WO2022014602A1 - Wave measuring device - Google Patents

Wave measuring device Download PDF

Info

Publication number
WO2022014602A1
WO2022014602A1 PCT/JP2021/026338 JP2021026338W WO2022014602A1 WO 2022014602 A1 WO2022014602 A1 WO 2022014602A1 JP 2021026338 W JP2021026338 W JP 2021026338W WO 2022014602 A1 WO2022014602 A1 WO 2022014602A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
draft
measuring
data
sway
Prior art date
Application number
PCT/JP2021/026338
Other languages
French (fr)
Japanese (ja)
Inventor
健児 笹
良和 田中
博行 織田
鎮川 黄
洋三 宇津木
誠 小竿
Original Assignee
株式会社宇津木計器
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社宇津木計器 filed Critical 株式会社宇津木計器
Priority to CN202180061414.3A priority Critical patent/CN116194731A/en
Priority to KR1020237000716A priority patent/KR20230021124A/en
Publication of WO2022014602A1 publication Critical patent/WO2022014602A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • B63B79/15Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers for monitoring environmental variables, e.g. wave height or weather data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal

Definitions

  • the present invention relates to a wave measuring device for measuring waves.
  • Non-Patent Document 1 it is required to measure waves while the ship is sailing.
  • An object of the embodiment of the present invention is to provide a wave measuring device for easily measuring waves while a water moving body is navigating.
  • the wave measuring device is installed at a plurality of positions different from each other of the floating body, and has a plurality of water feeding measuring means for measuring the water and a shaking measuring means for measuring the shaking of the moving body.
  • An absolute water level fluctuation calculation means for calculating time-series data of absolute water level fluctuations at a plurality of positions based on the water water data measured by the plurality of water water measurement means and the sway data measured by the sway measurement means.
  • At least one of wave height, wave direction or period based on the cross-spectrum analysis means for performing cross-spectrum analysis based on the time-series data of the absolute water level fluctuations at the plurality of positions and the analysis result by the cross-spectral analysis means. It is provided with a wave measuring means for measuring wave information including one.
  • FIG. 1 is a configuration diagram showing a configuration of a wave measuring device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a ship showing the mounting state of the instrument according to the present embodiment.
  • FIG. 3 is a flow chart showing a procedure of a wave measurement method by the wave measurement unit according to the present embodiment.
  • FIG. 4 is a waveform diagram showing measurement data by the instruments according to the present embodiment.
  • FIG. 5 is a waveform diagram showing vertical acceleration data according to the present embodiment.
  • FIG. 6 is a waveform diagram showing vertical displacement data according to the present embodiment.
  • FIG. 7 is a waveform diagram showing absolute water level fluctuation data according to the present embodiment.
  • FIG. 8 is a waveform diagram showing spectrum analysis data according to the present embodiment.
  • FIG. 1 is a configuration diagram showing a configuration of a wave measuring device 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the ship 10 showing the mounting state of the instruments 11 to 15 according to the present embodiment.
  • the same parts in the drawings are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
  • the wave measuring device 1 is installed on the ship 10 and is configured by using a computer.
  • the ship 10 may be any water-moving body that moves on the water.
  • it may be a facility or an artificial island whose main purpose is not to move.
  • the water moving body is mainly described as a ship.
  • the wave measuring device 1 includes four draft meters 11, 12, 13, 14, a shaking measuring meter 15, a wave measuring unit 2, and a display 3.
  • the equipment constituting the wave measuring device 1 may also be used as a ship device or the like provided regardless of the wave measuring device 1, or may use an outboard device or equipment such as a GPS (global positioning system). You may.
  • the draft meters 11, 12, 13, 14 are mounted on the ship 10.
  • the draft meters 11 to 14 measure the draft (height from the bottom of the ship to the water surface) at each installation position.
  • the draft meters 11 to 14 transmit the measured draft data (draft data) to the wave measurement unit 2.
  • the draft meter 11 is provided on the bow of the ship 10.
  • the draft meter 12 is provided on the port side of the central portion of the ship 10 in the longitudinal direction.
  • the draft meter 13 is provided on the starboard side of the central portion of the ship 10 in the longitudinal direction.
  • the draft meter 14 is provided at the stern portion of the ship 10. That is, the draft meters 11 and 14 are provided in the longitudinal direction (propulsion direction of the ship 10) with respect to the center O of the upper surface of the ship body (plane parallel to the water surface) of the ship 10, respectively, and the draft meters 12 and 13 are provided. , Left and right in the width direction (direction perpendicular to the propulsion direction of the ship 10) with respect to the center O, respectively.
  • draft meters 11 to 14 a configuration using four draft meters 11 to 14 will be described, but as long as there are four or more, any number of draft meters 11 to 14 may be used.
  • the arrangement of the draft meters 11 to 14 is not limited to the positions described here, and any arrangement may be made as long as the draft data from the draft meters 11 to 14 are arranged at different positions.
  • the sway measuring meter 15 is mounted on the ship 10.
  • the sway measuring meter 15 measures forward / backward sway (surge), left / right sway (sway), vertical sway (heave), roll (roll), vertical sway (pitch), and bow sway (yaw).
  • the sway measuring meter 15 transmits the measured sway data (sway data) to the wave measuring unit 2.
  • the sway data are acceleration, angular velocity and tilt angle.
  • the sway measuring meter 15 may be measured by any method, or may be composed of a plurality of devices. Further, if the sway measuring meter 15 measures rolling, vertical sway, and vertical acceleration, it is not necessary to measure other sway. Further, the sway measuring meter 15 may perform measurement other than the purpose used in the wave measuring device 1. For example, the data measured by the sway meter 15 may be used for the purpose of monitoring or controlling the posture of the ship 10.
  • the wave measurement unit 2 obtains (measures) information (wave information) related to waves based on the draft data of each installation position received from the draft meters 11 to 14 and the sway data received from the sway measurement meter 15.
  • wave information is wave height, wave direction and period.
  • the wave measuring unit 2 converts the measured wave information into information for displaying on the display 3 and transmits the measured wave information to the display 3. If the wave information includes at least one of wave height, wave direction, and period, other elements may or may not be calculated.
  • the display 3 displays the wave information received from the wave measurement unit 2.
  • An operator such as a sailor can grasp the wave information by looking at the display 3.
  • the display 3 may be provided outside the ship 10. As a result, even a person outside the ship can grasp the wave information. For example, measurement data of each ship 10 navigating a major route in the world may be aggregated and analyzed to create a map displaying global wave information.
  • FIG. 3 is a flow chart showing a procedure of a wave measurement method by the wave measurement unit 2 according to the present embodiment.
  • the wave measurement unit 2 calculates the relative water level fluctuation by dividing the average draft from the draft data at each installation position measured by the draft meters 11 to 14 (step ST1).
  • the wave measurement unit 2 calculates the absolute water level fluctuation by correcting the calculated relative water level fluctuation based on the sway data measured by the sway measuring meter 15 (step ST2).
  • the vertical acceleration of the installation positions of the draft meters 11 to 14 is calculated based on the rolling angular velocity, the vertical swing angular velocity, and the vertical acceleration at the installation position of the sway measuring meter 15.
  • the vertical acceleration of the installation position of the draft meters 11 to 14 is obtained by the following equation using the vertical acceleration of the installation position of the sway measuring meter 15, the angular acceleration of the vertical sway angle, and the angular acceleration of the horizontal sway angle.
  • IIR Infinite Impulse Response
  • the absolute water level fluctuation at the installation position of the draft gauges 11 to 14 can be obtained by subtracting the vertical displacement from the relative water level fluctuation.
  • the wave measurement unit 2 cross-spectral analyzes the time-series data of the absolute water level fluctuation based on the absolute water level fluctuation of the four draft meters 11 to 14 (step ST3). For example, the wave measurement unit 2 performs data analysis at an absolute water level having one amplitude, and doubles the result of the frequency (spectrum) analysis to convert it into an absolute wave height having both amplitudes. The wave measurement unit 2 may perform data analysis at the absolute wave height.
  • the wave measurement unit 2 calculates the wave height, wave direction, and period, which are wave information, based on this analysis result (step ST4).
  • a cross-spectral analysis of time-series data of absolute water level fluctuation is performed using a multidimensional autoregressive model, which is one of the statistical time-series models. This estimates information about the amplitude / phase characteristics (cross spectrum) between the variables.
  • the variable is the absolute water level estimated at the installation positions of the four draft meters 11 to 14.
  • the cross spectrum consists of an auto component (auto power spectrum) that represents the relationship between oneself and oneself and a cross component (cross spectrum) that represents the relationship between oneself and other variables.
  • the cross spectrum becomes a complex number.
  • the auto component of the spectrum is a real number indicating the power (square of amplitude) at that frequency, and the imaginary part is zero. Therefore, this represents the amplitude characteristic of the variable of interest itself.
  • the cross component of the spectrum indicates the strength of the correlation between the variables at that frequency.
  • a complex number means that one vector can be written on the complex plane, so that the angle from the real axis, that is, the phase can be known. Therefore, the cross component represents the phase relationship between the variables of interest.
  • the wave height, wave direction and wave period are estimated as follows.
  • the cross-spectrum analysis uses a multivariate autoregressive model analysis method.
  • the cross spectrum of the absolute water level between the two measurement positions is obtained by the following equation using the cross-correlation function.
  • phase difference of the absolute water level between the two points is calculated by the following equation.
  • the wave direction is calculated by the following equation using the phase difference at the predominant frequency of the sum of the power spectra of the three absolute water levels.
  • the representative cycle is calculated by the following formula.
  • the significant wave height is obtained by averaging the power spectra of the absolute water levels at three points and multiplying the square root by four.
  • the frequency analysis is not limited to the one described here. It may be an FFT (Fast Fourier Transform) method, a Blackman-Tukey method using a correlation function, or a Burg maximum entropy method.
  • FFT Fast Fourier Transform
  • Blackman-Tukey method using a correlation function or a Burg maximum entropy method.
  • Burg maximum entropy method it is necessary to determine the order of the model, but in the above method, the model order can be objectively determined by the information criterion.
  • the measurement data DG1 by the instruments including the draft meters 11 to 14 and the sway measuring meter 15 mounted on the ship 10 will be analyzed to obtain wave information.
  • the measurement data DG1 by the instruments of the ship 10 is obtained.
  • the horizontal axis of the waveforms W11 to W19 is time (seconds).
  • the waveform W11 is the course (degrees)
  • the waveform W12 is the ground speed (knot)
  • the waveform W13 is the roll angular velocity (degrees / sec)
  • the waveform W14 is the pitch angular velocity (degrees / sec)
  • the waveform W15 is the vertical acceleration (m ⁇ 2 / sec).
  • the waveform W16 is the draft data (m) by the draft meter 11 on the bow
  • the waveform W17 is the draft data (m) by the draft meter 12 on the central port side
  • the waveform W18 is the draft data (m) by the draft meter 13 on the central starboard side
  • W19 shows draft data (m) from the draft meter 14 at the stern.
  • the course and velocity to ground are reference data and do not need to be measured.
  • the vertical acceleration data DG2 at the installation position of the draft gauges 11 to 14 is obtained from the measurement data DG1.
  • the horizontal axis is time (seconds) and the vertical axis is acceleration (m ⁇ 2 / sec).
  • the waveform W21 indicates the bow
  • the waveform W22 indicates the center port side
  • the waveform W23 indicates the center starboard side
  • the waveform W24 indicates the acceleration data of the stern.
  • the vertical displacement data DG3 is obtained from the vertical acceleration data DG2.
  • the horizontal axis is time (seconds) and the vertical axis is displacement (m).
  • the waveform W31 indicates the bow
  • the waveform W32 indicates the central port side
  • the waveform W33 indicates the central starboard side
  • the waveform W34 indicates the vertical displacement data of the stern.
  • the absolute water level fluctuation data DG4 is obtained from the vertical displacement data DG3.
  • the horizontal axis is time (seconds) and the vertical axis is water level (m).
  • the waveform W41 indicates the bow
  • the waveform W42 indicates the central port side
  • the waveform W43 indicates the central starboard side
  • the waveform W44 indicates the absolute water level fluctuation data of the stern.
  • the spectrum analysis data DG5 is obtained from the absolute water level fluctuation data DG4.
  • the installation positions of the draft meters 11 to 14 of one of the two waveform data are, in order from the top, the first line is the bow, the second line is the center port side, the third line is the center starboard side, and the fourth line.
  • the eyes indicate the stern, and the other draft draft meters 11 to 14 are installed in order from the left: the bow in the first row, the center port in the second row, the center starboard in the third row, and the stern in the fourth row.
  • the waveform located diagonally to the lower right of the analysis data DG5 represents the auto power spectrum
  • the other waveforms represent the cross spectrum.
  • the horizontal axis indicates the frequency (Hz)
  • the vertical axis indicates the spectral density (m ⁇ 2 ⁇ sec)
  • the solid line indicates the real part of the spectrum
  • the broken line indicates the imaginary part of the spectrum.
  • the wave information estimated from the spectrum analysis data DG5 has a significant wave height of 0.66 m, a wave direction (positive clockwise from the bow) of 127.3 degrees, and an average wave period of 7.0 seconds.
  • wave information including wave height, wave direction, and period is obtained by cross-spectral analysis of time-series data of water level fluctuation based on the measurement results by the draft meters 11 to 14 and the sway meter 15. be able to.
  • the seafarer can grasp the wave information while the ship 10 is sailing.
  • the equipment cost of the ship 10 can be used for purposes other than the wave measuring device 1. Can be suppressed. Further, if the water moving body (ship) is provided with at least one of the draft meters 11 to 14 or the sway measuring meter 15, it is modified to mount the wave measuring device 1 by using the existing equipment. The cost can be suppressed.
  • the present invention is not limited to the above-described embodiment, and components may be deleted, added, or modified. Further, a new embodiment may be obtained by combining or exchanging components for a plurality of embodiments. Even if such an embodiment is directly different from the above-described embodiment, the description having the same purpose as that of the present invention is omitted as it has been described as the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Hydrology & Water Resources (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

This wave measuring device is provided with: a plurality of draft gauges (11 to 14), installed respectively in a plurality of mutually different positions in a water-borne mobile body to measure draft; an oscillation measuring gauge (15) for measuring oscillation of the water-borne mobile body; and a wave measuring unit (2) for calculating time-series data of absolute water level variations in the plurality of positions, on the basis of draft data measured by the plurality of draft gauges (11 to 14) and oscillation data measured by the oscillation measuring gauge (15), performing cross-spectral analysis on the basis of the time-series data of the absolute water level variations in the plurality of positions, and measuring wave information including at least one of wave height, wave direction, and period, on the basis of the analysis results obtained by the cross-spectral analysis.

Description

波浪計測装置Wave measuring device
 本発明は、波浪を計測する波浪計測装置に関する。 The present invention relates to a wave measuring device for measuring waves.
 一般に、船の航行中に、波浪を計測することが要望されている(非特許文献1参照)。 Generally, it is required to measure waves while the ship is sailing (see Non-Patent Document 1).
 しかしながら、航行中は、船体が傾く等の理由により、波浪を計測することは容易ではなく、計測精度を出すのが困難である。 However, it is not easy to measure waves while sailing due to reasons such as the hull tilting, and it is difficult to obtain measurement accuracy.
 本発明の実施形態の目的は、水上移動体の航行中に、波浪を容易に計測する波浪計測装置を提供することにある。 An object of the embodiment of the present invention is to provide a wave measuring device for easily measuring waves while a water moving body is navigating.
 本発明の観点に従った波浪計測装置は、水上移動体の互いに異なる複数の位置にそれぞれ設置され、喫水を計測する複数の喫水計測手段と、前記水上移動体の動揺を計測する動揺計測手段と、前記複数の喫水計測手段により計測された喫水データ及び前記動揺計測手段により計測された動揺データに基づいて、前記複数の位置の絶対水位変動の時系列データを演算する絶対水位変動演算手段と、前記複数の位置の前記絶対水位変動の時系列データに基づいて、クロススペクトル解析をするクロススペクトル解析手段と、前記クロススペクトル解析手段による解析結果に基づいて、波高、波向又は周期のうち少なくとも1つを含む波浪情報を計測する波浪計測手段とを備える。 The wave measuring device according to the viewpoint of the present invention is installed at a plurality of positions different from each other of the floating body, and has a plurality of water feeding measuring means for measuring the water and a shaking measuring means for measuring the shaking of the moving body. An absolute water level fluctuation calculation means for calculating time-series data of absolute water level fluctuations at a plurality of positions based on the water water data measured by the plurality of water water measurement means and the sway data measured by the sway measurement means. At least one of wave height, wave direction or period based on the cross-spectrum analysis means for performing cross-spectrum analysis based on the time-series data of the absolute water level fluctuations at the plurality of positions and the analysis result by the cross-spectral analysis means. It is provided with a wave measuring means for measuring wave information including one.
図1は、本発明の実施形態に係る波浪計測装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of a wave measuring device according to an embodiment of the present invention. 図2は、本実施形態に係る計器の実装状態を示す船の概略図である。FIG. 2 is a schematic view of a ship showing the mounting state of the instrument according to the present embodiment. 図3は、本実施形態に係る波浪計測部による波浪の計測方法の手順を示すフロー図である。FIG. 3 is a flow chart showing a procedure of a wave measurement method by the wave measurement unit according to the present embodiment. 図4は、本実施形態に係る計器類による計測データを示す波形図である。FIG. 4 is a waveform diagram showing measurement data by the instruments according to the present embodiment. 図5は、本実施形態に係る上下加速度データを示す波形図である。FIG. 5 is a waveform diagram showing vertical acceleration data according to the present embodiment. 図6は、本実施形態に係る上下変位データを示す波形図である。FIG. 6 is a waveform diagram showing vertical displacement data according to the present embodiment. 図7は、本実施形態に係る絶対水位変動データを示す波形図である。FIG. 7 is a waveform diagram showing absolute water level fluctuation data according to the present embodiment. 図8は、本実施形態に係るスペクトル解析データを示す波形図である。FIG. 8 is a waveform diagram showing spectrum analysis data according to the present embodiment.
 (実施形態)
 図1は、本発明の実施形態に係る波浪計測装置1の構成を示す構成図である。図2は、本実施形態に係る計器11~15の実装状態を示す船10の概略図である。なお、図面における同一部分には同一符号を付して、重複する説明を適宜省略する。
(Embodiment)
FIG. 1 is a configuration diagram showing a configuration of a wave measuring device 1 according to an embodiment of the present invention. FIG. 2 is a schematic view of the ship 10 showing the mounting state of the instruments 11 to 15 according to the present embodiment. The same parts in the drawings are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
 波浪計測装置1は、船10に設置され、コンピュータを用いて構成される。なお、船10は、水上を移動する水上移動体であれば、どのようなものでもよい。例えば、移動を主な目的としない設備又は人工島のようなものでもよい。ここでは、水上移動体は、主に船として説明する。 The wave measuring device 1 is installed on the ship 10 and is configured by using a computer. The ship 10 may be any water-moving body that moves on the water. For example, it may be a facility or an artificial island whose main purpose is not to move. Here, the water moving body is mainly described as a ship.
 波浪計測装置1は、4つの喫水計11,12,13,14、動揺計測計15、波浪計測部2、及び、表示器3を備える。なお、波浪計測装置1を構成する機器類は、波浪計測装置1に関係なく設けられる船舶機器等を兼用してもよいし、GPS(global positioning system)等の船外の機器又は設備を利用してもよい。 The wave measuring device 1 includes four draft meters 11, 12, 13, 14, a shaking measuring meter 15, a wave measuring unit 2, and a display 3. The equipment constituting the wave measuring device 1 may also be used as a ship device or the like provided regardless of the wave measuring device 1, or may use an outboard device or equipment such as a GPS (global positioning system). You may.
 喫水計11,12,13,14は、船10に実装される。喫水計11~14は、各設置位置の喫水(船底から水面までの高さ)を計測する。喫水計11~14は、計測した喫水に関するデータ(喫水データ)を波浪計測部2に送信する。 The draft meters 11, 12, 13, 14 are mounted on the ship 10. The draft meters 11 to 14 measure the draft (height from the bottom of the ship to the water surface) at each installation position. The draft meters 11 to 14 transmit the measured draft data (draft data) to the wave measurement unit 2.
 喫水計11は、船10の船首部分に設けられる。喫水計12は、船10の長手方向の中央部分の左舷側に設けられる。喫水計13は、船10の長手方向の中央部分の右舷側に設けられる。喫水計14は、船10の船尾部分に設けられる。即ち、喫水計11,14は、船10の船体上面(水面に平行な面)の中心Oに対して、長手方向(船10の推進方向)に前後にそれぞれ設けられ、喫水計12,13は、中心Oに対して、幅方向(船10の推進方向に垂直方向)に左右にそれぞれ設けられる。 The draft meter 11 is provided on the bow of the ship 10. The draft meter 12 is provided on the port side of the central portion of the ship 10 in the longitudinal direction. The draft meter 13 is provided on the starboard side of the central portion of the ship 10 in the longitudinal direction. The draft meter 14 is provided at the stern portion of the ship 10. That is, the draft meters 11 and 14 are provided in the longitudinal direction (propulsion direction of the ship 10) with respect to the center O of the upper surface of the ship body (plane parallel to the water surface) of the ship 10, respectively, and the draft meters 12 and 13 are provided. , Left and right in the width direction (direction perpendicular to the propulsion direction of the ship 10) with respect to the center O, respectively.
 ここでは、4つの喫水計11~14を用いた構成について説明するが、4つ以上であれば、いくつの喫水計11~14を用いてもよい。喫水計11~14の配置は、ここで説明した位置に限らず、各喫水計11~14による喫水データが互いに異なるような位置に配置されれば、どのように配置されてもよい。 Here, a configuration using four draft meters 11 to 14 will be described, but as long as there are four or more, any number of draft meters 11 to 14 may be used. The arrangement of the draft meters 11 to 14 is not limited to the positions described here, and any arrangement may be made as long as the draft data from the draft meters 11 to 14 are arranged at different positions.
 動揺計測計15は、船10に実装される。動揺計測計15は、前後揺(サージ)、左右揺(スウェイ)、上下揺(ヒーブ)、横揺(ロール)、縦揺(ピッチ)、及び、船首揺(ヨー)を計測する。動揺計測計15は、計測した動揺に関するデータ(動揺データ)を波浪計測部2に送信する。例えば、動揺データは、加速度、角速度及び傾斜角である。 The sway measuring meter 15 is mounted on the ship 10. The sway measuring meter 15 measures forward / backward sway (surge), left / right sway (sway), vertical sway (heave), roll (roll), vertical sway (pitch), and bow sway (yaw). The sway measuring meter 15 transmits the measured sway data (sway data) to the wave measuring unit 2. For example, the sway data are acceleration, angular velocity and tilt angle.
 なお、動揺計測計15は、どのような方式で計測してもよいし、複数の機器で構成されてもよい。また、動揺計測計15は、横揺、縦揺及び上下加速度を計測すれば、その他の動揺は、計測しなくてもよい。さらに、動揺計測計15は、波浪計測装置1で使用する目的以外の計測をしてもよい。例えば、動揺計測計15で計測されたデータは、船10の姿勢を監視又は制御する目的に使用されてもよい。 The sway measuring meter 15 may be measured by any method, or may be composed of a plurality of devices. Further, if the sway measuring meter 15 measures rolling, vertical sway, and vertical acceleration, it is not necessary to measure other sway. Further, the sway measuring meter 15 may perform measurement other than the purpose used in the wave measuring device 1. For example, the data measured by the sway meter 15 may be used for the purpose of monitoring or controlling the posture of the ship 10.
 波浪計測部2は、喫水計11~14から受信した各設置位置の喫水データ、及び、動揺計測計15から受信した動揺データに基づいて、波浪に関する情報(波浪情報)を得る(計測する)。例えば、波浪情報は、波高、波向及び周期である。波浪計測部2は、計測した波浪情報を表示器3に表示するための情報に変換して、表示器3に送信する。なお、波浪情報は、波高、波向又は周期のうち少なくとも1つを含めば、その他の要素は、演算しなくてもよいし、表示しなくてもよい。 The wave measurement unit 2 obtains (measures) information (wave information) related to waves based on the draft data of each installation position received from the draft meters 11 to 14 and the sway data received from the sway measurement meter 15. For example, wave information is wave height, wave direction and period. The wave measuring unit 2 converts the measured wave information into information for displaying on the display 3 and transmits the measured wave information to the display 3. If the wave information includes at least one of wave height, wave direction, and period, other elements may or may not be calculated.
 表示器3は、波浪計測部2から受信した波浪情報を表示する。船員等の操作者は、表示器3を見ることで、波浪情報を把握することができる。なお、表示器3は、船10の外部に設けてもよい。これにより、船外の者でも、波浪情報を把握することができる。例えば、世界の主要航路を航行する各船10での計測データを集計及び分析して、世界規模の波浪情報を表示するマップを作成してもよい。 The display 3 displays the wave information received from the wave measurement unit 2. An operator such as a sailor can grasp the wave information by looking at the display 3. The display 3 may be provided outside the ship 10. As a result, even a person outside the ship can grasp the wave information. For example, measurement data of each ship 10 navigating a major route in the world may be aggregated and analyzed to create a map displaying global wave information.
 図3は、本実施形態に係る波浪計測部2による波浪の計測方法の手順を示すフロー図である。
 波浪計測部2は、喫水計11~14により計測された各設置位置の喫水データから平均喫水を除して相対水位変動を演算する(ステップST1)。
FIG. 3 is a flow chart showing a procedure of a wave measurement method by the wave measurement unit 2 according to the present embodiment.
The wave measurement unit 2 calculates the relative water level fluctuation by dividing the average draft from the draft data at each installation position measured by the draft meters 11 to 14 (step ST1).
 波浪計測部2は、動揺計測計15により計測された動揺データに基づいて、演算した相対水位変動を補正することで、絶対水位変動を演算する(ステップST2)。 The wave measurement unit 2 calculates the absolute water level fluctuation by correcting the calculated relative water level fluctuation based on the sway data measured by the sway measuring meter 15 (step ST2).
 具体的に、絶対水位の演算方法について説明する。
 動揺計測計15の設置位置における横揺角速度、縦揺角速度及び上下加速度に基づいて、喫水計11~14の設置位置の上下加速度を演算する。喫水計11~14の設置位置の上下加速度は、動揺計測計15の設置位置の上下加速度、縦揺角の角加速度、及び、横揺角の角加速度を用いて、次式により求める。
Specifically, the calculation method of the absolute water level will be described.
The vertical acceleration of the installation positions of the draft meters 11 to 14 is calculated based on the rolling angular velocity, the vertical swing angular velocity, and the vertical acceleration at the installation position of the sway measuring meter 15. The vertical acceleration of the installation position of the draft meters 11 to 14 is obtained by the following equation using the vertical acceleration of the installation position of the sway measuring meter 15, the angular acceleration of the vertical sway angle, and the angular acceleration of the horizontal sway angle.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 無限インパルス応答(IIR, Infinite Impulse Response)ディジタルフィルタによる積分法により、次式を用いて、上下加速度を2回積分することで上下変位を求める。 Infinite Impulse Response (IIR, Infinite Impulse Response) Obtain the vertical displacement by integrating the vertical acceleration twice using the following equation by the integral method using a digital filter.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 これにより、相対水位変動から上下変位を引くことで、喫水計11~14の設置位置の絶対水位変動が求まる。 By doing this, the absolute water level fluctuation at the installation position of the draft gauges 11 to 14 can be obtained by subtracting the vertical displacement from the relative water level fluctuation.
 波浪計測部2は、4つの喫水計11~14の設置位置の絶対水位変動に基づいて、絶対水位変動の時系列データをクロススペクトル解析する(ステップST3)。例えば、波浪計測部2は、片振幅である絶対水位でデータ解析を行い、その周波数(スペクトル)解析の結果を2倍することにより、両振幅である絶対波高に換算する。なお、波浪計測部2は、絶対波高でデータ解析を行ってもよい。 The wave measurement unit 2 cross-spectral analyzes the time-series data of the absolute water level fluctuation based on the absolute water level fluctuation of the four draft meters 11 to 14 (step ST3). For example, the wave measurement unit 2 performs data analysis at an absolute water level having one amplitude, and doubles the result of the frequency (spectrum) analysis to convert it into an absolute wave height having both amplitudes. The wave measurement unit 2 may perform data analysis at the absolute wave height.
 波浪計測部2は、この解析結果に基づいて、波浪情報である波高、波向及び周期を演算する(ステップST4)。 The wave measurement unit 2 calculates the wave height, wave direction, and period, which are wave information, based on this analysis result (step ST4).
 次に、喫水計11~14及び動揺計測計15による計測結果に基づいて、喫水計11~14の設置位置の絶対水位を解析して、波浪情報を求める方法を説明する。 Next, a method of analyzing the absolute water level at the installation position of the draft meters 11 to 14 and obtaining wave information will be described based on the measurement results of the draft meters 11 to 14 and the sway measuring meter 15.
 ここでは、統計的時系列モデルの一つである多次元自己回帰モデルを用いて、絶対水位変動の時系列データをクロススペクトル解析する。これにより、変数間の振幅/位相特性(クロススペクトル)に関する情報が推定される。ここで、変数とは、4つの喫水計11~14の設置位置で推定された絶対水位である。 Here, a cross-spectral analysis of time-series data of absolute water level fluctuation is performed using a multidimensional autoregressive model, which is one of the statistical time-series models. This estimates information about the amplitude / phase characteristics (cross spectrum) between the variables. Here, the variable is the absolute water level estimated at the installation positions of the four draft meters 11 to 14.
 クロススペクトルは、自分と自分の関係を表すオート成分(オートパワースペクトル)と、自分と他の変数との関係を表すクロス成分(クロススペクトル)からなる。クロススペクトルは、複素数になる。スペクトルのオート成分は、その周波数におけるパワー(振幅の2乗)を示す実数であり、虚数部分はゼロである。したがって、これは着目している変数自身の振幅特性を表すことになる。一方、スペクトルのクロス成分は、その周波数での変数間の相関の強さを示す。複素数ということは、複素平面上に1つのベクトルが書けることになるため、実数軸からの角度即ち位相を知ることができる。したがって、クロス成分は、着目している変数間の位相関係を表すことになる。 The cross spectrum consists of an auto component (auto power spectrum) that represents the relationship between oneself and oneself and a cross component (cross spectrum) that represents the relationship between oneself and other variables. The cross spectrum becomes a complex number. The auto component of the spectrum is a real number indicating the power (square of amplitude) at that frequency, and the imaginary part is zero. Therefore, this represents the amplitude characteristic of the variable of interest itself. On the other hand, the cross component of the spectrum indicates the strength of the correlation between the variables at that frequency. A complex number means that one vector can be written on the complex plane, so that the angle from the real axis, that is, the phase can be known. Therefore, the cross component represents the phase relationship between the variables of interest.
 波高、波向及び波周期は、以下のように推定する。ここでは、クロススペクトル解析は、多変量自己回帰モデル解析法を用いる。
 計測位置の2地点間の絶対水位のクロススペクトルは、相互相関関数を用いて、次式により求める。
The wave height, wave direction and wave period are estimated as follows. Here, the cross-spectrum analysis uses a multivariate autoregressive model analysis method.
The cross spectrum of the absolute water level between the two measurement positions is obtained by the following equation using the cross-correlation function.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 これらを用いて、2地点間の絶対水位の位相差は、次式により求める。 Using these, the phase difference of the absolute water level between the two points is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 波向は、3点の絶対水位のパワースペクトルの和の卓越周波数での位相差を用いて、次式により求める。 The wave direction is calculated by the following equation using the phase difference at the predominant frequency of the sum of the power spectra of the three absolute water levels.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 代表周期は、次式により求める。有義波高に関しては、3点の絶対水位のパワースペクトルを平均し、その平方根を4倍することにより求める。 The representative cycle is calculated by the following formula. The significant wave height is obtained by averaging the power spectra of the absolute water levels at three points and multiplying the square root by four.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、周波数解析は、ここで説明するものに限らない。FFT(高速フーリエ変換)法でもよいし、相関関数を用いるブラックマン-チューキー(Blackman-Tukey)法でもよいし、ブルク(Burg)の最大エントロピー法でもよい。ここで、相関関数を使う方法では、モデルの次数を決める必要があるが、上述の方法では、情報量規準でモデル次数を客観的に決めることができる。 The frequency analysis is not limited to the one described here. It may be an FFT (Fast Fourier Transform) method, a Blackman-Tukey method using a correlation function, or a Burg maximum entropy method. Here, in the method using the correlation function, it is necessary to determine the order of the model, but in the above method, the model order can be objectively determined by the information criterion.
 図4から図8を参照して、船10に実装された喫水計11~14及び動揺計測計15を含む計器類による計測データDG1を解析し、波浪情報を得るまでを説明する。 With reference to FIGS. 4 to 8, the measurement data DG1 by the instruments including the draft meters 11 to 14 and the sway measuring meter 15 mounted on the ship 10 will be analyzed to obtain wave information.
 図4に示すように、船10の計器類による計測データDG1を得る。波形W11~W19の横軸は時間(秒)である。波形W11は針路(度)、波形W12は対地速力(ノット)、波形W13はロール角速度(度/秒)、波形W14はピッチ角速度(度/秒)、波形W15は上下加速度(m^2/秒)、波形W16は船首の喫水計11による喫水データ(m)、波形W17は中央左舷の喫水計12による喫水データ(m)、波形W18は中央右舷の喫水計13による喫水データ(m)、波形W19は船尾の喫水計14による喫水データ(m)をそれぞれ示す。なお、針路及び対地速力は、参考データであり、計測しなくてもよい。 As shown in FIG. 4, the measurement data DG1 by the instruments of the ship 10 is obtained. The horizontal axis of the waveforms W11 to W19 is time (seconds). The waveform W11 is the course (degrees), the waveform W12 is the ground speed (knot), the waveform W13 is the roll angular velocity (degrees / sec), the waveform W14 is the pitch angular velocity (degrees / sec), and the waveform W15 is the vertical acceleration (m ^ 2 / sec). ), The waveform W16 is the draft data (m) by the draft meter 11 on the bow, the waveform W17 is the draft data (m) by the draft meter 12 on the central port side, and the waveform W18 is the draft data (m) by the draft meter 13 on the central starboard side. W19 shows draft data (m) from the draft meter 14 at the stern. The course and velocity to ground are reference data and do not need to be measured.
 図5に示すように、計測データDG1から喫水計11~14の設置位置における上下加速度データDG2を得る。波形W21~W24は、横軸を時間(秒)、縦軸を加速度(m^2/秒)にしている。波形W21は船首、波形W22は中央左舷、波形W23は中央右舷、波形W24は船尾の加速度データをそれぞれ示す。 As shown in FIG. 5, the vertical acceleration data DG2 at the installation position of the draft gauges 11 to 14 is obtained from the measurement data DG1. In the waveforms W21 to W24, the horizontal axis is time (seconds) and the vertical axis is acceleration (m ^ 2 / sec). The waveform W21 indicates the bow, the waveform W22 indicates the center port side, the waveform W23 indicates the center starboard side, and the waveform W24 indicates the acceleration data of the stern.
 図6に示すように、上下加速度データDG2から上下変位データDG3を得る。波形W31~W34は、横軸を時間(秒)、縦軸を変位(m)にしている。波形W31は船首、波形W32は中央左舷、波形W33は中央右舷、波形W34は船尾の上下変位データをそれぞれ示す。 As shown in FIG. 6, the vertical displacement data DG3 is obtained from the vertical acceleration data DG2. In the waveforms W31 to W34, the horizontal axis is time (seconds) and the vertical axis is displacement (m). The waveform W31 indicates the bow, the waveform W32 indicates the central port side, the waveform W33 indicates the central starboard side, and the waveform W34 indicates the vertical displacement data of the stern.
 図7に示すように、上下変位データDG3から絶対水位変動データDG4を得る。波形W41~W44は、横軸を時間(秒)、縦軸を水位(m)にしている。波形W41は船首、波形W42は中央左舷、波形W43は中央右舷、波形W44は船尾の絶対水位変動データをそれぞれ示す。 As shown in FIG. 7, the absolute water level fluctuation data DG4 is obtained from the vertical displacement data DG3. In the waveforms W41 to W44, the horizontal axis is time (seconds) and the vertical axis is water level (m). The waveform W41 indicates the bow, the waveform W42 indicates the central port side, the waveform W43 indicates the central starboard side, and the waveform W44 indicates the absolute water level fluctuation data of the stern.
 図8に示すように、絶対水位変動データDG4からスペクトル解析データDG5を得る。スペクトル解析データDG5において、2つの波形データのうち一方の喫水計11~14の設置位置は、上から順に、1行目は船首、2行目は中央左舷、3行目は中央右舷、4行目は船尾をそれぞれ示し、もう一方の喫水計11~14の設置位置は、左から順に、1列目は船首、2列目は中央左舷、3列目は中央右舷、4列目は船尾をそれぞれ示す。したがって、解析データDG5の右下がりの対角線に位置する波形は、オートパワースペクトルを表し、それ以外の波形は、クロススペクトルを表す。 As shown in FIG. 8, the spectrum analysis data DG5 is obtained from the absolute water level fluctuation data DG4. In the spectrum analysis data DG5, the installation positions of the draft meters 11 to 14 of one of the two waveform data are, in order from the top, the first line is the bow, the second line is the center port side, the third line is the center starboard side, and the fourth line. The eyes indicate the stern, and the other draft draft meters 11 to 14 are installed in order from the left: the bow in the first row, the center port in the second row, the center starboard in the third row, and the stern in the fourth row. Each is shown. Therefore, the waveform located diagonally to the lower right of the analysis data DG5 represents the auto power spectrum, and the other waveforms represent the cross spectrum.
 スペクトル解析データDG5の各波形において、横軸は周波数(Hz)、縦軸はスペクトル密度(m^2・秒)、実線はスペクトル実部、破線はスペクトル虚部をそれぞれ示す。 In each waveform of the spectrum analysis data DG5, the horizontal axis indicates the frequency (Hz), the vertical axis indicates the spectral density (m ^ 2 · sec), the solid line indicates the real part of the spectrum, and the broken line indicates the imaginary part of the spectrum.
 スペクトル解析データDG5から推定される波浪情報は、有義波高が0.66m、波向(船首から時計回りを正)が127.3度、平均波周期が7.0秒である。 The wave information estimated from the spectrum analysis data DG5 has a significant wave height of 0.66 m, a wave direction (positive clockwise from the bow) of 127.3 degrees, and an average wave period of 7.0 seconds.
 本実施形態によれば、喫水計11~14及び動揺計測計15による計測結果に基づいて、水位変動の時系列データをクロススペクトル解析することにより、波高、波向及び周期を含む波浪情報を得ることができる。これにより、船員は、船10の航行中に、波浪情報を把握することができる。 According to this embodiment, wave information including wave height, wave direction, and period is obtained by cross-spectral analysis of time-series data of water level fluctuation based on the measurement results by the draft meters 11 to 14 and the sway meter 15. be able to. As a result, the seafarer can grasp the wave information while the ship 10 is sailing.
 また、波浪計測装置1を構成する喫水計11~14及び動揺計測計15は、既存の機器類を用いることができるため、波浪計測装置1以外の用途と兼用することで、船10の設備コストを抑制することができる。また、喫水計11~14又は動揺計測計15のうち少なくとも1つでも設けられている水上移動体(船)であれば、既存の機器類を利用することで、波浪計測装置1を実装する改造コストを抑制することができる。 Further, since the draft meters 11 to 14 and the sway measuring meter 15 constituting the wave measuring device 1 can use existing equipment, the equipment cost of the ship 10 can be used for purposes other than the wave measuring device 1. Can be suppressed. Further, if the water moving body (ship) is provided with at least one of the draft meters 11 to 14 or the sway measuring meter 15, it is modified to mount the wave measuring device 1 by using the existing equipment. The cost can be suppressed.
 なお、本発明は上述した実施形態に限定されず、構成要素を削除、付加又は変更等をしてもよい。また、複数の実施形態について構成要素を組合せ又は交換等をすることで、新たな実施形態としてもよい。このような実施形態が上述した実施形態と直接的に異なるものであっても、本発明と同様の趣旨のものは、本発明の実施形態として説明したものとして、その説明を省略している。 The present invention is not limited to the above-described embodiment, and components may be deleted, added, or modified. Further, a new embodiment may be obtained by combining or exchanging components for a plurality of embodiments. Even if such an embodiment is directly different from the above-described embodiment, the description having the same purpose as that of the present invention is omitted as it has been described as the embodiment of the present invention.

Claims (3)

  1.  水上移動体の互いに異なる複数の位置にそれぞれ設置され、喫水を計測する複数の喫水計測手段と、
     前記水上移動体の動揺を計測する動揺計測手段と、
     前記複数の喫水計測手段により計測された喫水データ及び前記動揺計測手段により計測された動揺データに基づいて、前記複数の位置の絶対水位変動の時系列データを演算する絶対水位変動演算手段と、
     前記複数の位置の前記絶対水位変動の時系列データに基づいて、クロススペクトル解析をするクロススペクトル解析手段と、
     前記クロススペクトル解析手段による解析結果に基づいて、波高、波向又は周期のうち少なくとも1つを含む波浪情報を計測する波浪計測手段と
    を備えることを特徴とする波浪計測装置。
    Multiple draft measuring means that are installed at multiple positions of the water moving body that are different from each other and measure draft,
    A sway measuring means for measuring the sway of the water moving body,
    An absolute water level fluctuation calculation means for calculating time-series data of absolute water level fluctuations at a plurality of positions based on the draft data measured by the plurality of draft measurement means and the sway data measured by the sway measurement means.
    A cross-spectral analysis means for performing cross-spectral analysis based on the time-series data of the absolute water level fluctuations at the plurality of positions,
    A wave measuring device comprising: a wave measuring means for measuring wave information including at least one of wave height, wave direction or period based on an analysis result by the cross spectrum analysis means.
  2.  前記複数の位置は、前記水上移動体の水面に平行な面の中心に対して、推進方向に前後に設置され、前記推進方向の垂直方向に左右に設けられたこと
    を特徴とする請求項1に記載の波浪計測装置。
    1. Wave measuring device described in.
  3.  水上移動体の互いに異なる複数の位置で喫水を計測し、
     前記水上移動体の動揺を計測し、
     互いに異なる位置で計測した喫水データ及び計測した動揺データに基づいて、前記複数の位置の絶対水位変動の時系列データを演算し、
     前記複数の位置の前記絶対水位変動の時系列データに基づいて、クロススペクトル解析をし、
     前記クロススペクトル解析による解析結果に基づいて、波高、波向又は周期のうち少なくとも1つを含む波浪情報を計測すること
    を含むことを特徴とする波浪計測方法。
    Draft is measured at multiple positions on the water moving body that are different from each other.
    The sway of the water moving body was measured and
    Based on the draft data measured at different positions and the measured sway data, the time-series data of the absolute water level fluctuations at the plurality of positions is calculated.
    Cross-spectral analysis was performed based on the time-series data of the absolute water level fluctuations at the plurality of positions.
    A wave measurement method comprising measuring wave information including at least one of wave height, wave direction, and period based on the analysis result by the cross spectrum analysis.
PCT/JP2021/026338 2020-07-14 2021-07-13 Wave measuring device WO2022014602A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180061414.3A CN116194731A (en) 2020-07-14 2021-07-13 Wave measuring device
KR1020237000716A KR20230021124A (en) 2020-07-14 2021-07-13 WAVE MEASURING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-120654 2020-07-14
JP2020120654A JP2022017851A (en) 2020-07-14 2020-07-14 Wave measuring device

Publications (1)

Publication Number Publication Date
WO2022014602A1 true WO2022014602A1 (en) 2022-01-20

Family

ID=79555626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026338 WO2022014602A1 (en) 2020-07-14 2021-07-13 Wave measuring device

Country Status (4)

Country Link
JP (1) JP2022017851A (en)
KR (1) KR20230021124A (en)
CN (1) CN116194731A (en)
WO (1) WO2022014602A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171146A (en) * 2005-11-24 2007-07-05 Kenwood Corp Wave height measuring instrument
JP2011213191A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Wave height and wave direction estimating method of incident wave, automatic navigation route and/or ship position holding controlling method, automatic navigation route and/or ship position holding controlling system, and ship and offshore structure
JP2017021029A (en) * 2015-07-10 2017-01-26 国立研究開発法人 海上・港湾・航空技術研究所 Wave measuring device and floating body comprising wave measuring device
WO2017086482A1 (en) * 2015-11-20 2017-05-26 流体テクノ株式会社 Hydrographic phenomena estimation apparatus and hydrographic phenomena estimation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171146A (en) * 2005-11-24 2007-07-05 Kenwood Corp Wave height measuring instrument
JP2011213191A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Wave height and wave direction estimating method of incident wave, automatic navigation route and/or ship position holding controlling method, automatic navigation route and/or ship position holding controlling system, and ship and offshore structure
JP2017021029A (en) * 2015-07-10 2017-01-26 国立研究開発法人 海上・港湾・航空技術研究所 Wave measuring device and floating body comprising wave measuring device
WO2017086482A1 (en) * 2015-11-20 2017-05-26 流体テクノ株式会社 Hydrographic phenomena estimation apparatus and hydrographic phenomena estimation method

Also Published As

Publication number Publication date
JP2022017851A (en) 2022-01-26
KR20230021124A (en) 2023-02-13
CN116194731A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
Raghukumar et al. Performance characteristics of “Spotter,” a newly developed real-time wave measurement buoy
JP4880910B2 (en) Horizontal wave measuring system and method
US6282151B1 (en) System and method for measuring wave directional spectrum and wave height
CN108562287A (en) A kind of Terrain-aided Underwater Navigation based on adaptively sampled particle filter
CN103438987A (en) Ship radiation noise source distinguishing method based on super directivity small-bore cylindrical array
RU2483280C1 (en) Navigation system
CN111880209B (en) Ship body attitude calculation method and application
CN103308722B (en) A kind of error correction method for marine anemometer
CN104613906B (en) Reservoir area deep water water-depth measurement method based on ray traling
CN109781075A (en) A kind of ocean wave height measuring system and method
CN113281757B (en) Inverted multi-beam echo instrument and sea surface wave measurement method
CN108253934B (en) Underwater terrain measurement simulation method and simulator thereof
CN109490906A (en) A kind of boat-carrying wave dynamic measurement device based on laser radar
CN109059746A (en) A kind of bathymetric surveying method based on accurate POS
WO2022014602A1 (en) Wave measuring device
JP3888671B2 (en) Wave height calculation device, wave height calculation method, recording medium, and ship
JP2009115714A (en) Method and device for measuring speed of mobile unit
KR101307828B1 (en) Wave height measuring device for shipping
Heitsenrether et al. Evaluating performance of acoustic current profiler sensor on small, dynamic surface buoy
Jia et al. Uncertainty Modeling of Crowdsourced Bathymetry Data Influenced by Marine Environment
JP3589186B2 (en) Onboard marine forecasting device
CN113148046A (en) Ship draught measuring method
Maimun et al. Seakeeping analysis of a fishing vessel operating in Malaysian water
Pennino et al. Sea state monitoring based on ship motion measurements onboard an icebreaker in the Antarctic waters
De Girolamo et al. Wave characteristics estimation by GPS receivers installed on a sailboat travelling off-shore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237000716

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842603

Country of ref document: EP

Kind code of ref document: A1