WO2022014316A1 - Plating electrode, plating device, and plating method - Google Patents

Plating electrode, plating device, and plating method Download PDF

Info

Publication number
WO2022014316A1
WO2022014316A1 PCT/JP2021/024554 JP2021024554W WO2022014316A1 WO 2022014316 A1 WO2022014316 A1 WO 2022014316A1 JP 2021024554 W JP2021024554 W JP 2021024554W WO 2022014316 A1 WO2022014316 A1 WO 2022014316A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
plated
nozzle
electrode
plating solution
Prior art date
Application number
PCT/JP2021/024554
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 竹本
一誓 大谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022536229A priority Critical patent/JP7345663B2/en
Publication of WO2022014316A1 publication Critical patent/WO2022014316A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/14Electrodes, e.g. composition, counter electrode for pad-plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • C25D5/06Brush or pad plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies

Definitions

  • This disclosure relates to a plating electrode, a plating apparatus, and a plating method.
  • Electroplating is used as one of the methods for forming a plating film on a metal material.
  • masking work is performed as preparatory work before plating.
  • the portion other than the portion to be plated is protected by a masking material such as an insulating tape and a resist. This suppresses the formation of a plating film other than the portion to be plated.
  • the lead time is increased by the masking work, there is a problem that the rectification of production is hindered.
  • Patent Document 1 describes a plating apparatus for forming a plating film on the surface to be plated by a sliding plating method.
  • the plating apparatus includes a plating solution holding portion (holding portion) and a rotating electrode.
  • the plating solution holding portion is arranged on the rotating electrode.
  • the plating solution holding portion holds the plating solution.
  • the object to be plated is arranged on the plating solution holding portion.
  • the entire surface to be plated of the object to be plated is arranged on the plating solution holding portion. Therefore, a plating film is formed over the entire surface to be plated. Therefore, it is not possible to selectively form a plating film on the portion to be plated which is a part of the surface to be plated.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a plating electrode, a plating apparatus, and a plating method capable of selectively forming a plating film.
  • the plated electrode of the present disclosure includes a nozzle and a holding portion.
  • the nozzle includes the tip.
  • the nozzle is a nozzle for supplying the plating solution through the tip portion.
  • the holding part is a holding part for holding the plating solution.
  • the holding portion covers the tip portion of the nozzle.
  • the nozzle is configured to apply a voltage.
  • the nozzle is configured to apply a voltage. Therefore, a voltage can be applied to the plating solution supplied by the nozzle by the nozzle. Therefore, a plating film can be formed on the portion to which the plating solution is supplied by the nozzle. Therefore, the plating film can be selectively formed.
  • FIG. 1 It is sectional drawing which shows schematic the structure of the plating electrode and the power source which concerns on Embodiment 1.
  • FIG. It is a bottom view which shows schematic structure of the nozzle which concerns on Embodiment 1.
  • FIG. It is a bottom view which shows the other structure of the nozzle which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows schematic structure of the plating apparatus which concerns on 1st comparative example.
  • FIG. 2nd comparative example FIG.
  • FIG. 5 is a side view schematically showing a configuration of a plating apparatus in a state where the plating electrode according to the first embodiment is in contact with a portion to be plated.
  • FIG. 5 is a side view schematically showing a configuration of a plating apparatus in a state where the plating electrode according to the first embodiment is separated from a portion to be plated.
  • It is a perspective view which shows the other structure of the plating apparatus which concerns on Embodiment 1.
  • It is a flowchart which shows the plating method which concerns on Embodiment 1.
  • FIG. 5 is a perspective view schematically showing another state in which the plated electrode according to the first embodiment is sliding in the portion to be plated. It is a perspective view schematically showing the structure of the plating apparatus which concerns on Embodiment 2.
  • FIG. It is a perspective view which shows typically the appearance that the plating electrode which concerns on 3rd comparative example was arranged away from the plated part before forming the plating film in the plated part. It is a perspective view which shows roughly the appearance that the plating electrode which concerns on 3rd comparative example is rotating in the part to be plated.
  • FIG. 5 is a perspective view schematically showing a state in which the plating electrodes according to the second embodiment are arranged away from the plated portion before forming a plating film on the plated portion.
  • FIG. 3 is a perspective view schematically showing a first state in which the plating electrode according to the third embodiment slides while rotating in a portion to be plated.
  • FIG. 3 is a perspective view schematically showing a second state in which the plating electrode according to the third embodiment slides while rotating in the portion to be plated.
  • FIG. 3 is a perspective view schematically showing a third state in which the plating electrode according to the third embodiment slides while rotating in the portion to be plated. It is a perspective view which shows typically the appearance that the plating electrode which concerns on the modification of Embodiment 3 is arranged away from the plated part before forming the plating film in the plated part. It is a perspective view which shows typically the appearance that the plating electrode which concerns on the modification of Embodiment 3 slides while rotating in the part to be plated. It is a perspective view which shows typically the appearance that the plating electrode which concerns on the modification of Embodiment 3 has finished forming the plating film in the part to be plated, and is arranged away from the part to be plated.
  • FIG. 3 is a cross-sectional view taken along the line XXXIV-XXXIV of FIG. 33. It is sectional drawing which shows schematic the structure of the plating apparatus which concerns on the 3rd modification of Embodiment 4. It is sectional drawing along the XXXVI-XXXVI line of FIG. 35.
  • FIG. 3 is a functional block diagram schematically showing a configuration of a plating apparatus according to a fifth modification of the fourth embodiment. It is a perspective view schematically showing the structure of the plating apparatus which concerns on the 6th modification of Embodiment 4. It is a functional block diagram which shows schematic structure of the plating apparatus which concerns on the 6th modification of Embodiment 4.
  • FIG. 3 is a functional block diagram schematically showing a configuration of a plating apparatus according to a seventh modification of the fourth embodiment. It is a flow chart which shows schematic the control method of the plating apparatus which concerns on 4th modification of Embodiment 4.
  • FIG. 5 is a flow chart schematically showing a control method of a plating apparatus according to a fifth modification of the fourth embodiment. It is a flow chart schematically showing the control method of the flow rate of the plating solution which concerns on the 6th modification of Embodiment 4. It is sectional drawing which shows schematic the structure of the plating apparatus which concerns on Embodiment 5. It is a perspective view which shows schematic structure of the plating apparatus which concerns on Embodiment 5.
  • Embodiment 1 The configuration of the plating electrode 100 according to the first embodiment will be described with reference to FIGS. 1 to 8.
  • the plating electrode 100 is a plating electrode for forming a plating film PF on a part of the surface PP of the object to be plated PM by the plating solution PS.
  • the surface to be plated PP is one of the surfaces constituting the object to be plated PM.
  • the plating electrode 100 is a plating electrode for forming a plating film PF on the PR to be plated.
  • the part to be plated PR is a part of the surface to be plated PP.
  • the plating electrode 100 includes a nozzle 1 and a holding portion 2.
  • the nozzle 1 includes a tip portion 1e.
  • the nozzle 1 is a nozzle for supplying the plating solution PS through the tip portion 1e.
  • the nozzle 1 is configured to apply a voltage.
  • the plating electrode 100 and the PR to be plated are electrically connected to the power supply 3. Therefore, the plating electrode 100 according to the present embodiment has a function as a nozzle for supplying the plating solution PS and a function as an electrode to which a voltage is applied.
  • the material of the nozzle 1 is a material that does not melt in the plating solution PS or a material that does not easily melt in the plating solution PS.
  • the material of the nozzle 1 is a conductor.
  • the nozzle 1 is made of any material selected from the group consisting of platinum (Pt), titanium-platinum (Ti-Pt), titanium-iridium oxide (Ti-IrO 2 ), stainless steel (SUS) and carbon (C). Includes.
  • platinum (Pt) titanium-platinum
  • Ti-IrO 2 titanium-iridium oxide
  • SUS stainless steel
  • C carbon
  • the material of the nozzle 1 is titanium (Ti) -platinum (Pt)
  • an electrode to be plated in which a platinum (Pt) plating film PF is formed on a titanium (Ti) substrate may be used as the nozzle 1. ..
  • the nozzle 1 may be configured to supply a degreasing agent, an acid detergent, a neutralizing agent, and pure water, which will be described later, to the PR to be plated.
  • the holding portion 2 is a holding portion for holding the plating solution PS. Therefore, the holding portion 2 is configured to hold the plating solution PS.
  • the holding portion 2 is configured so that the plating solution PS is impregnated into the holding portion 2. By impregnating the holding portion 2 with the plating solution PS, the plating solution PS is held in the holding portion 2. In a state where the holding portion 2 is impregnated with the plating solution PS, the surface of the holding portion 2 is wet with the plating solution PS. In a state where the holding portion 2 is impregnated with the plating solution PS, the holding portion 2 is in contact with the portion to be plated PR. The nozzle 1 is connected to the plated portion PR via the holding portion 2 impregnated with the plating solution PS.
  • the material of the holding portion 2 is, for example, a woven fabric or a non-woven fabric. As long as the holding portion 2 can hold the plating solution PS, the material of the holding portion 2 may be appropriately determined.
  • the holding portion 2 is an insulator
  • the holding portion 2 covers the tip portion 1e of the nozzle 1.
  • the holding portion 2 may cover the side surface 1s of the nozzle 1.
  • the holding portion 2 has a flat surface.
  • the holding portion 2 is in contact with the plated portion PR on a flat surface. As long as the holding portion 2 covers the tip portion 1e, the shape of the holding portion 2 may be appropriately determined.
  • the tip portion 1e is provided with a plurality of openings OP.
  • the holding portion 2 covers each of the plurality of openings OP.
  • the nozzle 1 is configured to supply the plating solution PS through a plurality of openings OP.
  • each of the plurality of openings OP is, for example, circular.
  • the dimensions of each of the plurality of openings OP may be the same as each other.
  • the distance between the plurality of adjacent openings OPs may be the same as each other. Therefore, the plurality of openings OP may be uniformly arranged.
  • Each of the plurality of openings OP may be provided point-symmetrically with respect to the center of the tip portion 1e.
  • each of the plurality of openings OP may be a polygon such as a square shape. Therefore, each of the plurality of openings OP may be configured as a slit.
  • the slit is a penetrating portion having an elongated rectangular shape. If the plating solution PS is uniformly supplied, the shape and arrangement of the opening OP may be appropriately determined.
  • the plurality of openings OP may include a plurality of first openings OP1, a plurality of second openings OP2, and a plurality of third openings OP3.
  • the plurality of first openings OP1 are arranged so as to form the outer shape of the first square Q1.
  • the plurality of second openings OP2 are arranged so as to form the outer shape of the second square Q2.
  • the plurality of third openings OP3 are arranged so as to form the outer shape of the third square Q3.
  • the second square Q2 is arranged so as to surround the first square Q1.
  • the third square Q3 is arranged so as to surround the second square Q2.
  • the aperture ratio of the tip portion 1e is, for example, 5% or more and 25% or less.
  • the aperture ratio is the ratio of the area of the opening OP to the area of the entire tip portion 1e.
  • the aperture ratio of the tip portion 1e is less than 5%, the discharge amount of the plating solution PS supplied from the nozzle 1 is small. Therefore, the amount of liquid supplied to the holding portion 2 is small. As a result, the distribution of the plating solution PS impregnated in the holding portion 2 becomes non-uniform. Therefore, the film formation rate is low. In addition, the film formation rate varies. Therefore, when the aperture ratio of the tip portion 1e is less than 5%, the production efficiency of the plating film PF decreases.
  • the aperture ratio of the tip portion 1e is larger than 25%, the amount of the plating solution PS supplied from the nozzle 1 is large. Therefore, the amount of liquid supplied from the nozzle 1 to the holding portion 2 is larger than the amount of liquid that can be held by the holding portion 2. As a result, the plating solution PS is saturated in the holding portion 2. The saturated plating solution PS leaks from the inside of the holding portion 2 to the outside of the holding portion 2. Therefore, the distribution of the plating solution PS becomes non-uniform. Therefore, the film formation rate varies.
  • the plating film PF is also formed outside the PR to be plated. Therefore, the plating film PF may be formed in a region where it is not desirable to form the plating film PF.
  • the plating film PF is less likely to be formed under the opening OP than directly under the unopened region of the tip portion 1e. Therefore, the film formation rate is lower directly under the opening OP than directly under the unopened region of the tip portion 1e. Therefore, the film formation rate is low depending on the position where the plating film PF is formed. If the aperture ratio of the tip portion 1e is larger than 25%, the ratio of the area of the opening OP to the total area of the tip portion 1e is larger than 25%, so that the ratio of the portion having a low film formation rate is also higher than 25%. big. Since the proportion of the portion having a low film formation rate is large, the thickness of the plating film PF varies. Therefore, it is difficult for the plating film PF to be uniformly deposited.
  • the aperture ratio is set by the number of holes and the area of each of the plurality of openings OP.
  • the number of holes is the number of openings OP. As shown in FIGS. 2 and 3, the number of holes is preferably 5 or more.
  • the maximum number of holes is determined according to the shape and dimensions of the tip portion 1e of the nozzle 1. For example, when the shape of the tip portion 1e of the nozzle 1 is a square of 100 mm ⁇ 100 mm, the maximum number of holes is 1000 holes.
  • the number of holes is less than 5, the amount of plating liquid PS discharged per hole is large. Further, the distribution of the plating solution PS supplied to the holding portion 2 becomes non-uniform. As a result, the amount of the plating solution PS supplied to the holding portion 2 varies. Therefore, the distribution of the plating solution PS in the holding portion 2 becomes non-uniform. Therefore, the film formation rate varies. Therefore, when the number of holes is less than 5, the production efficiency of the plating film PF is lowered.
  • the processing cost of nozzle 1 is high. Even when the number of holes is 1000 or more, deterioration of the plating quality is suppressed.
  • the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is preferably 20% or more and 75% or less.
  • the ratio of the surface area of the tip portion 1e to the surface area of the portion PR to be plated is 20% or more and 75% or less.
  • the plating film PF is likely to be uniformly deposited.
  • the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is 20% or more and 75% or less, the precipitation rate of the plating film PF is stable. In the perspective view of FIG. 4, etc., the thickness of the plating film PF is not shown.
  • the ratio of the surface area of the tip portion 1e (see FIG. 4) to the surface area of the plated portion PR is less than 20%, the moving distance of the plating electrode 100 on the plated surface PP is large. .. Further, the ratio of the plated portion PR to which the nozzle 1 is not in contact with the entire plated portion PR is larger than 80%. Therefore, the film formation rate is low. Therefore, the production efficiency and the plating quality of the plating film PF are lowered.
  • the ratio of the tip portion 1e (see FIG. 4) to the surface area of the plated portion PR is larger than 75%, the moving distance of the plating electrode 100 on the plated surface PP is small. Therefore, the moving speed of the plating electrode 100 becomes unstable. Therefore, the plating film PF does not precipitate uniformly. In addition, the precipitation rate becomes unstable. Therefore, the production efficiency and plating quality of the plating film PF are lowered.
  • the plating apparatus 200 is a plating apparatus for forming a plating film PF on the PR to be plated.
  • the plating apparatus 200 includes a plating electrode 100, a power supply 3, and a connection mechanism 4.
  • the power supply 3 is electrically connected to each of the plating electrode 100 and the plated portion PR.
  • the power supply 3 is configured to apply a voltage to the plating electrode 100 and the plated portion PR.
  • the plating electrode 100 is configured as an anode.
  • the object to be plated PM is configured as a cathode.
  • the connection mechanism 4 is connected to the plating electrode 100.
  • the connection mechanism 4 is an arm of a robot or the like.
  • the connection mechanism 4 is configured to connect the plating electrode 100 to the plated portion PR.
  • the connection mechanism 4 is configured to be able to hold the plating electrode 100 in a state where the plating electrode 100 is separated from the plated portion PR.
  • the connection mechanism 4 moves the plating electrode 100 held away from the plated portion PR onto the plated portion PR, thereby moving the plated electrode 100 onto the plated portion PR. It is configured to connect to.
  • connection mechanism 4 is configured so that the contact pressure between the plating electrode 100 and the PR to be plated can be adjusted when the connection mechanism 4 and the plating electrode 100 come into contact with each other. As a result, the contact pressure is adjusted so that the thickness of the plating film PF becomes a sound thickness.
  • Contact pressure between the holder 2 and the object to be plated portion PR is preferably not more than 0.25kgf / cm 2 (24.52kPa) over 2.0kgf / cm 2 (196.13kPa). If the contact pressure is less than 0.25 kgf / cm 2 (24.52 kPa), the plating film PF is likely to be burnt. When the plating film PF is burnt, a sound plating film PF cannot be obtained. When the plating film PF is silver-plated, burning is particularly likely to occur. Further, if the contact pressure is larger than 2.0 kgf / cm 2 (196.13 kPa), the deposited plating film PF is worn by contact with the plating electrode 100. As a result, the growth of the plating film PF is hindered, so that a plating film PF having a sufficient thickness cannot be obtained.
  • connection mechanism 4 is configured such that the plating electrode 100 is slidable on the PR to be plated.
  • sliding on the plated portion PR means moving linearly or curvedly on the plated portion PR. Therefore, sliding means moving in a straight line or a curved line in a state of being in contact with the PR to be plated.
  • the connection mechanism 4 is configured so that the plating electrode 100 can be reciprocated on the PR to be plated.
  • the connection mechanism 4 is configured such that the plating electrode 100 is slidable along either the first direction DR1 or the second direction DR2 on the PR to be plated.
  • the first direction DR1 is a direction along the in-plane direction of the surface to be plated PP.
  • the second direction DR2 is a direction along the in-plane direction of the surface to be plated PP and orthogonal to the first direction DR1.
  • the connection mechanism 4 may be configured such that the plating electrode 100 is slidable along the first direction DR1 and the second direction DR2 on the PR to be plated.
  • the plating apparatus 200 includes a plating tank 51, a reserve tank 52, a first pipe 61, a second pipe 62, a third pipe 63, a fourth pipe 64, a first valve 65, and a second valve 66. , Third valve 67, pump 7, heater 8 and agitator 9 may be further included.
  • the plating electrode 100 and the object to be plated PM are arranged in the plating tank 51.
  • the plating solution PS is filled in the reserve tank 52.
  • the nozzle 1 of the plating electrode 100 is connected to the first pipe 61.
  • the plating solution PS is supplied from the reserve tank 52 to the plating electrode 100 by the pump 7 through the third pipe 63, the third valve 67, the first valve 65, and the first pipe 61 in order.
  • the plating solution PS may be supplied from the reserve tank 52 to the plating electrode 100 by the pump 7 through the fourth pipe 64, the second valve 66, the first valve 65 and the first pipe 61 in order.
  • the plating solution PS supplied to the plating electrode 100 is supplied to the object to be plated PM.
  • the plating solution PS supplied to the plating electrode 100 may fall into the plating tank 51.
  • the plating solution PS that has fallen into the plating tank 51 returns to the reserve tank 52 through the second pipe 62.
  • the pump 7 is configured to supply the plating solution PS in the reserve tank 52 to the nozzle 1.
  • the fourth pipe 64 is connected to the first pipe 61 via the second valve 66.
  • the heater 8 is configured to heat the plating solution PS in the reserve tank 52.
  • the agitator 9 is configured to agitate the plating solution PS in the reserve tank 52.
  • the plating solution PS is, for example, a silver plating solution.
  • the silver plating solution is a plating solution used for silver plating.
  • the silver plating solution includes, for example, 1 wt% (% by weight) or more and 5 wt% (% by weight) or less of silver (Ag) ions, 30 wt% (% by weight) or more and 40 wt% (% by weight) or less of potassium iodide (KI), and the like.
  • It is a plating solution PS containing 1 wt% (% by weight) or more and 5 wt% (% by weight) or less of methanesulfonic acid (CH 4 O 3 S) as a metal salt and adjusted so that the pH becomes 7.
  • the silver plating solution is, for example, silver (Ag) ion of 3 wt% (% by weight) or more and 15 wt% (% by weight) or less, and free cyanide (CN) of 5 wt% (% by weight) or more and 15 wt% (% by weight) or less.
  • the plating solution PS is prepared by containing potassium carbonate (K 2 CO 3 ) of 2 wt% (% by weight) or more and 7 wt% (% by weight) or less as a metal salt.
  • K 2 CO 3 potassium carbonate
  • wt% (% by weight) is the ratio of the weight of the solute to the total prepared solution.
  • the temperature of the plating solution PS may be appropriately determined so that a plating film PF having an appropriate film thickness can be obtained.
  • the temperature of the plating solution PS is, for example, 25 ° C.
  • the temperature of the plating solution PS is preferably 25 ° C.
  • the temperature of the plating solution PS may be appropriately determined according to the state of the object to be plated PM.
  • the plating method is a plating method for forming a plating film PF on a portion PR to be plated with a plating solution PS.
  • a silver-plated plating film PF is formed on the object to be plated PM, which is a copper (Cu) alloy material, by the plating apparatus 200 according to the present embodiment will be described.
  • the material to be plated PM according to this embodiment is not limited to the copper (Cu) alloy material.
  • the plating film PF formed is not limited to the silver-plated plating film PF.
  • a nickel (Ni) plating film PF may be formed on the object to be plated PM, which is an aluminum alloy material, by the plating apparatus 200.
  • the plating film PF may be formed on the object to be plated PM by multi-layer plating.
  • a tin (Sn) -plated plating film PF is further formed on the nickel (Ni) plating film PF.
  • the plating method includes a step S1 to be held and a step S2 to be formed.
  • the object to be plated PM is prepared. Specifically, as shown in FIG. 11, a copper alloy material pre-processed into a set shape is prepared as the object to be plated PM.
  • the surface PP of the object to be plated PM is degreased with a degreasing agent. As a result, surface contaminants such as organic foreign substances are removed from the surface PP to be plated. Therefore, the surface to be plated PP obtains liquid wettability.
  • the degreasing treatment agent is, for example, an alkaline degreasing agent such as sodium hydroxide (NaOH) -based and sodium carbonate (Na 2 CO 3) -based.
  • the degreasing agent may be supplied to the object to be plated PM through the nozzle 1.
  • the PM to be plated is subjected to an acid cleaning treatment with an acid cleaning agent.
  • an acid cleaning agent is, for example, an etching solution containing nitric acid (HNO 3 ) and diluted sulfuric acid (H 2 SO 4).
  • the acid cleaning agent may be supplied to the object to be plated PM through the nozzle 1.
  • the neutralizing agent is, for example, a cyanide-based sodium cyanide (NaCN), a diluted sodium hydroxide (NaOH) -based cleaning solution, or the like.
  • the neutralizing agent may be supplied to the object to be plated PM through the nozzle 1.
  • the object to be plated PM is fixed so as not to move when the plating film PF is formed on the portion PR to be plated on the surface to be plated PP. From the above, the object to be plated PM is prepared.
  • the plating electrode 100 is held by the connection mechanism 4.
  • the plating electrode 100 is held by the connection mechanism 4 in a state of being separated from the plated portion PR.
  • the nozzle 1 supplies the plating solution PS from the tip portion 1e to the holding portion 2, so that the plating solution PS is held by the holding portion 2. Further, the amount of the plating solution PS supplied to the holding portion 2 is adjusted. Specifically, the supply amount of the plating solution PS is adjusted by adjusting the pump 7 (see FIG. 9), the valve for supplying the plating solution PS, and the valve for adjusting the liquid amount. The plating solution PS is supplied to the holding portion 2 through the opening OP (see FIG. 1) of the nozzle 1. As a result, the plating solution PS is held in the holding portion 2.
  • the supply amount of the plating solution PS may be appropriately determined according to the in-plane dimension of the tip portion 1e. For example, when the in-plane dimension of the tip 1e is 10 mm ⁇ 10 mm and the in-plane area of the tip 1e is 100 mm 2 (1 cm 2 ), the supply amount of the plating solution PS is 5 cm 3 / min (5 cm 3 / min). Minutes) or more, preferably 20 cm 3 / min (minutes) or less. If the supply amount of the plating solution PS is less than 5 cm 3 / min (minutes), the supply amount of the plating solution PS is insufficient. Therefore, the film formation rate is lowered or the plating is burnt. As a result, a plating film having an appropriate film thickness cannot be obtained.
  • the plating solution PS is larger than 20 cm 3 / min (minutes), the plating solution PS is excessively supplied on the surface PP to be plated. As a result, the plating solution PS adheres to the region outside the plated portion PR of the plated surface PP. Therefore, the plating film is not formed in an appropriate region.
  • a plating film PF is formed on the PR to be plated.
  • the PR of the plated portion in the state where the plating film PF is not formed is shown by the alternate long and short dash line. Further, the PR of the plated portion in the state where the plating film PF is formed is shown by a solid line.
  • a plating film PF is formed by connecting the plating electrode 100 to the plated portion PR in a state where a voltage is applied to the nozzle 1 and the plated portion PR.
  • the PR to be plated is electro-silver plated with the plating solution PS (silver plating solution).
  • the plating film PF is formed on the portion PR to be plated so that the thickness of the plating film PF becomes uniform.
  • the cathode electrolysis treatment generally performed in the plating treatment is performed.
  • the conditions of the plating process are the plating time, the current density, and the temperature (liquid temperature) of the plating solution PS.
  • the plating time is the length of time that the holding portion 2 holding the plating solution PS comes into contact with the plated portion PR.
  • the current density is 0.2 A / cm 2 (20 A / dm 2 )
  • the liquid temperature is 25 ° C.
  • the thickness of the plated film PF formed is 5 ⁇ m. ..
  • the liquid temperature is preferably about 25 ° C., but the liquid temperature may be appropriately determined according to the state of the PR to be plated.
  • the plating time, current density and temperature of the plating solution PS may be appropriately determined.
  • a voltage is applied to the nozzle 1 and the PR of the plated portion.
  • the power supply 3 changes from an off state to an on state. In the off state, no voltage is applied to the nozzle 1 and the plated portion PR by the power supply 3. In the on state, a voltage is applied to the nozzle 1 and the plated portion PR by the power supply 3. Further, the connection mechanism 4 (see FIG. 7) moves the holding portion 2 so that the holding portion 2 comes into contact with the plated portion PR. At the moment when the holding portion 2 comes into contact with the plated portion PR, the nozzle 1 and the plated portion PR are energized.
  • the nozzle 1 moves on the plated portion PR while the voltage is applied to the nozzle 1 and the plated portion PR, thereby plating on the plated portion PR.
  • Liquid PS is supplied.
  • the nozzle 1 reciprocates linearly along the first direction DR1 by the connection mechanism 4 (see FIG. 7). If the surface area of the PR to be plated is large, the nozzle 1 may move along the first direction DR1 and the second direction DR2 (see FIG. 7). As will be described later, the nozzle 1 may rotate about the axis of the nozzle 1.
  • the plating solution PS is supplied to the plated portion PR of the plated surface PP.
  • the plating solution PS is supplied onto the plated portion PR by sliding the nozzle 1 on the plated portion PR in a state where a voltage is applied to the nozzle 1 and the plated portion PR.
  • the plating method according to this embodiment is so-called sliding plating.
  • the relative speed between the moving plating electrode 100 and the fixed PR to be plated is preferably 12.5 m / min (minutes) or more and 17.5 m / min (minutes). If the relative speed is less than 12.5 m / min (minutes), the plating film PF is likely to be burnt. Therefore, a sound plating film PF cannot be obtained. When the plating film PF is silver-plated, the plating film PF is particularly prone to burning. Further, if the relative speed is larger than 17.5 m / min (minutes), the deposited plating film PF is worn by the holding portion 2. As a result, the growth of the plating film PF is hindered, so that a plating film PF having a sufficient thickness cannot be obtained.
  • post-processing is performed as necessary.
  • the object to be plated PM is washed with water.
  • the plating film PF is formed on the PR to be plated. Subsequently, the action and effect of the present embodiment will be described.
  • the nozzle 1 is a nozzle 1 for supplying the plating solution PS through the tip portion 1e. Further, the nozzle 1 is configured so that a voltage is applied. Therefore, a voltage can be applied to the plating solution PS supplied by the nozzle 1 via the nozzle 1. Therefore, the plating film PF can be selectively formed on the portion to which the plating solution PS is supplied by the nozzle 1. Therefore, the plating film PF can be selectively formed on a part of the surface to be plated PP (part to be plated PR).
  • the plating film PF is formed on the surface PP to be plated larger than the size of the holding portion 2. Can not do it. That is, when the plating solution PS is supplied to the surface PP to be plated by contacting the entire surface of the surface PP to be plated with the holding portion 2, the dimensions of the product on which the plating film PF is formed are the dimensions of the holding portion 2. Limited to. Therefore, it is not possible to form a plating film PF on the surface PP of a medium-sized product or a large-sized product.
  • the plating film PF is formed on the portion of the surface PP to be plated that is in contact with the plating electrode 100. Therefore, it is not necessary for the entire surface of the surface to be plated PP to come into contact with the holding portion 2. Therefore, the dimensions of the product on which the plating film PF is formed are not limited to the dimensions of the holding portion 2. Therefore, the plating film PF can be formed on the portion PR to be plated even when the size of the portion PR to be plated is large.
  • the holding portion 2 covers the tip portion 1e of the nozzle 1. Therefore, the nozzle 1 can be connected to the plated portion PR via the holding portion 2.
  • the holding portion 2 is an insulator, and the nozzle 1 is a conductor. If the holding portion 2 does not cover the tip portion 1e of the nozzle 1, the plating electrode 100 and the plated portion PR are short-circuited due to the contact of the plating electrode 100 with the plated portion PR, so that the plating film PF is not formed. ..
  • the holding portion 2 covers the tip portion 1e of the nozzle 1, even if the plating electrode 100 comes into contact with the plated portion PR, the plated electrode 100 and the plated portion PR are not short-circuited. ..
  • the plating film PF can be formed in a state where the plating electrode 100 is in contact with the PR to be plated. Therefore, the plating film PF can be formed by sliding the plating electrode 100 on the PR to be plated. That is, the plating electrode 100 can be used for sliding plating.
  • the plating solution PS can be uniformly supplied to the plated portion PR as compared with the case where the plating solution PS is supplied in a state where the plating electrode 100 is separated from the plated portion PR. Therefore, it is possible to suppress the variation in the thickness of the plating film PF on the PR to be plated. Therefore, the quality of the plating film PF can be improved.
  • the tip portion 1e is provided with a plurality of openings OP.
  • the nozzle 1 is configured to supply the plating solution PS through a plurality of openings OP. Therefore, the flow rate of the plating solution PS can be controlled as compared with the case where a single opening OP is provided. As a result, the plating solution PS can be uniformly supplied. Therefore, it is possible to form a plating film PF having a uniform film thickness.
  • the nozzle 1 contains any material selected from the group consisting of platinum (Pt), titanium-platinum (Ti-Pt), titanium-iridium oxide (Ti-IrO2), stainless steel (SUS) and carbon (C). I'm out. Therefore, a voltage can be applied to the nozzle 1.
  • the plurality of openings OP are configured as slits. Therefore, the area of the opening OP per the length of the side of the opening OP can be made smaller than that in the case where the plurality of opening OPs are circular (see FIG. 2). As a result, as shown in FIG. 1, the amount of the plating solution PS supplied to the holding portion 2 can be reduced. Therefore, it is possible to prevent the plating solution PS from being excessively supplied to the holding portion 2. If the area of the opening OP is large, the amount of the plating solution PS supplied to the holding portion 2 becomes large, so that the plating solution PS is excessively supplied to the holding portion 2.
  • the amount of the plating solution PS supplied to the holding unit 2 exceeds the amount of the plating solution PS that can be held by the holding unit 2. Therefore, the plating solution PS flows out from the holding portion 2. This causes plating defects such as liquid stains.
  • the excessive supply of the plating solution PS to the holding portion 2 can be suppressed by forming the plurality of opening OPs as slits, so that plating defects such as liquid stains can be suppressed. Can be suppressed from occurring.
  • the outer shape of the tip portion 1e is square. Therefore, it is easier to supply the plating solution PS to the corners of the portion PR to be plated, which is rectangular, than when the outer shape of the nozzle 1 is circular. Therefore, the plating film PF can be formed at the corners of the squared portion PR to be plated.
  • the nozzle 1 is configured to supply a degreasing agent, an acid detergent, a neutralizing agent and pure water to the PR to be plated. Therefore, the nozzle 1 can be used to perform degreasing treatment, acid cleaning treatment, neutralization treatment, and water washing.
  • the power supply 3 is configured to apply a voltage to the plating electrode 100 and the plated portion PR.
  • the connection mechanism 4 is configured to connect the plating electrode 100 to the plated portion PR. Therefore, the plating film PF can be formed on the plated portion PR by the plating electrode 100 according to the first embodiment. Therefore, the plating film PF can be selectively formed on a part of the object to be plated PM.
  • the plating electrode 100 is connected to the plated portion PR in a state where a voltage is applied to the nozzle 1 and the plated portion PR.
  • the plating film PF is formed. Therefore, a voltage can be applied to the plating solution PS supplied by the nozzle 1 via the nozzle 1. Therefore, the plating film PF can be selectively formed on the portion (part to be plated PR) to which the plating solution PS is supplied by the nozzle 1. Therefore, the plating film PF can be selectively formed on a part of the object to be plated PM.
  • the plating electrode 100 slides on the plated portion PR in a state where the plated electrode 100 is connected to the plated portion PR. Therefore, the relative speed between the plating electrode 100 and the PR to be plated is more likely to be stable than when the plating electrode 100 moves away from the PR to be plated. Therefore, it is possible to form a plating film PF having a uniform thickness.
  • Embodiment 2 14 to 19, the configuration of the plating apparatus 200 according to the second embodiment will be described. Unless otherwise specified, the second embodiment has the same configuration and operation and effect as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the plating electrode 100 is configured to be rotatable around the axis AX of the nozzle 1 on the PR to be plated.
  • the plating electrode 100 is configured to rotate around the axis AX of the nozzle 1 on the PR to be plated.
  • the plating electrode 100 may be configured to slide while rotating on the PR to be plated, but in the present embodiment, the plating electrode 100 is configured to rotate. And is configured so that it does not slide.
  • the ratio of the surface area of the nozzle 1 to the surface area of the PR to be plated is 75% or more and 100% or less.
  • the ratio of the surface area of the tip portion 1e to the surface area of the portion PR to be plated is 20% or more and 75% or less, the plating film PF is likely to be uniformly deposited. Further, when the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is 20% or more and 75% or less, the precipitation rate of the plating film PF is stable.
  • the ratio of the surface area of the nozzle 1 to the surface area of the plated portion PR is less than 75%, the ratio of the plated portion PR to which the nozzle 1 is not in contact is large. Therefore, the film formation rate is low. Therefore, the production efficiency and the plating quality of the plating film PF are lowered.
  • the outer shape of the tip portion 1e according to the present embodiment is circular.
  • the shape of each of the plurality of openings OP is, for example, circular.
  • the dimensions of each of the plurality of openings OP may be the same as each other.
  • Each of the plurality of openings OPs may be arranged line-symmetrically with respect to the center of the tip portion 1e.
  • each of the plurality of openings OP may be configured as a slit.
  • the plurality of openings OP may include a plurality of fourth openings OP4, a plurality of fifth openings OP5, and a plurality of sixth openings OP6.
  • the plurality of fourth openings OP4 are arranged so as to form the outer shape of the first circle C1.
  • the plurality of fifth openings OP5 are arranged so as to form the outer shape of the second circle C2.
  • the plurality of sixth openings OP6 are arranged so as to form the outer shape of the third circle C3.
  • the second circle C2 is arranged so as to surround the first circle C1.
  • the third circle C3 is arranged so as to surround the second circle C2.
  • the first circle C1, the second circle C2, and the third circle C3 are arranged concentrically.
  • the plating electrode 100 is connected to the plated portion PR. Subsequently, as shown in FIG. 14, in the present embodiment, the plating electrode 100 is placed around the axis AX of the nozzle 1 on the plated portion PR in a state where the plated electrode 100 is connected to the plated portion PR. Rotate. The plating electrode 100 is rotated by the connection mechanism 4. As a result, the plating film PF is formed as shown in FIG. As will be described later, the plating electrode 100 may slide while rotating on the PR to be plated, but in the present embodiment, the plating electrode 100 does not slide.
  • the rotation speed of the plating electrode 100 is set so that the relative speed between the plating electrode 100 and the PR to be plated is 12.5 m / min (minutes) or more and 17.5 m / min (minutes) or less.
  • the connection mechanism 4 is configured such that the plating electrode 100 is rotatable around the axis AX of the nozzle 1 on the PR to be plated. ..
  • the plated electrode 100 is so small that the plated electrode 100 cannot move sufficiently linearly or curvedly, the plated electrode 100 cannot move sufficiently linearly or curvedly on the plated portion PR. ..
  • the PR of the plated portion such as the substrate and the minute pattern is so small that the plating electrode 100 cannot sufficiently move linearly or curvedly on the PR of the plated portion.
  • the connection mechanism 4 is configured so that the plating electrode 100 can rotate around the axis AX of the nozzle 1 on the PR to be plated. Therefore, even when the PR to be plated is small, the relative speed between the plating electrode 100 and the PR to be plated becomes sufficiently large by rotating the plating electrode 100 on the PR to be plated. Therefore, the plating film PF can be uniformly deposited. In addition, the rate at which the plating film PF precipitates can be stabilized. Therefore, even when the PR of the plated portion is small, it is possible to prevent the production efficiency and quality of the plating film PF from deteriorating.
  • the outer shape of the tip portion 1e is circular. If the outer shape of the tip portion 1e is square (see FIGS. 2 and 3), the contact time between the portion of the plated portion PR that contacts the corner of the tip portion 1e and the corner of the tip portion 1e is the tip portion. The contact time is different between the portion of the plated portion PR that contacts the center of 1e and the center of the tip portion 1e. Therefore, the contact time between the plated portion PR and the tip portion 1e differs depending on the position of the plated portion PR. Therefore, the plating film PF is not uniformly formed.
  • the contact time between the plated portion PR and the tip portion 1e is constant regardless of the position of the plated portion PR. Therefore, it is possible to prevent the plating film PF from being uniformly formed.
  • the plating electrode 100 is the shaft of the nozzle 1 on the plated portion PR in a state where the plated electrode 100 is connected to the plated portion PR. Rotate around AX. Therefore, even when the PR of the plated portion is small, it is possible to prevent the production efficiency and quality of the plating film PF from deteriorating.
  • Embodiment 3. 22 and 23 will be used to describe the third embodiment and the plating apparatus. Unless otherwise specified, the third embodiment has the same configuration and operation and effect as those of the second embodiment. Therefore, the same components as those in the second embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the connection mechanism 4 is configured to be slidable while rotating the plating electrode 100 around the axis AX of the nozzle 1 on the plated portion PR.
  • the plating electrode 100 is configured to slide on the PR to be plated while rotating around the axis AX of the nozzle 1. Therefore, the plating electrode 100 is configured to move linearly along the first direction DR1 while rotating around the axis AX of the nozzle 1 on the portion PR to be plated.
  • the plating electrode 100 moves linearly or curvedly along the first direction DR1 and the second direction DR2 while rotating around the axis AX of the nozzle 1 on the plated portion PR. It may be configured to do so.
  • the ratio of the surface area of the nozzle 1 to the surface area of the PR to be plated is preferably 20% or more and 90% or less.
  • the ratio of the surface area of the tip portion 1e to the surface area of the portion PR to be plated is 20% or more and 90% or less, the plating film PF is likely to be uniformly deposited. Further, when the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is 20% or more and 90% or less, the precipitation rate of the plating film PF is stable.
  • the ratio of the surface area of the nozzle 1 to the surface area of the plated portion PR is less than 20%, the ratio of the plated portion PR to which the nozzle 1 is not in contact is large. Therefore, the film formation rate is low. Therefore, the production efficiency and the plating quality of the plating film PF are lowered.
  • the ratio of the surface area of the nozzle 1 to the surface area of the PR to be plated is larger than 90%, the moving distance of the plating electrode 100 on the surface PP to be plated is small. Therefore, the moving speed of the plating electrode 100 becomes unstable. Therefore, the plating film PF does not precipitate uniformly. In addition, the precipitation rate becomes unstable. Therefore, the production efficiency and plating quality of the plating film PF are lowered.
  • the plating method according to the third embodiment will be described with reference to FIGS. 22 to 29.
  • the plated electrode 100 slides on the plated portion PR while rotating around the axis AX of the nozzle 1.
  • the plated electrode 100 is covered with the plated electrode 100 in a state of being connected to the plated portion PR as shown in FIGS. 24 to 26. It moves linearly along the first direction DR1 while rotating around the axis AX of the nozzle 1 on the plating portion PR.
  • the plating electrode 100 is connected to the plated portion PR as shown in FIGS. 27 to 29 for plating.
  • the electrode 100 moves in a curved shape while rotating around the axis AX of the nozzle 1 on the plated portion PR.
  • the connection mechanism 4 slides the plating electrode 100 on the plated portion PR while rotating it around the axis AX of the nozzle 1. It is configured to be movable. Therefore, the relative speed between the plating electrode 100 and the PR to be plated is more stable than when the plating electrode 100 slides without rotating or when it rotates without sliding. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF.
  • the relative speed between the plating electrode 100 and the portion PR to be plated becomes zero when the sliding direction of the plating electrode 100 is reversed. Therefore, the film forming speed and the plating quality are lowered.
  • the plating electrode 100 according to the present embodiment in a state where the plating electrode 100 is connected to the plated portion PR, the plated electrode 100 slides on the plated portion PR while rotating around the axis AX of the nozzle 1. Move. Therefore, the relative speed does not become zero even when the sliding direction is reversed. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF. As a result, the plating film PF can be uniformly formed. In addition, the precipitation rate of the plating film PF can be stabilized.
  • the plating electrode 100 rotates without sliding, the relative velocity at the center portion (axis AX) of the plating electrode 100 is smaller than the relative velocity at the end portion of the plating electrode 100. Therefore, in particular, when the size of the plated portion PR is about the same as that of the plating electrode 100, the film forming speed and the plating quality of the plating film PF are lowered. According to the plating electrode 100 according to the present embodiment, in a state where the plating electrode 100 is connected to the plated portion PR, the plated electrode 100 slides on the plated portion PR while rotating around the axis AX of the nozzle 1. Move.
  • the difference between the relative speed at the central portion and the relative velocity at the end portion of the plating electrode 100 becomes smaller as the plating electrode 100 slides. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF.
  • the plating electrode 100 in a state where the plating electrode 100 is connected to the plated portion PR, the plating electrode 100 is a nozzle on the plated portion PR. It slides while rotating around the axis AX of 1. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF.
  • Embodiment 4 The configurations of the plating electrode 100 and the plating apparatus 200 according to the fourth embodiment will be described with reference to FIGS. 30 to 47. Unless otherwise specified, the fourth embodiment has the same configuration and operation and effect as those of the third embodiment. Therefore, the same components as those in the third embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the nozzle 1 is cylindrical.
  • the nozzle 1 is a hollow columnar shape.
  • the nozzle 1 includes a side surface 1s.
  • the side surface 1s rises from the tip portion 1e.
  • the side surface 1s surrounds the tip portion 1e.
  • a plurality of penetrating portions TH are provided on the side surface 1s.
  • the plurality of penetrating portions TH penetrate the side surface 1s.
  • the nozzle 1 is configured to supply the plating solution PS (see FIG. 33) through the plurality of penetration portions TH.
  • the nozzle 1 may be configured to supply the plating solution PS (see FIG. 33) through the plurality of openings OP and the plurality of penetration portions TH.
  • each of the plurality of penetration portions TH is, for example, circular.
  • the shape of each of the plurality of penetration portions TH may be the same as each other.
  • each of the plurality of penetration portions TH may be configured as a slit. That is, the shape of each of the plurality of penetration portions TH may be rectangular.
  • the plurality of through portions TH may include a plurality of first through holes TH1 and a plurality of second through holes TH2.
  • the plurality of first through holes TH1 and the plurality of second through holes TH2 are provided on the side surface 1s.
  • the plurality of first through holes TH1 are arranged along the axial direction of the nozzle 1 below the plurality of second through holes TH2 in the gravity direction.
  • the plurality of first through holes TH1 are arranged closer to the tip portion 1e than the plurality of second through holes TH2 on the side surface 1s.
  • the opening area of the plurality of first through holes TH1 is smaller than the opening area of the plurality of second through holes TH2.
  • the diameter of the plurality of first through holes TH1 is smaller than the diameter of the plurality of second through holes TH2.
  • the holding portion 2 is a holding portion for holding the plating solution PS.
  • the holding portion 2 covers the side surface 1s of the nozzle 1 over the entire circumference.
  • the holding portion 2 covers a plurality of opening OPs and a plurality of penetrating portions TH.
  • the plating solution PS is supplied to the holding portion 2 through each of the plurality of openings OP and the plurality of penetration portions TH.
  • the object to be plated PM is, for example, a columnar shape.
  • the object to be plated PM is a hollow columnar shape.
  • the object to be plated PM includes a bottom portion PM1 and a tubular portion PM2.
  • the plated portion PR is the inner surface of the bottom portion PM1 and the tubular portion PM2.
  • the bottom PM1 is circular.
  • the tubular portion PM2 rises from the bottom PM1.
  • the tubular portion PM2 is hollow.
  • the tubular PM2 is cylindrical.
  • the inner diameter of the tubular portion PM2 is equal to or larger than the outer diameter of the plating electrode 100.
  • the bottom PM1 may be oval.
  • the tubular PM2 has a hollow elliptical column shape.
  • the inner diameter (minor diameter) of the tubular portion PM2 is equal to or larger than the outer diameter of the plating electrode 100.
  • the plating device 200 may further include a robot 300 and a control device 400.
  • the robot 300 is configured to move the plating electrode 100.
  • the robot 300 includes a force sensor 301.
  • the force sensor 301 is configured to measure the load applied to the plating electrode 100 by the contact between the plating electrode 100 and the PR to be plated.
  • the control device 400 is configured to control the movement of the plating electrode 100 by the robot 300. The method of controlling the robot 300 by the control device 400 will be described in detail later.
  • the plating device 200 may further include a robot 300, a control device 400, and a DC power supply 500.
  • the DC power supply 500 is connected to the control device 400.
  • the control device 400 is configured to control the robot 300 according to the electric resistance output 501 of the DC power supply 500. The method of controlling the robot 300 by the control device 400 will be described in detail later.
  • control device 400 may be connected to the pump 7.
  • the control device 400 may be configured to control the supply amount of the plating solution PS by the pump 7.
  • control device 400 may be configured to adjust the supply amount of the plating solution PS by the pump 7 based on the load measured by the force sensor 301.
  • control device 400 may be configured to adjust the supply amount of the plating solution PS by the pump 7 based on the electric resistance output 501.
  • step S101 the plating electrode 100 is connected to the plated portion PR by the robot 300. Specifically, the plating electrode 100 is connected to the inner surfaces of the bottom PM1 and the tubular PM2. The tip portion 1e of the nozzle 1 is connected to the bottom PM1 via the holding portion 2. The side surface 1s of the nozzle 1 is connected to the tubular portion PM2 via the holding portion 2.
  • the plated electrode 100 slides on the plated portion PR while rotating around the axis of the nozzle 1.
  • the plating electrode 100 moves so that the side portion of the plating electrode 100 keeps in contact with the inner surface of the tubular portion PM2.
  • the contact between the plating electrode 100 and the PR to be plated is controlled by being detected by the force sensor 301.
  • step S102 it is determined whether or not the load detected by the force sensor 301 is equal to or less than the lower limit value.
  • the load acting on the force sensor 301 is small.
  • the load acting on the force sensor 301 is large.
  • step S103 the robot 300 covers the plating electrode 100 until the contact area between the plating electrode 100 and the plated portion PR becomes equal to or more than the lower limit value. Bring it closer to the plated part PR. Then, the process returns to step S102. If the load acting on the force sensor 301 is not equal to or less than the lower limit, it is determined in step S104 whether the load detected by the force sensor 301 is equal to or greater than the upper limit.
  • the robot 300 in step S105 plated the plating electrode 100 until the contact area between the plating electrode 100 and the plated portion PR becomes less than the upper limit value. Keep away from the club PR. Then, the process returns to step S102. If the load detected by the force sensor 301 is not equal to or higher than the upper limit value, the contact control step ends.
  • the contact between the plating electrode 100 and the portion PR to be plated is a change in the electric resistance (electrical resistance output 501) due to a change in the contact area between the plating electrode 100 and the portion PR to be plated. Is controlled by being detected.
  • the plating electrode 100 is connected to the object to be plated PM by a robot.
  • a current is applied to the plating electrode 100.
  • step S203 it is determined whether or not the electrical resistance of the plating electrode 100 and the PR to be plated is equal to or higher than the specified upper limit value.
  • the contact area between the plating electrode 100 and the PR to be plated is small, the electrical resistance at the contact between the plating electrode 100 and the PR to be plated is large. Further, when the contact area between the plating electrode 100 and the PR to be plated is large, the electric resistance at the contact between the plating electrode 100 and the PR to be plated is small.
  • the robot 300 brings the plating electrode 100 closer to the portion to be plated PR until the electric resistance becomes less than the upper limit value. Then, the process returns to step S203. Further, when the electric resistance is not equal to or more than the upper limit value, it is determined in step S205 whether or not the electric resistance is equal to or less than the lower limit value.
  • step S206 the robot 300 keeps the plating electrode 100 away from the object to be plated PM until the electric resistance becomes larger than the lower limit value. Then, the process returns to step S203. If the electrical resistance is equal to or higher than the lower limit, the contact control step ends.
  • step S301 the plating electrode 100 is connected to the object to be plated PM.
  • step S302 it is determined whether or not the tip portion 1e of the nozzle 1 is in contact with the plated portion PR.
  • step S303 it is determined in step S303 whether or not the side surface 1s of the nozzle 1 is in contact with the plated portion PR.
  • the flow rate of the plating solution PS of the pump 7 corresponds to the contact area of the tip portion 1e and the side surface 1s with the plated portion PR in step S304. Is set to the value to be used.
  • the flow rate of the plating solution PS of the pump 7 is the tip portion 1e and the plated portion in step S305. It is set to a value corresponding to the contact area with PR.
  • step S306 it is determined in step S306 whether the side surface 1s of the nozzle 1 is in contact with the portion PR to be plated.
  • the flow rate of the plating solution PS of the pump 7 is in contact with the side surface 1s and the plated portion in step S307. It is set to a value corresponding to the contact area with PR. Further, when the tip portion 1e and the side surface 1s of the nozzle 1 are not in contact with the plated portion PR, the flow rate of the plating solution PS of the pump 7 is set to zero in step S308.
  • the nozzle 1 is configured to supply the plating solution PS through a plurality of penetration portions TH provided on the side surface 1s. Therefore, the plating solution PS can be supplied from the side surface 1s of the nozzle 1 to the inner surface of the tubular portion PM2 of the object to be plated PM. Therefore, the plating solution PS can be supplied to the inner surface of the tubular portion PM2 of the object to be plated PM having a cylindrical shape or an elliptical shape. Thereby, the plating film PF can be formed simultaneously on both the inner surface and the bottom PM1 of the tubular portion PM2 of the object to be plated through each of the plurality of penetration portions TH and the plurality of openings OP.
  • the nozzle 1 is cylindrical. Therefore, the plating solution PS can be supplied to the plated portion PR on the inner surface of the object to be plated PM having a cylindrical shape or an elliptical tubular shape. Further, by rotating the plating electrode 100 around the axial direction, a wider range of the plated portion PR on the inner surface of the plated portion PR having a cylindrical shape or an elliptical cylinder shape may be plated.
  • the opening OP may not be provided.
  • the opening area of the plurality of first through holes TH1 may be smaller than the opening area of the plurality of second through holes TH2. In this case, it is possible to reduce the difference in the supply amount of the plating solution PS from each penetrating portion TH due to gravity.
  • the control device 400 may be configured to control the supply amount of the plating solution PS by the pump 7.
  • the plating solution PS can be supplied according to the contact area between the plating electrode 100 and the portion PR to be plated, it is possible to suppress a defect in the quality of the plating film PF due to a shortage of the plating solution PS. Further, it is possible to suppress the deterioration of the plating solution PS more than necessary.
  • Embodiment 5 The configurations of the plating electrode 100 and the plating apparatus 200 according to the fifth embodiment will be described with reference to FIGS. 48 and 49. Unless otherwise specified, the fifth embodiment has the same configuration and operation and effect as those of the fourth embodiment. Therefore, the same components as those in the fourth embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • the plating electrode 100 further includes a transport material 22 for transporting the plating solution PS.
  • the plating electrode 100 may further include a protective portion 23.
  • the transport material 22 is filled inside the nozzle 1.
  • the transport material 22 includes a first end portion 221, a second end portion 222, and a connection portion 223.
  • the first end portion 221 is inserted inside the nozzle 1.
  • the first end portion 221 reaches the tip end portion 1e.
  • the first end portion 221 may be filled in each of the plurality of openings OP and the plurality of penetration portions TH.
  • the second end portion 222 is immersed in the plating solution PS.
  • the second end portion 222 is immersed in the plating solution PS in the reserve tank 52 by being arranged in the reserve tank 52.
  • the connection portion 223 connects the first end portion 221 and the second end portion 222.
  • the transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the first end portion 221 by a capillary phenomenon.
  • the transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the tip portion 1e by a capillary phenomenon.
  • the transport material 22 has a fine pore-like structure that causes a capillary phenomenon with respect to the plating solution PS. That is, the transport material 22 is made of a porous material that causes a capillary phenomenon with respect to the plating solution PS. The transport material 22 may have a fine tubular structure that causes a capillary phenomenon with respect to the plating solution PS. The transport material 22 is made of, for example, a sponge or a non-woven fabric. The transport material 22 is made of a material that does not react with the plating solution PS.
  • Each of the plurality of openings OP and the plurality of penetration portions TH may be filled with the transport material 22.
  • the transport material 22 may be configured to transport the plating solution PS from the second end 222 to each of the plurality of openings OP and the plurality of penetration portions TH by capillarity.
  • the transport material 22 may not be filled in each of the plurality of openings OP and the plurality of penetration portions TH. That is, each of the plurality of openings OP and the plurality of penetration portions TH may be configured in a cavity.
  • the transportation of the plating solution PS from the transport material 22 to the protective portion 23 at the tip portion 1e of the nozzle 1 may be realized by a capillary phenomenon caused by the transport material 22 filled in the opening OP, or in the cavity opening OP. May be realized by gravity rather than capillarity.
  • the tip portion 1e is arranged downward in FIG. 48, the tip portion 1e may face in another direction. That is, the tip portion 1e may be oriented sideways or upward, for example.
  • the protection unit 23 covers the connection unit 223. As a result, the protection unit 23 protects the connection unit 223. The first end portion 221 and the second end portion 222 are exposed from the protection portion 23. In FIG. 49, the protection unit 23 is not shown for convenience of explanation.
  • the maximum height position of the transport material 22 from the liquid surface of the plating solution PS is set to h (unit: m), and the transport material 22 and the plating solution PS are used.
  • the surface tension between them is T (unit: N / m)
  • the contact angle between the transport material 22 and the plating solution PS is ⁇
  • the density of the plating solution PS is ⁇ (unit: kg / m 3 )
  • the gravitational acceleration Is g (unit: m / s 2 ), and the following equation must be satisfied when the average pore diameter of the pore-shaped structure of the transport material 22 or the average pipe diameter of the tubular structure is r (unit: m). ..
  • the maximum height position of the transport material 22 from the plating solution PS is the maximum height position of the transport material 22 from the plating solution PS in the reserve tank 52. Further, in FIG. 49, the reserve tank 52 is arranged at a height position lower than that of the plating tank 51, but the reserve tank 52 may be arranged at a height position higher than that of the plating tank 51.
  • the transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the first end portion 221 by a capillary phenomenon. Has been done. Therefore, the plating solution PS can be transported to the tip portion 1e by the capillary phenomenon. Therefore, the plating solution PS can be transported to the tip portion 1e without using the pump 7 (see FIG. 9).
  • the plurality of openings OP are arranged below the plurality of penetration portions TH along the direction of gravity. Therefore, if the plating solution PS is transported to the plurality of openings OP and the plurality of penetration portions TH only by the pump 7 (see FIG. 9) and gravity, the supply amount of the plating solution PS in the plurality of openings OP will be increased. It is larger than the plating solution PS supply amount in the plurality of penetration portions TH. Therefore, if the plating solution PS is transported to the tip portion 1e by the pump 7 (see FIG. 9) and gravity, the supply amount of the plating solution PS becomes non-uniform depending on the height position, and the plating quality also depends on the height position. It becomes non-uniform.
  • the transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the first end portion 221 by a capillary phenomenon.
  • the amount of the plating solution PS supplied to each of the plurality of openings OP and the plurality of penetrating portions TH as compared with the case where the plating solution PS is transported to the tip portion 1e by the pump 7 (see FIG. 9) and gravity. Can be made uniform. Therefore, the quality of plating can be made uniform.
  • a plated electrode 100 (see FIG. 22) having a circular tip portion 1e was used.
  • the plating method according to the first to third embodiments is the plating method according to the first embodiment (see FIG. 4).
  • the plating method according to Examples 4 to 6 is the plating method according to the third embodiment (see FIG. 22).
  • the plating method according to Examples 7 to 9 is the plating method according to the second embodiment (see FIG. 14).
  • the plating method according to Examples 10 to 12 is the plating method according to the third embodiment (see FIG. 22).
  • Examples 1 to 3 the plating electrode 100 slid and did not rotate.
  • Examples 4 to 6 the plating electrode 100 slid and rotated.
  • Examples 7 to 9 the plating electrode 100 did not slide and rotated.
  • Examples 10 to 12 the plating electrode 100 slid and rotated.
  • the outer diameter of the plating electrode 100 is 10 mm.
  • the material of the nozzle 1 is platinum (Pt).
  • the current density is 15 A / dm 2 .
  • the plating electrode 100 is configured as an anode.
  • the plating solution PS is a silver plating solution.
  • the silver plating solution is cyanide silver plating solution 30820 (manufactured by Aikoh Co., Ltd.).
  • the target values for the thickness (film thickness) of the plating film PF are different.
  • the target value of the film thickness is 2 ⁇ m.
  • the target value of the film thickness is 5 ⁇ m.
  • the target value of the film thickness is 10 ⁇ m.
  • the target value of the film thickness is 2 ⁇ m.
  • the target value of the film thickness is 5 ⁇ m.
  • the target value of the film thickness is 10 ⁇ m.
  • the target value of the film thickness is 2 ⁇ m.
  • the target value of the film thickness is 5 ⁇ m.
  • the target value of the film thickness is 10 ⁇ m.
  • the target value of the film thickness is 2 ⁇ m.
  • the target value of the film thickness is 5 ⁇ m.
  • the target value of the film thickness is 10 ⁇ m.
  • the target value of the film thickness is 2 ⁇ m.
  • the target value of the film thickness is 5 ⁇ m.
  • the target value of the film thickness is 10 ⁇ m.
  • a plating film PF was formed on the first object to be plated PM.
  • the material of the first object to be plated PM is oxygen-free copper (C1011 material).
  • the first object to be plated PM is a square lumber having dimensions of 40 mm ⁇ 40 mm ⁇ 10 mm.
  • the dimension of the plated portion PR of the first object to be plated PM is 10 mm ⁇ 40 mm.
  • the surface to be plated PP of the first object to be plated PM has a planar shape.
  • a plating film PF was formed on the second object to be plated PM.
  • the material of the second object to be plated PM is oxygen-free copper (C1011 material).
  • the second object to be plated PM is a square lumber having dimensions of 20 mm ⁇ 20 mm ⁇ 10 mm.
  • the PR of the plated portion of the second object to be plated PM is a circle having a diameter of 12.5 mm.
  • the plated portion PR is configured as a flat pad.
  • a plating film PF was formed on the object to be plated PM by brush plating. Therefore, a brush-shaped electrode was used as the plating electrode 100.
  • the material of the electrode is platinum (Pt).
  • the current density is 15 A / dm 2 .
  • a plating film PF was formed on the first object to be plated PM.
  • a plating film PF was formed on the second object to be plated PM.
  • the target value of the film thickness is 2 ⁇ m.
  • the target value of the film thickness is 5 ⁇ m.
  • the target value of the film thickness is 10 ⁇ m.
  • the target value of the film thickness is 2 ⁇ m.
  • the target value of the film thickness is 5 ⁇ m.
  • the target value of the film thickness is 10 ⁇ m.
  • Examples 1 to 12 and Comparative Examples 1 to 6 the plating methods according to Examples 1 to 12 and Comparative Examples 1 to 6 will be described.
  • Examples 1 to 12 and Comparative Examples 1 to 6 the following degreasing treatment to neutralization treatment were carried out in common.
  • degreasing treatment was carried out on the object to be plated PM.
  • the object to be plated PM was degreased with a degreasing agent ELC-400 (manufactured by World Metal Co., Ltd.).
  • ELC-400 manufactured by World Metal Co., Ltd.
  • the organic matter on the surface of the object to be plated PM was removed.
  • the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water.
  • an acid cleaning treatment was carried out on the PM to be plated. Specifically, the object to be plated PM was washed with 30 wt% (% by weight) nitric acid. Subsequently, the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water.
  • a neutralization treatment was carried out on the object to be plated PM.
  • the object to be plated PM was neutralized with a neutralizing agent # 411Y (manufactured by Dipsol Co., Ltd.). This removed traces of acid that were not removed by washing with water after the pickling treatment. Subsequently, the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water.
  • a plating film PF was formed on the first object to be plated PM by the plating method according to the first embodiment (see FIG. 4). Therefore, the plating electrode 100 slides on the plated portion PR of the first object to be plated PM along the first direction DR1.
  • a plating film PF was formed on the first object to be plated PM by the plating method according to the third embodiment (see FIG. 22). Therefore, the plating electrode 100 slides on the plated portion PR of the first object to be plated PM along the first direction DR1 and rotates around the axis AX of the nozzle 1 on the plated portion PR.
  • a plating film PF was formed on the second object to be plated PM by the plating method according to the second embodiment (see FIG. 14). Therefore, the plating electrode 100 rotated around the axis AX of the nozzle 1 on the PR to be plated.
  • a plating film PF was formed on the second object to be plated PM by the plating method according to the third embodiment (see FIG. 22). Therefore, the plating electrode 100 slides on the plated portion PR of the first object to be plated PM along the first direction DR1 and rotates around the axis AX of the nozzle 1 on the plated portion PR.
  • Example 1 to 12 and Comparative Examples 1 to 6 the following water washing treatment was carried out in common.
  • the object to be plated PM was washed with water. Specifically, the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water. The removed material PM to be plated was dried.
  • the uniformity of the film thickness was evaluated by measuring the film thickness with a fluorescent X-ray film thickness meter.
  • the position of 0 mm and the position 10 mm away from the first end, where the first end of the plated portion PR of the first object to be plated PM is 0 mm.
  • the film thickness was measured at a total of 5 locations: a position 20 mm away from the first end, a position 30 mm away from the first end, and a position 40 mm away from the first end.
  • the position 40 mm away from the first end is the second end of the plated portion PR.
  • the center of the PR to be plated is 0 mm, and the position is 0 mm, the position is 10 mm away from the center in the radial direction, and the position is 12.5 mm away from the center in the radial direction.
  • the film thickness was measured at a total of three locations. The position separated from the center by 12.5 mm in the radial direction is the outer peripheral end portion of the plated portion PR.
  • Example 1 the film thickness variation was 10.5%. In Example 2, the film thickness variation was 8.6%. In Example 3, the film thickness variation was 8.5%. In Example 4, the film thickness variation was 4.3%. In Example 5, the film thickness variation was 4.4%. In Example 6, the film thickness variation was 4.3%. In Example 7, the film thickness variation was 42.4%. In Example 8, the film thickness variation was 45.3%. In Example 9, the film thickness variation was 45.3%. In Example 10, the film thickness variation was 9.1%. In Example 11, the film thickness variation was 7.2%. In Example 12, the film thickness variation was 6.8%.
  • the film thickness variation was 27.2%.
  • the film thickness variation was 27.0%.
  • the film thickness variation was 26.8%.
  • the film thickness variation was 58.9%.
  • the film thickness variation was 65.3%.
  • the film thickness variation was 49.1%.
  • the presence or absence of plating burn was evaluated by observing the appearance. Specifically, the presence or absence of plating burn was evaluated by observing the surface of the plating film PF with an optical microscope having a magnification of 100 times.
  • the adhesion of the plating film PF to the PR to be plated was evaluated by the peeling test of the plating film PF.
  • the evaluation of the adhesion was carried out based on the tape test method specified in JIS standard H8504 (1999). Specifically, it was evaluated whether or not the plating film PF was peeled off from the plated portion PR by peeling off the cellophane tape (registered trademark) manufactured by Nichiban Co., Ltd., which was in close contact with the plating film PF.
  • the examples of the plating method of the present disclosure are superior to the comparative examples of brush plating in that plating burn does not occur and the adhesion is high. Further, it was shown that Examples 1 to 6 and 9 to 12 are superior to the comparative examples relating to brush plating in that the variation in film thickness is small. Therefore, it was shown that the plating electrode 100 according to the present disclosure slides on the PR to be plated to obtain a plating film PF having a smaller variation in film thickness than brush plating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

A plating electrode (100) comprises a nozzle (1) and a retaining part (2). The nozzle (1) includes a tip section (1e). The nozzle (1) is for supplying a plating solution (PS) through the tip section (1e). The retaining part (2) covers the tip section (1e) of the nozzle (1). The retaining part (2) is for retaining the plating solution (PS). The nozzle (1) configured so that a voltage is applied thereto.

Description

めっき電極、めっき装置およびめっき方法Plating electrode, plating equipment and plating method
 本開示は、めっき電極、めっき装置およびめっき方法に関するものである。 This disclosure relates to a plating electrode, a plating apparatus, and a plating method.
 金属材料にめっき膜を形成する方法の1つとして、電気めっきが用いられている。電気めっきでは、マスキング作業が、めっき前の準備作業として行われる。マスキング作業では、被めっき部以外の部分が絶縁テープおよびレジスト等のマスキング材によって保護される。これにより、被めっき部以外にめっき膜が形成されることが抑制される。しかしながら、マスキング作業によってリードタイムが増加するため、生産の整流化が妨げられるという問題がある。 Electroplating is used as one of the methods for forming a plating film on a metal material. In electroplating, masking work is performed as preparatory work before plating. In the masking work, the portion other than the portion to be plated is protected by a masking material such as an insulating tape and a resist. This suppresses the formation of a plating film other than the portion to be plated. However, since the lead time is increased by the masking work, there is a problem that the rectification of production is hindered.
 上記の問題を解決するめっき方法として、例えば、摺動めっき法と呼ばれるめっき方法がある。例えば、国際公開2019/107339号(特許文献1)には、摺動めっき法によって被めっき物の被めっき面にめっき膜を形成するためのめっき装置が記載されている。めっき装置は、めっき液保持部(保持部)と、回転電極を含んでいる。めっき液保持部は、回転電極上に配置されている。めっき液保持部は、めっき液を保持している。被めっき物は、めっき液保持部上に配置されている。 As a plating method that solves the above problems, for example, there is a plating method called a sliding plating method. For example, International Publication No. 2019/10739 (Patent Document 1) describes a plating apparatus for forming a plating film on the surface to be plated by a sliding plating method. The plating apparatus includes a plating solution holding portion (holding portion) and a rotating electrode. The plating solution holding portion is arranged on the rotating electrode. The plating solution holding portion holds the plating solution. The object to be plated is arranged on the plating solution holding portion.
国際公開2019/107339号International Publication No. 2019/10739
 上記公報に記載されためっき装置では、被めっき物の被めっき面の全体がめっき液保持部上に配置される。このため、被めっき面の全体にわたってめっき膜が形成される。したがって、被めっき面の一部である被めっき部に選択的にめっき膜を形成することができない。 In the plating apparatus described in the above publication, the entire surface to be plated of the object to be plated is arranged on the plating solution holding portion. Therefore, a plating film is formed over the entire surface to be plated. Therefore, it is not possible to selectively form a plating film on the portion to be plated which is a part of the surface to be plated.
 本開示は上記課題に鑑みてなされたものであり、その目的は、選択的にめっき膜を形成することができるめっき電極、めっき装置およびめっき方法を提供することである。 The present disclosure has been made in view of the above problems, and an object thereof is to provide a plating electrode, a plating apparatus, and a plating method capable of selectively forming a plating film.
 本開示のめっき電極は、ノズルと、保持部とを備えている。ノズルは、先端部を含んでいる。ノズルは、先端部を通してめっき液を供給するためのノズルである。保持部は、めっき液を保持するための保持部である。保持部は、ノズルの先端部を覆っている。ノズルは、電圧が印加されるように構成されている。 The plated electrode of the present disclosure includes a nozzle and a holding portion. The nozzle includes the tip. The nozzle is a nozzle for supplying the plating solution through the tip portion. The holding part is a holding part for holding the plating solution. The holding portion covers the tip portion of the nozzle. The nozzle is configured to apply a voltage.
 本開示のめっき電極によれば、ノズルは、電圧が印加されるように構成されている。このため、ノズルによって供給されためっき液にノズルによって電圧を印加することができる。よって、ノズルによってめっき液が供給された部分にめっき膜を形成することができる。したがって、選択的にめっき膜を形成することができる。 According to the plated electrodes of the present disclosure, the nozzle is configured to apply a voltage. Therefore, a voltage can be applied to the plating solution supplied by the nozzle by the nozzle. Therefore, a plating film can be formed on the portion to which the plating solution is supplied by the nozzle. Therefore, the plating film can be selectively formed.
実施の形態1に係るめっき電極および電源の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the plating electrode and the power source which concerns on Embodiment 1. FIG. 実施の形態1に係るノズルの構成を概略的に示す底面図である。It is a bottom view which shows schematic structure of the nozzle which concerns on Embodiment 1. FIG. 実施の形態1に係るノズルの他の構成を概略的に示す底面図である。It is a bottom view which shows the other structure of the nozzle which concerns on Embodiment 1. 実施の形態1に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the plating apparatus which concerns on Embodiment 1. FIG. 第1の比較例に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the plating apparatus which concerns on 1st comparative example. 第2の比較例に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the plating apparatus which concerns on 2nd comparative example. 実施の形態1に係るめっき電極が被めっき部に接触した状態のめっき装置の構成を概略的に示す側面図である。FIG. 5 is a side view schematically showing a configuration of a plating apparatus in a state where the plating electrode according to the first embodiment is in contact with a portion to be plated. 実施の形態1に係るめっき電極が被めっき部から離れた状態のめっき装置の構成を概略的に示す側面図である。FIG. 5 is a side view schematically showing a configuration of a plating apparatus in a state where the plating electrode according to the first embodiment is separated from a portion to be plated. 実施の形態1に係るめっき装置の他の構成を概略的に示す斜視図である。It is a perspective view which shows the other structure of the plating apparatus which concerns on Embodiment 1. 実施の形態1に係るめっき方法を概略的に示すフローチャートである。It is a flowchart which shows the plating method which concerns on Embodiment 1. 実施の形態1に係るめっき電極が被めっき部から離れて配置されている様子を概略的に示す斜視図である。It is a perspective view schematically showing the appearance that the plating electrode which concerns on Embodiment 1 is arranged away from the part to be plated. 実施の形態1に係るめっき電極が被めっき部において摺動している様子を概略的に示す斜視図である。It is a perspective view which shows the state which the plating electrode which concerns on Embodiment 1 slides in the part to be plated. 実施の形態1に係るめっき電極が被めっき部において摺動している他の様子を概略的に示す斜視図である。FIG. 5 is a perspective view schematically showing another state in which the plated electrode according to the first embodiment is sliding in the portion to be plated. 実施の形態2に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the plating apparatus which concerns on Embodiment 2. FIG. 第3の比較例に係るめっき電極が被めっき部にめっき膜を形成する前に被めっき部から離れて配置された様子を概略的に示す斜視図である。It is a perspective view which shows typically the appearance that the plating electrode which concerns on 3rd comparative example was arranged away from the plated part before forming the plating film in the plated part. 第3の比較例に係るめっき電極が被めっき部において回転している様子を概略的に示す斜視図である。It is a perspective view which shows roughly the appearance that the plating electrode which concerns on 3rd comparative example is rotating in the part to be plated. 第3の比較例に係るめっき電極が被めっき部にめっき膜を形成し終えて被めっき部から離れて配置された様子を概略的に示す斜視図である。It is a perspective view which shows roughly the appearance that the plating electrode which concerns on 3rd comparative example has finished forming the plating film in the part to be plated, and is arranged away from the part to be plated. 実施の形態2に係るノズルの構成を概略的に示す底面図である。It is a bottom view which shows schematic structure of the nozzle which concerns on Embodiment 2. FIG. 実施の形態2に係るノズルの他の構成を概略的に示す底面図である。It is a bottom view which shows the other structure of the nozzle which concerns on Embodiment 2. 実施の形態2に係るめっき電極が被めっき部にめっき膜を形成する前に被めっき部から離れて配置された様子を概略的に示す斜視図である。FIG. 5 is a perspective view schematically showing a state in which the plating electrodes according to the second embodiment are arranged away from the plated portion before forming a plating film on the plated portion. 実施の形態2に係るめっき電極が被めっき部にめっき膜を形成し終えて被めっき部から離れて配置された様子を概略的に示す斜視図である。It is a perspective view which shows typically the appearance that the plating electrode which concerns on Embodiment 2 has finished forming the plating film in the part to be plated, and is arranged away from the part to be plated. 実施の形態3に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the plating apparatus which concerns on Embodiment 3. FIG. 実施の形態3の変形例に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view which shows the structure of the plating apparatus which concerns on the modification of Embodiment 3. FIG. 実施の形態3に係るめっき電極が被めっき部において回転しながら摺動している第1の様子を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing a first state in which the plating electrode according to the third embodiment slides while rotating in a portion to be plated. 実施の形態3に係るめっき電極が被めっき部において回転しながら摺動している第2の様子を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing a second state in which the plating electrode according to the third embodiment slides while rotating in the portion to be plated. 実施の形態3に係るめっき電極が被めっき部において回転しながら摺動している第3の様子を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing a third state in which the plating electrode according to the third embodiment slides while rotating in the portion to be plated. 実施の形態3の変形例に係るめっき電極が被めっき部にめっき膜を形成する前に被めっき部から離れて配置された様子を概略的に示す斜視図である。It is a perspective view which shows typically the appearance that the plating electrode which concerns on the modification of Embodiment 3 is arranged away from the plated part before forming the plating film in the plated part. 実施の形態3の変形例に係るめっき電極が被めっき部において回転しながら摺動している様子を概略的に示す斜視図である。It is a perspective view which shows typically the appearance that the plating electrode which concerns on the modification of Embodiment 3 slides while rotating in the part to be plated. 実施の形態3の変形例に係るめっき電極が被めっき部にめっき膜を形成し終えて被めっき部から離れて配置された様子を概略的に示す斜視図である。It is a perspective view which shows typically the appearance that the plating electrode which concerns on the modification of Embodiment 3 has finished forming the plating film in the part to be plated, and is arranged away from the part to be plated. 実施の形態4に係るノズルの構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the nozzle which concerns on Embodiment 4. FIG. 実施の形態4の第1の変形例に係るノズルの構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the nozzle which concerns on 1st modification of Embodiment 4. 実施の形態4の第2の変形例に係るノズルの構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the nozzle which concerns on the 2nd modification of Embodiment 4. 実施の形態4に係るめっき装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the plating apparatus which concerns on Embodiment 4. FIG. 図33のXXXIV-XXXIV線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line XXXIV-XXXIV of FIG. 33. 実施の形態4の第3の変形例に係るめっき装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the plating apparatus which concerns on the 3rd modification of Embodiment 4. 図35のXXXVI-XXXVI線に沿った断面図である。It is sectional drawing along the XXXVI-XXXVI line of FIG. 35. 実施の形態4の第4の変形例に係るめっき装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the plating apparatus which concerns on 4th modification of Embodiment 4. 実施の形態4の第4の変形例に係るめっき装置の構成を概略的に示す機能ブロック図である。It is a functional block diagram schematically showing the structure of the plating apparatus which concerns on the 4th modification of Embodiment 4. 実施の形態4の第5の変形例に係るめっき装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the plating apparatus which concerns on 5th modification of Embodiment 4. 実施の形態4の第5の変形例に係るめっき装置の構成を概略的に示す機能ブロック図である。FIG. 3 is a functional block diagram schematically showing a configuration of a plating apparatus according to a fifth modification of the fourth embodiment. 実施の形態4の第6の変形例に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the plating apparatus which concerns on the 6th modification of Embodiment 4. 実施の形態4の第6の変形例に係るめっき装置の構成を概略的に示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the plating apparatus which concerns on the 6th modification of Embodiment 4. 実施の形態4の第7の変形例に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view schematically showing the structure of the plating apparatus which concerns on the 7th modification of Embodiment 4. 実施の形態4の第7の変形例に係るめっき装置の構成を概略的に示す機能ブロック図である。FIG. 3 is a functional block diagram schematically showing a configuration of a plating apparatus according to a seventh modification of the fourth embodiment. 実施の形態4の第4の変形例に係るめっき装置の制御方法を概略的に示すフロー図である。It is a flow chart which shows schematic the control method of the plating apparatus which concerns on 4th modification of Embodiment 4. 実施の形態4の第5の変形例に係るめっき装置の制御方法を概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a control method of a plating apparatus according to a fifth modification of the fourth embodiment. 実施の形態4の第6の変形例に係るめっき液の流量の制御方法を概略的に示すフロー図である。It is a flow chart schematically showing the control method of the flow rate of the plating solution which concerns on the 6th modification of Embodiment 4. 実施の形態5に係るめっき装置の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the plating apparatus which concerns on Embodiment 5. 実施の形態5に係るめっき装置の構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the plating apparatus which concerns on Embodiment 5.
 以下、実施の形態について図に基づいて説明する。なお、以下では、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。 Hereinafter, embodiments will be described with reference to the figures. In the following, the same or corresponding parts will be designated by the same reference numerals, and duplicate explanations will not be repeated.
 実施の形態1.
 図1~図8を用いて、実施の形態1に係るめっき電極100の構成を説明する。
Embodiment 1.
The configuration of the plating electrode 100 according to the first embodiment will be described with reference to FIGS. 1 to 8.
 図1に示されるように、めっき電極100は、めっき液PSによって被めっき物PMの被めっき面PPの一部にめっき膜PFを形成するためのめっき電極である。被めっき面PPは、被めっき物PMを構成する面の1つである。めっき電極100は、被めっき部PRにめっき膜PFを形成するためのめっき電極である。被めっき部PRは、被めっき面PPの一部である。 As shown in FIG. 1, the plating electrode 100 is a plating electrode for forming a plating film PF on a part of the surface PP of the object to be plated PM by the plating solution PS. The surface to be plated PP is one of the surfaces constituting the object to be plated PM. The plating electrode 100 is a plating electrode for forming a plating film PF on the PR to be plated. The part to be plated PR is a part of the surface to be plated PP.
 めっき電極100は、ノズル1と、保持部2とを含んでいる。ノズル1は、先端部1eを含んでいる。ノズル1は、先端部1eを通してめっき液PSを供給するためのノズルである。ノズル1は、電圧が印加されるように構成されている。めっき電極100および被めっき部PRは、電源3に電気的に接続されている。このため、本実施の形態に係るめっき電極100は、めっき液PSを供給するノズルとしての機能および電圧が印加される電極としての機能を有している。 The plating electrode 100 includes a nozzle 1 and a holding portion 2. The nozzle 1 includes a tip portion 1e. The nozzle 1 is a nozzle for supplying the plating solution PS through the tip portion 1e. The nozzle 1 is configured to apply a voltage. The plating electrode 100 and the PR to be plated are electrically connected to the power supply 3. Therefore, the plating electrode 100 according to the present embodiment has a function as a nozzle for supplying the plating solution PS and a function as an electrode to which a voltage is applied.
 ノズル1の材料は、めっき液PSに溶融しない材料またはめっき液PSに溶融しにくい材料である。ノズル1の材料は、導体である。ノズル1は、白金(Pt)、チタン-白金(Ti-Pt)、チタン-酸化イリジウム(Ti-IrO)、ステンレス(SUS)およびカーボン(C)からなる群から選択されるいずれかの材料を含んでいる。ノズル1の材料がチタン(Ti)-白金(Pt)である場合、チタン(Ti)基体上に白金(Pt)箔がクラッドされたクラッド電極がノズル1として用いられることが好ましい。また、ノズル1の材料がチタン(Ti)-白金(Pt)である場合、チタン(Ti)基体上に白金(Pt)めっき膜PFが形成された被めっき電極がノズル1として用いられてもよい。 The material of the nozzle 1 is a material that does not melt in the plating solution PS or a material that does not easily melt in the plating solution PS. The material of the nozzle 1 is a conductor. The nozzle 1 is made of any material selected from the group consisting of platinum (Pt), titanium-platinum (Ti-Pt), titanium-iridium oxide (Ti-IrO 2 ), stainless steel (SUS) and carbon (C). Includes. When the material of the nozzle 1 is titanium (Ti) -platinum (Pt), it is preferable that a clad electrode in which a platinum (Pt) foil is clad on a titanium (Ti) substrate is used as the nozzle 1. When the material of the nozzle 1 is titanium (Ti) -platinum (Pt), an electrode to be plated in which a platinum (Pt) plating film PF is formed on a titanium (Ti) substrate may be used as the nozzle 1. ..
 ノズル1は、後述される脱脂処理剤、酸洗浄剤、中和処理剤および純水を被めっき部PRに供給するように構成されていてもよい。 The nozzle 1 may be configured to supply a degreasing agent, an acid detergent, a neutralizing agent, and pure water, which will be described later, to the PR to be plated.
 保持部2は、めっき液PSを保持するための保持部である。このため、保持部2は、めっき液PSを保持するように構成されている。保持部2は、めっき液PSが保持部2に含浸されるように構成されている。めっき液PSが保持部2に含浸されることで、めっき液PSが保持部2に保持されている。めっき液PSが保持部2に含浸された状態において、保持部2の表面は、めっき液PSに濡れている。めっき液PSが保持部2に含浸された状態において、保持部2は被めっき部PRに接している。ノズル1は、めっき液PSが含浸された保持部2を介して被めっき部PRに接続されている。保持部2の材料は、例えば、織布または不織布である。保持部2がめっき液PSを保持できるのであれば、保持部2の材料は適宜に決められてもよい。保持部2は、絶縁体である。 The holding portion 2 is a holding portion for holding the plating solution PS. Therefore, the holding portion 2 is configured to hold the plating solution PS. The holding portion 2 is configured so that the plating solution PS is impregnated into the holding portion 2. By impregnating the holding portion 2 with the plating solution PS, the plating solution PS is held in the holding portion 2. In a state where the holding portion 2 is impregnated with the plating solution PS, the surface of the holding portion 2 is wet with the plating solution PS. In a state where the holding portion 2 is impregnated with the plating solution PS, the holding portion 2 is in contact with the portion to be plated PR. The nozzle 1 is connected to the plated portion PR via the holding portion 2 impregnated with the plating solution PS. The material of the holding portion 2 is, for example, a woven fabric or a non-woven fabric. As long as the holding portion 2 can hold the plating solution PS, the material of the holding portion 2 may be appropriately determined. The holding portion 2 is an insulator.
 保持部2は、ノズル1の先端部1eを覆っている。保持部2は、ノズル1の側面1sを覆っていてもよい。保持部2は、平坦な面を有している。保持部2は、平坦な面において被めっき部PRと接触している。保持部2が先端部1eを覆っていれば、保持部2の形状は適宜に決められてもよい。 The holding portion 2 covers the tip portion 1e of the nozzle 1. The holding portion 2 may cover the side surface 1s of the nozzle 1. The holding portion 2 has a flat surface. The holding portion 2 is in contact with the plated portion PR on a flat surface. As long as the holding portion 2 covers the tip portion 1e, the shape of the holding portion 2 may be appropriately determined.
 先端部1eには、複数の開口部OPが設けられている。保持部2は、複数の開口部OPの各々を覆っている。ノズル1は、複数の開口部OPを通してめっき液PSを供給するように構成されている。 The tip portion 1e is provided with a plurality of openings OP. The holding portion 2 covers each of the plurality of openings OP. The nozzle 1 is configured to supply the plating solution PS through a plurality of openings OP.
 図2に示されるように、複数の開口部OPの各々の形状は、例えば、円形である。複数の開口部OPの各々の寸法は、互いに同じであってもよい。隣り合う複数の開口部OP同士の間隔は、互いに同じであってもよい。このため、複数の開口部OPは、均一に配置されていてもよい。複数の開口部OPの各々は、先端部1eの中心に対して点対称に設けられていてもよい。 As shown in FIG. 2, the shape of each of the plurality of openings OP is, for example, circular. The dimensions of each of the plurality of openings OP may be the same as each other. The distance between the plurality of adjacent openings OPs may be the same as each other. Therefore, the plurality of openings OP may be uniformly arranged. Each of the plurality of openings OP may be provided point-symmetrically with respect to the center of the tip portion 1e.
 また、図3に示されるように、複数の開口部OPの各々の形状は、例えば、方形状などの多角形であってもよい。このため、複数の開口部OPの各々は、スリットとして構成されていてもよい。本実施の形態において、スリットは、細長い矩形状を有する貫通部である。なお、めっき液PSが均一に供給にされるのであれば、開口部OPの形状および配置は適宜に決められてもよい。 Further, as shown in FIG. 3, the shape of each of the plurality of openings OP may be a polygon such as a square shape. Therefore, each of the plurality of openings OP may be configured as a slit. In this embodiment, the slit is a penetrating portion having an elongated rectangular shape. If the plating solution PS is uniformly supplied, the shape and arrangement of the opening OP may be appropriately determined.
 複数の開口部OPは、複数の第1開口部OP1、複数の第2開口部OP2および複数の第3開口部OP3を含んでいてもよい。複数の第1開口部OP1は、第1の方形Q1の外形を構成するように配置されている。複数の第2開口部OP2は、第2の方形Q2の外形を構成するように配置されている。複数の第3開口部OP3は、第3の方形Q3の外形を構成するように配置されている。第2の方形Q2は、第1の方形Q1を取り囲むように配置されている。第3の方形Q3は、第2の方形Q2を取り囲むように配置されている。 The plurality of openings OP may include a plurality of first openings OP1, a plurality of second openings OP2, and a plurality of third openings OP3. The plurality of first openings OP1 are arranged so as to form the outer shape of the first square Q1. The plurality of second openings OP2 are arranged so as to form the outer shape of the second square Q2. The plurality of third openings OP3 are arranged so as to form the outer shape of the third square Q3. The second square Q2 is arranged so as to surround the first square Q1. The third square Q3 is arranged so as to surround the second square Q2.
 図1~図3に示されるように、先端部1eの開口率は、例えば、5%以上25%以下である。本実施の形態において、開口率は、先端部1e全体の面積に対する開口部OPの面積の割合である。これにより、ノズル1から被めっき部PRに供給されるめっき液PSの液量が均一化される。また、保持部2内におけるめっき液PSの分布の均一性が増加する。よって、めっき液PSが被めっき部PRに均一に供給される。したがって、めっき膜PFの成膜レートが安定する。なお、本実施の形態において、成膜レートは、めっき膜PFが形成される効率である。また、被めっき部PRにおける電流密度分布が均一化されるため、析出するめっき膜PFの厚み(膜厚)の均一性が増加する。 As shown in FIGS. 1 to 3, the aperture ratio of the tip portion 1e is, for example, 5% or more and 25% or less. In the present embodiment, the aperture ratio is the ratio of the area of the opening OP to the area of the entire tip portion 1e. As a result, the amount of the plating solution PS supplied from the nozzle 1 to the plated portion PR is made uniform. In addition, the uniformity of the distribution of the plating solution PS in the holding portion 2 is increased. Therefore, the plating solution PS is uniformly supplied to the PR to be plated. Therefore, the film formation rate of the plating film PF is stable. In this embodiment, the film formation rate is the efficiency at which the plating film PF is formed. Further, since the current density distribution in the plated portion PR is made uniform, the uniformity of the thickness (film thickness) of the deposited plating film PF is increased.
 仮に先端部1eの開口率が5%未満である場合、ノズル1から供給されるめっき液PSの吐出量が少ない。このため、保持部2に供給される液量が少ない。これにより、保持部2に含浸されるめっき液PSの分布が不均一になる。よって、成膜レートが低い。また、成膜レートのばらつきが生じる。したがって、先端部1eの開口率が5%未満である場合、めっき膜PFの生産効率が低下する。 If the aperture ratio of the tip portion 1e is less than 5%, the discharge amount of the plating solution PS supplied from the nozzle 1 is small. Therefore, the amount of liquid supplied to the holding portion 2 is small. As a result, the distribution of the plating solution PS impregnated in the holding portion 2 becomes non-uniform. Therefore, the film formation rate is low. In addition, the film formation rate varies. Therefore, when the aperture ratio of the tip portion 1e is less than 5%, the production efficiency of the plating film PF decreases.
 仮に先端部1eの開口率が25%よりも大きい場合、ノズル1から供給されるめっき液PSの吐出量が多い。このため、ノズル1から保持部2に供給される液量は、保持部2が保持可能な液量よりも多い。これにより、めっき液PSが保持部2内において飽和する。飽和しためっき液PSは、保持部2内から保持部2の外に漏れ出る。このため、めっき液PSの分布が不均一になる。したがって、成膜レートのばらつきが生じる。 If the aperture ratio of the tip portion 1e is larger than 25%, the amount of the plating solution PS supplied from the nozzle 1 is large. Therefore, the amount of liquid supplied from the nozzle 1 to the holding portion 2 is larger than the amount of liquid that can be held by the holding portion 2. As a result, the plating solution PS is saturated in the holding portion 2. The saturated plating solution PS leaks from the inside of the holding portion 2 to the outside of the holding portion 2. Therefore, the distribution of the plating solution PS becomes non-uniform. Therefore, the film formation rate varies.
 また、仮に先端部1eの開口率が25%よりも大きい場合、飽和しためっき液PSは、保持部2内から保持部2の外に漏れ出る。このため、被めっき部PRの外にも、めっき膜PFが形成される。したがって、めっき膜PFが形成されることが望ましくない領域にもめっき膜PFが形成される可能性がある。 Further, if the aperture ratio of the tip portion 1e is larger than 25%, the saturated plating solution PS leaks from the inside of the holding portion 2 to the outside of the holding portion 2. Therefore, the plating film PF is also formed outside the PR to be plated. Therefore, the plating film PF may be formed in a region where it is not desirable to form the plating film PF.
 また、めっき膜PFは、開口部OPの直下では先端部1eの開口していない領域の直下よりも成膜されにくい。このため、開口部OPの直下では、先端部1eの開口していない領域の直下よりも成膜レートが低い。よって、めっき膜PFが成膜される位置によっては、成膜レートが低い。仮に先端部1eの開口率が25%よりも大きい場合、先端部1e全体の面積に対する開口部OPの面積の割合が25%よりも大きいため、成膜レートが低い部分の割合も25%よりも大きい。成膜レートの低い部分の割合が大きいため、めっき膜PFの厚みがばらつく。したがって、めっき膜PFが均一に析出しにくい。 Further, the plating film PF is less likely to be formed under the opening OP than directly under the unopened region of the tip portion 1e. Therefore, the film formation rate is lower directly under the opening OP than directly under the unopened region of the tip portion 1e. Therefore, the film formation rate is low depending on the position where the plating film PF is formed. If the aperture ratio of the tip portion 1e is larger than 25%, the ratio of the area of the opening OP to the total area of the tip portion 1e is larger than 25%, so that the ratio of the portion having a low film formation rate is also higher than 25%. big. Since the proportion of the portion having a low film formation rate is large, the thickness of the plating film PF varies. Therefore, it is difficult for the plating film PF to be uniformly deposited.
 開口率は、穴数および複数の開口部OPの各々の面積によって設定される。本実施の形態において、穴数は、開口部OPの数である。図2および図3に示されるように、穴数は、5穴以上であることが望ましい。最大の穴数は、ノズル1の先端部1eの形状および寸法に応じて定まる。例えば、ノズル1の先端部1eの形状が100mm×100mmの正方形である場合には、最大の穴数は、1000穴である。 The aperture ratio is set by the number of holes and the area of each of the plurality of openings OP. In the present embodiment, the number of holes is the number of openings OP. As shown in FIGS. 2 and 3, the number of holes is preferably 5 or more. The maximum number of holes is determined according to the shape and dimensions of the tip portion 1e of the nozzle 1. For example, when the shape of the tip portion 1e of the nozzle 1 is a square of 100 mm × 100 mm, the maximum number of holes is 1000 holes.
 仮に穴数が5穴未満である場合、1穴当たりのめっき液PSの吐出量が大きい。また、保持部2に供給されるめっき液PSの分布が不均一になる。これにより、保持部2に供給されるめっき液PSの液量がばらつく。このため、保持部2内におけるめっき液PSの分布が不均一になる。よって、成膜レートのばらつきが生じる。したがって、穴数が5穴未満である場合、めっき膜PFの生産効率が低下する。 If the number of holes is less than 5, the amount of plating liquid PS discharged per hole is large. Further, the distribution of the plating solution PS supplied to the holding portion 2 becomes non-uniform. As a result, the amount of the plating solution PS supplied to the holding portion 2 varies. Therefore, the distribution of the plating solution PS in the holding portion 2 becomes non-uniform. Therefore, the film formation rate varies. Therefore, when the number of holes is less than 5, the production efficiency of the plating film PF is lowered.
 仮に穴数が1000穴よりも多い場合、ノズル1の加工コストが大きい。なお、穴数が1000穴以上である場合であっても、めっきの品質が悪化することは抑制される。 If the number of holes is more than 1000 holes, the processing cost of nozzle 1 is high. Even when the number of holes is 1000 or more, deterioration of the plating quality is suppressed.
 図4に示されるように、被めっき部PRの表面積に対する先端部1eの表面積の割合は、20%以上75%以下であることが望ましい。被めっき部PRの表面積に対する先端部1eの表面積の割合が20%以上75%以下である場合、めっき膜PFが均一に析出しやすくなる。また、被めっき部PRの表面積に対する先端部1eの表面積の割合は、20%以上75%以下である場合、めっき膜PFの析出速度が安定する。なお、図4等の斜視図において、めっき膜PFの厚みは、図示されていない。 As shown in FIG. 4, the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is preferably 20% or more and 75% or less. When the ratio of the surface area of the tip portion 1e to the surface area of the portion PR to be plated is 20% or more and 75% or less, the plating film PF is likely to be uniformly deposited. Further, when the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is 20% or more and 75% or less, the precipitation rate of the plating film PF is stable. In the perspective view of FIG. 4, etc., the thickness of the plating film PF is not shown.
 図5に示されるように、仮に被めっき部PRの表面積に対する先端部1e(図4参照)の表面積の割合が20%未満である場合、めっき電極100の被めっき面PP上における移動距離が大きい。また、被めっき部PRの全体に対するノズル1が接触していない被めっき部PRの割合は、80%よりも大きい。このため、成膜レートが低い。よって、めっき膜PFの生産効率およびめっき品質が低下する。 As shown in FIG. 5, if the ratio of the surface area of the tip portion 1e (see FIG. 4) to the surface area of the plated portion PR is less than 20%, the moving distance of the plating electrode 100 on the plated surface PP is large. .. Further, the ratio of the plated portion PR to which the nozzle 1 is not in contact with the entire plated portion PR is larger than 80%. Therefore, the film formation rate is low. Therefore, the production efficiency and the plating quality of the plating film PF are lowered.
 図6に示されるように、仮に被めっき部PRの表面積に対する先端部1e(図4参照)の割合が75%よりも大きい場合、めっき電極100の被めっき面PP上における移動距離が小さい。このため、めっき電極100の移動速度が不安定になる。よって、めっき膜PFが均一に析出しない。また、析出速度が不安定になる。したがって、めっき膜PFの生産効率およびめっき品質が低下する。 As shown in FIG. 6, if the ratio of the tip portion 1e (see FIG. 4) to the surface area of the plated portion PR is larger than 75%, the moving distance of the plating electrode 100 on the plated surface PP is small. Therefore, the moving speed of the plating electrode 100 becomes unstable. Therefore, the plating film PF does not precipitate uniformly. In addition, the precipitation rate becomes unstable. Therefore, the production efficiency and plating quality of the plating film PF are lowered.
 次に、図7~図9を用いて、実施の形態1に係るめっき装置200の構成を説明する。
 図7に示されるように、めっき装置200は、被めっき部PRにめっき膜PFを形成するためのめっき装置である。めっき装置200は、めっき電極100と、電源3と、接続機構4とを含んでいる。
Next, the configuration of the plating apparatus 200 according to the first embodiment will be described with reference to FIGS. 7 to 9.
As shown in FIG. 7, the plating apparatus 200 is a plating apparatus for forming a plating film PF on the PR to be plated. The plating apparatus 200 includes a plating electrode 100, a power supply 3, and a connection mechanism 4.
 電源3は、めっき電極100および被めっき部PRの各々に電気的に接続されている。電源3は、めっき電極100および被めっき部PRに電圧を印加するように構成されている。本実施の形態において、めっき電極100は、陽極として構成されている。被めっき物PMは、陰極として構成されている。 The power supply 3 is electrically connected to each of the plating electrode 100 and the plated portion PR. The power supply 3 is configured to apply a voltage to the plating electrode 100 and the plated portion PR. In the present embodiment, the plating electrode 100 is configured as an anode. The object to be plated PM is configured as a cathode.
 接続機構4は、めっき電極100に接続されている。接続機構4は、ロボット等のアームである。接続機構4は、めっき電極100を被めっき部PRに接続させるように構成されている。図8に示されるように、接続機構4は、めっき電極100が被めっき部PRから離れた状態でめっき電極100を保持可能に構成されている。図7および図8に示されるように、接続機構4は、被めっき部PRから離れた状態で保持しためっき電極100を被めっき部PR上に移動させることで、めっき電極100を被めっき部PRに接続させるように構成されている。 The connection mechanism 4 is connected to the plating electrode 100. The connection mechanism 4 is an arm of a robot or the like. The connection mechanism 4 is configured to connect the plating electrode 100 to the plated portion PR. As shown in FIG. 8, the connection mechanism 4 is configured to be able to hold the plating electrode 100 in a state where the plating electrode 100 is separated from the plated portion PR. As shown in FIGS. 7 and 8, the connection mechanism 4 moves the plating electrode 100 held away from the plated portion PR onto the plated portion PR, thereby moving the plated electrode 100 onto the plated portion PR. It is configured to connect to.
 図7に示されるように、接続機構4は、接続機構4とめっき電極100とが接触した際にめっき電極100と被めっき部PRとの接触圧を調整できるように構成されている。これにより、めっき膜PFの厚みが健全な厚みになるように接触圧が調整される。 As shown in FIG. 7, the connection mechanism 4 is configured so that the contact pressure between the plating electrode 100 and the PR to be plated can be adjusted when the connection mechanism 4 and the plating electrode 100 come into contact with each other. As a result, the contact pressure is adjusted so that the thickness of the plating film PF becomes a sound thickness.
 保持部2と被めっき部PRとの接触圧は、0.25kgf/cm(24.52kPa)以上2.0kgf/cm(196.13kPa)以下であることが好ましい。仮に接触圧が0.25kgf/cm(24.52kPa)未満である場合、めっき膜PFに焼けが発生しやすい。めっき膜PFに焼けが発生した場合、健全なめっき膜PFが得られない。めっき膜PFが銀めっきである場合には、特に焼けが発生しやすい。また、仮に接触圧が2.0kgf/cm(196.13kPa)よりも大きい場合、析出しためっき膜PFがめっき電極100との接触によって摩耗する。これにより、めっき膜PFの成長が妨げられるため、十分な厚みを有するめっき膜PFが得られない。 Contact pressure between the holder 2 and the object to be plated portion PR is preferably not more than 0.25kgf / cm 2 (24.52kPa) over 2.0kgf / cm 2 (196.13kPa). If the contact pressure is less than 0.25 kgf / cm 2 (24.52 kPa), the plating film PF is likely to be burnt. When the plating film PF is burnt, a sound plating film PF cannot be obtained. When the plating film PF is silver-plated, burning is particularly likely to occur. Further, if the contact pressure is larger than 2.0 kgf / cm 2 (196.13 kPa), the deposited plating film PF is worn by contact with the plating electrode 100. As a result, the growth of the plating film PF is hindered, so that a plating film PF having a sufficient thickness cannot be obtained.
 本実施の形態において、接続機構4は、めっき電極100を被めっき部PR上において摺動可能に構成されている。なお、本実施の形態において、被めっき部PR上における摺動とは、被めっき部PR上において直線状または曲線状に移動することである。このため、摺動とは、被めっき部PRと接触した状態で直線状または曲線状に移動することである。接続機構4は、めっき電極100を被めっき部PR上において往復可能に構成されている。 In the present embodiment, the connection mechanism 4 is configured such that the plating electrode 100 is slidable on the PR to be plated. In the present embodiment, sliding on the plated portion PR means moving linearly or curvedly on the plated portion PR. Therefore, sliding means moving in a straight line or a curved line in a state of being in contact with the PR to be plated. The connection mechanism 4 is configured so that the plating electrode 100 can be reciprocated on the PR to be plated.
 接続機構4は、めっき電極100を被めっき部PR上において第1方向DR1および第2方向DR2のいずれかに沿って摺動可能に構成されている。第1方向DR1は、被めっき面PPの面内方向に沿った方向である。第2方向DR2は、被めっき面PPの面内方向に沿い、かつ第1方向DR1に直交する方向である。接続機構4は、めっき電極100を被めっき部PR上において第1方向DR1および第2方向DR2に沿って摺動可能に構成されていてもよい。 The connection mechanism 4 is configured such that the plating electrode 100 is slidable along either the first direction DR1 or the second direction DR2 on the PR to be plated. The first direction DR1 is a direction along the in-plane direction of the surface to be plated PP. The second direction DR2 is a direction along the in-plane direction of the surface to be plated PP and orthogonal to the first direction DR1. The connection mechanism 4 may be configured such that the plating electrode 100 is slidable along the first direction DR1 and the second direction DR2 on the PR to be plated.
 図9に示されるように、めっき装置200は、めっき槽51、リザーブ槽52、第1配管61、第2配管62、第3配管63、第4配管64、第1バルブ65、第2バルブ66、第3バルブ67、ポンプ7、ヒータ8およびアジテータ9をさらに含んでいてもよい。 As shown in FIG. 9, the plating apparatus 200 includes a plating tank 51, a reserve tank 52, a first pipe 61, a second pipe 62, a third pipe 63, a fourth pipe 64, a first valve 65, and a second valve 66. , Third valve 67, pump 7, heater 8 and agitator 9 may be further included.
 めっき電極100および被めっき物PMは、めっき槽51内に配置されている。めっき液PSは、リザーブ槽52内に充填されている。めっき電極100のノズル1は、第1配管61に接続されている。めっき液PSは、リザーブ槽52から、第3配管63、第3バルブ67、第1バルブ65および第1配管61を順次通ってめっき電極100にポンプ7によって供給される。めっき液PSは、リザーブ槽52から、第4配管64、第2バルブ66、第1バルブ65および第1配管61を順次通ってめっき電極100にポンプ7によって供給されてもよい。めっき電極100に供給されためっき液PSは、被めっき物PMに供給される。めっき電極100に供給されためっき液PSは、めっき槽51内に落下し得る。めっき槽51内に落下しためっき液PSは、第2配管62を通ってリザーブ槽52に戻る。 The plating electrode 100 and the object to be plated PM are arranged in the plating tank 51. The plating solution PS is filled in the reserve tank 52. The nozzle 1 of the plating electrode 100 is connected to the first pipe 61. The plating solution PS is supplied from the reserve tank 52 to the plating electrode 100 by the pump 7 through the third pipe 63, the third valve 67, the first valve 65, and the first pipe 61 in order. The plating solution PS may be supplied from the reserve tank 52 to the plating electrode 100 by the pump 7 through the fourth pipe 64, the second valve 66, the first valve 65 and the first pipe 61 in order. The plating solution PS supplied to the plating electrode 100 is supplied to the object to be plated PM. The plating solution PS supplied to the plating electrode 100 may fall into the plating tank 51. The plating solution PS that has fallen into the plating tank 51 returns to the reserve tank 52 through the second pipe 62.
 ポンプ7は、リザーブ槽52内のめっき液PSをノズル1に供給するように構成されている。第4配管64は、第2バルブ66を介して第1配管61に接続されている。ヒータ8は、リザーブ槽52内のめっき液PSを加熱するように構成されている。アジテータ9は、リザーブ槽52内のめっき液PSを攪拌するように構成されている。 The pump 7 is configured to supply the plating solution PS in the reserve tank 52 to the nozzle 1. The fourth pipe 64 is connected to the first pipe 61 via the second valve 66. The heater 8 is configured to heat the plating solution PS in the reserve tank 52. The agitator 9 is configured to agitate the plating solution PS in the reserve tank 52.
 めっき液PSは、例えば、銀めっき液である。銀めっき液は、銀めっきに用いられるめっき液である。銀めっき液は、例えば、1wt%(重量%)以上5wt%(重量%)以下の銀(Ag)イオン、30wt%(重量%)以上40wt%(重量%)以下のヨウ化カリウム(KI)および1wt%(重量%)以上5wt%(重量%)以下のメタンスルホン酸(CHS)を金属塩として含み、かつpHが7になるように調整されためっき液PSである。また、銀めっき液は、例えば、3wt%(重量%)以上15wt%(重量%)以下の銀(Ag)イオン、5wt%(重量%)以上15wt%(重量%)以下の遊離シアン(CN)および2wt%(重量%)以上7wt%(重量%)以下の炭酸カリウム(KCO)を金属塩として含み、調整されためっき液PSである。なお、本実施の形態において、wt%(重量%)は、調整された溶液全体に対する溶質の重量の割合である。 The plating solution PS is, for example, a silver plating solution. The silver plating solution is a plating solution used for silver plating. The silver plating solution includes, for example, 1 wt% (% by weight) or more and 5 wt% (% by weight) or less of silver (Ag) ions, 30 wt% (% by weight) or more and 40 wt% (% by weight) or less of potassium iodide (KI), and the like. It is a plating solution PS containing 1 wt% (% by weight) or more and 5 wt% (% by weight) or less of methanesulfonic acid (CH 4 O 3 S) as a metal salt and adjusted so that the pH becomes 7. The silver plating solution is, for example, silver (Ag) ion of 3 wt% (% by weight) or more and 15 wt% (% by weight) or less, and free cyanide (CN) of 5 wt% (% by weight) or more and 15 wt% (% by weight) or less. The plating solution PS is prepared by containing potassium carbonate (K 2 CO 3 ) of 2 wt% (% by weight) or more and 7 wt% (% by weight) or less as a metal salt. In this embodiment, wt% (% by weight) is the ratio of the weight of the solute to the total prepared solution.
 めっき液PSの温度は、適切な膜厚を有するめっき膜PFが得られるように、適宜に決められてもよい。めっき液PSの温度は、例えば、25℃である。めっき液PSが銀めっき液である場合、めっき液PSの温度が25℃であることが好ましい。めっき液PSの温度は、被めっき物PMの状態に応じて、適宜に決められてもよい。 The temperature of the plating solution PS may be appropriately determined so that a plating film PF having an appropriate film thickness can be obtained. The temperature of the plating solution PS is, for example, 25 ° C. When the plating solution PS is a silver plating solution, the temperature of the plating solution PS is preferably 25 ° C. The temperature of the plating solution PS may be appropriately determined according to the state of the object to be plated PM.
 次に、図4および図10~図13を用いて、実施の形態1に係るめっき方法を説明する。 Next, the plating method according to the first embodiment will be described with reference to FIGS. 4 and 10 to 13.
 図4に示されるように、めっき方法は、被めっき部PRにめっき液PSによってめっき膜PFを形成するためのめっき方法である。本実施の形態に係るめっき装置200によって銅(Cu)合金材である被めっき物PMに銀めっきのめっき膜PFが形成される場合について説明する。なお、本実施の形態に係る被めっき物PMは、銅(Cu)合金材に限定されない。また、形成されるめっき膜PFは、銀めっきのめっき膜PFに限定されない。めっき装置200によって、例えば、アルミニウム合金材である被めっき物PMにニッケル(Ni)のめっき膜PFが形成されてもよい。また、被めっき物PMは、複層めっきでめっき膜PFが形成されてもよい。複層めっきでは、ニッケル(Ni)のめっき膜PF上にさらにスズ(Sn)めっきのめっき膜PFが形成される。 As shown in FIG. 4, the plating method is a plating method for forming a plating film PF on a portion PR to be plated with a plating solution PS. A case where a silver-plated plating film PF is formed on the object to be plated PM, which is a copper (Cu) alloy material, by the plating apparatus 200 according to the present embodiment will be described. The material to be plated PM according to this embodiment is not limited to the copper (Cu) alloy material. Further, the plating film PF formed is not limited to the silver-plated plating film PF. For example, a nickel (Ni) plating film PF may be formed on the object to be plated PM, which is an aluminum alloy material, by the plating apparatus 200. Further, the plating film PF may be formed on the object to be plated PM by multi-layer plating. In the multi-layer plating, a tin (Sn) -plated plating film PF is further formed on the nickel (Ni) plating film PF.
 図10に示されるように、めっき方法は、保持される工程S1と、形成される工程S2とを含んでいる。 As shown in FIG. 10, the plating method includes a step S1 to be held and a step S2 to be formed.
 まず、被めっき物PMが準備される。具体的には、図11に示されるように、設定形状にあらかじめ加工された銅合金材が被めっき物PMとして準備される。被めっき物PMの被めっき面PPに脱脂処理剤による脱脂処理が実施される。これにより、被めっき面PPから有機異物等の表面汚染物が除去される。このため、被めっき面PPは、液濡れ性を得る。脱脂処理剤は、例えば、水酸化ナトリウム(NaOH)系および炭酸ナトリウム(NaCO)系等のアルカリ系脱脂剤である。脱脂処理剤は、ノズル1を通って被めっき物PMに供給されてもよい。 First, the object to be plated PM is prepared. Specifically, as shown in FIG. 11, a copper alloy material pre-processed into a set shape is prepared as the object to be plated PM. The surface PP of the object to be plated PM is degreased with a degreasing agent. As a result, surface contaminants such as organic foreign substances are removed from the surface PP to be plated. Therefore, the surface to be plated PP obtains liquid wettability. The degreasing treatment agent is, for example, an alkaline degreasing agent such as sodium hydroxide (NaOH) -based and sodium carbonate (Na 2 CO 3) -based. The degreasing agent may be supplied to the object to be plated PM through the nozzle 1.
 続いて、被めっき物PMに酸洗浄剤による酸洗浄処理が実施される。これにより、被めっき面PPから無機異物等の表面汚染物および酸化膜が除去される。このため、被めっき面PPから活性な金属表面が露出する。よって、被めっき面PPは、液濡れ性を得る。また、被めっき面PPの被めっき部PRとめっき膜PFとの密着性が向上する。酸洗浄剤は、例えば、硝酸(HNO)、希釈された硫酸(HSO)を含むエッチング液である。酸洗浄剤は、ノズル1を通って被めっき物PMに供給されてもよい。 Subsequently, the PM to be plated is subjected to an acid cleaning treatment with an acid cleaning agent. As a result, surface contaminants such as inorganic foreign substances and the oxide film are removed from the surface PP to be plated. Therefore, the active metal surface is exposed from the surface to be plated PP. Therefore, the surface to be plated PP obtains liquid wettability. In addition, the adhesion between the plated portion PR of the surface to be plated PP and the plating film PF is improved. The pickling agent is, for example, an etching solution containing nitric acid (HNO 3 ) and diluted sulfuric acid (H 2 SO 4). The acid cleaning agent may be supplied to the object to be plated PM through the nozzle 1.
 続いて、被めっき物PMに中和処理剤による中和処理が実施される。これにより、被めっき面PPに残存する酸の痕跡が除去される。このため、被めっき面PPの腐食が抑制される。中和処理剤は、例えば、シアン系のシアン化ナトリウム(NaCN)、希釈調合された水酸化ナトリウム(NaOH)系洗浄液等である。中和処理剤は、ノズル1を通って被めっき物PMに供給されてもよい。 Subsequently, the object to be plated PM is neutralized with a neutralizing agent. As a result, traces of acid remaining on the surface to be plated PP are removed. Therefore, corrosion of the surface to be plated PP is suppressed. The neutralizing agent is, for example, a cyanide-based sodium cyanide (NaCN), a diluted sodium hydroxide (NaOH) -based cleaning solution, or the like. The neutralizing agent may be supplied to the object to be plated PM through the nozzle 1.
 続いて、被めっき面PPの被めっき部PRにめっき膜PFが形成される際に移動しないように被めっき物PMが固定される。以上より、被めっき物PMが準備される。 Subsequently, the object to be plated PM is fixed so as not to move when the plating film PF is formed on the portion PR to be plated on the surface to be plated PP. From the above, the object to be plated PM is prepared.
 続いて、図4に示されるように、めっき電極100が接続機構4に保持される。めっき電極100は、被めっき部PRから離れた状態で接続機構4に保持される。 Subsequently, as shown in FIG. 4, the plating electrode 100 is held by the connection mechanism 4. The plating electrode 100 is held by the connection mechanism 4 in a state of being separated from the plated portion PR.
 続いて、図11に示されるように、保持部2にノズル1が先端部1eからめっき液PSを供給することでめっき液PSが保持部2に保持される。また、保持部2に供給されるめっき液PSの量が調整される。具体的には、ポンプ7(図9参照)、めっき液PSを供給するためのバルブおよび液量を調整するためのバルブが調整されることで、めっき液PSの供給量が調整される。めっき液PSは、ノズル1の開口部OP(図1参照)を通って保持部2に供給される。これにより、めっき液PSが保持部2に保持される。 Subsequently, as shown in FIG. 11, the nozzle 1 supplies the plating solution PS from the tip portion 1e to the holding portion 2, so that the plating solution PS is held by the holding portion 2. Further, the amount of the plating solution PS supplied to the holding portion 2 is adjusted. Specifically, the supply amount of the plating solution PS is adjusted by adjusting the pump 7 (see FIG. 9), the valve for supplying the plating solution PS, and the valve for adjusting the liquid amount. The plating solution PS is supplied to the holding portion 2 through the opening OP (see FIG. 1) of the nozzle 1. As a result, the plating solution PS is held in the holding portion 2.
 めっき液PSの供給量は、先端部1eの面内方向の寸法に応じて、適宜に決められてもよい。例えば、先端部1eの面内方向の寸法が10mm×10mmであり、先端部1eの面内方向の面積が100mm(1cm)である場合、めっき液PSの供給量は5cm/min(分)以上20cm/min(分)以下であることが好ましい。仮にめっき液PSの供給量が5cm/min(分)未満である場合、めっき液PSの供給量が不足する。このため、成膜レートの低下またはめっき焼けが生じる。これにより、適切な膜厚を有するめっき膜が得られない。また、仮にめっき液PSの供給量が20cm/min(分)よりも大きい場合、めっき液PSは被めっき面PP上に過剰に供給される。これにより、被めっき面PPの被めっき部PRの外の領域にめっき液PSが付着する。このため、適切な領域にめっき膜が形成されない。 The supply amount of the plating solution PS may be appropriately determined according to the in-plane dimension of the tip portion 1e. For example, when the in-plane dimension of the tip 1e is 10 mm × 10 mm and the in-plane area of the tip 1e is 100 mm 2 (1 cm 2 ), the supply amount of the plating solution PS is 5 cm 3 / min (5 cm 3 / min). Minutes) or more, preferably 20 cm 3 / min (minutes) or less. If the supply amount of the plating solution PS is less than 5 cm 3 / min (minutes), the supply amount of the plating solution PS is insufficient. Therefore, the film formation rate is lowered or the plating is burnt. As a result, a plating film having an appropriate film thickness cannot be obtained. If the supply amount of the plating solution PS is larger than 20 cm 3 / min (minutes), the plating solution PS is excessively supplied on the surface PP to be plated. As a result, the plating solution PS adheres to the region outside the plated portion PR of the plated surface PP. Therefore, the plating film is not formed in an appropriate region.
 続いて、図12に示されるように、被めっき部PRにめっき膜PFが形成される。なお、図11~図13において、説明の便宜上、めっき膜PFが形成されていない状態の被めっき部PRは、一点鎖線によって図示されている。また、めっき膜PFが形成された状態の被めっき部PRは、実線によって図示されている。 Subsequently, as shown in FIG. 12, a plating film PF is formed on the PR to be plated. In FIGS. 11 to 13, for convenience of explanation, the PR of the plated portion in the state where the plating film PF is not formed is shown by the alternate long and short dash line. Further, the PR of the plated portion in the state where the plating film PF is formed is shown by a solid line.
 図11および図12に示されるように、ノズル1および被めっき部PRに電圧が印加された状態で、めっき電極100が被めっき部PRに接続されることでめっき膜PFが形成される。具体的には、被めっき部PRがめっき液PS(銀めっき液)によって電気銀めっき処理をされる。めっき膜PFの厚みが均一になるように被めっき部PRにめっき膜PFが形成される。電気銀めっき処理では、めっき処理で一般的に行われている陰極電解処理が行われる。 As shown in FIGS. 11 and 12, a plating film PF is formed by connecting the plating electrode 100 to the plated portion PR in a state where a voltage is applied to the nozzle 1 and the plated portion PR. Specifically, the PR to be plated is electro-silver plated with the plating solution PS (silver plating solution). The plating film PF is formed on the portion PR to be plated so that the thickness of the plating film PF becomes uniform. In the electric silver plating treatment, the cathode electrolysis treatment generally performed in the plating treatment is performed.
 めっき処理の条件は、めっき時間、電流密度およびめっき液PSの温度(液温)である。めっき時間は、めっき液PSを保持した保持部2が被めっき部PRに接触する時間の長さである。例えば、めっき時間が30秒であり、電流密度が0.2A/cm(20A/dm)であり、液温が25℃である場合、形成されるめっき膜PFの厚みは、5μmである。銀めっき処理が行われる場合は、液温が25℃程度であることが好ましいが、被めっき部PRの状態に応じて、液温が適宜に決められてもよい。めっき時間、電流密度およびめっき液PSの温度は、適宜に決められてもよい。 The conditions of the plating process are the plating time, the current density, and the temperature (liquid temperature) of the plating solution PS. The plating time is the length of time that the holding portion 2 holding the plating solution PS comes into contact with the plated portion PR. For example, when the plating time is 30 seconds, the current density is 0.2 A / cm 2 (20 A / dm 2 ), and the liquid temperature is 25 ° C., the thickness of the plated film PF formed is 5 μm. .. When the silver plating treatment is performed, the liquid temperature is preferably about 25 ° C., but the liquid temperature may be appropriately determined according to the state of the PR to be plated. The plating time, current density and temperature of the plating solution PS may be appropriately determined.
 ノズル1および被めっき部PRに電圧が印加される。具体的には、電源3がオフ状態からオン状態になる。オフ状態では、ノズル1および被めっき部PRに電源3によって電圧が印加されていない。オン状態では、ノズル1および被めっき部PRに電源3によって電圧が印加されている。また、接続機構4(図7参照)は、保持部2が被めっき部PRに接触するように保持部2を移動させる。保持部2が被めっき部PRに接触した瞬間に、ノズル1と被めっき部PRとが通電される。 A voltage is applied to the nozzle 1 and the PR of the plated portion. Specifically, the power supply 3 changes from an off state to an on state. In the off state, no voltage is applied to the nozzle 1 and the plated portion PR by the power supply 3. In the on state, a voltage is applied to the nozzle 1 and the plated portion PR by the power supply 3. Further, the connection mechanism 4 (see FIG. 7) moves the holding portion 2 so that the holding portion 2 comes into contact with the plated portion PR. At the moment when the holding portion 2 comes into contact with the plated portion PR, the nozzle 1 and the plated portion PR are energized.
 続いて、図12および図13に示されるように、ノズル1および被めっき部PRに電圧が印加された状態で、ノズル1が被めっき部PR上を移動することで被めっき部PR上にめっき液PSが供給される。本実施の形態において、ノズル1は、接続機構4(図7参照)によって第1方向DR1に沿って直線状に往復する。被めっき部PRの表面積が大きい場合、ノズル1は、第1方向DR1および第2方向DR2(図7参照)に沿って移動してもよい。後述されるように、ノズル1は、ノズル1の軸周りに回転してもよい。 Subsequently, as shown in FIGS. 12 and 13, the nozzle 1 moves on the plated portion PR while the voltage is applied to the nozzle 1 and the plated portion PR, thereby plating on the plated portion PR. Liquid PS is supplied. In the present embodiment, the nozzle 1 reciprocates linearly along the first direction DR1 by the connection mechanism 4 (see FIG. 7). If the surface area of the PR to be plated is large, the nozzle 1 may move along the first direction DR1 and the second direction DR2 (see FIG. 7). As will be described later, the nozzle 1 may rotate about the axis of the nozzle 1.
 これにより、めっき液PSは、被めっき面PPの被めっき部PRに供給される。
 本実施の形態において、ノズル1および被めっき部PRに電圧が印加された状態でノズル1が被めっき部PR上を摺動することによって、被めっき部PR上にめっき液PSが供給される。本実施の形態に係るめっき方法は、いわゆる摺動めっきである。
As a result, the plating solution PS is supplied to the plated portion PR of the plated surface PP.
In the present embodiment, the plating solution PS is supplied onto the plated portion PR by sliding the nozzle 1 on the plated portion PR in a state where a voltage is applied to the nozzle 1 and the plated portion PR. The plating method according to this embodiment is so-called sliding plating.
 めっき電極100は、一定の速度で移動することが好ましい。移動するめっき電極100と固定された被めっき部PRとの相対速度は、12.5m/min(分)以上17.5m/min(分)であることが好ましい。仮に相対速度が12.5m/min(分)未満である場合、めっき膜PFに焼けが発生しやすい。このため、健全なめっき膜PFが得られない。めっき膜PFが銀めっきである場合には、特にめっき膜PFに焼けが発生しやすい。また、仮に相対速度が17.5m/min(分)よりも大きい場合、析出しためっき膜PFが保持部2によって摩耗する。これにより、めっき膜PFの成長が妨げられるため、十分な厚みを有するめっき膜PFが得られない。 It is preferable that the plating electrode 100 moves at a constant speed. The relative speed between the moving plating electrode 100 and the fixed PR to be plated is preferably 12.5 m / min (minutes) or more and 17.5 m / min (minutes). If the relative speed is less than 12.5 m / min (minutes), the plating film PF is likely to be burnt. Therefore, a sound plating film PF cannot be obtained. When the plating film PF is silver-plated, the plating film PF is particularly prone to burning. Further, if the relative speed is larger than 17.5 m / min (minutes), the deposited plating film PF is worn by the holding portion 2. As a result, the growth of the plating film PF is hindered, so that a plating film PF having a sufficient thickness cannot be obtained.
 続いて、必要に応じて、後処理が行われる。後処理では、例えば、被めっき物PMが水洗いされる。 Subsequently, post-processing is performed as necessary. In the post-treatment, for example, the object to be plated PM is washed with water.
 以上より、被めっき部PRにめっき膜PFが形成される。
 続いて、本実施の形態の作用効果を説明する。
From the above, the plating film PF is formed on the PR to be plated.
Subsequently, the action and effect of the present embodiment will be described.
 実施の形態1に係るめっき電極100によれば、図1に示されるように、ノズル1は、先端部1eを通してめっき液PSを供給するためのノズル1である。また、ノズル1は、電圧が印加されるように構成されている。このため、ノズル1によって供給されためっき液PSにノズル1を介して電圧を印加することができる。よって、ノズル1によってめっき液PSが供給された部分にめっき膜PFを選択的に形成することができる。したがって、被めっき面PPの一部(被めっき部PR)に選択的にめっき膜PFを形成することができる。 According to the plating electrode 100 according to the first embodiment, as shown in FIG. 1, the nozzle 1 is a nozzle 1 for supplying the plating solution PS through the tip portion 1e. Further, the nozzle 1 is configured so that a voltage is applied. Therefore, a voltage can be applied to the plating solution PS supplied by the nozzle 1 via the nozzle 1. Therefore, the plating film PF can be selectively formed on the portion to which the plating solution PS is supplied by the nozzle 1. Therefore, the plating film PF can be selectively formed on a part of the surface to be plated PP (part to be plated PR).
 これにより、めっき膜PFが形成されない領域をマスキング部材によって覆う必要がない。このため、めっき膜PFの生産コストを低減させることができる。 This eliminates the need to cover the area where the plating film PF is not formed with a masking member. Therefore, the production cost of the plating film PF can be reduced.
 また、仮に被めっき面PPの全面が保持部2に接触することで被めっき面PPにめっき液PSが供給される場合、保持部2の寸法よりも大きい被めっき面PPにめっき膜PFを形成することができない。すなわち、被めっき面PPの全面が保持部2に接触することで被めっき面PPにめっき液PSが供給される場合には、めっき膜PFが形成される製品の寸法は、保持部2の寸法に制限される。このため、中物の製品また大物の製品の被めっき面PPにめっき膜PFを形成することができない。本実施の形態に係るめっき電極100によれば、被めっき面PPのうちめっき電極100が接触した部分にめっき膜PFが形成される。このため、被めっき面PPの全面が保持部2に接触する必要がない。よって、めっき膜PFが形成される製品の寸法は、保持部2の寸法に制限されない。したがって、被めっき部PRの寸法が大きい場合であっても、被めっき部PRにめっき膜PFを形成することができる。 Further, if the plating solution PS is supplied to the surface PP to be plated by the entire surface of the surface PP to be plated in contact with the holding portion 2, the plating film PF is formed on the surface PP to be plated larger than the size of the holding portion 2. Can not do it. That is, when the plating solution PS is supplied to the surface PP to be plated by contacting the entire surface of the surface PP to be plated with the holding portion 2, the dimensions of the product on which the plating film PF is formed are the dimensions of the holding portion 2. Limited to. Therefore, it is not possible to form a plating film PF on the surface PP of a medium-sized product or a large-sized product. According to the plating electrode 100 according to the present embodiment, the plating film PF is formed on the portion of the surface PP to be plated that is in contact with the plating electrode 100. Therefore, it is not necessary for the entire surface of the surface to be plated PP to come into contact with the holding portion 2. Therefore, the dimensions of the product on which the plating film PF is formed are not limited to the dimensions of the holding portion 2. Therefore, the plating film PF can be formed on the portion PR to be plated even when the size of the portion PR to be plated is large.
 図1に示されるように、保持部2は、ノズル1の先端部1eを覆っている。このため、ノズル1は、保持部2を介して被めっき部PRに接続することができる。保持部2は絶縁体であり、ノズル1は導体である。仮に保持部2がノズル1の先端部1eを覆っていない場合、めっき電極100が被めっき部PRに接触することでめっき電極100と被めっき部PRとが短絡するため、めっき膜PFが形成されない。本実施の形態によれば、保持部2がノズル1の先端部1eを覆っているため、めっき電極100が被めっき部PRに接触したとしても、めっき電極100と被めっき部PRとが短絡しない。よって、めっき電極100が被めっき部PRに接触した状態でめっき膜PFを形成することができる。したがって、めっき電極100を被めっき部PR上において摺動させることでめっき膜PFを形成することができる。つまり、めっき電極100を摺動めっきに利用することができる。 As shown in FIG. 1, the holding portion 2 covers the tip portion 1e of the nozzle 1. Therefore, the nozzle 1 can be connected to the plated portion PR via the holding portion 2. The holding portion 2 is an insulator, and the nozzle 1 is a conductor. If the holding portion 2 does not cover the tip portion 1e of the nozzle 1, the plating electrode 100 and the plated portion PR are short-circuited due to the contact of the plating electrode 100 with the plated portion PR, so that the plating film PF is not formed. .. According to the present embodiment, since the holding portion 2 covers the tip portion 1e of the nozzle 1, even if the plating electrode 100 comes into contact with the plated portion PR, the plated electrode 100 and the plated portion PR are not short-circuited. .. Therefore, the plating film PF can be formed in a state where the plating electrode 100 is in contact with the PR to be plated. Therefore, the plating film PF can be formed by sliding the plating electrode 100 on the PR to be plated. That is, the plating electrode 100 can be used for sliding plating.
 これにより、めっき電極100が被めっき部PRから離れた状態でめっき液PSが供給される場合よりも、被めっき部PRに均一にめっき液PSを供給することができる。このため、被めっき部PR上においてめっき膜PFの厚みのばらつきが生じることを抑制することができる。したがって、めっき膜PFの品質を向上させることができる。 As a result, the plating solution PS can be uniformly supplied to the plated portion PR as compared with the case where the plating solution PS is supplied in a state where the plating electrode 100 is separated from the plated portion PR. Therefore, it is possible to suppress the variation in the thickness of the plating film PF on the PR to be plated. Therefore, the quality of the plating film PF can be improved.
 図1に示されるように、先端部1eには、複数の開口部OPが設けられている。ノズル1は、複数の開口部OPを通してめっき液PSを供給するように構成されている。このため、単一の開口部OPが設けられている場合よりも、めっき液PSの流量を制御することができる。これにより、めっき液PSを均一に供給することができる。したがって、均一な膜厚を有するめっき膜PFを形成することができる。 As shown in FIG. 1, the tip portion 1e is provided with a plurality of openings OP. The nozzle 1 is configured to supply the plating solution PS through a plurality of openings OP. Therefore, the flow rate of the plating solution PS can be controlled as compared with the case where a single opening OP is provided. As a result, the plating solution PS can be uniformly supplied. Therefore, it is possible to form a plating film PF having a uniform film thickness.
 ノズル1は、白金(Pt)、チタン-白金(Ti-Pt)、チタン-酸化イリジウム(Ti-IrO2)、ステンレス(SUS)およびカーボン(C)からなる群から選択されるいずれかの材料を含んでいる。このため、ノズル1に電圧を印加することができる。 The nozzle 1 contains any material selected from the group consisting of platinum (Pt), titanium-platinum (Ti-Pt), titanium-iridium oxide (Ti-IrO2), stainless steel (SUS) and carbon (C). I'm out. Therefore, a voltage can be applied to the nozzle 1.
 図3に示されるように、複数の開口部OPは、スリットとして構成されている。このため、複数の開口部OPが円形である場合(図2参照)よりも、開口部OPの辺の長さ当たりの開口部OPの面積を小さくすることができる。これにより、図1に示されるように、保持部2に供給されるめっき液PSの液量を小さくすることができる。よって、保持部2にめっき液PSが過剰に供給されることを抑制することができる。仮に開口部OPの面積が大きい場合、保持部2に供給されるめっき液PS量の液量が大きくなるため、保持部2にめっき液PSが過剰に供給される。このため、保持部2に供給されるめっき液PSの液量は、保持部2が保持可能なめっき液PSの液量を超える。よって、保持部2からめっき液PSが流出する。これにより、液シミ等のめっき不具合が生じる。本実施の形態によれば、保持部2にめっき液PSが過剰に供給されることを複数の開口部OPがスリットとして構成されていることにより抑制することができるため、液シミ等のめっき不具合が生じることを抑制することができる。 As shown in FIG. 3, the plurality of openings OP are configured as slits. Therefore, the area of the opening OP per the length of the side of the opening OP can be made smaller than that in the case where the plurality of opening OPs are circular (see FIG. 2). As a result, as shown in FIG. 1, the amount of the plating solution PS supplied to the holding portion 2 can be reduced. Therefore, it is possible to prevent the plating solution PS from being excessively supplied to the holding portion 2. If the area of the opening OP is large, the amount of the plating solution PS supplied to the holding portion 2 becomes large, so that the plating solution PS is excessively supplied to the holding portion 2. Therefore, the amount of the plating solution PS supplied to the holding unit 2 exceeds the amount of the plating solution PS that can be held by the holding unit 2. Therefore, the plating solution PS flows out from the holding portion 2. This causes plating defects such as liquid stains. According to the present embodiment, the excessive supply of the plating solution PS to the holding portion 2 can be suppressed by forming the plurality of opening OPs as slits, so that plating defects such as liquid stains can be suppressed. Can be suppressed from occurring.
 図2および図4に示されるように、先端部1eの外形は、方形である。このため、ノズル1の外形が円形である場合よりも、方形状である被めっき部PRの角にめっき液PSを供給しやすい。したがって、方形状である被めっき部PRの角にめっき膜PFを形成することができる。 As shown in FIGS. 2 and 4, the outer shape of the tip portion 1e is square. Therefore, it is easier to supply the plating solution PS to the corners of the portion PR to be plated, which is rectangular, than when the outer shape of the nozzle 1 is circular. Therefore, the plating film PF can be formed at the corners of the squared portion PR to be plated.
 ノズル1は、脱脂処理剤、酸洗浄剤、中和処理剤および純水を被めっき部PRに供給するように構成されている。このため、ノズル1を用いて脱脂処理、酸洗浄処理、中和処理および水洗を実施することができる。 The nozzle 1 is configured to supply a degreasing agent, an acid detergent, a neutralizing agent and pure water to the PR to be plated. Therefore, the nozzle 1 can be used to perform degreasing treatment, acid cleaning treatment, neutralization treatment, and water washing.
 実施の形態1に係るめっき装置200によれば、図7に示されるように、電源3は、めっき電極100および被めっき部PRに電圧を印加するように構成されている。接続機構4は、めっき電極100を被めっき部PRに接続させるように構成されている。このため、実施の形態1に係るめっき電極100によって、被めっき部PRにめっき膜PFを形成することができる。したがって、被めっき物PMの一部に選択的にめっき膜PFを形成することができる。 According to the plating apparatus 200 according to the first embodiment, as shown in FIG. 7, the power supply 3 is configured to apply a voltage to the plating electrode 100 and the plated portion PR. The connection mechanism 4 is configured to connect the plating electrode 100 to the plated portion PR. Therefore, the plating film PF can be formed on the plated portion PR by the plating electrode 100 according to the first embodiment. Therefore, the plating film PF can be selectively formed on a part of the object to be plated PM.
 実施の形態1に係るめっき方法によれば、図7に示されるように、ノズル1および被めっき部PRに電圧が印加された状態で、めっき電極100が被めっき部PRに接続されることでめっき膜PFが形成される。このため、ノズル1によって供給されためっき液PSにノズル1を介して電圧を印加することができる。よって、めっき膜PFをノズル1によってめっき液PSが供給された部分(被めっき部PR)に選択的に形成することができる。したがって、被めっき物PMの一部に選択的にめっき膜PFを形成することができる。 According to the plating method according to the first embodiment, as shown in FIG. 7, the plating electrode 100 is connected to the plated portion PR in a state where a voltage is applied to the nozzle 1 and the plated portion PR. The plating film PF is formed. Therefore, a voltage can be applied to the plating solution PS supplied by the nozzle 1 via the nozzle 1. Therefore, the plating film PF can be selectively formed on the portion (part to be plated PR) to which the plating solution PS is supplied by the nozzle 1. Therefore, the plating film PF can be selectively formed on a part of the object to be plated PM.
 図7および図12に示されるように、めっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上において摺動する。このため、めっき電極100が被めっき部PRから離れた状態で移動する場合よりも、めっき電極100と被めっき部PRとの相対速度が安定しやすい。したがって、均一な厚みを有するめっき膜PFを形成することができる。 As shown in FIGS. 7 and 12, the plating electrode 100 slides on the plated portion PR in a state where the plated electrode 100 is connected to the plated portion PR. Therefore, the relative speed between the plating electrode 100 and the PR to be plated is more likely to be stable than when the plating electrode 100 moves away from the PR to be plated. Therefore, it is possible to form a plating film PF having a uniform thickness.
 実施の形態2.
 図14~図19を用いて、実施の形態2に係るおよびめっき装置200の構成を説明する。実施の形態2は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 2.
14 to 19, the configuration of the plating apparatus 200 according to the second embodiment will be described. Unless otherwise specified, the second embodiment has the same configuration and operation and effect as those of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図14に示されるように、本実施の形態に係る接続機構4は、めっき電極100を被めっき部PR上においてノズル1の軸AX周りに回転可能に構成されている。めっき電極100は、被めっき部PR上をノズル1の軸AX周りに回転するように構成されている。後述されるようにめっき電極100は、被めっき部PR上において回転しながら摺動するように構成されていてもよいが、本実施の形態では、めっき電極100は回転するように構成されており、かつ摺動しないように構成されている。 As shown in FIG. 14, in the connection mechanism 4 according to the present embodiment, the plating electrode 100 is configured to be rotatable around the axis AX of the nozzle 1 on the PR to be plated. The plating electrode 100 is configured to rotate around the axis AX of the nozzle 1 on the PR to be plated. As will be described later, the plating electrode 100 may be configured to slide while rotating on the PR to be plated, but in the present embodiment, the plating electrode 100 is configured to rotate. And is configured so that it does not slide.
 被めっき部PRの表面積に対するノズル1の表面積の割合は、75%以上100%以下であることが望ましい。被めっき部PRの表面積に対する先端部1eの表面積の割合が20%以上75%以下である場合、めっき膜PFが均一に析出しやすくなる。また、被めっき部PRの表面積に対する先端部1eの表面積の割合は、20%以上75%以下である場合、めっき膜PFの析出速度が安定する。 It is desirable that the ratio of the surface area of the nozzle 1 to the surface area of the PR to be plated is 75% or more and 100% or less. When the ratio of the surface area of the tip portion 1e to the surface area of the portion PR to be plated is 20% or more and 75% or less, the plating film PF is likely to be uniformly deposited. Further, when the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is 20% or more and 75% or less, the precipitation rate of the plating film PF is stable.
 図15~図17に示されるように、仮に被めっき部PRの表面積に対するノズル1の表面積の割合が75%未満である場合、ノズル1が接触していない被めっき部PRの割合が大きい。このため、成膜レートが低い。よって、めっき膜PFの生産効率およびめっき品質が低下する。 As shown in FIGS. 15 to 17, if the ratio of the surface area of the nozzle 1 to the surface area of the plated portion PR is less than 75%, the ratio of the plated portion PR to which the nozzle 1 is not in contact is large. Therefore, the film formation rate is low. Therefore, the production efficiency and the plating quality of the plating film PF are lowered.
 図18に示されるように、本実施の形態に係る先端部1eの外形は、円形である。複数の開口部OPの各々の形状は、例えば、円形である。複数の開口部OPの各々の寸法は、互いに同じであってもよい。複数の開口部OPの各々は、先端部1eの中心に対して線対称に配置されていてもよい。 As shown in FIG. 18, the outer shape of the tip portion 1e according to the present embodiment is circular. The shape of each of the plurality of openings OP is, for example, circular. The dimensions of each of the plurality of openings OP may be the same as each other. Each of the plurality of openings OPs may be arranged line-symmetrically with respect to the center of the tip portion 1e.
 また、図19に示されるように、複数の開口部OPの各々は、スリットとして構成されていてもよい。複数の開口部OPは、複数の第4開口部OP4、複数の第5開口部OP5および複数の第6開口部OP6を含んでいてもよい。複数の第4開口部OP4は、第1の円C1の外形を構成するように配置されている。複数の第5開口部OP5は、第2の円C2の外形を構成するように配置されている。複数の第6開口部OP6は、第3の円C3の外形を構成するように配置されている。第2の円C2は、第1の円C1を取り囲むように配置されている。第3の円C3は、第2の円C2を取り囲むように配置されている。第1の円C1、第2の円C2および第3の円C3は、同心円状に配置されている。 Further, as shown in FIG. 19, each of the plurality of openings OP may be configured as a slit. The plurality of openings OP may include a plurality of fourth openings OP4, a plurality of fifth openings OP5, and a plurality of sixth openings OP6. The plurality of fourth openings OP4 are arranged so as to form the outer shape of the first circle C1. The plurality of fifth openings OP5 are arranged so as to form the outer shape of the second circle C2. The plurality of sixth openings OP6 are arranged so as to form the outer shape of the third circle C3. The second circle C2 is arranged so as to surround the first circle C1. The third circle C3 is arranged so as to surround the second circle C2. The first circle C1, the second circle C2, and the third circle C3 are arranged concentrically.
 次に、図14、図20および図21を用いて、実施の形態2に係るめっき方法を説明する。 Next, the plating method according to the second embodiment will be described with reference to FIGS. 14, 20 and 21.
 図20および図14に示されるように、めっき電極100は、被めっき部PRに接続される。続いて、図14に示されるように、本実施の形態において、めっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転する。めっき電極100は、接続機構4によって回転される。これにより、図21に示されるように、めっき膜PFが形成される。なお、後述されるようにめっき電極100は、被めっき部PR上を回転しながら摺動してもよいが、本実施の形態では、めっき電極100は摺動しない。 As shown in FIGS. 20 and 14, the plating electrode 100 is connected to the plated portion PR. Subsequently, as shown in FIG. 14, in the present embodiment, the plating electrode 100 is placed around the axis AX of the nozzle 1 on the plated portion PR in a state where the plated electrode 100 is connected to the plated portion PR. Rotate. The plating electrode 100 is rotated by the connection mechanism 4. As a result, the plating film PF is formed as shown in FIG. As will be described later, the plating electrode 100 may slide while rotating on the PR to be plated, but in the present embodiment, the plating electrode 100 does not slide.
 めっき電極100の回転速度は、めっき電極100と被めっき部PRとの相対速度が12.5m/min(分)以上17.5m/min(分)以下になるように設定されることが望ましい。 It is desirable that the rotation speed of the plating electrode 100 is set so that the relative speed between the plating electrode 100 and the PR to be plated is 12.5 m / min (minutes) or more and 17.5 m / min (minutes) or less.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態2に係るめっき電極100によれば、図14に示されるように、接続機構4は、めっき電極100を被めっき部PR上においてノズル1の軸AX周りに回転可能に構成されている。めっき電極100が十分に直線状または曲線状に移動することができない程度に被めっき部PRが小さい場合、めっき電極100は被めっき部PR上において十分に直線状または曲線状に移動することができない。例えば、基板および微小パターン等の被めっき部PRは、被めっき部PR上においてめっき電極100が十分に直線状または曲線状に移動することができない程度に小さい。このため、仮にめっき電極100が回転しない場合、小さい被めっき部PR上においてめっき電極100と被めっき部PRとの相対速度が十分に得られない。これにより、めっき膜PFの生産効率および品質が低下する。本実施の形態によれば、接続機構4は、めっき電極100を被めっき部PR上においてノズル1の軸AX周りに回転可能に構成されている。このため、被めっき部PRが小さい場合であっても、めっき電極100が被めっき部PR上において回転することで、めっき電極100と被めっき部PRとの相対速度が十分に大きくなる。よって、めっき膜PFを均一に析出させることができる。また、めっき膜PFが析出する速度を安定させることができる。したがって、被めっき部PRが小さい場合であっても、めっき膜PFの生産効率および品質が低下することを抑制することができる。
Subsequently, the action and effect of the present embodiment will be described.
According to the plating electrode 100 according to the second embodiment, as shown in FIG. 14, the connection mechanism 4 is configured such that the plating electrode 100 is rotatable around the axis AX of the nozzle 1 on the PR to be plated. .. When the plated electrode 100 is so small that the plated electrode 100 cannot move sufficiently linearly or curvedly, the plated electrode 100 cannot move sufficiently linearly or curvedly on the plated portion PR. .. For example, the PR of the plated portion such as the substrate and the minute pattern is so small that the plating electrode 100 cannot sufficiently move linearly or curvedly on the PR of the plated portion. Therefore, if the plating electrode 100 does not rotate, the relative speed between the plating electrode 100 and the plated portion PR cannot be sufficiently obtained on the small plated portion PR. This reduces the production efficiency and quality of the plating film PF. According to the present embodiment, the connection mechanism 4 is configured so that the plating electrode 100 can rotate around the axis AX of the nozzle 1 on the PR to be plated. Therefore, even when the PR to be plated is small, the relative speed between the plating electrode 100 and the PR to be plated becomes sufficiently large by rotating the plating electrode 100 on the PR to be plated. Therefore, the plating film PF can be uniformly deposited. In addition, the rate at which the plating film PF precipitates can be stabilized. Therefore, even when the PR of the plated portion is small, it is possible to prevent the production efficiency and quality of the plating film PF from deteriorating.
 図18、図19および図14に示されるように、先端部1eの外形は、円形である。仮に先端部1eの外形が方形である場合(図2および図3参照)には、先端部1eの角に接触する被めっき部PRの部分と先端部1eの角との接触時間は、先端部1eの中心に接触する被めっき部PRの部分と先端部1eの中心の接触時間と異なる。このため、被めっき部PRと先端部1eとの接触時間は、被めっき部PRの位置によって異なる。よって、めっき膜PFが均一に形成されない。本実施の形態によれば、先端部1eの外形が円形であるため、被めっき部PRと先端部1eとの接触時間は被めっき部PRの位置によらず一定である。よって、めっき膜PFが均一に形成されないことを抑制することができる。 As shown in FIGS. 18, 19 and 14, the outer shape of the tip portion 1e is circular. If the outer shape of the tip portion 1e is square (see FIGS. 2 and 3), the contact time between the portion of the plated portion PR that contacts the corner of the tip portion 1e and the corner of the tip portion 1e is the tip portion. The contact time is different between the portion of the plated portion PR that contacts the center of 1e and the center of the tip portion 1e. Therefore, the contact time between the plated portion PR and the tip portion 1e differs depending on the position of the plated portion PR. Therefore, the plating film PF is not uniformly formed. According to the present embodiment, since the outer shape of the tip portion 1e is circular, the contact time between the plated portion PR and the tip portion 1e is constant regardless of the position of the plated portion PR. Therefore, it is possible to prevent the plating film PF from being uniformly formed.
 実施の形態2に係るめっき方法によれば、図14に示されるように、めっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転する。このため、被めっき部PRが小さい場合であっても、めっき膜PFの生産効率および品質が低下することを抑制することができる。 According to the plating method according to the second embodiment, as shown in FIG. 14, the plating electrode 100 is the shaft of the nozzle 1 on the plated portion PR in a state where the plated electrode 100 is connected to the plated portion PR. Rotate around AX. Therefore, even when the PR of the plated portion is small, it is possible to prevent the production efficiency and quality of the plating film PF from deteriorating.
 実施の形態3.
 図22および図23を用いて、実施の形態3に係るおよびめっき装置を説明する。実施の形態3は、特に説明しない限り、上記の実施の形態2と同一の構成および作用効果を有している。したがって、上記の実施の形態2と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 3.
22 and 23 will be used to describe the third embodiment and the plating apparatus. Unless otherwise specified, the third embodiment has the same configuration and operation and effect as those of the second embodiment. Therefore, the same components as those in the second embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図22に示されるように、本実施の形態に係る接続機構4は、めっき電極100を被めっき部PR上においてノズル1の軸AX周りに回転させながら摺動可能に構成されている。めっき電極100は、被めっき部PR上をノズル1の軸AX周りに回転しながら摺動するように構成されている。このため、めっき電極100は、被めっき部PR上をノズル1の軸AX周りに回転しながら第1方向DR1に沿って直線状に移動するように構成されている。また、図23に示されるように、めっき電極100は、被めっき部PR上をノズル1の軸AX周りに回転しながら第1方向DR1および第2方向DR2に沿って直線状または曲線状に移動するように構成されていてもよい。 As shown in FIG. 22, the connection mechanism 4 according to the present embodiment is configured to be slidable while rotating the plating electrode 100 around the axis AX of the nozzle 1 on the plated portion PR. The plating electrode 100 is configured to slide on the PR to be plated while rotating around the axis AX of the nozzle 1. Therefore, the plating electrode 100 is configured to move linearly along the first direction DR1 while rotating around the axis AX of the nozzle 1 on the portion PR to be plated. Further, as shown in FIG. 23, the plating electrode 100 moves linearly or curvedly along the first direction DR1 and the second direction DR2 while rotating around the axis AX of the nozzle 1 on the plated portion PR. It may be configured to do so.
 図22に示されるように、被めっき部PRの表面積に対するノズル1の表面積の割合は、20%以上90%以下であることが望ましい。被めっき部PRの表面積に対する先端部1eの表面積の割合が20%以上90%以下である場合、めっき膜PFが均一に析出しやすくなる。また、被めっき部PRの表面積に対する先端部1eの表面積の割合は、20%以上90%以下である場合、めっき膜PFの析出速度が安定する。 As shown in FIG. 22, the ratio of the surface area of the nozzle 1 to the surface area of the PR to be plated is preferably 20% or more and 90% or less. When the ratio of the surface area of the tip portion 1e to the surface area of the portion PR to be plated is 20% or more and 90% or less, the plating film PF is likely to be uniformly deposited. Further, when the ratio of the surface area of the tip portion 1e to the surface area of the plated portion PR is 20% or more and 90% or less, the precipitation rate of the plating film PF is stable.
 仮に被めっき部PRの表面積に対するノズル1の表面積の割合が20%未満である場合、ノズル1が接触していない被めっき部PRの割合が大きい。このため、成膜レートが低い。よって、めっき膜PFの生産効率およびめっき品質が低下する。 If the ratio of the surface area of the nozzle 1 to the surface area of the plated portion PR is less than 20%, the ratio of the plated portion PR to which the nozzle 1 is not in contact is large. Therefore, the film formation rate is low. Therefore, the production efficiency and the plating quality of the plating film PF are lowered.
 仮に被めっき部PRの表面積に対するノズル1の表面積の割合が90%よりも大きい場合、めっき電極100の被めっき面PP上における移動距離が小さい。このため、めっき電極100の移動速度が不安定になる。よって、めっき膜PFが均一に析出しない。また、析出速度が不安定になる。したがって、めっき膜PFの生産効率およびめっき品質が低下する。 If the ratio of the surface area of the nozzle 1 to the surface area of the PR to be plated is larger than 90%, the moving distance of the plating electrode 100 on the surface PP to be plated is small. Therefore, the moving speed of the plating electrode 100 becomes unstable. Therefore, the plating film PF does not precipitate uniformly. In addition, the precipitation rate becomes unstable. Therefore, the production efficiency and plating quality of the plating film PF are lowered.
 次に、図22~図29を用いて、実施の形態3に係るめっき方法を説明する。
 めっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転しながら摺動する。図22に示されるように被めっき部PRの外形が方形である場合、図24~図26に示されるようにめっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転しながら第1方向DR1に沿って直線状に移動する。
Next, the plating method according to the third embodiment will be described with reference to FIGS. 22 to 29.
With the plating electrode 100 connected to the plated portion PR, the plated electrode 100 slides on the plated portion PR while rotating around the axis AX of the nozzle 1. When the outer shape of the plated portion PR is square as shown in FIG. 22, the plated electrode 100 is covered with the plated electrode 100 in a state of being connected to the plated portion PR as shown in FIGS. 24 to 26. It moves linearly along the first direction DR1 while rotating around the axis AX of the nozzle 1 on the plating portion PR.
 また、図23に示されるように被めっき部PRの外形が楕円形または円形である場合、図27~図29に示されるようにめっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転しながら曲線状に移動する。 Further, when the outer shape of the plated portion PR is elliptical or circular as shown in FIG. 23, the plating electrode 100 is connected to the plated portion PR as shown in FIGS. 27 to 29 for plating. The electrode 100 moves in a curved shape while rotating around the axis AX of the nozzle 1 on the plated portion PR.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態3に係るめっき電極100によれば、図22および図23に示されるように、接続機構4は、めっき電極100を被めっき部PR上においてノズル1の軸AX周りに回転させながら摺動可能に構成されている。このため、めっき電極100が回転せずに摺動する場合および摺動せずに回転する場合よりも、めっき電極100と被めっき部PRとの相対速度が安定する。したがって、めっき膜PFの成膜速度およびめっき品質の低下を抑制することができる。
Subsequently, the action and effect of the present embodiment will be described.
According to the plating electrode 100 according to the third embodiment, as shown in FIGS. 22 and 23, the connection mechanism 4 slides the plating electrode 100 on the plated portion PR while rotating it around the axis AX of the nozzle 1. It is configured to be movable. Therefore, the relative speed between the plating electrode 100 and the PR to be plated is more stable than when the plating electrode 100 slides without rotating or when it rotates without sliding. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF.
 より詳細には、仮にめっき電極100が回転せずに摺動する場合には、めっき電極100の摺動方向が反転する際にめっき電極100と被めっき部PRとの相対速度がゼロになる。このため、成膜速度およびめっき品質が低下する。本実施の形態に係るめっき電極100によれば、めっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転しながら摺動する。このため、摺動方向が反転する際にも相対速度がゼロにならない。したがって、めっき膜PFの成膜速度およびめっき品質の低下を抑制することができる。これにより、めっき膜PFを均一に成膜することができる。また、めっき膜PFの析出速度を安定させることができる。 More specifically, if the plating electrode 100 slides without rotating, the relative speed between the plating electrode 100 and the portion PR to be plated becomes zero when the sliding direction of the plating electrode 100 is reversed. Therefore, the film forming speed and the plating quality are lowered. According to the plating electrode 100 according to the present embodiment, in a state where the plating electrode 100 is connected to the plated portion PR, the plated electrode 100 slides on the plated portion PR while rotating around the axis AX of the nozzle 1. Move. Therefore, the relative speed does not become zero even when the sliding direction is reversed. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF. As a result, the plating film PF can be uniformly formed. In addition, the precipitation rate of the plating film PF can be stabilized.
 また、仮にめっき電極100が摺動せずに回転する場合には、めっき電極100の中心部(軸AX)における相対速度は、めっき電極100の端部における相対速度よりも小さい。このため、特に、被めっき部PRの寸法がめっき電極100と同程度である場合には、めっき膜PFの成膜速度およびめっき品質が低下する。本実施の形態に係るめっき電極100によれば、めっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転しながら摺動する。また、めっき電極100の中心部における相対速度と端部における相対速度との差は、めっき電極100が摺動することによって小さくなる。したがって、めっき膜PFの成膜速度およびめっき品質の低下を抑制することができる。 Further, if the plating electrode 100 rotates without sliding, the relative velocity at the center portion (axis AX) of the plating electrode 100 is smaller than the relative velocity at the end portion of the plating electrode 100. Therefore, in particular, when the size of the plated portion PR is about the same as that of the plating electrode 100, the film forming speed and the plating quality of the plating film PF are lowered. According to the plating electrode 100 according to the present embodiment, in a state where the plating electrode 100 is connected to the plated portion PR, the plated electrode 100 slides on the plated portion PR while rotating around the axis AX of the nozzle 1. Move. Further, the difference between the relative speed at the central portion and the relative velocity at the end portion of the plating electrode 100 becomes smaller as the plating electrode 100 slides. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF.
 実施の形態3に係るめっき方法によれば、図22および図23に示されるように、めっき電極100が被めっき部PRに接続された状態で、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転しながら摺動する。したがって、めっき膜PFの成膜速度およびめっき品質の低下を抑制することができる。 According to the plating method according to the third embodiment, as shown in FIGS. 22 and 23, in a state where the plating electrode 100 is connected to the plated portion PR, the plating electrode 100 is a nozzle on the plated portion PR. It slides while rotating around the axis AX of 1. Therefore, it is possible to suppress a decrease in the film forming speed and the plating quality of the plating film PF.
 実施の形態4.
 図30~図47を用いて、実施の形態4に係るめっき電極100およびめっき装置200の構成を説明する。実施の形態4は、特に説明しない限り、上記の実施の形態3と同一の構成および作用効果を有している。したがって、上記の実施の形態3と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 4.
The configurations of the plating electrode 100 and the plating apparatus 200 according to the fourth embodiment will be described with reference to FIGS. 30 to 47. Unless otherwise specified, the fourth embodiment has the same configuration and operation and effect as those of the third embodiment. Therefore, the same components as those in the third embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図30に示されるように、本実施の形態に係るノズル1は、円柱状である。ノズル1は、中空な円柱状である。ノズル1は、側面1sを含んでいる。側面1sは、先端部1eから立ち上がっている。側面1sは、先端部1eを囲んでいる。側面1sには、複数の貫通部THが設けられている。複数の貫通部THは、側面1sを貫通している。ノズル1は、複数の貫通部THを通してめっき液PS(図33参照)を供給するように構成されている。ノズル1は、複数の開口部OPおよび複数の貫通部THを通してめっき液PS(図33参照)を供給するように構成されていてもよい。 As shown in FIG. 30, the nozzle 1 according to the present embodiment is cylindrical. The nozzle 1 is a hollow columnar shape. The nozzle 1 includes a side surface 1s. The side surface 1s rises from the tip portion 1e. The side surface 1s surrounds the tip portion 1e. A plurality of penetrating portions TH are provided on the side surface 1s. The plurality of penetrating portions TH penetrate the side surface 1s. The nozzle 1 is configured to supply the plating solution PS (see FIG. 33) through the plurality of penetration portions TH. The nozzle 1 may be configured to supply the plating solution PS (see FIG. 33) through the plurality of openings OP and the plurality of penetration portions TH.
 複数の貫通部THの各々の形状は、例えば、円形である。複数の貫通部THの各々の形状は、互いに同じであってもよい。 The shape of each of the plurality of penetration portions TH is, for example, circular. The shape of each of the plurality of penetration portions TH may be the same as each other.
 図31に示されるように、複数の貫通部THの各々は、スリットとして構成されていてもよい。すなわち、複数の貫通部THの各々の形状は、長方形であってもよい。 As shown in FIG. 31, each of the plurality of penetration portions TH may be configured as a slit. That is, the shape of each of the plurality of penetration portions TH may be rectangular.
 図32に示されるように、複数の貫通部THは、複数の第1貫通孔TH1と、複数の第2貫通孔TH2とを含んでいてもよい。複数の第1貫通孔TH1および複数の第2貫通孔TH2は、側面1sに設けられている。複数の第1貫通孔TH1は、ノズル1の軸方向に沿って複数の第2貫通孔TH2よりも重力方向の下方に配置されている。複数の第1貫通孔TH1は、側面1sにおいて複数の第2貫通孔TH2よりも先端部1eの近くに配置されている。複数の第1貫通孔TH1の開口面積は、複数の第2貫通孔TH2の開口面積よりも小さい。複数の第1貫通孔TH1の直径は、複数の第2貫通孔TH2の直径よりも小さい。 As shown in FIG. 32, the plurality of through portions TH may include a plurality of first through holes TH1 and a plurality of second through holes TH2. The plurality of first through holes TH1 and the plurality of second through holes TH2 are provided on the side surface 1s. The plurality of first through holes TH1 are arranged along the axial direction of the nozzle 1 below the plurality of second through holes TH2 in the gravity direction. The plurality of first through holes TH1 are arranged closer to the tip portion 1e than the plurality of second through holes TH2 on the side surface 1s. The opening area of the plurality of first through holes TH1 is smaller than the opening area of the plurality of second through holes TH2. The diameter of the plurality of first through holes TH1 is smaller than the diameter of the plurality of second through holes TH2.
 図33および図34に示されるように、保持部2は、めっき液PSを保持するための保持部である。保持部2は、ノズル1の側面1sを全周にわたって覆っている。保持部2は、複数の開口部OPおよび複数の貫通部THを覆っている。めっき液PSは、複数の開口部OPおよび複数の貫通部THの各々を通って保持部2に供給される。 As shown in FIGS. 33 and 34, the holding portion 2 is a holding portion for holding the plating solution PS. The holding portion 2 covers the side surface 1s of the nozzle 1 over the entire circumference. The holding portion 2 covers a plurality of opening OPs and a plurality of penetrating portions TH. The plating solution PS is supplied to the holding portion 2 through each of the plurality of openings OP and the plurality of penetration portions TH.
 本実施の形態に係る被めっき物PMは、例えば、円柱状である。被めっき物PMは、中空な円柱状である。被めっき物PMは、底部PM1および筒部PM2を含んでいる。本実施の形態において、被めっき部PRは、底部PM1および筒部PM2の内表面である。底部PM1は、円形である。筒部PM2は、底部PM1から立ち上がっている。筒部PM2は、中空である。底部PM1が円形である場合、筒部PM2は、円筒形状である。筒部PM2の内径は、めっき電極100の外径以上である。 The object to be plated PM according to this embodiment is, for example, a columnar shape. The object to be plated PM is a hollow columnar shape. The object to be plated PM includes a bottom portion PM1 and a tubular portion PM2. In the present embodiment, the plated portion PR is the inner surface of the bottom portion PM1 and the tubular portion PM2. The bottom PM1 is circular. The tubular portion PM2 rises from the bottom PM1. The tubular portion PM2 is hollow. When the bottom PM1 is circular, the tubular PM2 is cylindrical. The inner diameter of the tubular portion PM2 is equal to or larger than the outer diameter of the plating electrode 100.
 図35および図36に示されるように、底部PM1は、楕円形であってもよい。底部PM1が楕円形である場合、筒部PM2は、中空な楕円柱形状である。筒部PM2の内径(短径)は、めっき電極100の外径以上である。 As shown in FIGS. 35 and 36, the bottom PM1 may be oval. When the bottom PM1 has an elliptical shape, the tubular PM2 has a hollow elliptical column shape. The inner diameter (minor diameter) of the tubular portion PM2 is equal to or larger than the outer diameter of the plating electrode 100.
 図37および図38に示されるように、めっき装置200は、ロボット300と、制御装置400とをさらに含んでいてもよい。ロボット300は、めっき電極100を移動させるように構成されている。ロボット300は、力覚センサ301を含んでいる。力覚センサ301は、めっき電極100と被めっき部PRとの接触によってめっき電極100に印加される荷重を測定するように構成されている。制御装置400は、ロボット300によるめっき電極100の移動を制御するように構成されている。制御装置400によるロボット300の制御方法は、詳細に後述される。 As shown in FIGS. 37 and 38, the plating device 200 may further include a robot 300 and a control device 400. The robot 300 is configured to move the plating electrode 100. The robot 300 includes a force sensor 301. The force sensor 301 is configured to measure the load applied to the plating electrode 100 by the contact between the plating electrode 100 and the PR to be plated. The control device 400 is configured to control the movement of the plating electrode 100 by the robot 300. The method of controlling the robot 300 by the control device 400 will be described in detail later.
 図39および図40に示されるように、めっき装置200は、ロボット300と、制御装置400と、直流化電源500とをさらに含んでいてもよい。直流化電源500は、制御装置400に接続されている。制御装置400は、直流化電源500による電気抵抗出力501に応じてロボット300を制御するように構成されている。制御装置400によるロボット300の制御方法は、詳細に後述される。 As shown in FIGS. 39 and 40, the plating device 200 may further include a robot 300, a control device 400, and a DC power supply 500. The DC power supply 500 is connected to the control device 400. The control device 400 is configured to control the robot 300 according to the electric resistance output 501 of the DC power supply 500. The method of controlling the robot 300 by the control device 400 will be described in detail later.
 図41および図42に示されるように、制御装置400は、ポンプ7に接続されていてもよい。制御装置400は、ポンプ7によるめっき液PSの供給量を制御するように構成されていてもよい。具体的には、制御装置400は、力覚センサ301によって測定された荷重に基づいてポンプ7によるめっき液PSの供給量を調整するように構成されていてもよい。 As shown in FIGS. 41 and 42, the control device 400 may be connected to the pump 7. The control device 400 may be configured to control the supply amount of the plating solution PS by the pump 7. Specifically, the control device 400 may be configured to adjust the supply amount of the plating solution PS by the pump 7 based on the load measured by the force sensor 301.
 図43および図44に示されるように、制御装置400は、電気抵抗出力501に基づいてポンプ7によるめっき液PSの供給量を調整するように構成されていてもよい。 As shown in FIGS. 43 and 44, the control device 400 may be configured to adjust the supply amount of the plating solution PS by the pump 7 based on the electric resistance output 501.
 次に、図37、図39、図45および図46を用いて、実施の形態4に係るめっき方法を説明する。 Next, the plating method according to the fourth embodiment will be described with reference to FIGS. 37, 39, 45 and 46.
 まず、図37および図45に示されるように、ステップS101において、めっき電極100は、ロボット300によって被めっき部PRに接続される。具体的には、めっき電極100は、底部PM1および筒部PM2の内表面に接続される。ノズル1の先端部1eは、保持部2を介して底部PM1に接続される。ノズル1の側面1sは、保持部2を介して筒部PM2に接続される。 First, as shown in FIGS. 37 and 45, in step S101, the plating electrode 100 is connected to the plated portion PR by the robot 300. Specifically, the plating electrode 100 is connected to the inner surfaces of the bottom PM1 and the tubular PM2. The tip portion 1e of the nozzle 1 is connected to the bottom PM1 via the holding portion 2. The side surface 1s of the nozzle 1 is connected to the tubular portion PM2 via the holding portion 2.
 続いて、めっき電極100が被めっき部PRに接続された状態で、めっき電極100が被めっき部PR上においてノズル1の軸周りに回転しながら摺動する。筒部PM2の内径がめっき電極100の外径以上である場合、めっき電極100は、めっき電極100の側部が筒部PM2の内表面に接触し続けるように移動する。 Subsequently, with the plating electrode 100 connected to the plated portion PR, the plated electrode 100 slides on the plated portion PR while rotating around the axis of the nozzle 1. When the inner diameter of the tubular portion PM2 is equal to or larger than the outer diameter of the plating electrode 100, the plating electrode 100 moves so that the side portion of the plating electrode 100 keeps in contact with the inner surface of the tubular portion PM2.
 めっき電極100と被めっき部PRとの接触は、力覚センサ301で検知されることで制御される。ステップS102において、力覚センサ301で検知した荷重が下限値以下であるかどうかが判定される。めっき電極100と被めっき部PRとの接触面積が小さい場合には、力覚センサ301に作用する荷重が小さい。めっき電極100と被めっき部PRとの接触面積が大きい場合には、力覚センサ301に作用する荷重が大きい。 The contact between the plating electrode 100 and the PR to be plated is controlled by being detected by the force sensor 301. In step S102, it is determined whether or not the load detected by the force sensor 301 is equal to or less than the lower limit value. When the contact area between the plating electrode 100 and the PR to be plated is small, the load acting on the force sensor 301 is small. When the contact area between the plating electrode 100 and the PR to be plated is large, the load acting on the force sensor 301 is large.
 力覚センサ301で感知した荷重が下限値以下である場合には、ステップS103において、ロボット300は、めっき電極100と被めっき部PRとの接触面積が下限値以上になるまでめっき電極100を被めっき部PRに近づける。続いて、ステップS102に戻る。また、力覚センサ301に作用する荷重が下限値以下でない場合には、ステップS104において、力覚センサ301で感知した荷重が上限値以上であるかどうかが判定される。 When the load sensed by the force sensor 301 is not more than the lower limit value, in step S103, the robot 300 covers the plating electrode 100 until the contact area between the plating electrode 100 and the plated portion PR becomes equal to or more than the lower limit value. Bring it closer to the plated part PR. Then, the process returns to step S102. If the load acting on the force sensor 301 is not equal to or less than the lower limit, it is determined in step S104 whether the load detected by the force sensor 301 is equal to or greater than the upper limit.
 力覚センサ301で感知した荷重が上限値以上である場合には、ステップS105においてロボット300は、めっき電極100と被めっき部PRとの接触面積が上限値未満になるまでめっき電極100を被めっき部PRから遠ざける。続いて、ステップS102に戻る。また、力覚センサ301で感知した荷重が上限値以上でない場合には、接触制御工程が終了する。 When the load sensed by the force sensor 301 is equal to or greater than the upper limit value, the robot 300 in step S105 plated the plating electrode 100 until the contact area between the plating electrode 100 and the plated portion PR becomes less than the upper limit value. Keep away from the club PR. Then, the process returns to step S102. If the load detected by the force sensor 301 is not equal to or higher than the upper limit value, the contact control step ends.
 図39および図46に示されるように、めっき電極100と被めっき部PRとの接触は、めっき電極100と被めっき部PRとの接触面積の変化に伴う電気抵抗(電気抵抗出力501)の変化が検知されることで制御される。まず、ステップS201において、ロボットによってめっき電極100は被めっき物PMに接続される。続いて、ステップS202において、めっき電極100に、電流が印加される。 As shown in FIGS. 39 and 46, the contact between the plating electrode 100 and the portion PR to be plated is a change in the electric resistance (electrical resistance output 501) due to a change in the contact area between the plating electrode 100 and the portion PR to be plated. Is controlled by being detected. First, in step S201, the plating electrode 100 is connected to the object to be plated PM by a robot. Subsequently, in step S202, a current is applied to the plating electrode 100.
 ステップS203において、めっき電極100および被めっき部PRの電気抵抗が指定された上限値以上であるかどうかが判定される。めっき電極100と被めっき部PRとの接触面積が小さい場合には、めっき電極100と被めっき部PRとの接触部における電気抵抗が大きい。また、めっき電極100と被めっき部PRとの接触面積が大きい場合には、めっき電極100と被めっき部PRとの接触部における電気抵抗が小さい。電気抵抗が上限値以上である場合には、ステップS204においてロボット300は、電気抵抗が上限値未満になるまでめっき電極100を被めっき部PRに近づける。続いて、ステップS203に戻る。また、電気抵抗が上限値以上ではない場合には、ステップS205において電気抵抗が下限値以下であるかどうかが判定される。 In step S203, it is determined whether or not the electrical resistance of the plating electrode 100 and the PR to be plated is equal to or higher than the specified upper limit value. When the contact area between the plating electrode 100 and the PR to be plated is small, the electrical resistance at the contact between the plating electrode 100 and the PR to be plated is large. Further, when the contact area between the plating electrode 100 and the PR to be plated is large, the electric resistance at the contact between the plating electrode 100 and the PR to be plated is small. When the electric resistance is equal to or more than the upper limit value, in step S204, the robot 300 brings the plating electrode 100 closer to the portion to be plated PR until the electric resistance becomes less than the upper limit value. Then, the process returns to step S203. Further, when the electric resistance is not equal to or more than the upper limit value, it is determined in step S205 whether or not the electric resistance is equal to or less than the lower limit value.
 電気抵抗が下限値以下である場合には、ステップS206においてロボット300は、電気抵抗が下限値よりも大きくなるまでめっき電極100を被めっき物PMから遠ざける。続いて、ステップS203に戻る。また、電気抵抗が下限値以上である場合には、接触制御工程が終了する。 When the electric resistance is equal to or less than the lower limit value, in step S206, the robot 300 keeps the plating electrode 100 away from the object to be plated PM until the electric resistance becomes larger than the lower limit value. Then, the process returns to step S203. If the electrical resistance is equal to or higher than the lower limit, the contact control step ends.
 次に、図41および図47を用いて、実施の形態4に係るめっき液PSの流量の制御方法を説明する。 Next, a method of controlling the flow rate of the plating solution PS according to the fourth embodiment will be described with reference to FIGS. 41 and 47.
 図41および図47に示されるように、まず、ステップS301において、めっき電極100は被めっき物PMに接続される。 As shown in FIGS. 41 and 47, first, in step S301, the plating electrode 100 is connected to the object to be plated PM.
 続いて、ステップS302において、ノズル1の先端部1eが被めっき部PRに接触しているかどうかが判定される。ノズル1の先端部1eが被めっき部PRに接触している場合、ステップS303においてノズル1の側面1sが被めっき部PRに接触しているかどうかが判定される。ノズル1の先端部1eおよび側面1sが被めっき部PRに接触している場合、ステップS304においてポンプ7のめっき液PSの流量が先端部1eおよび側面1sの被めっき部PRとの接触面積に対応する値に設定される。また、ノズル1の先端部1eが被めっき部PRに接触しかつ側面1sが被めっき部PRに接触していない場合、ステップS305においてポンプ7のめっき液PSの流量が先端部1eと被めっき部PRとの接触面積に対応する値に設定される。 Subsequently, in step S302, it is determined whether or not the tip portion 1e of the nozzle 1 is in contact with the plated portion PR. When the tip portion 1e of the nozzle 1 is in contact with the plated portion PR, it is determined in step S303 whether or not the side surface 1s of the nozzle 1 is in contact with the plated portion PR. When the tip portion 1e and the side surface 1s of the nozzle 1 are in contact with the plated portion PR, the flow rate of the plating solution PS of the pump 7 corresponds to the contact area of the tip portion 1e and the side surface 1s with the plated portion PR in step S304. Is set to the value to be used. Further, when the tip portion 1e of the nozzle 1 is in contact with the plated portion PR and the side surface 1s is not in contact with the plated portion PR, the flow rate of the plating solution PS of the pump 7 is the tip portion 1e and the plated portion in step S305. It is set to a value corresponding to the contact area with PR.
 ノズル1の先端部1eが被めっき面に接触していない場合、ステップS306においてノズル1の側面1sが被めっき部PRに接触しているかどうかが判定される。ノズル1の先端部1eが被めっき部PRに接触しておらずかつ側面1sが被めっき部PRに接触している場合、ステップS307においてポンプ7のめっき液PSの流量が側面1sと被めっき部PRとの接触面積に対応する値に設定される。また、ノズル1の先端部1eおよび側面1sが被めっき部PRに接触していない場合、ステップS308においてポンプ7のめっき液PSの流量がゼロに設定される。 When the tip portion 1e of the nozzle 1 is not in contact with the surface to be plated, it is determined in step S306 whether the side surface 1s of the nozzle 1 is in contact with the portion PR to be plated. When the tip portion 1e of the nozzle 1 is not in contact with the plated portion PR and the side surface 1s is in contact with the plated portion PR, the flow rate of the plating solution PS of the pump 7 is in contact with the side surface 1s and the plated portion in step S307. It is set to a value corresponding to the contact area with PR. Further, when the tip portion 1e and the side surface 1s of the nozzle 1 are not in contact with the plated portion PR, the flow rate of the plating solution PS of the pump 7 is set to zero in step S308.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態4に係るめっき電極100によれば、図33に示されるように、ノズル1は、側面1sに設けられた複数の貫通部THを通してめっき液PSを供給するように構成されている。このため、ノズル1の側面1sから被めっき物PMの筒部PM2の内面にめっき液PSを供給することができる。よって、円筒形状または楕円形状を有する被めっき物PMの筒部PM2の内面にめっき液PSを供給することができる。これにより、複数の貫通部THおよび複数の開口部OPのそれぞれを通して、被めっき物PMの筒部PM2の内面および底部PM1の両方に同時にめっき膜PFを形成することができる。
Subsequently, the action and effect of the present embodiment will be described.
According to the plating electrode 100 according to the fourth embodiment, as shown in FIG. 33, the nozzle 1 is configured to supply the plating solution PS through a plurality of penetration portions TH provided on the side surface 1s. Therefore, the plating solution PS can be supplied from the side surface 1s of the nozzle 1 to the inner surface of the tubular portion PM2 of the object to be plated PM. Therefore, the plating solution PS can be supplied to the inner surface of the tubular portion PM2 of the object to be plated PM having a cylindrical shape or an elliptical shape. Thereby, the plating film PF can be formed simultaneously on both the inner surface and the bottom PM1 of the tubular portion PM2 of the object to be plated through each of the plurality of penetration portions TH and the plurality of openings OP.
 図33に示されるように、ノズル1は、円柱状である。このため、円筒形状または楕円筒形状を有する被めっき物PMの内面の被めっき部PRにめっき液PSを供給することができる。また、軸方向周りにめっき電極100を回転させることで、円筒形状または楕円筒形状を有する被めっき部PRの内面の被めっき部PRのさらに広い範囲をめっき処理してもよい。なお、ノズル1に複数の貫通部THが設けられている場合には、開口部OPが設けられていなくてもよい。 As shown in FIG. 33, the nozzle 1 is cylindrical. Therefore, the plating solution PS can be supplied to the plated portion PR on the inner surface of the object to be plated PM having a cylindrical shape or an elliptical tubular shape. Further, by rotating the plating electrode 100 around the axial direction, a wider range of the plated portion PR on the inner surface of the plated portion PR having a cylindrical shape or an elliptical cylinder shape may be plated. When the nozzle 1 is provided with a plurality of through portions TH, the opening OP may not be provided.
 図32に示されるように、複数の第1貫通孔TH1の開口面積は、複数の第2貫通孔TH2の開口面積よりも小さくてもよい。この場合、各貫通部THからのめっき液PSの供給量の重力による差を低減することができる。 As shown in FIG. 32, the opening area of the plurality of first through holes TH1 may be smaller than the opening area of the plurality of second through holes TH2. In this case, it is possible to reduce the difference in the supply amount of the plating solution PS from each penetrating portion TH due to gravity.
 図47に示されるように、制御装置400は、ポンプ7によるめっき液PSの供給量を制御するように構成されていてもよい。この場合、めっき電極100と被めっき部PRとの接触面積に応じてめっき液PSを供給することができるため、めっき液PSの不足によるめっき膜PFの品質の不具合を抑制することができる。また、めっき液PSの必要以上の劣化を抑制することができる。 As shown in FIG. 47, the control device 400 may be configured to control the supply amount of the plating solution PS by the pump 7. In this case, since the plating solution PS can be supplied according to the contact area between the plating electrode 100 and the portion PR to be plated, it is possible to suppress a defect in the quality of the plating film PF due to a shortage of the plating solution PS. Further, it is possible to suppress the deterioration of the plating solution PS more than necessary.
 実施の形態5.
 図48および図49を用いて、実施の形態5に係るめっき電極100およびめっき装置200の構成を説明する。実施の形態5は、特に説明しない限り、上記の実施の形態4と同一の構成および作用効果を有している。したがって、上記の実施の形態4と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 5.
The configurations of the plating electrode 100 and the plating apparatus 200 according to the fifth embodiment will be described with reference to FIGS. 48 and 49. Unless otherwise specified, the fifth embodiment has the same configuration and operation and effect as those of the fourth embodiment. Therefore, the same components as those in the fourth embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 図48に示されるように、本実施の形態に係るめっき電極100は、めっき液PSを輸送するための輸送材22をさらに含んでいる。めっき電極100は、保護部23をさらに含んでいてもよい。 As shown in FIG. 48, the plating electrode 100 according to the present embodiment further includes a transport material 22 for transporting the plating solution PS. The plating electrode 100 may further include a protective portion 23.
 輸送材22は、ノズル1の内部に充填されている。輸送材22は第1端部221と、第2端部222と、接続部223とを含んでいる。第1端部221は、ノズル1の内部に挿入されている。第1端部221は、先端部1eに到っている。第1端部221は、複数の開口部OPおよび複数の貫通部THの各々に充填されていてもよい。第2端部222は、めっき液PSに浸漬されている。具体的には、第2端部222は、リザーブ槽52内に配置されることでリザーブ槽52内のめっき液PSに浸漬されている。接続部223は、第1端部221と第2端部222とを接続している。 The transport material 22 is filled inside the nozzle 1. The transport material 22 includes a first end portion 221, a second end portion 222, and a connection portion 223. The first end portion 221 is inserted inside the nozzle 1. The first end portion 221 reaches the tip end portion 1e. The first end portion 221 may be filled in each of the plurality of openings OP and the plurality of penetration portions TH. The second end portion 222 is immersed in the plating solution PS. Specifically, the second end portion 222 is immersed in the plating solution PS in the reserve tank 52 by being arranged in the reserve tank 52. The connection portion 223 connects the first end portion 221 and the second end portion 222.
 輸送材22は、毛細管現象によってめっき液PSを第2端部222から第1端部221に輸送するように構成されている。輸送材22は、毛細管現象によってめっき液PSを第2端部222から先端部1eに輸送するように構成されている。 The transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the first end portion 221 by a capillary phenomenon. The transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the tip portion 1e by a capillary phenomenon.
 輸送材22は、めっき液PSに対して毛細管現象を生じさせる微細な孔状構造を有している。すなわち、輸送材22は、めっき液PSに対して毛細管現象を生じさせる多孔質の材料によって構成されている。輸送材22は、めっき液PSに対して毛細管現象を生じさせる微細な筒状構造を有していてもよい。輸送材22は、例えば、スポンジまたは不織布等によって構成されている。輸送材22は、めっき液PSと反応を起こさない材料によって構成されている。 The transport material 22 has a fine pore-like structure that causes a capillary phenomenon with respect to the plating solution PS. That is, the transport material 22 is made of a porous material that causes a capillary phenomenon with respect to the plating solution PS. The transport material 22 may have a fine tubular structure that causes a capillary phenomenon with respect to the plating solution PS. The transport material 22 is made of, for example, a sponge or a non-woven fabric. The transport material 22 is made of a material that does not react with the plating solution PS.
 複数の開口部OPおよび複数の貫通部THの各々には、輸送材22が充填されていてもよい。この場合、輸送材22は、毛細管現象によってめっき液PSを第2端部222から複数の開口部OPおよび複数の貫通部THの各々に輸送するように構成されていてもよい。 Each of the plurality of openings OP and the plurality of penetration portions TH may be filled with the transport material 22. In this case, the transport material 22 may be configured to transport the plating solution PS from the second end 222 to each of the plurality of openings OP and the plurality of penetration portions TH by capillarity.
 なお、図示されないが、複数の開口部OPおよび複数の貫通部THの各々には、輸送材22が充填されていなくてもよい。すなわち、複数の開口部OPおよび複数の貫通部THの各々は、空洞に構成されていてもよい。 Although not shown, the transport material 22 may not be filled in each of the plurality of openings OP and the plurality of penetration portions TH. That is, each of the plurality of openings OP and the plurality of penetration portions TH may be configured in a cavity.
 ノズル1の先端部1eにおける輸送材22から保護部23へのめっき液PSの輸送は、開口部OPに充填された輸送材22による毛細管現象によって実現されてもよいし、空洞の開口部OPにおいては毛細管現象ではなく重力によって実現されてもよい。 The transportation of the plating solution PS from the transport material 22 to the protective portion 23 at the tip portion 1e of the nozzle 1 may be realized by a capillary phenomenon caused by the transport material 22 filled in the opening OP, or in the cavity opening OP. May be realized by gravity rather than capillarity.
 なお、図48では、先端部1eが下向きに配置されているが、先端部1eは他の向きを向いていてもよい。すなわち、先端部1eは、例えば、横向きまたは上向きを向いていてもよい。 Although the tip portion 1e is arranged downward in FIG. 48, the tip portion 1e may face in another direction. That is, the tip portion 1e may be oriented sideways or upward, for example.
 保護部23は、接続部223を覆っている。これにより、保護部23は、接続部223を保護している。第1端部221および第2端部222は、保護部23から露出している。なお、図49では、説明の便宜のため、保護部23が図示されていない。 The protection unit 23 covers the connection unit 223. As a result, the protection unit 23 protects the connection unit 223. The first end portion 221 and the second end portion 222 are exposed from the protection portion 23. In FIG. 49, the protection unit 23 is not shown for convenience of explanation.
 なお、輸送材22が毛細管現象を生じさせるためには、めっき液PSの液面からの輸送材22の最大の高さ位置をh(単位:m)とし、輸送材22とめっき液PSとの間の表面張力をT(単位:N/m)とし、輸送材22とめっき液PSとの間の接触角をθ、めっき液PSの密度をρ(単位:kg/m)とし、重力加速度をg(単位:m/s)とし、輸送材22の孔状構造の平均孔径または筒状構造の平均管径をr(単位:m)としたときに、下式が満たされる必要がある。 In order for the transport material 22 to cause a capillary phenomenon, the maximum height position of the transport material 22 from the liquid surface of the plating solution PS is set to h (unit: m), and the transport material 22 and the plating solution PS are used. The surface tension between them is T (unit: N / m), the contact angle between the transport material 22 and the plating solution PS is θ, the density of the plating solution PS is ρ (unit: kg / m 3 ), and the gravitational acceleration. Is g (unit: m / s 2 ), and the following equation must be satisfied when the average pore diameter of the pore-shaped structure of the transport material 22 or the average pipe diameter of the tubular structure is r (unit: m). ..
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 めっき液PSからの輸送材22の最大の高さ位置は、リザーブ槽52内のめっき液PSからの輸送材22の最大の高さ位置である。また、図49では、リザーブ槽52は、めっき槽51よりも低い高さ位置に配置されているが、リザーブ槽52は、めっき槽51よりも高い高さ位置に配置されていてもよい。 The maximum height position of the transport material 22 from the plating solution PS is the maximum height position of the transport material 22 from the plating solution PS in the reserve tank 52. Further, in FIG. 49, the reserve tank 52 is arranged at a height position lower than that of the plating tank 51, but the reserve tank 52 may be arranged at a height position higher than that of the plating tank 51.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態5に係るめっき電極100によれば、図48に示されるように、輸送材22は、毛細管現象によってめっき液PSを第2端部222から第1端部221に輸送するように構成されている。このため、めっき液PSを毛細管現象によって先端部1eに輸送することができる。よって、ポンプ7(図9参照)を用いることなく、めっき液PSを先端部1eに輸送することができる。
Subsequently, the action and effect of the present embodiment will be described.
According to the plating electrode 100 according to the fifth embodiment, as shown in FIG. 48, the transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the first end portion 221 by a capillary phenomenon. Has been done. Therefore, the plating solution PS can be transported to the tip portion 1e by the capillary phenomenon. Therefore, the plating solution PS can be transported to the tip portion 1e without using the pump 7 (see FIG. 9).
 図48に示されるように、複数の開口部OPは、複数の貫通部THよりも重力方向に沿って下方に配置されている。このため、仮にポンプ7(図9参照)および重力のみによってめっき液PSが複数の開口部OPおよび複数の貫通部THに輸送された場合、複数の開口部OPにおけるめっき液PSの供給量は、複数の貫通部THにおけるめっき液PS供給量よりも大きい。よって、仮にポンプ7(図9参照)および重力によってめっき液PSが先端部1eに輸送された場合、高さ位置によってめっき液PSの供給量が不均一になり、高さ位置によってめっきの品質も不均一になる。 As shown in FIG. 48, the plurality of openings OP are arranged below the plurality of penetration portions TH along the direction of gravity. Therefore, if the plating solution PS is transported to the plurality of openings OP and the plurality of penetration portions TH only by the pump 7 (see FIG. 9) and gravity, the supply amount of the plating solution PS in the plurality of openings OP will be increased. It is larger than the plating solution PS supply amount in the plurality of penetration portions TH. Therefore, if the plating solution PS is transported to the tip portion 1e by the pump 7 (see FIG. 9) and gravity, the supply amount of the plating solution PS becomes non-uniform depending on the height position, and the plating quality also depends on the height position. It becomes non-uniform.
 これに対して、本実施の形態では、輸送材22は、毛細管現象によってめっき液PSを第2端部222から第1端部221に輸送するように構成されている。この場合、ポンプ7(図9参照)および重力によってめっき液PSが先端部1eに輸送された場合と比べて、複数の開口部OPおよび複数の貫通部THの各々へのめっき液PSの供給量を均一にすることができる。よって、めっきの品質を均一にすることができる。 On the other hand, in the present embodiment, the transport material 22 is configured to transport the plating solution PS from the second end portion 222 to the first end portion 221 by a capillary phenomenon. In this case, the amount of the plating solution PS supplied to each of the plurality of openings OP and the plurality of penetrating portions TH as compared with the case where the plating solution PS is transported to the tip portion 1e by the pump 7 (see FIG. 9) and gravity. Can be made uniform. Therefore, the quality of plating can be made uniform.
 次に、主に図4、図14、図22、表1および表2を用いて、実施例1~12および比較例1~6について説明する。 Next, Examples 1 to 12 and Comparative Examples 1 to 6 will be described mainly with reference to FIGS. 4, 14, 22, Tables 1 and 2.
 まず、実施例1~12および比較例1~6に係るめっき条件を図22および表1を用いて説明する。 First, the plating conditions according to Examples 1 to 12 and Comparative Examples 1 to 6 will be described with reference to FIGS. 22 and 1.
 実施例1~12では、円形の先端部1eを有するめっき電極100(図22参照)が用いられた。実施例1~3に係るめっき方法は、実施の形態1に係るめっき方法(図4参照)である。実施例4~6に係るめっき方法は、実施の形態3に係るめっき方法(図22参照)である。実施例7~9に係るめっき方法は、実施の形態2に係るめっき方法(図14参照)である。実施例10~12に係るめっき方法は、実施の形態3に係るめっき方法(図22参照)である。 In Examples 1 to 12, a plated electrode 100 (see FIG. 22) having a circular tip portion 1e was used. The plating method according to the first to third embodiments is the plating method according to the first embodiment (see FIG. 4). The plating method according to Examples 4 to 6 is the plating method according to the third embodiment (see FIG. 22). The plating method according to Examples 7 to 9 is the plating method according to the second embodiment (see FIG. 14). The plating method according to Examples 10 to 12 is the plating method according to the third embodiment (see FIG. 22).
 したがって、実施例1~3では、めっき電極100は、摺動し、かつ回転しなかった。実施例4~6では、めっき電極100は、摺動し、かつ回転した。実施例7~9では、めっき電極100は、摺動せず、かつ回転した。実施例10~12では、めっき電極100は、摺動し、かつ回転した。 Therefore, in Examples 1 to 3, the plating electrode 100 slid and did not rotate. In Examples 4 to 6, the plating electrode 100 slid and rotated. In Examples 7 to 9, the plating electrode 100 did not slide and rotated. In Examples 10 to 12, the plating electrode 100 slid and rotated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、実施例1~12では、めっき電極100の外径は、10mmである。ノズル1の材料は、白金(Pt)である。電流密度は、15A/dmである。めっき電極100は、陽極として構成されている。めっき液PSは、銀めっき液である。銀めっき液は、シアン銀めっき液30820(株式会社アイコー製)である。 As shown in Table 1, in Examples 1 to 12, the outer diameter of the plating electrode 100 is 10 mm. The material of the nozzle 1 is platinum (Pt). The current density is 15 A / dm 2 . The plating electrode 100 is configured as an anode. The plating solution PS is a silver plating solution. The silver plating solution is cyanide silver plating solution 30820 (manufactured by Aikoh Co., Ltd.).
 実施例1~12では、めっき膜PFの厚み(膜厚)の目標値がそれぞれ異なっている。実施例1では、膜厚の目標値は、2μmである。実施例2では、膜厚の目標値は、5μmである。実施例3では、膜厚の目標値は、10μmである。実施例4では、膜厚の目標値は、2μmである。実施例5では、膜厚の目標値は、5μmである。実施例6では、膜厚の目標値は、10μmである。実施例7では、膜厚の目標値は、2μmである。実施例8では、膜厚の目標値は、5μmである。実施例9では、膜厚の目標値は、10μmである。実施例10では、膜厚の目標値は、2μmである。実施例11では、膜厚の目標値は、5μmである。実施例12では、膜厚の目標値は、10μmである。 In Examples 1 to 12, the target values for the thickness (film thickness) of the plating film PF are different. In Example 1, the target value of the film thickness is 2 μm. In Example 2, the target value of the film thickness is 5 μm. In Example 3, the target value of the film thickness is 10 μm. In Example 4, the target value of the film thickness is 2 μm. In Example 5, the target value of the film thickness is 5 μm. In Example 6, the target value of the film thickness is 10 μm. In Example 7, the target value of the film thickness is 2 μm. In Example 8, the target value of the film thickness is 5 μm. In Example 9, the target value of the film thickness is 10 μm. In Example 10, the target value of the film thickness is 2 μm. In Example 11, the target value of the film thickness is 5 μm. In Example 12, the target value of the film thickness is 10 μm.
 実施例1~6では、第1の被めっき物PMにめっき膜PFが形成された。第1の被めっき物PMの材料は、無酸素銅(C1011材)である。第1の被めっき物PMは、40mm×40mm×10mmの寸法を有する角材である。第1の被めっき物PMの被めっき部PRの寸法は、10mm×40mmである。第1の被めっき物PMの被めっき面PPは、平面形状を有している。 In Examples 1 to 6, a plating film PF was formed on the first object to be plated PM. The material of the first object to be plated PM is oxygen-free copper (C1011 material). The first object to be plated PM is a square lumber having dimensions of 40 mm × 40 mm × 10 mm. The dimension of the plated portion PR of the first object to be plated PM is 10 mm × 40 mm. The surface to be plated PP of the first object to be plated PM has a planar shape.
 実施例7~12では、第2の被めっき物PMにめっき膜PFが形成された。第2の被めっき物PMの材料は、無酸素銅(C1011材)である。第2の被めっき物PMは、20mm×20mm×10mmの寸法を有する角材である。第2の被めっき物PMの被めっき部PRは、直径12.5mmの円である。被めっき部PRは、平面のパッドとして構成されている。 In Examples 7 to 12, a plating film PF was formed on the second object to be plated PM. The material of the second object to be plated PM is oxygen-free copper (C1011 material). The second object to be plated PM is a square lumber having dimensions of 20 mm × 20 mm × 10 mm. The PR of the plated portion of the second object to be plated PM is a circle having a diameter of 12.5 mm. The plated portion PR is configured as a flat pad.
 比較例1~6では、筆めっきによって被めっき物PMにめっき膜PFが形成された。このため、めっき電極100として、筆状の電極が用いられた。電極の材料は、白金(Pt)である。電流密度は、15A/dmである。比較例1~3では、第1の被めっき物PMにめっき膜PFが形成された。比較例4~6では、第2の被めっき物PMにめっき膜PFが形成された。 In Comparative Examples 1 to 6, a plating film PF was formed on the object to be plated PM by brush plating. Therefore, a brush-shaped electrode was used as the plating electrode 100. The material of the electrode is platinum (Pt). The current density is 15 A / dm 2 . In Comparative Examples 1 to 3, a plating film PF was formed on the first object to be plated PM. In Comparative Examples 4 to 6, a plating film PF was formed on the second object to be plated PM.
 比較例1では、膜厚の目標値は、2μmである。比較例2では、膜厚の目標値は、5μmである。比較例3では、膜厚の目標値は、10μmである。比較例4では、膜厚の目標値は、2μmである。比較例5では、膜厚の目標値は、5μmである。比較例6では、膜厚の目標値は、10μmである。 In Comparative Example 1, the target value of the film thickness is 2 μm. In Comparative Example 2, the target value of the film thickness is 5 μm. In Comparative Example 3, the target value of the film thickness is 10 μm. In Comparative Example 4, the target value of the film thickness is 2 μm. In Comparative Example 5, the target value of the film thickness is 5 μm. In Comparative Example 6, the target value of the film thickness is 10 μm.
 次に、実施例1~12および比較例1~6に係るめっき方法を説明する。
 実施例1~12および比較例1~6において、共通して以下の脱脂処理から中和処理までが実施された。
Next, the plating methods according to Examples 1 to 12 and Comparative Examples 1 to 6 will be described.
In Examples 1 to 12 and Comparative Examples 1 to 6, the following degreasing treatment to neutralization treatment were carried out in common.
 まず、被めっき物PMに脱脂処理が実施された。具体的には、被めっき物PMは、脱脂剤ELC-400(株式会社ワールドメタル製)によって脱脂された。これにより、被めっき物PMの表面の有機物が除去された。続いて、被めっき物PMは、純水に1分間浸漬された後に、純水から取り出された。 First, degreasing treatment was carried out on the object to be plated PM. Specifically, the object to be plated PM was degreased with a degreasing agent ELC-400 (manufactured by World Metal Co., Ltd.). As a result, the organic matter on the surface of the object to be plated PM was removed. Subsequently, the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water.
 続いて、被めっき物PMに酸洗浄処理が実施された。具体的には、被めっき物PMは、30wt%(重量%)硝酸によって洗浄された。続いて、被めっき物PMは、純水に1分間浸漬された後に、純水から取り出された。 Subsequently, an acid cleaning treatment was carried out on the PM to be plated. Specifically, the object to be plated PM was washed with 30 wt% (% by weight) nitric acid. Subsequently, the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water.
 続いて、被めっき物PMに中和処理が実施された。具体的には、被めっき物PMは、中和剤#411Y(ディップソール株式会社製)によって中和された。これにより、酸洗浄処理の後の水洗によって除去されなかった酸の痕跡が除去された。続いて、被めっき物PMは、純水に1分間浸漬された後に、純水から取り出された。 Subsequently, a neutralization treatment was carried out on the object to be plated PM. Specifically, the object to be plated PM was neutralized with a neutralizing agent # 411Y (manufactured by Dipsol Co., Ltd.). This removed traces of acid that were not removed by washing with water after the pickling treatment. Subsequently, the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water.
 続いて、実施例1~3では、実施の形態1に係るめっき方法(図4参照)によって、第1の被めっき物PMにめっき膜PFが成膜された。このため、めっき電極100は、第1方向DR1に沿って第1の被めっき物PMの被めっき部PR上を摺動した。 Subsequently, in Examples 1 to 3, a plating film PF was formed on the first object to be plated PM by the plating method according to the first embodiment (see FIG. 4). Therefore, the plating electrode 100 slides on the plated portion PR of the first object to be plated PM along the first direction DR1.
 実施例4~6では、実施の形態3に係るめっき方法(図22参照)によって、第1の被めっき物PMにめっき膜PFが成膜された。このため、めっき電極100は、第1方向DR1に沿って第1の被めっき物PMの被めっき部PR上を摺動し、かつ被めっき部PR上においてノズル1の軸AX周りに回転した。 In Examples 4 to 6, a plating film PF was formed on the first object to be plated PM by the plating method according to the third embodiment (see FIG. 22). Therefore, the plating electrode 100 slides on the plated portion PR of the first object to be plated PM along the first direction DR1 and rotates around the axis AX of the nozzle 1 on the plated portion PR.
 実施例7~9では、実施の形態2に係るめっき方法(図14参照)によって、第2の被めっき物PMにめっき膜PFが成膜された。このため、めっき電極100は、被めっき部PR上においてノズル1の軸AX周りに回転した。 In Examples 7 to 9, a plating film PF was formed on the second object to be plated PM by the plating method according to the second embodiment (see FIG. 14). Therefore, the plating electrode 100 rotated around the axis AX of the nozzle 1 on the PR to be plated.
 実施例10~12では、実施の形態3に係るめっき方法(図22参照)によって、第2の被めっき物PMにめっき膜PFが成膜された。このため、めっき電極100は、第1方向DR1に沿って第1の被めっき物PMの被めっき部PR上を摺動し、かつ被めっき部PR上においてノズル1の軸AX周りに回転した。 In Examples 10 to 12, a plating film PF was formed on the second object to be plated PM by the plating method according to the third embodiment (see FIG. 22). Therefore, the plating electrode 100 slides on the plated portion PR of the first object to be plated PM along the first direction DR1 and rotates around the axis AX of the nozzle 1 on the plated portion PR.
 比較例1~6では、筆めっきによって、被めっき物PMにめっき膜PFが成膜された。このため、筆状のめっき電極100は、第1方向DR1に沿って被めっき部PR上を摺動した。 In Comparative Examples 1 to 6, a plating film PF was formed on the object to be plated PM by brush plating. Therefore, the brush-shaped plating electrode 100 slides on the plated portion PR along the first direction DR1.
 続いて、実施例1~12および比較例1~6において、共通して以下の水洗処理が実施された。被めっき物PMが水洗処理された。具体的には、被めっき物PMは、純水に1分間浸漬された後に、純水から取り出された。取り出された被めっき物PMは、乾燥された。 Subsequently, in Examples 1 to 12 and Comparative Examples 1 to 6, the following water washing treatment was carried out in common. The object to be plated PM was washed with water. Specifically, the object to be plated PM was immersed in pure water for 1 minute and then taken out of pure water. The removed material PM to be plated was dried.
 次に、実施例1~12および比較例1~6におけるめっき膜PFの評価方法および評価結果について説明する。 Next, the evaluation method and the evaluation result of the plating film PF in Examples 1 to 12 and Comparative Examples 1 to 6 will be described.
 実施例1~12および比較例1~6に共通して、以下の膜厚の均一性に関する評価、めっき焼けに関する評価および密着力に関する評価が行われた。 Common to Examples 1 to 12 and Comparative Examples 1 to 6, the following evaluations on film thickness uniformity, plating burn, and adhesion were performed.
 膜厚の均一性に関する評価では、膜厚が蛍光X線膜厚計によって計測されることで、膜厚の均一性が評価された。 In the evaluation of the uniformity of the film thickness, the uniformity of the film thickness was evaluated by measuring the film thickness with a fluorescent X-ray film thickness meter.
 具体的には、実施例1~6および比較例1~3では、第1の被めっき物PMの被めっき部PRの第1端を0mmとして、0mmの位置、第1端から10mm離れた位置、第1端から20mm離れた位置、第1端から30mm離れた位置および第1端から40mm離れた位置の計5箇所において、膜厚が計測された。なお、第1端から40mm離れた位置は、被めっき部PRの第2端である。 Specifically, in Examples 1 to 6 and Comparative Examples 1 to 3, the position of 0 mm and the position 10 mm away from the first end, where the first end of the plated portion PR of the first object to be plated PM is 0 mm. The film thickness was measured at a total of 5 locations: a position 20 mm away from the first end, a position 30 mm away from the first end, and a position 40 mm away from the first end. The position 40 mm away from the first end is the second end of the plated portion PR.
 また、実施例7~12および比較例4~6では、被めっき部PRの中心を0mmとして、0mmの位置、中心から径方向に10mm離れた位置、中心から径方向に12.5mm離れた位置の計3箇所において、膜厚が計測された。なお、中心から径方向に12.5mm離れた位置は、被めっき部PRの外周端部である。 Further, in Examples 7 to 12 and Comparative Examples 4 to 6, the center of the PR to be plated is 0 mm, and the position is 0 mm, the position is 10 mm away from the center in the radial direction, and the position is 12.5 mm away from the center in the radial direction. The film thickness was measured at a total of three locations. The position separated from the center by 12.5 mm in the radial direction is the outer peripheral end portion of the plated portion PR.
 実施例1~6および比較例1~3の各々では、上記の計5箇所において計測された膜厚に基づいて、膜厚の標準偏差σおよび平均が計算された。実施例7~12および比較例4~6の各々では、上記の計3箇所において計測された膜厚に基づいて、膜厚の標準偏差σおよび平均が計算された。続いて、標準偏差σに対する平均の割合が計算された。標準偏差σに対する平均の割合は、膜厚のばらつきを意味する代表値とされた。 In each of Examples 1 to 6 and Comparative Examples 1 to 3, the standard deviation σ and the average of the film thickness were calculated based on the film thickness measured at the above five points in total. In each of Examples 7 to 12 and Comparative Examples 4 to 6, the standard deviation σ and the average of the film thickness were calculated based on the film thickness measured at the above three points in total. Subsequently, the ratio of the mean to the standard deviation σ was calculated. The average ratio to the standard deviation σ was taken as a representative value indicating the variation in film thickness.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示されるように、実施例1では、膜厚ばらつきは、10.5%であった。実施例2では、膜厚ばらつきは、8.6%であった。実施例3では、膜厚ばらつきは、8.5%であった。実施例4では、膜厚ばらつきは、4.3%であった。実施例5では、膜厚ばらつきは、4.4%であった。実施例6では、膜厚ばらつきは、4.3%であった。実施例7では、膜厚ばらつきは、42.4%であった。実施例8では、膜厚ばらつきは、45.3%であった。実施例9では、膜厚ばらつきは、45.3%であった。実施例10では、膜厚ばらつきは、9.1%であった。実施例11では、膜厚ばらつきは、7.2%であった。実施例12では、膜厚ばらつきは、6.8%であった。 As shown in Table 2, in Example 1, the film thickness variation was 10.5%. In Example 2, the film thickness variation was 8.6%. In Example 3, the film thickness variation was 8.5%. In Example 4, the film thickness variation was 4.3%. In Example 5, the film thickness variation was 4.4%. In Example 6, the film thickness variation was 4.3%. In Example 7, the film thickness variation was 42.4%. In Example 8, the film thickness variation was 45.3%. In Example 9, the film thickness variation was 45.3%. In Example 10, the film thickness variation was 9.1%. In Example 11, the film thickness variation was 7.2%. In Example 12, the film thickness variation was 6.8%.
 また、比較例1では、膜厚ばらつきは、27.2%であった。比較例2では、膜厚ばらつきは、27.0%であった。比較例3では、膜厚ばらつきは、26.8%であった。比較例4では、膜厚ばらつきは、58.9%であった。比較例5では、膜厚ばらつきは、65.3%であった。比較例6では、膜厚ばらつきは、49.1%であった。 Further, in Comparative Example 1, the film thickness variation was 27.2%. In Comparative Example 2, the film thickness variation was 27.0%. In Comparative Example 3, the film thickness variation was 26.8%. In Comparative Example 4, the film thickness variation was 58.9%. In Comparative Example 5, the film thickness variation was 65.3%. In Comparative Example 6, the film thickness variation was 49.1%.
 めっき焼けに関する評価では、外観観察によってめっき焼けの有無が評価された。具体的には、倍率100倍の光学顕微鏡によってめっき膜PFの表面が観察されることで、めっき焼けの有無が評価された。 In the evaluation of plating burn, the presence or absence of plating burn was evaluated by observing the appearance. Specifically, the presence or absence of plating burn was evaluated by observing the surface of the plating film PF with an optical microscope having a magnification of 100 times.
 実施例1~12において、めっき焼けが観察されなかった。このため、めっき焼けが生じなかった。比較例1~6において、めっき焼けが観察された。このため、めっき焼けが生じた。 No plating burn was observed in Examples 1 to 12. Therefore, plating burn did not occur. In Comparative Examples 1 to 6, plating burn was observed. Therefore, plating burn occurred.
 密着力に関する評価では、めっき膜PFの剥離試験によってめっき膜PFの被めっき部PRに対する密着力が評価された。密着力に関する評価は、JIS規格H8504(1999)に規定されるテープ試験方法に基づいて実施された。具体的には、めっき膜PFに密着したニチバン株式会社製のセロテープ(登録商標)を引き剥がすことで、めっき膜PFが被めっき部PRから剥離するかどうかが評価された。 In the evaluation of the adhesion, the adhesion of the plating film PF to the PR to be plated was evaluated by the peeling test of the plating film PF. The evaluation of the adhesion was carried out based on the tape test method specified in JIS standard H8504 (1999). Specifically, it was evaluated whether or not the plating film PF was peeled off from the plated portion PR by peeling off the cellophane tape (registered trademark) manufactured by Nichiban Co., Ltd., which was in close contact with the plating film PF.
 実施例1~12において、めっき膜PFは、剥離しなかった。比較例1~6において、めっき膜PFは、剥離した。 In Examples 1 to 12, the plating film PF did not peel off. In Comparative Examples 1 to 6, the plating film PF was peeled off.
 以上より、本開示のめっき方法に係る実施例が筆めっきに係る比較例よりもめっき焼けが生じない点および密着力が高い点において優れていることが示された。また、実施例1~6および9~12が筆めっきに係る比較例よりも膜厚のばらつきが小さい点において優れていることが示された。このため、本開示に係るめっき電極100が被めっき部PR上を摺動することで筆めっきよりも膜厚のばらつきが小さいめっき膜PFが得られることが示された。 From the above, it was shown that the examples of the plating method of the present disclosure are superior to the comparative examples of brush plating in that plating burn does not occur and the adhesion is high. Further, it was shown that Examples 1 to 6 and 9 to 12 are superior to the comparative examples relating to brush plating in that the variation in film thickness is small. Therefore, it was shown that the plating electrode 100 according to the present disclosure slides on the PR to be plated to obtain a plating film PF having a smaller variation in film thickness than brush plating.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 ノズル、1e 先端部、2 保持部、3 電源、4 接続機構、22 輸送材、23 保護部、100 めっき電極、200 めっき装置、AX 軸、PF めっき膜、PS めっき液、PR 被めっき部、OP 開口部。 1 nozzle, 1e tip, 2 holding part, 3 power supply, 4 connection mechanism, 22 transport material, 23 protection part, 100 plating electrode, 200 plating device, AX shaft, PF plating film, PS plating solution, PR plated part, OP opening.

Claims (12)

  1.  先端部を含みかつ前記先端部を通してめっき液を供給するためのノズルと、
     前記めっき液を保持するための保持部とを備え、
     前記保持部は、前記ノズルの前記先端部を覆っており、
     前記ノズルは、電圧が印加されるように構成されている、めっき電極。
    A nozzle that includes the tip and supplies the plating solution through the tip,
    A holding portion for holding the plating solution is provided.
    The holding portion covers the tip portion of the nozzle.
    The nozzle is a plated electrode configured to apply a voltage.
  2.  前記先端部には、複数の開口部が設けられており、
     前記ノズルは、前記複数の開口部を通して前記めっき液を供給するように構成されている、請求項1に記載のめっき電極。
    A plurality of openings are provided at the tip portion, and the tip portion is provided with a plurality of openings.
    The plating electrode according to claim 1, wherein the nozzle is configured to supply the plating solution through the plurality of openings.
  3.  前記ノズルは、白金、チタン-白金、チタン-酸化イリジウム、ステンレスおよびカーボンからなる群から選択されるいずれかの材料を含む、請求項1または2に記載のめっき電極。 The plated electrode according to claim 1 or 2, wherein the nozzle comprises any material selected from the group consisting of platinum, titanium-platinum, titanium-iridium oxide, stainless steel and carbon.
  4.  前記ノズルは、円柱状であり、
     前記ノズルは、前記先端部から立ち上がる側面を含み、
     前記側面には、複数の貫通部が設けられており、
     前記ノズルは、前記複数の貫通部を通して前記めっき液を供給するように構成されている、請求項1~3のいずれか1項に記載のめっき電極。
    The nozzle is columnar and has a columnar shape.
    The nozzle includes a side surface that rises from the tip.
    A plurality of penetrating portions are provided on the side surface.
    The plating electrode according to any one of claims 1 to 3, wherein the nozzle is configured to supply the plating solution through the plurality of penetrating portions.
  5.  前記めっき液を輸送するための輸送材をさらに備え、
     前記輸送材は、第1端部と、第2端部とを含み、
     前記第1端部は、前記ノズルの内部に挿入されており、
     前記第2端部は、前記めっき液に浸漬されており、
     前記輸送材は、毛細管現象によって前記めっき液を前記第2端部から前記第1端部に輸送するように構成されている、請求項1~4のいずれか1項に記載のめっき電極。
    Further provided with a transport material for transporting the plating solution,
    The transport material includes a first end and a second end.
    The first end is inserted inside the nozzle.
    The second end portion is immersed in the plating solution and is immersed in the plating solution.
    The plating electrode according to any one of claims 1 to 4, wherein the transport material is configured to transport the plating solution from the second end portion to the first end portion by a capillary phenomenon.
  6.  前記ノズルは、円柱状であり、
     前記先端部には、複数の開口部が設けられており、
     前記ノズルは、前記先端部を囲む側面を含み、
     前記側面には、複数の貫通部が設けられており、
     前記ノズルは、前記複数の開口部および前記複数の貫通部を通して前記めっき液を供給するように構成されており、
     前記めっき液を輸送するための輸送材をさらに備え、
     前記輸送材は、第1端部と、第2端部とを含み、
     前記第1端部は、前記複数の開口部および前記複数の貫通部の各々に充填されており、
     前記第2端部は、前記めっき液に浸漬されており、
     前記輸送材は、毛細管現象によって前記めっき液を前記第2端部から前記第1端部に輸送するように構成されている、請求項1に記載のめっき電極。
    The nozzle is columnar and has a columnar shape.
    A plurality of openings are provided at the tip portion, and the tip portion is provided with a plurality of openings.
    The nozzle includes a side surface that surrounds the tip.
    A plurality of penetrating portions are provided on the side surface.
    The nozzle is configured to supply the plating solution through the plurality of openings and the plurality of penetrations.
    Further provided with a transport material for transporting the plating solution,
    The transport material includes a first end and a second end.
    The first end portion is filled in each of the plurality of openings and the plurality of penetration portions.
    The second end portion is immersed in the plating solution and is immersed in the plating solution.
    The plating electrode according to claim 1, wherein the transport material is configured to transport the plating solution from the second end portion to the first end portion by a capillary phenomenon.
  7.  被めっき部にめっき膜を形成するためのめっき装置であって、
     請求項1~6のいずれか1項に記載の前記めっき電極と、
     前記めっき電極および前記被めっき部の各々に電気的に接続された電源と、
     前記めっき電極に接続された接続機構とを備え、
     前記電源は、前記めっき電極および前記被めっき部に電圧を印加するように構成されており、
     前記接続機構は、前記めっき電極を前記被めっき部に接続させるように構成されている、めっき装置。
    It is a plating device for forming a plating film on the part to be plated.
    The plated electrode according to any one of claims 1 to 6 and the plated electrode.
    A power supply electrically connected to each of the plated electrode and the plated portion,
    It is equipped with a connection mechanism connected to the plating electrode.
    The power supply is configured to apply a voltage to the plating electrode and the plated portion.
    The connection mechanism is a plating apparatus configured to connect the plating electrode to the portion to be plated.
  8.  前記接続機構は、前記めっき電極を前記被めっき部上において前記ノズルの軸周りに回転可能に構成されている、請求項7に記載のめっき装置。 The plating apparatus according to claim 7, wherein the connection mechanism is configured so that the plating electrode can rotate around the axis of the nozzle on the portion to be plated.
  9.  前記接続機構は、前記めっき電極を前記被めっき部上において前記ノズルの軸周りに回転させながら摺動可能に構成されている、請求項8に記載のめっき装置。 The plating apparatus according to claim 8, wherein the connection mechanism is configured to be slidable while rotating the plating electrode around the axis of the nozzle on the portion to be plated.
  10.  被めっき部にめっき液によってめっき膜を形成するためのめっき方法であって、
     めっき電極のノズルの先端部を覆う保持部に前記ノズルが前記先端部から前記めっき液を供給することで前記めっき液が前記保持部に保持される工程と、
     前記ノズルおよび前記被めっき部に電圧が印加された状態で、前記めっき電極が前記被めっき部に接続されることでめっき膜が形成される工程とを備えた、めっき方法。
    It is a plating method for forming a plating film on the part to be plated with a plating solution.
    A step of holding the plating solution in the holding portion by supplying the plating solution from the tip portion to the holding portion covering the tip portion of the nozzle of the plating electrode.
    A plating method comprising a step of forming a plating film by connecting a plating electrode to the portion to be plated while a voltage is applied to the nozzle and the portion to be plated.
  11.  前記めっき電極が前記被めっき部に接続された状態で、前記めっき電極は、前記被めっき部上において前記ノズルの軸周りに回転する、請求項10に記載のめっき方法。 The plating method according to claim 10, wherein the plating electrode rotates around the axis of the nozzle on the portion to be plated while the plating electrode is connected to the portion to be plated.
  12.  前記めっき電極が前記被めっき部に接続された状態で、前記めっき電極は、前記被めっき部上において前記ノズルの軸周りに回転しながら摺動する、請求項11に記載のめっき方法。 The plating method according to claim 11, wherein the plated electrode slides on the plated portion while rotating around the axis of the nozzle while the plated electrode is connected to the plated portion.
PCT/JP2021/024554 2020-07-14 2021-06-29 Plating electrode, plating device, and plating method WO2022014316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536229A JP7345663B2 (en) 2020-07-14 2021-06-29 Plating equipment and plating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-120768 2020-07-14
JP2020120768 2020-07-14

Publications (1)

Publication Number Publication Date
WO2022014316A1 true WO2022014316A1 (en) 2022-01-20

Family

ID=79555413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024554 WO2022014316A1 (en) 2020-07-14 2021-06-29 Plating electrode, plating device, and plating method

Country Status (2)

Country Link
JP (1) JP7345663B2 (en)
WO (1) WO2022014316A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921220B1 (en) * 1970-12-23 1974-05-30
JPS506419B1 (en) * 1970-12-25 1975-03-13
JPS57171689A (en) * 1981-04-13 1982-10-22 Tokio Osaki Plating device
DE3312905A1 (en) * 1983-04-11 1984-10-31 Battelle Development Corp., Columbus, Ohio Apparatus for internally electroplating hollow parts
JPH02125900A (en) * 1988-11-04 1990-05-14 Kawasaki Steel Corp Equipment for electrolytically treating local area of surface of metallic material
JPH07180092A (en) * 1993-12-22 1995-07-18 Sumitomo Special Metals Co Ltd Continuous surface treating device
CN104775141A (en) * 2015-04-29 2015-07-15 江苏理工学院 Brush electroplating device and method for repairing part hole

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224022U (en) * 1975-08-07 1977-02-19
JPS5628210Y2 (en) * 1977-04-14 1981-07-04
JPS61103475U (en) * 1984-12-14 1986-07-01
CN108315773A (en) 2018-01-25 2018-07-24 郑州大学 A kind of method and device of precision 3D printing metal micro-mould

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921220B1 (en) * 1970-12-23 1974-05-30
JPS506419B1 (en) * 1970-12-25 1975-03-13
JPS57171689A (en) * 1981-04-13 1982-10-22 Tokio Osaki Plating device
DE3312905A1 (en) * 1983-04-11 1984-10-31 Battelle Development Corp., Columbus, Ohio Apparatus for internally electroplating hollow parts
JPH02125900A (en) * 1988-11-04 1990-05-14 Kawasaki Steel Corp Equipment for electrolytically treating local area of surface of metallic material
JPH07180092A (en) * 1993-12-22 1995-07-18 Sumitomo Special Metals Co Ltd Continuous surface treating device
CN104775141A (en) * 2015-04-29 2015-07-15 江苏理工学院 Brush electroplating device and method for repairing part hole

Also Published As

Publication number Publication date
JP7345663B2 (en) 2023-09-15
JPWO2022014316A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP2013167022A (en) Contact ring, lipseal and contact ring assembly
JP2010236091A (en) Corrosion-resistant conductive member, method of manufacturing the same and fuel cell
JP2012511105A (en) Electroless palladium plating solution and usage
Ding et al. Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films
US11492717B2 (en) Manufacturing apparatus of electrolytic copper foil
KR101668542B1 (en) Metal material surface treatment method, and metal material
Zhou et al. The comparison of electrochemical migration mechanism between electroless silver plating and silver electroplating
Jung et al. Effect of ionization characteristics on electrochemical migration lifetimes of Sn-3.0 Ag-0.5 Cu solder in NaCl and Na 2 SO 4 solutions
WO2022014316A1 (en) Plating electrode, plating device, and plating method
US9574283B2 (en) Rinsing and drying for electrochemical processing
Gharaibeh et al. Numerical Models of the Electrochemical Migration: A short review
JP2010090400A (en) Electroconductive material and method for manufacturing the same
JPH11279800A (en) Method for plating small-sized electronic parts
CN113564650B (en) Electrodeposition method and electrodeposition device
KR100695372B1 (en) Plating method
US11629427B2 (en) Plating apparatus and plating method
TWI544109B (en) Method of attaching diamond using immersion plating, and apparatus for the method
TWI640652B (en) Process for producing a wire made of a first metal and having a sheath layer made of a second metal
JP2019085606A (en) Plating device, and plating method
KR102204664B1 (en) Nano passivation treatment method of reel-to-reel metal plate and processed products, and metal plate and processed products manufactured accordingly
JP2014218708A (en) Washing device and washing method for metallic material
TWI802731B (en) Electrode for the electroplating or electrodeposition of a metal
Tikhonov Metallization of titanium alloys
JP5978439B2 (en) Conductive member
JP2003321799A (en) Electroplating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843365

Country of ref document: EP

Kind code of ref document: A1