WO2022014186A1 - Electronic device and method for manufacturing electronic device - Google Patents

Electronic device and method for manufacturing electronic device Download PDF

Info

Publication number
WO2022014186A1
WO2022014186A1 PCT/JP2021/021077 JP2021021077W WO2022014186A1 WO 2022014186 A1 WO2022014186 A1 WO 2022014186A1 JP 2021021077 W JP2021021077 W JP 2021021077W WO 2022014186 A1 WO2022014186 A1 WO 2022014186A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame portion
glass
base material
content
electronic device
Prior art date
Application number
PCT/JP2021/021077
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 西宮
徹 平尾
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020237003338A priority Critical patent/KR20230039667A/en
Priority to CN202180048611.1A priority patent/CN115803872A/en
Publication of WO2022014186A1 publication Critical patent/WO2022014186A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to an electronic device and a method for manufacturing the electronic device.
  • Electronic devices equipped with electronic components such as LEDs have come to be used in various fields such as lighting and communication because of their long life and energy saving.
  • the base material on which the electronic component is mounted may be covered with a protective cap so that the electronic component is housed inside.
  • the protective cap includes a frame portion (second member) that surrounds the periphery of the light emitting element, and a lid portion (cover member) that covers one end opening of the frame portion. ..
  • the frame of the protective cap and the base material on which the electronic components are mounted are joined using a brazing material (for example, gold-tin solder).
  • the base material is composed of metal or metal nitride ceramics, and is often a material having a high coefficient of expansion.
  • the frame portion is made of a transparent inorganic material such as glass, and may be a material having a low coefficient of expansion. In such a case, the difference in the coefficient of thermal expansion between the base material and the frame portion becomes large, and it is difficult to select a brazing material that matches the coefficient of thermal expansion of both the base material and the frame portion.
  • the coefficient of thermal expansion of the brazing material when the coefficient of thermal expansion of the brazing material is matched with the coefficient of thermal expansion of the base material, the difference between the coefficient of thermal expansion of the frame portion and the brazing material becomes large, and when the coefficient of thermal expansion of the brazing material is matched with the frame portion, the base material is used. And the difference in the coefficient of thermal expansion of the brazing material becomes large. As a result, residual stress is generated in or near the joint portion between the base material and the frame portion, and breakage (for example, cracking such as a crack) is likely to occur. If the joint or the vicinity thereof is damaged in this way, the airtightness of the accommodation space for the electronic component is lowered, and the electronic component may be deteriorated.
  • breakage for example, cracking such as a crack
  • An object of the present invention is to provide an electronic device capable of maintaining high airtightness.
  • the present invention which was devised to solve the above problems, comprises an electronic component, a base material on which the electronic component is mounted, and a protective cap bonded to the base material so that the electronic component is housed inside.
  • the electronic device provided includes a protective cap having a frame portion made of a first transparent inorganic material and a lid portion made of a second transparent inorganic material covering one end opening of the frame portion, and the frame portion and the base material.
  • a protective cap having a frame portion made of a first transparent inorganic material and a lid portion made of a second transparent inorganic material covering one end opening of the frame portion, and the frame portion and the base material.
  • it is characterized by being directly welded.
  • the frame portion and the lid portion are directly welded.
  • other members highly expanding brazing material, adhesive material, etc.
  • the difference between the thermal expansion coefficient of the frame portion and the thermal expansion coefficient of the lid portion Even if the size is large to some extent, the frame and lid can be reliably joined.
  • the first transparent inorganic material is preferably quartz glass.
  • quartz glass refers to a non-crystal body containing synthetic quartz, fused silica, or the like and containing 90% by mass or more of SiO 2.
  • the second transparent inorganic material is preferably a glass material having a softening point of 1000 ° C. or lower.
  • the frame portion and the base material are directly welded by laser bonding or the like, the frame portion is easily softened. Therefore, the frame portion side can be softened to shorten the joining time of the lid portion and the frame portion.
  • the frame portion is easily softened, so that the bonding time between the frame portion and the lid portion can be shortened.
  • the "softening point” refers to a value measured based on the method of ASTMC338.
  • the second transparent inorganic material may be quartz glass.
  • the transmittance of ultraviolet rays in the frame portion becomes high. Therefore, it is particularly effective when the electronic component is an element that emits or receives ultraviolet rays.
  • the electronic component may be an ultraviolet LED.
  • the present invention which was devised to solve the above problems, includes an electronic component, a base material on which the electronic component is mounted, and a protective cap bonded to the base material so that the electronic component is housed inside.
  • a protective cap is provided with a frame portion made of a first transparent inorganic material and a lid portion made of a second transparent inorganic material that covers one end opening of the frame portion, and is based on the frame portion. It is characterized by comprising a joining step of directly welding the frame portion and the base material by irradiating the contact portion between the frame portion and the base material with a laser in a state where the material is in contact with the material.
  • the frame portion and the base material can be reliably joined. Further, since the contact portion between the frame portion and the base material is locally heated by the laser, a material having low heat resistance can be used for the components of the electronic device such as electronic parts.
  • a joining step of directly welding the frame portion and the lid portion by irradiating the contact portion between the frame portion and the lid portion with a laser in a state where the frame portion and the lid portion are in contact is further provided.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG. It is a graph which shows the transmittance curve of BU-41 and quartz glass at a wavelength of 200-600 nm. It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment.
  • (First Embodiment) 1 and 2 illustrate the electronic device 1 according to the first embodiment of the present invention.
  • the electronic device 1 includes an electronic component 2, a base material 3 on which the electronic component 2 is mounted, a protective cap 4 arranged on the base material 3 so as to accommodate the electronic component 2 inside, and a protective cap 4. It is provided with a joint portion 5 for joining the base material 3 and the protective cap 4.
  • the base material 3 side is shown as the bottom and the protective cap 4 side is shown as the top, but the vertical direction is not limited to this.
  • the electronic component 2 is not particularly limited, and examples thereof include optical devices such as a laser module, an LED, an optical sensor, an image pickup element, and an optical switch.
  • the electronic component 2 is an ultraviolet LED
  • the electronic device 1 is a light emitting device.
  • the base material 3 is composed of, for example, metal, metal oxide ceramics, LTCC or metal nitride ceramics.
  • the metal include copper and metallic silicon.
  • the metal oxide ceramics include aluminum oxide.
  • the LTCC include a sintered composite powder containing crystalline glass and a refractory filler.
  • the metal nitride ceramics include aluminum nitride.
  • the base material 3 is made of aluminum nitride.
  • the coefficient of thermal expansion of aluminum nitride in the temperature range of 30 to 380 ° C. is, for example, 46 ⁇ 10 -7 / ° C.
  • the base material 3 is a plate-like body in which both the upper surface 3a and the lower surface 3b are formed of a flat surface.
  • the base material 3 may be provided with a recess in the portion of the upper surface 3a on which the electronic component 2 is mounted.
  • the protective cap 4 includes a frame portion 6, a lid portion 7 that covers one end opening of the frame portion 6, and a joint portion 8 that joins the frame portion 6 and the lid portion 7. It is preferable to form various functional films on the surface of the protective cap 4, and for example, it is preferable to form an antireflection film in order to reduce light reflection loss.
  • the frame portion 6 is a tubular body having a through hole H extending in the thickness direction (vertical direction) at the center.
  • the frame portion 6 surrounds the periphery of the electronic component 2 housed in the space corresponding to the through hole H.
  • the frame portion 6 is composed of a square cylinder, but may have another shape such as a cylinder.
  • the inner wall surface 6c of the frame portion 6 shifts from the inside to the outside from the lower end surface 6b side to the upper end surface 6a side of the frame portion 6 in order to improve the extraction efficiency of ultraviolet rays through the lid portion 7. It is composed of inclined surfaces.
  • the inner wall surface 6c may be a non-sloping surface (vertical surface).
  • the through hole H can be formed by subjecting the original material of the frame portion 6 to etching processing, laser processing, sandblasting, or the like.
  • the frame portion 6 is made of the first transparent inorganic material.
  • the first transparent inorganic material include quartz glass (silica glass) and glass materials other than quartz glass. Quartz glass has a high ultraviolet transmittance.
  • "transparent" in the first transparent inorganic material and the second transparent inorganic material means, for example, transmitting light emitted from an electronic component 2 composed of a light emitting element. More specifically, it means that the transmittance of light in the target wavelength range is 10% or more. The transmittance can be measured using UH4150 manufactured by Hitachi High-Tech Science Corporation.
  • the frame portion 6 is made of a glass material other than quartz glass, it is preferable that the glass material is also ultraviolet transmissive glass.
  • a glass material other than quartz glass may be simply referred to as a glass material.
  • the transmittance at an optical path length of 0.7 mm and a wavelength of 200 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more. Especially preferably 80% or more. Further, in the glass material of the frame portion 6, the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is preferably 50% or more, 60% or more, 70% or more, and particularly preferably 80% or more.
  • the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is T 250 and the transmittance at an optical path length of 0.7 mm and a wavelength of 300 nm is T 300 , T 250 / T 300.
  • the value of is preferably 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, and particularly preferably 0.9 or more. ..
  • the transmittance of ultraviolet rays is inferior to that of quartz glass, the light emitted from the electronic component 2 composed of the ultraviolet LED can be transmitted without any problem, and the efficiency of extracting ultraviolet rays is maintained at a high level. can.
  • optical path length 0.7 mm means that even when the thickness of the glass material is thin, an equivalent measurement sample having an optical path length of 0.7 mm is prepared and then used for measurement.
  • the "transmittance at an optical path length of 0.7 mm and a wavelength of 200 nm” may be measured after preparing a measurement sample having a thickness of 0.7 mm, and after measuring the transmittance in the thickness direction of the glass material, the optical path A value converted to a length of 0.7 mm may be adopted.
  • the strain point is preferably 430 ° C. or higher, 460 ° C. or higher, 480 ° C. or higher, 500 ° C. or higher, 520 ° C. or higher, 530 ° C. or higher, 550 ° C. or higher, 600 ° C. or higher, particularly preferably 630. It is above °C. If the distortion point is too low, distortion may occur in the frame portion 6 at the time of laser joining described later, but this can be suppressed by setting the distortion point within the above numerical range.
  • the "distortion point” is a value measured based on the method of ASTMC336.
  • the softening point is preferably 1000 ° C. or lower, 950 ° C. or lower, 900 ° C. or lower, 850 ° C. or lower, and particularly preferably 800 ° C. or lower.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1580 ° C. or lower, 1550 ° C. or lower, 1520 ° C. or lower, 1500 ° C. or lower, 1480 ° C. or lower, and particularly 1470 ° C. or lower. If the temperature at 10 2.5 dPa ⁇ s is too high, the meltability is lowered and the manufacturing cost of glass is likely to rise.
  • the " temperature at 10 2.5 dPa ⁇ s" can be measured by the platinum ball pulling method. The temperature at 10 2.5 dPa ⁇ s corresponds to the melting temperature, and the lower the temperature, the better the melting property.
  • the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably 30 ⁇ 10 -7 / ° C. or higher, 40 ⁇ 10 -7 / ° C. or higher, 50 ⁇ 10 -7 / ° C. or higher, It is 60 ⁇ 10 -7 / ° C or higher, particularly preferably 70 ⁇ 10 -7 / ° C or higher.
  • the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably 105 ⁇ 10 -7 / ° C. or less, 100 ⁇ 10 -7 / ° C. or less, 95 ⁇ 10 -7 / ° C. or less.
  • the coefficient of thermal expansion of quartz glass in the temperature range of 30 to 380 ° C. is, for example, 4.0 ⁇ 10 -7 / ° C.
  • the "coefficient of thermal expansion in the temperature range of 30 to 380 ° C.” can be measured using, for example, a dilatometer.
  • the liquid phase temperature of the glass material of the frame portion 6 is preferably less than 1150 ° C., 1120 ° C. or lower, 1100 ° C. or lower, 1080 ° C. or lower, 1050 ° C. or lower, 1030 ° C. or lower, 980 ° C. or lower, 960 ° C. or lower, 950 ° C. or lower, Particularly preferably, it is 940 ° C. or lower.
  • the liquid phase viscosity of the glass material of the frame portion 6 is preferably 10 4.0 dPa ⁇ s or more, 10 4.3 dPa ⁇ s or more, 10 4.5 dPa ⁇ s or more, 10 4.8 dPa ⁇ s or more, and 10 5.1 dPa ⁇ s or more. It is 10 5.3 dPa ⁇ s or more, particularly preferably 10 5.5 dPa ⁇ s or more. By doing so, the devitrification resistance is improved.
  • the “liquid phase temperature” is determined by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat and holding it in a temperature gradient furnace for 24 hours, after which crystals are formed. It is a value measured by microscopic observation of the precipitation temperature.
  • the “liquid phase viscosity” is a value obtained by measuring the viscosity of glass at the liquid phase temperature by the platinum ball pulling method.
  • the Young's modulus of the glass material of the frame portion 6 is preferably 55 GPa or more, 60 GPa or more, 65 GPa or more, and particularly preferably 70 GPa or more. If the Young's modulus is too low, the frame portion 6 is likely to be deformed, warped, or damaged.
  • Young's modulus is a value measured by the resonance method.
  • the glass material of the frame portion 6 has a glass composition of 40% by mass, SiO 2 50 to 80%, Al 2 O 3 + B 2 O 3 1 to 45%, Li 2 O + Na 2 O + K 2 O 0 to 25%, MgO + CaO + SrO + BaO 0. It is preferably ⁇ 25%.
  • the reasons for limiting the content of each component as described above are shown below.
  • the% display represents mass% unless otherwise specified.
  • Al 2 O 3 + B 2 O 3 means the total amount of Al 2 O 3 and B 2 O 3.
  • Li 2 O + Na 2 O + K 2 O means the total amount of Li 2 O, Na 2 O and K 2 O.
  • MgO + CaO + SrO + BaO means the total amount of MgO, CaO, SrO and BaO.
  • SiO 2 is a main component forming the skeleton of glass.
  • the content of SiO 2 is preferably 50 to 80%, 55 to 75%, 58 to 70%, and particularly preferably 60 to 68%. If the content of SiO 2 is too small, Young's modulus and acid resistance tend to decrease. On the other hand, if the content of SiO 2 is too high, the high-temperature viscosity becomes high and the meltability tends to decrease, and in addition, devitrified crystals such as cristobalite tend to precipitate and the liquidus temperature tends to rise. Become.
  • Al 2 O 3 and B 2 O 3 are components that enhance devitrification resistance.
  • the content of Al 2 O 3 + B 2 O 3 is preferably 1 to 40%, 5 to 35%, 10 to 30%, and particularly preferably 15 to 25%. If the content of Al 2 O 3 + B 2 O 3 is too low, the glass tends to be devitrified. On the other hand, if the content of Al 2 O 3 + B 2 O 3 is too large, the component balance of the glass composition is impaired, and conversely, the glass tends to be devitrified.
  • Al 2 O 3 is a component that enhances Young's modulus and suppresses phase separation and devitrification.
  • the content of Al 2 O 3 is preferably 1 to 20%, 3 to 18%, and particularly 5 to 16%. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of Al 2 O 3 is too large, the high-temperature viscosity becomes high and the meltability tends to decrease.
  • B 2 O 3 is a component that enhances meltability and devitrification resistance, and is a component that improves the susceptibility to scratches and enhances strength.
  • the content of B 2 O 3 is preferably 3 to 25%, 5 to 22%, 7 to 19%, and particularly 9 to 16%. If the content of B 2 O 3 is too small, the meltability and devitrification resistance tend to decrease, and the resistance to hydrofluoric acid-based chemicals tends to decrease. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and acid resistance tend to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that lower the high temperature viscosity, significantly increase the meltability, and contribute to the initial melting of the glass raw material.
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 25%, 1 to 20%, 4 to 15%, and particularly 7 to 13%. If the content of Li 2 O + Na 2 O + K 2 O is too small, the meltability tends to decrease. On the other hand, if the content of Li 2 O + Na 2 O + K 2 O is too large, the coefficient of thermal expansion may become unreasonably high.
  • Li 2 O is a component that lowers the high-temperature viscosity, remarkably increases the meltability, and contributes to the initial melting of the glass raw material.
  • the content of Li 2 O is preferably 0 to 5%, 0 to 3%, 0-1%, and particularly preferably 0 to 0.1%. If the content of Li 2 O is too small, the meltability tends to decrease and the coefficient of thermal expansion may become unreasonably low. On the other hand, if the Li 2 O content is too high, the glass tends to be phase-separated.
  • Na 2 O is a component that lowers the high-temperature viscosity, significantly enhances the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of Na 2 O is preferably 0 to 25%, 1 to 20%, 3 to 18%, 5 to 15%, and particularly preferably 7 to 13%. If the Na 2 O content is too low, the meltability tends to decrease and the coefficient of thermal expansion may become unreasonably low. On the other hand, if the Na 2 O content is too high, the coefficient of thermal expansion may become unreasonably high.
  • K 2 O is a component that lowers the high-temperature viscosity, remarkably increases the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of K 2 O is preferably 0 to 15%, 0.1 to 10%, and particularly preferably 1 to 5%. If the content of K 2 O is too high, the coefficient of thermal expansion may become unreasonably high.
  • MgO, CaO, SrO and BaO are components that lower the high temperature viscosity and increase the meltability.
  • the content of MgO + CaO + SrO + BaO is preferably 0 to 25%, 0 to 15%, 0.1 to 12%, and 1 to 5%. If the content of MgO + CaO + SrO + BaO is too large, the glass tends to be devitrified.
  • MgO is a component that lowers high-temperature viscosity and enhances meltability, and is a component that significantly increases Young's modulus among alkaline earth metal oxides.
  • the content of MgO is preferably 0 to 10%, 0 to 8%, 0 to 5%, and particularly preferably 0 to 1%. If the content of MgO is too large, the devitrification resistance tends to decrease.
  • CaO is a component that lowers high-temperature viscosity and significantly increases meltability. Further, among alkaline earth metal oxides, the raw material to be introduced is relatively inexpensive, so that it is a component that reduces the raw material cost.
  • the CaO content is preferably 0 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the CaO content is too high, the glass tends to be devitrified. If the CaO content is too low, it becomes difficult to enjoy the above effects.
  • SrO is a component that enhances devitrification resistance.
  • the content of SrO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly preferably less than 0 to 1%. If the content of SrO is too high, the glass tends to be devitrified.
  • BaO is a component that enhances devitrification resistance.
  • the content of BaO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and less than 0-1%. If the BaO content is too high, the glass tends to be devitrified.
  • the content of the components other than the above components is preferably 10% or less, 5% or less, particularly 3% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
  • the ZnO is a component that enhances meltability, but if it is contained in a large amount in the glass composition, the glass tends to be devitrified. Therefore, the ZnO content is preferably 0 to 5%, 0 to 3%, 0 to 1%, less than 0-1%, and particularly preferably 0 to 0.1%.
  • ZrO 2 is a component that enhances acid resistance, but if it is contained in a large amount in the glass composition, the glass tends to be devitrified. Therefore, the content of ZrO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, 0 to 0.5%, and particularly preferably 0.001 to 0.2%.
  • Fe 2 O 3 and TiO 2 are components that reduce the transmittance in the deep ultraviolet region.
  • the content of Fe 2 O 3 + TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 0.1 to 40 ppm or less, and particularly preferably 1 to 20 ppm. If the content of Fe 2 O 3 + TiO 2 is too high, the glass is colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of Fe 2 O 3 + TiO 2 is too small, a high-purity glass raw material must be used, which leads to an increase in batch cost.
  • “Fe 2 O 3 + TiO 2 means the total amount of Fe 2 O 3 and TiO 2.
  • Fe 2 O 3 is a component that lowers the transmittance in the deep ultraviolet region.
  • the content of Fe 2 O 3 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, and particularly preferably 1 to 8 ppm. If the content of Fe 2 O 3 is too high, the glass is colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of Fe 2 O 3 is too small, a high-purity glass raw material must be used, which leads to an increase in batch cost.
  • the mass ratio of Fe 2+ / (Fe 2+ + Fe 3+ ) in iron oxide is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, and particularly preferably 0. 5 or more.
  • TiO 2 is a component that reduces the transmittance in the deep ultraviolet region.
  • the content of TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, and particularly preferably 0.5 to 5 ppm. If the content of TiO 2 is too high, the glass will be colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of TiO 2 is too small, a high-purity glass raw material must be used, which leads to an increase in batch cost.
  • Sb 2 O 3 is a component that acts as a clarifying agent.
  • the content of Sb 2 O 3 is preferably 1000 ppm or less, 800 ppm or less, 600 ppm or less, 400 ppm or less, 200 ppm or less, 100 ppm or less, and particularly preferably less than 50 ppm. If the content of Sb 2 O 3 is too high, the transmittance in the deep ultraviolet region tends to decrease.
  • SnO 2 is a component that acts as a clarifying agent.
  • the SnO 2 content is preferably 2000 ppm or less, 1700 ppm or less, 1400 ppm or less, 1100 ppm or less, 800 ppm or less, 500 ppm or less, 200 ppm or less, and particularly preferably 100 ppm or less. If the SnO 2 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
  • F 2 , Cl 2 and SO 3 are components that act as clarifying agents.
  • the content of F 2 + Cl 2 + SO 3 is preferably 10 to 10000 ppm.
  • Suitable lower limit range of F 2 + Cl 2 + SO 3 is 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, especially 500 ppm or more, and suitable upper limit range is 3000 ppm or less, 2000 ppm or less, 1000 ppm or less, especially 800 ppm or less. Is.
  • the suitable lower limit range of each of F 2 , Cl 2 and SO 3 is 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, particularly 500 ppm or more, and the suitable upper limit range is 3000 ppm or less, 2000 ppm or less. It is 1000 ppm or less, particularly 800 ppm or less. If the content of these components is too small, it becomes difficult to exert the clarification effect. On the other hand, if the content of these components is too large, the clarified gas may remain in the glass as bubbles.
  • "F 2 + Cl 2 + SO 3" means the total amount of F 2 , Cl 2 and SO 3.
  • glass material of the frame portion 6 for example, various glass raw materials are mixed to obtain a glass batch, and then the glass batch is melted, and the obtained molten glass is clarified and homogenized and molded into a predetermined shape. Can be made with.
  • a reducing agent as a part of the glass raw material. By doing so, Fe 3+ contained in the glass is reduced, and the transmittance in deep ultraviolet rays is improved.
  • the reducing agent materials such as wood powder, carbon powder, metallic aluminum, metallic silicon, and aluminum fluoride can be used, and among them, metallic silicon and aluminum fluoride are preferable.
  • metallic silicon As a part of the glass raw material, and the addition amount thereof is 0.001 to 3% by mass, 0.005, based on the total mass of the glass batch. It is preferably from 2% by mass, 0.01 to 1% by mass, and particularly preferably 0.03 to 0.1% by mass. If the amount of metallic silicon added is too small, Fe 3+ contained in the glass is not reduced, and the transmittance in deep ultraviolet rays tends to decrease. On the other hand, if the amount of metallic silicon added is too large, the glass tends to be colored brown.
  • AlF 3 aluminum fluoride
  • the addition amount thereof is 0.01 to 5% by mass and 0.05 to 5% by mass in terms of F 2 with respect to the total mass of the glass batch. 4% by mass, 0.1 to 3% by mass, 0.2 to 2% by mass, and 0.3 to 1% by mass are preferable.
  • F 2 gas may remain in the glass as bubbles. If the amount of aluminum fluoride added is too small, Fe 3+ contained in the glass is not reduced, and the transmittance in deep ultraviolet rays tends to decrease.
  • a down draw method particularly an overflow down draw method.
  • molten glass is overflowed from both sides of a heat-resistant gutter-shaped structure, and the overflowed molten glass is merged at the lower apex end of the gutter-shaped structure and stretched downward to form a glass plate. How to do it.
  • the surface of the glass plate which should be the surface, does not come into contact with the gutter-shaped refractory and is formed in a free surface state. Therefore, it becomes easy to manufacture a thin glass plate, and it is possible to reduce the variation in plate thickness without polishing the surface.
  • the structure and material of the gutter-shaped structure are not particularly limited as long as they can achieve desired dimensions and surface accuracy.
  • the method of applying a force when performing downward stretch molding is not particularly limited. For example, a method of rotating and stretching a heat-resistant roll having a sufficiently large width in contact with the glass may be adopted, or a plurality of pairs of heat-resistant rolls may be brought into contact with only the vicinity of the end face of the glass. You may adopt the method of letting and stretching.
  • a method for forming the glass material of the frame portion 6 for example, a slot down method, a redraw method, a float method, or the like can be adopted in addition to the down draw method.
  • the glass material of the frame portion 6 for example, BU-41 manufactured by Nippon Electric Glass Co., Ltd. can be used.
  • the coefficient of thermal expansion of BU-41 in the temperature range of 30 to 380 ° C. is, for example, 42 ⁇ 10 -7 / ° C.
  • the thickness (vertical dimension) of the frame portion 6 is preferably larger than that of the electronic component 2, preferably 0.01 to 1 mm larger than that of the electronic component 2, and more preferably 0.05 to 0.5 mm larger. Most preferably, it is 0.1 to 0.2 mm larger.
  • the lid portion 7 is made of a second transparent inorganic material.
  • the second transparent inorganic material those exemplified as the first transparent inorganic material can be similarly applied.
  • the second transparent inorganic material may be the same material as the first transparent inorganic material, or may be a different material.
  • the lid portion 7 is made of quartz glass.
  • the lid portion 7 is made of quartz glass.
  • the lid portion 7 is a plate-like body in which both the upper surface 7a and the lower surface 7b are formed of a flat surface.
  • the thickness (vertical dimension) of the lid portion 7 is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and preferably 0.3 to 0.6 mm. Most preferred.
  • the joint portion 5 for joining the frame portion 6 and the base material 3 is formed of a welded portion 9 in which the frame portion 6 and the base material 3 are directly welded.
  • the joint portion 8 for joining the frame portion 6 and the lid portion 7 is also formed from the welded portion 10 in which the frame portion 6 and the lid portion 7 are directly welded.
  • the welded portions 9 and 10 are formed by laser bonding.
  • the welded portion 9 is formed by melting at least one of the frame portion 6 and the base material 3 in the laser irradiation region and then solidifying the fused portion. That is, it is preferable that the welded portion 9 is composed of, for example, at least one material of the frame portion 6 and the base material 3, and substantially does not contain any material other than the frame portion 6 and the base material 3.
  • the welded portion 10 is formed by melting at least one of the frame portion 6 and the lid portion 7 in the laser irradiation region and then solidifying the fused portion. That is, it is preferable that the welded portion 9 is composed of, for example, at least one material of the frame portion 6 and the lid portion 7, and substantially does not contain any material other than the frame portion 6 and the lid portion 7.
  • a plurality of welded portions 9 and 10 are formed concentrically along the through hole H (two in the example), but may be one.
  • the plurality of welded portions 9 and 10 are separated from each other in the radial direction, but may overlap each other in the radial direction.
  • Each of the welded portions 9 and 10 is formed in a square ring shape in a plan view, but is not limited to this, and may be formed in an annular shape or other ring shape.
  • the welded portion 9 is formed so as to continuously straddle the frame portion 6 and the base material 3 in the thickness direction.
  • the welded portion 10 is formed so as to continuously straddle the frame portion 6 and the lid portion 7 in the thickness direction.
  • there is no interface between the frame portion 6 and the base material 3 inside the welded portion 9 and there is an interface between the frame portion 6 and the lid portion 7 inside the welded portion 10. There is no. Of course, the interface may remain inside the welded portions 9 and 10.
  • the width S1 of the welded portions 9 and 10 is preferably 10 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and most preferably 10 to 50 ⁇ m.
  • the thickness S2 of the welded portions 9 and 10 is preferably 10 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, and most preferably 10 to 100 ⁇ m.
  • the maximum value of the residual stress in the plane direction of the welded portions 9 and 10 is preferably 10 MPa or less, more preferably 7 MPa or less, and most preferably 5 MPa or less.
  • the maximum value of residual stress in the plane direction is the birefringence (unit: nm) near the joint using a birefringence measuring machine: ABR-10A manufactured by Uniopt Co., Ltd. on a glass plate having dimensions of 10 mm ⁇ 10 mm or more. However, it is the maximum value when converted to residual stress in the plane direction.
  • D is the optical path difference (nm)
  • W is the distance (cm) through which the polarized wave has passed
  • C is the photoelastic constant (proportional constant), which is usually 20 to 40 (nm / nm /). It becomes a value of cm) / (MPa).
  • the residual stress in the plane direction includes tensile stress and compressive stress, but in the above, the absolute values of both are evaluated.
  • FIG. 3 shows the transmittance curves of BU-41 (manufactured by Nippon Electric Glass Co., Ltd.) and quartz glass at a wavelength of 200 to 600 nm.
  • quartz glass has a transmittance of 90% or more in the deep ultraviolet region (for example, a wavelength region of 200 to 350 nm) without a decrease in transmittance due to an increase in thickness.
  • BU-41 has a transmittance of 84% or more at a thickness of 0.2 mm and a transmittance of 70% or more at a thickness of 0.5 mm in the deep ultraviolet region. That is, BU-41 has a good transmittance in the deep ultraviolet region, although it is slightly inferior to quartz glass.
  • the ultraviolet ray extraction efficiency (the electronic component (ultraviolet LED) 2).
  • the output magnification) is 89% on average, and the ultraviolet extraction efficiency is 88% on average when the lid 7 is made of quartz glass with a thickness of 0.6 mm and the frame 6 is made of BU-41 with a thickness of 0.6 mm.
  • the lid portion 7 is made of quartz glass and the frame portion 6 is made of a glass material having ultraviolet light transmittance other than quartz glass (for example, BU-41), the efficiency of extracting light in the ultraviolet region is at a high level. Can be maintained at.
  • both the lid portion 7 and the frame portion 6 are made of quartz glass.
  • the manufacturing method of the electronic device 1 according to the present embodiment includes a first joining step of joining the lid portion 7 and the frame portion 6 in order to obtain a protective cap 4, and protection of the base material 3 on which the electronic component 2 is mounted. It is provided with a second joining step for joining the cap 4.
  • the lid portion 7 and the frame portion 6 are prepared.
  • the lower surface 7b of the lid portion 7 and the upper end surface 6a of the frame portion 6 are brought into direct contact with each other.
  • the laser irradiation device 11 concentrates and irradiates the laser L on the contact portion between the lid portion 7 and the frame portion 6.
  • the laser L irradiates from at least one side of the lid portion 7 and the frame portion 6.
  • the laser L is irradiated from the lid portion 7 side.
  • the contact portion is welded to form the welded portion 10, and the frame portion 6 and the lid portion 7 are joined by the welded portion 10.
  • the laser L is scanned outside the through hole H so as to draw an annular orbit T along the through hole H.
  • the laser L is scanned so that its irradiation region R goes around the annular orbit T while overlapping on the annular orbit T.
  • the laser L is scanned so as to orbit the annular orbit T a plurality of times.
  • a plurality of welded portions 10 are formed concentrically, a plurality of annular orbitals T for scanning the laser L are also set concentrically.
  • a joint portion may be formed in a frame shape by crossing four straight lines in a grid shape so as to surround the through hole H.
  • a plurality of protective caps 4 can be manufactured at one time, so that the manufacturing efficiency of the electronic device 1 can be improved.
  • the protective cap 4 obtained in the first joining step and the base material 3 on which the electronic component 2 is mounted are prepared.
  • the lower end surface 6b of the frame portion 6 and the upper surface 3a of the base material 3 are brought into direct contact with each other.
  • the laser irradiation device 11 condenses and irradiates the contact portion between the frame portion 6 and the base material 3 with the laser L.
  • the laser L is irradiated from the frame portion 6 side of the frame portion 6 and the base material 3 that transmits the laser L.
  • the contact portion is welded to form the welded portion 9, and the frame portion 6 and the base material 3 are joined by the welded portion 9.
  • the arithmetic average roughness Ra of each of the lower surface 7b of the lid portion 7, the upper end surface 6a of the frame portion 6, the lower end surface 6b of the frame portion 6 and the upper surface 3a of the base material 3 is preferably 2.0 nm or less. It is more preferably 9.0 nm or less, further preferably 0.5 nm or less, and most preferably 0.2 nm or less.
  • the arithmetic mean roughness Ra means a value measured by a method based on JIS B0601: 2001. By doing so, the lid portion 7 and the frame portion 6, and the frame portion 6 and the base material 3 are brought into close contact with each other by the intramolecular force (optical contact) between the bonding surfaces, so that the handleability before laser bonding is improved.
  • an ultrashort pulse laser having a pulse width on the order of picoseconds or femtoseconds is preferably used.
  • the wavelength of the laser L is not particularly limited as long as it passes through the glass member, but is preferably 400 to 1600 nm, more preferably 500 to 1300 nm, for example.
  • the pulse width of the laser L is preferably 10 ps or less, more preferably 5 ps or less, and most preferably 200 fs to 3 ps.
  • the focusing diameter of the laser L is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and preferably 20 ⁇ m or less.
  • the repetition frequency of the laser L needs to be such that continuous heat accumulation is generated, and specifically, it is preferably 100 kHz or more, more preferably 200 kHz or more, and more preferably 500 kHz or more. Is more preferable.
  • burst mode a method in which one pulse is distributed to a plurality of pulses and the pulse interval is further shortened to irradiate.
  • FIG. 9 illustrates the electronic device 1 according to the second embodiment of the present invention.
  • the configuration of the joint portion 8 for joining the frame portion 6 and the lid portion 7 is different from that in the first embodiment.
  • the frame portion 6 and the lid portion 7 are made of quartz glass.
  • the joint portion 8 is composed of an adhesive layer 21. That is, the frame portion 6 and the lid portion 7 are not in direct contact with each other, and the adhesive layer 21 is interposed between them.
  • the adhesive layer 21 is formed, for example, by firing an adhesive material.
  • the coefficient of thermal expansion of the adhesive layer 21 in the temperature range of 30 to 380 ° C. is ⁇ 25 ⁇ 10 -7 to 25 ⁇ 10 -7 / ° C. and ⁇ 20 ⁇ 10 -7 to 20 ⁇ 10 -7 / ° C. It is preferably ⁇ 15 ⁇ 10 -7 to 15 ⁇ 10 -7 / ° C, more preferably ⁇ 10 ⁇ 10 -7 to 10 ⁇ 10 -7 / ° C, and most preferably ⁇ 10 ⁇ 10 -7 to 10 ⁇ 10 -7 / ° C.
  • the coefficient of thermal expansion of quartz glass in the temperature range of 30 to 380 ° C. is, for example, 4.0 ⁇ 10 -7 / ° C.
  • the adhesive layer 21 having the above-mentioned coefficient of thermal expansion is used, the coefficient of thermal expansion of the frame portion 6 and the lid portion 7 made of a material having a low coefficient of expansion such as quartz glass and the coefficient of thermal expansion of the adhesive layer 21 are matched. Can be made to. As a result, even if the adhesive layer 21 is used, the residual stress generated in or near the adhesive layer 21 can be reduced, and damage (cracks, etc.) of the protective cap 4 can be suppressed.
  • the thickness of the adhesive layer 21 is not particularly limited, but if the thickness of the adhesive layer 21 is too small, the mechanical strength of the adhesive layer 21 tends to decrease. On the other hand, if the thickness of the adhesive layer 21 is too large, the residual stress in the adhesive layer 21 may increase and the mechanical strength may decrease. Furthermore, the size of the protective cap 4 and the electronic device 1 tends to be large. Therefore, the thickness of the adhesive layer 21 is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 80 ⁇ m, and most preferably 30 ⁇ m to 60 ⁇ m.
  • the adhesive layer 21 preferably contains glass. By doing so, the heat resistance and airtightness of the adhesive layer 21 can be improved. In particular, when the adhesive layer 21 contains crystallized glass, it becomes easy to reduce the expansion, and it becomes easy to match the coefficient of thermal expansion with the frame portion 6 and the lid portion 7 made of quartz glass. Specifically, the adhesive layer 21 preferably contains a ⁇ -quartz solid solution which is a low expansion crystal. The content of the ⁇ -quartz solid solution in the adhesive layer 21 is preferably 75 to 99% by mass, 80 to 97% by mass, and particularly preferably 85 to 95% by mass. If the content of the ⁇ -quartz solid solution is too small, it tends to be difficult to reduce the expansion of the adhesive layer 21.
  • the adhesive layer 21 containing the crystallized glass is obtained by heat-treating the adhesive material (sealing material) containing the crystalline glass.
  • the adhesive layer 21 a composition, in mol%, SiO 2 48 ⁇ 75% , Al 2 O 3 5 ⁇ 25%, Li 2 O 5 ⁇ 30%, B 2 O 3 5 ⁇ 23%, ZnO Those containing glass containing 0 to 10% can be mentioned.
  • a composition in mol%, SiO 2 48 to 75%, Al 2 O 3 5 to 25%, Li 2 O 5 to 30%, B 2 O 3 10 to 23% (however, 10% is not included), Glass containing 0 to 2.5% of ZnO (but not containing 2.5%) is preferable. The reason for adopting such a composition will be described below. In the following description of the content of each component, "%" means “mol%” unless otherwise specified.
  • SiO 2 is a component forming a glass skeleton and is a component of a ⁇ -quartz solid solution.
  • the content of SiO 2 is preferably 48 to 75%, 53 to 70%, and particularly preferably 58 to 65%. If the content of SiO 2 is too small, the amount of ⁇ -quartz solid solution deposited is small, and it becomes difficult to obtain low thermal expansion characteristics. On the other hand, if the amount of SiO 2 is too large, the softening point rises, so that the softening fluidity due to the heat treatment at the time of joining (sealing) tends to decrease.
  • Al 2 O 3 is a component of ⁇ -quartz solid solution.
  • the content of Al 2 O 3 is preferably 5 to 25%, 7 to 15%, and particularly preferably 7 to 13%. If the content of Al 2 O 3 is too small, the amount of ⁇ -quartz solid solution deposited is small, and it becomes difficult to obtain low thermal expansion characteristics. On the other hand, if the amount of Al 2 O 3 is too large, the softening point rises, so that the softening fluidity due to the heat treatment at the time of joining tends to decrease.
  • Li 2 O is a component of the ⁇ -quartz solid solution and is a component that lowers the softening point.
  • the content of Li 2 O is preferably 5 to 30%, 10 to 25%, and particularly preferably 10 to 20%. If the content of Li 2 O is too small, the amount of ⁇ -quartz solid solution deposited will be small, and it will be difficult to obtain low thermal expansion characteristics. In addition, since the softening point rises, the softening fluidity due to the heat treatment at the time of joining tends to decrease. On the other hand, if the content of Li 2 O is too large, the content of Li 2 O in the residual glass after the heat treatment increases, and the coefficient of thermal expansion of the residual glass increases, so that it is difficult to obtain low thermal expansion characteristics as a result. Become.
  • B 2 O 3 is a component that forms a glass skeleton and is a component that lowers the softening point.
  • the content of B 2 O 3 is preferably 5 to 23%, 10 to 23% (but not including 10%), 12 to 16%, and particularly preferably 13 to 15%. If the content of B 2 O 3 is too small, the softening point rises and the difference between the softening point and the crystallization temperature becomes small. Therefore, crystals tend to precipitate before the softening flow due to the heat treatment at the time of joining, and the fluidity tends to decrease.
  • B 2 O 3 / Li 2 O By appropriately adjusting the ratio of each content of B 2 O 3 and Li 2 O, it becomes easy to obtain low thermal expansion characteristics. Specifically, it is preferable to adjust the value of B 2 O 3 / Li 2 O to 0.5 to 1, 0.7 to 1, particularly 0.8 to 1.
  • B 2 O 3 / Li 2 O means the molar ratio of each content of B 2 O 3 and Li 2 O.
  • ZnO is a component that improves weather resistance. In addition, it has the effect of improving the softening fluidity due to the heat treatment at the time of joining.
  • the ZnO content is preferably 0 to 10%, 0 to 2.5% (but not including 2.5%), and particularly preferably 0 to 2%. If the ZnO content is too high, the amount of ⁇ -quartz solid solution deposited is small, and dissimilar crystals such as Zn-Al crystals that do not contribute to low expansion are likely to precipitate. In addition, the coefficient of thermal expansion of the residual glass after heat treatment tends to be high. As a result, the coefficient of thermal expansion tends to be large.
  • MgO, CaO, SrO or BaO may be contained as a component for improving weather resistance. These components also have the effect of improving the softening fluidity due to the heat treatment at the time of joining.
  • the content of MgO + CaO + SrO + BaO is preferably 0 to 10%, 0 to 5%, and particularly preferably 0.1 to 2%. If the content of MgO + CaO + SrO + BaO is too large, the amount of ⁇ -quartz solid solution deposited tends to be small, and the coefficient of thermal expansion of the residual glass phase after heat treatment tends to be high. As a result, the coefficient of thermal expansion tends to be high.
  • La 2 O 3 , ZrO 2 or Bi 2 O 3 may be contained as a component that also improves the weather resistance.
  • ZrO 2 and Bi 2 O 3 also have the effect of improving the softening fluidity due to the heat treatment during joining.
  • the content of La 2 O 3 + ZrO 2 + Bi 2 O 3 is preferably 0 to 10%, 0 to 5%, and particularly preferably 0.1 to 2%. If the content of La 2 O 3 + ZrO 2 + Bi 2 O 3 is too large, the amount of ⁇ -quartz solid solution deposited tends to be small, and the coefficient of thermal expansion of the residual glass phase after heat treatment tends to be high.
  • La 2 O 3 + ZrO 2 + Bi 2 O 3 means the total amount of La 2 O 3 , ZrO 2 and Bi 2 O 3.
  • Na 2 O, K 2 O, MnO, P 2 O 5 , MoO 2 , TiO 2 , V 2 O 5 and the like are added in a total amount of 30% or less as long as the effects of the present invention are not impaired. It can be contained in the range of 20% or less, further 10% or less.
  • the adhesive layer 21 may contain a refractory filler powder for adjusting the coefficient of thermal expansion.
  • the content of the refractory filler is preferably 0 to 30% by mass, 0.1 to 20% by mass, and particularly preferably 1 to 10% by mass. If the content of the refractory filler powder is too large, the bondability to the member to be joined tends to decrease.
  • Fire-resistant filler powders include cordierite, willemite, alumina, zirconium phosphate, zircone, zirconia, tin oxide, mullite, silica, ⁇ -eucriptite, ⁇ -spojumen, ⁇ -quartz solid solution, zirconium tungstate phosphate. Etc. can be used.
  • the adhesive material constituting the adhesive layer 21 is arranged between the frame portion 6 and the lid portion 7 in the form of powder, green compact, paste or the like.
  • a paste for example, a paste containing a powder of crystalline glass, a resin and a solvent is applied.
  • a dispenser can be used for the application of the paste.
  • acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylenestyrene, polyethylene carbonate, methacrylic acid ester and the like
  • acrylic acid ester and ethyl cellulose are preferable because they have good thermal decomposability.
  • ⁇ -terpionel pine oil, N, N'-dimethylformamide (DMF), higher alcohol, ⁇ -butyrolactone ( ⁇ -BL), tetralin, butylcarbitol acetate, ethyl acetate, isoamyl acetate, etc.
  • Diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene Glycol monomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, N-methyl-2-pyrrolidone and the like can be used.
  • ⁇ -turpioner is preferable because it has high viscosity and good solubility of resins and the like.
  • the firing temperature is preferably within the range of the softening point ⁇ 100 ° C., particularly the softening point ⁇ 50 ° C. of the adhesive. Specifically, the firing temperature is preferably in the range of, for example, 500 ° C to 800 ° C, particularly 600 ° C to 750 ° C. If the firing temperature is too low, the softening flow becomes insufficient and the adhesive strength tends to be inferior. On the other hand, if the firing temperature is too high, the fluidity tends to be excessive and joining tends to be difficult. Further, when the adhesive contains crystalline glass, crystal transition (for example, crystal transition from ⁇ -quartz solid solution to ⁇ -spojumen solid solution) may occur and the adhesive layer 21 may be highly expanded. The adhesive may be fired by heating using a heating furnace or by using a laser.
  • the average particle size D 50 of the adhesive is preferably 15 ⁇ m or less, 0.5 to 10 ⁇ m, and particularly preferably 0.7 to 5 ⁇ m. If the particle size of the average particle diameter D 50 is too large, the adhesive layer 21 obtained after firing may have too many pores and the bonding strength may decrease.
  • average particle size D 50 refers to a value measured by a laser diffractometer, and the cumulative amount is accumulated from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffractometer. It represents a particle size of 50%.
  • FIG. 10 illustrates the electronic device 1 according to the third embodiment of the present invention.
  • the protective cap 4 is composed of a single member having no joint between the frame portion 6 and the lid portion 7, which is different from the first and second embodiments.
  • the frame portion 6 of the protective cap 4 composed of a single member is directly welded to the base material 3 by the welding portion 9.
  • the present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the lid portion 7 may be joined to the frame portion 6.
  • the electronic component 2 may be mounted on the base material 3 after the frame portion 6 and the base material 3 are joined, and then the lid portion 7 may be joined to the frame portion 6.
  • a reflective film may be formed on the inner peripheral surface of the frame portion 6 in order to improve the extraction efficiency of ultraviolet rays.

Abstract

An electronic device 1 comprises an electronic component 2, a substrate to which the electronic component 2 is mounted, and a protective cap 4 which is joined to the substrate 3 so as to house the electronic component 2 in the interior thereof. The protective cap 4 is provided with a frame part 6 comprising a first transparent inorganic material, and a lid part 7 covering one end opening of the frame part 6 and comprising a second transparent inorganic material. The frame part 6 and the substrate 3 are directly welded together by a weld section 9.

Description

電子装置及び電子装置の製造方法Electronic device and manufacturing method of electronic device
 本発明は、電子装置及び電子装置の製造方法に関する。 The present invention relates to an electronic device and a method for manufacturing the electronic device.
 LEDなどの電子部品を備えた電子装置、長寿命や省エネルギーなどの理由から、照明や通信などの種々の分野で利用されるに至っている。 Electronic devices equipped with electronic components such as LEDs have come to be used in various fields such as lighting and communication because of their long life and energy saving.
 この種の発光装置では、電子部品を保護するために、電子部品が搭載された基材に、電子部品が内部に収容されるように保護キャップを被せる場合がある。 In this type of light emitting device, in order to protect the electronic component, the base material on which the electronic component is mounted may be covered with a protective cap so that the electronic component is housed inside.
 例えば特許文献1に開示されているように、保護キャップは、発光素子の周囲を取り囲む枠部(第2の部材)と、枠部の一端開口を覆う蓋部(カバー部材)とを備えている。 For example, as disclosed in Patent Document 1, the protective cap includes a frame portion (second member) that surrounds the periphery of the light emitting element, and a lid portion (cover member) that covers one end opening of the frame portion. ..
国際公開第2015/190242号International Publication No. 2015/190242
 保護キャップの枠部と、電子部品が搭載された基材とは、ろう材(例えば金錫はんだ)を用いて接合される場合が多い。基材は、金属又は金属窒化物セラミックスから構成され、高膨張係数材料となる場合が多い。一方、枠部は、ガラスなどの透明無機材から構成され、低膨張係数材料となる場合もある。このような場合、基材と枠部との間の熱膨張係数差が大きくなり、基材及び枠部の両方の熱膨張係数と整合するろう材を選定することは難しい。つまり、ろう材の熱膨張係数を基材の熱膨張係数に整合させると、枠部及びろう材の熱膨張係数差が大きくなり、ろう材の熱膨張係数を枠部に整合させると、基材及びろう材の熱膨張係数差が大きくなる。この結果、基材と枠部との接合部又はその近傍に残留応力が発生して破損(例えばクラックなどの割れ)が生じやすくなる。このように接合部又はその近傍が破損すると、電子部品の収容空間の気密性が低下し、電子部品が劣化するおそれがある。 In many cases, the frame of the protective cap and the base material on which the electronic components are mounted are joined using a brazing material (for example, gold-tin solder). The base material is composed of metal or metal nitride ceramics, and is often a material having a high coefficient of expansion. On the other hand, the frame portion is made of a transparent inorganic material such as glass, and may be a material having a low coefficient of expansion. In such a case, the difference in the coefficient of thermal expansion between the base material and the frame portion becomes large, and it is difficult to select a brazing material that matches the coefficient of thermal expansion of both the base material and the frame portion. That is, when the coefficient of thermal expansion of the brazing material is matched with the coefficient of thermal expansion of the base material, the difference between the coefficient of thermal expansion of the frame portion and the brazing material becomes large, and when the coefficient of thermal expansion of the brazing material is matched with the frame portion, the base material is used. And the difference in the coefficient of thermal expansion of the brazing material becomes large. As a result, residual stress is generated in or near the joint portion between the base material and the frame portion, and breakage (for example, cracking such as a crack) is likely to occur. If the joint or the vicinity thereof is damaged in this way, the airtightness of the accommodation space for the electronic component is lowered, and the electronic component may be deteriorated.
 本発明は、高い気密性を維持できる電子装置を提供することを課題とする。 An object of the present invention is to provide an electronic device capable of maintaining high airtightness.
 上記の課題を解決するために創案された本発明は、電子部品と、電子部品が搭載された基材と、電子部品が内部に収容されるように、基材に接合された保護キャップとを備えている電子装置であって、保護キャップが、第一透明無機材からなる枠部と、枠部の一端開口を覆う第二透明無機材からなる蓋部とを備え、枠部と基材とが、直接溶着されていることを特徴とする。このようにすれば、枠部と基材との間に他部材が介在しないことから、枠部の熱膨張係数と基材の熱膨張係数との差がある程度大きくても、枠部と基材とを確実に接合できる。 The present invention, which was devised to solve the above problems, comprises an electronic component, a base material on which the electronic component is mounted, and a protective cap bonded to the base material so that the electronic component is housed inside. The electronic device provided includes a protective cap having a frame portion made of a first transparent inorganic material and a lid portion made of a second transparent inorganic material covering one end opening of the frame portion, and the frame portion and the base material. However, it is characterized by being directly welded. By doing so, since other members do not intervene between the frame portion and the base material, even if the difference between the coefficient of thermal expansion of the frame portion and the coefficient of thermal expansion of the base material is large to some extent, the frame portion and the base material Can be reliably joined.
 上記の構成において、枠部と蓋部とが、直接溶着されていることが好ましい。このようにすれば、枠部と蓋部との間に他部材(高膨張のろう材、接着材等)が介在しないことから、枠部の熱膨張係数と蓋部の熱膨張係数との差がある程度大きくても、枠部と蓋部とを確実に接合できる。 In the above configuration, it is preferable that the frame portion and the lid portion are directly welded. By doing so, since other members (highly expanding brazing material, adhesive material, etc.) do not intervene between the frame portion and the lid portion, the difference between the thermal expansion coefficient of the frame portion and the thermal expansion coefficient of the lid portion. Even if the size is large to some extent, the frame and lid can be reliably joined.
 上記の構成において、第一透明無機材は、石英ガラスであることが好ましい。このようにすれば、蓋部の紫外線の透過率が高くなるため、電子部品が、紫外線を出射したり受光したりする素子である場合に特に有効となる。なお、「石英ガラス」とは、合成石英、溶融石英等を含み、SiO2を90質量%以上含む非結晶体を指す。 In the above configuration, the first transparent inorganic material is preferably quartz glass. By doing so, the transmittance of ultraviolet rays in the lid portion is increased, which is particularly effective when the electronic component is an element that emits or receives ultraviolet rays. The term "quartz glass" refers to a non-crystal body containing synthetic quartz, fused silica, or the like and containing 90% by mass or more of SiO 2.
 上記の構成において、第二透明無機材が、軟化点が1000℃以下のガラス材であることが好ましい。このようにすれば、例えば、レーザ接合などにより枠部と基材とを直接溶着する場合に、枠部が容易に軟化する。このため、枠部側を軟化させて、蓋部及び枠部の接合時間を短くすることができる。同様の理由により、例えば、レーザ接合などにより枠部と蓋部とを直接溶着する場合に、枠部が容易に軟化するため、枠部及び蓋部の接合時間を短くすることができる。ここで、「軟化点」は、ASTMC338の方法に基づいて測定した値を指す。 In the above configuration, the second transparent inorganic material is preferably a glass material having a softening point of 1000 ° C. or lower. By doing so, for example, when the frame portion and the base material are directly welded by laser bonding or the like, the frame portion is easily softened. Therefore, the frame portion side can be softened to shorten the joining time of the lid portion and the frame portion. For the same reason, for example, when the frame portion and the lid portion are directly welded by laser bonding or the like, the frame portion is easily softened, so that the bonding time between the frame portion and the lid portion can be shortened. Here, the "softening point" refers to a value measured based on the method of ASTMC338.
 上記の構成において、第二透明無機材は、石英ガラスであってもよい。このようにすれば、枠部の紫外線の透過率が高くなる。このため、電子部品が、紫外線を出射したり受光したりする素子である場合に特に有効となる。 In the above configuration, the second transparent inorganic material may be quartz glass. By doing so, the transmittance of ultraviolet rays in the frame portion becomes high. Therefore, it is particularly effective when the electronic component is an element that emits or receives ultraviolet rays.
 上記の構成において、電子部品は、紫外線LEDであってもよい。 In the above configuration, the electronic component may be an ultraviolet LED.
 上記の課題を解決するために創案された本発明は、電子部品と、電子部品が搭載された基材と、電子部品が内部に収容されるように、基材に接合された保護キャップと備えている電子装置の製造方法であって、保護キャップが、第一透明無機材からなる枠部と、枠部の一端開口を覆う第二透明無機材からなる蓋部とを備え、枠部と基材とを接触させた状態で、枠部と基材の接触部にレーザを照射することにより、枠部と基材とを直接溶着する接合工程とを備えていることを特徴とする。このようにすれば、枠部と基材との間に他部材が介在しないことから、枠部の熱膨張係数と基材の熱膨張係数との差がある程度大きくても、枠部と基材とを確実に接合できる。また、枠部と基材の接触部がレーザにより局所加熱されるため、電子部品などの電子装置の構成部品に耐熱性が低い材料を使用することもできる。 The present invention, which was devised to solve the above problems, includes an electronic component, a base material on which the electronic component is mounted, and a protective cap bonded to the base material so that the electronic component is housed inside. A protective cap is provided with a frame portion made of a first transparent inorganic material and a lid portion made of a second transparent inorganic material that covers one end opening of the frame portion, and is based on the frame portion. It is characterized by comprising a joining step of directly welding the frame portion and the base material by irradiating the contact portion between the frame portion and the base material with a laser in a state where the material is in contact with the material. By doing so, since other members do not intervene between the frame portion and the base material, even if the difference between the coefficient of thermal expansion of the frame portion and the coefficient of thermal expansion of the base material is large to some extent, the frame portion and the base material Can be reliably joined. Further, since the contact portion between the frame portion and the base material is locally heated by the laser, a material having low heat resistance can be used for the components of the electronic device such as electronic parts.
 上記の構成において、枠部と蓋部とを接触させた状態で、枠部と蓋部の接触部にレーザを照射することにより、枠部と蓋部とを直接溶着する接合工程をさらに備えている。このようにすれば、枠部と蓋部との間に他部材が介在しないことから、枠部の熱膨張係数と蓋部の熱膨張係数との差がある程度大きくても、枠部と蓋部とを確実に接合できる。 In the above configuration, a joining step of directly welding the frame portion and the lid portion by irradiating the contact portion between the frame portion and the lid portion with a laser in a state where the frame portion and the lid portion are in contact is further provided. There is. By doing so, since other members do not intervene between the frame portion and the lid portion, even if the difference between the coefficient of thermal expansion of the frame portion and the coefficient of thermal expansion of the lid portion is large to some extent, the frame portion and the lid portion Can be reliably joined.
 本発明によれば、高い気密性を維持できる電子装置を提供できる。 According to the present invention, it is possible to provide an electronic device capable of maintaining high airtightness.
第一実施形態に係る電子装置を示す断面図である。It is sectional drawing which shows the electronic device which concerns on 1st Embodiment. 図1のA-A断面図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 波長200~600nmにおけるBU-41及び石英ガラスの透過率曲線を示すグラフである。It is a graph which shows the transmittance curve of BU-41 and quartz glass at a wavelength of 200-600 nm. 第一実施形態に係る電子装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. 第一実施形態に係る電子装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. 第一実施形態に係る電子装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. 第一実施形態に係る電子装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. 第一実施形態に係る電子装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the electronic apparatus which concerns on 1st Embodiment. 第二実施形態に係る電子装置を示す断面図である。It is sectional drawing which shows the electronic device which concerns on 2nd Embodiment. 第三実施形態に係る電子装置を示す断面図である。It is sectional drawing which shows the electronic device which concerns on 3rd Embodiment.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、各実施形態において対応する構成要素には同一符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. By assigning the same reference numerals to the corresponding components in each embodiment, duplicate description may be omitted. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other parts of the configuration. Further, not only the combination of the configurations specified in the description of each embodiment but also the configurations of a plurality of embodiments can be partially combined even if the combination is not specified.
(第一実施形態)
 図1及び図2は、本発明の第一実施形態に係る電子装置1を例示している。
(First Embodiment)
1 and 2 illustrate the electronic device 1 according to the first embodiment of the present invention.
 本実施形態に係る電子装置1は、電子部品2と、電子部品2が搭載された基材3と、電子部品2を内部に収容するように、基材3に配置された保護キャップ4と、基材3及び保護キャップ4を接合する接合部5とを備えている。なお、以下の説明では、便宜上、基材3側を下、保護キャップ4側を上として説明するが、上下方向はこれに限定されない。 The electronic device 1 according to the present embodiment includes an electronic component 2, a base material 3 on which the electronic component 2 is mounted, a protective cap 4 arranged on the base material 3 so as to accommodate the electronic component 2 inside, and a protective cap 4. It is provided with a joint portion 5 for joining the base material 3 and the protective cap 4. In the following description, for convenience, the base material 3 side is shown as the bottom and the protective cap 4 side is shown as the top, but the vertical direction is not limited to this.
 電子部品2は、特に限定されるものではないが、例えば、レーザモジュール、LED、光センサ、撮像素子、光スイッチ等の光学デバイスが挙げられる。本実施形態では、電子部品2は紫外線LEDであり、電子装置1は発光装置である。 The electronic component 2 is not particularly limited, and examples thereof include optical devices such as a laser module, an LED, an optical sensor, an image pickup element, and an optical switch. In the present embodiment, the electronic component 2 is an ultraviolet LED, and the electronic device 1 is a light emitting device.
 基材3は、例えば、金属、金属酸化物セラミックス、LTCC又は金属窒化物セラミックスから構成される。金属としては、例えば銅、金属シリコンなどが挙げられる。金属酸化物セラミックスとしては、例えば酸化アルミニウムなどが挙げられる。LTCCとしては、例えば結晶性ガラスと耐火性フィラーを含む複合粉末を焼結させたものなどが挙げられる。金属窒化物セラミックスとしては、例えば窒化アルミニウムなどが挙げられる。本実施形態では、基材3は、窒化アルミニウムから構成されている。窒化アルミニウムの30~380℃の温度範囲における熱膨張係数は、例えば46×10-7/℃である。また、本実施形態では、基材3は、上面3a及び下面3bがともに平面から構成される板状体である。なお、基材3は、上面3aのうち、電子部品2が搭載される部分に凹部が設けられていてもよい。 The base material 3 is composed of, for example, metal, metal oxide ceramics, LTCC or metal nitride ceramics. Examples of the metal include copper and metallic silicon. Examples of the metal oxide ceramics include aluminum oxide. Examples of the LTCC include a sintered composite powder containing crystalline glass and a refractory filler. Examples of the metal nitride ceramics include aluminum nitride. In this embodiment, the base material 3 is made of aluminum nitride. The coefficient of thermal expansion of aluminum nitride in the temperature range of 30 to 380 ° C. is, for example, 46 × 10 -7 / ° C. Further, in the present embodiment, the base material 3 is a plate-like body in which both the upper surface 3a and the lower surface 3b are formed of a flat surface. The base material 3 may be provided with a recess in the portion of the upper surface 3a on which the electronic component 2 is mounted.
 保護キャップ4は、枠部6と、枠部6の一端開口を覆う蓋部7と、枠部6及び蓋部7を接合する接合部8とを備えている。なお、保護キャップ4の表面には各種機能膜を形成することが好ましく、例えば、光反射ロスを低減するために、反射防止膜を形成することが好ましい。 The protective cap 4 includes a frame portion 6, a lid portion 7 that covers one end opening of the frame portion 6, and a joint portion 8 that joins the frame portion 6 and the lid portion 7. It is preferable to form various functional films on the surface of the protective cap 4, and for example, it is preferable to form an antireflection film in order to reduce light reflection loss.
 枠部6は、中心に厚み方向(上下方向)に延びる貫通孔Hを有する筒状体である。枠部6は、貫通孔Hに対応する空間に収容された電子部品2の周囲を取り囲む。図示例では、枠部6は、四角筒で構成されているが、円筒などの他の形状であってもよい。なお、枠部6の内壁面6cは、蓋部7を通じた紫外線の取出効率を向上させるために、枠部6の下端面6b側から上端面6a側に向かうに連れて内側から外側に移行する傾斜面で構成されている。内壁面6cは、非傾斜面(垂直面)であってもよい。貫通孔Hは、枠部6の元材に、エッチング加工、レーザ加工、サンドブラスト加工などを施すことにより形成することができる。 The frame portion 6 is a tubular body having a through hole H extending in the thickness direction (vertical direction) at the center. The frame portion 6 surrounds the periphery of the electronic component 2 housed in the space corresponding to the through hole H. In the illustrated example, the frame portion 6 is composed of a square cylinder, but may have another shape such as a cylinder. The inner wall surface 6c of the frame portion 6 shifts from the inside to the outside from the lower end surface 6b side to the upper end surface 6a side of the frame portion 6 in order to improve the extraction efficiency of ultraviolet rays through the lid portion 7. It is composed of inclined surfaces. The inner wall surface 6c may be a non-sloping surface (vertical surface). The through hole H can be formed by subjecting the original material of the frame portion 6 to etching processing, laser processing, sandblasting, or the like.
 枠部6は、第一透明無機材から構成されている。第一透明無機材としては、例えば、石英ガラス(シリカガラス)、石英ガラス以外のガラス材が挙げられる。石英ガラスは、高い紫外線透過率を有する。ここで、第一透明無機材及び第二透明無機材(後述)における「透明」とは、例えば、発光素子からなる電子部品2から出射される光を透過することを意味する。より具体的には、対象とする波長域の光の透過率が10%以上であることを指す。透過率の測定は、日立ハイテクサイエンス社製UH4150を用いて行うことができる。 The frame portion 6 is made of the first transparent inorganic material. Examples of the first transparent inorganic material include quartz glass (silica glass) and glass materials other than quartz glass. Quartz glass has a high ultraviolet transmittance. Here, "transparent" in the first transparent inorganic material and the second transparent inorganic material (described later) means, for example, transmitting light emitted from an electronic component 2 composed of a light emitting element. More specifically, it means that the transmittance of light in the target wavelength range is 10% or more. The transmittance can be measured using UH4150 manufactured by Hitachi High-Tech Science Corporation.
 枠部6を石英ガラス以外のガラス材から構成する場合、当該ガラス材も紫外線透過ガラスであることが好ましい。以下、石英ガラス以外のガラス材を単にガラス材という場合もある。 When the frame portion 6 is made of a glass material other than quartz glass, it is preferable that the glass material is also ultraviolet transmissive glass. Hereinafter, a glass material other than quartz glass may be simply referred to as a glass material.
 枠部6のガラス材において、光路長0.7mm、波長200nmにおける透過率は、好ましくは10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、特に好ましくは80%以上である。また、枠部6のガラス材において、光路長0.7mm、波長250nmにおける透過率は、好ましくは50%以上、60%以上、70%以上、特に好ましくは80%以上である。さらに、枠部6のガラス材において、光路長0.7mm、波長250nmにおける透過率をT250とし、光路長0.7mm、波長300nmにおける透過率をT300としたときに、T250/T300の値は、好ましくは0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.85以上、特に好ましくは0.9以上である。このようにすれば、石英ガラスに比べて、紫外線の透過率が劣るものの、紫外線LEDからなる電子部品2から出射される光を問題なく透過させることができ、紫外線の取出効率を高いレベルで維持できる。なお、「光路長0.7mm」は、ガラス材の厚みが薄い場合でも、光路長0.7mmを有する同等の測定試料を作製した上で測定に供するものとする。なお、「光路長0.7mm、波長200nmにおける透過率」は、厚み0.7mmの測定試料を作製した上で測定に供してもよく、ガラス材の厚み方向で透過率を測定した後、光路長0.7mmに換算した値を採用してもよい。 In the glass material of the frame portion 6, the transmittance at an optical path length of 0.7 mm and a wavelength of 200 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more. Especially preferably 80% or more. Further, in the glass material of the frame portion 6, the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is preferably 50% or more, 60% or more, 70% or more, and particularly preferably 80% or more. Further, in the glass material of the frame portion 6, when the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is T 250 and the transmittance at an optical path length of 0.7 mm and a wavelength of 300 nm is T 300 , T 250 / T 300. The value of is preferably 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, and particularly preferably 0.9 or more. .. By doing so, although the transmittance of ultraviolet rays is inferior to that of quartz glass, the light emitted from the electronic component 2 composed of the ultraviolet LED can be transmitted without any problem, and the efficiency of extracting ultraviolet rays is maintained at a high level. can. The "optical path length 0.7 mm" means that even when the thickness of the glass material is thin, an equivalent measurement sample having an optical path length of 0.7 mm is prepared and then used for measurement. The "transmittance at an optical path length of 0.7 mm and a wavelength of 200 nm" may be measured after preparing a measurement sample having a thickness of 0.7 mm, and after measuring the transmittance in the thickness direction of the glass material, the optical path A value converted to a length of 0.7 mm may be adopted.
 枠部6のガラス材において、歪点は、好ましくは430℃以上、460℃以上、480℃以上、500℃以上、520℃以上、530℃以上、550℃以上、600℃以上、特に好ましくは630℃以上である。歪点が低すぎると、後述するレーザ接合時に、枠部6に歪が生じるおそれがあるが、歪点を上記数値範囲とすれば、これを抑制できる。ここで、「歪点」は、ASTMC336の方法に基づいて測定した値である。 In the glass material of the frame portion 6, the strain point is preferably 430 ° C. or higher, 460 ° C. or higher, 480 ° C. or higher, 500 ° C. or higher, 520 ° C. or higher, 530 ° C. or higher, 550 ° C. or higher, 600 ° C. or higher, particularly preferably 630. It is above ℃. If the distortion point is too low, distortion may occur in the frame portion 6 at the time of laser joining described later, but this can be suppressed by setting the distortion point within the above numerical range. Here, the "distortion point" is a value measured based on the method of ASTMC336.
 枠部6のガラス材において、軟化点は、好ましくは1000℃以下、950℃以下、900℃以下、850℃以下、特に好ましくは800℃以下である。このようにすれば、枠部6及び蓋部7や、枠部6及び基材3をレーザ接合などにより直接溶着する場合に、枠部6が容易に軟化するため、接合時間を短くすることができる。 In the glass material of the frame portion 6, the softening point is preferably 1000 ° C. or lower, 950 ° C. or lower, 900 ° C. or lower, 850 ° C. or lower, and particularly preferably 800 ° C. or lower. By doing so, when the frame portion 6 and the lid portion 7 and the frame portion 6 and the base material 3 are directly welded by laser bonding or the like, the frame portion 6 is easily softened, so that the bonding time can be shortened. can.
 枠部6のガラス材において、102.5dPa・sにおける温度は、好ましくは1580℃以下、1550℃以下、1520℃以下、1500℃以下、1480℃以下、特に1470℃以下である。102.5dPa・sにおける温度が高すぎると、溶融性が低下して、ガラスの製造コストが高騰しやすくなる。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。なお、102.5dPa・sにおける温度は、溶融温度に相当し、この温度が低いほど溶融性が向上する。 In the glass material of the frame portion 6, the temperature at 10 2.5 dPa · s is preferably 1580 ° C. or lower, 1550 ° C. or lower, 1520 ° C. or lower, 1500 ° C. or lower, 1480 ° C. or lower, and particularly 1470 ° C. or lower. If the temperature at 10 2.5 dPa · s is too high, the meltability is lowered and the manufacturing cost of glass is likely to rise. Here, the " temperature at 10 2.5 dPa · s" can be measured by the platinum ball pulling method. The temperature at 10 2.5 dPa · s corresponds to the melting temperature, and the lower the temperature, the better the melting property.
 枠部6のガラス材において、30~380℃の温度範囲における熱膨張係数は、好ましくは30×10-7/℃以上、40×10-7/℃以上、50×10-7/℃以上、60×10-7/℃以上、特に好ましくは70×10-7/℃以上である。また、枠部6のガラス材において、30~380℃の温度範囲における熱膨張係数は、好ましくは105×10-7/℃以下100×10-7/℃以下、95×10-7/℃以下、特に好ましくは90×10-7/℃以下である。熱膨張係数が低過ぎると、各種部材、特にガラスフリットの熱膨張係数に整合させ難くなる。結果として、ガラスフリットの低融点化が困難になるため、電子装置1の製造工程の温度上昇を招き、電子装置1の性能が劣化しやすくなる。一方、熱膨張係数が高すぎると、熱衝撃により、枠部6が破損しやすくなる。なお、石英ガラスの30~380℃の温度範囲における熱膨張係数は例えば4.0×10-7/℃である。ここで、「30~380℃の温度範囲における熱膨張係数」は、例えば、ディラトメーターを用いて測定可能である。 In the glass material of the frame portion 6, the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably 30 × 10 -7 / ° C. or higher, 40 × 10 -7 / ° C. or higher, 50 × 10 -7 / ° C. or higher, It is 60 × 10 -7 / ° C or higher, particularly preferably 70 × 10 -7 / ° C or higher. Further, in the glass material of the frame portion 6, the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. is preferably 105 × 10 -7 / ° C. or less, 100 × 10 -7 / ° C. or less, 95 × 10 -7 / ° C. or less. Particularly preferably, it is 90 × 10 -7 / ° C or less. If the coefficient of thermal expansion is too low, it will be difficult to match the coefficient of thermal expansion of various members, especially glass frits. As a result, it becomes difficult to lower the melting point of the glass frit, which causes the temperature of the manufacturing process of the electronic device 1 to rise, and the performance of the electronic device 1 tends to deteriorate. On the other hand, if the coefficient of thermal expansion is too high, the frame portion 6 is likely to be damaged due to thermal shock. The coefficient of thermal expansion of quartz glass in the temperature range of 30 to 380 ° C. is, for example, 4.0 × 10 -7 / ° C. Here, the "coefficient of thermal expansion in the temperature range of 30 to 380 ° C." can be measured using, for example, a dilatometer.
 枠部6のガラス材の液相温度は、好ましくは1150℃未満、1120℃以下、1100℃以下、1080℃以下、1050℃以下、1030℃以下、980℃以下、960℃以下、950℃以下、特に好ましくは940℃以下である。また、枠部6のガラス材の液相粘度は、好ましくは104.0dPa・s以上、104.3dPa・s以上、104.5dPa・s以上、104.8dPa・s以上、105.1dPa・s以上、105.3dPa・s以上、特に好ましくは105.5dPa・s以上である。このようにすれば、耐失透性が向上する。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を顕微鏡観察にて測定した値である。「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquid phase temperature of the glass material of the frame portion 6 is preferably less than 1150 ° C., 1120 ° C. or lower, 1100 ° C. or lower, 1080 ° C. or lower, 1050 ° C. or lower, 1030 ° C. or lower, 980 ° C. or lower, 960 ° C. or lower, 950 ° C. or lower, Particularly preferably, it is 940 ° C. or lower. The liquid phase viscosity of the glass material of the frame portion 6 is preferably 10 4.0 dPa · s or more, 10 4.3 dPa · s or more, 10 4.5 dPa · s or more, 10 4.8 dPa · s or more, and 10 5.1 dPa · s or more. It is 10 5.3 dPa · s or more, particularly preferably 10 5.5 dPa · s or more. By doing so, the devitrification resistance is improved. Here, the "liquid phase temperature" is determined by passing the standard sieve 30 mesh (500 μm) and putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat and holding it in a temperature gradient furnace for 24 hours, after which crystals are formed. It is a value measured by microscopic observation of the precipitation temperature. The "liquid phase viscosity" is a value obtained by measuring the viscosity of glass at the liquid phase temperature by the platinum ball pulling method.
 枠部6のガラス材のヤング率は、好ましくは55GPa以上、60GPa以上、65GPa以上、特に好ましくは70GPa以上である。ヤング率が低すぎると、枠部6の変形、反り、破損が発生しやすくなる。ここで、「ヤング率」は、共振法により測定した値である。 The Young's modulus of the glass material of the frame portion 6 is preferably 55 GPa or more, 60 GPa or more, 65 GPa or more, and particularly preferably 70 GPa or more. If the Young's modulus is too low, the frame portion 6 is likely to be deformed, warped, or damaged. Here, "Young's modulus" is a value measured by the resonance method.
 枠部6のガラス材は、ガラス組成として、質量%で、SiO2 50~80%、Al23+B23 1~45%、Li2O+Na2O+K2O 0~25%、MgO+CaO+SrO+BaO 0~25%であることが好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。「Al23+B23」は、Al23とB23の合量を意味する。「Li2O+Na2O+K2O」は、Li2O、Na2O及びK2Oの合量を意味する。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を意味する。 The glass material of the frame portion 6 has a glass composition of 40% by mass, SiO 2 50 to 80%, Al 2 O 3 + B 2 O 3 1 to 45%, Li 2 O + Na 2 O + K 2 O 0 to 25%, MgO + CaO + SrO + BaO 0. It is preferably ~ 25%. The reasons for limiting the content of each component as described above are shown below. In addition, in the description of the content of each component, the% display represents mass% unless otherwise specified. "Al 2 O 3 + B 2 O 3 " means the total amount of Al 2 O 3 and B 2 O 3. "Li 2 O + Na 2 O + K 2 O" means the total amount of Li 2 O, Na 2 O and K 2 O. "MgO + CaO + SrO + BaO" means the total amount of MgO, CaO, SrO and BaO.
 SiO2は、ガラスの骨格を形成する主成分である。SiO2の含有量は、好ましくは50~80%、55~75%、58~70%、特に好ましくは60~68%である。SiO2の含有量が少なすぎると、ヤング率、耐酸性が低下しやすくなる。一方、SiO2の含有量が多すぎると、高温粘度が高くなり、溶融性が低下しやすくなることに加えて、クリストバライト等の失透結晶が析出しやすくなって、液相温度が上昇しやすくなる。 SiO 2 is a main component forming the skeleton of glass. The content of SiO 2 is preferably 50 to 80%, 55 to 75%, 58 to 70%, and particularly preferably 60 to 68%. If the content of SiO 2 is too small, Young's modulus and acid resistance tend to decrease. On the other hand, if the content of SiO 2 is too high, the high-temperature viscosity becomes high and the meltability tends to decrease, and in addition, devitrified crystals such as cristobalite tend to precipitate and the liquidus temperature tends to rise. Become.
 Al23とB23は、耐失透性を高める成分である。Al23+B23の含有量は、好ましくは1~40%、5~35%、10~30%、特に好ましくは15~25%である。Al23+B23の含有量が少なすぎると、ガラスが失透しやすくなる。一方、Al23+B23の含有量が多すぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。 Al 2 O 3 and B 2 O 3 are components that enhance devitrification resistance. The content of Al 2 O 3 + B 2 O 3 is preferably 1 to 40%, 5 to 35%, 10 to 30%, and particularly preferably 15 to 25%. If the content of Al 2 O 3 + B 2 O 3 is too low, the glass tends to be devitrified. On the other hand, if the content of Al 2 O 3 + B 2 O 3 is too large, the component balance of the glass composition is impaired, and conversely, the glass tends to be devitrified.
 Al23は、ヤング率を高める成分であるとともに、分相、失透を抑制する成分である。Al23の含有量は、好ましくは1~20%、3~18%、特に5~16%である。Al23の含有量が少なすぎると、ヤング率が低下しやすくなり、またガラスが分相、失透しやすくなる。一方、Al23の含有量が多すぎると、高温粘度が高くなり、溶融性が低下しやすくなる。 Al 2 O 3 is a component that enhances Young's modulus and suppresses phase separation and devitrification. The content of Al 2 O 3 is preferably 1 to 20%, 3 to 18%, and particularly 5 to 16%. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of Al 2 O 3 is too large, the high-temperature viscosity becomes high and the meltability tends to decrease.
 B23は、溶融性、耐失透性を高める成分であり、また傷の付きやすさを改善して、強度を高める成分である。B23の含有量は、好ましくは3~25%、5~22%、7~19%、特に9~16%である。B23の含有量が少なすぎると、溶融性、耐失透性が低下しやすくなり、またフッ酸系の薬液に対する耐性が低下しやすくなる。一方、B23の含有量が多すぎると、ヤング率、耐酸性が低下しやすくなる。 B 2 O 3 is a component that enhances meltability and devitrification resistance, and is a component that improves the susceptibility to scratches and enhances strength. The content of B 2 O 3 is preferably 3 to 25%, 5 to 22%, 7 to 19%, and particularly 9 to 16%. If the content of B 2 O 3 is too small, the meltability and devitrification resistance tend to decrease, and the resistance to hydrofluoric acid-based chemicals tends to decrease. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and acid resistance tend to decrease.
 Li2O、Na2O及びK2Oは、高温粘性を下げて、溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。Li2O+Na2O+K2Oの含有量は、好ましくは0~25%、1~20%、4~15%、特に7~13%である。Li2O+Na2O+K2Oの含有量が少なすぎると、溶融性が低下しやすくなる。一方、Li2O+Na2O+K2Oの含有量が多すぎると、熱膨張係数が不当に高くなるおそれがある。 Li 2 O, Na 2 O and K 2 O are components that lower the high temperature viscosity, significantly increase the meltability, and contribute to the initial melting of the glass raw material. The content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 25%, 1 to 20%, 4 to 15%, and particularly 7 to 13%. If the content of Li 2 O + Na 2 O + K 2 O is too small, the meltability tends to decrease. On the other hand, if the content of Li 2 O + Na 2 O + K 2 O is too large, the coefficient of thermal expansion may become unreasonably high.
 Li2Oは、高温粘性を下げて、溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。Li2Oの含有量は、好ましくは0~5%、0~3%、0~1%、特に好ましくは0~0.1%である。Li2Oの含有量が少なすぎると、溶融性が低下しやすくなることに加えて、熱膨張係数が不当に低くなるおそれがある。一方、Li2Oの含有量が多すぎると、ガラスが分相しやすくなる。 Li 2 O is a component that lowers the high-temperature viscosity, remarkably increases the meltability, and contributes to the initial melting of the glass raw material. The content of Li 2 O is preferably 0 to 5%, 0 to 3%, 0-1%, and particularly preferably 0 to 0.1%. If the content of Li 2 O is too small, the meltability tends to decrease and the coefficient of thermal expansion may become unreasonably low. On the other hand, if the Li 2 O content is too high, the glass tends to be phase-separated.
 Na2Oは、高温粘性を下げて、溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。Na2Oの含有量は、好ましくは0~25%、1~20%、3~18%、5~15%、特に好ましくは7~13%である。Na2Oの含有量が少なすぎると、溶融性が低下しやすくなることに加えて、熱膨張係数が不当に低くなるおそれがある。一方、Na2Oの含有量が多すぎると、熱膨張係数が不当に高くなるおそれがある。 Na 2 O is a component that lowers the high-temperature viscosity, significantly enhances the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion. The content of Na 2 O is preferably 0 to 25%, 1 to 20%, 3 to 18%, 5 to 15%, and particularly preferably 7 to 13%. If the Na 2 O content is too low, the meltability tends to decrease and the coefficient of thermal expansion may become unreasonably low. On the other hand, if the Na 2 O content is too high, the coefficient of thermal expansion may become unreasonably high.
 K2Oは、高温粘性を下げて、溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。K2Oの含有量は、好ましくは0~15%、0.1~10%、特に好ましくは1~5%である。K2Oの含有量が多すぎると、熱膨張係数が不当に高くなるおそれがある。 K 2 O is a component that lowers the high-temperature viscosity, remarkably increases the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion. The content of K 2 O is preferably 0 to 15%, 0.1 to 10%, and particularly preferably 1 to 5%. If the content of K 2 O is too high, the coefficient of thermal expansion may become unreasonably high.
 MgO、CaO、SrO及びBaOは、高温粘性を下げて、溶融性を高める成分である。MgO+CaO+SrO+BaOの含有量は、好ましくは0~25%、0~15%、0.1~12%、1~5%である。MgO+CaO+SrO+BaOの含有量が多すぎると、ガラスが失透しやすくなる。 MgO, CaO, SrO and BaO are components that lower the high temperature viscosity and increase the meltability. The content of MgO + CaO + SrO + BaO is preferably 0 to 25%, 0 to 15%, 0.1 to 12%, and 1 to 5%. If the content of MgO + CaO + SrO + BaO is too large, the glass tends to be devitrified.
 MgOは、高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量は、好ましくは0~10%、0~8%、0~5%、特に好ましくは0~1%である。MgOの含有量が多すぎると、耐失透性が低下しやすくなる。 MgO is a component that lowers high-temperature viscosity and enhances meltability, and is a component that significantly increases Young's modulus among alkaline earth metal oxides. The content of MgO is preferably 0 to 10%, 0 to 8%, 0 to 5%, and particularly preferably 0 to 1%. If the content of MgO is too large, the devitrification resistance tends to decrease.
 CaOは、高温粘性を下げて、溶融性を顕著に高める成分である。またアルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、好ましくは0~15%、0.5~10%、特に好ましくは1~5%である。CaOの含有量が多すぎると、ガラスが失透しやすくなる。なお、CaOの含有量が少なすぎると、上記効果を享受し難くなる。 CaO is a component that lowers high-temperature viscosity and significantly increases meltability. Further, among alkaline earth metal oxides, the raw material to be introduced is relatively inexpensive, so that it is a component that reduces the raw material cost. The CaO content is preferably 0 to 15%, 0.5 to 10%, and particularly preferably 1 to 5%. If the CaO content is too high, the glass tends to be devitrified. If the CaO content is too low, it becomes difficult to enjoy the above effects.
 SrOは、耐失透性を高める成分である。SrOの含有量は、好ましくは0~7%、0~5%、0~3%、特に好ましくは0~1%未満である。SrOの含有量が多すぎると、ガラスが失透しやすくなる。 SrO is a component that enhances devitrification resistance. The content of SrO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and particularly preferably less than 0 to 1%. If the content of SrO is too high, the glass tends to be devitrified.
 BaOは、耐失透性を高める成分である。BaOの含有量は、好ましくは0~7%、0~5%、0~3%、0~1%未満である。BaOの含有量が多すぎると、ガラスが失透しやすくなる。 BaO is a component that enhances devitrification resistance. The content of BaO is preferably 0 to 7%, 0 to 5%, 0 to 3%, and less than 0-1%. If the BaO content is too high, the glass tends to be devitrified.
 上記成分以外にも、任意成分として、他の成分を導入してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、5%以下、特に3%以下が好ましい。 In addition to the above components, other components may be introduced as optional components. The content of the components other than the above components is preferably 10% or less, 5% or less, particularly 3% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
 ZnOは、溶融性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透しやすくなる。よって、ZnOの含有量は、好ましくは0~5%、0~3%、0~1%、0~1%未満、特に好ましくは0~0.1%である。 ZnO is a component that enhances meltability, but if it is contained in a large amount in the glass composition, the glass tends to be devitrified. Therefore, the ZnO content is preferably 0 to 5%, 0 to 3%, 0 to 1%, less than 0-1%, and particularly preferably 0 to 0.1%.
 ZrO2は、耐酸性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透しやすくなる。よって、ZrO2の含有量は、好ましくは0~5%、0~3%、0~1%、0~0.5%、特に好ましくは0.001~0.2%である。 ZrO 2 is a component that enhances acid resistance, but if it is contained in a large amount in the glass composition, the glass tends to be devitrified. Therefore, the content of ZrO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, 0 to 0.5%, and particularly preferably 0.001 to 0.2%.
 Fe23とTiO2は、深紫外域での透過率を低下させる成分である。Fe23+TiO2の含有量は、好ましくは100ppm以下、80ppm以下、60ppm以下、0.1~40ppm以下、特に好ましくは1~20ppmである。Fe23+TiO2の含有量が多すぎると、ガラスが着色して、深紫外域での透過率が低下しやすくなる。なお、Fe23+TiO2の含有量が少なすぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。なお、「Fe23+TiO2」は、Fe23とTiO2の合量を意味する。 Fe 2 O 3 and TiO 2 are components that reduce the transmittance in the deep ultraviolet region. The content of Fe 2 O 3 + TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 0.1 to 40 ppm or less, and particularly preferably 1 to 20 ppm. If the content of Fe 2 O 3 + TiO 2 is too high, the glass is colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of Fe 2 O 3 + TiO 2 is too small, a high-purity glass raw material must be used, which leads to an increase in batch cost. In addition, "Fe 2 O 3 + TiO 2 " means the total amount of Fe 2 O 3 and TiO 2.
 Fe23は、深紫外域での透過率を低下させる成分である。Fe23の含有量は、好ましくは100ppm以下、80ppm以下、60ppm以下、40ppm以下、20ppm以下、10ppm以下、特に好ましくは1~8ppmである。Fe23の含有量が多すぎると、ガラスが着色して、深紫外域での透過率が低下しやすくなる。なお、Fe23の含有量が少なすぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。 Fe 2 O 3 is a component that lowers the transmittance in the deep ultraviolet region. The content of Fe 2 O 3 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, and particularly preferably 1 to 8 ppm. If the content of Fe 2 O 3 is too high, the glass is colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of Fe 2 O 3 is too small, a high-purity glass raw material must be used, which leads to an increase in batch cost.
 酸化鉄中のFeイオンは、Fe2+又はFe3+の状態で存在する。Fe2+の割合が少なすぎると、深紫外線での透過率が低下しやすくなる。よって、酸化鉄中のFe2+/(Fe2++Fe3+)の質量割合は、好ましくは0.1以上、0.2以上、0.3以上、0.4以上、特に好ましくは0.5以上である。 Fe ions in iron oxide exist in the state of Fe 2+ or Fe 3+. If the proportion of Fe 2+ is too small, the transmittance in deep ultraviolet rays tends to decrease. Therefore, the mass ratio of Fe 2+ / (Fe 2+ + Fe 3+ ) in iron oxide is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, and particularly preferably 0. 5 or more.
 TiO2は、深紫外域での透過率を低下させる成分である。TiO2の含有量は、好ましくは100ppm以下、80ppm以下、60ppm以下、40ppm以下、20ppm以下、10ppm以下、特に好ましくは0.5~5ppmである。TiO2の含有量が多すぎると、ガラスが着色して、深紫外域での透過率が低下しやすくなる。なお、TiO2の含有量が少なすぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。 TiO 2 is a component that reduces the transmittance in the deep ultraviolet region. The content of TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, and particularly preferably 0.5 to 5 ppm. If the content of TiO 2 is too high, the glass will be colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of TiO 2 is too small, a high-purity glass raw material must be used, which leads to an increase in batch cost.
 Sb23は、清澄剤として作用する成分である。Sb23の含有量は、好ましくは1000ppm以下、800ppm以下、600ppm以下、400ppm以下、200ppm以下、100ppm以下、特に好ましくは50ppm未満である。Sb23の含有量が多すぎると、深紫外域での透過率が低下しやすくなる。 Sb 2 O 3 is a component that acts as a clarifying agent. The content of Sb 2 O 3 is preferably 1000 ppm or less, 800 ppm or less, 600 ppm or less, 400 ppm or less, 200 ppm or less, 100 ppm or less, and particularly preferably less than 50 ppm. If the content of Sb 2 O 3 is too high, the transmittance in the deep ultraviolet region tends to decrease.
 SnO2は、清澄剤として作用する成分である。SnO2の含有量は、好ましくは2000ppm以下、1700ppm以下、1400ppm以下、1100ppm以下、800ppm以下、500ppm以下、200ppm以下、特に好ましくは100ppm以下である。SnO2の含有量が多すぎると、深紫外域での透過率が低下しやすくなる。 SnO 2 is a component that acts as a clarifying agent. The SnO 2 content is preferably 2000 ppm or less, 1700 ppm or less, 1400 ppm or less, 1100 ppm or less, 800 ppm or less, 500 ppm or less, 200 ppm or less, and particularly preferably 100 ppm or less. If the SnO 2 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
 F2、Cl2及びSO3は、清澄剤として作用する成分である。F2+Cl2+SO3の含有量は10~10000ppmであることが好ましい。F2+Cl2+SO3の好適な下限範囲は10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特に500ppm以上であり、好適な上限範囲は3000ppm以下、2000ppm以下、1000ppm以下、特に800ppm以下である。また、F2、Cl2、SO3の各々の好適な下限範囲は10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特に500ppm以上であり、好適な上限範囲は3000ppm以下、2000ppm以下、1000ppm以下、特に800ppm以下である。これらの成分の含有量が少なすぎると、清澄効果を発揮し難くなる。一方、これらの成分の含有量が多すぎると、清澄ガスがガラス中に泡として残存するおそれがある。なお、「F2+Cl2+SO3」は、F2、Cl2及びSO3の合量を意味する。 F 2 , Cl 2 and SO 3 are components that act as clarifying agents. The content of F 2 + Cl 2 + SO 3 is preferably 10 to 10000 ppm. Suitable lower limit range of F 2 + Cl 2 + SO 3 is 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, especially 500 ppm or more, and suitable upper limit range is 3000 ppm or less, 2000 ppm or less, 1000 ppm or less, especially 800 ppm or less. Is. Further, the suitable lower limit range of each of F 2 , Cl 2 and SO 3 is 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, particularly 500 ppm or more, and the suitable upper limit range is 3000 ppm or less, 2000 ppm or less. It is 1000 ppm or less, particularly 800 ppm or less. If the content of these components is too small, it becomes difficult to exert the clarification effect. On the other hand, if the content of these components is too large, the clarified gas may remain in the glass as bubbles. In addition, "F 2 + Cl 2 + SO 3 " means the total amount of F 2 , Cl 2 and SO 3.
 枠部6のガラス材は、例えば、各種ガラス原料を調合して、ガラスバッチを得た上で、このガラスバッチを溶融し、得られた溶融ガラスを清澄、均質化し、所定形状に成形することで作製することができる。 For the glass material of the frame portion 6, for example, various glass raw materials are mixed to obtain a glass batch, and then the glass batch is melted, and the obtained molten glass is clarified and homogenized and molded into a predetermined shape. Can be made with.
 枠部6のガラス材の製造工程において、ガラス原料の一部として、還元剤を用いることが好ましい。このようにすれば、ガラス中に含まれるFe3+が還元されて、深紫外線での透過率が向上する。還元剤として、木粉、カーボン粉末、金属アルミニウム、金属シリコン、フッ化アルミニウム等の材料が使用可能であるが、その中でも金属シリコン、フッ化アルミニウムが好ましい。 In the process of manufacturing the glass material of the frame portion 6, it is preferable to use a reducing agent as a part of the glass raw material. By doing so, Fe 3+ contained in the glass is reduced, and the transmittance in deep ultraviolet rays is improved. As the reducing agent, materials such as wood powder, carbon powder, metallic aluminum, metallic silicon, and aluminum fluoride can be used, and among them, metallic silicon and aluminum fluoride are preferable.
 枠部6のガラス材の製造工程において、ガラス原料の一部として、金属シリコンを用いることが好ましく、その添加量は、ガラスバッチの全質量に対して0.001~3質量%、0.005~2質量%、0.01~1質量%、特に0.03~0.1質量%が好ましい。金属シリコンの添加量が少なすぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下しやすくなる。一方、金属シリコンの添加量が多すぎると、ガラスが茶色に着色する傾向がある。 In the process of manufacturing the glass material of the frame portion 6, it is preferable to use metallic silicon as a part of the glass raw material, and the addition amount thereof is 0.001 to 3% by mass, 0.005, based on the total mass of the glass batch. It is preferably from 2% by mass, 0.01 to 1% by mass, and particularly preferably 0.03 to 0.1% by mass. If the amount of metallic silicon added is too small, Fe 3+ contained in the glass is not reduced, and the transmittance in deep ultraviolet rays tends to decrease. On the other hand, if the amount of metallic silicon added is too large, the glass tends to be colored brown.
 ガラス原料の一部として、フッ化アルミニウム(AlF3)を用いることも好ましく、その添加量は、ガラスバッチの全質量に対して、F2換算で0.01~5質量%、0.05~4質量%、0.1~3質量%、0.2~2質量%、0.3~1質量%が好ましい。一方、フッ化アルミニウムの添加量が多すぎると、F2ガスがガラス中に泡として残存するおそれがある。フッ化アルミニウムの添加量が少なすぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下しやすくなる。 It is also preferable to use aluminum fluoride (AlF 3 ) as a part of the glass raw material, and the addition amount thereof is 0.01 to 5% by mass and 0.05 to 5% by mass in terms of F 2 with respect to the total mass of the glass batch. 4% by mass, 0.1 to 3% by mass, 0.2 to 2% by mass, and 0.3 to 1% by mass are preferable. On the other hand, if the amount of aluminum fluoride added is too large, F 2 gas may remain in the glass as bubbles. If the amount of aluminum fluoride added is too small, Fe 3+ contained in the glass is not reduced, and the transmittance in deep ultraviolet rays tends to decrease.
 枠部6のガラス材の製造工程において、ダウンドロー法、特にオーバーフローダウンドロー法で平板形状に成形することが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下頂端で合流させながら、下方に延伸成形してガラス板を成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、薄型のガラス板を作製しやすくなるとともに、表面を研磨しなくても、板厚ばらつきを低減することができる。結果として、ガラス板の製造コストを低廉化することができる。なお、樋状構造物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。 In the manufacturing process of the glass material of the frame portion 6, it is preferable to form a flat plate shape by a down draw method, particularly an overflow down draw method. In the overflow down draw method, molten glass is overflowed from both sides of a heat-resistant gutter-shaped structure, and the overflowed molten glass is merged at the lower apex end of the gutter-shaped structure and stretched downward to form a glass plate. How to do it. In the overflow down draw method, the surface of the glass plate, which should be the surface, does not come into contact with the gutter-shaped refractory and is formed in a free surface state. Therefore, it becomes easy to manufacture a thin glass plate, and it is possible to reduce the variation in plate thickness without polishing the surface. As a result, the manufacturing cost of the glass plate can be reduced. The structure and material of the gutter-shaped structure are not particularly limited as long as they can achieve desired dimensions and surface accuracy. Further, the method of applying a force when performing downward stretch molding is not particularly limited. For example, a method of rotating and stretching a heat-resistant roll having a sufficiently large width in contact with the glass may be adopted, or a plurality of pairs of heat-resistant rolls may be brought into contact with only the vicinity of the end face of the glass. You may adopt the method of letting and stretching.
 枠部6のガラス材の成形方法として、ダウンドロー法以外にも、例えば、スロットダウン法、リドロー法、フロート法等を採択することもできる。 As a method for forming the glass material of the frame portion 6, for example, a slot down method, a redraw method, a float method, or the like can be adopted in addition to the down draw method.
 枠部6のガラス材としては、具体的には、例えば、日本電気硝子株式会社製のBU-41を使用できる。BU-41の30~380℃の温度範囲における熱膨張係数は、例えば42×10-7/℃である。 Specifically, as the glass material of the frame portion 6, for example, BU-41 manufactured by Nippon Electric Glass Co., Ltd. can be used. The coefficient of thermal expansion of BU-41 in the temperature range of 30 to 380 ° C. is, for example, 42 × 10 -7 / ° C.
 枠部6の厚み(上下方向寸法)は、電子部品2よりも大きいことが好ましく、電子部品2よりも0.01~1mm大きいことが好ましく、0.05~0.5mm大きいことがより好ましく、0.1~0.2mm大きいことが最も好ましい。 The thickness (vertical dimension) of the frame portion 6 is preferably larger than that of the electronic component 2, preferably 0.01 to 1 mm larger than that of the electronic component 2, and more preferably 0.05 to 0.5 mm larger. Most preferably, it is 0.1 to 0.2 mm larger.
 蓋部7は、第二透明無機材から構成されている。第二透明無機材としては、第一透明無機材として例示したものを同様に適用できる。第二透明無機材は、第一透明無機材と同様の材質であってもよいし、異なる材質であってもよい。ただし、紫外線の取出効率の観点からは、蓋部7は石英ガラスから構成することが好ましい。本実施形態では、蓋部7は石英ガラスから構成されている。また、本実施形態では、蓋部7は、上面7a及び下面7bがともに平面から構成される板状体である。 The lid portion 7 is made of a second transparent inorganic material. As the second transparent inorganic material, those exemplified as the first transparent inorganic material can be similarly applied. The second transparent inorganic material may be the same material as the first transparent inorganic material, or may be a different material. However, from the viewpoint of the efficiency of extracting ultraviolet rays, it is preferable that the lid portion 7 is made of quartz glass. In this embodiment, the lid portion 7 is made of quartz glass. Further, in the present embodiment, the lid portion 7 is a plate-like body in which both the upper surface 7a and the lower surface 7b are formed of a flat surface.
 蓋部7の厚み(上下方向寸法)は、0.1~1.0mmであることが好ましく、0.2~0.8mmであることがより好ましく、0.3~0.6mmであることが最も好ましい。 The thickness (vertical dimension) of the lid portion 7 is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and preferably 0.3 to 0.6 mm. Most preferred.
 本実施形態では、枠部6及び基材3を接合する接合部5は、枠部6と基材3とが直接溶着された溶着部9から形成されている。同様に、枠部6及び蓋部7を接合する接合部8も、枠部6と蓋部7とが直接溶着された溶着部10から形成されている。溶着部9,10は、レーザ接合により形成される。 In the present embodiment, the joint portion 5 for joining the frame portion 6 and the base material 3 is formed of a welded portion 9 in which the frame portion 6 and the base material 3 are directly welded. Similarly, the joint portion 8 for joining the frame portion 6 and the lid portion 7 is also formed from the welded portion 10 in which the frame portion 6 and the lid portion 7 are directly welded. The welded portions 9 and 10 are formed by laser bonding.
 詳細には、溶着部9は、レーザの照射領域において、枠部6及び基材3の少なくとも一方を溶融した後に、その溶融部を固化させることにより形成される。つまり、溶着部9は、例えば、枠部6及び基材3の少なくとも一方の材料から構成され、枠部6及び基材3以外の材料を実質的に含まないことが好ましい。同様に、溶着部10は、レーザの照射領域において、枠部6及び蓋部7の少なくとも一方を溶融した後に、その溶融部を固化させることにより形成される。つまり、溶着部9は、例えば、枠部6及び蓋部7の少なくとも一方の材料から構成され、枠部6及び蓋部7以外の材料を実質的に含まないことが好ましい。 Specifically, the welded portion 9 is formed by melting at least one of the frame portion 6 and the base material 3 in the laser irradiation region and then solidifying the fused portion. That is, it is preferable that the welded portion 9 is composed of, for example, at least one material of the frame portion 6 and the base material 3, and substantially does not contain any material other than the frame portion 6 and the base material 3. Similarly, the welded portion 10 is formed by melting at least one of the frame portion 6 and the lid portion 7 in the laser irradiation region and then solidifying the fused portion. That is, it is preferable that the welded portion 9 is composed of, for example, at least one material of the frame portion 6 and the lid portion 7, and substantially does not contain any material other than the frame portion 6 and the lid portion 7.
 溶着部9,10は、貫通孔Hに沿って同心環状に複数(図例では二つ)形成されるが、一つであってもよい。複数の溶着部9,10は、互いに半径方向に離間しているが、半径方向で重なっていてもよい。各溶着部9,10は、平面視で四角環状に構成されるが、これに限らず、円環状その他の環形状に構成され得る。 A plurality of welded portions 9 and 10 are formed concentrically along the through hole H (two in the example), but may be one. The plurality of welded portions 9 and 10 are separated from each other in the radial direction, but may overlap each other in the radial direction. Each of the welded portions 9 and 10 is formed in a square ring shape in a plan view, but is not limited to this, and may be formed in an annular shape or other ring shape.
 溶着部9は、厚み方向において、枠部6と基材3とに連続して跨って形成されている。同様に、溶着部10は、厚み方向において、枠部6と蓋部7とに連続して跨って形成されている。なお、本実施形態では、溶着部9の内部において、枠部6と基材3との間には界面がなく、溶着部10の内部において、枠部6と蓋部7との間には界面がない。もちろん、溶着部9,10の内部において、界面が残っていてもよい。 The welded portion 9 is formed so as to continuously straddle the frame portion 6 and the base material 3 in the thickness direction. Similarly, the welded portion 10 is formed so as to continuously straddle the frame portion 6 and the lid portion 7 in the thickness direction. In the present embodiment, there is no interface between the frame portion 6 and the base material 3 inside the welded portion 9, and there is an interface between the frame portion 6 and the lid portion 7 inside the welded portion 10. There is no. Of course, the interface may remain inside the welded portions 9 and 10.
 溶着部9,10の幅S1は、10~200μmであることが好ましく、10~100μmであることがより好ましく、10~50μmであることが最も好ましい。溶着部9,10の厚みS2は、10~200μmであることが好ましく、10~150μmであることがより好ましく、10~100μmであることが最も好ましい。 The width S1 of the welded portions 9 and 10 is preferably 10 to 200 μm, more preferably 10 to 100 μm, and most preferably 10 to 50 μm. The thickness S2 of the welded portions 9 and 10 is preferably 10 to 200 μm, more preferably 10 to 150 μm, and most preferably 10 to 100 μm.
 溶着部9,10の平面方向の残留応力の最大値は、10MPa以下であることが好ましく、7MPa以下であることがより好ましく、5MPa以下であることが最も好ましい。平面方向の残留応力の最大値は、10mm×10mm以上の寸法を有するガラス板において、ユニオプト社製複屈折測定機:ABR-10Aを用いて、接合部付近の複屈折(単位:nm)を計測し、平面方向の残留応力に換算した場合の最大値である。また、光学的な複屈折の測定、すなわち直交する直線偏光波の光路差の測定により、ガラス板中の残留応力値を見積ることが可能であり、残留応力により発生する偏差応力F(MPa)は、F=D/CWの式で表記される。「D」は光路差(nm)であり、「W」は偏光波が通過した距離(cm)であり、「C」は光弾性定数(比例定数)であり、通常、20~40(nm/cm)/(MPa)の値になる。なお、平面方向の残留応力には、引張応力と圧縮応力が存在するが、上記では、両者の絶対値を評価するものとする。 The maximum value of the residual stress in the plane direction of the welded portions 9 and 10 is preferably 10 MPa or less, more preferably 7 MPa or less, and most preferably 5 MPa or less. The maximum value of residual stress in the plane direction is the birefringence (unit: nm) near the joint using a birefringence measuring machine: ABR-10A manufactured by Uniopt Co., Ltd. on a glass plate having dimensions of 10 mm × 10 mm or more. However, it is the maximum value when converted to residual stress in the plane direction. Further, it is possible to estimate the residual stress value in the glass plate by measuring the optical birefringence, that is, the optical path difference of the orthogonal linear polarized waves, and the deviation stress F (MPa) generated by the residual stress is , F = D / CW. "D" is the optical path difference (nm), "W" is the distance (cm) through which the polarized wave has passed, and "C" is the photoelastic constant (proportional constant), which is usually 20 to 40 (nm / nm /). It becomes a value of cm) / (MPa). The residual stress in the plane direction includes tensile stress and compressive stress, but in the above, the absolute values of both are evaluated.
  図3は、波長200~600nmにおけるBU-41(日本電気硝子株式会社製)及び石英ガラスの透過率曲線を示す。同図に示すように、石英ガラスは、深紫外域(例えば、波長域200~350nm)において、厚みの増加に伴う透過率の低下はなく、90%以上の透過率を有する。一方、BU-41は、深紫外域において、厚み0.2mmで84%以上の透過率を有し、厚み0.5mmで70%以上の透過率を有する。つまり、BU-41は、深紫外域において、石英ガラスよりも僅かに劣るものの良好な透過率を有している。電子装置(発光装置)1の状態では、具体的には、蓋部7及び枠部6をともに厚み0.6mmの石英ガラスから構成した場合の紫外線の取出効率(電子部品(紫外線LED)2の出力倍率)は平均89%であり、蓋部7を厚み0.6mmの石英ガラスから構成し、枠部6を厚み0.6mmのBU-41から構成した場合の紫外線の取出効率は平均88%であった。したがって、蓋部7を石英ガラスから構成し、枠部6を石英ガラス以外の紫外線透過性を有するガラス材(例えば、BU-41)から構成しても、紫外域の光の取出効率を高いレベルで維持できる。ただし、紫外線の取出効率を向上させる観点からは、蓋部7及び枠部6は、ともに石英ガラスから構成することが好ましい。 FIG. 3 shows the transmittance curves of BU-41 (manufactured by Nippon Electric Glass Co., Ltd.) and quartz glass at a wavelength of 200 to 600 nm. As shown in the figure, quartz glass has a transmittance of 90% or more in the deep ultraviolet region (for example, a wavelength region of 200 to 350 nm) without a decrease in transmittance due to an increase in thickness. On the other hand, BU-41 has a transmittance of 84% or more at a thickness of 0.2 mm and a transmittance of 70% or more at a thickness of 0.5 mm in the deep ultraviolet region. That is, BU-41 has a good transmittance in the deep ultraviolet region, although it is slightly inferior to quartz glass. In the state of the electronic device (light emitting device) 1, specifically, when the lid portion 7 and the frame portion 6 are both made of quartz glass having a thickness of 0.6 mm, the ultraviolet ray extraction efficiency (the electronic component (ultraviolet LED) 2). The output magnification) is 89% on average, and the ultraviolet extraction efficiency is 88% on average when the lid 7 is made of quartz glass with a thickness of 0.6 mm and the frame 6 is made of BU-41 with a thickness of 0.6 mm. Met. Therefore, even if the lid portion 7 is made of quartz glass and the frame portion 6 is made of a glass material having ultraviolet light transmittance other than quartz glass (for example, BU-41), the efficiency of extracting light in the ultraviolet region is at a high level. Can be maintained at. However, from the viewpoint of improving the efficiency of taking out ultraviolet rays, it is preferable that both the lid portion 7 and the frame portion 6 are made of quartz glass.
 図4~図7は、本発明の第一実施形態に係る電子装置1の製造方法を例示している。 4 to 7 illustrate the manufacturing method of the electronic device 1 according to the first embodiment of the present invention.
 本実施形態に係る電子装置1の製造方法は、保護キャップ4を得るために、蓋部7と枠部6とを接合する第一接合工程と、電子部品2が搭載された基材3と保護キャップ4とを接合する第二接合工程とを備えている。 The manufacturing method of the electronic device 1 according to the present embodiment includes a first joining step of joining the lid portion 7 and the frame portion 6 in order to obtain a protective cap 4, and protection of the base material 3 on which the electronic component 2 is mounted. It is provided with a second joining step for joining the cap 4.
 第一接合工程では、まず、図4に示すように、蓋部7と、枠部6とを準備する。次に、蓋部7の下面7bと枠部6の上端面6aとを直接接触させる。この状態で、図5に示すように、レーザ照射装置11により、蓋部7と枠部6との接触部に対してレーザLを集光して照射する。レーザLは、蓋部7及び枠部6の少なくとも一方側から照射さる。本実施形態では、レーザLは、蓋部7側から照射される。これにより、接触部を溶着して溶着部10を形成するとともに、溶着部10により枠部6と蓋部7とを接合する。このようにすれば、枠部6と蓋部7との間に他部材が介在しないことから、枠部6の熱膨張係数と蓋部7の熱膨張係数との差がある程度大きくても、枠部6と蓋部7とを確実に接合できる。 In the first joining step, first, as shown in FIG. 4, the lid portion 7 and the frame portion 6 are prepared. Next, the lower surface 7b of the lid portion 7 and the upper end surface 6a of the frame portion 6 are brought into direct contact with each other. In this state, as shown in FIG. 5, the laser irradiation device 11 concentrates and irradiates the laser L on the contact portion between the lid portion 7 and the frame portion 6. The laser L irradiates from at least one side of the lid portion 7 and the frame portion 6. In the present embodiment, the laser L is irradiated from the lid portion 7 side. As a result, the contact portion is welded to form the welded portion 10, and the frame portion 6 and the lid portion 7 are joined by the welded portion 10. By doing so, since other members do not intervene between the frame portion 6 and the lid portion 7, even if the difference between the coefficient of thermal expansion of the frame portion 6 and the coefficient of thermal expansion of the lid portion 7 is large to some extent, the frame The portion 6 and the lid portion 7 can be reliably joined.
 図6に示すように、レーザLは、貫通孔Hの外側で、貫通孔Hに沿った環状軌道Tを描くように走査される。この場合において、レーザLは、その照射領域Rが環状軌道T上で重なりながら環状軌道Tを一周するように走査される。あるいは、レーザLは、その環状軌道Tを複数回にわたって周回するように走査される。なお、溶着部10を同心環状に複数形成する場合には、レーザLを走査する環状軌道Tも同心環状に複数設定される。 As shown in FIG. 6, the laser L is scanned outside the through hole H so as to draw an annular orbit T along the through hole H. In this case, the laser L is scanned so that its irradiation region R goes around the annular orbit T while overlapping on the annular orbit T. Alternatively, the laser L is scanned so as to orbit the annular orbit T a plurality of times. When a plurality of welded portions 10 are formed concentrically, a plurality of annular orbitals T for scanning the laser L are also set concentrically.
 また、貫通孔Hを囲むように4本の直線を井桁状に交差させることにより、枠状に接合部を形成してもよい。これにより、複数の保護キャップ4を一度に作製し得るため、電子装置1の製造効率を高めることができる。 Further, a joint portion may be formed in a frame shape by crossing four straight lines in a grid shape so as to surround the through hole H. As a result, a plurality of protective caps 4 can be manufactured at one time, so that the manufacturing efficiency of the electronic device 1 can be improved.
 第二接合工程では、まず、図7に示すように、第一接合工程で得られた保護キャップ4と、電子部品2が搭載された基材3とを準備する。次に、枠部6の下端面6bと基材3の上面3aとを直接接触させる。この状態で、図8に示すように、レーザ照射装置11により、枠部6と基材3の接触部に対してレーザLを集光して照射する。レーザLは、枠部6及び基材3のうちのレーザLを透過する枠部6側から照射される。これにより、接触部を溶着して溶着部9を形成するとともに、溶着部9により枠部6と基材3とを接合する。このようにすれば、枠部6と基材3との間に他部材が介在しないことから、枠部6の熱膨張係数と基材3の熱膨張係数との差がある程度大きくても、枠部6と基材3とを確実に接合できる。 In the second joining step, first, as shown in FIG. 7, the protective cap 4 obtained in the first joining step and the base material 3 on which the electronic component 2 is mounted are prepared. Next, the lower end surface 6b of the frame portion 6 and the upper surface 3a of the base material 3 are brought into direct contact with each other. In this state, as shown in FIG. 8, the laser irradiation device 11 condenses and irradiates the contact portion between the frame portion 6 and the base material 3 with the laser L. The laser L is irradiated from the frame portion 6 side of the frame portion 6 and the base material 3 that transmits the laser L. As a result, the contact portion is welded to form the welded portion 9, and the frame portion 6 and the base material 3 are joined by the welded portion 9. By doing so, since other members do not intervene between the frame portion 6 and the base material 3, even if the difference between the coefficient of thermal expansion of the frame portion 6 and the coefficient of thermal expansion of the base material 3 is large to some extent, the frame The portion 6 and the base material 3 can be reliably joined.
 蓋部7の下面7b、枠部6の上端面6a、枠部6の下端面6b及び基材3の上面3aのそれぞれの算術平均粗さRaは、2.0nm以下であることが好ましく、1.0nm以下であることがより好ましく、0.5nm以下であることが更に好ましく、0.2nm以下であることが最も好ましい。算術平均粗さRaは、JIS B0601:2001に準拠した方法で測定した値を意味する。このようすれば、蓋部7及び枠部6や、枠部6及び基材3が互いに接合面間の分子間力(オプティカルコンタクト)により密着するため、レーザ接合前のハンドリング性が向上する。 The arithmetic average roughness Ra of each of the lower surface 7b of the lid portion 7, the upper end surface 6a of the frame portion 6, the lower end surface 6b of the frame portion 6 and the upper surface 3a of the base material 3 is preferably 2.0 nm or less. It is more preferably 9.0 nm or less, further preferably 0.5 nm or less, and most preferably 0.2 nm or less. The arithmetic mean roughness Ra means a value measured by a method based on JIS B0601: 2001. By doing so, the lid portion 7 and the frame portion 6, and the frame portion 6 and the base material 3 are brought into close contact with each other by the intramolecular force (optical contact) between the bonding surfaces, so that the handleability before laser bonding is improved.
 レーザLとしては、ピコ秒オーダーやフェムト秒オーダーのパルス幅を有する超短パルスレーザが好適に使用される。 As the laser L, an ultrashort pulse laser having a pulse width on the order of picoseconds or femtoseconds is preferably used.
 レーザLの波長は、ガラス部材を透過する波長であれば特に限定されるものではないが、例えば、400~1600nmであることが好ましく、500~1300nmであることがより好ましい。レーザLのパルス幅は、10ps以下であることが好ましく、5ps以下であることがより好ましく、200fs~3psであることが最も好ましい。レーザLの集光径は、50μm以下であることが好ましく、30μm以下であることがより好ましく、20μm以下であることが好ましい。 The wavelength of the laser L is not particularly limited as long as it passes through the glass member, but is preferably 400 to 1600 nm, more preferably 500 to 1300 nm, for example. The pulse width of the laser L is preferably 10 ps or less, more preferably 5 ps or less, and most preferably 200 fs to 3 ps. The focusing diameter of the laser L is preferably 50 μm or less, more preferably 30 μm or less, and preferably 20 μm or less.
 レーザLの繰り返し周波数は、連続的な熱蓄積を生じさせる程度であることが必要であり、具体的には100kHz以上であることが好ましく、200kHz以上であることがより好ましく、500kHz以上であることが更に好ましい。 The repetition frequency of the laser L needs to be such that continuous heat accumulation is generated, and specifically, it is preferably 100 kHz or more, more preferably 200 kHz or more, and more preferably 500 kHz or more. Is more preferable.
 また、1パルスを複数に分配させ、パルス間隔を更に短くして照射する手法(バーストモード)を利用することが好ましい。これにより、熱蓄積が生じやすくなり、接合部8を安定して形成することができる。 Further, it is preferable to use a method (burst mode) in which one pulse is distributed to a plurality of pulses and the pulse interval is further shortened to irradiate. As a result, heat accumulation is likely to occur, and the joint portion 8 can be stably formed.
(第二実施形態)
 図9は、本発明の第二実施形態に係る電子装置1を例示している。第二実施形態では、枠部6及び蓋部7を接合する接合部8の構成が、第一実施形態と相違する。
(Second embodiment)
FIG. 9 illustrates the electronic device 1 according to the second embodiment of the present invention. In the second embodiment, the configuration of the joint portion 8 for joining the frame portion 6 and the lid portion 7 is different from that in the first embodiment.
 本実施形態では、枠部6及び蓋部7は、石英ガラスから構成される。接合部8は、接着層21により構成されている。つまり、枠部6及び蓋部7は、互いに直接接触しておらず、両者の間に接着層21が介在している。接着層21は、例えば接着材を焼成することにより形成される。 In the present embodiment, the frame portion 6 and the lid portion 7 are made of quartz glass. The joint portion 8 is composed of an adhesive layer 21. That is, the frame portion 6 and the lid portion 7 are not in direct contact with each other, and the adhesive layer 21 is interposed between them. The adhesive layer 21 is formed, for example, by firing an adhesive material.
 接着層21の30~380℃の温度範囲における熱膨張係数は、-25×10-7~25×10-7/℃であり、-20×10-7~20×10-7/℃であることが好ましく、-15×10-7~15×10-7/℃であることがより好ましく、-10×10-7~10×10-7/℃であることが最も好ましい。石英ガラスの30~380℃の温度範囲における熱膨張係数は例えば4.0×10-7/℃である。したがって、上記の熱膨張係数を有する接着層21を用いれば、石英ガラスなどの低膨張係数材料で構成される枠部6及び蓋部7の熱膨張係数と、接着層21の熱膨張係数を整合させることができる。この結果、接着層21を用いても、接着層21又はその近傍に生じる残留応力を小さくして、保護キャップ4の破損(クラックなど)を抑制できる。 The coefficient of thermal expansion of the adhesive layer 21 in the temperature range of 30 to 380 ° C. is −25 × 10 -7 to 25 × 10 -7 / ° C. and −20 × 10 -7 to 20 × 10 -7 / ° C. It is preferably −15 × 10 -7 to 15 × 10 -7 / ° C, more preferably −10 × 10 -7 to 10 × 10 -7 / ° C, and most preferably −10 × 10 -7 to 10 × 10 -7 / ° C. The coefficient of thermal expansion of quartz glass in the temperature range of 30 to 380 ° C. is, for example, 4.0 × 10 -7 / ° C. Therefore, if the adhesive layer 21 having the above-mentioned coefficient of thermal expansion is used, the coefficient of thermal expansion of the frame portion 6 and the lid portion 7 made of a material having a low coefficient of expansion such as quartz glass and the coefficient of thermal expansion of the adhesive layer 21 are matched. Can be made to. As a result, even if the adhesive layer 21 is used, the residual stress generated in or near the adhesive layer 21 can be reduced, and damage (cracks, etc.) of the protective cap 4 can be suppressed.
 接着層21の厚みは特に限定されないが、接着層21の厚みが小さすぎると、接着層21の機械的強度が低下しやすくなる。一方、接着層21の厚みが大きすぎる場合も、接着層21における残留応力が大きくなって機械的強度が低下するおそれがある。さらには、保護キャップ4や電子装置1のサイズが大きくなる傾向がある。このため、接着層21の厚みは、10μm~100μmであることが好ましく、20μm~80μmであることがより好ましく、30μm~60μmであることが最も好ましい。 The thickness of the adhesive layer 21 is not particularly limited, but if the thickness of the adhesive layer 21 is too small, the mechanical strength of the adhesive layer 21 tends to decrease. On the other hand, if the thickness of the adhesive layer 21 is too large, the residual stress in the adhesive layer 21 may increase and the mechanical strength may decrease. Furthermore, the size of the protective cap 4 and the electronic device 1 tends to be large. Therefore, the thickness of the adhesive layer 21 is preferably 10 μm to 100 μm, more preferably 20 μm to 80 μm, and most preferably 30 μm to 60 μm.
 接着層21は、ガラスを含むことが好ましい。このようにすれば、接着層21の耐熱性や気密性を向上させることができる。特に、接着層21が結晶化ガラスを含むものであると、低膨張化が容易になり、石英ガラスから構成される枠部6及び蓋部7との熱膨張係数を整合させやすくなる。具体的には、接着層21は、低膨張結晶であるβ-石英固溶体を含有することが好ましい。接着層21におけるβ-石英固溶体の含有量は、75~99質量%、80~97質量%、特に85~95質量%であることが好ましい。β-石英固溶体の含有量が少なすぎると、接着層21の低膨張化が困難になる傾向がある。一方、β-石英固溶体の含有量が多すぎると、接合時における流動性が低下しやすくなる。なお、結晶化ガラスを含む接着層21は、結晶性ガラスを含む接着材(封止材)を熱処理することにより得られる。 The adhesive layer 21 preferably contains glass. By doing so, the heat resistance and airtightness of the adhesive layer 21 can be improved. In particular, when the adhesive layer 21 contains crystallized glass, it becomes easy to reduce the expansion, and it becomes easy to match the coefficient of thermal expansion with the frame portion 6 and the lid portion 7 made of quartz glass. Specifically, the adhesive layer 21 preferably contains a β-quartz solid solution which is a low expansion crystal. The content of the β-quartz solid solution in the adhesive layer 21 is preferably 75 to 99% by mass, 80 to 97% by mass, and particularly preferably 85 to 95% by mass. If the content of the β-quartz solid solution is too small, it tends to be difficult to reduce the expansion of the adhesive layer 21. On the other hand, if the content of the β-quartz solid solution is too large, the fluidity at the time of joining tends to decrease. The adhesive layer 21 containing the crystallized glass is obtained by heat-treating the adhesive material (sealing material) containing the crystalline glass.
 接着層21の具体例としては、組成として、モル%で、SiO2 48~75%、Al23 5~25%、Li2O 5~30%、B23 5~23%、ZnO 0~10%を含有するガラスを含むものが挙げられる。特に、組成として、モル%で、SiO2 48~75%、Al23 5~25%、Li2O 5~30%、B23 10~23%(ただし10%を含まない)、ZnO 0~2.5%(ただし2.5%を含まない)を含有するガラスが好ましい。このような組成にした理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 Specific examples of the adhesive layer 21, a composition, in mol%, SiO 2 48 ~ 75% , Al 2 O 3 5 ~ 25%, Li 2 O 5 ~ 30%, B 2 O 3 5 ~ 23%, ZnO Those containing glass containing 0 to 10% can be mentioned. In particular, as a composition, in mol%, SiO 2 48 to 75%, Al 2 O 3 5 to 25%, Li 2 O 5 to 30%, B 2 O 3 10 to 23% (however, 10% is not included), Glass containing 0 to 2.5% of ZnO (but not containing 2.5%) is preferable. The reason for adopting such a composition will be described below. In the following description of the content of each component, "%" means "mol%" unless otherwise specified.
 SiO2はガラス骨格を形成する成分であり、またβ-石英固溶体の構成成分である。SiO2の含有量は48~75%、53~70%、特に58~65%であることが好ましい。SiO2の含有量が少なすぎると、β-石英固溶体の析出量が少なくなり、低熱膨張特性が得にくくなる。一方、SiO2が多すぎると、軟化点が上昇するため、接合時(封止時)の熱処理による軟化流動性が低下しやすくなる。 SiO 2 is a component forming a glass skeleton and is a component of a β-quartz solid solution. The content of SiO 2 is preferably 48 to 75%, 53 to 70%, and particularly preferably 58 to 65%. If the content of SiO 2 is too small, the amount of β-quartz solid solution deposited is small, and it becomes difficult to obtain low thermal expansion characteristics. On the other hand, if the amount of SiO 2 is too large, the softening point rises, so that the softening fluidity due to the heat treatment at the time of joining (sealing) tends to decrease.
 Al23はβ-石英固溶体の構成成分である。Al23の含有量は5~25%、7~15%、特に7~13%であることが好ましい。Al23の含有量が少なすぎると、β-石英固溶体の析出量が少なくなり、低熱膨張特性が得にくくなる。一方、Al23が多すぎると、軟化点が上昇するため、接合時の熱処理による軟化流動性が低下しやすくなる。 Al 2 O 3 is a component of β-quartz solid solution. The content of Al 2 O 3 is preferably 5 to 25%, 7 to 15%, and particularly preferably 7 to 13%. If the content of Al 2 O 3 is too small, the amount of β-quartz solid solution deposited is small, and it becomes difficult to obtain low thermal expansion characteristics. On the other hand, if the amount of Al 2 O 3 is too large, the softening point rises, so that the softening fluidity due to the heat treatment at the time of joining tends to decrease.
 Li2Oはβ-石英固溶体の構成成分であり、また軟化点を低下させる成分である。Li2Oの含有量は5~30%、10~25%、特に10~20%であることが好ましい。Li2Oの含有量が少なすぎると、β-石英固溶体の析出量が少なくなり、低熱膨張特性が得にくくなる。また軟化点が上昇するため、接合時の熱処理による軟化流動性が低下しやすくなる。一方、Li2Oの含有量が多すぎると、熱処理後の残留ガラス中におけるLi2Oの含有量が多くなり、残留ガラスの熱膨張係数が高くなることから、結果として低熱膨張特性が得にくくなる。 Li 2 O is a component of the β-quartz solid solution and is a component that lowers the softening point. The content of Li 2 O is preferably 5 to 30%, 10 to 25%, and particularly preferably 10 to 20%. If the content of Li 2 O is too small, the amount of β-quartz solid solution deposited will be small, and it will be difficult to obtain low thermal expansion characteristics. In addition, since the softening point rises, the softening fluidity due to the heat treatment at the time of joining tends to decrease. On the other hand, if the content of Li 2 O is too large, the content of Li 2 O in the residual glass after the heat treatment increases, and the coefficient of thermal expansion of the residual glass increases, so that it is difficult to obtain low thermal expansion characteristics as a result. Become.
 B23はガラス骨格を形成する成分であり、軟化点を低下させる成分である。B23の含有量は5~23%、10~23%(ただし10%を含まない)、12~16%、特に13~15%であることが好ましい。B23の含有量が少なすぎると、軟化点が上昇して、軟化点と結晶化温度の差が小さくなる。そのため、接合時の熱処理による軟化流動前に結晶が析出する傾向があり、流動性が低下しやすくなる。一方、B23の含有量が多すぎると、熱処理後の残留ガラス相の割合が増加する(β-石英固溶体の析出量が低下する)ため、また残留ガラス相の熱膨張係数が増大するため、結果として低熱膨張特性が得にくくなる。 B 2 O 3 is a component that forms a glass skeleton and is a component that lowers the softening point. The content of B 2 O 3 is preferably 5 to 23%, 10 to 23% (but not including 10%), 12 to 16%, and particularly preferably 13 to 15%. If the content of B 2 O 3 is too small, the softening point rises and the difference between the softening point and the crystallization temperature becomes small. Therefore, crystals tend to precipitate before the softening flow due to the heat treatment at the time of joining, and the fluidity tends to decrease. On the other hand, if the content of B 2 O 3 is too large, the ratio of the residual glass phase after the heat treatment increases (the amount of the β-quartz solid solution precipitated decreases), and the thermal expansion coefficient of the residual glass phase also increases. Therefore, as a result, it becomes difficult to obtain low thermal expansion characteristics.
 なお、B23とLi2Oの各含有量の割合を適宜調整することにより、低熱膨張特性が得やすくなる。具体的には、B23/Li2Oの値を0.5~1、0.7~1、特に0.8~1に調整することが好ましい。なお、「B23/Li2O」はB23とLi2Oの各含有量のモル比を意味する。 By appropriately adjusting the ratio of each content of B 2 O 3 and Li 2 O, it becomes easy to obtain low thermal expansion characteristics. Specifically, it is preferable to adjust the value of B 2 O 3 / Li 2 O to 0.5 to 1, 0.7 to 1, particularly 0.8 to 1. In addition, "B 2 O 3 / Li 2 O" means the molar ratio of each content of B 2 O 3 and Li 2 O.
 ZnOは耐候性を向上させる成分である。また、接合時の熱処理による軟化流動性を向上させる効果がある。ZnOの含有量は0~10%、0~2.5%(ただし2.5%を含まない)、特に0~2%であることが好ましい。ZnOの含有量が多すぎると、β-石英固溶体の析出量が少なくなったり、Zn-Al系結晶等の低膨張化に寄与しない異種結晶が析出しやすくなる。また、熱処理後の残留ガラスの熱膨張係数が高くなる傾向がある。結果として、熱膨張係数が大きくなる傾向がある。 ZnO is a component that improves weather resistance. In addition, it has the effect of improving the softening fluidity due to the heat treatment at the time of joining. The ZnO content is preferably 0 to 10%, 0 to 2.5% (but not including 2.5%), and particularly preferably 0 to 2%. If the ZnO content is too high, the amount of β-quartz solid solution deposited is small, and dissimilar crystals such as Zn-Al crystals that do not contribute to low expansion are likely to precipitate. In addition, the coefficient of thermal expansion of the residual glass after heat treatment tends to be high. As a result, the coefficient of thermal expansion tends to be large.
 なお、耐候性を向上させる成分としてMgO、CaO、SrOまたはBaOを含有させてもよい。これらの成分は接合時の熱処理による軟化流動性を向上させる効果もある。MgO+CaO+SrO+BaOの含有量は0~10%、0~5%、特に0.1~2%であることが好ましい。MgO+CaO+SrO+BaOの含有量が多すぎると、β-石英固溶体の析出量が少なくなったり、熱処理後の残留ガラス相の熱膨張係数が高くなる傾向がある。その結果、熱膨張係数が高くなる傾向がある。 It should be noted that MgO, CaO, SrO or BaO may be contained as a component for improving weather resistance. These components also have the effect of improving the softening fluidity due to the heat treatment at the time of joining. The content of MgO + CaO + SrO + BaO is preferably 0 to 10%, 0 to 5%, and particularly preferably 0.1 to 2%. If the content of MgO + CaO + SrO + BaO is too large, the amount of β-quartz solid solution deposited tends to be small, and the coefficient of thermal expansion of the residual glass phase after heat treatment tends to be high. As a result, the coefficient of thermal expansion tends to be high.
 また、同じく耐候性を向上させる成分としてLa23、ZrO2またはBi23を含有させてもよい。これらのうちZrO2及びBi23は、接合時の熱処理による軟化流動性を向上させる効果もある。La23+ZrO2+Bi23の含有量は0~10%、0~5%、特に0.1~2%であることが好ましい。La23+ZrO2+Bi23の含有量が多すぎると、β-石英固溶体の析出量が少なくなったり、熱処理後の残留ガラス相の熱膨張係数が高くなる傾向がある。特に、La23に関してはその含有量が多すぎると、La-B系結晶等の低膨張化に寄与しない異種結晶が析出しやすい。その結果、熱膨張係数が高くなる傾向がある。なお、「La23+ZrO2+Bi23」は、La23、ZrO2及びBi23の合量を意味する。 Further, La 2 O 3 , ZrO 2 or Bi 2 O 3 may be contained as a component that also improves the weather resistance. Of these, ZrO 2 and Bi 2 O 3 also have the effect of improving the softening fluidity due to the heat treatment during joining. The content of La 2 O 3 + ZrO 2 + Bi 2 O 3 is preferably 0 to 10%, 0 to 5%, and particularly preferably 0.1 to 2%. If the content of La 2 O 3 + ZrO 2 + Bi 2 O 3 is too large, the amount of β-quartz solid solution deposited tends to be small, and the coefficient of thermal expansion of the residual glass phase after heat treatment tends to be high. In particular, if the content of La 2 O 3 is too large, heterogeneous crystals such as La-B crystals that do not contribute to the reduction of expansion tend to precipitate. As a result, the coefficient of thermal expansion tends to be high. In addition, "La 2 O 3 + ZrO 2 + Bi 2 O 3 " means the total amount of La 2 O 3 , ZrO 2 and Bi 2 O 3.
 上記成分以外にも、本発明の効果を損なわない範囲で、Na2O、K2O、MnO、P25、MoO2、TiO2、V25等を合量で30%以下、20%以下、さらには10%以下の範囲で含有させることが可能である。 In addition to the above components, Na 2 O, K 2 O, MnO, P 2 O 5 , MoO 2 , TiO 2 , V 2 O 5 and the like are added in a total amount of 30% or less as long as the effects of the present invention are not impaired. It can be contained in the range of 20% or less, further 10% or less.
 なお、接着層21には、熱膨張係数調整のため耐火性フィラー粉末が含まれていてもよい。耐火性フィラーの含有量は、0~30質量%、0.1~20質量%、特に1~10質量%であることが好ましい。耐火性フィラー粉末の含有量が多すぎると、被接合部材に対する接合性が低下しやすくなる。 The adhesive layer 21 may contain a refractory filler powder for adjusting the coefficient of thermal expansion. The content of the refractory filler is preferably 0 to 30% by mass, 0.1 to 20% by mass, and particularly preferably 1 to 10% by mass. If the content of the refractory filler powder is too large, the bondability to the member to be joined tends to decrease.
 耐火性フィラー粉末としては、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム、ジルコン、ジルコニア、酸化スズ、ムライト、シリカ、β-ユークリプタイト、β-スポジュメン、β-石英固溶体、リン酸タングステン酸ジルコニウムなどが使用できる。 Fire-resistant filler powders include cordierite, willemite, alumina, zirconium phosphate, zircone, zirconia, tin oxide, mullite, silica, β-eucriptite, β-spojumen, β-quartz solid solution, zirconium tungstate phosphate. Etc. can be used.
 接着層21を構成する接着材は、粉体、圧粉体、ペースト等の形態で、枠部6と蓋部7との間に配置される。接着材をペーストとする場合、例えば、例えば、結晶性ガラスの粉末、樹脂及び溶媒を含むペーストを塗布する。ペーストの塗布は、例えばディスペンサーを用いることができる。 The adhesive material constituting the adhesive layer 21 is arranged between the frame portion 6 and the lid portion 7 in the form of powder, green compact, paste or the like. When the adhesive is used as a paste, for example, a paste containing a powder of crystalline glass, a resin and a solvent is applied. For the application of the paste, for example, a dispenser can be used.
 ペーストの樹脂としては、アクリル酸エステル(アクリル系樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチレンスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用できる。特に、アクリル酸エステル、エチルセルロースは、熱分解性が良好であるため好ましい。 As the resin of the paste, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylenestyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester and ethyl cellulose are preferable because they have good thermal decomposability.
 ペーストの溶媒としては、α-ターピオネール、パインオイル、N,N'-ジメチルホルムアミド(DMF)、高級アルコール、γ-ブチロラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、N-メチル-2-ピロリドン等を用いることができる。特に、α-ターピオネールは、高粘性かつ樹脂等の溶解性も良好であるため好ましい。 As the solvent of the paste, α-terpionel, pine oil, N, N'-dimethylformamide (DMF), higher alcohol, γ-butyrolactone (γ-BL), tetralin, butylcarbitol acetate, ethyl acetate, isoamyl acetate, etc. Diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene Glycol monomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, N-methyl-2-pyrrolidone and the like can be used. In particular, α-turpioner is preferable because it has high viscosity and good solubility of resins and the like.
 焼成温度は、接着材の軟化点±100℃、特に軟化点±50℃の範囲内とすることが好ましい。具体的には、焼成温度は、例えば500℃~800℃、特に600℃~750℃の範囲内とすることが好ましい。焼成温度が低すぎると軟化流動が不十分となり、接着強度に劣る傾向がある。一方、焼成温度が高すぎると、流動性が過剰になって接合が困難になる傾向がある。また、接着材が結晶性ガラスを含む場合、結晶転移(例えばβ-石英固溶体からβ-スポジュメン固溶体への結晶転移)が生じて接着層21が高膨張化するおそれがある。なお、接着材の焼成は、加熱炉を用いた加熱でもよいし、レーザを用いた加熱でもよい。 The firing temperature is preferably within the range of the softening point ± 100 ° C., particularly the softening point ± 50 ° C. of the adhesive. Specifically, the firing temperature is preferably in the range of, for example, 500 ° C to 800 ° C, particularly 600 ° C to 750 ° C. If the firing temperature is too low, the softening flow becomes insufficient and the adhesive strength tends to be inferior. On the other hand, if the firing temperature is too high, the fluidity tends to be excessive and joining tends to be difficult. Further, when the adhesive contains crystalline glass, crystal transition (for example, crystal transition from β-quartz solid solution to β-spojumen solid solution) may occur and the adhesive layer 21 may be highly expanded. The adhesive may be fired by heating using a heating furnace or by using a laser.
 接着材の平均粒子径D50は15μm以下、0.5~10μm、特に0.7~5μmが好ましい。平均粒子径D50の粒度が大きすぎると、焼成後に得られる接着層21において気孔が多くなりすぎて接合強度が低下するおそれがある。ここで、「平均粒子径D50」とは、レーザ回折装置で測定した値を指し、レーザ回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 The average particle size D 50 of the adhesive is preferably 15 μm or less, 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm. If the particle size of the average particle diameter D 50 is too large, the adhesive layer 21 obtained after firing may have too many pores and the bonding strength may decrease. Here, "average particle size D 50 " refers to a value measured by a laser diffractometer, and the cumulative amount is accumulated from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffractometer. It represents a particle size of 50%.
(第三実施形態)
 図10は、本発明の第三実施形態に係る電子装置1を例示している。第三実施形態では、保護キャップ4が、枠部6と蓋部7との間に接合部のない単一部材から構成されており、この点が第一及び第二実施形態と相違する。単一部材から構成される保護キャップ4の枠部6は、溶着部9により基材3と直接溶着されている。
(Third embodiment)
FIG. 10 illustrates the electronic device 1 according to the third embodiment of the present invention. In the third embodiment, the protective cap 4 is composed of a single member having no joint between the frame portion 6 and the lid portion 7, which is different from the first and second embodiments. The frame portion 6 of the protective cap 4 composed of a single member is directly welded to the base material 3 by the welding portion 9.
 なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 上記の実施形態において、枠部6と基材3とを接合した後に、枠部6に蓋部7を接合してもよい。この場合、枠部6と基材3とを接合した後に基材3に電子部品2を搭載し、その後に、枠部6に蓋部7を接合してもよい。ただし、作業性を考慮した場合、枠部6と基材3とを接合する前に、基材3に電子部品2を搭載することが好ましい。 In the above embodiment, after joining the frame portion 6 and the base material 3, the lid portion 7 may be joined to the frame portion 6. In this case, the electronic component 2 may be mounted on the base material 3 after the frame portion 6 and the base material 3 are joined, and then the lid portion 7 may be joined to the frame portion 6. However, in consideration of workability, it is preferable to mount the electronic component 2 on the base material 3 before joining the frame portion 6 and the base material 3.
 上記の実施形態において、紫外線の取出効率を向上させるために、枠部6の内周面に反射膜を形成してもよい。 In the above embodiment, a reflective film may be formed on the inner peripheral surface of the frame portion 6 in order to improve the extraction efficiency of ultraviolet rays.
1   電子装置
2   電子部品
3   基材
4   保護キャップ
5   接合部
6   枠部
7   蓋部
8   接合部
9   溶着部
10  溶着部
1 Electronic device 2 Electronic component 3 Base material 4 Protective cap 5 Joint part 6 Frame part 7 Lid part 8 Joint part 9 Welding part 10 Welding part

Claims (8)

  1.  電子部品と、前記電子部品が搭載された基材と、前記電子部品が内部に収容されるように、前記基材に接合された保護キャップとを備えている電子装置であって、
     前記保護キャップが、第一透明無機材からなる枠部と、前記枠部の一端開口を覆う第二透明無機材からなる蓋部とを備え、
     前記枠部と前記基材とが、直接溶着されていることを特徴とする電子装置。
    An electronic device comprising an electronic component, a base material on which the electronic component is mounted, and a protective cap bonded to the base material so that the electronic component is housed therein.
    The protective cap includes a frame portion made of a first transparent inorganic material and a lid portion made of a second transparent inorganic material that covers one end opening of the frame portion.
    An electronic device in which the frame portion and the base material are directly welded.
  2.  前記枠部と前記蓋部とが、直接溶着されている請求項1に記載の電子装置。 The electronic device according to claim 1, wherein the frame portion and the lid portion are directly welded.
  3.  前記第一透明無機材が、石英ガラスである請求項1又は2に記載の電子装置。 The electronic device according to claim 1 or 2, wherein the first transparent inorganic material is quartz glass.
  4.  前記第二透明無機材が、軟化点が1000℃以下のガラス材である請求項1~3のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 3, wherein the second transparent inorganic material is a glass material having a softening point of 1000 ° C. or lower.
  5.  前記第二透明無機材が、石英ガラスである請求項1~3のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 3, wherein the second transparent inorganic material is quartz glass.
  6.  前記電子部品が、紫外線LEDである請求項1~5のいずれか1項に記載の電子装置。 The electronic device according to any one of claims 1 to 5, wherein the electronic component is an ultraviolet LED.
  7.  電子部品と、前記電子部品が搭載された基材と、前記電子部品が内部に収容されるように、前記基材に接合された保護キャップと備えている電子装置の製造方法であって、
     前記保護キャップが、第一透明無機材からなる枠部と、前記枠部の一端開口を覆う第二透明無機材からなる蓋部とを備え、
     前記枠部と前記基材とを接触させた状態で、前記枠部と前記基材の接触部にレーザを照射することにより、前記枠部と前記基材とを直接溶着する接合工程とを備えていることを特徴とする電子装置の製造方法。
    A method of manufacturing an electronic device including an electronic component, a base material on which the electronic component is mounted, and a protective cap bonded to the base material so that the electronic component is housed inside.
    The protective cap includes a frame portion made of a first transparent inorganic material and a lid portion made of a second transparent inorganic material that covers one end opening of the frame portion.
    A bonding step is provided in which the frame portion and the base material are directly welded by irradiating the contact portion between the frame portion and the base material with a laser in a state where the frame portion and the base material are in contact with each other. A method of manufacturing an electronic device, characterized in that it is used.
  8.  前記枠部と前記蓋部とを接触させた状態で、前記枠部と前記蓋部の接触部にレーザを照射することにより、前記枠部と前記蓋部とを直接溶着する接合工程をさらに備えている請求項7に記載の電子装置の製造方法。 Further provided with a joining step of directly welding the frame portion and the lid portion by irradiating the contact portion between the frame portion and the lid portion with a laser in a state where the frame portion and the lid portion are in contact with each other. The method for manufacturing an electronic device according to claim 7.
PCT/JP2021/021077 2020-07-16 2021-06-02 Electronic device and method for manufacturing electronic device WO2022014186A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237003338A KR20230039667A (en) 2020-07-16 2021-06-02 Electronic device and manufacturing method of electronic device
CN202180048611.1A CN115803872A (en) 2020-07-16 2021-06-02 Electronic device and method for manufacturing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122191A JP7405031B2 (en) 2020-07-16 2020-07-16 Electronic device and method for manufacturing electronic device
JP2020-122191 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022014186A1 true WO2022014186A1 (en) 2022-01-20

Family

ID=79555120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021077 WO2022014186A1 (en) 2020-07-16 2021-06-02 Electronic device and method for manufacturing electronic device

Country Status (5)

Country Link
JP (1) JP7405031B2 (en)
KR (1) KR20230039667A (en)
CN (1) CN115803872A (en)
TW (1) TW202207490A (en)
WO (1) WO2022014186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229343A (en) * 1985-04-04 1986-10-13 Toshiba Corp Packaging method for electronic devices
JP4091969B1 (en) * 2007-07-12 2008-05-28 住友ベークライト株式会社 Light receiving device and method for manufacturing light receiving device
JP2012079550A (en) * 2010-10-01 2012-04-19 Nippon Electric Glass Co Ltd Electric element package
JP2015023263A (en) * 2013-07-24 2015-02-02 日本電気硝子株式会社 Method for manufacturing electric element package and electric element package
WO2020070329A1 (en) * 2018-10-05 2020-04-09 Indigo Diabetes Nv Weld protection for hermetic wafer-level sealing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133927A (en) 2014-06-09 2016-11-16 日本电气硝子株式会社 Luminescent device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229343A (en) * 1985-04-04 1986-10-13 Toshiba Corp Packaging method for electronic devices
JP4091969B1 (en) * 2007-07-12 2008-05-28 住友ベークライト株式会社 Light receiving device and method for manufacturing light receiving device
JP2012079550A (en) * 2010-10-01 2012-04-19 Nippon Electric Glass Co Ltd Electric element package
JP2015023263A (en) * 2013-07-24 2015-02-02 日本電気硝子株式会社 Method for manufacturing electric element package and electric element package
WO2020070329A1 (en) * 2018-10-05 2020-04-09 Indigo Diabetes Nv Weld protection for hermetic wafer-level sealing

Also Published As

Publication number Publication date
KR20230039667A (en) 2023-03-21
TW202207490A (en) 2022-02-16
JP2022018817A (en) 2022-01-27
CN115803872A (en) 2023-03-14
JP7405031B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
TWI497466B (en) Electronic device and manufacturing method thereof
KR102361856B1 (en) Method of manufacturing hermetic package and hermetic package
TWI769209B (en) Hermetic package
JP7222245B2 (en) airtight package
WO2022014186A1 (en) Electronic device and method for manufacturing electronic device
WO2017170051A1 (en) Glass powder and sealing material using same
KR102400344B1 (en) Package airframe and airtight package using it
WO2018216587A1 (en) Method for producing hermetic package, and hermetic package
WO2022014201A1 (en) Protective cap, electronic device, and protective cap production method
JP2019151539A (en) Glass powder and sealing material using the same
JP2022019511A (en) Protective cap, electronic device, and manufacturing method of protective cap
TWI750347B (en) Cover glass and hermetic package
WO2023053688A1 (en) Electronic device and method for manufacturing electronic device
WO2023281961A1 (en) Glass substrate with sealing material layer, and hermetic packaging manufacturing method
WO2024057823A1 (en) Sealant-layer-equipped glass substrate and method for producing hermetic package
JP6922253B2 (en) Glass lid
JP2023008800A (en) Glass substrate with sealing material layer and method of manufacturing airtight package
JP2022018818A (en) Protective cap and electronic device
JP2018135246A (en) Bismuth glass powder, sealing material and hermetic package
WO2018193767A1 (en) Cover glass and airtight package using same
WO2019167549A1 (en) Glass powder and sealing material using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237003338

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842702

Country of ref document: EP

Kind code of ref document: A1