区而形成的激光线都在同一个平面,但对于未磨损区包含花纹或者散热孔的刹车盘来说,投射到磨损区的激光也可能会打在花纹或者散热孔上,打到花纹或者散热孔上的激光线对应的深度值较大,若将这部分深度值也用来识别磨损区,会对识别的结果造成误差,因此为了减小识别磨损区的误差,更加精准识别磨损区,在根据激光坐标序列,获取激光线沿激光投射方向的深度值之后,请参阅图8,所述方法S20还包括:
S29、将所述深度值进行分段,获得多个深度值区间;
S30、将所述深度值与所述多个深度值区间一一进行比较;
S31、分别统计落入每个所述深度值区间的所述深度值的个数;
S32、获取落入个数最多的所述深度值区间对应的所述深度值。
因此,由于激光打到非磨损区中的孔洞上或者花纹上所占据的比例比较小,可以采用上述投票法将激光打在磨损区平面而形成的激光线的坐标分离出来,首先将激光投射方向的深度值进行分段,分为多个深度值区间,并对每段的票数均初始化为0,将每一个激光坐标在激光投射方向上的深度值与每个深度值区间进行比较,若属于该深度值区间,则该深度值区间的票数加一,该票数代表落入该深度值区间的深度值的个数,分别统计落入每个所述深度值区间的深度值的个数,获取落入个数最多的或者说票数最多的深度值区间对应的深度值,这些深度值对应的激光坐标序列,即为打在磨损区平面而形成的激光线上的点的激光坐标。获取该激光坐标序列,该部分的激光坐标序列对应的激光线即为第一激光线,第一激光线对应的平面区域即为所述磨损区。该方法可以更加精准识别磨损区,误差更小,提高准确率。
综上所述,即使激光投射区域有限,该刹车盘磨损区的识别方法能够根据不同的深度值将激光线区分为不同的激光线,进而根据不同激光线在图像中的成像位置,精准识别刹车盘表面的磨损区和未磨损区,且操作更加方便,提升用户体验。
图9是本发明实施例提供的一种刹车盘磨损区的识别装置的结构示意图,该刹车盘磨损区的识别装置200包括第一获取模块21,用于获取所述相机拍摄的图像,所述图像包含所述激光投射在所述刹车盘所在检测面而形成的激光线;第一计算模块22,用于计算所述激光线的相机坐标序列;第一确定模块23,用于根据所述相机坐标序列确定所述激光线投射至所述刹车盘表面的深度值;区分模块24,用于根据所述深度值将所述激光线分为第一激光线与第二激光线,所述第一激光线的深度值大于所述第二激光线的深度值;且所述第一激光线的深度值小于预设阈值;第一识别模块25,用于根据所述第一激光线和所述第二激光线在所述图像中的成像位置,识别所述刹车盘表面的磨损区和未磨损区。
因此,在本实施例中,该刹车盘磨损区的识别装置可以通过激光器投射到刹车盘所在检测面而形成激光线,投射到不同的表面区域可以形成不同的激光线,再通过相机拍摄包含激光线的图像,根据获取到的激光线的深度值将激光线区分为不同的激光线,最后根据激光线在图像中的成像位置,识别刹车盘表面的磨损区和未磨损区。因此,即使激光投射区域有限,该识别方法仍然能够根据不同的深度值将激光线区分为不同的激光线,进而根据不同激光线在图像中的成像位置,精准识别刹车盘表面的磨损区和未磨损区,且操作更加方便,提升用户体验。
在一些实施例中,第一计算模块22包括:第一获取单元、第一转换单元,第一获取单元用于获取所述激光线上的至少两个参考点,并确定所述激光线上的至少两个参考点在所述图像中的像素坐标序列;第一转换单元用于将所述像素坐标序列转换为相机坐标序列。
在一些实施例中,第一确定模块23包括:变换单元,用于将所述相机坐标序列进行投影变换,得到激光坐标序列,所述激光坐标序列均为激光坐标系下的坐标;第二获取单元,用于根据所述激光坐标序列,获取所述激光线沿所述激光投射方向的深度值。
在一些实施例中,第一识别模块25具体用于确定所述第一激光线所在平面区域为所述磨损区;确定所述第二激光线所在平面区域为所述未磨损区。
在一些实施例中,所述刹车盘所在检测面包括背景区域,所述背景区域为 所述刹车盘表面以外的区域,所述第三激光线的深度值大于所述第一预设阈值,该刹车盘磨损区的识别装置还包括确定模块26,用于根据所述深度值确定第三激光线,所述第三激光线的深度值大于所述第一预设阈值;第二识别模块27,用于根据所述第三激光线在所述图像中的成像位置,识别所述背景区域。
在一些实施例中,该刹车盘磨损区的识别装置还包括第二计算模块28,用于根据所述第一激光线的深度值和所述第二激光线的深度值,计算所述刹车盘表面的磨损深度。
在一些实施例中,所述激光坐标序列包括第一激光坐标序列和所述第二激光坐标序列,第二计算模块28具体用于根据所述第一激光坐标序列拟合第一深度直线,所述第一深度直线表征所述第一激光线沿所述激光投射方向的深度值;根据所述第二激光坐标序列拟合第二深度直线,所述第二深度直线表征所述第二激光线沿所述激光投射方向的深度值;根据所述第一深度直线和所述第二深度直线,计算所述刹车盘表面的磨损深度。
在一些实施例中,该刹车盘磨损区的识别装置还包括第二获取模块29,具体用于将所述深度值进行分段,获得多个深度值区间;将所述深度值与所述多个深度值区间一一进行比较;分别统计落入每个所述深度值区间的所述深度值的个数;获取落入个数最多的所述深度值区间对应的所述深度值。
需要说明的是,由于所述刹车盘磨损区的识别装置与上述实施例中的刹车盘磨损区的识别方法基于相同的发明构思,因此,上述方法实施例中的相应内容同样适用于装置实施例,此处不再详述。
因此,该刹车盘磨损区的识别装置可以通过激光器投射到刹车盘所在检测面而形成激光线,投射到不同的表面区域可以形成不同的激光线,再通过相机拍摄包含激光线的图像,根据获取到的激光线的深度值将激光线区分为不同的激光线,最后根据激光线在图像中的成像位置,识别刹车盘表面的磨损区和未磨损区。因此,即使激光投射区域有限,该识别方法仍然能够根据不同的深度值将激光线区分为不同的激光线,进而根据不同激光线在图像中的成像位置,精准识别刹车盘表面的磨损区和未磨损区,且操作更加方便,提升用户体验。
请参阅图10,图10是本发明实施例提供的一种控制器的结构示意图。如图10所示,该控制器300包括一个或多个处理器31以及存储器32。其中,图10中以一个处理器31为例。
处理器31和存储器32可以通过总线或者其他方式连接,图10中以通过总线连接为例。
存储器32作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的刹车盘磨损区的识别方法对应的程序指令/模块。处理器31通过运行存储在存储器32中的非易失性软件程序、指令以及模块,从而执行刹车盘磨损区的识别装置的各种功能应用以及数据处理,即实现上述方法实施例提供的刹车盘磨损区的识别方法以及上述装置实施例的各个模块或单元的功能。
存储器32可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器32可选包括相对于处理器31远程设置的存储器,这些远程存储器可以通过网络连接至处理器31。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令/模块存储在所述存储器32中,当被所述一个或者多个处理器31执行时,执行上述任意方法实施例中的刹车盘磨损区的识别方法。
本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图10中的一个处理器31,可使得上述一个或多个处理器可执行上述任意方法实施例中的刹车盘磨损区的识别方法。
本发明实施例还提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图10中的一个处理器31,可使得上述一个或多个处理器可执行上述任意方法实施例中的刹车盘磨损区的识别方法。
本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被控制器执行时,使所述控制器执行任一项所述的刹车 盘磨损区的识别方法。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被无人机执行时,可使所述无人机执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
该刹车盘磨损区的识别方法能够通过在刹车盘表面形成的激光线在图像中成像位置的差异,而精准识别刹车盘表面的磨损区和未磨损区,并能够精准测量磨损区和未磨损区的磨损程度,且操作更加方便,提升用户体验。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
Claims (11)
- 一种刹车盘磨损区的识别方法,应用于磨损识别系统,所述磨损识别系统包括激光器、相机以及支架,所述激光器和所述相机均固定于所述支架,所述激光器用于输出激光至刹车盘表面,其特征在于,所述方法包括:获取所述相机拍摄的图像,所述图像包含所述激光投射在所述刹车盘所在检测面而形成的激光线;计算所述激光线的相机坐标序列;根据所述相机坐标序列确定所述激光线投射至所述刹车盘表面的深度值;根据所述深度值将所述激光线分为第一激光线与第二激光线,所述第一激光线的深度值大于所述第二激光线的深度值;且所述第一激光线的深度值小于预设阈值;根据所述第一激光线和所述第二激光线在所述图像中的成像位置,识别所述刹车盘表面的磨损区和未磨损区。
- 根据权利要求1所述的方法,其特征在于,所述根据计算所述激光线的相机坐标序列,包括:获取所述激光线上的至少两个参考点,并确定所述激光线上的至少两个参考点在所述图像中的像素坐标序列;将所述像素坐标序列转换为相机坐标序列。
- 根据权利要求2所述的方法,其特征在于,所述根据所述相机坐标序列确定所述激光线沿所述激光投射方向的深度值,包括:将所述相机坐标序列进行投影变换,得到激光坐标序列,所述激光坐标序列均为激光坐标系下的坐标;根据所述激光坐标序列,获取所述激光线沿所述激光投射方向的深度值。
- 根据权利要求3所述的方法,其特征在于,所述根据所述第一激光线和所述第二激光线在所述图像中的成像位置,识别所述刹车盘表面的磨损区和未磨损区,包括:确定所述第一激光线所在平面区域为所述磨损区;确定所述第二激光线所在平面区域为所述未磨损区。
- 根据权利要求4所述的方法,其特征在于,所述刹车盘所在检测面包 括背景区域,所述背景区域为所述刹车盘表面以外的区域,所述第三激光线的深度值大于所述第一预设阈值,所述方法还包括:根据所述深度值确定第三激光线,所述第三激光线的深度值大于所述第一预设阈值;根据所述第三激光线在所述图像中的成像位置,识别所述背景区域。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:根据所述第一激光线的深度值和所述第二激光线的深度值,计算所述刹车盘表面的磨损深度。
- 根据权利要求6所述的方法,其特征在于,所述激光坐标序列包括第一激光坐标序列和所述第二激光坐标序列,所述根据所述第一激光线的深度值和所述第二激光线的深度值,计算所述刹车盘表面的磨损深度,包括:根据所述第一激光坐标序列拟合第一深度直线,所述第一深度直线表征所述第一激光线沿所述激光投射方向的深度值;根据所述第二激光坐标序列拟合第二深度直线,所述第二深度直线表征所述第二激光线沿所述激光投射方向的深度值;根据所述第一深度直线和所述第二深度直线,计算所述刹车盘表面的磨损深度。
- 根据权利要求3-7任一项所述的方法,其特征在于,在所述根据所述激光坐标序列,获取所述激光线沿所述激光投射方向的深度值之后,还包括:将所述深度值进行分段,获得多个深度值区间;将所述深度值与所述多个深度值区间一一进行比较;分别统计落入每个所述深度值区间的所述深度值的个数;获取落入个数最多的所述深度值区间对应的所述深度值。
- 一种磨损识别系统,应用于刹车盘,其特征在于,包括:支架;激光器,固定于所述支架上,所述激光器用于输出激光至所述刹车盘表面,形成激光线;相机,固定于所述支架上,所述相机用于拍摄包含所述激光线的图像;控制器,包括至少一个处理器以及存储器,所述存储器和相机均与所述至 少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-8中任一项所述的方法。
- 根据权利要求9所述的磨损识别系统,其特征在于,还包括滤波片;所述滤波片设置于所述相机的取景镜头上,其中,所述滤波片允许通过的光源的波长与所述激光器所输出的激光的波长相同。
- 根据权利要求9或10所述的磨损识别系统,其特征在于,还包括显示器;所述显示器与所述控制器通信连接,用于显示所述相机拍摄的图像、磨损区域以及未磨损区域。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010723359.7 | 2020-07-24 | ||
CN202010723359.7A CN111830049B (zh) | 2020-07-24 | 2020-07-24 | 一种刹车盘磨损区的识别方法及磨损识别系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022017257A1 true WO2022017257A1 (zh) | 2022-01-27 |
Family
ID=72924854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/106578 WO2022017257A1 (zh) | 2020-07-24 | 2021-07-15 | 一种刹车盘磨损区的识别方法及磨损识别系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111830049B (zh) |
WO (1) | WO2022017257A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114332078A (zh) * | 2022-03-02 | 2022-04-12 | 山东华硕汽车配件科技有限公司 | 一种汽车发动机金属磨损智能修复控制方法 |
CN115947066A (zh) * | 2023-03-14 | 2023-04-11 | 合肥金星智控科技股份有限公司 | 皮带撕裂检测方法、装置及系统 |
CN117689677A (zh) * | 2024-02-01 | 2024-03-12 | 山东大学日照研究院 | 一种砂轮磨损状态识别方法、系统、设备及介质 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111830049B (zh) * | 2020-07-24 | 2023-09-22 | 深圳市道通科技股份有限公司 | 一种刹车盘磨损区的识别方法及磨损识别系统 |
CN112284256B (zh) * | 2020-11-17 | 2022-06-10 | 深圳市道通科技股份有限公司 | 一种工件平面磨损的测量方法和系统 |
CN112683191B (zh) * | 2020-11-30 | 2022-06-28 | 深圳市道通科技股份有限公司 | 基于线激光的胎纹沟槽深度测量方法、装置及计算设备 |
CN112700405B (zh) * | 2020-12-11 | 2023-07-07 | 深圳市道通科技股份有限公司 | 刹车盘磨损度测量方法、装置及设备 |
CN113096067B (zh) * | 2021-03-04 | 2022-10-11 | 深圳市道通科技股份有限公司 | 一种确定工件表面磨损的方法及系统 |
CN113916892B (zh) * | 2021-09-28 | 2022-10-28 | 南京理工大学 | 基于多目视觉的刹车盘涂胶缺陷检测装置及方法 |
CN117739817B (zh) * | 2023-12-28 | 2024-08-09 | 北京智博联科技股份有限公司 | 一种针对建筑构件表面裂缝的激光定位方法和装置 |
CN118247282B (zh) * | 2024-05-29 | 2024-07-26 | 江苏瑞问科技有限公司 | 应用人工智能技术的目标智能化监测系统及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201716009U (zh) * | 2010-08-16 | 2011-01-19 | 长安大学 | 一种胎面花纹检测装置 |
CN106802134A (zh) * | 2017-03-15 | 2017-06-06 | 深圳市安车检测股份有限公司 | 一种线结构光机器视觉轮胎磨损测量装置 |
CN106918299A (zh) * | 2017-03-15 | 2017-07-04 | 深圳市安车检测股份有限公司 | 一种线结构光机器视觉轮胎磨损测量方法 |
US9805697B1 (en) * | 2012-06-01 | 2017-10-31 | Hunter Engineering Company | Method for tire tread depth modeling and image annotation |
CN109141253A (zh) * | 2018-10-12 | 2019-01-04 | 上海工程技术大学 | 一种便携式地铁轮对的参数检测装置及系统 |
CN110954012A (zh) * | 2019-12-24 | 2020-04-03 | 山东交通学院 | 一种手持式线结构光轮胎磨损检测装置及检测方法 |
CN111257019A (zh) * | 2020-01-17 | 2020-06-09 | 杭州中车数字科技有限公司 | 一种跨座式单轨列车部件磨耗检测设备及其检测方法 |
CN111830049A (zh) * | 2020-07-24 | 2020-10-27 | 深圳市道通科技股份有限公司 | 一种刹车盘磨损区的识别方法及磨损识别系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102507601B (zh) * | 2011-11-08 | 2013-05-15 | 南京大学 | 电力机车受电弓在线磨损检测方法与系统 |
CN103837869B (zh) * | 2014-02-26 | 2016-06-01 | 北京工业大学 | 基于向量关系的单线激光雷达和ccd相机标定方法 |
CN105571512B (zh) * | 2015-12-15 | 2018-09-11 | 北京康拓红外技术股份有限公司 | 一种基于深度信息与可视图像信息相融合的车辆信息采集方法及装置 |
CN106056620B (zh) * | 2016-06-13 | 2018-10-19 | 西南科技大学 | 线激光相机测量系统标定方法 |
CN106274979B (zh) * | 2016-08-30 | 2018-06-22 | 大连民族大学 | 钢轨磨耗自动检测装置 |
CN106526605B (zh) * | 2016-10-28 | 2019-05-14 | 北京康力优蓝机器人科技有限公司 | 激光雷达与深度相机的数据融合方法及系统 |
CN106996750B (zh) * | 2017-03-15 | 2019-03-29 | 山东交通学院 | 一种轮胎花纹深度测量装置及轮胎花纹深度计算方法 |
FR3068098B1 (fr) * | 2017-06-26 | 2019-08-23 | Safran Landing Systems | Procede de mesure d’usure des disques de freins d’un aeronef |
CN109029284B (zh) * | 2018-06-14 | 2019-10-22 | 大连理工大学 | 一种基于几何约束的三维激光扫描仪与相机标定方法 |
CN109631841B (zh) * | 2018-12-25 | 2020-08-07 | 中国地质大学(武汉) | 一种基于激光投影的快速道路横断面测量方法及装置 |
CN109900205B (zh) * | 2019-02-21 | 2020-04-24 | 武汉大学 | 一种高精度的单线激光器和光学相机的快速标定方法 |
CN111336948B (zh) * | 2020-03-02 | 2021-11-02 | 武汉理工大学 | 基于成像平面转换的非标定手持式廓形检测方法及装置 |
-
2020
- 2020-07-24 CN CN202010723359.7A patent/CN111830049B/zh active Active
-
2021
- 2021-07-15 WO PCT/CN2021/106578 patent/WO2022017257A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201716009U (zh) * | 2010-08-16 | 2011-01-19 | 长安大学 | 一种胎面花纹检测装置 |
US9805697B1 (en) * | 2012-06-01 | 2017-10-31 | Hunter Engineering Company | Method for tire tread depth modeling and image annotation |
CN106802134A (zh) * | 2017-03-15 | 2017-06-06 | 深圳市安车检测股份有限公司 | 一种线结构光机器视觉轮胎磨损测量装置 |
CN106918299A (zh) * | 2017-03-15 | 2017-07-04 | 深圳市安车检测股份有限公司 | 一种线结构光机器视觉轮胎磨损测量方法 |
CN109141253A (zh) * | 2018-10-12 | 2019-01-04 | 上海工程技术大学 | 一种便携式地铁轮对的参数检测装置及系统 |
CN110954012A (zh) * | 2019-12-24 | 2020-04-03 | 山东交通学院 | 一种手持式线结构光轮胎磨损检测装置及检测方法 |
CN111257019A (zh) * | 2020-01-17 | 2020-06-09 | 杭州中车数字科技有限公司 | 一种跨座式单轨列车部件磨耗检测设备及其检测方法 |
CN111830049A (zh) * | 2020-07-24 | 2020-10-27 | 深圳市道通科技股份有限公司 | 一种刹车盘磨损区的识别方法及磨损识别系统 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114332078A (zh) * | 2022-03-02 | 2022-04-12 | 山东华硕汽车配件科技有限公司 | 一种汽车发动机金属磨损智能修复控制方法 |
CN114332078B (zh) * | 2022-03-02 | 2022-06-10 | 山东华硕汽车配件科技有限公司 | 一种汽车发动机金属磨损智能修复控制方法 |
CN115947066A (zh) * | 2023-03-14 | 2023-04-11 | 合肥金星智控科技股份有限公司 | 皮带撕裂检测方法、装置及系统 |
CN115947066B (zh) * | 2023-03-14 | 2023-06-20 | 合肥金星智控科技股份有限公司 | 皮带撕裂检测方法、装置及系统 |
CN117689677A (zh) * | 2024-02-01 | 2024-03-12 | 山东大学日照研究院 | 一种砂轮磨损状态识别方法、系统、设备及介质 |
CN117689677B (zh) * | 2024-02-01 | 2024-04-16 | 山东大学日照研究院 | 一种砂轮磨损状态识别方法、系统、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111830049A (zh) | 2020-10-27 |
CN111830049B (zh) | 2023-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022017257A1 (zh) | 一种刹车盘磨损区的识别方法及磨损识别系统 | |
US11461930B2 (en) | Camera calibration plate, camera calibration method and device, and image acquisition system | |
US10412370B2 (en) | Photographing device and vehicle | |
US8199335B2 (en) | Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium | |
JP7262021B2 (ja) | 奥行取得装置、奥行取得方法およびプログラム | |
US9613425B2 (en) | Three-dimensional measurement apparatus, three-dimensional measurement method and program | |
WO2017143745A1 (zh) | 一种确定待测对象的运动信息的方法及装置 | |
JP2020035447A (ja) | 物体識別方法、装置、機器、車両及び媒体 | |
WO2022057636A1 (zh) | 一种胎纹深度测量方法及胎纹深度测量系统 | |
JP7536800B2 (ja) | ピクセル対ピクセル信号拡散の補正 | |
US10863082B2 (en) | Image processing apparatus, image processing method, and storage medium | |
JP2019530059A (ja) | 複数の対象とする領域を独立的に処理する方法 | |
JPWO2020059448A1 (ja) | 奥行取得装置、奥行取得方法およびプログラム | |
WO2022222291A1 (zh) | 光轴检测系统的光轴标定方法、装置、终端、系统和介质 | |
JPWO2020066236A1 (ja) | 奥行取得装置、奥行取得方法およびプログラム | |
JP2009164951A (ja) | 撮像システム、画像処理装置、画像処理方法、およびプログラム | |
JP7534444B2 (ja) | キャプチャ画像の処理システム及び方法 | |
US20180077405A1 (en) | Method and system for scene scanning | |
JP2018196426A (ja) | 毛穴検出方法及び毛穴検出装置 | |
KR20210007701A (ko) | 실시간 360 깊이 영상 측정을 위한 카메라 캘리브레이션 방법 및 그 장치 | |
WO2022054167A1 (ja) | 位置推定方法、位置推定装置及びプログラム | |
US11727664B2 (en) | Systems and methods for determining an adaptive region of interest (ROI) for image metrics calculations | |
US11195290B2 (en) | Apparatus and method for encoding in structured depth camera system | |
JP7103324B2 (ja) | 物体認識用異常検出装置及び物体認識用異常検出プログラム | |
JP6989025B2 (ja) | 生体認証装置、偽造判別プログラム及び偽造判別方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21845699 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21845699 Country of ref document: EP Kind code of ref document: A1 |