WO2022017151A1 - 无线信号中继放大装置的自激检测方法及系统 - Google Patents

无线信号中继放大装置的自激检测方法及系统 Download PDF

Info

Publication number
WO2022017151A1
WO2022017151A1 PCT/CN2021/103955 CN2021103955W WO2022017151A1 WO 2022017151 A1 WO2022017151 A1 WO 2022017151A1 CN 2021103955 W CN2021103955 W CN 2021103955W WO 2022017151 A1 WO2022017151 A1 WO 2022017151A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
wireless signal
excitation
threshold
rssi
Prior art date
Application number
PCT/CN2021/103955
Other languages
English (en)
French (fr)
Inventor
张永升
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US18/040,212 priority Critical patent/US20230269011A1/en
Publication of WO2022017151A1 publication Critical patent/WO2022017151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/40Monitoring; Testing of relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of communications, and in particular to a method and system for self-excitation detection of a wireless signal relay amplifying device.
  • the wireless signal relay and amplifying device such as the wireless repeater has the function of amplifying the received wireless signal and then transmitting it. In the actual working process, part of the transmitted signal will be fed back to the receiving side and amplified again. With positive feedback, the RSSI (Received Signal Strength Indication) control word calibrated by the AGC (Automatic Gain Control) on the receiving side continues to increase until saturation, the gain is greater than the isolation, resulting in self-excitation.
  • RSSI Receiveived Signal Strength Indication
  • AGC Automatic Gain Control
  • the received power and isolation will continue to change due to complex external environmental changes, and it is easy to generate self-excitation.
  • the signal is good, and when it runs to the lower floor, the signal weakens, and it is easy to judge that it enters a self-excited state; in addition, the opening and closing of the elevator car door will lead to greater isolation. It is also easy to judge that it enters a self-excited state.
  • Frequently judging entering a self-excited state may easily lead to abnormal operation of wireless signal repeater and amplifying devices such as wireless repeaters.
  • To judge whether to enter the self-excited state specifically, if the received signal power is consistent with the signal power detected by the baseband side, it does not enter the self-excited state; Do not judge.
  • the technical problem to be solved by the present invention is to overcome the defect of judging whether to enter a self-excited state only according to the comparison result of the received signal power and the signal power checked by the baseband side in the prior art, and to provide a wireless signal relay amplifying device.
  • Self-excitation detection method and system is to overcome the defect of judging whether to enter a self-excited state only according to the comparison result of the received signal power and the signal power checked by the baseband side in the prior art, and to provide a wireless signal relay amplifying device.
  • a self-excitation detection method of a wireless signal relay and amplifying device includes a receiving side, a baseband side and a transmitting side, and when the receiving side receives a wireless signal, the self-excitation detection method includes: :
  • the step of judging whether self-excitation occurs according to the wireless signal detected by the baseband side includes:
  • the difference is greater than the second threshold, add 1 to the suspected number of self-excitation and determine whether the number of suspected self-excitation is greater than a third threshold, wherein the initial value of the suspected number of self-excitation is 0;
  • the suspected number of self-excitations is greater than the third threshold and the RSSI of the current frame is greater than the first threshold, determining that self-excitation occurs and clearing the suspected number of self-excitations to zero;
  • the difference is not greater than the second threshold, it is determined that no self-excitation occurs, the suspected number of self-excitations is cleared, and the process goes to the step of judging whether the RSSI of the current frame is greater than the first threshold;
  • the suspected number of self-excitations is not greater than the third threshold, go to the step of judging whether the difference between the input power of the next frame and the input power of the current frame is greater than the second threshold.
  • the self-excitation detection method further includes:
  • the suspected number of self-excitation is cleared, and the process goes to the step of judging whether the RSSI of the current frame is greater than the first threshold.
  • the self-excitation detection method further includes:
  • the receiving side includes an outdoor antenna, and the transmitting side includes an indoor antenna
  • the wireless signal repeating and amplifying device includes a repeater and/or a micro-chamber.
  • a self-excitation detection system of a wireless signal relay amplifying device includes a receiving side, a baseband side and a transmitting side, and the self-excitation detection system includes:
  • a shutdown module configured to shut down the transmitter side when the receiver side receives a wireless signal
  • a first judging module for judging whether the input power of the wireless signal detected by the receiving side is the same as the input power of the wireless signal detected by the baseband side and transmitted from the receiving side to the transmitting side after the shutdown module is called;
  • the second judging module is called to judge whether self-excitation occurs according to the wireless signal detected by the baseband side.
  • the second judgment module includes:
  • a first judging unit for judging whether the RSSI of the current frame is greater than the first threshold
  • the second judgment unit is called to judge whether the difference between the input power of the next frame and the input power of the current frame is greater than the second threshold
  • the third judging unit is called to add 1 to the suspected number of self-excitation and determine whether the number of suspected self-excitation is greater than a third threshold, wherein the The initial value is 0;
  • the fourth judgment unit is called to judge again whether the RSSI of the current frame is greater than the first threshold
  • the fourth judging unit judges that it is yes, the first determining unit is called to determine the occurrence of self-excitation and clear the suspected number of self-excitations to zero;
  • the second judging unit judges that it is no, the second judging unit is called to determine that no self-excitation has occurred, clear the suspected number of self-excitation and call the first judging unit;
  • the third judging unit judges no, then the second judging unit is called.
  • the self-excitation detection system further includes:
  • a first obtaining unit configured to obtain the first RSSI when the power amplifier on the receiving side is not turned off when the fourth judgment unit judges it to be no;
  • shut-off unit configured to shut down the power amplifier on the receiving side after calling the first acquisition unit
  • a second obtaining unit configured to obtain the second RSSI when the power amplifier on the receiving side is turned off
  • a fifth judgment unit configured to judge whether the absolute value of the difference between the second RSSI and the first RSSI is greater than a fourth threshold
  • the second determination unit is called.
  • the self-excitation detection system further includes:
  • the receiving side includes an outdoor antenna, and the transmitting side includes an indoor antenna
  • the wireless signal repeating and amplifying device includes a repeater and/or a micro-chamber.
  • An electronic device comprising a memory, a processor and a computer program stored in the memory and running on the processor, when the processor executes the computer program, the self-excitation of any of the above-mentioned wireless signal relay amplifying devices is realized Detection method.
  • the positive improvement effect of the present invention is that: the present invention determines whether the wireless signal relay amplifying device is self-excited based on the process, which can reduce the occurrence of the wireless signal relay and amplifying device entering a self-excited state due to the constant change of received power and isolation. Therefore, the wireless signal relay and amplifying device can be in a normal forwarding state when the external environment changes, which is beneficial to improve the quality of the wireless signal relay and amplifying device and improve the user experience.
  • FIG. 1 is a schematic diagram of the principle of a wireless signal relay amplifying device in a self-excitation detection method for a wireless signal relay amplifying device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a method for self-excitation detection of a wireless signal relay amplifying apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of step S14 in the self-excitation detection method of the wireless signal relay amplifying apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic block diagram of a self-excitation detection system of a wireless signal relay amplifying apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of an electronic device according to Embodiment 3 of the present invention.
  • This embodiment provides a method for self-excitation detection of a wireless signal relay and amplifying device, wherein the wireless signal relay and amplifying device may be, for example, a repeater, a micro-chamber, etc., and specifically includes a receiving side, a baseband side, and a transmitting side, Further, the self-excitation detection method in this embodiment can be applied to the baseband side.
  • the wireless signal relay and amplifying device may be, for example, a repeater, a micro-chamber, etc., and specifically includes a receiving side, a baseband side, and a transmitting side
  • the self-excitation detection method in this embodiment can be applied to the baseband side.
  • the main path of the wireless signal relay amplifying device in this embodiment is composed of two cascaded radio frequency transceiver modules, wherein the two radio frequency transceiver modules are both configured with two groups of PA (Power Amplifier, power amplifier) and LNA (Low Noise Amplifier, low noise amplifier) loop, the baseband side includes baseband chip and PMU (Power Management Unit, power management unit).
  • PA Power Amplifier, power amplifier
  • LNA Low Noise Amplifier, low noise amplifier
  • the baseband side includes baseband chip and PMU (Power Management Unit, power management unit).
  • the radio frequency transceiver module for receiving wireless signals is denoted as the receiving side
  • the radio frequency transceiver module for transmitting wireless signals is denoted as the transmitting side.
  • the self-excitation detection method of this embodiment includes:
  • step S13 If yes, go to step S13; if not, go to step S14;
  • step S14 in this embodiment may specifically include:
  • S1401 determine whether the RSSI of the current frame is greater than a first threshold
  • step S1402 If yes, go to step S1402; if no, go to step S1403;
  • S1402 determine whether the difference between the input power of the next frame and the input power of the current frame is greater than a second threshold
  • step S1404 If yes, go to step S1404; if no, go to step S1405;
  • step S1406 If yes, go to step S1406; if no, go to step S1402;
  • step S1407 If yes, go to step S1407; if no, go to step S1408;
  • step S1403 determine that no self-excitation occurs and go to step S1401;
  • S1411 determine whether the absolute value of the difference between the second RSSI and the first RSSI is greater than a fourth threshold
  • step S1407 If yes, go to step S1407; if not, go to step S1405.
  • the first threshold can be set according to the actual application.
  • the first threshold can be set as the maximum threshold (such as 1000) of the calibration control word.
  • the determination in step S1401 is yes, the wireless signal relay amplifying device is suspected of being self-excited, and the subsequent steps are continued; when the determination in step S1401 is negative, it is determined that the wireless signal relay and amplifying device does not self-excite, and the transmission is turned on. side to maintain the wireless signal relay and amplifying device in the normal forwarding state.
  • the second threshold can be set according to the actual application. For example, the second threshold can be set as the rated power (such as 13dbm) of the wireless signal relay and amplifying apparatus.
  • step S1402 when it is judged as yes in step S1402, the wireless signal relay amplifying device is suspected of being self-excited, and the subsequent steps are continued; when it is judged as no in step S1402, it is determined that the wireless signal relay and amplifying device is not self-excited, and the transmission is turned on. side to maintain the wireless signal relay and amplifying device in the normal forwarding state.
  • the initial value of the suspected times of self-excitation is 0, and the third threshold can be set according to the actual application.
  • the third threshold can be 3.
  • step S1406 when the determination in step S1406 is yes, it is determined that the wireless signal relay amplifying device is self-excited, and the wireless signal relay and amplifying device performs self-excitation processing (for example, restart, adjust the gain, etc.); in step S1406, it is determined as If no, the wireless signal relay amplifying device is likely to be self-excited.
  • the current state of the wireless signal relay and amplifying device can be recorded as a suspected self-excited state, and the steps S1408-S1411 are used to do further judgment.
  • the fourth threshold can be set according to the actual application. Specifically, when step S1411 is determined to be yes, the switching of the power amplifier causes a large change in RSSI, it is determined that the wireless signal relay amplifying device is self-excited, and the wireless signal relay and amplifier device performs self-excitation processing; when step S1411 is determined to be no, Switching on and off the power amplifier results in no change in RSSI or a small change. It is determined that the wireless signal relay amplifying device is not self-excited, and the transmitting side is turned on to maintain the wireless signal relay and amplifying device in a normal forwarding state.
  • the receiving side preferably includes an outdoor antenna for communicating with the base station
  • the transmitting side preferably includes an indoor antenna for communicating with the user terminal.
  • the downlink receiving side receives the signal from the base station, the signal enters the baseband, the baseband is synchronized and resides on a suitable cell, and the transmitting side is turned on when no self-excitation occurs to amplify the signal and send it indoors .
  • the signal from the user terminal can also be amplified by the wireless signal relay amplifying device and then transmitted to the outside.
  • the baseband while forwarding the amplified signal, the baseband will perform frequency tracking and power control according to the received signal.
  • This embodiment determines whether the wireless signal relay amplifying device is self-excited based on the process, which can reduce the misjudgment that the wireless signal relay and amplifying device enters the self-excited state due to the constant change of received power and isolation, so that the The relay amplifying device can be in a normal forwarding state when the external environment changes, which is beneficial to improve the quality of the wireless signal relay amplifying device and improve user experience.
  • this embodiment can be applied to wireless signals of different formats (for example, LTE, WCDMA, etc.), and only when it is determined that self-excitation does not occur, the transmitting side is turned on to realize the forwarding of wireless signals, and this embodiment uses wireless signals
  • the self-excited detection of the relay amplifier device's own circuit does not require additional hardware, which is beneficial to reducing costs.
  • This embodiment provides a self-excited detection system of a wireless signal relay amplifying device, wherein the wireless signal relay and amplifying device can be, for example, a repeater, a micro-cell division, etc., and specifically includes a receiving side, a baseband side, and a transmitting side, Further, the self-checking detection system of this embodiment can be applied to the baseband side.
  • the wireless signal relay and amplifying device can be, for example, a repeater, a micro-cell division, etc., and specifically includes a receiving side, a baseband side, and a transmitting side
  • the self-checking detection system of this embodiment can be applied to the baseband side.
  • the main path of the wireless signal relay amplifying device in this embodiment is composed of two cascaded radio frequency transceiver modules, wherein the two radio frequency transceiver modules are both configured with two sets of PA and LNA modules.
  • the loop formed by the baseband side includes the baseband chip and the PMU.
  • the radio frequency transceiver module for receiving wireless signals is denoted as the receiving side
  • the radio frequency transceiver module for transmitting wireless signals is denoted as the transmitting side.
  • the self-excitation detection system of this embodiment includes:
  • a shutdown module 11 configured to shut down the transmitter side when the receiver side receives a wireless signal
  • the first judgment module 12 is used to judge whether the input power of the wireless signal detected by the receiving side is the same as the input power of the wireless signal detected by the baseband side and transmitted from the receiving side to the transmitting side after the shutdown module 11 is called;
  • determining module 13 for determining that no self-excitation occurs
  • the second judging module 14 is used for judging whether self-excitation occurs according to the wireless signal detected by the baseband side.
  • the wireless signal relay amplifying device when the first judgment module 12 judges no, the wireless signal relay amplifying device is suspected of self-excitation. However, this embodiment does not directly determine that the wireless signal relay and amplifying device is self-excited, but It is to further judge whether the wireless signal relay amplifying device has self-excited according to the wireless signal detected by the baseband side.
  • the second judgment module 14 in this embodiment may specifically include:
  • the first judgment unit 1401 is used to judge whether the RSSI of the current frame is greater than the first threshold
  • the second judgment unit 1402 is used to judge whether the difference between the input power of the next frame and the input power of the current frame is greater than a second threshold;
  • the third judging unit 1404 is configured to add 1 to the suspected number of self-excitation and determine whether the number of suspected self-excitation is greater than a third threshold;
  • the fourth judgment unit 1406 is used to judge whether the RSSI of the current frame is greater than the first threshold
  • the first determining unit 1407 is used for determining that self-excitation occurs and clearing the suspected times of self-excitation
  • the third determination unit 1403 is used to determine that no self-excitation occurs and to call the first determination unit 1401;
  • the second determination unit 1405 is used to determine that no self-excitation occurs, clear the suspected number of self-excitation and call the first determination unit 1401;
  • a first obtaining unit 1408, configured to obtain the first RSSI when the power amplifier on the receiving side is not turned off
  • a shut-off unit 1409 is used to shut down the power amplifier on the receiving side
  • the second obtaining unit 1410 is configured to obtain the second RSSI when the power amplifier on the receiving side is turned off;
  • the fifth judgment unit 1411 is used to judge whether the absolute value of the difference between the second RSSI and the first RSSI is greater than the fourth threshold
  • the first threshold can be set according to the actual application.
  • the first threshold can be set as the maximum threshold (such as 1000) of the calibration control word.
  • the first judgment unit 1401 judges yes, the wireless signal relay amplifying device is suspected of self-excitation, and continues to call subsequent units; when the first judgment unit 1401 judges no, it is determined that the wireless signal relay amplifying device is not When self-excitation occurs, the transmitting side is turned on to maintain the wireless signal relay and amplifier device in a normal forwarding state.
  • the second threshold can be set according to the actual application. For example, the second threshold can be set as the rated power (such as 13dbm) of the wireless signal relay and amplifying apparatus.
  • the wireless signal relay amplifying device is suspected of being self-excited, and continues to call subsequent units; when the second judgment unit 1402 judges no, it is determined that the wireless signal relay amplifying device is not When self-excitation occurs, the transmitting side is turned on to maintain the wireless signal relay and amplifier device in a normal forwarding state.
  • the initial value of the suspected times of self-excitation is 0, and the third threshold can be set according to the actual application.
  • the third threshold can be 3.
  • the fourth determination unit 1406 determines that it is yes, it is determined that the wireless signal relay amplifying device is self-excited, and the wireless signal relay and amplifying device performs self-excitation processing (for example, restart, adjust the gain, etc.); in the first When the judging unit 1406 judges no, the wireless signal relay amplifying device is likely to be self-excited. Further judgment is made by calling the first obtaining unit 1408 , the closing unit 1409 , the second obtaining unit 1410 and the fifth judging unit 1411 .
  • the fourth threshold can be set according to the actual application. Specifically, when the fifth judging unit 1411 judges it to be yes, the switching of the power amplifier causes a large change in RSSI, it is determined that the wireless signal relay and amplifying device is self-excited, and the wireless signal relay and amplifying device performs self-excitation processing; when the fifth judging unit When 1411 is judged to be no, the RSSI does not change or the change is small due to switching the power amplifier, it is determined that the wireless signal relay amplifying device does not self-excite, and the transmitting side is turned on to maintain the wireless signal relay and amplifying device in a normal forwarding state.
  • the receiving side preferably includes an outdoor antenna for communicating with the base station
  • the transmitting side preferably includes an indoor antenna for communicating with the user terminal.
  • the downlink receiving side receives the signal from the base station, the signal enters the baseband, the baseband is synchronized and resides on a suitable cell, and the transmitting side is turned on when no self-excitation occurs to amplify the signal and send it indoors .
  • the signal from the user terminal can also be amplified by the wireless signal relay amplifying device and then transmitted to the outside.
  • the baseband while forwarding the amplified signal, the baseband will perform frequency tracking and power control according to the received signal.
  • This embodiment determines whether the wireless signal relay amplifying device is self-excited based on the process, which can reduce the misjudgment that the wireless signal relay and amplifying device enters the self-excited state due to the constant change of received power and isolation, so that the The relay amplifying device can be in a normal forwarding state when the external environment changes, which is beneficial to improve the quality of the wireless signal relay amplifying device and improve user experience.
  • this embodiment can be applied to wireless signals of different formats (for example, LTE, WCDMA, etc.), and only when it is determined that self-excitation does not occur, the transmitting side is turned on to realize the forwarding of wireless signals, and this embodiment uses wireless signals
  • the self-excited detection of the relay amplifier device's own circuit does not require additional hardware, which is beneficial to reducing costs.
  • This embodiment provides an electronic device, which can be expressed in the form of a computing device (for example, a server device), and includes a memory, a processor, and a computer program stored in the memory and running on the processor, wherein the processor When the computer program is executed, the self-excited detection method of the wireless signal relay amplifying apparatus provided in Embodiment 1 can be implemented.
  • a computing device for example, a server device
  • the computer program When the computer program is executed, the self-excited detection method of the wireless signal relay amplifying apparatus provided in Embodiment 1 can be implemented.
  • FIG. 5 shows a schematic diagram of the hardware structure of this embodiment.
  • the electronic device 9 specifically includes:
  • At least one processor 91 at least one memory 92, and a bus 93 for connecting different system components (including processor 91 and memory 92), wherein:
  • the bus 93 includes a data bus, an address bus and a control bus.
  • Memory 92 includes volatile memory, such as random access memory (RAM) 921 and/or cache memory 922 , and may further include read only memory (ROM) 923 .
  • RAM random access memory
  • ROM read only memory
  • the memory 92 also includes a program/utility 925 having a set (at least one) of program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, examples of which are Each or some combination of these may include an implementation of a network environment.
  • program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, examples of which are Each or some combination of these may include an implementation of a network environment.
  • the processor 91 executes various functional applications and data processing by running the computer program stored in the memory 92, for example, the self-excitation detection method of the wireless signal relay amplifying apparatus provided in Embodiment 1 of the present invention.
  • the electronic device 9 may further communicate with one or more external devices 94 (eg, keyboards, pointing devices, etc.). Such communication may take place through input/output (I/O) interface 95 . Also, the electronic device 9 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 96 . The network adapter 96 communicates with other modules of the electronic device 9 via the bus 93 .
  • I/O input/output
  • networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet
  • the network adapter 96 communicates with other modules of the electronic device 9 via the bus 93 .
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the self-excitation detection method of the wireless signal relay amplifying apparatus provided in Embodiment 1.
  • the readable storage media may include, but are not limited to, portable disks, hard disks, random access memories, read-only memories, erasable programmable read-only memories, optical storage devices, magnetic storage devices, or any of the above suitable combination.
  • the present invention can also be implemented in the form of a program product, which includes program codes, when the program product runs on a terminal device, the program code is used to cause the terminal device to execute the implementation The steps of the self-excitation detection method of the wireless signal relay amplifying device described in the first embodiment.
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent
  • the software package executes on the user's device, partly on the user's device, partly on the remote device, or entirely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种无线信号中继放大装置的自激检测方法及系统。所述无线信号中继放大装置包括接收侧、基带侧以及发射侧,在所述接收侧接收到无线信号时,所述自激检测方法包括:关闭所述发射侧;判断接收侧检测到的无线信号的输入功率与基带侧检测到的所述接收侧向所述发射侧传输的无线信号的输入功率是否相同;若否,则根据基带侧检测到的无线信号判断是否发生自激。本发明基于过程来判断无线信号中继放大装置是否发生自激,能够减少由于接收功率、隔离度的不断变化所导致的无线信号中继放大装置进入自激态的误判,从而无线信号中继放大装置能够在外界环境变化时处在正常的转发态,有利于提高无线信号中继放大装置的质量并提升用户体验。

Description

无线信号中继放大装置的自激检测方法及系统 技术领域
本发明涉及通信技术领域,具体涉及一种无线信号中继放大装置的自激检测方法及系统。
背景技术
无线直放站等无线信号中继放大装置具有将接收到的无线信号放大之后再予以发射的功能,在其实际工作过程中,发射信号的一部分会反馈到其接收侧并再次被放大,如此形成了正反馈,接收侧AGC(Automatic Gain Control,自动增益控制)校准的RSSI(Received Signal Strength Indication,接收信号强度)控制字不断增大,直至饱和,增益大于隔离度,产生自激。
无线直放站等无线信号中继放大装置在实际工作过程中,接收功率和隔离度会由于外部复杂的环境变化而不断变化,极易产生自激。例如,在电梯轿厢这种特殊环境下,电梯运行到高层时信号良好,运行到低层时信号减弱,容易判断进入自激态;又有,电梯轿厢门的开关会导致较大的隔离度变化,也容易判断进入自激态。
频繁判断进入自激态容易导致无线直放站等无线信号中继放大装置的工作异常,而造成频繁判断进入自激态的缘由主要在于,现有的技术仅根据接收信号功率和基带侧检查到的信号功率的比较结果来判断是否进入自激态,具体地,若接收信号功率和基带侧检查到的信号功率一致,则没有进入自激态,若不一致则进入自激态,而对过程自激不做判断。
发明内容
本发明要解决的技术问题是为了克服现有技术中仅根据接收信号功率和基带侧检查到的信号功率的比较结果来判断是否进入自激态的缺陷,提供一种无线信号中继放大装置的自激检测方法及系统。
本发明是通过下述技术方案来解决上述技术问题:
一种无线信号中继放大装置的自激检测方法,所述无线信号中继放大装置包括接收侧、基带侧以及发射侧,在所述接收侧接收到无线信号时,所述自激检测方法包括:
关闭所述发射侧;
判断接收侧检测到的无线信号的输入功率与基带侧检测到的所述接收侧向所述发射侧传输的无线信号的输入功率是否相同;
若否,则根据基带侧检测到的无线信号判断是否发生自激。
较佳地,所述根据基带侧检测到的无线信号判断是否发生自激的步骤包括:
判断当前帧的RSSI是否大于第一阈值;
若当前帧的RSSI大于所述第一阈值,则判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值;
若差值大于所述第二阈值,则将自激嫌疑次数加1并判断所述自激嫌疑次数是否大于第三阈值,其中,所述自激嫌疑次数的初始值为0;
若所述自激嫌疑次数大于所述第三阈值,则再次判断当前帧的RSSI是否大于所述第一阈值;
若所述自激嫌疑次数大于所述第三阈值并且当前帧的RSSI大于所述第一阈值,则确定发生自激并将所述自激嫌疑次数清零;
若差值不大于所述第二阈值,则确定未发生自激,将所述自激嫌疑次数清零并转至所述判断当前帧的RSSI是否大于第一阈值的步骤;
若所述自激嫌疑次数不大于所述第三阈值,则转至所述判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值的步骤。
较佳地,在所述自激嫌疑次数大于所述第三阈值并且当前帧的RSSI不大于所述第一阈值时,所述自激检测方法还包括:
获取所述接收侧的功放未关闭时的第一RSSI;
关闭所述接收侧的功放;
获取所述接收侧的功放关闭时的第二RSSI;
判断所述第二RSSI与所述第一RSSI的差的绝对值是否大于第四阈值;
若是,则确定发生自激并将所述自激嫌疑次数清零;
若否,则确定未发生自激,将所述自激嫌疑次数清零并转至所述判断当前帧的RSSI是否大于第一阈值的步骤。
较佳地,在确定未发生自激时,所述自激检测方法还包括:
打开所述发射侧;
和/或,
所述接收侧包括室外天线,所述发射侧包括室内天线;
和/或,
所述无线信号中继放大装置包括直放站和/或微室分。
一种无线信号中继放大装置的自激检测系统,所述无线信号中继放大装置包括接收侧、基带侧以及发射侧,所述自激检测系统包括:
关闭模块,用于在所述接收侧接收到无线信号时,关闭所述发射侧;
第一判断模块,用于在调用所述关闭模块之后判断接收侧检测到的无线信号的输入功率与基带侧检测到的所述接收侧向所述发射侧传输的无线信号的输入功率是否相同;
若否,则调用第二判断模块,用于根据基带侧检测到的无线信号判断是否发生自激。
较佳地,所述第二判断模块包括:
第一判断单元,用于判断当前帧的RSSI是否大于第一阈值;
若所述第一判断单元判断为是,则调用第二判断单元,用于判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值;
若所述第二判断单元判断为是,则调用第三判断单元,用于将自激嫌疑次数加1并判断所述自激嫌疑次数是否大于第三阈值,其中,所述自激嫌疑次数的初始值为0;
若所述第三判断单元判断为是,则调用第四判断单元,用于再次判断当前帧的RSSI是否大于所述第一阈值;
若所述第四判断单元判断为是,则调用第一确定单元,用于确定发生自激并将所述自激嫌疑次数清零;
若所述第二判断单元判断为否,则调用第二确定单元,用于确定未发生自激,将所述自激嫌疑次数清零并调用所述第一判断单元;
若所述第三判断单元判断为否,则调用所述第二判断单元。
较佳地,所述自激检测系统还包括:
第一获取单元,用于在所述第四判断单元判断为否时获取所述接收侧的功放未关闭时的第一RSSI;
关闭单元,用于在调用所述第一获取单元之后关闭所述接收侧的功放;
第二获取单元,用于获取所述接收侧的功放关闭时的第二RSSI;
第五判断单元,用于判断所述第二RSSI与所述第一RSSI的差的绝对值是否大于第四阈值;
若是,则调用所述第一确定单元;
若否,则调用所述第二确定单元。
较佳地,所述自激检测系统还包括:
打开模块,用于在确定未发生自激时,打开所述发射侧;
和/或,
所述接收侧包括室外天线,所述发射侧包括室内天线;
和/或,
所述无线信号中继放大装置包括直放站和/或微室分。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一种无线信号中继放大装置的自激检测方法。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种无线信号中继放大装置的自激检测方法的步骤。
本发明的积极进步效果在于:本发明基于过程来判断无线信号中继放大装置是否发生自激,能够减少由于接收功率、隔离度的不断变化所导致的无线信号中继放大装置进入自激态的误判,从而无线信号中继放大装置能够在外界环境变化时处在正常的转发态,有利于提高无线信号中继放大装置的质量并提升用户体验。
附图说明
图1为根据本发明实施例1的无线信号中继放大装置的自激检测方法中无线信号中继放大装置的原理示意图。
图2为根据本发明实施例1的无线信号中继放大装置的自激检测方法的流程图。
图3为根据本发明实施例1的无线信号中继放大装置的自激检测方法中步骤S14的流程图。
图4为根据本发明实施例2的无线信号中继放大装置的自激检测系统的模块示意图。
图5为根据本发明实施例3的电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供一种无线信号中继放大装置的自激检测方法,其中,无线信号中继放大装置例如可以是直放站、微室分等,并且具体包括接收侧、基带侧以及发射侧,进一步地,本实施例的自激检测方法可以应用于基带侧。
具体地,参照图1,本实施例中的无线信号中继放大装置的主通路由两个级联的射频收发机模块构成,其中,两个射频收发机模块均配置有两组由PA(Power Amplifier,功率放大器)和LNA(Low Noise Amplifier,低噪声放大器)组成的回路,基带侧包括基带芯片和PMU(Power Management Unit,电源管理单元)。在本实施例中,将用于接收无线信号的射频收发机模块记作接收侧,将用于发射无线信号的射频收发机模块记作发射侧。
在接收侧接收到无线信号时,参照图2,本实施例的自激检测方法包括:
S11、关闭发射侧;
S12、判断接收侧检测到的无线信号的输入功率与基带侧检测到的接收侧向发射侧传输的无线信号的输入功率是否相同;
若是,则执行步骤S13;若否,则执行步骤S14;
S13、确定未发生自激;
S14、根据基带侧检测到的无线信号判断是否发生自激。
在本实施例中,当步骤S12判断为否时,无线信号中继放大装置存在发生自激的嫌疑,但是,本实施例并未直接判定无线信号中继放大装置发生自激,而是根据基带侧检测到的无线信号对无线信号中继放大装置是否发生自激做进一步判断,参照图3,本实施例中步骤S14具体可以包括:
S1401、判断当前帧的RSSI是否大于第一阈值;
若是,则执行步骤S1402;若否,则转至步骤S1403;
S1402、判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值;
若是,则执行步骤S1404;若否,则执行步骤S1405;
S1404、将自激嫌疑次数加1并判断自激嫌疑次数是否大于第三阈值;
若是,则执行步骤S1406;若否,则转至步骤S1402;
S1406、判断当前帧的RSSI是否大于第一阈值;
若是,则执行步骤S1407;若否,则转至步骤S1408;
S1407、确定发生自激并将自激嫌疑次数清零;
S1403、确定未发生自激并转至步骤S1401;
S1405、确定未发生自激,将自激嫌疑次数清零并转至步骤S1401;
S1408、获取接收侧的功放未关闭时的第一RSSI;
S1409、关闭接收侧的功放;
S1410、获取接收侧的功放关闭时的第二RSSI;
S1411、判断第二RSSI与第一RSSI的差的绝对值是否大于第四阈值;
若是,则执行步骤S1407;若否,则执行步骤S1405。
在本实施例中,第一阈值可以根据实际应用自定义设置,例如,第一阈值可以设置为校准控制字的最大门槛(诸如1000)。并且,在步骤S1401判断为是时,无线信号中继放大装置存在发生自激的嫌疑,继续执行后续步骤;在步骤S1401判断为否时,确定无线信号中继放大装置未发生自激,打开发射侧以维持无线信号中继放大装置在正常的转发态。
在本实施例中,初次执行步骤S1402时,例如,可以记当前帧的输入功率为P0,下一帧的输入功率为P1,有差值=P1-P0;当步骤S1402判断为是并且步骤S1404判断为否而再次执行步骤S1402时,记当前帧的输入功率为P1,下一帧的输入功率为P2,有差值=P1-P0。此外,在本实施例中,第二阈值可以根据实际应用自定义设置,例如,第二阈值可以设置为无线信号中继放大装置的额定功率(诸如13dbm)。并且,在步骤S1402判断为是时,无线信号中继放大装置存在发生自激的嫌疑,继续执行后续步骤;在步骤S1402判断为否时,确定无线信号中继放大装置未发生自激,打开发射侧以维持无线信号中继放大装置在正常的转发态。
在本实施例中,自激嫌疑次数的初始值为0,第三阈值可以根据实际应用自定义设置,例如,第三阈值可以取值为3。
在本实施例中,在步骤S1406判断为是时,确定无线信号中继放大装置发生自激,无线信号中继放大装置进行自激处理(例如,重启、调整增益等);在步骤S1406判断为否时,无线信号中继放大装置存在发生自激的较大嫌疑,在本实施例中,可以将无线信号中继放大装置此时的状态记作疑似自激态,并通过步骤S1408-S1411做进一步判断。
在本实施例中,第四阈值可以根据实际应用自定义设置。具体地,当步骤S1411判断为是时,开关功放导致RSSI的变化较大,确定无线信号中继放大装置发生自激,无线信号中继放大装置进行自激处理;当步骤S1411判断为否时,开关功放导致RSSI没有变化或者变化较小,确定无线信号中继放大装置未发生自激,打开发射侧以维持无线信号中继放大装置在正常的转发态。
在本实施例中,接收侧优选包括室外天线,用于与基站通信,发射侧优选包括室内天线,用于与用户终端通信。具体地,在本实施例中,下行接收侧接收来自基站的信号,信号进入基带,基带同步并驻留在合适的小区上,并在未发生自激时打开发射侧以将信号放大送入室内。来自用户终端的信号也可以通过无线信号中继放大装置放大后向外发射。并且,在转发放大信号的同时,基带会根据接收到的信号做频率跟踪、功率控制等。
本实施例基于过程来判断无线信号中继放大装置是否发生自激,能够减少由于接收功率、隔离度的不断变化所导致的无线信号中继放大装置进入自激态的误判,从而无线信号中继放大装置能够在外界环境变化时处在正常的转发态,有利于提高无线信号中继放大装置的质量并提升用户体验。
此外,本实施例可以适用于不同制式的无线信号(例如,LTE、WCDMA等),并且在确定未发生自激的情况下才打开发射侧实现无线信号的转发,并且,本实施例利用无线信号中继放大装置的自身电路实现自激检测,无需额外增加硬件,有利于降低成本。
实施例2
本实施例提供一种无线信号中继放大装置的自激检测系统,其中,无线信号中继放大装置例如可以是直放站、微室分等,并且具体包括接收侧、基带侧以及发射侧,进一步地,本实施例的自检检测系统可以应用于基带侧。
具体地,参照图2,本实施例中的无线信号中继放大装置的主通路由两个级联的射频收发机模块构成,其中,两个射频收发机模块均配置有两组由PA和LNA组成的回路,基带侧包括基带芯片和PMU。在本实施例中,将用于接收无线信号的射频收发机模块记作接收侧,将用于发射无线信号的射频收发机模块记作发射侧。
在接收侧接收到无线信号时,参照图4,本实施例的自激检测系统包括:
关闭模块11,用于在所述接收侧接收到无线信号时,关闭发射侧;
第一判断模块12,用于在调用所述关闭模块11之后判断接收侧检测到的无线信号的输入功率与基带侧检测到的接收侧向发射侧传输的无线信号的输入功率是否相同;
若是,则确定模块13;若否,则调用第二判断模块14;
确定模块13,用于确定未发生自激;
第二判断模块14,用于根据基带侧检测到的无线信号判断是否发生自激。
在本实施例中,当第一判断模块12判断为否时,无线信号中继放大装置存在发生自激的嫌疑,但是,本实施例并未直接判定无线信号中继放大装置发生自激,而是根据基带侧检测到的无线信号对无线信号中继放大装置是否发生自激做进一步判断,参照图4,本实施例中第二判断模块14具体可以包括:
第一判断单元1401,用于判断当前帧的RSSI是否大于第一阈值;
若是,则调用第二判断单元1402;若否,则调用第三确定单元1403;
第二判断单元1402,用于判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值;
若是,则调用第三判断单元1404;若否,则调用第二确定单元1405;
第三判断单元1404,用于将自激嫌疑次数加1并判断自激嫌疑次数是否大于第三阈值;
若是,则调用第四判断单元1406;若否,则调用第二判断单元1402;
第四判断单元1406,用于判断当前帧的RSSI是否大于第一阈值;
若是,则调用第一确定单元1407;若否,则调用第一获取单元1408;
第一确定单元1407,用于确定发生自激并将自激嫌疑次数清零;
第三确定单元1403,用于确定未发生自激并调用第一判断单元1401;
第二确定单元1405,用于确定未发生自激,将自激嫌疑次数清零并调用第一判断单元1401;
第一获取单元1408,用于获取接收侧的功放未关闭时的第一RSSI;
关闭单元1409,用于关闭接收侧的功放;
第二获取单元1410,用于获取接收侧的功放关闭时的第二RSSI;
第五判断单元1411,用于判断第二RSSI与第一RSSI的差的绝对值是否大于第四阈值;
若是,则调用第一确定单元1407;若否,则调用第二确定单元1405。
在本实施例中,第一阈值可以根据实际应用自定义设置,例如,第一阈值可以设置为校准控制字的最大门槛(诸如1000)。并且,在第一判断单元1401判断为是时,无线信号中继放大装置存在发生自激的嫌疑,继续调用后续单元;在第一判断单元1401判断为否时,确定无线信号中继放大装置未发生自激,打开发射侧以维持无线信号中继放大装置在正常的转发态。
在本实施例中,初次调用第二判断单元1402时,例如,可以记当前帧的输入功率为P0,下一帧的输入功率为P1,有差值=P1-P0;当第二判断单元1402判断为是并且第三判断单元1404判断为否而再次调用第二判断单元1402时,记当前帧的输入功率为P1,下一帧的输入功率为P2,有差值=P1-P0。此外,在本实施例中,第二阈值可以根据实际应用自定义设置,例如,第二阈值可以设置为无线信号中继放大装置的额定功率(诸如13dbm)。并且,在第二判断单元1402判断为是时,无线信号中继放大装置存在发生自激的嫌疑,继续调用后续单元;在第二判断单元1402判断为否时,确定无线信号中继放大装置未发生自激,打开发射侧以维持无线信号中继放大装置在正常的转发态。
在本实施例中,自激嫌疑次数的初始值为0,第三阈值可以根据实际应用自定义设置,例如,第三阈值可以取值为3。
在本实施例中,在第四判断单元1406判断为是时,确定无线信号中继放大装置发生自激,无线信号中继放大装置进行自激处理(例如,重启、调整增益等);在第四判断单元1406判断为否时,无线信号中继放大装置存在发生自激的较大嫌疑,在本实施例中,可以将无线信号中继放大装置此时的状态记作疑似自激态,并通过调用第一获取单元1408、关闭单元1409、第二获取单元1410以及第五判断单元1411做进一步判断。
在本实施例中,第四阈值可以根据实际应用自定义设置。具体地,当第五判断单元1411判断为是时,开关功放导致RSSI的变化较大,确定无线信号中继放大装置发生自激,无线信号中继放大装置进行自激处理;当第五判断单元1411判断为否时,开关功放导致RSSI没有变化或者变化较小,确定无线信号中继放大装置未发生自激,打开发射侧以维持无线信号中继放大装置在正常的转发态。
在本实施例中,接收侧优选包括室外天线,用于与基站通信,发射侧优选包括室内天线,用于与用户终端通信。具体地,在本实施例中,下行接收侧接收来自基站的信号,信号进入基带,基带同步并驻留在合适的小区上,并在未发生自激时打开发射侧以将信号放大送入室内。来自用户终端的信号也可以通过无线信号中继放大装置放大后向外发射。并且,在转发放大信号的同时,基带会根据接收到的信号做频率跟踪、功率控制等。
本实施例基于过程来判断无线信号中继放大装置是否发生自激,能够减少由于接收功率、隔离度的不断变化所导致的无线信号中继放大装置进入自激态的误判,从而无线信号中继放大装置能够在外界环境变化时处在正常的转发态,有利于提高无线信号中继放大装置的质量并提升用户体验。
此外,本实施例可以适用于不同制式的无线信号(例如,LTE、WCDMA等),并且在确定未发生自激的情况下才打开发射侧实现无线信号的转发,并且,本实施例利用无线信号中继放大装置的自身电路实现自激检测,无需额外增加硬件,有利于降低成本。
实施例3
本实施例提供一种电子设备,电子设备可以通过计算设备的形式表现(例如可以为服 务器设备),包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中处理器执行计算机程序时可以实现实施例1提供的无线信号中继放大装置的自激检测方法。
图5示出了本实施例的硬件结构示意图,如图5所示,电子设备9具体包括:
至少一个处理器91、至少一个存储器92以及用于连接不同系统组件(包括处理器91和存储器92)的总线93,其中:
总线93包括数据总线、地址总线和控制总线。
存储器92包括易失性存储器,例如随机存取存储器(RAM)921和/或高速缓存存储器922,还可以进一步包括只读存储器(ROM)923。
存储器92还包括具有一组(至少一个)程序模块924的程序/实用工具925,这样的程序模块924包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器91通过运行存储在存储器92中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明实施例1所提供的无线信号中继放大装置的自激检测方法。
电子设备9进一步可以与一个或多个外部设备94(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口95进行。并且,电子设备9还可以通过网络适配器96与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器96通过总线93与电子设备9的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备9使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例4
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现实施例1所提供的无线信号中继放大装置的自激检测方法的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例1所述的无线信号中继放大装置的自激检测方法的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

  1. 一种无线信号中继放大装置的自激检测方法,其特征在于,所述无线信号中继放大装置包括接收侧、基带侧以及发射侧,在所述接收侧接收到无线信号时,所述自激检测方法包括:
    关闭所述发射侧;
    判断接收侧检测到的无线信号的输入功率与基带侧检测到的所述接收侧向所述发射侧传输的无线信号的输入功率是否相同;
    若否,则根据基带侧检测到的无线信号判断是否发生自激。
  2. 如权利要求1所述的无线信号中继放大装置的自激检测方法,其特征在于,所述根据基带侧检测到的无线信号判断是否发生自激的步骤包括:
    判断当前帧的RSSI是否大于第一阈值;
    若当前帧的RSSI大于所述第一阈值,则判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值;
    若差值大于所述第二阈值,则将自激嫌疑次数加1并判断所述自激嫌疑次数是否大于第三阈值,其中,所述自激嫌疑次数的初始值为0;
    若所述自激嫌疑次数大于所述第三阈值,则再次判断当前帧的RSSI是否大于所述第一阈值;
    若所述自激嫌疑次数大于所述第三阈值并且当前帧的RSSI大于所述第一阈值,则确定发生自激并将所述自激嫌疑次数清零;
    若差值不大于所述第二阈值,则确定未发生自激,将所述自激嫌疑次数清零并转至所述判断当前帧的RSSI是否大于第一阈值的步骤;
    若所述自激嫌疑次数不大于所述第三阈值,则转至所述判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值的步骤。
  3. 如权利要求2所述的无线信号中继放大装置的自激检测方法,其特征在于,在所述自激嫌疑次数大于所述第三阈值并且当前帧的RSSI不大于所述第一阈值时,所述自激检测方法还包括:
    获取所述接收侧的功放未关闭时的第一RSSI;
    关闭所述接收侧的功放;
    获取所述接收侧的功放关闭时的第二RSSI;
    判断所述第二RSSI与所述第一RSSI的差的绝对值是否大于第四阈值;
    若是,则确定发生自激并将所述自激嫌疑次数清零;
    若否,则确定未发生自激,将所述自激嫌疑次数清零并转至所述判断当前帧的RSSI是否大于第一阈值的步骤。
  4. 如权利要求1所述的无线信号中继放大装置的自激检测方法,其特征在于,在确定未发生自激时,所述自激检测方法还包括:
    打开所述发射侧;
    和/或,
    所述接收侧包括室外天线,所述发射侧包括室内天线;
    和/或,
    所述无线信号中继放大装置包括直放站和/或微室分。
  5. 一种无线信号中继放大装置的自激检测系统,其特征在于,所述无线信号中继放大装置包括接收侧、基带侧以及发射侧,所述自激检测系统包括:
    关闭模块,用于在所述接收侧接收到无线信号时,关闭所述发射侧;
    第一判断模块,用于在调用所述关闭模块之后判断接收侧检测到的无线信号的输入功率与基带侧检测到的所述接收侧向所述发射侧传输的无线信号的输入功率是否相同;
    若否,则调用第二判断模块,用于根据基带侧检测到的无线信号判断是否发生自激。
  6. 如权利要求5所述的无线信号中继放大装置的自激检测系统,其特征在于,所述第二判断模块包括:
    第一判断单元,用于判断当前帧的RSSI是否大于第一阈值;
    若所述第一判断单元判断为是,则调用第二判断单元,用于判断下一帧的输入功率与当前帧的输入功率的差值是否大于第二阈值;
    若所述第二判断单元判断为是,则调用第三判断单元,用于将自激嫌疑次数加1并判断所述自激嫌疑次数是否大于第三阈值,其中,所述自激嫌疑次数的初始值为0;
    若所述第三判断单元判断为是,则调用第四判断单元,用于再次判断当前帧的RSSI是否大于所述第一阈值;
    若所述第四判断单元判断为是,则调用第一确定单元,用于确定发生自激并将所述自激嫌疑次数清零;
    若所述第二判断单元判断为否,则调用第二确定单元,用于确定未发生自激,将所述自激嫌疑次数清零并调用所述第一判断单元;
    若所述第三判断单元判断为否,则调用所述第二判断单元。
  7. 如权利要求6所述的无线信号中继放大装置的自激检测系统,其特征在于,所述自激检测系统还包括:
    第一获取单元,用于在所述第四判断单元判断为否时获取所述接收侧的功放未关闭时的第一RSSI;
    关闭单元,用于在调用所述第一获取单元之后关闭所述接收侧的功放;
    第二获取单元,用于获取所述接收侧的功放关闭时的第二RSSI;
    第五判断单元,用于判断所述第二RSSI与所述第一RSSI的差的绝对值是否大于第四阈值;
    若是,则调用所述第一确定单元;
    若否,则调用所述第二确定单元。
  8. 如权利要求5所述的无线信号中继放大装置的自激检测系统,其特征在于,所述自激检测系统还包括:
    打开模块,用于在确定未发生自激时,打开所述发射侧;
    和/或,
    所述接收侧包括室外天线,所述发射侧包括室内天线;
    和/或,
    所述无线信号中继放大装置包括直放站和/或微室分。
  9. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至4中任一项所述的无线信号中继放大装置的自激检测方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至4中任一项所述的无线信号中继放大装置的自激检测方法的步骤。
PCT/CN2021/103955 2020-07-23 2021-07-01 无线信号中继放大装置的自激检测方法及系统 WO2022017151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/040,212 US20230269011A1 (en) 2020-07-23 2021-07-01 Self-excitation detection method for wireless-signal relay amplification device, electronic device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010718186.XA CN111756461B (zh) 2020-07-23 2020-07-23 无线信号中继放大装置的自激检测方法及系统
CN202010718186.X 2020-07-23

Publications (1)

Publication Number Publication Date
WO2022017151A1 true WO2022017151A1 (zh) 2022-01-27

Family

ID=72710699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103955 WO2022017151A1 (zh) 2020-07-23 2021-07-01 无线信号中继放大装置的自激检测方法及系统

Country Status (3)

Country Link
US (1) US20230269011A1 (zh)
CN (1) CN111756461B (zh)
WO (1) WO2022017151A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296715A (zh) * 2022-07-15 2022-11-04 广州东峰通信科技有限公司 一种直放机信号处理系统与信号处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756461B (zh) * 2020-07-23 2022-08-16 展讯通信(上海)有限公司 无线信号中继放大装置的自激检测方法及系统
CN113055112A (zh) * 2021-03-15 2021-06-29 陕西天基通信科技有限责任公司 一种无线中继直放站自激检测方法、系统、设备及储存介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599791A (zh) * 2009-07-09 2009-12-09 上海贝电实业股份有限公司 无线td直放站自激自动消除方法
US20120120988A1 (en) * 2007-11-16 2012-05-17 Shenzhen Grentech Co., Ltd. Repeater and self-excitation detecting method and system
CN105634629A (zh) * 2015-12-30 2016-06-01 三维通信股份有限公司 一种移动通信射频信号放大设备的自激判定方法
CN108288992A (zh) * 2017-01-09 2018-07-17 展讯通信(上海)有限公司 一种微型直放站自动控制增益的方法、装置及基带芯片
CN111756461A (zh) * 2020-07-23 2020-10-09 展讯通信(上海)有限公司 无线信号中继放大装置的自激检测方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060111311A (ko) * 2005-04-23 2006-10-27 주식회사 썬웨이브텍 Rf 신호 중계기 시스템에서의 자기 발진 방지 방법 및 그시스템
CN102130698B (zh) * 2010-01-15 2014-04-16 赵小林 一种电磁波同频放大直放站系统中的回波检测和消除自激的方法
CN102792742B (zh) * 2011-10-31 2016-05-25 苏州全波通信技术有限公司 直放站输出信号的自适应控制方法及其装置和系统
CN106301524B (zh) * 2016-08-31 2019-08-02 上海应用技术学院 一种抑制无线同频中继网络自激的通信方法
CN107872284B (zh) * 2016-09-26 2021-01-05 展讯通信(上海)有限公司 无线直放站的自激检测方法及装置
CN109639335B (zh) * 2018-12-20 2021-03-19 京信通信系统(中国)有限公司 一种无线直放站自激处理方法及装置
CN111163023B (zh) * 2019-12-27 2021-09-03 京信网络系统股份有限公司 自激消除装置、隔离度检测方法、接入单元及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120120988A1 (en) * 2007-11-16 2012-05-17 Shenzhen Grentech Co., Ltd. Repeater and self-excitation detecting method and system
CN101599791A (zh) * 2009-07-09 2009-12-09 上海贝电实业股份有限公司 无线td直放站自激自动消除方法
CN105634629A (zh) * 2015-12-30 2016-06-01 三维通信股份有限公司 一种移动通信射频信号放大设备的自激判定方法
CN108288992A (zh) * 2017-01-09 2018-07-17 展讯通信(上海)有限公司 一种微型直放站自动控制增益的方法、装置及基带芯片
CN111756461A (zh) * 2020-07-23 2020-10-09 展讯通信(上海)有限公司 无线信号中继放大装置的自激检测方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296715A (zh) * 2022-07-15 2022-11-04 广州东峰通信科技有限公司 一种直放机信号处理系统与信号处理方法
CN115296715B (zh) * 2022-07-15 2023-04-21 广州东峰通信科技有限公司 一种直放机信号处理系统与信号处理方法

Also Published As

Publication number Publication date
CN111756461A (zh) 2020-10-09
US20230269011A1 (en) 2023-08-24
CN111756461B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2022017151A1 (zh) 无线信号中继放大装置的自激检测方法及系统
KR101298590B1 (ko) 무선 통신 시스템에서 중계 장치 및 방법
US11488460B2 (en) Fire alarm system
US8369773B2 (en) Repeater and self-excitation detecting method and system
CN107918596B (zh) 一种soc芯片及射频信号处理方法
US20230368650A1 (en) Fire alarm apparatus for unwanted alarm
US20230155672A1 (en) Service satellite running status diagnosis method and related apparatus
CN110401967B (zh) 一种信息处理方法、装置、基站和计算机存储介质
CN114710180A (zh) 一种射频处理电路控制方法、射频系统及无线通信设备
CN105101411B (zh) 自愈式精确定位分站、系统及链路自愈方法
CN112261712B (zh) 功率调节方法及装置
CN112333765B (zh) 发射方法、装置和电子设备
US20200119696A1 (en) Method and device for reducing power consumption of pa
CN103874111A (zh) 基于隔离度检测的直放站系统自适应优化方法
KR20060110517A (ko) 이동통신 무선 중계기의 역방향 노이즈 검출 장치 및 그방법
WO2023160571A1 (zh) 干扰或自激处理方法及装置、中继节点及宿主基站
WO2024022395A1 (zh) 能力上报方法、装置、反向散射设备及第一通信设备
CN113498097B (zh) 一种适用于小基站背负天线场景的驻波告警方法和设备
CN116208237B (zh) 一种卫星的通信方法、装置及电子设备
US20230247456A1 (en) Repeater with Integrated Modem for Remote Monitoring
CN102487284B (zh) 具非对称增益天线的通讯装置及其通讯方法
CN115882974A (zh) 发射功率增强的方法、装置、电子设备和存储介质
KR20220093997A (ko) 간섭 신호 진단장치
KR101604746B1 (ko) 중계기 발진 제어 방법 및 이를 적용한 중계기
KR102204508B1 (ko) 기지국 출력 제어방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845678

Country of ref document: EP

Kind code of ref document: A1