WO2022016917A1 - 一种变流道防水锤空气阀和设计方法 - Google Patents

一种变流道防水锤空气阀和设计方法 Download PDF

Info

Publication number
WO2022016917A1
WO2022016917A1 PCT/CN2021/087072 CN2021087072W WO2022016917A1 WO 2022016917 A1 WO2022016917 A1 WO 2022016917A1 CN 2021087072 W CN2021087072 W CN 2021087072W WO 2022016917 A1 WO2022016917 A1 WO 2022016917A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
valve
valve body
water
flow channel
Prior art date
Application number
PCT/CN2021/087072
Other languages
English (en)
French (fr)
Inventor
戴会超
王浩
李甲振
郭新蕾
郭永鑫
王涛
赵汗青
付辉
潘佳佳
Original Assignee
中国长江三峡集团有限公司
中国水利水电科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司, 中国水利水电科学研究院 filed Critical 中国长江三峡集团有限公司
Priority to JP2022524659A priority Critical patent/JP7411793B2/ja
Priority to GB2206636.9A priority patent/GB2605515B/en
Priority to US17/779,073 priority patent/US11846379B2/en
Publication of WO2022016917A1 publication Critical patent/WO2022016917A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • F16L55/045Devices damping pulsations or vibrations in fluids specially adapted to prevent or minimise the effects of water hammer
    • F16L55/055Valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/03Check valves with guided rigid valve members with a hinged closure member or with a pivoted closure member
    • F16K15/034Check valves with guided rigid valve members with a hinged closure member or with a pivoted closure member weight-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only
    • F16K24/042Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float
    • F16K24/044Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float the float being rigidly connected to the valve element, the assembly of float and valve element following a substantially translational movement when actuated, e.g. also for actuating a pilot valve
    • F16K24/046Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float the float being rigidly connected to the valve element, the assembly of float and valve element following a substantially translational movement when actuated, e.g. also for actuating a pilot valve the assembly of float and valve element being a single spherical element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/18Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float
    • F16K31/20Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes

Definitions

  • the invention relates to a variable flow channel water hammer air valve and a design method, a water hammer protection device for a pipeline system and a method of using the protection device and a method for designing the protection device, and a long-distance water diversion or urban water supply and drainage.
  • the air valve is one of the common pipeline protection equipment. Its function is to discharge the air in the pipeline when the system is filled with water for the first time or restarted after being stopped for maintenance. 2When the negative pressure of water hammer occurs, open it, so that the air can enter the pipeline quickly, so as to avoid the pipeline being collapsed or vacuum vaporized; when the pipeline pressure is higher than atmospheric pressure, the gas sucked into the pipeline to prevent negative pressure is discharged. 3 Discharge the gas separated during the normal operation of the pipeline, so as to avoid the retention of the air bag to increase the water flow resistance, affect the water delivery efficiency, and thus increase the operating cost.
  • the air When inhaling with negative pressure, the air is required to enter the pipeline quickly to reduce the negative pressure; when exhausting with positive pressure, the gas is required to exit the pipeline relatively slowly. If the inhalation is slow, the negative pressure may not be effectively suppressed; if the exhaust is fast, the secondary bridging water hammer may generate extreme pressure fluctuations, destroying pipes, air valves or other electromechanical equipment. Therefore, the ideal air valve should be able to inhale quickly and exhaust slowly.
  • the air micro-drain valve is the most effective for the protection of water column separation and re-bridging of high-pressure water hammer in the process of empty pipe filling.
  • the intake and exhaust have different flow channel areas, which can be achieved by setting a large-diameter intake valve and a small-diameter exhaust valve respectively, or by setting an air valve that automatically switches the intake and exhaust channels. Among them, the second method is more commonly used.
  • the design idea of the waterproof hammer air valve is that the intake and exhaust share the same flow channel, and a throttle ring is set; when the exhaust is fast, the thrust of the throttle ring is greater than its own gravity or the force of the spring.
  • the flow ring is moved up to partially block the flow passage and reduce the exhaust area.
  • the common practice is to use a vacuum break valve and a small-diameter intake and exhaust air valve, which not only costs high equipment costs and installation costs, but also brings certain troubles to land acquisition, operation and maintenance, and is a problem that needs to be solved.
  • the problem is to use a vacuum break valve and a small-diameter intake and exhaust air valve, which not only costs high equipment costs and installation costs, but also brings certain troubles to land acquisition, operation and maintenance, and is a problem that needs to be solved. The problem.
  • the present invention proposes a variable flow channel waterproof hammer air valve and a design method.
  • the waterproof hammer air valve is provided with two air passages, one is the intake and exhaust passages, and the other is only used for air intake. Under the condition of no power and control, the air intake volume is greater than the exhaust volume. ventilation function.
  • a variable flow channel waterproof hammer air valve including a valve body with a connecting piece at the bottom that can be connected with a water delivery pipeline, and the valve body is a bulge in the middle of the upper and lower constrictions.
  • the hollow pot shape, the upper constriction part is a rotary body, the cross-sectional shape of the convex part in the middle of the valve body is a regular polygon, the bottom of the valve body is provided with a fluid inlet and outlet, and the top is provided with an intake and exhaust port.
  • the ball valve seat and the valve body are fixedly connected by a guide sleeve bracket, and it is characterized in that the lower half of the middle convex part is provided with at least one swing check valve that can be opened inwardly.
  • the check valve includes: a swing valve disc hingedly connected to the valve body, a variable flow channel air inlet controlled by the swing valve disc to open and close, a facility to limit the opening degree of the swing valve disc, and a sealing facility.
  • the facility for limiting the opening degree of the valve flap is a limit ring, and the limit ring is fixedly connected to the valve body through a limit ring bracket.
  • the swing opening and closing angle of the swing valve flap of the swing check valve is 30-45°.
  • the cross-sectional shape of the convex portion in the middle of the valve body is a regular octagon, and four swing check valves are evenly distributed around the valve body.
  • the cross-sectional shape of the protruding part in the middle of the valve body is a regular dodecagon, and six swing check valves are evenly distributed around the valve body.
  • valve cover is provided above the inlet and exhaust ports.
  • the guide sleeve bracket is a plurality of sheet-like bodies surrounding the guide sleeve.
  • the floating ball is a hollow ball of non-metallic material.
  • a method for waterproof hammer of variable flow channel using the above-mentioned air valve the steps of the method for waterproof hammer are as follows:
  • Step 1 the air valve is closed: the water delivery pipeline is running normally, there is no tendency of water hammer, the valve body is full of water, the water body lifts the floating ball to the sealing ring at the inlet and exhaust ports on the upper part of the valve body, and the floating ball is connected to the valve body.
  • the combination of the sealing ring seals the inlet and exhaust ports, and neither air nor water can enter or exit;
  • Step 2 air precipitation: during the normal operation of the water delivery pipeline, a small amount of air will be released from the water in the pipeline, and the released air will gradually gather and enter the valve body and accumulate at the top of the air valve; Increase, the water level drops, the buoyancy of the floating ball drops and separates from the sealing ring, and the air is quickly discharged from the air inlet and outlet; after the precipitation air is discharged, the water level rises, the floating ball is lifted to the sealing ring, the air valve is closed, and the output The water pipeline continues to maintain the normal water delivery state;
  • Step 3 air valve drainage: when the water pipeline has negative pressure, the water in the valve body is attracted by the water pipeline, and enters the water pipeline from the inlet and outlet of the fluid. The outlet is opened, and the air enters the valve body to fill the space where the water body flows away;
  • Step 4 variable flow channel suction: when the water level in the valve body drops below the swing check valve, the swing check valve is opened under the action of atmospheric pressure, and the air is simultaneously discharged from the inlet and outlet ports and the swing check valve.
  • the variable flow channel air inlet enters the valve body, and then enters the water pipeline through the valve body;
  • Step 5 air valve exhaust: when the pressure in the water pipeline recovers and becomes greater than atmospheric pressure, the air pressure in the valve body also increases, and the swing disc of the swing check valve closes under the action of gravity With the variable flow channel air inlet, the air can only be discharged from the valve body through the air inlet and outlet;
  • Step 6 water inlet of the air valve: as the pressure in the water pipeline gradually recovers, the air in the pipeline enters the valve body and is discharged through the intake and exhaust ports. As the water level in the valve gradually rises, the floating ball rises under the action of the buoyancy of the water until the floating ball rises to contact with the sealing ring, the air valve is completely closed, and the water delivery pipeline returns to the normal water delivery state.
  • a design method of the above air valve, the steps of the design method are as follows:
  • Step 01 Determine the intake and exhaust flow area of the air valve: Through the analysis of the hydraulic transition process, determine the intake flow channel area A in and the exhaust flow channel area A out of the required air valve. When the air flows through the air valve, its boundary conditions There are four cases:
  • R is the gas constant, 8.31 ⁇ J ⁇ mol -1 ⁇ K -1 ;
  • T 0 is the absolute temperature of the gas, K;
  • C out is the exhaust flow coefficient
  • a out is the exhaust area, m 2 ;
  • Step 02 Calculate the diameter of the intake and exhaust ports: According to the required exhaust flow channel area A out , calculate the diameter of the intake and exhaust ports d 1 :
  • Step 03 determine the total area of the variable flow channel: the required area of the variable flow channel is A variable flow channel:
  • a variable flow channel A in - A out ;
  • Step 04 determine the area of each single flow channel: the cross-sectional shape of the protruding part in the middle of the valve body is a regular polygon, the number of faces of the prismatic valve body is N, N is an even number greater than or equal to 6, 6, 8, 12...;
  • Step 05 determine the size of the opening of the variable flow channel: the cross section of the prism is a regular polygon, and the diameter of its inscribed circle is an integer multiple of the diameter of the air valve, then the area of a single flow channel is:
  • s is the opening size of the swing check valve, m; L, the width of the variable flow air inlet, m.
  • the present invention utilizes and sets two flow channels, one is the flow channel of the intake and exhaust ports controlled by the floating ball, and the other is the variable flow channel controlled by the swing check valve. road.
  • the flow passage of the inlet and exhaust ports is in a circulating state, and it is closed when and only when the air in the air valve is close to being drained and the water level rises to hold up the floating ball.
  • the variable flow channel can only be opened when the water pipeline is under negative pressure and the water body in the valve body is nearly drained.
  • the swing check valve closes under the action of its own weight.
  • the air valve takes in air through the intake and exhaust ports and variable flow passages, while when exhausting, only exhausts through the intake and exhaust ports. In this way, through the change of the flow passage, the area of the intake and exhaust flow passages is changed, thereby realizing Fast intake and slow exhaust.
  • the opening force of the variable flow channel is negative pressure
  • the closing force is the gravity of the swing disc.
  • the force for adjusting the exhaust area is adjusted from airflow thrust to gravity. On the one hand, it avoids the stress on the throttle ring and the uncertainty of the closing process caused by the strong three-dimensional characteristics of the exhaust process, and also solves the instability of the spring force. problem.
  • the air valve can be set to any inflow area and outflow area according to the numerical simulation results.
  • the area of the variable flow passage is controlled by a prismatic valve body, a swing check valve that opens to the inside, and a limit ring. The opening of the lift check valve and vice versa.
  • FIG. 1 is a schematic structural diagram of the air valve described in Embodiments 1, 2, 3, 6 and 7 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the upper half of the middle part of the valve body of the air valve according to Embodiments 1 and 4 of the present invention, and is a cross-sectional view of A-A in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of the lower half of the middle part of the octahedral valve body of the air valve according to Embodiments 1, 3, 4, and 5 of the present invention, and is a sectional view of B-B in FIG. 1;
  • FIG. 4 is a schematic cross-sectional view of the lower half of the middle part of the dodecahedron valve body of the air valve according to Embodiments 5 and 10 of the present invention, and is a cross-sectional view of B-B in FIG. 1;
  • Fig. 5 is the flow chart of the waterproof hammer method according to the ninth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the state of the closed air valve when the water delivery pipeline according to Embodiment 9 of the invention is normally delivering water;
  • Fig. 7 is the state schematic diagram of the open state of the air valve when the air is separated from the water pipeline according to the ninth embodiment of the invention.
  • FIG. 8 is a schematic diagram of the state in which the air valve is opened due to pressure reduction in the water pipeline according to the ninth embodiment of the invention.
  • FIG. 9 is a schematic diagram of the state in which the pressure drop in the water delivery pipeline according to the ninth embodiment of the invention causes the air valve to be opened and the swing check valve is also opened;
  • FIG. 10 is a schematic diagram of the state after the swing check valve is closed when the pressure of the water delivery pipeline is restored according to Embodiment 9 of the invention.
  • FIG. 11 is a schematic diagram illustrating that the flow area of the variable flow channel is increased by increasing the number of faces of the prism by the calculation method according to the tenth embodiment of the invention.
  • This embodiment is a variable flow channel waterproof hammer air valve, as shown in FIG. 1 .
  • This embodiment includes a valve body 2 with a connector 1 at the bottom that can be connected to a water delivery pipeline.
  • the valve body is in the shape of a hollow pot with an upper and lower constriction in the middle.
  • the upper constriction portion 201 is a rotary body.
  • the cross-sectional shape of the middle convex part 202 is a regular polygon, as shown in Figure 2 (shown in Figure 2 is a regular octahedron, that is, a valve body with a regular octagonal cross-sectional shape), and the bottom of the valve body is provided with a fluid inlet and outlet.
  • the top is provided with an intake and exhaust port 204
  • a sealing ring 205 is provided on the intake and exhaust port
  • the ball valve seat 3 and the floating ball 4 are located below the intake and exhaust port
  • the ball valve seat is in order from top to bottom.
  • the grid 301, the guide sleeve 302 and the floating ball base 303 with a plurality of flow holes 3031, the ball valve seat and the valve body are fixedly connected through the guide sleeve bracket 5, and the lower half of the middle convex part is provided with At least one swing check valve 6 that can be opened inwards
  • the swing check valve includes: a swing valve flap 602 connected with the valve body hinge 601, and the swing valve flap is controlled to open and close.
  • Variable flow channel air inlet 603 a device 604 for limiting the opening degree of the valve flap, and a sealing device 605 .
  • the basic principle of this embodiment is to use the swing check valve on the side wall of the valve body to open an intake passage during intake, thereby realizing the ventilation function in which the intake volume is greater than the exhaust volume.
  • the swing check valve is a flap that is hinged on the valve body. It does not need any artificial power to open and close, nor does it need the reset of the spring. It only relies on gravity and the pressure of air flow and water. pressure. The whole set of mechanism is very simple, and the number of parts is very small, which greatly reduces the probability of failure and the cost of maintenance.
  • the shape of the swing disc of the swing check valve is rectangular, the upper end is provided with a hinge, and the surrounding edges of the swing disc are provided with sealing facilities, and facilities to limit the opening of the disc are set at appropriate positions to make the swing There are certain restrictions on the opening and closing of the open valve disc.
  • the sealing means can be rubber strips or other materials that can produce a sealing effect.
  • the facility to limit the opening of the valve disc can be a retaining ring or a limiter arranged on the hinge.
  • the valve body is installed vertically on the water pipeline, and the connecting piece can be a flange or other welded or bolted parts.
  • the protruding part in the middle of the valve body is a polyhedron, so that the disc of the swing check valve can be installed.
  • the valve body is a polyhedral columnar structure, the cross-sectional shape is a regular polygon, and the number of polyhedrons is an even number, which can be a regular octahedron or a regular dodecahedron.
  • Swing check valves are arranged in the lower half at certain intervals on each face of the valve body around the center. When negative pressure occurs in the pipeline, the swing check valve opens to the inside of the valve body, as shown by the dotted line in Figure 1. When the negative pressure in the pipeline is small or the pressure is greater than atmospheric pressure, the check valve closes under the action of gravity.
  • a guide sleeve is arranged in the center of the valve body, and the guide sleeve is fixedly connected with the valve body through a surrounding guide sleeve bracket.
  • the guide sleeve is the orbit of the floating ball, and it is a cylinder.
  • the upper half is grid-shaped, which is used as a water and gas channel.
  • the middle is a cylinder, and the lower half is the floating ball base.
  • the floating ball base is a spherical support with a flow-through hole cut to allow the water flow to pass through when the air is exhausted and the water level rises to the floating ball base, so that the floating ball floats.
  • a float is a hollow body of rubber, nylon, or other non-metallic material that floats in water.
  • a valve cover can be set on the top of the valve body, that is, above the intake and exhaust ports.
  • the valve cover can be a conical or other shape cover, through the valve cover bracket and the valve bodies are connected together.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment is an improvement of the first embodiment, and is a refinement of the facility for limiting the opening degree of the valve flap in the first embodiment.
  • the facility for limiting the opening degree of the valve flap described in this embodiment is a limit ring, and the limit ring is fixedly connected to the valve body through a limit ring bracket, as shown in Figs. The position of the open valve disc when it is opened.
  • the position of the limit ring is that the edge of the ring can block the swing valve flap from continuing to open.
  • the limit ring can be a circle or a regular polygon matched with the valve body.
  • the valve body is a regular octahedron.
  • the limit ring is a regular octagon.
  • This embodiment is an improvement of the above-mentioned embodiment, and is a refinement of the above-mentioned embodiment regarding the swing opening and closing angle of the swing valve flap.
  • the swing opening and closing angle ⁇ of the swing check valve of the swing check valve in this embodiment is 30° to 45°, as shown in FIG. 1 .
  • the opening and closing angle should not be too large. If it is too large, it is easy to be impacted by water flow and cannot be closed. If it is too small, it is not conducive to the flow of air.
  • the choice of the ⁇ angle should be determined according to the air flow rate.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment is an improvement of the above-mentioned embodiment, and is a refinement of the cross-sectional shape of the middle part of the valve body of the above-mentioned embodiment.
  • the cross-sectional shape of the protruding portion in the middle of the valve body in this embodiment is a regular octagon, as shown in FIG. 2 , and four swing check valves are evenly distributed around it, as shown in FIG. 3 .
  • the regular polyhedron is a relatively simple and easy-to-manufacture shape.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment is an improvement of the above-mentioned embodiment, and is a refinement of the above-mentioned embodiment with respect to the middle convex portion of the valve body.
  • the cross-sectional shape of the convex portion in the middle of the valve body described in this embodiment is a regular dodecagon, and six swing check valves are evenly distributed around it, as shown in FIG. 4 .
  • the number of faces of the regular polyhedron is increased, and more variable runner inlets can be arranged.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment is an improvement of the above-mentioned embodiment, and is a refinement of the above-mentioned embodiment regarding the valve body.
  • the valve cover is provided above the inlet and exhaust ports of the valve body in this embodiment, as shown in FIG. 1 .
  • the valve cover is mainly to block debris from entering the valve body.
  • the valve cover can be flat, or conical or the like.
  • the valve cover can be connected with the valve body through the valve cover bracket 701, see FIG. 1 .
  • the valve cover bracket is a cylindrical bracket that connects the valve body and supports the valve cover.
  • the upper side is connected to the valve cover, and the lower side is welded to the valve body; the valve cover brackets are evenly arranged along the circumference, and the number is generally 3 to 8, as long as the structure is guaranteed strength.
  • a steel mesh can be enclosed on the bracket as a filter to prevent debris from being sucked into the valve body.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • This embodiment is an improvement of the above-mentioned embodiment, and is a refinement of the above-mentioned embodiment about the guide sleeve bracket.
  • the guide sleeve bracket described in this embodiment is a plurality of sheet-like bodies surrounding the guide sleeve.
  • the cross-sectional shape of these sheets along the water flow direction can be a rectangle with rounded corners at both ends, as shown in the cross-sectional shape of the guide sleeve bracket on the right side in Figure 1, or it can be oblate with sharp corners at both ends, as shown in Figure 1 Schematic diagram of the cross-sectional shape of the guide sleeve bracket on the left in 1.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment is an improvement of the above-mentioned embodiment, and is a refinement of the above-mentioned embodiment regarding the floating ball.
  • the floating ball described in this embodiment is a hollow ball of non-metallic material.
  • the hollow floating ball is easier to float, has a certain weight, and has a large surface hardness, which can effectively seal the intake and exhaust ports.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • the present embodiment is a variable flow channel waterproof hammer method using the above-mentioned air valve, and the steps of the waterproof hammer method are as follows:
  • the method described mainly has two states, one is the state of the air valve when the water pipeline is normally conveying water; The process is shown in Figure 5.
  • Step 1 the air valve is closed: the water delivery pipeline is running normally, there is no tendency of water hammer, the valve body is full of water, the water body lifts the floating ball to the sealing ring at the inlet and exhaust ports on the upper part of the valve body, and the floating ball is connected to the valve body.
  • the combination of the sealing ring seals the inlet and exhaust ports, and neither air nor water can enter or exit, as shown in Figure 6.
  • This step is the normal state of normal water delivery in the pipeline, the water pressure in the pipeline is normal, and the flow rate and flow rate are normal.
  • the floating ball in the air valve rests on the sealing ring of the intake and exhaust ports to close the intake and exhaust ports.
  • Step 2 air precipitation: during the normal operation of the water delivery pipeline, a small amount of air will be released from the water in the pipeline, and the released air will gradually gather and enter the valve body and accumulate at the top of the air valve; Increase, the water level drops, the buoyancy of the floating ball drops and separates from the sealing ring, and the air is quickly discharged from the air inlet and outlet; after the precipitation air is discharged, the water level rises, the floating ball is lifted to the sealing ring, the air valve is closed, and the output The water pipeline continues to maintain the normal water delivery state, as shown in Figure 7.
  • Step 3 air valve drainage: when the water pipeline has negative pressure, the water in the valve body is attracted by the water pipeline, and enters the water pipeline from the inlet and outlet of the fluid. The outlet opens, and air enters the valve body to fill the space where the water body flows away, as shown in Figure 8.
  • the water in the valve body When the early water hammer phenomenon of pressure drop occurs in the water delivery pipeline, the water in the valve body will first be replenished into the water delivery pipeline. At this time, the float ball opens the inlet and exhaust ports of the control valve, so that the air fills the vacated water body when the water body leaves. At this time, if the water pressure in the water pipeline does not continue to drop but rises, the water in the water pipeline will flow back into the valve body, so that the control valve will return to the closed state, but if on the contrary, the water in the water pipeline will return to the closed state. As the water pressure continues to drop, it is time to move on to the next step to fill the space vacated by the body of water leaving.
  • the single-line arrows indicate the flow paths of air
  • the hollow arrows indicate the flow paths of water flows.
  • Step 4 variable flow channel suction: when the water level in the valve body drops below the swing check valve, the swing check valve is opened under the action of atmospheric pressure, and the air is simultaneously discharged from the inlet and outlet ports and the swing check valve.
  • the variable flow channel air inlet enters the valve body, and then enters the water pipeline through the valve body to achieve a large amount of rapid air intake, reduce the negative pressure of water hammer, and prevent the pipeline from being compressed, as shown in Figure 9.
  • the opening of the swing check valve increases the amount of air entering the water pipeline, so that the air flows into the water pipeline into two channels, which speeds up the filling of the space caused by the pressure drop, thereby reducing the water hammer burden. pressure.
  • Step 5 air valve exhaust: when the pressure in the water pipeline recovers and becomes greater than atmospheric pressure, the air pressure in the valve body also increases, and the swing disc of the swing check valve closes under the action of gravity With the variable flow channel air inlet, the air can only be discharged from the valve body through the inlet and exhaust ports; due to the greatly reduced exhaust flow channel area, the exhaust speed is also greatly reduced, reducing the water hammer strength of the water column bridge, as shown in the figure 10 shown.
  • the closing of the swing check valve makes the air outflow channel become one, slows down the speed of air discharge, slows down the increase speed of pressure, and further avoids the occurrence of water hammer.
  • Step 6 water inlet of the air valve: as the pressure in the water pipeline gradually recovers, the air in the pipeline enters the valve body and is discharged through the intake and exhaust ports. As the water level in the valve gradually rises, the floating ball rises under the action of the buoyancy of the water until the floating ball rises to contact the sealing ring, the air valve is completely closed, and the water delivery pipeline returns to the normal water delivery state, as shown in Figure 6.
  • This embodiment is a design method of the above-mentioned variable-flow air valve.
  • the basic idea of this embodiment is to first find the difference between the air entering and leaving the valve body, and then calculate the air flow when the swing check valve is opened according to this difference, and then determine the variable flow channel air inlet of the swing check valve. size and opening of the swing disc.
  • Step 01 Determine the intake and exhaust flow area of the air valve: Through the analysis of the hydraulic transition process, determine the intake flow channel area A in and the exhaust flow channel area A out of the required air valve. When the air flows through the air valve, its boundary conditions There are four cases:
  • R is the gas constant, 8.31J ⁇ mol -1 ⁇ K -1 ;
  • T 0 is the absolute temperature of the gas, K.
  • C out is the exhaust flow coefficient
  • a out is the exhaust area, m 2 .
  • Step 02 Calculate the diameter of the intake and exhaust ports: According to the required exhaust flow channel area A out , calculate the diameter of the intake and exhaust ports d 1 :
  • Step 03 determine the total area of the variable flow channel: the required area of the variable flow channel is A variable flow channel:
  • a variable flow channel A in - A out .
  • Step 04 Determine the area of each single flow channel: the cross-sectional shape of the protruding part in the middle of the valve body is a regular polygon, and the number of faces of the prismatic valve body is N, where N is an even number greater than or equal to 6, 6, 8, 12... .
  • Step 05 determine the size of the opening of the variable flow channel: the cross section of the prism is a regular polygon, and the diameter of its inscribed circle is an integer multiple of the diameter of the air valve, then the area of a single flow channel is:
  • s is the opening size of the swing check valve, m; L, the width of the variable flow air inlet, m.
  • the parameters N, s and L generally need to be determined after several trial calculations, and the flow area of the variable flow channel can be increased by increasing the number of faces of the prism, increasing the diameter of the inscribed circle in the prism, etc.
  • Figures 4 and 11 illustrate that by increasing the diameter of the inscribed circle in the prism and increasing the number of faces of the prism, the flow area of the variable flow channel is increased.

Abstract

一种变流道防水锤空气阀,包括顶部设有进排气口(204)的阀体(2),进排气口(204)的下方为球阀座(3)和浮球(4),阀体(2)设有至少一个能够向内开启的旋启式止回阀(6),旋启式止回阀(6)包括:与阀体铰链(601)连接的旋启式阀瓣(602),由旋启式阀瓣(602)控制开闭的可变流道进气口(603),限制旋启式阀瓣开启度的设施(604),密封设施(605)。利用进气时空气阀通过进排气口和可变流道进气,而排气时仅通过进排气口进行排气,改变进排气流道面积,进而实现了快速进气和缓慢排气,避免了排气过程强三维特征造成的节流环受力、关闭过程不确定性问题,也解决了弹簧作用力的不稳定性问题。所述的空气阀可以根据数值仿真结果设置任意的入流面积和出流面积,便捷地达到设计要求。

Description

一种变流道防水锤空气阀和设计方法 技术领域
本发明涉及一种变流道防水锤空气阀和设计方法,是一种管道系统的水锤防护设备和使用方法以及设计这种防护设备的方法,是一种长距离引调水或城镇供排水等工程压力输水管道的水力过渡过程防护的设备和方法。
背景技术
时空分布不均或资源性短缺是我国的水资源现状以及部分地区经济社会发展的掣肘,长距离引调水工程是优化水资源配置最常见的工程措施。引调水工程通常采用明渠、管道、隧洞、箱涵等进行输配水,其中,管道输水受外界干扰小、占地少、且能适应复杂地形、地貌和气候条件,应用更为广泛。
在使用管道进行输水时,由于边界条件改变、运行工况切换、发生事故或应急工况,水流流速变化引起系统压力波动,发出类似锤击管道的声音,称之为水锤或水击现象。在不采取工程防护措施的情况下,管道水锤可产生数百米的瞬态高压,发生管道爆裂;也可能产生真空汽化,管道被压瘪或水柱弥合产生的瞬态高压使管道破裂。
空气阀是常见的管道防护设备之一,它的作用是,①在系统首次充水或停运检修后再次启动时,排出管道内的空气。②出现水锤负压时打开,使空气快速进入管道,避免管道被压瘪或出现真空汽化;管道压力高于大气压时,排出为防止负压而吸入管道内的气体。③排出管道正常运行时析出的气体,以免滞留气囊增加水流阻力,影响输水效率,进而增加运行成本。负压吸气时,要求空气能够快速地进入管道,削减负压;正压排气时,则要求气体相对较慢地排出管道。如果吸气较慢,则可能无法有效抑制负压;如果排气较快,则继发的弥合水锤可能会产生极大的压力波动,破坏管道、空气阀或其他机电设备。因此,理想的空气阀应能够快速进气和缓慢排气。
对于空气阀,实现快速进气和缓慢排气有两种途径:①通过合理的流道设计,使进气和排气过程具有不同的流量系数,即C in>C out。刘梅清等(2004)在其研究中指出,只有C in/C out>10,空气阀的水锤防护作用才较为明显;Carlosetal.(2011)、郭永鑫等(2018)在其研究中也表明了较小的排气流量系数C out对防护水柱分离再弥合水锤是有利的。但通过流道设计使进排气流量系数产生十多倍的差距,是很难实现的。②使空气阀的进排气过程具有不同的流道面积。刘志勇和刘梅清(2009)针对典型工程给出了(C inA in)/(C outA out)=101的空气阀配置方案,王玲和王福军(2017)指出A in/A out=10的进气微排阀对于空管充水过程中水柱分离及再弥合高压水锤的防护最为有效。进排气具有不同的流道面积,可以分别设置一个大口径进气阀和一个小口径排气阀,也可以通过设置一个进排气流道自动切换的空气阀实现。其中,第二种方式更为常用。
现阶段,防水锤空气阀的设计思路是,进排气共用同一流道,并设置一个节流环;当排气较快时,节流环所受气流推力大于自身重力或弹簧作用力,节流环上移,使过流通道局部封堵,减小排气面积。这种方案在理论上是完全可行的,但其设计和使用过程中可能产生以下问题:①计算流体动力学分析的边界条件(如压力进口、流速进口或压力出口)是均 匀一致的,而空气阀的吸气和排气具有强三维特征,因此,节流环受力不均匀,所受推力和摩阻力与设计值有一定出入,节流环是否能够在设计风速或排气量下关闭有待进一步研究。②有限空间内的气流推力,受流道结构、节流环开度等多因素影响,准确确定其数值较为困难;另一方面,弹簧作用力受弹簧丝材质、弹簧丝径、弹簧中径、弹簧高度、弹簧圈数等多种因素的影响,其弹性系数的恒定性、一致性也是困扰设计制造者的难题。③现阶段尚未有在进气时使用大流道,排气时即刻使用小流道的空气阀。如要实现该目的,常用的做法是配套使用真空破坏阀和小孔径的进排气空气阀,不仅设备成本、安装费用高昂,也给征地、运行维护带来了一定的麻烦,是一个需要解决的问题。
发明内容
为了克服现有技术的问题,本发明提出了一种变流道防水锤空气阀和设计方法。所述的防水锤空气阀设有两个空气通道,一个是进、排气通道,另一个仅用于进气,在无需任何动力和控制的条件下,实现了进气量大于排气量的通气功能。
本发明的目的是这样实现的:一种变流道防水锤空气阀,包括,底部带有能够与输水管道连接的连接件的阀体,所述的阀体为上下缩口中间凸起的中空壶形,上缩口部分为回转体,阀体中间凸起部位的截面形状为正多边形,所述的阀体底部设有流体进出口,顶部设有进排气口,所述进排气口上设有密封环,进排气口的下方为球阀座和浮球,所述的球阀座从上到下依次为格栅、导套和带有多个过流孔的浮球基座,所述的球阀座与阀体通过导套支架固定连接,其特征在于,所述中间凸起部位的下半部分设有至少一个能够向内开启的旋启式止回阀,所述的旋启式止回阀包括:与阀体铰链连接的旋启式阀瓣,由旋启式阀瓣控制开闭的可变流道进气口,限制旋启式阀瓣开启度的设施,密封设施。
进一步的,所述的限制阀瓣开启度的设施是限位环,所述的限位环通过限位环支架与阀体固定连接。
进一步的,所述的旋启式止回阀的旋启式阀瓣旋启开闭角度为30~45°。
进一步的,所述的阀体中间凸起部位的截面形状是正八边形,环绕均布四个旋启式止回阀。
进一步的,所述的阀体中间凸起部位的截面形状是正十二边形,环绕均布六个旋启式止回阀。
进一步的,所述的进排气口上方设有阀罩。
进一步的,所述的导套支架为多个环绕在导套周围的片状体。
进一步的,所述的浮球是非金属材料的中空球。
一种使用上述空气阀的变流道防水锤方法,所述的防水锤方法的步骤如下:
正常输水状态:
步骤1,空气阀闭合:输水管道输水运行正常,没有出现水锤的倾向,阀体中充满水,水体将浮球托起至阀体上部进排气口处的密封环,浮球与密封圈结合将进排气口封闭,空气和水均不能进出;
步骤2,空气析出:输水管道在正常输水运行过程中,管道中的水体会析出少量的空气,析出的空气会逐渐地汇集并进入阀体,在空气阀顶部聚集;随着空气体积的增大,水位下降,浮球所受浮力下降并与密封环脱离,空气迅速由进排气口排出;析出的空气排出 后,水位上升,将浮球托起至密封环,空气阀关闭,输水管道继续保持正常输水状态;
防水锤状态:
步骤3,空气阀排水:当输水管道出现负压时,阀体中的水体被输水管道吸引,从流体进出口进入输水管道,随着阀体内水位下降浮球随之下降,空气进出口打开,空气进入阀体内,填补水体流走的空间;
步骤4,可变流道吸气:当阀体内的水位下降到旋启式止回阀之下的时候,旋启式止回阀在大气压力的作用下打开,空气同时由进排气口和可变流道进气口进入阀体,再经由阀体进入输水管道;
步骤5,空气阀排气:输水管道内的压力恢复,并转而大于大气压时,阀体内的空气压力也随之增加,旋启式止回阀的旋启式阀瓣在重力作用下关闭了可变流道进气口,空气只能由进排气口排出阀体;
步骤6,空气阀进水:随着输水管道内的压力逐渐恢复,管道内的空气进入阀体并通过进排气口排出,随着空气的排出输水管道内的水体进入阀体,随着阀内水位逐渐上升,浮球在水的浮力作用下上升,直至浮球升至与密封环接触,空气阀完全关闭,输水管道回到正常输水状态。
一种上述空气阀的设计方法,所述设计方法的步骤如下:
步骤01:确定空气阀的进排气流量面积:通过水力过渡过程分析,确定所需空气阀的进气流道面积A in和排气流道面积A out,空气流经空气阀时,其边界条件分为以下四种情况:
1)空气以亚声速流入:
Figure PCTCN2021087072-appb-000001
式中:
Figure PCTCN2021087072-appb-000002
为空气质量流量,kg/s;C in为进气流量系数;A in为进气面积,m 2;p a为大气压力,Pa;ρ a为大气密度,kg/m 3;p为空气阀对应位置处的管道压力,Pa;
2)空气以临界速度流入:
Figure PCTCN2021087072-appb-000003
式中:R为气体常数,8.31·J·mol -1·K -1;T 0为气体的绝对温度,K;
3)空气以亚音速流出:
Figure PCTCN2021087072-appb-000004
式中:C out为排气流量系数;A out为排气面积,m 2
4)空气以临界速度流出:
Figure PCTCN2021087072-appb-000005
步骤02:计算进排气口直径:根据所需的排气流道面积A out,计算进排气口直径d 1
Figure PCTCN2021087072-appb-000006
步骤03,确定可变流道总面积:所需可变流道的面积为A 可变流道
A 可变流道=A in-A out
步骤04,确定各个单个流道的面积:阀体中间突出部位的截面形状为正多边形,棱柱形阀体的面数为N,N为大于等于6的偶数,6,8,12……;
根据阀体中间突出部位的截面形状,则每个棱柱面上可变流道的过流面积A 单个流道为:
Figure PCTCN2021087072-appb-000007
步骤05,确定可变流道开口的尺寸:棱柱体的截面为正多边形,其内切圆的直径选择空气阀直径的整数倍,则单个流道的面积为:
Figure PCTCN2021087072-appb-000008
其中:s为旋启式止回阀开启的大小,m;L可变流量进气口的宽度,m。
本发明的优点和有益效果是:本发明利用设置了两个流道,一个是浮球控制开闭的进排气口流道,另一个是旋启式止回阀控制开闭的可变流道。进排气口流道在阀体内水位下降时处于流通状态,当且仅当空气阀内的空气接近排净,水位上升将浮球托起时关闭。可变流道仅在输水管道负压且阀体内水体接近排干时才能开启,当空气阀内压力大于大气压时,旋启式止回阀在自重作用下关闭。进气时空气阀通过进排气口和可变流道进气,而排气时仅通过进排气口进行排气,这样通过流道的变化,改变进排气流道面积,进而实现了快速进气和缓慢排气。可变流道开启的作用力是负压,而关闭作用力为旋启式阀瓣的重力。将调节排气面积的作用力由气流推力调整为重力,一方面避免了排气过程强三维特征造成的节流环受力、关闭过程不确定性问题,也解决了弹簧作用力的不稳定性问题。所述的空气阀可以根据数值仿真结果设置任意的入流面积和出流面积。可变流道的面积是通过棱柱形阀体、向内侧开口的旋启式止回阀和限位环进行控制的,若可变流道面积大,则增加阀体的面数、尺寸以及旋启式止回阀的开度,反之亦然。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1是本发明实施例一、二、三、六、七所述空气阀的结构示意图;
图2是本发明实施例一、四所述空气阀的阀体中间部位的上半部分的截面示意图,是图1中A-A的剖面图;
图3是本发明实施例一、三、四、五所述空气阀的八面阀体中间部位的下半部分的截面示意图,是图1中B-B的剖面图;
图4是本发明实施例五、十所述空气阀的十二面阀体中间部位的下半部分的截面示意图,是图1中B-B的剖面图;
图5是本发明实施例九所述防水锤方法的流程图;
图6是发明实施例九所述输水管道正常输水时空气阀闭合的状态示意图;
图7是发明实施例九所述输水管道析出空气时空气阀开启的状态示意图;
图8是发明实施例九所述输水管道出现压力降低使空气阀开启的状态示意图;
图9是发明实施例九所述输水管道出现压力降低使空气阀开启的同时旋启式止回阀也开启的状态示意图;
图10是发明实施例九所述输水管道压力恢复时旋启式止回阀关闭后的状态示意图;
图11是发明实施例十所述计算方法通过增加棱柱体的面数而增加可变流道的过流面积的示意图。
具体实施方式
实施例一:
本实施例是一种变流道防水锤空气阀,如图1所述。本实施例包括底部带有能够与输水管道连接的连接件1的阀体2,所述的阀体为上下缩口中间凸起的中空壶形,上缩口部分201为回转体,阀体中间凸起部位202的截面形状为正多边形,如图2所示(图2中显示是一个正八面体,即截面形状为正八边形的阀体),所述的阀体底部设有流体进出口203,顶部设有进排气口204,所述进排气口上设有密封环205,进排气口的下方为球阀座3和浮球4,所述的球阀座从上到下依次为格栅301、导套302和带有多个过流孔3031的浮球基座303,所述的球阀座与阀体通过导套支架5固定连接,所述中间凸起部位的下半部分设有至少一个能够向内开启的旋启式止回阀6,所述的旋启式止回阀包括:与阀体铰链601连接的旋启式阀瓣602,由旋启式阀瓣控制开闭的可变流道进气口603,限制阀瓣开启度的设施604,密封设施605。
本实施例的基本原理是利用阀体侧壁上的旋启式止回阀在进气时开启增加一个进气通道,实现了进气量大于排气量的通气功能。
旋启式止回阀是铰链连接在阀体上下垂的一个阀瓣,开启和关闭不需要任何人为的动力,也不需要弹簧的复位等作用了,仅仅依靠重力和空气流动的压力和水的压力。整套机构十分简单,零件的数量很少,大大减小了故障概率,降低了维护的费用。
所述的旋启式止回阀的旋启式阀瓣的形状为矩形,上端设置铰链,旋启式阀瓣四周边缘设置密封设施,在适当的位置设置限制阀瓣开度的设施,使旋启式阀瓣的开闭有一定的限制。密封设施可以是橡胶条或其他能够产生密封作用的材料。限制阀瓣开度的设施可以是挡圈或设置在铰链上的限位器等装置。
所述的阀体竖直地安装输水管道上,所述的连接件可以是法兰或其他焊接或螺栓连接的零件。阀体中间突出部位为多面体,以便安装旋启式止回阀的阀瓣。阀体为多面体柱状结构,截面形状为正多边形,多面体的数量为偶数,可以是正八面体或正十二面体等。在阀体环绕中心的各个面上按一定的间隔在下半部分设置旋启式止回阀。当管道内出现负压时,旋启式止回阀向阀体内侧开启,见图1中虚线的位置,当管道负压很小或压力大于大气压时,止回阀在重力作用下关闭。
阀体内中心设置导套,导套通过环绕在周围的导套支架与阀体固定连接。导套是浮球运动的轨道,是圆柱体,上半部分为格栅状,作为水气通道,中间为圆筒,下半部分为浮 球基座。浮球基座是一个球形支座,切割有过流孔,用于排气完成、水位上升至浮球基座时,允许水流通过,使浮球浮起。
浮球是橡胶、尼龙或其他非金属材质的中空体,可在水中浮起。
为了防止树枝、树叶、石子等杂质进入空气阀,可以在阀体的顶部,即进排气口的上方设置阀罩,阀罩可以是一个圆锥形或其他形状的罩子,通过阀罩支架与阀体连接在一起。
实施例二:
本实施例是实施例一的改进,是实施例一关于限制阀瓣开启度的设施的细化。本实施例所述的限制阀瓣开启度的设施是限位环,所述的限位环通过限位环支架与阀体固定连接,见图1和图3,图中的虚线表示的是旋启式阀瓣开启时的位置。
本实施例中限位环的位置是环的边缘能够挡住旋启式阀瓣继续敞开,限位环可以是圆形的,也可以是与阀体相配合的正多边形,如阀体是正八面体,限位环则是正八边形。
实施例三:
本实施例是上述实施例的改进,是上述实施例关于旋启式阀瓣旋启开闭角度的细化。本实施例所述的旋启式止回阀的旋启式阀瓣旋启开闭角度α为30~45°,如图1所示。
开闭角度不能太大,太大则容易出现被水流冲击而不能关闭,太小则不利于空气的流动。α角度的选择应当根据空气的流量确定。
实施例四:
本实施例是上述实施例的改进,是上述实施例关于阀体中间部位截面形状的细化。本实施例所述的阀体中间凸起部位的截面形状是正八边形,如图2所示,环绕均布四个旋启式止回阀,如图3所示。
正多面体是比较简单的且容易制造的形状,各个面的宽度越大,容易布置宽度L较大的可变流道进气口,见图3。
实施例五:
本实施例是上述实施例的改进,是上述实施例关于阀体中间凸起部位的细化。本实施例所述的阀体中间凸起部位的截面形状是正十二边形,环绕均布六个旋启式止回阀,如图4所示。
正多面体的面数增加,能够布置更多的可变流道进气口。
实施例六:
本实施例是上述实施例的改进,是上述实施例关于阀体的细化。本实施例所述的阀体进排气口上方设有阀罩,如图1所示。
阀罩主要是为了挡住杂物进入阀体内。阀罩可以是平板,或者圆锥形等形状。阀罩可以通过阀罩支架701与阀体连接,见图1。
阀罩支架是连接阀体、支撑阀罩的圆柱形支架,上侧连接阀罩,下侧焊接在阀体上;阀罩支架沿圆周均匀布置,其数量一般是3~8个,只要保证结构强度即可。支架上可以围护钢丝网作为过滤器,避免杂物被吸入阀体内。
实施例七:
本实施例是上述实施例的改进,是上述实施例关于导套支架的细化。本实施例所述的导套支架为多个环绕在导套周围的片状体。
这些片状体沿水流方向的截面形状可以是两端为圆角的矩形,如图1中右侧的导套支架中的截面形状示意,也可以为两端尖角长扁圆形状,如图1中左侧的导套支架中的截面形状示意。
实施例八:
本实施例是上述实施例的改进,是上述实施例关于浮球的细化。本实施例所述的浮球是非金属材料的中空球。
中空的浮球更加容易浮起,并具有一定的重量,表面硬度较大,能够将进排气口有效的封闭。
实施例九:
本实施例是一种使用上述空气阀的变流道防水锤方法,所述的防水锤方法的步骤如下:
所述的方法主要有两种状态,一种是输水管道正常输水时空气阀所处的状态,一种是输水管道内发生压力下降,产生防止水锤现象的状态,防水锤方法的流程如图5所示。
正常输水状态:
步骤1,空气阀闭合:输水管道输水运行正常,没有出现水锤的倾向,阀体中充满水,水体将浮球托起至阀体上部进排气口处的密封环,浮球与密封圈结合将进排气口封闭,空气和水均不能进出,如图6所示。
本步骤是管道正常输水的常态,管道中的水压正常,流量和流速正常。空气阀中的浮球顶在进排气口的密封环上,将进排气口封闭。
步骤2,空气析出:输水管道在正常输水运行过程中,管道中的水体会析出少量的空气,析出的空气会逐渐地汇集并进入阀体,在空气阀顶部聚集;随着空气体积的增大,水位下降,浮球所受浮力下降并与密封环脱离,空气迅速由进排气口排出;析出的空气排出后,水位上升,将浮球托起至密封环,空气阀关闭,输水管道继续保持正常输水状态,如图7所示。
输水管道在输水过程中不断有空气从水中析出,这些析出的空气会随着水流运动,直到出现能够上升的地方,自然聚集,而空气阀正是一个让水中析出空气聚集的地方,当析出空气聚集到一定程度时,空气阀的浮球就会下降,将聚集的空气释放。
防水锤状态:
步骤3,空气阀排水:当输水管道出现负压时,阀体中的水体被输水管道吸引,从流体进出口进入输水管道,随着阀体内水位下降浮球随之下降,空气进出口打开,空气进入阀体内,填补水体流走的空间,如图8所示。
当输水管道中出现压力下降的水锤早期现象时,阀体内的水体会首先补充到输水管道中,这时浮球打开控制阀的进排气口,使空气填补水体离开所空出的空间,这时如果输水管道中的水压不再继续下降而是回升,输水管道中的水体会回流到阀体中,使控制阀回到关闭的状态,但如果相反,输水管道中的水压继续下降,就要进入下一步骤,以填补水体离开所空出的空间。图8、9、10中单线箭头表示空气的流动路径,空心箭头表示水流的流动路径。
步骤4,可变流道吸气:当阀体内的水位下降到旋启式止回阀之下的时候,旋启式止回阀在大气压力的作用下打开,空气同时由进排气口和可变流道进气口进入阀体,再经 由阀体进入输水管道,实现大量快速进气,削减水锤负压,避免管道被压瘪,如图9所示。
旋启式止回阀的开启增大了空气进入输水管道的输送量,使空气流入输水管道的通道变为两个,加快了填补由于压力下降而造成的空间,进而削减了水锤负压。
步骤5,空气阀排气:输水管道内的压力恢复,并转而大于大气压时,阀体内的空气压力也随之增加,旋启式止回阀的旋启式阀瓣在重力作用下关闭了可变流道进气口,空气只能由进排气口排出阀体;由于排气的流道面积大大减少,排气速度也大大减小,降低了水柱弥合的水锤强度,如图10所示。
旋启式止回阀的关闭,使空气流出的通道有变为一个,减缓了空气排出的速度,减缓了压力的增加速度,进一步避免了水锤现象的发生。
步骤6,空气阀进水:随着输水管道内的压力逐渐恢复,管道内的空气进入阀体并通过进排气口排出,随着空气的排出输水管道内的水体进入阀体,随着阀内水位逐渐上升,浮球在水的浮力作用下上升,直至浮球升至与密封环接触,空气阀完全关闭,输水管道回到正常输水状态,如图6所示。
实施例十:
本实施例是一种上述变流道空气阀的设计方法。本实施例的基本思路是先找到进出阀体空气的差异,再根据这个差异计算旋启式止回阀的开启时的空气流量,进而确定旋启式止回阀的可变流道进气口的大小和旋启式阀瓣的开度。
所述的设计方法的具体步骤如下:
步骤01:确定空气阀的进排气流量面积:通过水力过渡过程分析,确定所需空气阀的进气流道面积A in和排气流道面积A out,空气流经空气阀时,其边界条件分为以下四种情况:
1)空气以亚声速流入:
Figure PCTCN2021087072-appb-000009
式中:
Figure PCTCN2021087072-appb-000010
为空气质量流量,kg/s;C in为进气流量系数;A in为进气面积,m 2;p a为大气压力,Pa;ρ a为大气密度,kg/m 3;p为空气阀对应位置处的管道压力,Pa。
2)空气以临界速度流入:
Figure PCTCN2021087072-appb-000011
式中:R为气体常数,8.31J·mol -1·K -1;T 0为气体的绝对温度,K。
3)空气以亚音速流出:
Figure PCTCN2021087072-appb-000012
式中:C out为排气流量系数;A out为排气面积,m 2
4)空气以临界速度流出:
Figure PCTCN2021087072-appb-000013
步骤02:计算进排气口直径:根据所需的排气流道面积A out,计算进排气口直径d 1
Figure PCTCN2021087072-appb-000014
步骤03,确定可变流道总面积:所需可变流道的面积为A 可变流道
A 可变流道=A in-A out
步骤04,确定各个单个流道的面积:阀体中间突出部位的截面形状为正多边形,棱柱形阀体的面数为N,N为大于等于6的偶数,6,8,12……。
根据阀体中间突出部位的截面形状,则每个棱柱面上可变流道的过流面积A 单个流道为:
Figure PCTCN2021087072-appb-000015
步骤05,确定可变流道开口的尺寸:棱柱体的截面为正多边形,其内切圆的直径选择空气阀直径的整数倍,则单个流道的面积为:
Figure PCTCN2021087072-appb-000016
其中:s为旋启式止回阀开启的大小,m;L可变流量进气口的宽度,m。
参数N、s和L一般需要经过多次试算后确定,可通过增加棱柱体的面数、增大棱柱体内切圆直径等手段增加可变流道的过流面积。图4、11示意了通过增大棱柱体内切圆直径和增加棱柱体的面数,增加可变流道的过流面积。
最后应说明的是,以上仅用以说明本发明的技术方案而非限制,尽管参照较佳布置方案对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案(比如空气阀的基本形式、各种公式的运用、步骤的先后顺序等)进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种变流道防水锤空气阀,包括,底部带有能够与输水管道连接的连接件的阀体,所述的阀体为上下缩口中间凸起的中空壶形,上缩口部分为回转体,阀体中间凸起部位的截面形状为正多边形,所述的阀体底部设有流体进出口,顶部设有进排气口,所述进排气口上设有密封环,进排气口的下方为球阀座和浮球,所述的球阀座从上到下依次为格栅、导套和带有多个过流孔的浮球基座,所述的球阀座与阀体通过导套支架固定连接,其特征在于,所述中间凸起部位的下半部分设有至少一个能够向内开启的旋启式止回阀,所述的旋启式止回阀包括:与阀体铰链连接的旋启式阀瓣,由旋启式阀瓣控制开闭的可变流道进气口,限制旋启式阀瓣开启度的设施,密封设施。
  2. 根据权利要求1所述的空气阀,其特征在于,所述的限制阀瓣开启度的设施是限位环,所述的限位环通过限位环支架与阀体固定连接。
  3. 根据权利要求2所述的空气阀,其特征在于,所述的旋启式止回阀的旋启式阀瓣旋启开闭角度为30~45°。
  4. 根据权利要求3所述的空气阀,其特征在于,所述的阀体中间凸起部位的截面形状是正八边形,环绕均布四个旋启式止回阀。
  5. 根据权利要求3所述的空气阀,其特征在于,所述的阀体中间凸起部位的截面形状是正十二边形,环绕均布六个旋启式止回阀。
  6. 根据权利要求4或5所述的空气阀,其特征在于,所述的进排气口上方设有阀罩。
  7. 根据权利要求6所述的空气阀,其特征在于,所述的导套支架为多个环绕在导套周围的片状体。
  8. 根据权利要求6所述的空气阀,其特征在于,所述的浮球是非金属材料的中空球。
  9. 一种使用权利要求1所述空气阀的变流道防水锤方法,其特征在于,所述的防水锤方法的步骤如下:
    正常输水状态:
    步骤1,空气阀闭合:输水管道输水运行正常,没有出现水锤的倾向,阀体中充满水,水体将浮球托起至阀体上部进排气口处的密封环,浮球与密封圈结合将进排气口封闭,空气和水均不能进出;
    步骤2,空气析出:输水管道在正常输水运行过程中,管道中的水体会析出少量的空气,析出的空气会逐渐地汇集并进入阀体,在空气阀顶部聚集;随着空气体积的增大,水位下降,浮球所受浮力下降并与密封环脱离,空气迅速由进排气口排出;析出的空气排出后,水位上升,将浮球托起至密封环,空气阀关闭,输水管道继续保持正常输水状态;
    防水锤状态:
    步骤3,空气阀排水:当输水管道出现负压时,阀体中的水体被输水管道吸引,从流体进出口进入输水管道,随着阀体内水位下降浮球随之下降,空气进出口打开,空气进入阀体内,填补水体流走的空间;
    步骤4,可变流道吸气:当阀体内的水位下降到旋启式止回阀之下的时候,旋启式止回阀在大气压力的作用下打开,空气同时由进排气口和可变流道进气口进入阀体,再经由阀体进入输水管道;
    步骤5,空气阀排气:输水管道内的压力恢复,并转而大于大气压时,阀体内的空气压力也随之增加,旋启式止回阀的旋启式阀瓣在重力作用下关闭了可变流道进气口,空气只能 由进排气口排出阀体;
    步骤6,空气阀进水:随着输水管道内的压力逐渐恢复,管道内的空气进入阀体并通过进排气口排出,随着空气的排出输水管道内的水体进入阀体,随着阀内水位逐渐上升,浮球在水的浮力作用下上升,直至浮球升至与密封环接触,空气阀完全关闭,输水管道回到正常输水状态。
  10. 一种权利要求1所述变流道空气阀的设计方法,其特征在于,所述设计方法的步骤如下:
    步骤01:确定空气阀的进排气流量面积:通过水力过渡过程分析,确定所需空气阀的进气流道面积A in和排气流道面积A out,空气流经空气阀时,其边界条件分为以下四种情况:
    1)空气以亚声速流入:
    Figure PCTCN2021087072-appb-100001
    式中:
    Figure PCTCN2021087072-appb-100002
    为空气质量流量,kg/s;C in为进气流量系数;A in为进气面积,m 2;p a为大气压力,Pa;ρ a为大气密度,kg/m 3;p为空气阀对应位置处的管道压力,Pa;
    2)空气以临界速度流入:
    Figure PCTCN2021087072-appb-100003
    式中:R为气体常数,8.31J·mol -1·K -1;T 0为气体的绝对温度,K;
    3)空气以亚音速流出:
    Figure PCTCN2021087072-appb-100004
    式中:C out为排气流量系数;A out为排气面积,m 2
    4)空气以临界速度流出:
    Figure PCTCN2021087072-appb-100005
    步骤02:计算进排气口直径:根据所需的排气流道面积A out,计算进排气口直径d 1
    Figure PCTCN2021087072-appb-100006
    步骤03,确定可变流道总面积:所需可变流道的面积为A 可变流道
    A 可变流道=A in-A out
    步骤04,确定各个单个流道的面积:阀体中间突出部位的截面形状为正多边形,棱柱形阀体的面数为N,N为大于等于6的偶数,6,8,12……;
    根据阀体中间突出部位的截面形状,则每个棱柱面上可变流道的过流面积A 单个流道为:
    Figure PCTCN2021087072-appb-100007
    步骤05,确定可变流道开口的尺寸:棱柱体的截面为正多边形,其内切圆的直径选择空气阀直径的整数倍,则单个流道的面积为:
    Figure PCTCN2021087072-appb-100008
    其中:s为旋启式止回阀开启的大小,m;L可变流量进气口的宽度,m。
PCT/CN2021/087072 2020-08-11 2021-04-13 一种变流道防水锤空气阀和设计方法 WO2022016917A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022524659A JP7411793B2 (ja) 2020-08-11 2021-04-13 可変流路ウォータハンマー防止空気弁、防止方法及び設計方法
GB2206636.9A GB2605515B (en) 2020-08-11 2021-04-13 Variable-flow-path air valve for water hammer prevention and a design method
US17/779,073 US11846379B2 (en) 2020-08-11 2021-04-13 Variable-flow-path air valve for water hammer prevention and a design method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010800057.5 2020-08-11
CN202010800057.5A CN111853290B (zh) 2020-08-11 2020-08-11 一种变流道防水锤空气阀和设计方法

Publications (1)

Publication Number Publication Date
WO2022016917A1 true WO2022016917A1 (zh) 2022-01-27

Family

ID=72972456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087072 WO2022016917A1 (zh) 2020-08-11 2021-04-13 一种变流道防水锤空气阀和设计方法

Country Status (5)

Country Link
US (1) US11846379B2 (zh)
JP (1) JP7411793B2 (zh)
CN (1) CN111853290B (zh)
GB (1) GB2605515B (zh)
WO (1) WO2022016917A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116392843A (zh) * 2023-06-07 2023-07-07 东营市和瑞化学科技有限公司 一种丙二醇精馏提纯装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111853290B (zh) * 2020-08-11 2021-12-10 中国水利水电科学研究院 一种变流道防水锤空气阀和设计方法
CN113177301B (zh) * 2021-04-13 2022-07-08 沣泰水务科技(杭州)有限公司 一种防水锤智能二供给水装置参数优化方法
CN113309891A (zh) * 2021-05-27 2021-08-27 中国原子能科学研究院 用于脉冲萃取柱的排气阀以及脉冲萃取装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401155A (zh) * 2011-08-30 2012-04-04 深圳市华力大机电技术有限公司 一种四功能防水锤空气阀组
CN102644778A (zh) * 2012-02-07 2012-08-22 中国人民解放军总后勤部油料研究所 液面自动控制阀
US8312889B2 (en) * 2009-06-30 2012-11-20 Snyder Industries, Inc. Combination flow control valve and reverse flow check valve
US20140116540A1 (en) * 2012-10-31 2014-05-01 Matthew L.T. Waldor Backflow capable ball check valve
CN104896184A (zh) * 2015-06-05 2015-09-09 株洲南方阀门股份有限公司 防水锤空气阀及管道使用过程中的防水锤排气方法
CN207145661U (zh) * 2017-06-21 2018-03-27 安徽红星阀门有限公司 一种三孔排气阀
CN110701369A (zh) * 2019-09-03 2020-01-17 中阀科技(长沙)阀门有限公司 一种空气阀
CN111853290A (zh) * 2020-08-11 2020-10-30 中国水利水电科学研究院 一种变流道防水锤空气阀和设计方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191111529A (en) * 1911-05-12 1912-04-04 Alfred Clark Improvements in or relating to Ventilating Flaps, Valves or the like.
DE3006841A1 (de) * 1980-02-23 1981-09-03 Atomac Dieter Brütsch KG, 4422 Ahaus Rueckschlagventil fuer mittels gasdruck zu entleerende fluessigkeitsbehaelter
GB8402295D0 (en) * 1984-01-28 1984-02-29 Bendix Ltd Multi-circuit fluid pressure control valve
JP2881399B2 (ja) * 1996-02-14 1999-04-12 株式会社電業社機械製作所 空気弁装置
US6719004B2 (en) * 2001-06-19 2004-04-13 Donald G. Huber Check valve floor drain
US20030205272A1 (en) * 2002-05-02 2003-11-06 Eaton Corporation Method of venting fuel vapor from a tank and system therefor
JP5101461B2 (ja) 2008-11-14 2012-12-19 株式会社テイエルブイ 排気弁
AU2010317438B2 (en) * 2009-11-12 2016-06-30 Dorot Management Control Valves Ltd. Gas valve
CN104913111B (zh) 2015-06-05 2017-09-29 株洲南方阀门股份有限公司 防水锤空气阀及管道使用过程中的防水锤排气方法
CN107387849B (zh) * 2016-05-14 2020-03-10 郑开省 一种双控制室双浮体排气阀
CN106885694B (zh) * 2017-04-12 2023-05-02 株洲南方阀门股份有限公司 一种空气阀性能测试装置及空气阀性能测试方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8312889B2 (en) * 2009-06-30 2012-11-20 Snyder Industries, Inc. Combination flow control valve and reverse flow check valve
CN102401155A (zh) * 2011-08-30 2012-04-04 深圳市华力大机电技术有限公司 一种四功能防水锤空气阀组
CN102644778A (zh) * 2012-02-07 2012-08-22 中国人民解放军总后勤部油料研究所 液面自动控制阀
US20140116540A1 (en) * 2012-10-31 2014-05-01 Matthew L.T. Waldor Backflow capable ball check valve
CN104896184A (zh) * 2015-06-05 2015-09-09 株洲南方阀门股份有限公司 防水锤空气阀及管道使用过程中的防水锤排气方法
CN207145661U (zh) * 2017-06-21 2018-03-27 安徽红星阀门有限公司 一种三孔排气阀
CN110701369A (zh) * 2019-09-03 2020-01-17 中阀科技(长沙)阀门有限公司 一种空气阀
CN111853290A (zh) * 2020-08-11 2020-10-30 中国水利水电科学研究院 一种变流道防水锤空气阀和设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116392843A (zh) * 2023-06-07 2023-07-07 东营市和瑞化学科技有限公司 一种丙二醇精馏提纯装置
CN116392843B (zh) * 2023-06-07 2023-08-11 东营市和瑞化学科技有限公司 一种丙二醇精馏提纯装置

Also Published As

Publication number Publication date
JP2022553993A (ja) 2022-12-27
CN111853290A (zh) 2020-10-30
US20230160515A1 (en) 2023-05-25
GB2605515A (en) 2022-10-05
CN111853290B (zh) 2021-12-10
US11846379B2 (en) 2023-12-19
JP7411793B2 (ja) 2024-01-11
GB2605515B (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2022016917A1 (zh) 一种变流道防水锤空气阀和设计方法
EP2752605B1 (en) Four-function anti-water hammer air valve set
CN101545570B (zh) 一种控制管道瞬态液柱分离的空气阀调压室装置
CN204611055U (zh) 一种水位控制阀
CN109853454A (zh) 虹吸式河口地下水库换水装置及运行方法
CN103542138A (zh) 一种气囊式通气泄水型正负压水击控制阀阀组
CN107059994A (zh) 一种双向输水的梯级泵站及管道的设计结构
CN110552328B (zh) 一种具有分层取水功能的叠梁式闸门及其工作方法
CN206144610U (zh) 疏水装置
CN106013019A (zh) 无泵悬浮式浮油收集装置
CN106402462A (zh) 一种后置调节型分孔口复合式防水锤空气阀阀组
CN111828692B (zh) 一种防水锤的差压流道空气阀和防水锤方法
CN106122751A (zh) 浮球式自平衡疏水装置及其疏水通流面积计算方法
JPS5813812A (ja) 多連式可撓性膜製起伏堰
CN211448765U (zh) 隧道横向排水管自平衡水压调节阀
CN114017096A (zh) 一种排渣排水口自闭式负压自动放水器
CN103362537B (zh) 瓦斯抽采管的放水机构
CN107672917A (zh) 一种物料储存装置
CN210766823U (zh) 用于调节水下围堰基底压力的浮箱系统
KR101400925B1 (ko) 거품저감용 해수방류장치
CN208718007U (zh) 一种防水击无能耗自补气压力罐
CN111945824A (zh) 一种随水位自动涨落的表层水取水装置
CN201802879U (zh) 高密封筒式快速排气阀
CN207034645U (zh) 一种具有防堵和气体隔断功能的煤气管道排水器
CN105156756A (zh) 一种环形浮子式防水锤高速进排气阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524659

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202206636

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210413

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845302

Country of ref document: EP

Kind code of ref document: A1