WO2022014406A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2022014406A1
WO2022014406A1 PCT/JP2021/025443 JP2021025443W WO2022014406A1 WO 2022014406 A1 WO2022014406 A1 WO 2022014406A1 JP 2021025443 W JP2021025443 W JP 2021025443W WO 2022014406 A1 WO2022014406 A1 WO 2022014406A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
region
valve
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2021/025443
Other languages
French (fr)
Japanese (ja)
Inventor
敦 岡崎
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN202180039674.0A priority Critical patent/CN115698492A/en
Publication of WO2022014406A1 publication Critical patent/WO2022014406A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • the boost pressure of the intake air flowing through the main body of the internal combustion engine is adjusted by controlling the opening degree of a valve or a supercharger provided in the intake passage.
  • the internal combustion engine is provided with an aftertreatment device (for example, a catalyst) for purifying the exhaust gas, and in order to activate the catalyst, a temperature rise control mode for raising the temperature of the catalyst is executed. In the temperature rise control mode where there is little freshness, the control performance of the boost pressure by the valve is higher than that of the turbocharger, so feedback control by the valve is performed.
  • control area where the valve performs feedback control is the same area as the control area where the turbocharger performs feedforward control.
  • the feedback control of the valve cannot be performed with high accuracy.
  • the present invention has been made in view of these points, and an object thereof is to perform feedback control of a valve with high accuracy in a temperature rise control mode.
  • a supercharging control unit that controls the opening degree of a valve and a supercharger provided in an intake passage to control the supercharging pressure of air flowing to the internal combustion engine main body, and the internal combustion engine.
  • the valve FB that feedback-controls the valve in a part of the turbocharger FF region that controls the turbocharger in feed-forward control of the turbocharger.
  • a control area setting unit set as an area and a mode determination unit for determining whether or not a temperature rise control mode for raising the temperature of the aftertreatment device for purifying the exhaust gas generated from the internal combustion engine main body is being executed.
  • the supercharging control unit feeds back the valve within the valve FB region set by the control area setting unit.
  • a control device for an internal combustion engine to be controlled.
  • control area setting unit sets a region in the supercharger FF region where the fuel injection amount is equal to or greater than the first injection amount and equal to or less than the second injection amount as the valve FB region. May be good. Further, the control area setting unit may set a region in the supercharger FF region where the rotation speed is equal to or higher than the first rotation speed and is equal to or lower than the second rotation speed as the valve FB region. good. Further, when the mode determination unit determines that the temperature rise control mode is being executed, the supercharger control unit may use the supercharger FF region in a region other than the valve FB region. The supercharger may be controlled by feedforward.
  • control area setting unit sets a region in the control region where the rotation speed is a predetermined number or less as the valve FB region, and the supercharging control unit uses the mode determination unit to set the temperature rise control mode. If it is determined that the turbocharger is being executed and the rotation speed is higher than the predetermined number, the turbocharger may be fed back controlled.
  • the mode determination unit may determine whether or not the temperature rise control mode is based on the temperature of the cooling water for cooling the internal combustion engine and the temperature of the exhaust gas.
  • FIG. 1 is a schematic diagram for explaining the configuration of the internal combustion engine 1 according to the embodiment.
  • the internal combustion engine 1 is, for example, a multi-cylinder engine mounted on a vehicle such as a truck.
  • the internal combustion engine 1 is a diesel engine, but is not limited to this, and may be, for example, a gasoline engine.
  • the internal combustion engine 1 includes an engine main body 10, a fuel injection device 15, an intake passage 20, an exhaust passage 30, a turbocharger 40, an EGR device 50, and a control device 100.
  • the engine body 10 has four cylinders 12 here, but is not limited thereto. Movable parts such as pistons and crankshafts are provided in each cylinder 12.
  • the fuel injection device 15 is an injection device that injects fuel into the combustion chamber in the engine body 10.
  • the fuel injection device 15 is a common rail type fuel injection device here, and has an injector 16 and a common rail 17.
  • the injector 16 injects fuel into the combustion chamber in each cylinder 12.
  • the common rail 17 stores the fuel injected from the injector 16 in a high pressure state.
  • the intake passage 20 is a passage through which intake air to be sucked into the engine body 10 flows.
  • the intake passage 20 has an intake manifold 22 connected to the engine body 10 and an intake pipe 23 connected to the upstream end of the intake manifold 22.
  • the intake manifold 22 distributes and supplies the intake air sent from the intake pipe 23 to the intake ports of each cylinder.
  • the intake pipe 23 is provided with an air cleaner 24, an air flow meter 25, a compressor 42C of a turbocharger 40, an intercooler 27, and an intake throttle valve 28.
  • the air flow meter 25 detects the amount of intake air per unit time of the internal combustion engine 1, that is, the intake flow rate.
  • the opening degree of the intake throttle valve 28 can be adjusted by, for example, rotating.
  • the exhaust passage 30 is a passage through which the exhaust gas generated from the engine body 10 flows.
  • the exhaust passage 30 has an exhaust manifold 32 connected to the engine body 10 and an exhaust pipe 33 connected to the downstream end of the exhaust manifold 32.
  • the exhaust manifold 32 collects the exhaust gas sent from the exhaust port of each cylinder.
  • the exhaust pipe 33 is provided with a turbine 42T of the turbocharger 40 and an aftertreatment device 35.
  • the aftertreatment device 35 is a device for purifying the exhaust gas, and includes, for example, an oxidation catalyst, a DPF, an SCR, and an ammonia oxidation catalyst.
  • a control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) at an early stage from the cold start of the internal combustion engine 1 to the completion of warming up (hereinafter referred to as a temperature rise control mode).
  • a temperature rise control mode the inhalation of fresh air is reduced, while the amount of exhaust gas recirculation by the EGR device 50 is increased. Therefore, the intake / exhaust characteristics in the temperature rise control mode are different from the intake / exhaust characteristics in the normal control mode other than the temperature rise control mode.
  • the turbocharger 40 is a supercharger that compresses the intake air flowing through the intake passage 20 by utilizing the flow of exhaust gas flowing through the exhaust passage 30.
  • the turbocharger 40 has a turbine 42T provided in the exhaust passage 30 and a compressor 42C provided in the intake passage 20.
  • the turbine 42T has a valve whose opening degree can be controlled.
  • the compressor 42C rotates in conjunction with the rotation of the turbine 42T to compress the intake air.
  • the EGR device 50 recirculates a part of the exhaust gas to the engine body 10. Specifically, the EGR device 50 uses a part of the exhaust gas (hereinafter referred to as EGR gas) in the exhaust passage 30 (here, the exhaust manifold 32) in the intake passage 20 (here, the intake manifold 22). (Inside).
  • EGR gas a part of the exhaust gas
  • the EGR device 50 includes an EGR passage 52, an EGR cooler 53, an EGR valve 54, and a temperature sensor 55.
  • the EGR passage 52 is a flow path through which EGR gas flows.
  • the EGR cooler 53 is provided in the EGR passage 52 and cools the EGR gas.
  • the EGR valve 54 is a valve that can be opened and closed, and regulates the flow rate of EGR gas.
  • the temperature sensor 55 detects the temperature of the EGR gas flowing through the EGR passage 52.
  • the control device 100 controls the operation of the entire internal combustion engine 1.
  • the control device 100 controls the opening degree of the turbocharger 40 and the intake throttle valve 28 to perform supercharging control for controlling the supercharging pressure of the air flowing to the engine body 10.
  • the control device 100 performs feedforward control or feedback control by the turbocharger 40 or feedback control by the intake throttle valve 28 as supercharging control.
  • control device 100 performs feedback control by the intake throttle valve 28 or feedback control by the turbocharger 40 in the temperature rise control mode described above. For example, the control device 100 performs feedback control of the intake throttle valve 28 when the rotation speed of the engine body 10 is low, and performs feedback control of the turbocharger 40 when the rotation speed of the engine body 10 is high.
  • the control device 100 sets a narrow region for feedback control of the intake throttle valve 28 (hereinafter, referred to as a valve FB region). As a result, it is possible to suppress the intake throttle valve 28 from operating in a region where the controllability is poor, so that the feedback control of the intake throttle valve 28 in the temperature rise control mode can be performed with high accuracy.
  • FIG. 2 is a schematic diagram for explaining the valve FB region in the temperature rise control mode.
  • FIG. 2A shows a valve FB region according to a comparative example
  • FIG. 2B shows a valve FB region according to the present embodiment.
  • a region R1 for executing the temperature rise control mode a turbo FF region R2 for which the turbocharger 40 in the temperature rise control mode performs feedforward control, and a valve FB are shown.
  • Region R3 is shown.
  • the turbo FF region R2 and the valve FB region R3 overlap each other.
  • the valve FB region R3 includes a control region (region with poor controllability) that is not suitable for feedback control of the intake throttle valve 28.
  • the valve FB region R3 is a part of the turbo FF region R2, and the intake throttle valve 28 is suitable for feedback control. It includes only the control area (area with good controllability).
  • control device 100 The detailed configuration of the control device 100 will be described with reference to FIG.
  • FIG. 3 is a schematic diagram for explaining the detailed configuration of the control device 100.
  • the control device 100 has a storage unit 110 and a control unit 120.
  • the storage unit 110 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the storage unit 110 stores programs and various data for execution by the control unit 120.
  • the control unit 120 is, for example, a CPU (Central Processing Unit).
  • the control unit 120 controls the operation of the internal combustion engine 1 by executing the program stored in the storage unit 110.
  • the control unit 120 functions as a control area setting unit 122, a mode determination unit 123, and a supercharging control unit 124.
  • the control area setting unit 122 sets an area for controlling the intake throttle valve 28.
  • the control area setting unit 122 sets the control area based on the rotation speed and the fuel injection amount of the engine body 10 detected by the detection sensor group 70. For example, the control area setting unit 122 sets a valve FB region for feedback control of the intake throttle valve 28 in the temperature rise control mode. In the control area, the control area setting unit 122 sets a part of the turbo FF area (supercharger FF area) for feedforward control of the turbocharger 40 as a valve FB area for feedback control of the intake throttle valve 28. ..
  • FIG. 4 is a schematic diagram for explaining a setting example of the valve FB region in the temperature rise control mode.
  • the horizontal axis is the rotation speed of the engine body 10
  • the vertical axis is the fuel injection amount.
  • the region surrounded by the broken line is the turbo FF region R2
  • the hatched region is the valve FB region R3.
  • the valve FB region R3 set by the control region setting unit 122 is a region in the turbo FF region R2 in which the fuel injection amount is the first injection amount A1 or more and the second injection amount A2 or less.
  • the valve FB region R3 is a region in which the rotation speed is the first rotation speed C1 or more and the second rotation speed C2 or less.
  • the region on the side larger than the second rotation speed C2 (that is, the region where the controllability of the intake throttle valve 28 is poor) is the region where the turbocharger 40 performs feedback control.
  • the first injection amount A1 corresponds to the first threshold value
  • the second injection amount A2 corresponds to the second threshold value.
  • the mode determination unit 123 determines the control mode of the internal combustion engine 1. For example, the mode determination unit 123 determines whether the control mode is executing the temperature rise control mode.
  • the temperature rise control mode is a control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) at an early stage from the cold start of the internal combustion engine 1 to the completion of warming up.
  • the mode determination unit 123 determines the control mode based on the state of the internal combustion engine 1 detected by the detection sensor group 70.
  • the mode determination unit 123 may determine the control mode based on the temperature of the cooling water for cooling the internal combustion engine 1 and the temperature of the exhaust gas. For example, when the temperature of the cooling water and the temperature of the exhaust gas are higher than the predetermined values, the mode determination unit 123 determines that the temperature rise control mode is set, and the temperature of the cooling water and the temperature of the exhaust gas are predetermined respectively. If it is lower than the value, it is determined that the control mode is normal.
  • the mode determination unit 123 may determine by including another parameter (for example, atmospheric pressure) in addition to the temperature of the cooling water and the temperature of the exhaust gas.
  • the supercharging control unit 124 controls the supercharging of the intake air.
  • the supercharging control unit 124 controls the opening degree of the intake throttle valve 28 and the turbocharger 40 (specifically, the valve of the turbine 42T) provided in the intake passage 20, and supercharges the air flowing to the engine body 10. Control the pressure.
  • the supercharging control unit 124 performs supercharging control, for example, in the temperature rise control mode.
  • the turbocharger 40 is excellent in controllability of the intake air amount of a large flow rate
  • the intake throttle valve 28 is excellent in controllability of the intake air amount of a small flow rate. Therefore, the supercharging control unit 124 performs feedback control of the intake throttle valve 28 when the rotation speed of the engine body 10 is low (that is, when the intake air amount is small) in the temperature rise control mode.
  • the supercharging control unit 124 performs feedback control of the turbocharger 40 when the rotation speed of the engine body 10 is high (that is, when the intake air amount is large) in the temperature rise control mode.
  • the supercharging control unit 124 causes the intake throttle valve 28 to feedback control in the valve FB region, which is a part of the turbo FF region, in the temperature rise control mode. That is, when the mode determination unit 123 determines that the temperature rise control mode is being executed, the supercharging control unit 124 sets the intake throttle valve 28 in the valve FB region set by the control area setting unit 122. Give feedback control. As a result, the intake throttle valve 28 can perform feedback control in a region where controllability is good.
  • the supercharging control unit 124 may perform feedforward control by the turbocharger 40 in a region other than the valve FB region in the turbo FF region.
  • the supercharging control unit 124 is a turbocharger. 40 is fed back controlled. That is, the supercharging control unit 124 performs supercharging control by the turbocharger 40 without performing supercharging control by the intake throttle valve 28. As a result, the turbocharger 40 can appropriately perform supercharging control in the region where the controllability of the intake throttle valve 28 is poor.
  • the control device 100 of the internal combustion engine 1 of the above-described embodiment sets a part of the turbo FF region for feedforward control of the turbocharger 40 as a valve FB region for feedback control of the intake throttle valve 28. Then, in the temperature rise control mode, the control device 100 causes the intake throttle valve 28 to feedback control within the set valve FB region.
  • the region where the intake throttle valve 28 is feedback-controlled to, for example, a low load low rotation region, it is possible to suppress control of the intake throttle valve 28 in a region where controllability is poor. Therefore, the feedback control of the intake throttle valve 28 can be performed with higher accuracy.

Abstract

A control device 100 is provided with: a supercharging control unit 124 that controls the opening degree of an intake throttle valve 28 and a turbo charger 40 provided in an intake passage to control the supercharging pressure of the air flowing into an internal combustion engine body; a control domain setting unit 122 that sets, in a control domain defined by the rotational speed of the internal combustion engine body and the amount of fuel injection, a part of a supercharger FF domain in which the turbo charger 40 is subjected to supercharging pressure feedforward control, as a valve FB domain in which the intake throttle valve 28 is subjected to feedback control; and a mode determination unit 123 that determines whether a temperature rise control mode is being executed in which the temperature of an aftertreatment device that purifies the exhaust gas generated from the internal combustion engine body is raised. When it is determined that the temperature rise control mode is being executed, the supercharging control unit 124 subjects the intake throttle valve 28 to feedback control in the valve FB domain set by the control domain setting unit 122.

Description

内燃機関の制御装置Internal combustion engine control device
 本発明は、内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine.
 内燃機関においては、内燃機関本体に流れる吸気の過給圧を、吸気通路に設けられた弁や過給機の開度を制御することで、調整している。
 また、内燃機関には、排気ガスを浄化する後処理装置(例えば触媒)が設けられており、当該触媒を活性化させるために、触媒を昇温させる昇温制御モードが実行される。新気が少ない昇温制御モード時には、過給機よりも弁による過給圧の制御性能が高いため、弁によるフィードバック制御を行っている。
In the internal combustion engine, the boost pressure of the intake air flowing through the main body of the internal combustion engine is adjusted by controlling the opening degree of a valve or a supercharger provided in the intake passage.
Further, the internal combustion engine is provided with an aftertreatment device (for example, a catalyst) for purifying the exhaust gas, and in order to activate the catalyst, a temperature rise control mode for raising the temperature of the catalyst is executed. In the temperature rise control mode where there is little freshness, the control performance of the boost pressure by the valve is higher than that of the turbocharger, so feedback control by the valve is performed.
特開2009-79557号公報Japanese Unexamined Patent Publication No. 2009-79557
 ところで、弁がフィードバック制御を行う制御領域は、過給機がフィードフォワード制御を行う制御領域と同じ領域であった。この場合、過給機とは制御性が異なる弁のフィードバック制御を行う制御領域としては適さない領域が存在するため、弁のフィードバック制御を高精度に行えないケースがあった。 By the way, the control area where the valve performs feedback control is the same area as the control area where the turbocharger performs feedforward control. In this case, since there is a region that is not suitable as a control region for performing feedback control of the valve having different controllability from that of the turbocharger, there is a case where the feedback control of the valve cannot be performed with high accuracy.
 そこで、本発明はこれらの点に鑑みてなされたものであり、昇温制御モード時に弁のフィードバック制御を高精度に行うことを目的とする。 Therefore, the present invention has been made in view of these points, and an object thereof is to perform feedback control of a valve with high accuracy in a temperature rise control mode.
 本発明の一の態様においては、吸気通路に設けられた弁と過給機の開度を制御して、内燃機関本体へ流れる空気の過給圧を制御する過給制御部と、前記内燃機関本体の回転数と燃料噴射量で規定される制御領域において、前記過給機を前記過給圧のフィードフォワード制御させる過給機FF領域の一部の領域を、前記弁をフィードバック制御させる弁FB領域として設定する制御領域設定部と、前記内燃機関本体から発生する排気ガスを浄化する後処理装置を昇温させる昇温制御モードを実行中であるか否かを判定するモード判定部と、を備え、前記過給制御部は、前記モード判定部によって前記昇温制御モードを実行中であると判定された場合には、前記制御領域設定部が設定した前記弁FB領域内で前記弁をフィードバック制御させる、内燃機関の制御装置を提供する。 In one aspect of the present invention, a supercharging control unit that controls the opening degree of a valve and a supercharger provided in an intake passage to control the supercharging pressure of air flowing to the internal combustion engine main body, and the internal combustion engine. In the control region defined by the rotation speed of the main body and the fuel injection amount, the valve FB that feedback-controls the valve in a part of the turbocharger FF region that controls the turbocharger in feed-forward control of the turbocharger. A control area setting unit set as an area and a mode determination unit for determining whether or not a temperature rise control mode for raising the temperature of the aftertreatment device for purifying the exhaust gas generated from the internal combustion engine main body is being executed. When the mode determination unit determines that the temperature rise control mode is being executed, the supercharging control unit feeds back the valve within the valve FB region set by the control area setting unit. Provided is a control device for an internal combustion engine to be controlled.
 また、前記制御領域設定部は、前記過給機FF領域の中で、前記燃料噴射量が第1噴射量以上で、かつ第2噴射量以下の領域を、前記弁FB領域として設定することとしてもよい。
 また、前記制御領域設定部は、前記過給機FF領域の中で、前記回転数が第1回転数以上で、かつ第2回転数以下の領域を、前記弁FB領域として設定することとしてもよい。
 また、前記過給制御部は、前記モード判定部によって前記昇温制御モードを実行中であると判定された場合において、前記過給機FF領域のうちの前記弁FB領域以外の領域では、前記過給機をフィードフォワード制御させることとしてもよい。
Further, the control area setting unit sets a region in the supercharger FF region where the fuel injection amount is equal to or greater than the first injection amount and equal to or less than the second injection amount as the valve FB region. May be good.
Further, the control area setting unit may set a region in the supercharger FF region where the rotation speed is equal to or higher than the first rotation speed and is equal to or lower than the second rotation speed as the valve FB region. good.
Further, when the mode determination unit determines that the temperature rise control mode is being executed, the supercharger control unit may use the supercharger FF region in a region other than the valve FB region. The supercharger may be controlled by feedforward.
 また、前記制御領域設定部は、前記制御領域において前記回転数が所定数以下の領域を前記弁FB領域として設定しており、前記過給制御部は、前記モード判定部によって前記昇温制御モードを実行中であると判定され、かつ前記回転数が前記所定数より多い場合には、前記過給機をフィードバック制御させることとしてもよい。 Further, the control area setting unit sets a region in the control region where the rotation speed is a predetermined number or less as the valve FB region, and the supercharging control unit uses the mode determination unit to set the temperature rise control mode. If it is determined that the turbocharger is being executed and the rotation speed is higher than the predetermined number, the turbocharger may be fed back controlled.
 また、前記モード判定部は、前記内燃機関を冷却する冷却水の温度と、前記排気ガスの温度とに基づいて、前記昇温制御モードか否かを判定することとしてもよい。 Further, the mode determination unit may determine whether or not the temperature rise control mode is based on the temperature of the cooling water for cooling the internal combustion engine and the temperature of the exhaust gas.
 本発明によれば、昇温制御モード時に弁のフィードバック制御を高精度に行えるという効果を奏する。 According to the present invention, there is an effect that the feedback control of the valve can be performed with high accuracy in the temperature rise control mode.
一の実施形態に係る内燃機関1の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the internal combustion engine 1 which concerns on one Embodiment. 昇温制御モード時の弁FB領域を説明するための模式図である。It is a schematic diagram for demonstrating the valve FB region in the temperature rise control mode. 制御装置100の詳細構成を説明するための模式図である。It is a schematic diagram for demonstrating the detailed structure of a control device 100. 昇温制御モード時の弁FB領域の設定例を説明するための模式図である。It is a schematic diagram for demonstrating the setting example of the valve FB region in the temperature rise control mode.
 <内燃機関の構成>
 本発明の一の実施形態に係る内燃機関の構成について、図1を参照しながら説明する。
<Composition of internal combustion engine>
The configuration of the internal combustion engine according to the embodiment of the present invention will be described with reference to FIG.
 図1は、一の実施形態に係る内燃機関1の構成を説明するための模式図である。内燃機関1は、例えば、トラック等の車両に搭載された多気筒エンジンである。内燃機関1は、ディーゼルエンジンであるが、これに限定されず、例えばガソリンエンジンであってもよい。内燃機関1は、図1に示すように、エンジン本体10と、燃料噴射装置15と、吸気通路20と、排気通路30と、ターボチャージャ40と、EGR装置50と、制御装置100とを有する。 FIG. 1 is a schematic diagram for explaining the configuration of the internal combustion engine 1 according to the embodiment. The internal combustion engine 1 is, for example, a multi-cylinder engine mounted on a vehicle such as a truck. The internal combustion engine 1 is a diesel engine, but is not limited to this, and may be, for example, a gasoline engine. As shown in FIG. 1, the internal combustion engine 1 includes an engine main body 10, a fuel injection device 15, an intake passage 20, an exhaust passage 30, a turbocharger 40, an EGR device 50, and a control device 100.
 エンジン本体10は、ここでは4つのシリンダ12を有するが、これに限定されない。各シリンダ12内には、ピストン、クランクシャフト等の可動部品が設けられている。 The engine body 10 has four cylinders 12 here, but is not limited thereto. Movable parts such as pistons and crankshafts are provided in each cylinder 12.
 燃料噴射装置15は、エンジン本体10内の燃焼室に燃料を噴射する噴射装置である。燃料噴射装置15は、ここではコモンレール式燃料噴射装置であり、インジェクタ16とコモンレール17を有する。インジェクタ16は、各シリンダ12内の燃焼室に燃料を噴射する。コモンレール17は、インジェクタ16から噴射される燃料を高圧状態で貯留する。 The fuel injection device 15 is an injection device that injects fuel into the combustion chamber in the engine body 10. The fuel injection device 15 is a common rail type fuel injection device here, and has an injector 16 and a common rail 17. The injector 16 injects fuel into the combustion chamber in each cylinder 12. The common rail 17 stores the fuel injected from the injector 16 in a high pressure state.
 吸気通路20は、エンジン本体10に吸入する吸気が流れる通路である。吸気通路20は、エンジン本体10に接続された吸気マニホールド22と、吸気マニホールド22の上流端に接続された吸気管23とを有する。吸気マニホールド22は、吸気管23から送られてきた吸気を各気筒の吸気ポートに分配供給する。吸気管23には、エアクリーナ24、エアフローメータ25、ターボチャージャ40のコンプレッサ42C、インタークーラ27、吸気絞り弁28が設けられている。エアフローメータ25は、内燃機関1の単位時間当たりの吸入空気量すなわち吸気流量を検出する。吸気絞り弁28は、例えば回転することで開度を調整可能となっている。 The intake passage 20 is a passage through which intake air to be sucked into the engine body 10 flows. The intake passage 20 has an intake manifold 22 connected to the engine body 10 and an intake pipe 23 connected to the upstream end of the intake manifold 22. The intake manifold 22 distributes and supplies the intake air sent from the intake pipe 23 to the intake ports of each cylinder. The intake pipe 23 is provided with an air cleaner 24, an air flow meter 25, a compressor 42C of a turbocharger 40, an intercooler 27, and an intake throttle valve 28. The air flow meter 25 detects the amount of intake air per unit time of the internal combustion engine 1, that is, the intake flow rate. The opening degree of the intake throttle valve 28 can be adjusted by, for example, rotating.
 排気通路30は、エンジン本体10から発生する排気ガスが流れる通路である。排気通路30は、エンジン本体10に接続された排気マニホールド32と、排気マニホールド32の下流端に接続された排気管33とを有する。排気マニホールド32は、各気筒の排気ポートから送られてきた排気ガスを集合する。排気管33には、ターボチャージャ40のタービン42T、後処理装置35が設けられている。後処理装置35は、排気ガスを浄化するための装置であり、例えば、酸化触媒、DPF、SCR、アンモニア酸化触媒を含む。 The exhaust passage 30 is a passage through which the exhaust gas generated from the engine body 10 flows. The exhaust passage 30 has an exhaust manifold 32 connected to the engine body 10 and an exhaust pipe 33 connected to the downstream end of the exhaust manifold 32. The exhaust manifold 32 collects the exhaust gas sent from the exhaust port of each cylinder. The exhaust pipe 33 is provided with a turbine 42T of the turbocharger 40 and an aftertreatment device 35. The aftertreatment device 35 is a device for purifying the exhaust gas, and includes, for example, an oxidation catalyst, a DPF, an SCR, and an ammonia oxidation catalyst.
 ところで、内燃機関1の冷間始動後から暖機完了までの間、後処理装置35(具体的には、触媒)を早期に昇温させるための制御モード(以下、昇温制御モードと呼ぶ)を実行可能となっている。昇温制御モード時は、新気の吸入を少なくさせる一方で、EGR装置50による排気ガスの還流量を増やす。このため、昇温制御モード時の吸排気の特性は、昇温制御モード以外の通常制御モード時の吸排気の特性と異なる。 By the way, a control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) at an early stage from the cold start of the internal combustion engine 1 to the completion of warming up (hereinafter referred to as a temperature rise control mode). Is feasible. In the temperature rise control mode, the inhalation of fresh air is reduced, while the amount of exhaust gas recirculation by the EGR device 50 is increased. Therefore, the intake / exhaust characteristics in the temperature rise control mode are different from the intake / exhaust characteristics in the normal control mode other than the temperature rise control mode.
 ターボチャージャ40は、排気通路30を流れる排気ガスの流れを利用して、吸気通路20を流れる吸気を圧縮する過給機である。ターボチャージャ40は、排気通路30に設けられたタービン42Tと、吸気通路20に設けられたコンプレッサ42Cとを有する。タービン42Tは、開度を制御可能な弁を有する。コンプレッサ42Cは、タービン42Tの回転に連動して回転して、吸気を圧縮する。 The turbocharger 40 is a supercharger that compresses the intake air flowing through the intake passage 20 by utilizing the flow of exhaust gas flowing through the exhaust passage 30. The turbocharger 40 has a turbine 42T provided in the exhaust passage 30 and a compressor 42C provided in the intake passage 20. The turbine 42T has a valve whose opening degree can be controlled. The compressor 42C rotates in conjunction with the rotation of the turbine 42T to compress the intake air.
 EGR装置50は、排気ガスの一部をエンジン本体10へ還流させる。具体的には、EGR装置50は、排気通路30内(ここでは、排気マニホールド32内)の排気ガスの一部(以下、EGRガスと呼ぶ)を、吸気通路20内(ここでは、吸気マニホールド22内)に還流させる。EGR装置50は、EGR通路52と、EGRクーラ53と、EGR弁54と、温度センサ55とを有する。 The EGR device 50 recirculates a part of the exhaust gas to the engine body 10. Specifically, the EGR device 50 uses a part of the exhaust gas (hereinafter referred to as EGR gas) in the exhaust passage 30 (here, the exhaust manifold 32) in the intake passage 20 (here, the intake manifold 22). (Inside). The EGR device 50 includes an EGR passage 52, an EGR cooler 53, an EGR valve 54, and a temperature sensor 55.
 EGR通路52は、EGRガスが流れる流路である。EGRクーラ53は、EGR通路52に設けられ、EGRガスを冷却する。EGR弁54は、開閉可能な弁であり、EGRガスの流量を調整する。温度センサ55は、EGR通路52を流れるEGRガスの温度を検出する。 The EGR passage 52 is a flow path through which EGR gas flows. The EGR cooler 53 is provided in the EGR passage 52 and cools the EGR gas. The EGR valve 54 is a valve that can be opened and closed, and regulates the flow rate of EGR gas. The temperature sensor 55 detects the temperature of the EGR gas flowing through the EGR passage 52.
 制御装置100は、内燃機関1全体の動作を制御する。制御装置100は、ターボチャージャ40と吸気絞り弁28の開度を制御して、エンジン本体10へ流れる空気の過給圧を制御する過給制御を行う。例えば、制御装置100は、過給制御として、ターボチャージャ40によるフィードフォワード制御やフィードバック制御を行ったり、吸気絞り弁28によるフィードバック制御を行ったりする。 The control device 100 controls the operation of the entire internal combustion engine 1. The control device 100 controls the opening degree of the turbocharger 40 and the intake throttle valve 28 to perform supercharging control for controlling the supercharging pressure of the air flowing to the engine body 10. For example, the control device 100 performs feedforward control or feedback control by the turbocharger 40 or feedback control by the intake throttle valve 28 as supercharging control.
 また、制御装置100は、上述した昇温制御モード時に、吸気絞り弁28によるフィードバック制御、又はターボチャージャ40によるフィードバック制御を行う。例えば、制御装置100は、エンジン本体10の回転数が低い場合には、吸気絞り弁28のフィードバック制御を行い、エンジン本体10の回転数が高い場合には、ターボチャージャ40のフィードバック制御を行う。 Further, the control device 100 performs feedback control by the intake throttle valve 28 or feedback control by the turbocharger 40 in the temperature rise control mode described above. For example, the control device 100 performs feedback control of the intake throttle valve 28 when the rotation speed of the engine body 10 is low, and performs feedback control of the turbocharger 40 when the rotation speed of the engine body 10 is high.
 本実施形態では、制御装置100は、詳細は後述するが、吸気絞り弁28のフィードバック制御を行う領域(以下、弁FB領域と呼ぶ)を狭く設定する。これにより、吸気絞り弁28が制御性の悪い領域で動作することを抑制できるので、昇温制御モード時の吸気絞り弁28のフィードバック制御を高精度に行うことができる。 In the present embodiment, although the details will be described later, the control device 100 sets a narrow region for feedback control of the intake throttle valve 28 (hereinafter, referred to as a valve FB region). As a result, it is possible to suppress the intake throttle valve 28 from operating in a region where the controllability is poor, so that the feedback control of the intake throttle valve 28 in the temperature rise control mode can be performed with high accuracy.
 図2は、昇温制御モード時の弁FB領域を説明するための模式図である。図2(a)には比較例に係る弁FB領域が示され、図2(b)には本実施形態に係る弁FB領域が示されている。図2(a)及び図2(b)では、昇温制御モードを実行する領域R1と、昇温制御モード時のターボチャージャ40がフィードフォワード制御を行う領域であるターボFF領域R2と、弁FB領域R3とが示されている。図2(a)に示す比較例では、ターボFF領域R2と弁FB領域R3が重なっている。この場合、弁FB領域R3には、吸気絞り弁28のフィードバック制御を行うには適さない制御領域(制御性が悪い領域)が含まれる。これに対して、図2(b)に示す本実施形態では、弁FB領域R3が、ターボFF領域R2の一部の領域となっており、吸気絞り弁28がフィードバック制御を行うのに適した制御領域(制御性が良い領域)のみを含んでいる。 FIG. 2 is a schematic diagram for explaining the valve FB region in the temperature rise control mode. FIG. 2A shows a valve FB region according to a comparative example, and FIG. 2B shows a valve FB region according to the present embodiment. In FIGS. 2A and 2B, a region R1 for executing the temperature rise control mode, a turbo FF region R2 for which the turbocharger 40 in the temperature rise control mode performs feedforward control, and a valve FB are shown. Region R3 is shown. In the comparative example shown in FIG. 2A, the turbo FF region R2 and the valve FB region R3 overlap each other. In this case, the valve FB region R3 includes a control region (region with poor controllability) that is not suitable for feedback control of the intake throttle valve 28. On the other hand, in the present embodiment shown in FIG. 2B, the valve FB region R3 is a part of the turbo FF region R2, and the intake throttle valve 28 is suitable for feedback control. It includes only the control area (area with good controllability).
 <制御装置の詳細構成>
 制御装置100の詳細構成について、図2を参照しながら説明する。
<Detailed configuration of control device>
The detailed configuration of the control device 100 will be described with reference to FIG.
 図3は、制御装置100の詳細構成を説明するための模式図である。制御装置100は、記憶部110と、制御部120とを有する。 FIG. 3 is a schematic diagram for explaining the detailed configuration of the control device 100. The control device 100 has a storage unit 110 and a control unit 120.
 記憶部110は、例えばROM(Read Only Memory)及びRAM(Random Access Memory)を含む。記憶部110は、制御部120が実行するためのプログラムや各種データを記憶する。 The storage unit 110 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage unit 110 stores programs and various data for execution by the control unit 120.
 制御部120は、例えばCPU(Central Processing Unit)である。制御部120は、記憶部110に記憶されたプログラムを実行することにより、内燃機関1の動作を制御する。本実施形態では、制御部120は、制御領域設定部122、モード判定部123及び過給制御部124として機能する。 The control unit 120 is, for example, a CPU (Central Processing Unit). The control unit 120 controls the operation of the internal combustion engine 1 by executing the program stored in the storage unit 110. In the present embodiment, the control unit 120 functions as a control area setting unit 122, a mode determination unit 123, and a supercharging control unit 124.
 制御領域設定部122は、吸気絞り弁28を制御させる領域を設定する。制御領域設定部122は、検出センサ群70が検出したエンジン本体10の回転数と燃料噴射量に基づいて、制御領域を設定する。例えば、制御領域設定部122は、昇温制御モード時に吸気絞り弁28をフィードバック制御させる弁FB領域を設定する。制御領域設定部122は、制御領域において、ターボチャージャ40をフィードフォワード制御させるターボFF領域(過給機FF領域)の一部の領域を、吸気絞り弁28をフィードバック制御させる弁FB領域として設定する。 The control area setting unit 122 sets an area for controlling the intake throttle valve 28. The control area setting unit 122 sets the control area based on the rotation speed and the fuel injection amount of the engine body 10 detected by the detection sensor group 70. For example, the control area setting unit 122 sets a valve FB region for feedback control of the intake throttle valve 28 in the temperature rise control mode. In the control area, the control area setting unit 122 sets a part of the turbo FF area (supercharger FF area) for feedforward control of the turbocharger 40 as a valve FB area for feedback control of the intake throttle valve 28. ..
 図4は、昇温制御モード時の弁FB領域の設定例を説明するための模式図である。図4には、横軸がエンジン本体10の回転数であり、縦軸が燃料噴射量である。破線で囲まれた領域がターボFF領域R2であり、ハッチングが施された領域が弁FB領域R3である。制御領域設定部122によって設定される弁FB領域R3は、ターボFF領域R2の中で、燃料噴射量が第1噴射量A1以上で、かつ第2噴射量A2以下の領域である。また、弁FB領域R3は、回転数が第1回転数C1以上で、かつ第2回転数C2以下の領域である。なお、図4には示していないが、第2回転数C2よりも大きい側の領域(すなわち、吸気絞り弁28の制御性が悪い領域)は、ターボチャージャ40がフィードバック制御を行う領域である。なお、第1噴射量A1が第1閾値に該当し、第2噴射量A2が第2閾値に該当する。 FIG. 4 is a schematic diagram for explaining a setting example of the valve FB region in the temperature rise control mode. In FIG. 4, the horizontal axis is the rotation speed of the engine body 10, and the vertical axis is the fuel injection amount. The region surrounded by the broken line is the turbo FF region R2, and the hatched region is the valve FB region R3. The valve FB region R3 set by the control region setting unit 122 is a region in the turbo FF region R2 in which the fuel injection amount is the first injection amount A1 or more and the second injection amount A2 or less. Further, the valve FB region R3 is a region in which the rotation speed is the first rotation speed C1 or more and the second rotation speed C2 or less. Although not shown in FIG. 4, the region on the side larger than the second rotation speed C2 (that is, the region where the controllability of the intake throttle valve 28 is poor) is the region where the turbocharger 40 performs feedback control. The first injection amount A1 corresponds to the first threshold value, and the second injection amount A2 corresponds to the second threshold value.
 モード判定部123は、内燃機関1の制御モードを判定する。例えば、モード判定部123は、制御モードが昇温制御モードの実行中であるかを判定する。昇温制御モードは、内燃機関1の冷間始動後から暖機完了までの間、後処理装置35(具体的には、触媒)を早期に昇温させるための制御モードである。 The mode determination unit 123 determines the control mode of the internal combustion engine 1. For example, the mode determination unit 123 determines whether the control mode is executing the temperature rise control mode. The temperature rise control mode is a control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) at an early stage from the cold start of the internal combustion engine 1 to the completion of warming up.
 モード判定部123は、検出センサ群70が検出した内燃機関1の状態に基づいて、制御モードを判定する。モード判定部123は、内燃機関1を冷却する冷却水の温度と、排気ガスの温度とに基づいて、制御モードを判定してもよい。例えば、モード判定部123は、冷却水の温度及び排気ガスの温度がそれぞれ所定値よりも高い場合には、昇温制御モードであると判定し、冷却水の温度及び排気ガスの温度がそれぞれ所定値よりも低い場合には、通常制御モードであると判定する。なお、モード判定部123は、冷却水の温度及び排気ガスの温度に加えて、別のパラメータ(例えば、大気圧)を含めて判定してもよい。 The mode determination unit 123 determines the control mode based on the state of the internal combustion engine 1 detected by the detection sensor group 70. The mode determination unit 123 may determine the control mode based on the temperature of the cooling water for cooling the internal combustion engine 1 and the temperature of the exhaust gas. For example, when the temperature of the cooling water and the temperature of the exhaust gas are higher than the predetermined values, the mode determination unit 123 determines that the temperature rise control mode is set, and the temperature of the cooling water and the temperature of the exhaust gas are predetermined respectively. If it is lower than the value, it is determined that the control mode is normal. The mode determination unit 123 may determine by including another parameter (for example, atmospheric pressure) in addition to the temperature of the cooling water and the temperature of the exhaust gas.
 過給制御部124は、吸気の過給制御を行う。過給制御部124は、吸気通路20に設けられた吸気絞り弁28とターボチャージャ40(具体的には、タービン42Tの弁)の開度を制御して、エンジン本体10へ流れる空気の過給圧を制御する。 The supercharging control unit 124 controls the supercharging of the intake air. The supercharging control unit 124 controls the opening degree of the intake throttle valve 28 and the turbocharger 40 (specifically, the valve of the turbine 42T) provided in the intake passage 20, and supercharges the air flowing to the engine body 10. Control the pressure.
 過給制御部124は、例えば、昇温制御モード時に過給制御を行う。通常、ターボチャージャ40は、大流量の吸入空気量の制御性に優れており、吸気絞り弁28は、小流量の吸入空気量の制御性に優れている。このため、過給制御部124は、昇温制御モード時で、エンジン本体10の回転数が低い場合(すなわち、吸入空気量が少ない場合)には、吸気絞り弁28のフィードバック制御を行う。一方で、過給制御部124は、昇温制御モード時で、エンジン本体10の回転数が高い場合(すなわち、吸入空気量が多い場合)には、ターボチャージャ40のフィードバック制御を行う。 The supercharging control unit 124 performs supercharging control, for example, in the temperature rise control mode. Normally, the turbocharger 40 is excellent in controllability of the intake air amount of a large flow rate, and the intake throttle valve 28 is excellent in controllability of the intake air amount of a small flow rate. Therefore, the supercharging control unit 124 performs feedback control of the intake throttle valve 28 when the rotation speed of the engine body 10 is low (that is, when the intake air amount is small) in the temperature rise control mode. On the other hand, the supercharging control unit 124 performs feedback control of the turbocharger 40 when the rotation speed of the engine body 10 is high (that is, when the intake air amount is large) in the temperature rise control mode.
 過給制御部124は、昇温制御モード時に、ターボFF領域の一部の領域である弁FB領域内で、吸気絞り弁28をフィードバック制御させる。すなわち、過給制御部124は、モード判定部123によって昇温制御モードを実行中であると判定された場合には、制御領域設定部122が設定した弁FB領域内で、吸気絞り弁28をフィードバック制御させる。これにより、吸気絞り弁28は、制御性が良い領域でフィードバック制御を行える。なお、過給制御部124は、ターボFF領域の中で弁FB領域以外の領域では、ターボチャージャ40によるフィードフォワード制御を行ってもよい。 The supercharging control unit 124 causes the intake throttle valve 28 to feedback control in the valve FB region, which is a part of the turbo FF region, in the temperature rise control mode. That is, when the mode determination unit 123 determines that the temperature rise control mode is being executed, the supercharging control unit 124 sets the intake throttle valve 28 in the valve FB region set by the control area setting unit 122. Give feedback control. As a result, the intake throttle valve 28 can perform feedback control in a region where controllability is good. The supercharging control unit 124 may perform feedforward control by the turbocharger 40 in a region other than the valve FB region in the turbo FF region.
 過給制御部124は、モード判定部123によって昇温制御モードを実行中であると判定され、かつ回転数が所定数(図4に示す第2回転数C2)より多い場合には、ターボチャージャ40をフィードバック制御させる。すなわち、過給制御部124は、吸気絞り弁28による過給制御を行わずに、ターボチャージャ40による過給制御を行う。これにより、吸気絞り弁28の制御性が悪い領域については、ターボチャージャ40によって適切に過給制御を行える。 When the mode determination unit 123 determines that the temperature rise control mode is being executed and the rotation speed is higher than a predetermined number (second rotation speed C2 shown in FIG. 4), the supercharging control unit 124 is a turbocharger. 40 is fed back controlled. That is, the supercharging control unit 124 performs supercharging control by the turbocharger 40 without performing supercharging control by the intake throttle valve 28. As a result, the turbocharger 40 can appropriately perform supercharging control in the region where the controllability of the intake throttle valve 28 is poor.
 <本実施形態における効果>
 上述した実施形態の内燃機関1の制御装置100は、ターボチャージャ40をフィードフォワード制御させるターボFF領域の一部の領域を、吸気絞り弁28をフィードバック制御させる弁FB領域として設定する。そして、制御装置100は、昇温制御モード時には、設定した弁FB領域内で、吸気絞り弁28をフィードバック制御させる。
 これにより、吸気絞り弁28をフィードバック制御する領域を、例えば低負荷低回転領域に限定することで、吸気絞り弁28を制御性が悪い領域で制御することを抑制できる。このため、吸気絞り弁28のフィードバック制御をより高精度に行える。
<Effect in this embodiment>
The control device 100 of the internal combustion engine 1 of the above-described embodiment sets a part of the turbo FF region for feedforward control of the turbocharger 40 as a valve FB region for feedback control of the intake throttle valve 28. Then, in the temperature rise control mode, the control device 100 causes the intake throttle valve 28 to feedback control within the set valve FB region.
As a result, by limiting the region where the intake throttle valve 28 is feedback-controlled to, for example, a low load low rotation region, it is possible to suppress control of the intake throttle valve 28 in a region where controllability is poor. Therefore, the feedback control of the intake throttle valve 28 can be performed with higher accuracy.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes can be made within the scope of the gist. be. For example, all or part of the device can be functionally or physically distributed / integrated in any unit. Also included in the embodiments of the present invention are new embodiments resulting from any combination of the plurality of embodiments. The effect of the new embodiment produced by the combination has the effect of the original embodiment together.
 1  内燃機関
 20  吸気通路
 28  吸気絞り弁
 35  後処理装置
 40  ターボチャージャ
 100  制御装置
 122  制御領域設定部
 123  モード判定部
 124  過給制御部
1 Internal combustion engine 20 Intake passage 28 Intake throttle valve 35 Post-processing device 40 Turbocharger 100 Control device 122 Control area setting unit 123 Mode determination unit 124 Supercharging control unit

Claims (6)

  1.  吸気通路に設けられた弁と過給機の開度を制御して、内燃機関本体へ流れる空気の過給圧を制御する過給制御部と、
     前記内燃機関本体の回転数と燃料噴射量で規定される制御領域において、前記過給機を前記過給圧のフィードフォワード制御させる過給機FF領域の一部の領域を、前記弁をフィードバック制御させる弁FB領域として設定する制御領域設定部と、
     前記内燃機関本体から発生する排気ガスを浄化する後処理装置を昇温させる昇温制御モードを実行中であるか否かを判定するモード判定部と、
     を備え、
     前記過給制御部は、前記モード判定部によって前記昇温制御モードを実行中であると判定された場合には、前記制御領域設定部が設定した前記弁FB領域内で前記弁をフィードバック制御させる、
     内燃機関の制御装置。
    A supercharging control unit that controls the opening of the valve and the supercharger provided in the intake passage to control the supercharging pressure of the air flowing to the internal combustion engine body.
    In the control region defined by the rotation speed of the internal combustion engine main body and the fuel injection amount, the valve is feedback-controlled in a part of the turbocharger FF region that causes the turbocharger to feedforward control the supercharger. The control area setting unit to be set as the valve FB area to be operated, and the control area setting unit.
    A mode determination unit for determining whether or not a temperature rise control mode for raising the temperature of the aftertreatment device that purifies the exhaust gas generated from the internal combustion engine main body is being executed, and a mode determination unit.
    Equipped with
    When the mode determination unit determines that the temperature rise control mode is being executed, the supercharging control unit causes the valve to feed back control within the valve FB region set by the control area setting unit. ,
    Internal combustion engine control device.
  2.  前記制御領域設定部は、前記過給機FF領域の中で、前記燃料噴射量が第1噴射量以上で、かつ第2噴射量以下の領域を、前記弁FB領域として設定する、
     請求項1に記載の内燃機関の制御装置。
    The control area setting unit sets a region in the supercharger FF region where the fuel injection amount is equal to or greater than the first injection amount and equal to or less than the second injection amount as the valve FB region.
    The control device for an internal combustion engine according to claim 1.
  3.  前記制御領域設定部は、前記過給機FF領域の中で、前記回転数が第1回転数以上で、かつ第2回転数以下の領域を、前記弁FB領域として設定する、
     請求項1又は2に記載の内燃機関の制御装置。
    The control area setting unit sets a region in the supercharger FF region where the rotation speed is equal to or higher than the first rotation speed and is equal to or lower than the second rotation speed as the valve FB region.
    The control device for an internal combustion engine according to claim 1 or 2.
  4.  前記過給制御部は、前記モード判定部によって前記昇温制御モードを実行中であると判定された場合において、前記過給機FF領域のうちの前記弁FB領域以外の領域では、前記過給機をフィードフォワード制御させる、
     請求項1から3のいずれか1項に記載の内燃機関の制御装置。
    When the mode determination unit determines that the temperature rise control mode is being executed, the supercharging control unit may supercharge in a region other than the valve FB region in the turbocharger FF region. Feedforward control of the machine,
    The control device for an internal combustion engine according to any one of claims 1 to 3.
  5.  前記制御領域設定部は、前記制御領域において前記回転数が所定数以下の領域を前記弁FB領域として設定しており、
     前記過給制御部は、前記モード判定部によって前記昇温制御モードを実行中であると判定され、かつ前記回転数が前記所定数より多い場合には、前記過給機をフィードバック制御させる、
     請求項1から4のいずれか1項に記載の内燃機関の制御装置。
    The control area setting unit sets a region in the control region where the rotation speed is a predetermined number or less as the valve FB region.
    When the mode determination unit determines that the temperature rise control mode is being executed and the rotation speed is higher than the predetermined number, the supercharger controls the turbocharger by feedback control.
    The control device for an internal combustion engine according to any one of claims 1 to 4.
  6.  前記モード判定部は、前記内燃機関を冷却する冷却水の温度と、前記排気ガスの温度とに基づいて、前記昇温制御モードか否かを判定する、
     請求項1から5のいずれか1項に記載の内燃機関の制御装置。
    The mode determination unit determines whether or not the temperature rise control mode is based on the temperature of the cooling water for cooling the internal combustion engine and the temperature of the exhaust gas.
    The control device for an internal combustion engine according to any one of claims 1 to 5.
PCT/JP2021/025443 2020-07-16 2021-07-06 Control device for internal combustion engine WO2022014406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180039674.0A CN115698492A (en) 2020-07-16 2021-07-06 Control device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-122195 2020-07-16
JP2020122195A JP7226406B2 (en) 2020-07-16 2020-07-16 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2022014406A1 true WO2022014406A1 (en) 2022-01-20

Family

ID=79555370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025443 WO2022014406A1 (en) 2020-07-16 2021-07-06 Control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP7226406B2 (en)
CN (1) CN115698492A (en)
WO (1) WO2022014406A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065358A (en) * 1999-08-30 2001-03-13 Mazda Motor Corp Supercharge pressure control device for engine
JP2001073788A (en) * 1999-08-30 2001-03-21 Mazda Motor Corp Supercharging pressure control system of engine
JP2004019525A (en) * 2002-06-14 2004-01-22 Isuzu Motors Ltd Intake throttle valve control device of turbo supercharging type diesel engine for vehicle
JP2005240587A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Exhaust emission control device of diesel engine
JP2006183558A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Control device of engine
JP2009068502A (en) * 2005-09-26 2009-04-02 Honda Motor Co Ltd Control system for internal combustion engine
JP2015028309A (en) * 2013-07-30 2015-02-12 三菱自動車工業株式会社 Control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065358A (en) * 1999-08-30 2001-03-13 Mazda Motor Corp Supercharge pressure control device for engine
JP2001073788A (en) * 1999-08-30 2001-03-21 Mazda Motor Corp Supercharging pressure control system of engine
JP2004019525A (en) * 2002-06-14 2004-01-22 Isuzu Motors Ltd Intake throttle valve control device of turbo supercharging type diesel engine for vehicle
JP2005240587A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Exhaust emission control device of diesel engine
JP2006183558A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Control device of engine
JP2009068502A (en) * 2005-09-26 2009-04-02 Honda Motor Co Ltd Control system for internal combustion engine
JP2015028309A (en) * 2013-07-30 2015-02-12 三菱自動車工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP7226406B2 (en) 2023-02-21
JP2022018821A (en) 2022-01-27
CN115698492A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
US7454897B2 (en) Exhaust purifier for diesel engine
JP5187123B2 (en) Control device for internal combustion engine
US20120031381A1 (en) Coordination of HP and LP EGR
US10655576B2 (en) Secondary air injection system
JP5444996B2 (en) Internal combustion engine and control method thereof
JP2009500565A (en) Engine and method for maintaining engine exhaust temperature
JP2014034959A (en) Exhaust gas recirculation device of engine with supercharger
JP5912240B2 (en) Exhaust gas recirculation device
JP4911432B2 (en) Control device for internal combustion engine
WO2022014406A1 (en) Control device for internal combustion engine
JP2010223077A (en) Internal combustion engine
JP6406301B2 (en) Engine control device
JP5688959B2 (en) Control device for internal combustion engine
JP6535246B2 (en) Engine control unit
WO2022014405A1 (en) Control device for internal combustion engine
JP2010168954A (en) Control device for internal combustion engine
JP4206934B2 (en) Supercharging system for internal combustion engines
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
WO2022014388A1 (en) Control device for internal combustion engine
WO2022014407A1 (en) Internal combustion engine
JP2014234808A (en) Device and method for exhaust gas recirculation of internal combustion engine with supercharger
JP5760382B2 (en) Engine supercharger
JP6943673B2 (en) Control device and control method
JP6842382B2 (en) Control device and control method
JP2018105213A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843010

Country of ref document: EP

Kind code of ref document: A1