WO2022014405A1 - Control device for internal combustion engine - Google Patents
Control device for internal combustion engine Download PDFInfo
- Publication number
- WO2022014405A1 WO2022014405A1 PCT/JP2021/025442 JP2021025442W WO2022014405A1 WO 2022014405 A1 WO2022014405 A1 WO 2022014405A1 JP 2021025442 W JP2021025442 W JP 2021025442W WO 2022014405 A1 WO2022014405 A1 WO 2022014405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- transition time
- internal combustion
- combustion engine
- throttle valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D43/00—Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a control device for an internal combustion engine.
- the boost pressure of the intake air flowing through the main body of the internal combustion engine is adjusted by controlling the opening degree of the valve provided in the intake passage.
- the internal combustion engine is provided with an aftertreatment device (for example, a catalyst) for purifying the exhaust gas, and in order to activate the catalyst, a temperature rise control mode for raising the temperature of the catalyst is executed.
- the transition time when the valve closes and the transition time when the valve opens are set to the same time in advance. Therefore, if the valve closing time is short at the start of the feedback control during the temperature rise control mode, the intake air amount may be insufficient and the internal combustion engine main body may misfire. On the other hand, if the valve opens for a short time when the feedback control is stopped, acceleration may be poor.
- the present invention has been made in view of these points, and an object thereof is to suppress the occurrence of a defect due to opening and closing of a valve in the temperature rise control mode.
- a valve control unit for controlling the opening degree of a valve provided in the intake passage so as to be openable and closable, and the internal combustion engine main body.
- the timing specifying unit for specifying the start timing or the stop timing of the feedback control of the boost pressure by the valve, and the timing.
- the operation direction determination unit determines whether the valve opens in the open direction or closes in the closed direction, and the operation direction determination unit determines.
- a control device for an internal combustion engine comprising a transition time setting unit for setting a transition time to a target opening degree of the valve in the operating direction according to the operating direction of the valve.
- the closing transition time in which the valve closes to the target opening in the closing direction is longer than the opening transition time in which the valve opens to the target opening in the opening direction.
- the closed transition time and the open transition time may be set.
- the transition time setting unit may set the closed transition time and the open transition time so that the open transition time is shorter than 1/2 of the closed transition time.
- the valve control unit sets the speed of the valve closing operation according to the closed transition time set by the transition time setting unit, and the valve control unit sets the speed of the valve closing operation according to the open transition time set by the transition time setting unit.
- the speed of the valve opening operation may be set.
- the operating direction determination unit may determine the operating direction of the valve based on the difference between the opening degree of the valve before the transition and the opening degree of the valve after the transition.
- the operation direction determination unit determines that the valve operates in the open direction when the difference is larger than a predetermined threshold value at the stop timing, and when the difference is equal to or less than the threshold value. May determine that the valve closes in the closing direction.
- the operation direction determination unit determines that the valve closes in the closing direction when the difference is larger than a predetermined threshold value at the start timing, and when the difference is equal to or less than the threshold value. May determine that the valve opens in the opening direction.
- FIG. 1 is a schematic diagram for explaining the configuration of the internal combustion engine 1 according to the embodiment.
- the internal combustion engine 1 is, for example, a multi-cylinder engine mounted on a vehicle such as a truck.
- the internal combustion engine 1 is a diesel engine, but is not limited to this, and may be, for example, a gasoline engine.
- the internal combustion engine 1 includes an engine main body 10, a fuel injection device 15, an intake passage 20, an exhaust passage 30, a turbocharger 40, an EGR device 50, and a control device 100.
- the engine body 10 has four cylinders 12 here, but is not limited thereto. Movable parts such as pistons and crankshafts are provided in each cylinder 12.
- the fuel injection device 15 is an injection device that injects fuel into the combustion chamber in the engine body 10.
- the fuel injection device 15 is a common rail type fuel injection device here, and has an injector 16 and a common rail 17.
- the injector 16 injects fuel into the combustion chamber in each cylinder 12.
- the common rail 17 stores the fuel injected from the injector 16 in a high pressure state.
- the intake passage 20 is a passage through which intake air to be sucked into the engine body 10 flows.
- the intake passage 20 has an intake manifold 22 connected to the engine body 10 and an intake pipe 23 connected to the upstream end of the intake manifold 22.
- the intake manifold 22 distributes and supplies the intake air sent from the intake pipe 23 to the intake ports of each cylinder.
- the intake pipe 23 is provided with an air cleaner 24, an air flow meter 25, a compressor 42C of a turbocharger 40, an intercooler 27, and an intake throttle valve 28.
- the air flow meter 25 detects the amount of intake air per unit time of the internal combustion engine 1, that is, the intake flow rate.
- the opening degree of the intake throttle valve 28 can be adjusted by, for example, rotating.
- the exhaust passage 30 is a passage through which the exhaust gas generated from the engine body 10 flows.
- the exhaust passage 30 has an exhaust manifold 32 connected to the engine body 10 and an exhaust pipe 33 connected to the downstream end of the exhaust manifold 32.
- the exhaust manifold 32 collects the exhaust gas sent from the exhaust port of each cylinder.
- the exhaust pipe 33 is provided with a turbine 42T of the turbocharger 40 and an aftertreatment device 35.
- the aftertreatment device 35 is a device for purifying the exhaust gas, and includes, for example, an oxidation catalyst, a DPF, an SCR, and an ammonia oxidation catalyst.
- a control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) at an early stage from the cold start of the internal combustion engine 1 to the completion of warming up (hereinafter referred to as a temperature rise control mode).
- a temperature rise control mode the inhalation of fresh air is reduced, while the amount of exhaust gas recirculation by the EGR device 50 is increased. Therefore, the intake / exhaust characteristics in the temperature rise control mode are different from the intake / exhaust characteristics in the normal control mode other than the temperature rise control mode.
- the turbocharger 40 is a supercharger that compresses the intake air flowing through the intake passage 20 by utilizing the flow of exhaust gas flowing through the exhaust passage 30.
- the turbocharger 40 has a turbine 42T provided in the exhaust passage 30 and a compressor 42C provided in the intake passage 20.
- the turbine 42T has a valve whose opening degree can be controlled.
- the compressor 42C rotates in conjunction with the rotation of the turbine 42T to compress the intake air.
- the EGR device 50 recirculates a part of the exhaust gas to the engine body 10. Specifically, the EGR device 50 uses a part of the exhaust gas (hereinafter referred to as EGR gas) in the exhaust passage 30 (here, the exhaust manifold 32) in the intake passage 20 (here, the intake manifold 22). (Inside).
- EGR gas a part of the exhaust gas
- the EGR device 50 includes an EGR passage 52, an EGR cooler 53, an EGR valve 54, and a temperature sensor 55.
- the EGR passage 52 is a flow path through which EGR gas flows.
- the EGR cooler 53 is provided in the EGR passage 52 and cools the EGR gas.
- the EGR valve 54 is a valve that can be opened and closed, and regulates the flow rate of EGR gas.
- the temperature sensor 55 detects the temperature of the EGR gas flowing through the EGR passage 52.
- the control device 100 controls the operation of the entire internal combustion engine 1.
- the control device 100 controls the opening degree of the turbocharger 40 and the intake throttle valve 28 to perform supercharging control for controlling the supercharging pressure of the air flowing to the engine body 10.
- the control device 100 performs feedforward control or feedback control by the turbocharger 40 or feedback control by the intake throttle valve 28 as supercharging control.
- control device 100 performs feedback control by the intake throttle valve 28 in the above-mentioned temperature rise control mode.
- the intake throttle valve 28 closes to the target opening degree so as to reduce the intake amount of fresh air.
- the intake throttle valve 28 opens to the target opening degree so as to increase the intake amount of fresh air.
- the control device 100 will be described in detail later, but in the temperature rise control mode, the transition time (open transition time) when the intake throttle valve 28 is opened and the intake throttle valve 28 are closed.
- the transition time (closed transition time) at the time of performing can be set separately.
- the control device 100 controls the operating speed of the intake throttle valve 28 according to the set open transition time and closed transition time.
- the intake throttle valve 28 can be opened and closed at the transition time suitable for each situation at the start and stop of the feedback control, so that a problem occurs due to the opening and closing of the intake throttle valve 28 in the temperature rise control mode. Can be suppressed.
- FIG. 2 is a schematic diagram for explaining the transition time when the intake throttle valve 28 is opened and closed.
- FIG. 2A shows the transition time according to the comparative example
- FIG. 2B shows the transition time according to the present embodiment.
- the closed transition time T1 and the open transition time T2 of the intake throttle valve 28 are shown.
- the closed transition time T1 and the open transition time T2 are the same time, and the speed at which the intake throttle valve 28 closes and the speed at which the intake throttle valve 28 opens are the same. Is.
- the open transition time T2 is shorter than the closed transition time T1
- the speed at which the intake throttle valve 28 opens is the intake throttle valve. 28 is faster than the speed at which the closing operation is performed.
- the intake throttle valve 28 closes slowly at the start of the feedback control in the temperature rise control mode, and the engine body 10 misfires (more specifically, the temperature rises) due to lack of fresh air caused by the sudden closing.
- the EGR gas flowing into the engine body 10 is delayed to compensate for the lack of fresh air, so that the amount of oxygen in the engine body 10 is insufficient and the engine misfires).
- the intake throttle valve 28 suddenly opens, and the acceleration failure of the engine body 10 due to the slow opening can be suppressed.
- control device 100 The detailed configuration of the control device 100 will be described with reference to FIG.
- FIG. 3 is a schematic diagram for explaining the detailed configuration of the control device 100.
- the control device 100 has a storage unit 110 and a control unit 120.
- the storage unit 110 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
- the storage unit 110 stores programs and various data for execution by the control unit 120.
- the control unit 120 is, for example, a CPU (Central Processing Unit).
- the control unit 120 controls the operation of the internal combustion engine 1 by executing the program stored in the storage unit 110.
- the control unit 120 functions as a timing specifying unit 122, an operation direction determination unit 123, a transition time setting unit 124, and a valve control unit 125.
- the timing specifying unit 122 specifies the start timing or the stop timing of the feedback control of the boost pressure by the intake throttle valve 28 while the temperature rise control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) is being executed. ..
- the timing specifying unit 122 specifies the timing when the feedback control is turned on as the start timing, and the timing when the feedback control is turned off as the stop timing.
- the timing specifying unit 122 can specify whether the feedback control is on or off based on the detection result of the detection sensor group 70. For example, the timing at which the feedback control is turned on is a condition in which the temperature rise control mode is executed and the operating region (for example, determined by the fuel injection amount and the rotation speed of the engine body 10) is the feedback control region of the intake throttle valve 28. If it meets the requirements. On the other hand, the timing at which the feedback control is turned off is when the above conditions are not satisfied.
- the operation direction determination unit 123 determines the opening / closing direction of the intake throttle valve 28 at the start and stop of the feedback control in the temperature rise control mode. That is, the operation direction determination unit 123 determines whether the intake throttle valve 28 opens in the open direction or closes in the closed direction at the start timing or stop timing specified by the timing specifying unit 122. For example, the operation direction determination unit 123 operates the operation direction of the intake throttle valve 28 based on the difference between the opening degree of the intake throttle valve 28 before the transition and the opening degree of the valve after the transition (hereinafter, also referred to as an opening degree difference). To judge.
- the opening degree before the start of the transition and the opening degree after the start of the transition depend on the rotation speed of the engine body 10 detected by the detection sensor group 70, the fuel injection amount, the atmospheric pressure, the temperature of the engine cooling water, the temperature of the intake air, and the like. Can be set.
- FIG. 4 is a schematic diagram for explaining the determination of the operating direction of the intake throttle valve 28.
- the opening degree of the intake throttle valve 28 at the start timing is A1 and the target opening degree after the transition of the intake throttle valve 28 is A2.
- the operation direction determination unit 123 determines that the intake throttle valve 28 closes in the closing direction when the difference between the opening degrees A2 and the opening degree A1 is larger than a predetermined threshold value.
- the operation direction determination unit 123 determines that the intake throttle valve 28 operates in the opening direction when the difference between the opening degrees A2 and the opening degree A1 is equal to or less than the threshold value.
- the opening degree of the intake throttle valve 28 at the stop timing is A3, and the target opening degree after the transition of the intake throttle valve 28 is A4.
- the operation direction determination unit 123 determines that the intake throttle valve 28 opens in the opening direction when the difference between the opening degrees A4 and the opening degree A3 is larger than a predetermined threshold value.
- the operation direction determination unit 123 determines that the intake throttle valve 28 closes in the closing direction when the difference between the opening degrees A4 and the opening degree A3 is equal to or less than the threshold value.
- the transition time setting unit 124 sets the transition time to the target opening degree in the operation direction of the intake throttle valve 28 according to the operation direction of the intake throttle valve 28 determined by the operation direction determination unit 123. That is, when the operation direction determination unit 123 determines that the intake throttle valve 28 operates in the closing direction, the transition time setting unit 124 closes the intake throttle valve 28 from the opening before the transition to the target opening. Set the closed transition time. When the operation direction determination unit 123 determines that the intake throttle valve 28 operates in the open direction, the transition time setting unit 124 opens the intake throttle valve 28 from the opening before the transition to the target opening. Set the time.
- the transition time setting unit 124 sets the closed transition time and the open transition time of the intake throttle valve 28 so as to be different. Specifically, the transition time setting unit 124 sets the closed transition time and the open transition time so that the closed transition time is longer than the open transition time. As an example, as shown in FIG. 4B, the transition time setting unit 124 sets the closed transition time and the open transition time so that the open transition time is shorter than 1/2 of the closed transition time. As a result, the time for the intake throttle valve 28 to close is lengthened, and the time for the intake throttle valve 28 to open is shortened.
- the valve control unit 125 controls the opening degree of the intake throttle valve 28 in order to control the boost pressure of the air flowing to the engine body 10.
- the valve control unit 125 controls the opening operation and the closing operation of the intake throttle valve 28 in the temperature rise control mode.
- the valve control unit 125 changes the operating speed of the intake throttle valve 28 according to the transition time set by the transition time setting unit 124 in the temperature rise control mode.
- the valve control unit 125 sets the closing operation speed of the intake throttle valve 28 according to the closed transition time set by the transition time setting unit 124, and the opening operation speed of the intake throttle valve 28 according to the open transition time. To set. Since the closed transition time is set longer than the open transition time, the speed at which the intake throttle valve 28 closes when the feedback control starts is higher than the speed at which the intake throttle valve 28 opens when the feedback control stops. Is also slow. Therefore, at the start of the feedback control, the intake throttle valve 28 is slowly closed, and at that time, oxygen of the EGR gas is sufficiently distributed to the engine body 10, so that misfire of the engine body 10 can be suppressed. Further, when the feedback control is stopped, the intake throttle valve 28 suddenly opens, and the amount of fresh air sucked into the engine body 10 increases, so that acceleration failure of the engine body 10 can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Supercharger (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
This control device 100 comprises: a valve control unit 125 which controls the opening degree of an air intake throttle valve 28 provided to an air intake passage in an openable and closable manner in order to control the supercharging pressure of air flowing to a main body of an internal combustion engine; a timing specification unit 122 which, during execution of a temperature increase control mode for raising the temperature of a post-processing device that purifies exhaust gas generated from the main body of the internal combustion engine, specifies a start timing or a stop timing for supercharging pressure feedback control carried out by the air intake throttle valve 28; an operation direction determination unit 123 which determines whether the air intake throttle valve 28 performs an opening operation in an opening direction or performs a closing operation in a closing direction at the start timing or the stop timing specified by the timing specification unit 122; and a transition time setting unit 124 which, in accordance with the operation direction of the air intake throttle valve 28 determined by the operation direction determination unit 123, sets a transition time to a target opening degree in the operation direction of the air intake throttle valve 28.
Description
本発明は、内燃機関の制御装置に関する。
The present invention relates to a control device for an internal combustion engine.
内燃機関においては、内燃機関本体に流れる吸気の過給圧を、吸気通路に設けられた弁の開度を制御することで、調整している。
また、内燃機関には、排気ガスを浄化する後処理装置(例えば触媒)が設けられており、当該触媒を活性化させるために、触媒を昇温させる昇温制御モードが実行される。 In the internal combustion engine, the boost pressure of the intake air flowing through the main body of the internal combustion engine is adjusted by controlling the opening degree of the valve provided in the intake passage.
Further, the internal combustion engine is provided with an aftertreatment device (for example, a catalyst) for purifying the exhaust gas, and in order to activate the catalyst, a temperature rise control mode for raising the temperature of the catalyst is executed.
また、内燃機関には、排気ガスを浄化する後処理装置(例えば触媒)が設けられており、当該触媒を活性化させるために、触媒を昇温させる昇温制御モードが実行される。 In the internal combustion engine, the boost pressure of the intake air flowing through the main body of the internal combustion engine is adjusted by controlling the opening degree of the valve provided in the intake passage.
Further, the internal combustion engine is provided with an aftertreatment device (for example, a catalyst) for purifying the exhaust gas, and in order to activate the catalyst, a temperature rise control mode for raising the temperature of the catalyst is executed.
ところで、通常、弁が閉じる遷移時間と、弁が開く遷移時間は、予め同じ時間に設定されていた。このため、昇温制御モード実行中のフィードバック制御の開始時に弁の閉じる時間が短いと、吸気量が不足して内燃機関本体が失火するおそれがある。一方で、フィードバック制御の停止時に弁が開く時間が短いと、加速不良となるおそれがある。
By the way, normally, the transition time when the valve closes and the transition time when the valve opens are set to the same time in advance. Therefore, if the valve closing time is short at the start of the feedback control during the temperature rise control mode, the intake air amount may be insufficient and the internal combustion engine main body may misfire. On the other hand, if the valve opens for a short time when the feedback control is stopped, acceleration may be poor.
そこで、本発明はこれらの点に鑑みてなされたものであり、昇温制御モード時の弁の開閉に伴う不具合の発生を抑止することを目的とする。
Therefore, the present invention has been made in view of these points, and an object thereof is to suppress the occurrence of a defect due to opening and closing of a valve in the temperature rise control mode.
本発明の一の態様においては、内燃機関本体へ流れる空気の過給圧を制御するために、吸気通路に開閉可能に設けられた弁の開度を制御する弁制御部と、前記内燃機関本体から発生する排気ガスを浄化する後処理装置を昇温させる昇温制御モードを実行中に、前記弁による前記過給圧のフィードバック制御の開始タイミング又は停止タイミングを特定するタイミング特定部と、前記タイミング特定部が特定した前記開始タイミング又は前記停止タイミングに、前記弁が開方向に開動作するか、又は閉方向に閉動作するかを判定する動作方向判定部と、前記動作方向判定部が判定した前記弁の動作方向に応じて、前記弁の前記動作方向における目標開度までの遷移時間を設定する遷移時間設定部と、を備える、内燃機関の制御装置を提供する。
In one aspect of the present invention, in order to control the boost pressure of the air flowing to the internal combustion engine main body, a valve control unit for controlling the opening degree of a valve provided in the intake passage so as to be openable and closable, and the internal combustion engine main body. While executing the temperature rise control mode for raising the temperature of the aftertreatment device that purifies the exhaust gas generated from the valve, the timing specifying unit for specifying the start timing or the stop timing of the feedback control of the boost pressure by the valve, and the timing. At the start timing or the stop timing specified by the specific unit, the operation direction determination unit determines whether the valve opens in the open direction or closes in the closed direction, and the operation direction determination unit determines. Provided is a control device for an internal combustion engine, comprising a transition time setting unit for setting a transition time to a target opening degree of the valve in the operating direction according to the operating direction of the valve.
また、前記遷移時間設定部は、前記弁が閉方向の目標開度まで閉動作する閉遷移時間が、前記弁が開方向の目標開度まで開動作する開遷移時間よりも長くなるように、前記閉遷移時間と前記開遷移時間を設定することとしてもよい。
また、前記遷移時間設定部は、前記開遷移時間が前記閉遷移時間の1/2より短くなるように、前記閉遷移時間と前記開遷移時間を設定することとしてもよい。
また、前記弁制御部は、前記遷移時間設定部が設定した前記閉遷移時間に応じた前記弁の閉動作の速度を設定し、前記遷移時間設定部が設定した前記開遷移時間に応じた前記弁の開動作の速度を設定することとしてもよい。 Further, in the transition time setting unit, the closing transition time in which the valve closes to the target opening in the closing direction is longer than the opening transition time in which the valve opens to the target opening in the opening direction. The closed transition time and the open transition time may be set.
Further, the transition time setting unit may set the closed transition time and the open transition time so that the open transition time is shorter than 1/2 of the closed transition time.
Further, the valve control unit sets the speed of the valve closing operation according to the closed transition time set by the transition time setting unit, and the valve control unit sets the speed of the valve closing operation according to the open transition time set by the transition time setting unit. The speed of the valve opening operation may be set.
また、前記遷移時間設定部は、前記開遷移時間が前記閉遷移時間の1/2より短くなるように、前記閉遷移時間と前記開遷移時間を設定することとしてもよい。
また、前記弁制御部は、前記遷移時間設定部が設定した前記閉遷移時間に応じた前記弁の閉動作の速度を設定し、前記遷移時間設定部が設定した前記開遷移時間に応じた前記弁の開動作の速度を設定することとしてもよい。 Further, in the transition time setting unit, the closing transition time in which the valve closes to the target opening in the closing direction is longer than the opening transition time in which the valve opens to the target opening in the opening direction. The closed transition time and the open transition time may be set.
Further, the transition time setting unit may set the closed transition time and the open transition time so that the open transition time is shorter than 1/2 of the closed transition time.
Further, the valve control unit sets the speed of the valve closing operation according to the closed transition time set by the transition time setting unit, and the valve control unit sets the speed of the valve closing operation according to the open transition time set by the transition time setting unit. The speed of the valve opening operation may be set.
また、前記動作方向判定部は、遷移前の前記弁の開度と遷移後の前記弁の開度との差に基づいて、前記弁の動作方向を判定することとしてもよい。
Further, the operating direction determination unit may determine the operating direction of the valve based on the difference between the opening degree of the valve before the transition and the opening degree of the valve after the transition.
また、前記動作方向判定部は、前記停止タイミングに、前記差が所定の閾値よりも大きい場合には、前記弁が前記開方向に開動作すると判定し、前記差が前記閾値以下である場合には、前記弁が前記閉方向に閉動作すると判定することとしてもよい。
Further, the operation direction determination unit determines that the valve operates in the open direction when the difference is larger than a predetermined threshold value at the stop timing, and when the difference is equal to or less than the threshold value. May determine that the valve closes in the closing direction.
また、前記動作方向判定部は、前記開始タイミングに、前記差が所定の閾値よりも大きい場合には、前記弁が前記閉方向に閉動作すると判定し、前記差が前記閾値以下である場合には、前記弁が前記開方向に開動作すると判定することとしてもよい。
Further, the operation direction determination unit determines that the valve closes in the closing direction when the difference is larger than a predetermined threshold value at the start timing, and when the difference is equal to or less than the threshold value. May determine that the valve opens in the opening direction.
本発明によれば、昇温制御モード時の弁の開閉に伴う不具合の発生を抑止できるという効果を奏する。
According to the present invention, there is an effect that the occurrence of a defect due to the opening and closing of the valve in the temperature rise control mode can be suppressed.
<内燃機関の構成>
本発明の一の実施形態に係る内燃機関の構成について、図1を参照しながら説明する。 <Composition of internal combustion engine>
The configuration of the internal combustion engine according to the embodiment of the present invention will be described with reference to FIG.
本発明の一の実施形態に係る内燃機関の構成について、図1を参照しながら説明する。 <Composition of internal combustion engine>
The configuration of the internal combustion engine according to the embodiment of the present invention will be described with reference to FIG.
図1は、一の実施形態に係る内燃機関1の構成を説明するための模式図である。内燃機関1は、例えば、トラック等の車両に搭載された多気筒エンジンである。内燃機関1は、ディーゼルエンジンであるが、これに限定されず、例えばガソリンエンジンであってもよい。内燃機関1は、図1に示すように、エンジン本体10と、燃料噴射装置15と、吸気通路20と、排気通路30と、ターボチャージャ40と、EGR装置50と、制御装置100とを有する。
FIG. 1 is a schematic diagram for explaining the configuration of the internal combustion engine 1 according to the embodiment. The internal combustion engine 1 is, for example, a multi-cylinder engine mounted on a vehicle such as a truck. The internal combustion engine 1 is a diesel engine, but is not limited to this, and may be, for example, a gasoline engine. As shown in FIG. 1, the internal combustion engine 1 includes an engine main body 10, a fuel injection device 15, an intake passage 20, an exhaust passage 30, a turbocharger 40, an EGR device 50, and a control device 100.
エンジン本体10は、ここでは4つのシリンダ12を有するが、これに限定されない。各シリンダ12内には、ピストン、クランクシャフト等の可動部品が設けられている。
The engine body 10 has four cylinders 12 here, but is not limited thereto. Movable parts such as pistons and crankshafts are provided in each cylinder 12.
燃料噴射装置15は、エンジン本体10内の燃焼室に燃料を噴射する噴射装置である。燃料噴射装置15は、ここではコモンレール式燃料噴射装置であり、インジェクタ16とコモンレール17を有する。インジェクタ16は、各シリンダ12内の燃焼室に燃料を噴射する。コモンレール17は、インジェクタ16から噴射される燃料を高圧状態で貯留する。
The fuel injection device 15 is an injection device that injects fuel into the combustion chamber in the engine body 10. The fuel injection device 15 is a common rail type fuel injection device here, and has an injector 16 and a common rail 17. The injector 16 injects fuel into the combustion chamber in each cylinder 12. The common rail 17 stores the fuel injected from the injector 16 in a high pressure state.
吸気通路20は、エンジン本体10に吸入する吸気が流れる通路である。吸気通路20は、エンジン本体10に接続された吸気マニホールド22と、吸気マニホールド22の上流端に接続された吸気管23とを有する。吸気マニホールド22は、吸気管23から送られてきた吸気を各気筒の吸気ポートに分配供給する。吸気管23には、エアクリーナ24、エアフローメータ25、ターボチャージャ40のコンプレッサ42C、インタークーラ27、吸気絞り弁28が設けられている。エアフローメータ25は、内燃機関1の単位時間当たりの吸入空気量すなわち吸気流量を検出する。吸気絞り弁28は、例えば回転することで開度を調整可能となっている。
The intake passage 20 is a passage through which intake air to be sucked into the engine body 10 flows. The intake passage 20 has an intake manifold 22 connected to the engine body 10 and an intake pipe 23 connected to the upstream end of the intake manifold 22. The intake manifold 22 distributes and supplies the intake air sent from the intake pipe 23 to the intake ports of each cylinder. The intake pipe 23 is provided with an air cleaner 24, an air flow meter 25, a compressor 42C of a turbocharger 40, an intercooler 27, and an intake throttle valve 28. The air flow meter 25 detects the amount of intake air per unit time of the internal combustion engine 1, that is, the intake flow rate. The opening degree of the intake throttle valve 28 can be adjusted by, for example, rotating.
排気通路30は、エンジン本体10から発生する排気ガスが流れる通路である。排気通路30は、エンジン本体10に接続された排気マニホールド32と、排気マニホールド32の下流端に接続された排気管33とを有する。排気マニホールド32は、各気筒の排気ポートから送られてきた排気ガスを集合する。排気管33には、ターボチャージャ40のタービン42T、後処理装置35が設けられている。後処理装置35は、排気ガスを浄化するための装置であり、例えば、酸化触媒、DPF、SCR、アンモニア酸化触媒を含む。
The exhaust passage 30 is a passage through which the exhaust gas generated from the engine body 10 flows. The exhaust passage 30 has an exhaust manifold 32 connected to the engine body 10 and an exhaust pipe 33 connected to the downstream end of the exhaust manifold 32. The exhaust manifold 32 collects the exhaust gas sent from the exhaust port of each cylinder. The exhaust pipe 33 is provided with a turbine 42T of the turbocharger 40 and an aftertreatment device 35. The aftertreatment device 35 is a device for purifying the exhaust gas, and includes, for example, an oxidation catalyst, a DPF, an SCR, and an ammonia oxidation catalyst.
ところで、内燃機関1の冷間始動後から暖機完了までの間、後処理装置35(具体的には、触媒)を早期に昇温させるための制御モード(以下、昇温制御モードと呼ぶ)を実行可能となっている。昇温制御モード時は、新気の吸入を少なくさせる一方で、EGR装置50による排気ガスの還流量を増やす。このため、昇温制御モード時の吸排気の特性は、昇温制御モード以外の通常制御モード時の吸排気の特性と異なる。
By the way, a control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) at an early stage from the cold start of the internal combustion engine 1 to the completion of warming up (hereinafter referred to as a temperature rise control mode). Is feasible. In the temperature rise control mode, the inhalation of fresh air is reduced, while the amount of exhaust gas recirculation by the EGR device 50 is increased. Therefore, the intake / exhaust characteristics in the temperature rise control mode are different from the intake / exhaust characteristics in the normal control mode other than the temperature rise control mode.
ターボチャージャ40は、排気通路30を流れる排気ガスの流れを利用して、吸気通路20を流れる吸気を圧縮する過給機である。ターボチャージャ40は、排気通路30に設けられたタービン42Tと、吸気通路20に設けられたコンプレッサ42Cとを有する。タービン42Tは、開度を制御可能な弁を有する。コンプレッサ42Cは、タービン42Tの回転に連動して回転して、吸気を圧縮する。
The turbocharger 40 is a supercharger that compresses the intake air flowing through the intake passage 20 by utilizing the flow of exhaust gas flowing through the exhaust passage 30. The turbocharger 40 has a turbine 42T provided in the exhaust passage 30 and a compressor 42C provided in the intake passage 20. The turbine 42T has a valve whose opening degree can be controlled. The compressor 42C rotates in conjunction with the rotation of the turbine 42T to compress the intake air.
EGR装置50は、排気ガスの一部をエンジン本体10へ還流させる。具体的には、EGR装置50は、排気通路30内(ここでは、排気マニホールド32内)の排気ガスの一部(以下、EGRガスと呼ぶ)を、吸気通路20内(ここでは、吸気マニホールド22内)に還流させる。EGR装置50は、EGR通路52と、EGRクーラ53と、EGR弁54と、温度センサ55とを有する。
The EGR device 50 recirculates a part of the exhaust gas to the engine body 10. Specifically, the EGR device 50 uses a part of the exhaust gas (hereinafter referred to as EGR gas) in the exhaust passage 30 (here, the exhaust manifold 32) in the intake passage 20 (here, the intake manifold 22). (Inside). The EGR device 50 includes an EGR passage 52, an EGR cooler 53, an EGR valve 54, and a temperature sensor 55.
EGR通路52は、EGRガスが流れる流路である。EGRクーラ53は、EGR通路52に設けられ、EGRガスを冷却する。EGR弁54は、開閉可能な弁であり、EGRガスの流量を調整する。温度センサ55は、EGR通路52を流れるEGRガスの温度を検出する。
The EGR passage 52 is a flow path through which EGR gas flows. The EGR cooler 53 is provided in the EGR passage 52 and cools the EGR gas. The EGR valve 54 is a valve that can be opened and closed, and regulates the flow rate of EGR gas. The temperature sensor 55 detects the temperature of the EGR gas flowing through the EGR passage 52.
制御装置100は、内燃機関1全体の動作を制御する。制御装置100は、ターボチャージャ40と吸気絞り弁28の開度を制御して、エンジン本体10へ流れる空気の過給圧を制御する過給制御を行う。例えば、制御装置100は、過給制御として、ターボチャージャ40によるフィードフォワード制御やフィードバック制御をおこなったり、吸気絞り弁28によるフィードバック制御を行ったりする。
The control device 100 controls the operation of the entire internal combustion engine 1. The control device 100 controls the opening degree of the turbocharger 40 and the intake throttle valve 28 to perform supercharging control for controlling the supercharging pressure of the air flowing to the engine body 10. For example, the control device 100 performs feedforward control or feedback control by the turbocharger 40 or feedback control by the intake throttle valve 28 as supercharging control.
また、制御装置100は、上述した昇温制御モード時に、吸気絞り弁28によるフィードバック制御を行う。フィードバック制御を開始すると、吸気絞り弁28は、新気の吸入量を減らすように目標開度まで閉じる閉動作を行う。一方で、フィードバック制御を停止させると、吸気絞り弁28は、新気の吸入量を増やすように目標開度まで開く開動作を行う。
Further, the control device 100 performs feedback control by the intake throttle valve 28 in the above-mentioned temperature rise control mode. When the feedback control is started, the intake throttle valve 28 closes to the target opening degree so as to reduce the intake amount of fresh air. On the other hand, when the feedback control is stopped, the intake throttle valve 28 opens to the target opening degree so as to increase the intake amount of fresh air.
本実施形態では、制御装置100は、詳細は後述するが、昇温制御モード時に、吸気絞り弁28が開動作を行う際の遷移時間(開遷移時間)と、吸気絞り弁28が閉動作を行う際の遷移時間(閉遷移時間)とを、それぞれ別々に設定可能である。そして、制御装置100は、設定した開遷移時間と閉遷移時間に合わせて、吸気絞り弁28の動作速度を制御する。これにより、フィードバック制御の開始時と停止時に、それぞれの状況に適した遷移時間で吸気絞り弁28の開閉動作を行えるので、昇温制御モード時の吸気絞り弁28の開閉に伴う不具合の発生を抑制できる。
In the present embodiment, the control device 100 will be described in detail later, but in the temperature rise control mode, the transition time (open transition time) when the intake throttle valve 28 is opened and the intake throttle valve 28 are closed. The transition time (closed transition time) at the time of performing can be set separately. Then, the control device 100 controls the operating speed of the intake throttle valve 28 according to the set open transition time and closed transition time. As a result, the intake throttle valve 28 can be opened and closed at the transition time suitable for each situation at the start and stop of the feedback control, so that a problem occurs due to the opening and closing of the intake throttle valve 28 in the temperature rise control mode. Can be suppressed.
図2は、吸気絞り弁28の開閉時の遷移時間を説明するための模式図である。図2(a)には比較例に係る遷移時間が示され、図2(b)には本実施形態に係る遷移時間が示されている。図2(a)及び図2(b)においては、吸気絞り弁28の閉遷移時間T1及び開遷移時間T2が示されている。図2(a)に示す比較例では、閉遷移時間T1と開遷移時間T2は同じ時間であり、吸気絞り弁28が閉動作を行う速度と、吸気絞り弁28が開動作を行う速度が同じである。
これに対して、図2(b)に示す本実施形態では、開遷移時間T2が閉遷移時間T1よりも短い時間となっており、吸気絞り弁28が開動作を行う速度は、吸気絞り弁28が閉動作を行う速度よりも速い。これにより、昇温制御モードのフィードバック制御の開始時に、吸気絞り弁28がゆっくり閉じることになり、急に閉じることに起因した新気不足によるエンジン本体10の失火(より具体的には、昇温制御モード時に、新気不足を補うためにエンジン本体10に流入するEGRガスが遅れるため、エンジン本体10内の酸素量が不足し失火する)を抑制できる。また、昇温制御モードのフィードバック制御の停止時に、吸気絞り弁28が急に開くことになり、ゆっくり開くことに起因したエンジン本体10の加速不良を抑制できる。 FIG. 2 is a schematic diagram for explaining the transition time when theintake throttle valve 28 is opened and closed. FIG. 2A shows the transition time according to the comparative example, and FIG. 2B shows the transition time according to the present embodiment. In FIGS. 2 (a) and 2 (b), the closed transition time T1 and the open transition time T2 of the intake throttle valve 28 are shown. In the comparative example shown in FIG. 2A, the closed transition time T1 and the open transition time T2 are the same time, and the speed at which the intake throttle valve 28 closes and the speed at which the intake throttle valve 28 opens are the same. Is.
On the other hand, in the present embodiment shown in FIG. 2B, the open transition time T2 is shorter than the closed transition time T1, and the speed at which theintake throttle valve 28 opens is the intake throttle valve. 28 is faster than the speed at which the closing operation is performed. As a result, the intake throttle valve 28 closes slowly at the start of the feedback control in the temperature rise control mode, and the engine body 10 misfires (more specifically, the temperature rises) due to lack of fresh air caused by the sudden closing. In the control mode, the EGR gas flowing into the engine body 10 is delayed to compensate for the lack of fresh air, so that the amount of oxygen in the engine body 10 is insufficient and the engine misfires). Further, when the feedback control in the temperature rise control mode is stopped, the intake throttle valve 28 suddenly opens, and the acceleration failure of the engine body 10 due to the slow opening can be suppressed.
これに対して、図2(b)に示す本実施形態では、開遷移時間T2が閉遷移時間T1よりも短い時間となっており、吸気絞り弁28が開動作を行う速度は、吸気絞り弁28が閉動作を行う速度よりも速い。これにより、昇温制御モードのフィードバック制御の開始時に、吸気絞り弁28がゆっくり閉じることになり、急に閉じることに起因した新気不足によるエンジン本体10の失火(より具体的には、昇温制御モード時に、新気不足を補うためにエンジン本体10に流入するEGRガスが遅れるため、エンジン本体10内の酸素量が不足し失火する)を抑制できる。また、昇温制御モードのフィードバック制御の停止時に、吸気絞り弁28が急に開くことになり、ゆっくり開くことに起因したエンジン本体10の加速不良を抑制できる。 FIG. 2 is a schematic diagram for explaining the transition time when the
On the other hand, in the present embodiment shown in FIG. 2B, the open transition time T2 is shorter than the closed transition time T1, and the speed at which the
<制御装置の詳細構成>
制御装置100の詳細構成について、図3を参照しながら説明する。 <Detailed configuration of control device>
The detailed configuration of thecontrol device 100 will be described with reference to FIG.
制御装置100の詳細構成について、図3を参照しながら説明する。 <Detailed configuration of control device>
The detailed configuration of the
図3は、制御装置100の詳細構成を説明するための模式図である。制御装置100は、記憶部110と、制御部120とを有する。
FIG. 3 is a schematic diagram for explaining the detailed configuration of the control device 100. The control device 100 has a storage unit 110 and a control unit 120.
記憶部110は、例えばROM(Read Only Memory)及びRAM(Random Access Memory)を含む。記憶部110は、制御部120が実行するためのプログラムや各種データを記憶する。
The storage unit 110 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage unit 110 stores programs and various data for execution by the control unit 120.
制御部120は、例えばCPU(Central Processing Unit)である。制御部120は、記憶部110に記憶されたプログラムを実行することにより、内燃機関1の動作を制御する。本実施形態では、制御部120は、タイミング特定部122、動作方向判定部123、遷移時間設定部124及び弁制御部125として機能する。
The control unit 120 is, for example, a CPU (Central Processing Unit). The control unit 120 controls the operation of the internal combustion engine 1 by executing the program stored in the storage unit 110. In the present embodiment, the control unit 120 functions as a timing specifying unit 122, an operation direction determination unit 123, a transition time setting unit 124, and a valve control unit 125.
タイミング特定部122は、後処理装置35(具体的には触媒)を昇温させる昇温制御モードを実行中に、吸気絞り弁28による過給圧のフィードバック制御の開始タイミング又は停止タイミングを特定する。タイミング特定部122は、フィードバック制御がオンになったタイミングを開始タイミングと特定し、フィードバック制御がオフになったタイミングを停止タイミングと特定する。
The timing specifying unit 122 specifies the start timing or the stop timing of the feedback control of the boost pressure by the intake throttle valve 28 while the temperature rise control mode for raising the temperature of the aftertreatment device 35 (specifically, the catalyst) is being executed. .. The timing specifying unit 122 specifies the timing when the feedback control is turned on as the start timing, and the timing when the feedback control is turned off as the stop timing.
タイミング特定部122は、検出センサ群70の検出結果に基づいて、フィードバック制御のオン、オフを特定しうる。例えば、フィードバック制御がオンになるタイミングは、昇温制御モードが実行され、運転領域(例えば、燃料噴射量と、エンジン本体10の回転数で定まる)が吸気絞り弁28のフィードバック制御領域である条件を満たす場合である。一方で、フィードバック制御がオフになるタイミングは、上記の条件を満たさない場合である。
The timing specifying unit 122 can specify whether the feedback control is on or off based on the detection result of the detection sensor group 70. For example, the timing at which the feedback control is turned on is a condition in which the temperature rise control mode is executed and the operating region (for example, determined by the fuel injection amount and the rotation speed of the engine body 10) is the feedback control region of the intake throttle valve 28. If it meets the requirements. On the other hand, the timing at which the feedback control is turned off is when the above conditions are not satisfied.
動作方向判定部123は、昇温制御モードのフィードバック制御の開始時と停止時に、吸気絞り弁28の開閉方向を判定する。すなわち、動作方向判定部123は、タイミング特定部122が特定した開始タイミング又は停止タイミングに、吸気絞り弁28が開方向に開動作するか、又は閉方向に閉動作するかを判定する。例えば、動作方向判定部123は、遷移前の吸気絞り弁28の開度と遷移後の弁の開度との差(以下、開度差とも呼ぶ)に基づいて、吸気絞り弁28の動作方向を判定する。ここで、遷移開始前の開度及び遷移開始後の開度は、検出センサ群70が検出したエンジン本体10の回転数、燃料噴射量、大気圧、エンジン冷却水の温度、吸気の温度等によって設定されうる。
The operation direction determination unit 123 determines the opening / closing direction of the intake throttle valve 28 at the start and stop of the feedback control in the temperature rise control mode. That is, the operation direction determination unit 123 determines whether the intake throttle valve 28 opens in the open direction or closes in the closed direction at the start timing or stop timing specified by the timing specifying unit 122. For example, the operation direction determination unit 123 operates the operation direction of the intake throttle valve 28 based on the difference between the opening degree of the intake throttle valve 28 before the transition and the opening degree of the valve after the transition (hereinafter, also referred to as an opening degree difference). To judge. Here, the opening degree before the start of the transition and the opening degree after the start of the transition depend on the rotation speed of the engine body 10 detected by the detection sensor group 70, the fuel injection amount, the atmospheric pressure, the temperature of the engine cooling water, the temperature of the intake air, and the like. Can be set.
図4は、吸気絞り弁28の動作方向の判定を説明するための模式図である。図4(a)では、開始タイミングでの吸気絞り弁28の開度がA1であり、吸気絞り弁28の遷移後の目標開度がA2であるものとする。動作方向判定部123は、開度A2と開度A1の開度差が所定の閾値よりも大きい場合には、吸気絞り弁28が閉方向に閉動作すると判定する。一方で、動作方向判定部123は、開度A2と開度A1の開度差が閾値以下である場合には、吸気絞り弁28が開方向に開動作すると判定する。
FIG. 4 is a schematic diagram for explaining the determination of the operating direction of the intake throttle valve 28. In FIG. 4A, it is assumed that the opening degree of the intake throttle valve 28 at the start timing is A1 and the target opening degree after the transition of the intake throttle valve 28 is A2. The operation direction determination unit 123 determines that the intake throttle valve 28 closes in the closing direction when the difference between the opening degrees A2 and the opening degree A1 is larger than a predetermined threshold value. On the other hand, the operation direction determination unit 123 determines that the intake throttle valve 28 operates in the opening direction when the difference between the opening degrees A2 and the opening degree A1 is equal to or less than the threshold value.
図4(b)では、停止タイミングでの吸気絞り弁28の開度がA3であり、吸気絞り弁28の遷移後の目標開度がA4であるものとする。動作方向判定部123は、開度A4と開度A3の開度差が所定の閾値よりも大きい場合には、吸気絞り弁28が開方向に開動作すると判定する。一方で、動作方向判定部123は、開度A4と開度A3の開度差が閾値以下である場合には、吸気絞り弁28が閉方向に閉動作すると判定する。このように、開度差を求めることで、フィードバック制御の開始タイミング又は停止タイミングの際に、吸気絞り弁28の動作方向を容易に検出できる。
In FIG. 4B, it is assumed that the opening degree of the intake throttle valve 28 at the stop timing is A3, and the target opening degree after the transition of the intake throttle valve 28 is A4. The operation direction determination unit 123 determines that the intake throttle valve 28 opens in the opening direction when the difference between the opening degrees A4 and the opening degree A3 is larger than a predetermined threshold value. On the other hand, the operation direction determination unit 123 determines that the intake throttle valve 28 closes in the closing direction when the difference between the opening degrees A4 and the opening degree A3 is equal to or less than the threshold value. By obtaining the difference in opening degree in this way, the operating direction of the intake throttle valve 28 can be easily detected at the start timing or the stop timing of the feedback control.
遷移時間設定部124は、動作方向判定部123が判定した吸気絞り弁28の動作方向に応じて、吸気絞り弁28の動作方向における目標開度までの遷移時間を設定する。すなわち、遷移時間設定部124は、動作方向判定部123によって吸気絞り弁28が閉方向へ動作すると判定された場合には、吸気絞り弁28が遷移前の開度から目標開度まで閉動作する閉遷移時間を設定する。遷移時間設定部124は、動作方向判定部123によって吸気絞り弁28が開方向へ動作すると判定された場合には、吸気絞り弁28が遷移前の開度から目標開度まで開動作する開遷移時間を設定する。
The transition time setting unit 124 sets the transition time to the target opening degree in the operation direction of the intake throttle valve 28 according to the operation direction of the intake throttle valve 28 determined by the operation direction determination unit 123. That is, when the operation direction determination unit 123 determines that the intake throttle valve 28 operates in the closing direction, the transition time setting unit 124 closes the intake throttle valve 28 from the opening before the transition to the target opening. Set the closed transition time. When the operation direction determination unit 123 determines that the intake throttle valve 28 operates in the open direction, the transition time setting unit 124 opens the intake throttle valve 28 from the opening before the transition to the target opening. Set the time.
本実施形態では、遷移時間設定部124は、吸気絞り弁28の閉遷移時間と開遷移時間を異なるように設定する。具体的には、遷移時間設定部124は、閉遷移時間が開遷移時間よりも長くなるように、閉遷移時間と開遷移時間を設定する。一例として、図4(b)に示すように、遷移時間設定部124は、開遷移時間が閉遷移時間の1/2より短くなるように、閉遷移時間と前記開遷移時間を設定する。これにより、吸気絞り弁28が閉動作する時間が長くなり、吸気絞り弁28が開動作する時間が短くなる。
In the present embodiment, the transition time setting unit 124 sets the closed transition time and the open transition time of the intake throttle valve 28 so as to be different. Specifically, the transition time setting unit 124 sets the closed transition time and the open transition time so that the closed transition time is longer than the open transition time. As an example, as shown in FIG. 4B, the transition time setting unit 124 sets the closed transition time and the open transition time so that the open transition time is shorter than 1/2 of the closed transition time. As a result, the time for the intake throttle valve 28 to close is lengthened, and the time for the intake throttle valve 28 to open is shortened.
弁制御部125は、エンジン本体10へ流れる空気の過給圧を制御するために、吸気絞り弁28の開度を制御する。弁制御部125は、昇温制御モード時に、吸気絞り弁28の開動作や閉動作を制御する。弁制御部125は、昇温制御モード時に、遷移時間設定部124が設定した遷移時間に応じて、吸気絞り弁28の動作速度を変更させる。
The valve control unit 125 controls the opening degree of the intake throttle valve 28 in order to control the boost pressure of the air flowing to the engine body 10. The valve control unit 125 controls the opening operation and the closing operation of the intake throttle valve 28 in the temperature rise control mode. The valve control unit 125 changes the operating speed of the intake throttle valve 28 according to the transition time set by the transition time setting unit 124 in the temperature rise control mode.
例えば、弁制御部125は、遷移時間設定部124が設定した閉遷移時間に合わせて吸気絞り弁28の閉動作の速度を設定し、開遷移時間に合わせて吸気絞り弁28の開動作の速度を設定する。閉遷移時間が開遷移時間よりも長く設定されるので、フィードバック制御の開始時に吸気絞り弁28が閉動作する際の速度は、フィードバック制御の停止時に吸気絞り弁28が開動作する際の速度よりも遅い。このため、フィードバック制御の開始時に、吸気絞り弁28がゆっくり閉じることになり、その際にエンジン本体10にEGRガスの酸素が十分にいきわたるので、エンジン本体10の失火を抑制できる。また、フィードバック制御の停止時に、吸気絞り弁28が急に開くことになり、エンジン本体10内に吸入される新気が増えるので、エンジン本体10の加速不良を抑制できる。
For example, the valve control unit 125 sets the closing operation speed of the intake throttle valve 28 according to the closed transition time set by the transition time setting unit 124, and the opening operation speed of the intake throttle valve 28 according to the open transition time. To set. Since the closed transition time is set longer than the open transition time, the speed at which the intake throttle valve 28 closes when the feedback control starts is higher than the speed at which the intake throttle valve 28 opens when the feedback control stops. Is also slow. Therefore, at the start of the feedback control, the intake throttle valve 28 is slowly closed, and at that time, oxygen of the EGR gas is sufficiently distributed to the engine body 10, so that misfire of the engine body 10 can be suppressed. Further, when the feedback control is stopped, the intake throttle valve 28 suddenly opens, and the amount of fresh air sucked into the engine body 10 increases, so that acceleration failure of the engine body 10 can be suppressed.
<本実施形態における効果>
上述した実施形態の内燃機関1の制御装置100は、昇温制御モードのフィードバック制御の開始タイミング又は停止タイミングに、吸気絞り弁28が開方向に開動作するか、又は閉方向に閉動作するかを判定する。そして、制御装置100は、判定した吸気絞り弁28の動作方向に応じて、吸気絞り弁28の動作方向における目標開度までの遷移時間を設定する。すなわち、制御装置100は、吸気絞り弁28の閉遷移時間と開遷移時間を別々に設定する。
これにより、昇温制御モード時のフィードバック制御の開始後と停止後に、それぞれの状況に適した遷移時間で吸気絞り弁28が開閉動作を行えるので、昇温制御モード時の吸気絞り弁28の開閉に伴う不具合(例えば、エンジン本体10の失火や加速不良)の発生を抑止できる。 <Effect in this embodiment>
In thecontrol device 100 of the internal combustion engine 1 of the above-described embodiment, whether the intake throttle valve 28 opens in the open direction or closes in the closed direction at the start timing or the stop timing of the feedback control in the temperature rise control mode. Is determined. Then, the control device 100 sets the transition time to the target opening degree in the operating direction of the intake throttle valve 28 according to the determined operating direction of the intake throttle valve 28. That is, the control device 100 separately sets the closed transition time and the open transition time of the intake throttle valve 28.
As a result, theintake throttle valve 28 can be opened and closed at a transition time suitable for each situation after the feedback control in the temperature rise control mode is started and stopped, so that the intake throttle valve 28 can be opened and closed in the temperature rise control mode. It is possible to suppress the occurrence of malfunctions (for example, misfire of the engine body 10 and poor acceleration).
上述した実施形態の内燃機関1の制御装置100は、昇温制御モードのフィードバック制御の開始タイミング又は停止タイミングに、吸気絞り弁28が開方向に開動作するか、又は閉方向に閉動作するかを判定する。そして、制御装置100は、判定した吸気絞り弁28の動作方向に応じて、吸気絞り弁28の動作方向における目標開度までの遷移時間を設定する。すなわち、制御装置100は、吸気絞り弁28の閉遷移時間と開遷移時間を別々に設定する。
これにより、昇温制御モード時のフィードバック制御の開始後と停止後に、それぞれの状況に適した遷移時間で吸気絞り弁28が開閉動作を行えるので、昇温制御モード時の吸気絞り弁28の開閉に伴う不具合(例えば、エンジン本体10の失火や加速不良)の発生を抑止できる。 <Effect in this embodiment>
In the
As a result, the
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes can be made within the scope of the gist. be. For example, all or part of the device can be functionally or physically distributed / integrated in any unit. Also included in the embodiments of the present invention are new embodiments resulting from any combination of the plurality of embodiments. The effect of the new embodiment produced by the combination has the effect of the original embodiment together.
1 内燃機関
10 エンジン本体
20 吸気通路
28 吸気絞り弁
35 後処理装置
100 制御装置
122 タイミング特定部
123 動作方向判定部
124 遷移時間設定部
125 弁制御部 1 Internal combustion engine 10Engine body 20 Intake passage 28 Intake throttle valve 35 Post-processing device 100 Control device 122 Timing specification unit 123 Operation direction determination unit 124 Transition time setting unit 125 Valve control unit
10 エンジン本体
20 吸気通路
28 吸気絞り弁
35 後処理装置
100 制御装置
122 タイミング特定部
123 動作方向判定部
124 遷移時間設定部
125 弁制御部 1 Internal combustion engine 10
Claims (7)
- 内燃機関本体へ流れる空気の過給圧を制御するために、吸気通路に開閉可能に設けられた弁の開度を制御する弁制御部と、
前記内燃機関本体から発生する排気ガスを浄化する後処理装置を昇温させる昇温制御モードを実行中に、前記弁による前記過給圧のフィードバック制御の開始タイミング又は停止タイミングを特定するタイミング特定部と、
前記タイミング特定部が特定した前記開始タイミング又は前記停止タイミングに、前記弁が開方向に開動作するか、又は閉方向に閉動作するかを判定する動作方向判定部と、
前記動作方向判定部が判定した前記弁の動作方向に応じて、前記弁の前記動作方向における目標開度までの遷移時間を設定する遷移時間設定部と、
を備える、内燃機関の制御装置。 A valve control unit that controls the opening of a valve that can be opened and closed in the intake passage to control the boost pressure of the air flowing to the internal combustion engine body.
A timing specifying unit that specifies the start timing or stop timing of the feedback control of the boost pressure by the valve while the temperature rise control mode for raising the temperature of the aftertreatment device that purifies the exhaust gas generated from the internal combustion engine main body is being executed. When,
An operation direction determining unit for determining whether the valve opens in the opening direction or closes in the closing direction at the start timing or the stop timing specified by the timing specifying unit.
A transition time setting unit that sets a transition time to a target opening degree in the operation direction of the valve according to the operation direction of the valve determined by the operation direction determination unit.
A control device for an internal combustion engine. - 前記遷移時間設定部は、前記弁が閉方向の目標開度まで閉動作する閉遷移時間が、前記弁が開方向の目標開度まで開動作する開遷移時間よりも長くなるように、前記閉遷移時間と前記開遷移時間を設定する、
請求項1に記載の内燃機関の制御装置。 The closing transition time setting unit is such that the closing transition time in which the valve closes to the target opening in the closing direction is longer than the opening transition time in which the valve opens to the target opening in the opening direction. Set the transition time and the open transition time,
The control device for an internal combustion engine according to claim 1. - 前記遷移時間設定部は、前記開遷移時間が前記閉遷移時間の1/2より短くなるように、前記閉遷移時間と前記開遷移時間を設定する、
請求項2に記載の内燃機関の制御装置。 The transition time setting unit sets the closed transition time and the open transition time so that the open transition time is shorter than 1/2 of the closed transition time.
The control device for an internal combustion engine according to claim 2. - 前記弁制御部は、前記遷移時間設定部が設定した前記閉遷移時間に応じた前記弁の閉動作の速度を設定し、前記遷移時間設定部が設定した前記開遷移時間に応じた前記弁の開動作の速度を設定する、
請求項2又は3に記載の内燃機関の制御装置。 The valve control unit sets the speed of the valve closing operation according to the closing transition time set by the transition time setting unit, and the valve control unit sets the speed of the valve closing operation according to the opening transition time set by the transition time setting unit. Set the speed of open operation,
The control device for an internal combustion engine according to claim 2 or 3. - 前記動作方向判定部は、遷移前の前記弁の開度と遷移後の前記弁の開度との差に基づいて、前記弁の動作方向を判定する、
請求項1から4のいずれか1項に記載の内燃機関の制御装置。 The operating direction determining unit determines the operating direction of the valve based on the difference between the opening degree of the valve before the transition and the opening degree of the valve after the transition.
The control device for an internal combustion engine according to any one of claims 1 to 4. - 前記動作方向判定部は、前記停止タイミングに、前記差が所定の閾値よりも大きい場合には、前記弁が前記開方向に開動作すると判定し、前記差が前記閾値以下である場合には、前記弁が前記閉方向に閉動作すると判定する、
請求項5に記載の内燃機関の制御装置。 The operation direction determination unit determines that the valve operates in the open direction when the difference is larger than a predetermined threshold value at the stop timing, and when the difference is equal to or less than the threshold value, the operation direction determination unit determines that the valve operates in the open direction. It is determined that the valve closes in the closing direction.
The control device for an internal combustion engine according to claim 5. - 前記動作方向判定部は、前記開始タイミングに、前記差が所定の閾値よりも大きい場合には、前記弁が前記閉方向に閉動作すると判定し、前記差が前記閾値以下である場合には、前記弁が前記開方向に開動作すると判定する、
請求項5又は6に記載の内燃機関の制御装置。
The operation direction determination unit determines that the valve closes in the closing direction when the difference is larger than a predetermined threshold value at the start timing, and when the difference is equal to or less than the threshold value, the operation direction determination unit determines that the valve operates in the closing direction. It is determined that the valve opens in the opening direction.
The control device for an internal combustion engine according to claim 5 or 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180037774.XA CN115917132A (en) | 2020-07-16 | 2021-07-06 | Control device for internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020122196A JP7264125B2 (en) | 2020-07-16 | 2020-07-16 | Control device for internal combustion engine |
JP2020-122196 | 2020-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022014405A1 true WO2022014405A1 (en) | 2022-01-20 |
Family
ID=79555339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/025442 WO2022014405A1 (en) | 2020-07-16 | 2021-07-06 | Control device for internal combustion engine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7264125B2 (en) |
CN (1) | CN115917132A (en) |
WO (1) | WO2022014405A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0249926A (en) * | 1987-12-29 | 1990-02-20 | Honda Motor Co Ltd | Control method for supercharge pressure of internal combustion engine |
JP2009079557A (en) * | 2007-09-27 | 2009-04-16 | Hitachi Ltd | Engine controller |
JP2011043145A (en) * | 2009-08-24 | 2011-03-03 | Mazda Motor Corp | Control method of internal combustion engine system and internal combustion engine system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3979019B2 (en) * | 2001-03-09 | 2007-09-19 | 株式会社デンソー | Control device for internal combustion engine |
JP2018096243A (en) * | 2016-12-09 | 2018-06-21 | 三菱自動車工業株式会社 | Device for controlling internal combustion engine |
-
2020
- 2020-07-16 JP JP2020122196A patent/JP7264125B2/en active Active
-
2021
- 2021-07-06 CN CN202180037774.XA patent/CN115917132A/en active Pending
- 2021-07-06 WO PCT/JP2021/025442 patent/WO2022014405A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0249926A (en) * | 1987-12-29 | 1990-02-20 | Honda Motor Co Ltd | Control method for supercharge pressure of internal combustion engine |
JP2009079557A (en) * | 2007-09-27 | 2009-04-16 | Hitachi Ltd | Engine controller |
JP2011043145A (en) * | 2009-08-24 | 2011-03-03 | Mazda Motor Corp | Control method of internal combustion engine system and internal combustion engine system |
Also Published As
Publication number | Publication date |
---|---|
CN115917132A (en) | 2023-04-04 |
JP2022018822A (en) | 2022-01-27 |
JP7264125B2 (en) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180128145A1 (en) | Method and system for an exhaust diverter valve | |
JP5187123B2 (en) | Control device for internal combustion engine | |
US20160003133A1 (en) | Control device for internal combustion engine | |
WO2011033686A1 (en) | Control valve abnormality determination device for internal combustion engine | |
US20120285420A1 (en) | Control device for internal combustion engine | |
JP2006233898A (en) | Egr device | |
JP2014034959A (en) | Exhaust gas recirculation device of engine with supercharger | |
EP2211044A1 (en) | EGR controller and EGR control method for internal combustion engine | |
JP5912240B2 (en) | Exhaust gas recirculation device | |
JP2007016612A (en) | Exhaust gas pressure controller of internal combustion engine | |
JP5679185B2 (en) | Control device for internal combustion engine | |
JP4911432B2 (en) | Control device for internal combustion engine | |
JP6127906B2 (en) | Control device for internal combustion engine | |
WO2022014405A1 (en) | Control device for internal combustion engine | |
JP2009191660A (en) | Control device of internal combustion engine | |
JP4640235B2 (en) | How to adjust the variable nozzle opening of a turbocharger | |
JP6641405B2 (en) | Engine control device | |
JP4501761B2 (en) | Control device for internal combustion engine | |
WO2022014406A1 (en) | Control device for internal combustion engine | |
JP3743232B2 (en) | White smoke emission suppression device for internal combustion engine | |
JP4710729B2 (en) | Control device for internal combustion engine | |
WO2022014407A1 (en) | Internal combustion engine | |
WO2022014388A1 (en) | Control device for internal combustion engine | |
JP2018105213A (en) | Controller of internal combustion engine | |
JP5760382B2 (en) | Engine supercharger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21841724 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21841724 Country of ref document: EP Kind code of ref document: A1 |