WO2019167549A1 - Glass powder and sealing material using same - Google Patents

Glass powder and sealing material using same Download PDF

Info

Publication number
WO2019167549A1
WO2019167549A1 PCT/JP2019/003769 JP2019003769W WO2019167549A1 WO 2019167549 A1 WO2019167549 A1 WO 2019167549A1 JP 2019003769 W JP2019003769 W JP 2019003769W WO 2019167549 A1 WO2019167549 A1 WO 2019167549A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
glass
material layer
laser
sealing
Prior art date
Application number
PCT/JP2019/003769
Other languages
French (fr)
Japanese (ja)
Inventor
将行 廣瀬
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018073042A external-priority patent/JP2019151539A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2019167549A1 publication Critical patent/WO2019167549A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container

Definitions

  • the present invention relates to a glass powder and a sealing material using the glass powder, and more particularly to a glass powder suitable for a sealing process using a laser beam (hereinafter referred to as laser sealing) and a sealing material using the glass powder.
  • laser sealing a glass powder suitable for a sealing process using a laser beam (hereinafter referred to as laser sealing) and a sealing material using the glass powder.
  • the sealing material containing glass powder is less permeable to gas and moisture than the organic resin adhesive, the characteristics of the internal element can be maintained over a long period of time.
  • the glass powder has a higher softening temperature than the organic resin adhesive, there is a risk that the internal element is thermally deteriorated during sealing. Under such circumstances, laser sealing has attracted attention. According to laser sealing, only the portion to be sealed can be locally heated, so that the hermetic package can be sealed without thermally deteriorating the internal elements.
  • Bismuth glass is generally used as a glass powder for laser sealing.
  • Bismuth-based glass has a feature that its water resistance is higher than other low-melting-point glasses.
  • the present invention has been made in view of the above circumstances, and its technical problem is that it has high water resistance and can be softened and flowed at a low temperature during laser sealing, and a sealing material using the same. Is to invent.
  • the present inventor has found that the above technical problem can be solved by introducing a predetermined amount of a specific transition metal oxide into silver phosphate glass, and proposes the present invention.
  • the glass powder of the present invention has a glass composition of mol% in terms of the following oxides: Ag 2 O 10 to 50%, P 2 O 5 10 to less than 35%, TeO 2 1 to less than 35%, ZnO 3 More than 25%, Nb 2 O 5 0-10%, CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 1-30%.
  • CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 means CuO, MnO, Fe 2 O 3 , V 2 O 5 , NiO, WO 3 , MoO 3 and Co 3 O 4 . Refers to total amount.
  • the glass powder of the present invention contains Ag 2 O 10 to 50%, P 2 O 5 10 to less than 35%, TeO 2 1 to less than 35%, ZnO 3 to less than 25%, and Nb 2 O 5 0 to 10%. contains. If it does in this way, glass can be made low melting
  • the glass powder of the present invention comprises CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 to 1 mol% or more. In this way, the light absorption characteristics are improved, so that the glass is softened and fluidized easily during laser sealing.
  • the glass powder of the present invention preferably has a CuO + MnO content of 1 to 30 mol%.
  • CuO + MnO is the total amount of CuO and MnO.
  • the glass powder of the present invention does not substantially contain PbO.
  • substantially does not contain PbO refers to a case where the content of PbO in the glass composition is less than 0.1 mol%.
  • the sealing material of the present invention contains glass powder 50 to 90% by volume, refractory filler powder 10 to 50% by volume, laser absorber 0 to 20% by volume, and the glass powder is preferably the above glass powder. .
  • the refractory filler powder is NaZr 2 (PO 4 ) type 3 solid solution, willemite, cordierite, zircon, tin oxide, ⁇ -eucryptite, zirconium phosphate, niobium pentoxide, quartz. It is preferably one or more selected from glass, mullite, aluminum titanate, alumina, cubic zirconia, titania, zinc stannate, magnesia, quartz, spinel and garnite.
  • the “NaZr 2 (PO 4 ) 3 type solid solution” is a substance represented by the chemical formula of XY 2 Z 3 O 12 or AYZ 3 O 12 , where X is a monovalent element, Is composed of an element corresponding to tetravalent, and A and Z are composed of an element corresponding to pentavalent.
  • the content of the laser absorber is preferably 5% by volume or less. If it does in this way, it will become difficult to devitrify glass at the time of laser sealing.
  • the sealing material of the present invention is preferably used for laser sealing. In this way, it is possible to prevent thermal degradation of the internal elements during sealing.
  • the light source of the laser beam used for laser sealing is not particularly limited, but for example, a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are preferable in terms of easy handling.
  • the emission center wavelength of the laser beam is preferably 500 to 1600 nm, particularly preferably 750 to 1300 nm, in order for the sealing material to absorb the laser beam accurately.
  • the hermetic package of the present invention is an airtight package in which a package base and a glass lid are hermetically sealed via a sealing material layer, and the sealing material layer preferably contains the sealing material described above.
  • the package base has a base portion and a frame portion provided on the base portion, and a sealing material layer is interposed between the top portion of the frame portion and the glass lid. preferable.
  • the glass powder of the present invention has a glass composition of mol% in terms of the following oxides: Ag 2 O 10 to 50%, P 2 O 5 10 to less than 35%, TeO 2 1 to 35%, ZnO 3 more than Less than 25%, Nb 2 O 5 0-10%, CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 1-30%.
  • the reason for limiting the glass composition of the glass powder as described above will be described in detail below.
  • the following% display shows mol% unless there is particular notice.
  • Ag 2 O is a component that increases the water resistance because it lowers the melting point of the glass and hardly dissolves in water.
  • the content of Ag 2 O is 10 to 50%, preferably 20 to 40%.
  • Ag 2 O is too small, the viscosity of the glass becomes high, the softening fluidity tends to decrease, the water resistance tends to decrease.
  • vitrification tends to be difficult.
  • P 2 O 5 is a component that lowers the melting point of glass. Its content is 10 to less than 35%, preferably 15 to 25%. When the P 2 O 5 is too small, vitrification tends to be difficult. On the other hand, if the P 2 O 5 is too large, weather resistance, water resistance tends to decrease.
  • TeO 2 is a component that enhances devitrification resistance and is a component that lowers the melting point of glass.
  • the content of TeO 2 is 1 to less than 35%, preferably 10 to 25%.
  • TeO 2 is too small, it becomes difficult to enjoy the above-mentioned effects.
  • TeO 2 is too large, weather resistance, water resistance tends to decrease.
  • ZnO is a component that increases devitrification resistance and a component that decreases the thermal expansion coefficient.
  • the ZnO content is more than 3 to less than 25%, preferably 5 to 20%.
  • ZnO When there is too little ZnO, it will become difficult to enjoy the said effect.
  • ZnO when there is too much ZnO, the viscosity of glass will become high and softening fluidity
  • Nb 2 O 5 is a component that improves water resistance.
  • the content of Nb 2 O 5 is 0 to 10%, preferably 1 to 8%. If nb 2 O 5 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
  • CuO, MnO, Fe 2 O 3 , V 2 O 5 , NiO, WO 3 , MoO 3 , and Co 3 O 4 are components that enhance light absorption characteristics.
  • the content of CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 is 1-30%, preferably 2-25%, especially 3-20%. If the amount of CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 is too small, the glass becomes difficult to soften and flow during laser sealing, so the laser sealing strength tends to decrease. On the other hand, if there is too much CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 , vitrification becomes difficult.
  • CuO and MnO have good light absorption characteristics and are compatible with silver phosphate glass. Good properties.
  • the content of CuO + MnO is 1 to 30%, preferably 2 to 25%, especially 3 to 20%. If the amount of CuO + MnO is too small, the glass is softened and hardly flows during laser sealing, so that the laser sealing strength tends to decrease. On the other hand, if there is too much CuO + MnO, vitrification becomes difficult.
  • the contents of CuO, MnO, Fe 2 O 3 , V 2 O 5 , NiO, WO 3 , MoO 3 and Co 3 O 4 are preferably 0 to 25%, more preferably 2 to 20%, Particularly preferred is 3 to 10%.
  • oxides such as Li 2 O, SiO 2 , Al 2 O 3 , In 2 O 3 , Bi 2 O 3 , Li, Si, B Al, Mn, In, Mo, Cu, Co, Ge, W, Zn, Te, Ga, P, and Ag halides and sulfides can be introduced up to 5%, preferably 1%, respectively.
  • halide refers to fluoride, chloride, bromide, and iodide. When the metal elements are the same, the halide is more effective in reducing the viscosity of the glass than the oxide, but the environmental load is increased.
  • the glass powder of the present invention has a thermal expansion coefficient of about 100 to 200 ⁇ 10 ⁇ 7 / ° C. in a temperature range of 30 to 150 ° C., and does not have high mechanical strength. Therefore, the glass powder of the present invention is preferably mixed with the refractory filler powder to form a composite powder. Thereby, mechanical strength can be raised, reducing a thermal expansion coefficient.
  • the sealing material of the present invention preferably contains glass powder 50 to 90 volume%, refractory filler powder 10 to 50 volume%, laser absorber 0 to 20 volume%, glass powder 55 to 80 volume%, fire resistance More preferably, it contains 20 to 45% by volume of a filler powder and 0 to 5% by volume of a laser absorber.
  • the glass powder is a component that softens and flows during laser sealing to ensure the hermetic reliability of the hermetic package.
  • the refractory filler powder is a component that acts as an aggregate and increases the mechanical strength while reducing the thermal expansion coefficient.
  • the laser absorbing material is a component that absorbs laser light and promotes the softening flow of the glass powder during laser sealing.
  • the maximum particle diameter Dmax of the glass powder is preferably 10 ⁇ m or less, particularly 5 ⁇ m or less.
  • the “maximum particle diameter D max ” refers to a value measured by a laser diffractometer, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle.
  • the particle size is 99%.
  • the softening point of the glass powder is preferably 400 ° C. or lower, 380 ° C. or lower, particularly 360 ° C. or lower. If the softening point of the glass powder is too high, the glass is difficult to soften during laser sealing, so the laser sealing strength cannot be increased unless the output of the laser beam is increased.
  • the “softening point” refers to the temperature at the fourth inflection point when measured by macro-type differential thermal analysis.
  • refractory filler powder Various materials can be used for the refractory filler powder. Among them, from the viewpoint of low expansion and high strength, NaZr 2 (PO 4 ) type 3 solid solution, willemite, cordierite, zircon, tin oxide, ⁇ - Eucryptite, zirconium phosphate, niobium pentoxide, quartz glass, mullite, aluminum titanate and the like are preferable. From the viewpoint of increasing the mechanical strength, it is also preferable to use alumina, cubic zirconia, titania, zinc stannate, magnesia, quartz, spinel, garnite or the like as the refractory filler powder.
  • said refractory filler powder may be used independently, and 2 or more types may be mixed and used for it.
  • the maximum particle diameter D max of the refractory filler powder is preferably 15 ⁇ m or less, less than 10 ⁇ m, less than 5 ⁇ m, particularly less than 0.5 to 3 ⁇ m. If the maximum particle diameter Dmax of the refractory filler powder is too large, it is difficult to make the gap between the objects to be sealed uniform, it is difficult to narrow the gap between the objects to be sealed, and it is difficult to reduce the thickness of the hermetic package. Note that when the gap between the objects to be sealed is large and the difference in thermal expansion coefficient between the objects to be sealed and the sealing material layer is large, cracks or the like are likely to occur in the objects to be sealed or the sealing material layer.
  • the content of the laser absorber is preferably 0 to 20% by volume, 0 to 10% by volume, 0 to 5% by volume, 0 to 3% by volume, 0 to 1% by volume, particularly 0. ⁇ 0.1% by volume.
  • a laser absorber will melt in glass at the time of laser sealing, and this will devitrify glass, and it will become easy to fall the softening fluidity of a sealing material.
  • the light absorptance in monochromatic light having a wavelength of 808 nm is preferably 20% or more, more preferably 30% or more. If this light absorptance is low, the sealing material layer cannot absorb light properly at the time of laser sealing, and the laser sealing strength cannot be increased unless the output of the laser light is increased. If the output of the laser beam is increased, the internal element may be thermally deteriorated during laser sealing.
  • the thermal expansion coefficient is preferably 85 ⁇ 10 ⁇ 7 / ° C. or less, 80 ⁇ 10 ⁇ 7 / ° C. or less, particularly 50 ⁇ 10 ⁇ 7 / ° C. or more, and 75 ⁇ 10 ⁇ 7 / ° C. It is below °C. In this way, when the sealed object has a low expansion, thermal distortion is hardly generated in the sealed object or the sealing material during laser sealing, and a crack occurs in the sealed object or the sealing material layer. It becomes difficult.
  • the softening point is preferably 500 ° C. or lower, 450 ° C. or lower, particularly 400 ° C. or lower. If the softening point of the sealing material is too high, the glass becomes difficult to soften and flow during laser sealing, so the laser sealing strength cannot be increased unless the output of the laser beam is increased.
  • the sealing material of the present invention is prepared by first preparing various raw materials so as to have the above glass composition, melting at 850 to 1000 ° C. for 1 to 3 hours to vitrify, forming the molten glass into a film, and further ball milling, Air classification is performed to obtain glass powder. Then, a sealing material can be obtained by adding and mixing a refractory filler powder etc. to this glass powder.
  • the sealing material of the present invention may be used in the form of powder, but it is easy to handle if it is uniformly kneaded with a vehicle and processed into a sealing material paste.
  • the vehicle is mainly composed of a solvent and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the sealing material paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the sealing material paste is applied to an object to be sealed using an applicator such as a dispenser or a screen printer, and then subjected to a binder removal step.
  • acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used.
  • acrylic acid esters and nitrocellulose are preferable because they have good thermal decomposability.
  • Solvents include N, N'-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol Monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene Glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-methyl -2-pyrrolidone and the like can be used.
  • DMF dimethylformamide
  • ⁇ -BL ⁇ -butyllactone
  • the sealing material of the present invention is preferably used for a sealing material layer of an airtight package.
  • the hermetic package preferably has a structure in which the package base and the glass lid are hermetically sealed via a sealing material layer.
  • the airtight package will be described in detail.
  • the package base preferably has a base and a frame provided on the base, and the sealing material layer is preferably formed on the top of the frame. If it does in this way, it will become easy to accommodate internal elements, such as MEMS and a LED element, in the frame part of a package base.
  • the frame portion of the package base is preferably formed in a frame shape along the outer edge region of the package base. In this way, the effective area that functions as a device can be expanded. In addition, it becomes easy to accommodate internal elements such as MEMS and LED elements in the frame portion of the package base, and it is also easy to perform wiring bonding and the like.
  • the surface roughness Ra of the surface of the region where the sealing material layer is disposed at the top of the frame is preferably less than 1.0 ⁇ m. If the surface roughness Ra of the surface increases, the accuracy of laser sealing tends to decrease.
  • the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
  • the width of the top of the frame is preferably 100 to 3000 ⁇ m, 200 to 1500 ⁇ m, particularly 300 to 900 ⁇ m. If the width of the top of the frame is too narrow, it is difficult to align the sealing material layer and the top of the frame. On the other hand, if the width of the top of the frame is too wide, the effective area that functions as a device is reduced.
  • the package substrate is preferably made of glass, glass ceramic, aluminum nitride, or aluminum oxide, or a composite material thereof (for example, aluminum nitride and glass ceramic integrated). Since glass easily forms a sealing material layer and a reaction layer, a strong sealing strength can be secured by laser sealing.
  • the glass ceramic has a feature that it is easy to optimize the wettability with the sealing material layer. Furthermore, since the thermal via can be easily formed, it is possible to appropriately prevent the temperature of the hermetic package from rising excessively. Since aluminum nitride and aluminum oxide have good heat dissipation, it is easy to suppress the temperature rise of the hermetic package.
  • the glass ceramic, aluminum nitride, and aluminum oxide preferably have a black pigment dispersed (sintered in a state in which the black pigment is dispersed).
  • the package base can absorb the laser light transmitted through the sealing material layer.
  • the portion of the package base that comes into contact with the sealing material layer is heated during laser sealing, so that the formation of the reaction layer can be promoted at the interface between the sealing material layer and the package base.
  • the package substrate in which the black pigment is dispersed has the property of absorbing the laser beam to be irradiated, that is, the thickness is 0.5 mm, and the total light transmittance at the wavelength of the laser beam to be irradiated (808 nm) is 10% or less ( Desirably, it is preferably 5% or less. If it does in this way, it will become easy to raise the temperature of a sealing material layer in the interface of a package base
  • the thickness of the base of the package substrate is preferably 0.1 to 2.5 mm, particularly preferably 0.2 to 1.5 mm. Thereby, thickness reduction of an airtight package can be achieved.
  • the height of the frame portion of the package substrate that is, the height obtained by subtracting the thickness of the base portion from the package substrate is preferably 100 to 2000 ⁇ m, particularly 200 to 900 ⁇ m. In this way, it becomes easy to reduce the thickness of the hermetic package while properly accommodating the internal elements.
  • the glass lid may be a laminated glass obtained by bonding a plurality of glass plates.
  • a functional film may be formed on the surface of the glass lid on the inner element side, or a functional film may be formed on the outer surface of the glass lid.
  • an antireflection film is preferable as the functional film.
  • the thickness of the glass lid is preferably 0.1 mm or more, 0.2 to 2.0 mm, 0.4 to 1.5 mm, particularly 0.5 to 1.2 mm. If the thickness of the glass lid is small, the strength of the hermetic package is likely to decrease. On the other hand, when the thickness of the glass lid is large, it is difficult to reduce the thickness of the hermetic package.
  • the difference in thermal expansion coefficient between the glass lid and the sealing material layer is preferably less than 50 ⁇ 10 ⁇ 7 / ° C., less than 40 ⁇ 10 ⁇ 7 / ° C., and particularly preferably 30 ⁇ 10 ⁇ 7 / ° C. or less.
  • this difference in thermal expansion coefficient is too large, the stress remaining in the sealed portion becomes unreasonably high, and the hermetic reliability of the hermetic package tends to be lowered.
  • the sealing material layer is composed of the sealing material of the present invention, and is softened and deformed by absorbing laser light to form a reaction layer on the surface layer of the package substrate, and the package substrate and the glass lid are hermetically integrated. It has a function to convert.
  • the end portion (inner end portion and / or outer end portion) of the sealing material layer preferably protrudes laterally in an arc shape in a cross-sectional view, and the inner end portion and the outer end portion of the sealing material layer are circular. More preferably, it projects in an arc. This makes it difficult for the sealing material layer to be bulk broken when shearing stress is applied to the hermetic package. As a result, the airtight reliability of the airtight package can be improved.
  • the sealing material layer is preferably formed so that the contact position with the frame portion is separated from the inner edge of the top portion of the frame portion, and is separated from the outer edge of the top portion of the frame portion, More preferably, it is formed at a position 50 ⁇ m or more, 60 ⁇ m or more, 70 to 2000 ⁇ m, particularly 80 to 1000 ⁇ m apart from the inner edge of the top of the frame. If the distance between the inner edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. .
  • the distance between the inner edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package. Further, it is preferably formed at a position 50 ⁇ m or more, 60 ⁇ m or more, 70 to 2000 ⁇ m, particularly 80 to 1000 ⁇ m apart from the outer edge of the top of the frame portion. If the distance between the outer edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. . On the other hand, if the distance between the outer edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package.
  • the sealing material layer is preferably formed so that the position of contact with the glass lid is 50 ⁇ m or more, 60 ⁇ m or more, 70 to 1500 ⁇ m, particularly 80 to 800 ⁇ m away from the edge of the glass lid. If the separation distance between the edge of the glass lid and the sealing material layer is too short, the surface temperature difference between the surface on the inner element side and the outer surface of the glass lid in the edge region of the glass lid during laser sealing. It becomes large and the glass lid is easily broken.
  • the sealing material layer is preferably formed on the center line in the width direction of the top of the frame, that is, formed in the central region of the top of the frame. In this way, the heat generated by local heating is easily escaped at the time of laser sealing, so that the glass lid is difficult to break. In addition, when the width
  • the average thickness of the sealing material layer is preferably less than 8.0 ⁇ m, particularly 1.0 ⁇ m or more and less than 6.0 ⁇ m.
  • the smaller the average thickness of the sealing material layer the lower the stress remaining in the sealing portion after laser sealing when the thermal expansion coefficients of the sealing material layer and the glass lid are mismatched.
  • the accuracy of laser sealing can be increased.
  • Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying the composite powder paste, a method of polishing the surface of the sealing material layer, and the like.
  • the maximum width of the sealing material layer is preferably 1 ⁇ m or more and 2000 ⁇ m or less, 10 ⁇ m or more, 1000 ⁇ m or less, 50 ⁇ m or more and 800 ⁇ m or less, particularly 100 ⁇ m or more and 600 ⁇ m or less.
  • the maximum width of the sealing material layer is narrowed, the sealing material layer is easily separated from the edge of the frame portion, so that it is easy to reduce the stress remaining in the sealing portion after laser sealing. Furthermore, the width of the frame portion of the package substrate can be reduced, and the effective area that functions as a device can be increased.
  • the maximum width of the sealing material layer is too narrow, the sealing material layer easily breaks in bulk when a large shear stress is applied to the sealing material layer. Furthermore, the accuracy of laser sealing tends to be reduced.
  • a value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is preferably 0.003 or more, 0.005 or more, 0.01 to 0.1, particularly 0.02 to 0.05. is there.
  • the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too small, the bulk of the sealing material layer is easily broken when a large shear stress is applied to the sealing material layer.
  • the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too large, the accuracy of laser sealing tends to be lowered.
  • the surface roughness Ra of the sealing material layer is preferably less than 0.5 ⁇ m, 0.2 ⁇ m or less, and particularly 0.01 to 0.15 ⁇ m. Further, the surface roughness RMS of the sealing material layer is preferably less than 1.0 ⁇ m and 0.5 ⁇ m or less, particularly 0.05 to 0.3 ⁇ m. In this way, the adhesion between the package substrate and the sealing material layer is improved, and the accuracy of laser sealing is improved.
  • the “surface roughness RMS” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter. Examples of the method for regulating the surface roughness Ra and RMS of the sealing material layer as described above include a method of polishing the surface of the sealing material layer, a method of reducing the particle size of the refractory filler powder, and the like. .
  • the package base and the glass lid are hermetically sealed by irradiating a laser beam from the glass lid side toward the sealing material layer and softening and deforming the sealing material layer. It is preferable to obtain an airtight package.
  • the glass lid may be disposed below the package substrate, but it is preferable to dispose the glass lid above the package substrate from the viewpoint of laser sealing efficiency.
  • a semiconductor laser a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
  • the atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • the glass lid When performing laser sealing, if the glass lid is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistance temperature of the internal element, it becomes easy to suppress breakage of the glass lid due to thermal shock during laser sealing. Further, if the annealing laser is irradiated from the glass lid side immediately after the laser sealing, it becomes easier to further suppress the breakage of the glass lid due to thermal shock or residual stress.
  • FIG. 1 is a schematic cross-sectional view for explaining an embodiment of an airtight package.
  • the hermetic package 1 includes a package base 10 and a glass lid 11.
  • the package base 10 includes a base 12 and a frame-shaped frame portion 13 on the outer peripheral edge of the base 12.
  • An internal element 14 is accommodated in the frame portion 13 of the package base 10.
  • An electrical wiring (not shown) that electrically connects the internal element 14 and the outside is formed in the package base 10.
  • the sealing material layer 15 is arranged over the entire circumference of the top of the frame 13 between the top of the frame 13 of the package base 10 and the surface of the glass lid 11 on the internal element 14 side. Moreover, the sealing material layer 15 is comprised with the sealing material of this invention.
  • the width of the sealing material layer 15 is smaller than the width of the top portion of the frame portion 13 of the package substrate 10, and is further away from the edge of the end portions of the glass lid 11 and the frame portion 13. Furthermore, the average thickness of the sealing material layer 15 is less than 8.0 ⁇ m.
  • the airtight package 1 can be manufactured as follows. First, the glass lid 11 on which the sealing material layer 15 is formed in advance is placed on the package base 10 so that the sealing material layer 15 and the top of the frame portion 13 are in contact with each other. Subsequently, the laser beam L emitted from the laser irradiation device 18 is irradiated along the sealing material layer 15 from the glass lid 11 side while pressing the glass lid 11 using a pressing jig. As a result, the sealing material layer 15 softens and flows and reacts with the top layer of the frame portion 13 of the package base 10, whereby the package base 10 and the glass lid 11 are hermetically integrated, and the airtight structure of the hermetic package 1. Is formed.
  • Table 1 shows examples of the present invention (Sample Nos. 1 to 4) and comparative examples (Sample Nos. 5 to 8).
  • “NA” means not measured.
  • the glass powder described in the table was produced as follows. First, a glass batch in which various raw materials were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 900 ° C. for 1 hour. Upon melting, the mixture was stirred with a platinum rod to homogenize the molten glass. Next, a part of the obtained molten glass was poured out between water-cooled twin rollers and formed into a film shape, and the remaining molten glass was poured out into a carbon mold and formed into a rod shape.
  • the obtained glass film was pulverized with a ball mill and then classified with an air classifier so that the average particle diameter D 50 was 1.0 ⁇ m and the maximum particle diameter D max was 3.0 ⁇ m. Further, the rod-shaped glass was put into an electric furnace maintained at a temperature about 20 ° C. higher than the annealing point, and then slowly cooled to room temperature at a temperature lowering rate of 3 minutes / minute. This rod-shaped glass is used for density measurement.
  • NbZr (PO 4 ) 3 was used as the refractory filler powder.
  • the refractory filler powder is adjusted to an average particle diameter D 50 of 1.0 ⁇ m and a maximum particle diameter D max of 3.0 ⁇ m by air classification.
  • the thermal expansion coefficient ⁇ is a value measured with a TMA apparatus in a temperature range of 30 to 150 ° C.
  • a measurement sample of TMA after each sample was sintered precisely, it was processed into a predetermined shape.
  • a powder having a mass corresponding to 0.6 cm 3 minutes was dry-pressed into a button shape having an outer diameter of 20 mm using a mold, and this was placed on an alumina substrate having a thickness of 25 mm ⁇ 25 mm ⁇ 0.6 mm. Placed, heated in air at a rate of 10 ° C / minute, held at 510 ° C for 10 minutes, then cooled to room temperature at 10 ° C / minute, and measured the button diameter (flow diameter) It is evaluated by doing. Specifically, the case where the flow diameter was 16.0 mm or more was evaluated as “ ⁇ ”, and the case where it was less than 16.0 mm was evaluated as “x”.
  • the laser sealing strength was evaluated as follows. First, each sample and vehicle (tripropylene glycol monobutyl ether containing ethylcellulose resin) were uniformly kneaded with a three-roll mill and made into a paste, and then an alkali-free glass substrate (OA-10, ⁇ manufactured by Nippon Electric Glass Co., Ltd.) 40 mm ⁇ 0.5 mm thickness, thermal expansion coefficient 38 ⁇ 10 ⁇ 7 / ° C.) along the edge of the non-alkali glass substrate in a frame shape (5 ⁇ m thickness, 0.6 mm width) and 120 mm in a drying oven. Dry at 10 ° C. for 10 minutes.
  • OA-10 alkali-free glass substrate
  • the temperature was raised from room temperature at 10 ° C./minute, baked at 450 ° C. for 10 minutes, and then lowered to room temperature at 10 ° C./minute to incinerate the resin component in the paste (debinder treatment) and the sealing material Fixing was performed to form a sealing material layer on the alkali-free glass substrate.
  • an alkali-free glass substrate having a sealing material layer is accurately stacked on an LTCC package ( ⁇ 40 mm) on which no sealing material layer is formed, and then the sealing material is formed from the alkali-free glass substrate side.
  • the sealing material layer was softened and fluidized, and the alkali-free glass substrate and the LTCC package were hermetically sealed.
  • the laser light irradiation conditions (output and irradiation speed) were adjusted according to the average thickness of the sealing material layer.
  • the airtight reliability was evaluated as follows.
  • the sealing structure obtained by the above method was held for 1000 hours in a constant temperature and humidity chamber maintained at 85 ° C. and a humidity of 85%. After that, the sealing structure was observed with an optical microscope.
  • the sealing material layer did not change in quality and the invasion of moisture was not recognized in the sealing structure.
  • the airtight reliability was evaluated with “ ⁇ ” indicating that the sealing material layer was altered and “X” indicating that water had entered the sealing structure.
  • a package base having an outer dimension of 30 mm ⁇ 20 mm, a frame portion width of 2.5 mm formed along the outer shape, a frame portion height of 2.5 mm, and a base portion thickness of 1.0 mm is obtained.
  • a green sheet (MLS-26B manufactured by Nippon Electric Glass Co., Ltd.) was laminated and pressure-bonded, followed by firing at 870 ° C. for 20 minutes to obtain a package substrate made of glass ceramic.
  • Specimen no. Airtight packages according to 1 to 4 were obtained, respectively.
  • a glass lid made of borosilicate glass BDA manufactured by Nippon Electric Glass Co., Ltd., 30 mm ⁇ 20 mm ⁇ thickness 0.3 mm
  • the above sample No. A frame-shaped sealing material layer was formed using the sealing materials according to 1 to 4. More specifically, first, the sample No. 1 was adjusted so that the viscosity was about 100 Pa ⁇ s (25 ° C., Shear rate: 4). After the kneading of the sealing material according to 1 to 4, the vehicle and the solvent, the mixture was further kneaded with a three-roll mill until the powder was evenly dispersed to obtain a sealing material paste.
  • the above-mentioned sealing material paste was printed in a frame shape by a screen printer along the outer peripheral edge of the glass lid. Furthermore, after drying at 120 ° C. for 10 minutes in an air atmosphere, the sealing material layer having an average width of 400 ⁇ m and an average thickness of 6 ⁇ m is formed on the glass lid by baking at 500 ° C. for 10 minutes in the air atmosphere. Formed
  • the sealing material is irradiated from the glass lid side along the sealing material layer with a laser beam having a wavelength of 808 nm.
  • the layer is softened and fluidized, and the glass lid and the package base are hermetically sealed. Airtight packages according to 1 to 4 were obtained, respectively.
  • sample No. The airtight package according to 1 to 4 was held for 1000 hours in a constant temperature and humidity chamber maintained at 85 ° C. and 85% humidity, and then observed with an optical microscope. As a result, no moisture intrusion was observed in the sealed structure. . Therefore, sample no.
  • the hermetic packages 1 to 4 are considered to have high hermetic reliability.
  • the glass powder of the present invention and the sealing material using the glass powder are suitable for laser sealing of airtight packages such as MEMS packages and LED packages, and are solar cells such as dye-sensitized solar cells and CIGS thin film compound solar cells. It is also suitable for laser sealing.

Abstract

The glass powder according to the present invention is characterized by containing, as a glass composition, in mol% in terms of oxides, 10-50% of Ag2O, not less than 10% but less than 35% of P2O5, not less than 1% but less than 35% of TeO2, more than 3% but less than 25% of ZnO, 0-10% of Nb2O5, and 1-30% of CuO + MnO + Fe2O3 + V2O5 + NiO + WO3 + MoO3 + Co3O4.

Description

ガラス粉末及びそれを用いた封着材料Glass powder and sealing material using the same
 本発明は、ガラス粉末及びそれを用いた封着材料に関し、特にレーザー光による封着処理(以下、レーザー封着)に好適なガラス粉末及びそれを用いた封着材料に関する。 The present invention relates to a glass powder and a sealing material using the glass powder, and more particularly to a glass powder suitable for a sealing process using a laser beam (hereinafter referred to as laser sealing) and a sealing material using the glass powder.
 近年、MEMS(Micro Electric Mechanical System)パッケージ等の気密パッケージの高性能化が検討されている。従来まで、気密パッケージの接着材料として、低温硬化性を有する有機樹脂系接着剤やはんだが使用されてきた。しかし、有機樹脂系接着剤では、気体や水分の浸入を完全に遮断できないため、内部素子の特性が経時的に劣化する虞がある。また、はんだによる封着は、内部素子を含む気密パッケージ全体を加熱する工程があるため、内部素子を熱劣化させる虞がある。 In recent years, high-performance airtight packages such as MEMS (Micro Electric Mechanical System) packages have been studied. Conventionally, organic resin adhesives and solders having low temperature curability have been used as adhesive materials for hermetic packages. However, since organic resin adhesives cannot completely block the ingress of gas and moisture, the characteristics of internal elements may deteriorate over time. In addition, since the sealing with solder includes a step of heating the entire hermetic package including the internal element, there is a possibility that the internal element is thermally deteriorated.
 一方、ガラス粉末を含む封着材料は、有機樹脂系接着剤に比べて、気体や水分が透過し難いため、長期に亘って内部素子の特性を維持することができる。 On the other hand, since the sealing material containing glass powder is less permeable to gas and moisture than the organic resin adhesive, the characteristics of the internal element can be maintained over a long period of time.
 しかし、ガラス粉末は、有機樹脂系接着剤よりも軟化温度が高いため、封着時に内部素子を熱劣化させる虞がある。このような事情から、レーザー封着が注目されている。レーザー封着によれば、封着すべき部分のみを局所的に加熱し得るため、内部素子を熱劣化させることなく、気密パッケージを封着することができる。 However, since the glass powder has a higher softening temperature than the organic resin adhesive, there is a risk that the internal element is thermally deteriorated during sealing. Under such circumstances, laser sealing has attracted attention. According to laser sealing, only the portion to be sealed can be locally heated, so that the hermetic package can be sealed without thermally deteriorating the internal elements.
 また、近年、LED(Light Emission Diode)素子が実装された気密パッケージでは、熱伝導性の観点から、パッケージ基体として、窒化アルミニウム、アルミナ、サーマルビアを有する低温焼成基板(LTCC)等が使用されるが、この場合も、LED素子の熱劣化を防止するために、パッケージ基体とガラス蓋(リッド)をレーザー封着することが好ましい。特に、紫外波長領域で発光するLED素子が実装された気密パッケージでは、レーザー封着により紫外波長領域で発光特性を維持し易くなる。 In recent years, in airtight packages on which LED (Light Emission Diode) elements are mounted, from the viewpoint of thermal conductivity, aluminum nitride, alumina, a low-temperature fired substrate (LTCC) having thermal vias, or the like is used as a package base. However, also in this case, in order to prevent thermal deterioration of the LED element, it is preferable that the package base and the glass lid (lid) be laser-sealed. In particular, in an airtight package on which an LED element that emits light in the ultraviolet wavelength region is mounted, it becomes easy to maintain light emission characteristics in the ultraviolet wavelength region by laser sealing.
特開2002-179436号公報JP 2002-179436 A
 レーザー封着には、一般的に、ガラス粉末としてビスマス系ガラスが使用されている。ビスマス系ガラスは、他の低融点ガラスに比べて耐水性が高いという特徴を有している。 Bismuth glass is generally used as a glass powder for laser sealing. Bismuth-based glass has a feature that its water resistance is higher than other low-melting-point glasses.
 しかし、ビスマス系ガラスは、他の低融点ガラスに比べて軟化温度が高いため、レーザー封着の際に、ガラス蓋や封着材料に熱歪みが生じ易いという問題がある。レーザー封着の条件を変更することにより、熱歪みを多少低減することは可能であるが、その低減にも限界がある。よって、レーザー封着の際に、低温で軟化流動し得る封着材料が求められている。 However, since bismuth-based glass has a higher softening temperature than other low-melting glass, there is a problem that thermal distortion is likely to occur in the glass lid and the sealing material during laser sealing. Although it is possible to reduce the thermal distortion somewhat by changing the laser sealing conditions, there is a limit to the reduction. Therefore, a sealing material that can soften and flow at a low temperature during laser sealing is desired.
そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、耐水性が高く、レーザー封着の際に、低温で軟化流動し得るガラス粉末及びそれを用いた封着材料を創案することである。 Therefore, the present invention has been made in view of the above circumstances, and its technical problem is that it has high water resistance and can be softened and flowed at a low temperature during laser sealing, and a sealing material using the same. Is to invent.
 本発明者は、種々の実験を繰り返した結果、銀リン酸系ガラスに特定の遷移金属酸化物を所定量導入することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のガラス粉末は、ガラス組成として、下記酸化物換算のモル%で、AgO 10~50%、P 10~35%未満、TeO 1~35%未満、ZnO 3超~25%未満、Nb 0~10%、CuO+MnO+Fe+V+NiO+WO+MoO+Co 1~30%を含有することを特徴とする。ここで、「CuO+MnO+Fe+V+NiO+WO+MoO+Co」は、CuO、MnO、Fe、V、NiO、WO、MoO及びCoの合量を指す。 As a result of repeating various experiments, the present inventor has found that the above technical problem can be solved by introducing a predetermined amount of a specific transition metal oxide into silver phosphate glass, and proposes the present invention. Is. That is, the glass powder of the present invention has a glass composition of mol% in terms of the following oxides: Ag 2 O 10 to 50%, P 2 O 5 10 to less than 35%, TeO 2 1 to less than 35%, ZnO 3 More than 25%, Nb 2 O 5 0-10%, CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 1-30%. Here, “CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 ” means CuO, MnO, Fe 2 O 3 , V 2 O 5 , NiO, WO 3 , MoO 3 and Co 3 O 4 . Refers to total amount.
 本発明のガラス粉末は、AgO 10~50%、P 10~35%未満、TeO 1~35%未満、ZnO 3超~25%未満、Nb 0~10%を含有する。このようにすれば、耐水性を維持しつつ、ガラスを低融点化することができる。 The glass powder of the present invention contains Ag 2 O 10 to 50%, P 2 O 5 10 to less than 35%, TeO 2 1 to less than 35%, ZnO 3 to less than 25%, and Nb 2 O 5 0 to 10%. contains. If it does in this way, glass can be made low melting | fusing point, maintaining water resistance.
 更に、本発明のガラス粉末は、CuO+MnO+Fe+V+NiO+WO+MoO+Coを1モル%以上含む。このようにすれば、光吸収特性が向上するため、レーザー封着の際に、ガラスが軟化流動し易くなる。 Further, the glass powder of the present invention comprises CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 to 1 mol% or more. In this way, the light absorption characteristics are improved, so that the glass is softened and fluidized easily during laser sealing.
 また、本発明のガラス粉末は、CuO+MnOの含有量が1~30モル%であることが好ましい。ここで、「CuO+MnO」は、CuOとMnOの合量である。 The glass powder of the present invention preferably has a CuO + MnO content of 1 to 30 mol%. Here, “CuO + MnO” is the total amount of CuO and MnO.
 また、本発明のガラス粉末は、実質的にPbOを含有しないことが好ましい。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が0.1モル%未満の場合を指す。 Moreover, it is preferable that the glass powder of the present invention does not substantially contain PbO. Here, “substantially does not contain PbO” refers to a case where the content of PbO in the glass composition is less than 0.1 mol%.
 本発明の封着材料は、ガラス粉末 50~90体積%、耐火性フィラー粉末 10~50体積%、レーザー吸収材 0~20体積%を含有し、ガラス粉末が上記のガラス粉末であることが好ましい。 The sealing material of the present invention contains glass powder 50 to 90% by volume, refractory filler powder 10 to 50% by volume, laser absorber 0 to 20% by volume, and the glass powder is preferably the above glass powder. .
 また、本発明の封着材料は、耐火性フィラー粉末が、NaZr(PO型固溶体、ウイレマイト、コージエライト、ジルコン、酸化スズ、β-ユークリプタイト、リン酸ジルコニウム、五酸化ニオブ、石英ガラス、ムライト、チタン酸アルミニウム、アルミナ、立方晶ジルコニア、チタニア、スズ酸亜鉛、マグネシア、石英、スピネル、ガーナイトから選ばれる一種又は二種以上であることが好ましい。ここで、「NaZr(PO型固溶体」とは、XY12又はAYZ12の化学式で表される物質であり、Xは1価に相当する元素からなり、Yは4価に相当する元素からなり、またA、Zは5価に相当する元素からなる。 In the sealing material of the present invention, the refractory filler powder is NaZr 2 (PO 4 ) type 3 solid solution, willemite, cordierite, zircon, tin oxide, β-eucryptite, zirconium phosphate, niobium pentoxide, quartz. It is preferably one or more selected from glass, mullite, aluminum titanate, alumina, cubic zirconia, titania, zinc stannate, magnesia, quartz, spinel and garnite. Here, the “NaZr 2 (PO 4 ) 3 type solid solution” is a substance represented by the chemical formula of XY 2 Z 3 O 12 or AYZ 3 O 12 , where X is a monovalent element, Is composed of an element corresponding to tetravalent, and A and Z are composed of an element corresponding to pentavalent.
 また、本発明の封着材料は、レーザー吸収材の含有量が5体積%以下であることが好ましい。このようにすれば、レーザー封着の際に、ガラスが失透し難くなる。 In the sealing material of the present invention, the content of the laser absorber is preferably 5% by volume or less. If it does in this way, it will become difficult to devitrify glass at the time of laser sealing.
 また、本発明の封着材料は、レーザー封着に用いることが好ましい。このようにすれば、封着の際に、内部素子の熱劣化を防止することができる。なお、レーザー封着に使用するレーザー光の光源は、特に限定されないが、例えば、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザー等が、取り扱いが容易な点で好適である。また、レーザー光の発光中心波長は、上記封着材料にレーザー光を的確に吸収させるために、500~1600nm、特に750~1300nmが好ましい。 The sealing material of the present invention is preferably used for laser sealing. In this way, it is possible to prevent thermal degradation of the internal elements during sealing. The light source of the laser beam used for laser sealing is not particularly limited, but for example, a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are preferable in terms of easy handling. Further, the emission center wavelength of the laser beam is preferably 500 to 1600 nm, particularly preferably 750 to 1300 nm, in order for the sealing material to absorb the laser beam accurately.
 本発明の気密パッケージは、パッケージ基体とガラス蓋とが封着材料層を介して気密封着された気密パッケージであって、封着材料層が上記の封着材料を含むことが好ましい。 The hermetic package of the present invention is an airtight package in which a package base and a glass lid are hermetically sealed via a sealing material layer, and the sealing material layer preferably contains the sealing material described above.
 また、本発明の気密パッケージでは、パッケージ基体が、基部と基部上に設けられた枠部とを有し、封着材料層が該枠部の頂部とガラス蓋の間に介在していることが好ましい。 In the hermetic package of the present invention, the package base has a base portion and a frame portion provided on the base portion, and a sealing material layer is interposed between the top portion of the frame portion and the glass lid. preferable.
気密パッケージの一実施形態を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating one Embodiment of an airtight package.
 本発明のガラス粉末は、ガラス組成として、下記酸化物換算のモル%で、AgO 10~50%、P 10~35%未満、TeO 1~35%未満、ZnO 3超~25%未満、Nb 0~10%、CuO+MnO+Fe+V+NiO+WO+MoO+Co 1~30%を含有する。上記のようにガラス粉末のガラス組成を限定した理由を下記に詳述する。なお、以下の%表示は、特に断りがない限り、モル%を示す。 The glass powder of the present invention has a glass composition of mol% in terms of the following oxides: Ag 2 O 10 to 50%, P 2 O 5 10 to less than 35%, TeO 2 1 to 35%, ZnO 3 more than Less than 25%, Nb 2 O 5 0-10%, CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 1-30%. The reason for limiting the glass composition of the glass powder as described above will be described in detail below. In addition, the following% display shows mol% unless there is particular notice.
 AgOは、ガラスを低融点化させると共に、水に溶け難いため、耐水性を高める成分である。AgOの含有量は10~50%であり、好ましくは20~40%である。AgOが少な過ぎると、ガラスの粘性が高くなって、軟化流動性が低下し易くなると共に、耐水性が低下し易くなる。一方、AgOが多過ぎると、ガラス化が困難になる。 Ag 2 O is a component that increases the water resistance because it lowers the melting point of the glass and hardly dissolves in water. The content of Ag 2 O is 10 to 50%, preferably 20 to 40%. When Ag 2 O is too small, the viscosity of the glass becomes high, the softening fluidity tends to decrease, the water resistance tends to decrease. On the other hand, if Ag 2 O is too large, vitrification tends to be difficult.
 Pは、ガラスを低融点化させる成分である。その含有量は10~35%未満であり、好ましくは15~25%である。Pが少な過ぎると、ガラス化が困難になる。一方、Pが多過ぎると、耐候性、耐水性が低下し易くなる。 P 2 O 5 is a component that lowers the melting point of glass. Its content is 10 to less than 35%, preferably 15 to 25%. When the P 2 O 5 is too small, vitrification tends to be difficult. On the other hand, if the P 2 O 5 is too large, weather resistance, water resistance tends to decrease.
 TeOは、耐失透性を高める成分であり、またガラスを低融点化させる成分である。TeOの含有量は1~35%未満であり、好ましくは10~25%である。TeOが少な過ぎると、上記効果を享受し難くなる。一方、TeOが多過ぎると、耐候性、耐水性が低下し易くなる。 TeO 2 is a component that enhances devitrification resistance and is a component that lowers the melting point of glass. The content of TeO 2 is 1 to less than 35%, preferably 10 to 25%. When TeO 2 is too small, it becomes difficult to enjoy the above-mentioned effects. On the other hand, when TeO 2 is too large, weather resistance, water resistance tends to decrease.
 ZnOは、耐失透性を高める成分であり、また熱膨張係数を低下させる成分である。ZnOの含有量は3超~25%未満であり、好ましくは5~20%である。ZnOが少な過ぎると、上記効果を享受し難くなる。一方、ZnOが多過ぎると、ガラスの粘性が高くなって、軟化流動性が低下し易くなる。 ZnO is a component that increases devitrification resistance and a component that decreases the thermal expansion coefficient. The ZnO content is more than 3 to less than 25%, preferably 5 to 20%. When there is too little ZnO, it will become difficult to enjoy the said effect. On the other hand, when there is too much ZnO, the viscosity of glass will become high and softening fluidity | liquidity will fall easily.
 Nbは、耐水性を高める成分である。Nbの含有量は0~10%であり、好ましくは1~8%である。Nbが多過ぎると、ガラスの粘性が高くなって、軟化流動性が低下し易くなる。 Nb 2 O 5 is a component that improves water resistance. The content of Nb 2 O 5 is 0 to 10%, preferably 1 to 8%. If nb 2 O 5 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
 CuO、MnO、Fe、V、NiO、WO、MoO、Coは、光吸収特性を高める成分である。CuO+MnO+Fe+V+NiO+WO+MoO+Coの含有量は1~30%であり、好ましくは2~25%、特に3~20%である。CuO+MnO+Fe+V+NiO+WO+MoO+Coが少な過ぎると、レーザー封着の際に、ガラスが軟化流動し難くなるため、レーザー封着強度が低下し易くなる。一方、CuO+MnO+Fe+V+NiO+WO+MoO+Coが多過ぎると、ガラス化が困難になる。 CuO, MnO, Fe 2 O 3 , V 2 O 5 , NiO, WO 3 , MoO 3 , and Co 3 O 4 are components that enhance light absorption characteristics. The content of CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 is 1-30%, preferably 2-25%, especially 3-20%. If the amount of CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 is too small, the glass becomes difficult to soften and flow during laser sealing, so the laser sealing strength tends to decrease. On the other hand, if there is too much CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 , vitrification becomes difficult.
 CuO、MnO、Fe、V、NiO、WO、MoO、Coの内、CuOとMnOは、光吸収特性が良好であり、銀リン酸系ガラスとの適合性が良好である。
CuO+MnOの含有量は1~30%であり、好ましくは2~25%、特に3~20%である。CuO+MnOが少な過ぎると、レーザー封着の際に、ガラスが軟化流動し難くなるため、レーザー封着強度が低下し易くなる。一方、CuO+MnOが多過ぎると、ガラス化が困難になる。
Of CuO, MnO, Fe 2 O 3 , V 2 O 5 , NiO, WO 3 , MoO 3 , and Co 3 O 4 , CuO and MnO have good light absorption characteristics and are compatible with silver phosphate glass. Good properties.
The content of CuO + MnO is 1 to 30%, preferably 2 to 25%, especially 3 to 20%. If the amount of CuO + MnO is too small, the glass is softened and hardly flows during laser sealing, so that the laser sealing strength tends to decrease. On the other hand, if there is too much CuO + MnO, vitrification becomes difficult.
 なお、CuO、MnO、Fe、V、NiO、WO、MoO、Coのそれぞれの含有量は、好ましくは0~25%、より好ましくは2~20%、特に好ましくは3~10%である。 The contents of CuO, MnO, Fe 2 O 3 , V 2 O 5 , NiO, WO 3 , MoO 3 and Co 3 O 4 are preferably 0 to 25%, more preferably 2 to 20%, Particularly preferred is 3 to 10%.
 また、本発明の銀リン酸系ガラスにおいては、上記成分以外にも、LiO、SiO、Al、In、Biなどの酸化物、Li、Si、B、Al、Mn、In、Mo、Cu、Co、Ge、W、Zn、Te、Ga、P、Agのハロゲン化物や硫化物をそれぞれ5%、好ましくは1%まで導入することができる。ここで、「ハロゲン化物」とは、フッ化物、塩化物、臭化物、ヨウ化物のことである。なお、金属元素が同じ場合、ハロゲン化物の方が、酸化物よりも、ガラスの粘性を低下させる効果が大きくなるが、その一方で環境負荷が大きくなる。 Further, in the silver phosphate glass of the present invention, besides the above components, oxides such as Li 2 O, SiO 2 , Al 2 O 3 , In 2 O 3 , Bi 2 O 3 , Li, Si, B Al, Mn, In, Mo, Cu, Co, Ge, W, Zn, Te, Ga, P, and Ag halides and sulfides can be introduced up to 5%, preferably 1%, respectively. Here, “halide” refers to fluoride, chloride, bromide, and iodide. When the metal elements are the same, the halide is more effective in reducing the viscosity of the glass than the oxide, but the environmental load is increased.
 本発明のガラス粉末は、30~150℃の温度範囲における熱膨張係数が100~200×10-7/℃程度であり、また機械的強度が高くない。よって、本発明のガラス粉末は、耐火性フィラー粉末と混合して複合粉末とすることが好ましい。これにより、熱膨張係数を低減しつつ、機械的強度を高めることができる。 The glass powder of the present invention has a thermal expansion coefficient of about 100 to 200 × 10 −7 / ° C. in a temperature range of 30 to 150 ° C., and does not have high mechanical strength. Therefore, the glass powder of the present invention is preferably mixed with the refractory filler powder to form a composite powder. Thereby, mechanical strength can be raised, reducing a thermal expansion coefficient.
 本発明の封着材料は、ガラス粉末 50~90体積%、耐火性フィラー粉末 10~50体積%、レーザー吸収材 0~20体積%を含有することが好ましく、ガラス粉末 55~80体積%、耐火性フィラー粉末 20~45体積%、レーザー吸収材 0~5体積%を含有することが更に好ましい。ガラス粉末は、レーザー封着の際に、軟化流動して、気密パッケージの気密信頼性を確保するための成分である。耐火性フィラー粉末は、骨材として作用し、熱膨張係数を低減しつつ、機械的強度を高めるための成分である。レーザー吸収材は、レーザー封着の際に、レーザー光を吸収して、ガラス粉末の軟化流動を促進する成分である。 The sealing material of the present invention preferably contains glass powder 50 to 90 volume%, refractory filler powder 10 to 50 volume%, laser absorber 0 to 20 volume%, glass powder 55 to 80 volume%, fire resistance More preferably, it contains 20 to 45% by volume of a filler powder and 0 to 5% by volume of a laser absorber. The glass powder is a component that softens and flows during laser sealing to ensure the hermetic reliability of the hermetic package. The refractory filler powder is a component that acts as an aggregate and increases the mechanical strength while reducing the thermal expansion coefficient. The laser absorbing material is a component that absorbs laser light and promotes the softening flow of the glass powder during laser sealing.
 ガラス粉末の最大粒子径Dmaxは、好ましくは10μm以下、特に5μm以下である。ガラス粉末の最大粒子径Dmaxが大き過ぎると、レーザー封着に要する時間が長くなると共に、被封着物間のギャップを均一化し難くなり、レーザー封着の精度が低下し易くなる。ここで、「最大粒子径Dmax」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 The maximum particle diameter Dmax of the glass powder is preferably 10 μm or less, particularly 5 μm or less. When the maximum particle diameter Dmax of the glass powder is too large, the time required for laser sealing becomes long, and it becomes difficult to make the gap between the objects to be sealed uniform, and the accuracy of laser sealing tends to decrease. Here, the “maximum particle diameter D max ” refers to a value measured by a laser diffractometer, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle size is 99%.
 ガラス粉末の軟化点は、好ましくは400℃以下、380℃以下、特に360℃以下が好ましい。ガラス粉末の軟化点が高過ぎると、レーザー封着の際にガラスが軟化し難くなるため、レーザー光の出力を上昇させない限り、レーザー封着強度を高めることができない。ここで、「軟化点」は、マクロ型示差熱分析で測定した時の第四変曲点の温度を指す。 The softening point of the glass powder is preferably 400 ° C. or lower, 380 ° C. or lower, particularly 360 ° C. or lower. If the softening point of the glass powder is too high, the glass is difficult to soften during laser sealing, so the laser sealing strength cannot be increased unless the output of the laser beam is increased. Here, the “softening point” refers to the temperature at the fourth inflection point when measured by macro-type differential thermal analysis.
 耐火性フィラー粉末には、種々の材料が使用可能であるが、その中でも、低膨張と高強度の観点から、NaZr(PO型固溶体、ウイレマイト、コージエライト、ジルコン、酸化スズ、β-ユークリプタイト、リン酸ジルコニウム、五酸化ニオブ、石英ガラス、ムライト、チタン酸アルミニウム等が好ましい。また、機械的強度を高める観点から、耐火性フィラー粉末として、アルミナ、立方晶ジルコニア、チタニア、スズ酸亜鉛、マグネシア、石英、スピネル、ガーナイト等を用いることも好ましい。なお、上記の耐火性フィラー粉末は、単独で使用しても良いし、二種以上を混合して使用しても良い。なお、本発明の効果を損なわない限り、上記耐火性フィラー粉末以外の耐火性フィラー粉末を使用してもよい。 Various materials can be used for the refractory filler powder. Among them, from the viewpoint of low expansion and high strength, NaZr 2 (PO 4 ) type 3 solid solution, willemite, cordierite, zircon, tin oxide, β- Eucryptite, zirconium phosphate, niobium pentoxide, quartz glass, mullite, aluminum titanate and the like are preferable. From the viewpoint of increasing the mechanical strength, it is also preferable to use alumina, cubic zirconia, titania, zinc stannate, magnesia, quartz, spinel, garnite or the like as the refractory filler powder. In addition, said refractory filler powder may be used independently, and 2 or more types may be mixed and used for it. In addition, unless the effect of this invention is impaired, you may use refractory filler powders other than the said refractory filler powder.
 耐火性フィラー粉末の最大粒子径Dmaxは、好ましくは15μm以下、10μm未満、5μm未満、特に0.5~3μm未満である。耐火性フィラー粉末の最大粒子径Dmaxが大き過ぎると、被封着物間のギャップを均一化し難くなると共に、被封着物間のギャップを狭小化し難くなり、気密パッケージの薄型化を図り難くなる。なお、被封着物間のギャップが大きい場合に、被封着物と封着材料層の熱膨張係数差が大きいと、被封着物や封着材料層にクラック等が発生し易くなる。 The maximum particle diameter D max of the refractory filler powder is preferably 15 μm or less, less than 10 μm, less than 5 μm, particularly less than 0.5 to 3 μm. If the maximum particle diameter Dmax of the refractory filler powder is too large, it is difficult to make the gap between the objects to be sealed uniform, it is difficult to narrow the gap between the objects to be sealed, and it is difficult to reduce the thickness of the hermetic package. Note that when the gap between the objects to be sealed is large and the difference in thermal expansion coefficient between the objects to be sealed and the sealing material layer is large, cracks or the like are likely to occur in the objects to be sealed or the sealing material layer.
 本発明の封着材料において、レーザー吸収材の含有量は、好ましくは0~20体積%、0~10体積%、0~5体積%、0~3体積%、0~1体積%、特に0~0.1体積%である。レーザー吸収材の含有量が多過ぎると、レーザー封着の際に、ガラス中にレーザー吸収材が溶け込み、これによりガラスが失透して、封着材料の軟化流動性が低下し易くなる。 In the sealing material of the present invention, the content of the laser absorber is preferably 0 to 20% by volume, 0 to 10% by volume, 0 to 5% by volume, 0 to 3% by volume, 0 to 1% by volume, particularly 0. ~ 0.1% by volume. When there is too much content of a laser absorber, a laser absorber will melt in glass at the time of laser sealing, and this will devitrify glass, and it will become easy to fall the softening fluidity of a sealing material.
 本発明の封着材料において、波長808nmの単色光における光吸収率は、好ましくは20%以上、更に好ましくは30%以上である。この光吸収率が低いと、レーザー封着の際に封着材料層が光を適正に吸収できず、レーザー光の出力を上昇させない限り、レーザー封着強度を高めることができない。なお、レーザー光の出力を上昇させると、レーザー封着の際に内部素子が熱劣化する虞がある。ここで、「波長808nmの単色光における光吸収率」は、膜厚5μmに焼成した封着材料層について、λ=808nmの単色光の反射率と透過率を分光光度計でそれぞれ測定し、それらの合計値を100%から減じた値に相当する。 In the sealing material of the present invention, the light absorptance in monochromatic light having a wavelength of 808 nm is preferably 20% or more, more preferably 30% or more. If this light absorptance is low, the sealing material layer cannot absorb light properly at the time of laser sealing, and the laser sealing strength cannot be increased unless the output of the laser light is increased. If the output of the laser beam is increased, the internal element may be thermally deteriorated during laser sealing. Here, “light absorptivity in monochromatic light with a wavelength of 808 nm” is obtained by measuring the reflectance and transmittance of monochromatic light at λ = 808 nm with a spectrophotometer for the sealing material layer fired to a film thickness of 5 μm. This corresponds to a value obtained by subtracting the total value of 100% from 100%.
 本発明の封着材料において、熱膨張係数は、好ましくは85×10-7/℃以下、80×10-7/℃以下、特に50×10-7/℃以上、且つ75×10-7/℃以下である。このようにすれば、被封着物が低膨張である場合、レーザー封着の際に、被封着物や封着材料に熱歪みが生じ難くなり、被封着物や封着材料層にクラックが生じ難くなる。 In the sealing material of the present invention, the thermal expansion coefficient is preferably 85 × 10 −7 / ° C. or less, 80 × 10 −7 / ° C. or less, particularly 50 × 10 −7 / ° C. or more, and 75 × 10 −7 / ° C. It is below ℃. In this way, when the sealed object has a low expansion, thermal distortion is hardly generated in the sealed object or the sealing material during laser sealing, and a crack occurs in the sealed object or the sealing material layer. It becomes difficult.
 本発明の封着材料において、軟化点は、好ましくは500℃以下、450℃以下、特に400℃以下である。封着材料の軟化点が高過ぎると、レーザー封着の際にガラスが軟化流動し難くなるため、レーザー光の出力を上昇させない限り、レーザー封着強度を高めることができない。 In the sealing material of the present invention, the softening point is preferably 500 ° C. or lower, 450 ° C. or lower, particularly 400 ° C. or lower. If the softening point of the sealing material is too high, the glass becomes difficult to soften and flow during laser sealing, so the laser sealing strength cannot be increased unless the output of the laser beam is increased.
 本発明の封着材料は、まず上記ガラス組成を有するように各種原料を調合し、850~1000℃で1~3時間溶融してガラス化した後、溶融ガラスをフィルム成形し、更にボールミル粉砕、空気分級して、ガラス粉末を得る。その後、このガラス粉末に耐火性フィラー粉末等を添加して混合することにより、封着材料を得ることができる。 The sealing material of the present invention is prepared by first preparing various raw materials so as to have the above glass composition, melting at 850 to 1000 ° C. for 1 to 3 hours to vitrify, forming the molten glass into a film, and further ball milling, Air classification is performed to obtain glass powder. Then, a sealing material can be obtained by adding and mixing a refractory filler powder etc. to this glass powder.
 本発明の封着材料は、粉末の状態で使用に供してもよいが、ビークルと均一に混練し、封着材料ペーストに加工すると取り扱い易い。ビークルは、主に溶媒と樹脂で構成される。樹脂は、封着材料ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。封着材料ペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて被封着物上に塗布された後、脱バインダー工程に供される。 The sealing material of the present invention may be used in the form of powder, but it is easy to handle if it is uniformly kneaded with a vehicle and processed into a sealing material paste. The vehicle is mainly composed of a solvent and a resin. The resin is added for the purpose of adjusting the viscosity of the sealing material paste. Moreover, surfactant, a thickener, etc. can also be added as needed. The sealing material paste is applied to an object to be sealed using an applicator such as a dispenser or a screen printer, and then subjected to a binder removal step.
 樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好であるため、好ましい。 As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid esters and nitrocellulose are preferable because they have good thermal decomposability.
 溶媒として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。 Solvents include N, N'-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol Monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene Glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-methyl -2-pyrrolidone and the like can be used.
 本発明の封着材料は、気密パッケージの封着材料層に用いることが好ましい。気密パッケージは、パッケージ基体とガラス蓋とが封着材料層を介して気密封着された構造であることが好ましい。以下、気密パッケージについて、詳細に説明する。 The sealing material of the present invention is preferably used for a sealing material layer of an airtight package. The hermetic package preferably has a structure in which the package base and the glass lid are hermetically sealed via a sealing material layer. Hereinafter, the airtight package will be described in detail.
 パッケージ基体は、基部と基部上に設けられた枠部とを有することが好ましく、封着材料層は、該枠部の頂部に形成されていることが好ましい。このようにすれば、パッケージ基体の枠部内にMEMS、LED素子等の内部素子を収容し易くなる。パッケージ基体の枠部は、パッケージ基体の外側端縁領域に沿って、額縁状に形成されていることが好ましい。このようにすれば、デバイスとして機能する有効面積を拡大することができる。またMEMS、LED素子等の内部素子をパッケージ基体の枠部内に収容し易くなり、且つ配線接合等も行い易くなる。 The package base preferably has a base and a frame provided on the base, and the sealing material layer is preferably formed on the top of the frame. If it does in this way, it will become easy to accommodate internal elements, such as MEMS and a LED element, in the frame part of a package base. The frame portion of the package base is preferably formed in a frame shape along the outer edge region of the package base. In this way, the effective area that functions as a device can be expanded. In addition, it becomes easy to accommodate internal elements such as MEMS and LED elements in the frame portion of the package base, and it is also easy to perform wiring bonding and the like.
 枠部の頂部における封着材料層が配される領域の表面の表面粗さRaは1.0μm未満であることが好ましい。この表面の表面粗さRaが大きくなると、レーザー封着の精度が低下し易くなる。ここで、「表面粗さRa」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。 The surface roughness Ra of the surface of the region where the sealing material layer is disposed at the top of the frame is preferably less than 1.0 μm. If the surface roughness Ra of the surface increases, the accuracy of laser sealing tends to decrease. Here, the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
 枠部の頂部の幅は、好ましくは100~3000μm、200~1500μm、特に300~900μmである。枠部の頂部の幅が狭過ぎると、封着材料層と枠部の頂部との位置合わせが困難になる。一方、枠部の頂部の幅が広過ぎると、デバイスとして機能する有効面積が小さくなる。 The width of the top of the frame is preferably 100 to 3000 μm, 200 to 1500 μm, particularly 300 to 900 μm. If the width of the top of the frame is too narrow, it is difficult to align the sealing material layer and the top of the frame. On the other hand, if the width of the top of the frame is too wide, the effective area that functions as a device is reduced.
 パッケージ基体は、ガラス、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料(例えば、窒化アルミニウムとガラスセラミックを一体化したもの)であることが好ましい。ガラスは、封着材料層と反応層を形成し易いため、レーザー封着で強固な封着強度を確保することができる。ガラスセラミックは、封着材料層との濡れ性を適正化し易いという特徴がある。更にサーマルビアを容易に形成し得るため、気密パッケージが過度に温度上昇する事態を適正に防止することができる。窒化アルミニウムと酸化アルミニウムは、放熱性が良好であるため、気密パッケージの温度上昇を抑制し易くなる。 The package substrate is preferably made of glass, glass ceramic, aluminum nitride, or aluminum oxide, or a composite material thereof (for example, aluminum nitride and glass ceramic integrated). Since glass easily forms a sealing material layer and a reaction layer, a strong sealing strength can be secured by laser sealing. The glass ceramic has a feature that it is easy to optimize the wettability with the sealing material layer. Furthermore, since the thermal via can be easily formed, it is possible to appropriately prevent the temperature of the hermetic package from rising excessively. Since aluminum nitride and aluminum oxide have good heat dissipation, it is easy to suppress the temperature rise of the hermetic package.
 ガラスセラミック、窒化アルミニウム、酸化アルミニウムは、黒色顔料が分散されている(黒色顔料が分散された状態で焼結されてなる)ことが好ましい。このようにすれば、パッケージ基体が、封着材料層を透過したレーザー光を吸収することができる。その結果、レーザー封着の際にパッケージ基体の封着材料層と接触する箇所が加熱されるため、封着材料層とパッケージ基体の界面で反応層の形成を促進することができる。 The glass ceramic, aluminum nitride, and aluminum oxide preferably have a black pigment dispersed (sintered in a state in which the black pigment is dispersed). In this way, the package base can absorb the laser light transmitted through the sealing material layer. As a result, the portion of the package base that comes into contact with the sealing material layer is heated during laser sealing, so that the formation of the reaction layer can be promoted at the interface between the sealing material layer and the package base.
 黒色顔料が分散されているパッケージ基体は、照射すべきレーザー光を吸収する性質を有すること、つまり厚み0.5mm、照射すべきレーザー光の波長(808nm)における全光線透過率が10%以下(望ましくは5%以下)であることが好ましい。このようにすれば、パッケージ基体と封着材料層の界面で封着材料層の温度が上がり易くなる。 The package substrate in which the black pigment is dispersed has the property of absorbing the laser beam to be irradiated, that is, the thickness is 0.5 mm, and the total light transmittance at the wavelength of the laser beam to be irradiated (808 nm) is 10% or less ( Desirably, it is preferably 5% or less. If it does in this way, it will become easy to raise the temperature of a sealing material layer in the interface of a package base | substrate and a sealing material layer.
 パッケージ基体の基部の厚みは0.1~2.5mm、特に0.2~1.5mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。 The thickness of the base of the package substrate is preferably 0.1 to 2.5 mm, particularly preferably 0.2 to 1.5 mm. Thereby, thickness reduction of an airtight package can be achieved.
 パッケージ基体の枠部の高さ、つまりパッケージ基体から基部の厚みを引いた高さは、好ましくは100~2000μm、特に200~900μmである。このようにすれば、内部素子を適正に収容しつつ、気密パッケージの薄型化を図り易くなる。 The height of the frame portion of the package substrate, that is, the height obtained by subtracting the thickness of the base portion from the package substrate is preferably 100 to 2000 μm, particularly 200 to 900 μm. In this way, it becomes easy to reduce the thickness of the hermetic package while properly accommodating the internal elements.
 ガラス蓋として、種々のガラスが使用可能である。例えば、無アルカリガラス、アルカリホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。なお、ガラス蓋は、複数枚のガラス板を貼り合わせた積層ガラスであってもよい。 Various glass can be used as the glass lid. For example, alkali-free glass, alkali borosilicate glass, and soda lime glass can be used. The glass lid may be a laminated glass obtained by bonding a plurality of glass plates.
 ガラス蓋の内部素子側の表面に機能膜を形成してもよく、ガラス蓋の外側の表面に機能膜を形成してもよい。特に機能膜として反射防止膜が好ましい。これにより、ガラス蓋の表面で反射する光を低減することができる。 A functional film may be formed on the surface of the glass lid on the inner element side, or a functional film may be formed on the outer surface of the glass lid. In particular, an antireflection film is preferable as the functional film. Thereby, the light reflected on the surface of the glass lid can be reduced.
 ガラス蓋の厚みは、好ましくは0.1mm以上、0.2~2.0mm、0.4~1.5mm、特に0.5~1.2mmである。ガラス蓋の厚みが小さいと、気密パッケージの強度が低下し易くなる。一方、ガラス蓋の厚みが大きいと、気密パッケージの薄型化を図り難くなる。 The thickness of the glass lid is preferably 0.1 mm or more, 0.2 to 2.0 mm, 0.4 to 1.5 mm, particularly 0.5 to 1.2 mm. If the thickness of the glass lid is small, the strength of the hermetic package is likely to decrease. On the other hand, when the thickness of the glass lid is large, it is difficult to reduce the thickness of the hermetic package.
 ガラス蓋と封着材料層の熱膨張係数差は50×10-7/℃未満、40×10-7/℃未満、特に30×10-7/℃以下が好ましい。この熱膨張係数差が大き過ぎると、封着部分に残留する応力が不当に高くなり、気密パッケージの気密信頼性が低下し易くなる。 The difference in thermal expansion coefficient between the glass lid and the sealing material layer is preferably less than 50 × 10 −7 / ° C., less than 40 × 10 −7 / ° C., and particularly preferably 30 × 10 −7 / ° C. or less. When this difference in thermal expansion coefficient is too large, the stress remaining in the sealed portion becomes unreasonably high, and the hermetic reliability of the hermetic package tends to be lowered.
 封着材料層は、本発明の封着材料により構成されており、レーザー光を吸収することにより軟化変形して、パッケージ基体の表層に反応層を形成し、パッケージ基体とガラス蓋とを気密一体化する機能を有している。 The sealing material layer is composed of the sealing material of the present invention, and is softened and deformed by absorbing laser light to form a reaction layer on the surface layer of the package substrate, and the package substrate and the glass lid are hermetically integrated. It has a function to convert.
 封着材料層の端部(内側端部及び/又は外側端部)は、断面視で円弧状に側方に突出していることが好ましく、封着材料層の内側端部及び外側端部が円弧状に突き出ていることが更に好ましい。このようにすれば、気密パッケージにせん断応力がかかった時に、封着材料層がバルク破壊し難くなる。結果として、気密パッケージの気密信頼性を高めることができる。 The end portion (inner end portion and / or outer end portion) of the sealing material layer preferably protrudes laterally in an arc shape in a cross-sectional view, and the inner end portion and the outer end portion of the sealing material layer are circular. More preferably, it projects in an arc. This makes it difficult for the sealing material layer to be bulk broken when shearing stress is applied to the hermetic package. As a result, the airtight reliability of the airtight package can be improved.
 封着材料層は、枠部との接触位置が枠部の頂部の内側端縁から離間するように形成されると共に、枠部の頂部の外側端縁から離間するように形成することが好ましく、枠部の頂部の内側端縁から50μm以上、60μm以上、70~2000μm、特に80~1000μm離間した位置に形成されることが更に好ましい。枠部の頂部の内側端縁と封着材料層の離間距離が短過ぎると、レーザー封着の際に、局所加熱で発生した熱が逃げ難くなるため、冷却過程でガラス蓋が破損し易くなる。一方、枠部の頂部の内側端縁と封着材料層の離間距離が長過ぎると、気密パッケージの小型化が困難になる。また枠部の頂部の外側端縁から50μm以上、60μm以上、70~2000μm、特に80~1000μm離間した位置に形成されていることが好ましい。枠部の頂部の外側端縁と封着材料層の離間距離が短過ぎると、レーザー封着の際に、局所加熱で発生した熱が逃げ難くなるため、冷却過程でガラス蓋が破損し易くなる。一方、枠部の頂部の外側端縁と封着材料層の離間距離が長過ぎると、気密パッケージの小型化が困難になる。 The sealing material layer is preferably formed so that the contact position with the frame portion is separated from the inner edge of the top portion of the frame portion, and is separated from the outer edge of the top portion of the frame portion, More preferably, it is formed at a position 50 μm or more, 60 μm or more, 70 to 2000 μm, particularly 80 to 1000 μm apart from the inner edge of the top of the frame. If the distance between the inner edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. . On the other hand, if the distance between the inner edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package. Further, it is preferably formed at a position 50 μm or more, 60 μm or more, 70 to 2000 μm, particularly 80 to 1000 μm apart from the outer edge of the top of the frame portion. If the distance between the outer edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. . On the other hand, if the distance between the outer edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package.
 封着材料層は、ガラス蓋との接触位置がガラス蓋の端縁から50μm以上、60μm以上、70~1500μm、特に80~800μm離間するように形成されていることが好ましい。ガラス蓋の端縁と封着材料層の離間距離が短過ぎると、レーザー封着の際に、ガラス蓋の端縁領域において、ガラス蓋の内部素子側の表面と外側の表面の表面温度差が大きくなり、ガラス蓋が破損し易くなる。 The sealing material layer is preferably formed so that the position of contact with the glass lid is 50 μm or more, 60 μm or more, 70 to 1500 μm, particularly 80 to 800 μm away from the edge of the glass lid. If the separation distance between the edge of the glass lid and the sealing material layer is too short, the surface temperature difference between the surface on the inner element side and the outer surface of the glass lid in the edge region of the glass lid during laser sealing. It becomes large and the glass lid is easily broken.
 封着材料層は、枠部の頂部の幅方向の中心線上に形成されている、つまり枠部の頂部の中央領域に形成されていることが好ましい。このようにすれば、レーザー封着の際に、局所加熱で発生した熱が逃げ易くなるため、ガラス蓋が破損し難くなる。なお、枠部の頂部の幅が充分に大きい場合は、枠部の頂部の幅方向の中心線上に封着材料層を形成しなくてもよい。 The sealing material layer is preferably formed on the center line in the width direction of the top of the frame, that is, formed in the central region of the top of the frame. In this way, the heat generated by local heating is easily escaped at the time of laser sealing, so that the glass lid is difficult to break. In addition, when the width | variety of the top part of a frame part is large enough, it is not necessary to form the sealing material layer on the center line of the width direction of the top part of a frame part.
 封着材料層の平均厚みは、好ましくは8.0μm未満、特に1.0μm以上、且つ6.0μm未満である。封着材料層の平均厚みが小さい程、封着材料層とガラス蓋の熱膨張係数が不整合である時に、レーザー封着後に封着部分に残留する応力を低減することができる。またレーザー封着の精度を高めることもできる。なお、上記のように封着材料層の平均厚みを規制する方法としては、複合粉末ペーストを薄く塗布する方法、封着材料層の表面を研磨処理する方法等が挙げられる。 The average thickness of the sealing material layer is preferably less than 8.0 μm, particularly 1.0 μm or more and less than 6.0 μm. The smaller the average thickness of the sealing material layer, the lower the stress remaining in the sealing portion after laser sealing when the thermal expansion coefficients of the sealing material layer and the glass lid are mismatched. In addition, the accuracy of laser sealing can be increased. Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying the composite powder paste, a method of polishing the surface of the sealing material layer, and the like.
 封着材料層の最大幅は、好ましくは1μm以上、且つ2000μm以下、10μm以上、且つ1000μm以下、50μm以上、且つ800μm以下、特に100μm以上、且つ600μm以下である。封着材料層の最大幅を狭くすると、封着材料層を枠部の端縁から離間させ易くなるため、レーザー封着後に封着部分に残留する応力を低減し易くなる。更にパッケージ基体の枠部の幅を狭くすることができ、デバイスとして機能する有効面積を拡大することができる。一方、封着材料層の最大幅が狭過ぎると、封着材料層に大きなせん断応力がかかった場合に、封着材料層がバルク破壊し易くなる。更にレーザー封着の精度が低下し易くなる。 The maximum width of the sealing material layer is preferably 1 μm or more and 2000 μm or less, 10 μm or more, 1000 μm or less, 50 μm or more and 800 μm or less, particularly 100 μm or more and 600 μm or less. When the maximum width of the sealing material layer is narrowed, the sealing material layer is easily separated from the edge of the frame portion, so that it is easy to reduce the stress remaining in the sealing portion after laser sealing. Furthermore, the width of the frame portion of the package substrate can be reduced, and the effective area that functions as a device can be increased. On the other hand, if the maximum width of the sealing material layer is too narrow, the sealing material layer easily breaks in bulk when a large shear stress is applied to the sealing material layer. Furthermore, the accuracy of laser sealing tends to be reduced.
 封着材料層の平均厚みを封着材料層の最大幅で除した値は、好ましくは0.003以上、0.005以上、0.01~0.1、特に0.02~0.05である。封着材料層の平均厚みを封着材料層の最大幅で除した値が小さ過ぎると、封着材料層に大きなせん断応力がかかった場合に、封着材料層がバルク破壊し易くなる。一方、封着材料層の平均厚みを封着材料層の最大幅で除した値が大き過ぎると、レーザー封着の精度が低下し易くなる。 A value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is preferably 0.003 or more, 0.005 or more, 0.01 to 0.1, particularly 0.02 to 0.05. is there. When the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too small, the bulk of the sealing material layer is easily broken when a large shear stress is applied to the sealing material layer. On the other hand, if the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too large, the accuracy of laser sealing tends to be lowered.
 封着材料層の表面粗さRaは、好ましくは0.5μm未満、0.2μm以下、特に0.01~0.15μmである。また、封着材料層の表面粗さRMSは、好ましくは1.0μm未満、0.5μm以下、特に0.05~0.3μmである。このようにすれば、パッケージ基体と封着材料層の密着性が向上し、レーザー封着の精度が向上する。ここで、「表面粗さRMS」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。なお、上記のように封着材料層の表面粗さRa、RMSを規制する方法としては、封着材料層の表面を研磨処理する方法、耐火性フィラー粉末の粒度を小さくする方法等が挙げられる。 The surface roughness Ra of the sealing material layer is preferably less than 0.5 μm, 0.2 μm or less, and particularly 0.01 to 0.15 μm. Further, the surface roughness RMS of the sealing material layer is preferably less than 1.0 μm and 0.5 μm or less, particularly 0.05 to 0.3 μm. In this way, the adhesion between the package substrate and the sealing material layer is improved, and the accuracy of laser sealing is improved. Here, the “surface roughness RMS” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter. Examples of the method for regulating the surface roughness Ra and RMS of the sealing material layer as described above include a method of polishing the surface of the sealing material layer, a method of reducing the particle size of the refractory filler powder, and the like. .
 気密パッケージを製造する方法としては、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、パッケージ基体とガラス蓋とを気密封着して、気密パッケージを得ることが好ましい。この場合、ガラス蓋をパッケージ基体の下方に配置してもよいが、レーザー封着の効率の観点から、ガラス蓋をパッケージ基体の上方に配置することが好ましい。 As a method for manufacturing an airtight package, the package base and the glass lid are hermetically sealed by irradiating a laser beam from the glass lid side toward the sealing material layer and softening and deforming the sealing material layer. It is preferable to obtain an airtight package. In this case, the glass lid may be disposed below the package substrate, but it is preferable to dispose the glass lid above the package substrate from the viewpoint of laser sealing efficiency.
 レーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。 Various lasers can be used as the laser. In particular, a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
 レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。 The atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
 レーザー封着を行う際に、100℃以上、且つ内部素子の耐熱温度以下の温度でガラス蓋を予備加熱すると、レーザー封着の際にサーマルショックによるガラス蓋の破損を抑制し易くなる。またレーザー封着直後に、ガラス蓋側からアニールレーザーを照射すると、サーマルショックや残留応力によるガラス蓋の破損を更に抑制し易くなる。 When performing laser sealing, if the glass lid is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistance temperature of the internal element, it becomes easy to suppress breakage of the glass lid due to thermal shock during laser sealing. Further, if the annealing laser is irradiated from the glass lid side immediately after the laser sealing, it becomes easier to further suppress the breakage of the glass lid due to thermal shock or residual stress.
 ガラス蓋を押圧した状態でレーザー封着を行うことが好ましい。これにより、レーザー封着の際に、封着材料層の端部を円弧状に突出させ易くなる。そして、封着材料層の端部を円弧状に突出させた場合、気密パッケージにせん断応力がかかった時に、封着材料層がバルク破壊し難くなる。結果として、気密パッケージの気密信頼性を高めることができる。 It is preferable to perform laser sealing while pressing the glass lid. Thereby, at the time of laser sealing, it becomes easy to project the edge part of the sealing material layer in circular arc shape. And when the edge part of the sealing material layer is protruded in circular arc shape, when a shearing stress is applied to an airtight package, it becomes difficult to bulk-break a sealing material layer. As a result, the airtight reliability of the airtight package can be improved.
 以下、図面を参照しながら、本発明を説明する。図1は、気密パッケージの一実施形態を説明するための概略断面図である。図1から分かるように、気密パッケージ1は、パッケージ基体10とガラス蓋11とを備えている。また、パッケージ基体10は、基部12と、基部12の外周端縁上に額縁状の枠部13とを有している。そして、パッケージ基体10の枠部13内には、内部素子14が収容されている。なお、パッケージ基体10内には、内部素子14と外部を電気的に接続する電気配線(図示されていない)が形成されている。 Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view for explaining an embodiment of an airtight package. As can be seen from FIG. 1, the hermetic package 1 includes a package base 10 and a glass lid 11. Further, the package base 10 includes a base 12 and a frame-shaped frame portion 13 on the outer peripheral edge of the base 12. An internal element 14 is accommodated in the frame portion 13 of the package base 10. An electrical wiring (not shown) that electrically connects the internal element 14 and the outside is formed in the package base 10.
 封着材料層15は、パッケージ基体10の枠部13の頂部とガラス蓋11の内部素子14側の表面との間に、枠部13の頂部の全周に亘って配されている。また、封着材料層15は、本発明の封着材料により構成されている。そして、封着材料層15の幅は、パッケージ基体10の枠部13の頂部の幅よりも小さく、更にガラス蓋11及び枠部13の端部の端縁から離間している。更に封着材料層15の平均厚みは8.0μm未満になっている。 The sealing material layer 15 is arranged over the entire circumference of the top of the frame 13 between the top of the frame 13 of the package base 10 and the surface of the glass lid 11 on the internal element 14 side. Moreover, the sealing material layer 15 is comprised with the sealing material of this invention. The width of the sealing material layer 15 is smaller than the width of the top portion of the frame portion 13 of the package substrate 10, and is further away from the edge of the end portions of the glass lid 11 and the frame portion 13. Furthermore, the average thickness of the sealing material layer 15 is less than 8.0 μm.
 また、上記気密パッケージ1は、次のようにして作製することができる。まず封着材料層15と枠部13の頂部が接するように、封着材料層15が予め形成されたガラス蓋11をパッケージ基体10上に載置する。続いて、押圧治具を用いてガラス蓋11を押圧しながら、ガラス蓋11側から封着材料層15に沿って、レーザー照射装置18から出射したレーザー光Lを照射する。これにより、封着材料層15が軟化流動し、パッケージ基体10の枠部13の頂部の表層と反応することで、パッケージ基体10とガラス蓋11が気密一体化されて、気密パッケージ1の気密構造が形成される。 The airtight package 1 can be manufactured as follows. First, the glass lid 11 on which the sealing material layer 15 is formed in advance is placed on the package base 10 so that the sealing material layer 15 and the top of the frame portion 13 are in contact with each other. Subsequently, the laser beam L emitted from the laser irradiation device 18 is irradiated along the sealing material layer 15 from the glass lid 11 side while pressing the glass lid 11 using a pressing jig. As a result, the sealing material layer 15 softens and flows and reacts with the top layer of the frame portion 13 of the package base 10, whereby the package base 10 and the glass lid 11 are hermetically integrated, and the airtight structure of the hermetic package 1. Is formed.
 実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 The present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1は、本発明の実施例(試料No.1~4)と比較例(試料No.5~8)を示している。なお、表中で「N.A.」は、未測定であることを意味する。 Table 1 shows examples of the present invention (Sample Nos. 1 to 4) and comparative examples (Sample Nos. 5 to 8). In the table, “NA” means not measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次のようにして、表中に記載のガラス粉末を作製した。まず表中のガラス組成になるように、各種原料を調合したガラスバッチを準備し、これを白金坩堝に入れて900℃で1時間溶融した。溶融に際し、白金棒を用いて攪拌し、溶融ガラスの均質化を行った。次に、得られた溶融ガラスの一部を水冷双ローラー間に流し出して、フィルム状に成形し、残りの溶融ガラスをカーボン製の型枠に流し出して、棒状に成形した。最後に、得られたガラスフィルムをボールミルにて粉砕後、平均粒子径D50が1.0μm、最大粒子径Dmaxが3.0μmになるように空気分級機で分級した。また、棒状のガラスについては、徐冷点よりも約20℃高い温度に保持された電気炉内に投入した後、3分/分の降温速度で常温まで徐冷した。なお、この棒状のガラスは、密度測定用に使用するものである。 The glass powder described in the table was produced as follows. First, a glass batch in which various raw materials were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 900 ° C. for 1 hour. Upon melting, the mixture was stirred with a platinum rod to homogenize the molten glass. Next, a part of the obtained molten glass was poured out between water-cooled twin rollers and formed into a film shape, and the remaining molten glass was poured out into a carbon mold and formed into a rod shape. Finally, the obtained glass film was pulverized with a ball mill and then classified with an air classifier so that the average particle diameter D 50 was 1.0 μm and the maximum particle diameter D max was 3.0 μm. Further, the rod-shaped glass was put into an electric furnace maintained at a temperature about 20 ° C. higher than the annealing point, and then slowly cooled to room temperature at a temperature lowering rate of 3 minutes / minute. This rod-shaped glass is used for density measurement.
 耐火物フィラー粉末として、NbZr(PO)を用いた。耐火物フィラー粉末は、空気分級により、平均粒子径D501.0μm、最大粒子径Dmax3.0μmに調整されている。 NbZr (PO 4 ) 3 was used as the refractory filler powder. The refractory filler powder is adjusted to an average particle diameter D 50 of 1.0 μm and a maximum particle diameter D max of 3.0 μm by air classification.
 ガラス粉末と耐火性フィラー粉末を表中に示す混合割合で混合し、試料No.1~8を作製した。試料No.1~8につき、熱膨張係数α、軟化流動性、レーザー封着強度及び気密信頼性を評価した。その結果を表1に示す。 Glass powder and refractory filler powder were mixed in the mixing ratio shown in the table, and sample No. 1 to 8 were produced. Sample No. For 1 to 8, the thermal expansion coefficient α, softening fluidity, laser sealing strength and hermetic reliability were evaluated. The results are shown in Table 1.
 熱膨張係数αは、TMA装置により、30~150℃の温度範囲で測定した値である。なお、TMAの測定試料として、各試料を緻密に焼結させた後、所定形状に加工したものを用いた。 The thermal expansion coefficient α is a value measured with a TMA apparatus in a temperature range of 30 to 150 ° C. In addition, as a measurement sample of TMA, after each sample was sintered precisely, it was processed into a predetermined shape.
 軟化流動性は、各試料について、0.6cm分に相当する質量の粉末を金型により外径20mmのボタン状に乾式プレスし、これを25mm×25mm×0.6mm厚のアルミナ基板上に載置し、空気中で10℃/分の速度で昇温した後、510℃で10分間保持した上で室温まで10℃/分で降温し、得られたボタンの直径(流動径)を測定することで評価したものである。具体的には、流動径が16.0mm以上である場合を「○」、16.0mm未満である場合を「×」として評価した。 For softening fluidity, for each sample, a powder having a mass corresponding to 0.6 cm 3 minutes was dry-pressed into a button shape having an outer diameter of 20 mm using a mold, and this was placed on an alumina substrate having a thickness of 25 mm × 25 mm × 0.6 mm. Placed, heated in air at a rate of 10 ° C / minute, held at 510 ° C for 10 minutes, then cooled to room temperature at 10 ° C / minute, and measured the button diameter (flow diameter) It is evaluated by doing. Specifically, the case where the flow diameter was 16.0 mm or more was evaluated as “◯”, and the case where it was less than 16.0 mm was evaluated as “x”.
 次のようにして、レーザー封着強度を評価した。最初に、各試料とビークル(エチルセルロース樹脂含有のトリプロピレングリコールモノブチルエーテル)を三本ロールミルで均一に混錬し、ペースト化した後、無アルカリガラス基板(日本電気硝子株式会社製OA-10、□40mm×0.5mm厚、熱膨張係数38×10-7/℃)上に、無アルカリガラス基板の端縁に沿って額縁状(5μm厚、0.6mm幅)に塗布し、乾燥オーブンで120℃、10分間乾燥した。次に、室温から10℃/分で昇温し、450℃で10分間焼成した後、室温まで10℃/分で降温し、ペースト中の樹脂成分の焼却(脱バインダー処理)及び封着材料の固着を行い、無アルカリガラス基板上に封着材料層を形成した。次に、封着材料層を有する無アルカリガラス基板を、封着材料層が形成されていないLTCC製パッケージ(□40mm)の上に正確に重ねた後、無アルカリガラス基板側から、封着材料層に沿って、波長808nmのレーザー光を照射することにより、封着材料層を軟化流動させて、無アルカリガラス基板とLTCC製パッケージを気密封着した。なお、封着材料層の平均厚みに応じて、レーザー光の照射条件(出力、照射速度)を調整した。最後に、得られた封着構造体を上方1mからコンクリート上に落下させた後、無アルカリガラスと封着材料層の界面に剥離が発生しなかったものを「○」、無アルカリガラスと封着材料層の界面が部分的に剥離したものを「△」、無アルカリガラスと封着材料層の界面が完全に剥離したものを「×」として、レーザー封着強度を評価した。 The laser sealing strength was evaluated as follows. First, each sample and vehicle (tripropylene glycol monobutyl ether containing ethylcellulose resin) were uniformly kneaded with a three-roll mill and made into a paste, and then an alkali-free glass substrate (OA-10, □ manufactured by Nippon Electric Glass Co., Ltd.) 40 mm × 0.5 mm thickness, thermal expansion coefficient 38 × 10 −7 / ° C.) along the edge of the non-alkali glass substrate in a frame shape (5 μm thickness, 0.6 mm width) and 120 mm in a drying oven. Dry at 10 ° C. for 10 minutes. Next, the temperature was raised from room temperature at 10 ° C./minute, baked at 450 ° C. for 10 minutes, and then lowered to room temperature at 10 ° C./minute to incinerate the resin component in the paste (debinder treatment) and the sealing material Fixing was performed to form a sealing material layer on the alkali-free glass substrate. Next, an alkali-free glass substrate having a sealing material layer is accurately stacked on an LTCC package (□ 40 mm) on which no sealing material layer is formed, and then the sealing material is formed from the alkali-free glass substrate side. By irradiating a laser beam having a wavelength of 808 nm along the layer, the sealing material layer was softened and fluidized, and the alkali-free glass substrate and the LTCC package were hermetically sealed. The laser light irradiation conditions (output and irradiation speed) were adjusted according to the average thickness of the sealing material layer. Finally, after the obtained sealing structure was dropped onto the concrete from 1 m above, “○” indicates that no peeling occurred at the interface between the alkali-free glass and the sealing material layer, The laser sealing strength was evaluated with “Δ” indicating that the interface of the adhesive material layer was partially peeled, and “X” indicating that the interface between the alkali-free glass and the sealing material layer was completely peeled.
 次のようにして、気密信頼性を評価した。上記の方法で得られた封着構造体を85℃、湿度85%に保持された恒温恒湿槽内で1000時間保持した。その後、封着構造体を光学顕微鏡で観察して、封着材料層が変質せず、封着構造体内に水分の侵入が認められなかったものを「○」、封着構造体内に水分の侵入が認められなかったが、封着材料層が変質したものを「△」、封着構造体内に水分の侵入が認められたものを「×」として、気密信頼性を評価した。 The airtight reliability was evaluated as follows. The sealing structure obtained by the above method was held for 1000 hours in a constant temperature and humidity chamber maintained at 85 ° C. and a humidity of 85%. After that, the sealing structure was observed with an optical microscope. The sealing material layer did not change in quality and the invasion of moisture was not recognized in the sealing structure. The airtight reliability was evaluated with “Δ” indicating that the sealing material layer was altered and “X” indicating that water had entered the sealing structure.
 表1から分かるように、試料No.1~4は、ガラス粉末のガラス組成が所定範囲に規制されているため、軟化流動性、レーザー封着強度及び気密信頼性の評価が良好であった。一方、試料No.5、6は、耐候性が低いため、気密信頼性の評価が不良であった。また試料No.7は、軟化流動性、レーザー封着強度及び気密信頼性の評価が不良であった。更に試料No.8は、光吸収特性が低いため、レーザー封着強度の評価が不良であった。 As can be seen from Table 1, sample no. In Nos. 1 to 4, since the glass composition of the glass powder was regulated within a predetermined range, the evaluation of softening fluidity, laser sealing strength, and airtight reliability was good. On the other hand, Sample No. Since 5 and 6 had low weather resistance, evaluation of airtight reliability was unsatisfactory. Sample No. No. 7 had poor evaluation of softening fluidity, laser sealing strength and airtight reliability. Furthermore, sample no. No. 8 was poor in laser sealing strength due to low light absorption characteristics.
 まず、外形30mm×20mm、外形に沿って額縁状に形成される枠部の幅2.5mm、枠部の高さ2.5mm、基部の厚み1.0mmの寸法を有するパッケージ基体が得られるように、グリーンシート(日本電気硝子社製MLS-26B)を積層、圧着した後、870℃で20分間焼成して、ガラスセラミックからなるパッケージ基体を得た。 First, a package base having an outer dimension of 30 mm × 20 mm, a frame portion width of 2.5 mm formed along the outer shape, a frame portion height of 2.5 mm, and a base portion thickness of 1.0 mm is obtained. Then, a green sheet (MLS-26B manufactured by Nippon Electric Glass Co., Ltd.) was laminated and pressure-bonded, followed by firing at 870 ° C. for 20 minutes to obtain a package substrate made of glass ceramic.
 次のようにして試料No.1~4に係る気密パッケージをそれぞれ得た。ホウケイ酸ガラスからなるガラス蓋(日本電気硝子社製BDA、30mm×20mm×厚み0.3mm)の外周端縁に沿って、上記試料No.1~4に係る封着材料を用いて額縁状の封着材料層を形成した。詳述すると、まず、粘度が約100Pa・s(25℃、Shear rate:4)になるように、上記試料No.1~4に係る封着材料、ビークル及び溶剤を混練した後、更に三本ロールミルで粉末が均一に分散するまで混錬して、ペースト化し、封着材料ペーストを得た。ビークルにはグリコールエーテル系溶剤にエチルセルロース樹脂を溶解させたものを使用した。次に、ガラス蓋の外周端縁に沿って、スクリーン印刷機により上記の封着材料ペーストを額縁状に印刷した。更に、大気雰囲気下にて、120℃で10分間乾燥した後、大気雰囲気下にて、500℃で10分間焼成することにより、平均幅400μm、平均厚み6μmの封着材料層をガラス蓋上に形成した Specimen no. Airtight packages according to 1 to 4 were obtained, respectively. Along the outer peripheral edge of a glass lid made of borosilicate glass (BDA manufactured by Nippon Electric Glass Co., Ltd., 30 mm × 20 mm × thickness 0.3 mm), the above sample No. A frame-shaped sealing material layer was formed using the sealing materials according to 1 to 4. More specifically, first, the sample No. 1 was adjusted so that the viscosity was about 100 Pa · s (25 ° C., Shear rate: 4). After the kneading of the sealing material according to 1 to 4, the vehicle and the solvent, the mixture was further kneaded with a three-roll mill until the powder was evenly dispersed to obtain a sealing material paste. A vehicle in which an ethyl cellulose resin was dissolved in a glycol ether solvent was used. Next, the above-mentioned sealing material paste was printed in a frame shape by a screen printer along the outer peripheral edge of the glass lid. Furthermore, after drying at 120 ° C. for 10 minutes in an air atmosphere, the sealing material layer having an average width of 400 μm and an average thickness of 6 μm is formed on the glass lid by baking at 500 ° C. for 10 minutes in the air atmosphere. Formed
 更に、封着材料層を有するガラス蓋を、パッケージ基体の上に正確に重ねた後、ガラス蓋側から、封着材料層に沿って、波長808nmのレーザー光を照射することにより、封着材料層を軟化流動させて、ガラス蓋とパッケージ基体を気密封着して、試料No.1~4に係る気密パッケージをそれぞれ得た。 Further, after the glass lid having the sealing material layer is accurately stacked on the package substrate, the sealing material is irradiated from the glass lid side along the sealing material layer with a laser beam having a wavelength of 808 nm. The layer is softened and fluidized, and the glass lid and the package base are hermetically sealed. Airtight packages according to 1 to 4 were obtained, respectively.
 試料No.1~4に係る気密パッケージを85℃、湿度85%に保持された恒温恒湿槽内で1000時間保持した後、光学顕微鏡で観察したところ、封着構造体内に水分の侵入が認められなかった。よって、試料No.1~4に係る気密パッケージは、気密信頼性が高いものと考えられる。 Sample No. The airtight package according to 1 to 4 was held for 1000 hours in a constant temperature and humidity chamber maintained at 85 ° C. and 85% humidity, and then observed with an optical microscope. As a result, no moisture intrusion was observed in the sealed structure. . Therefore, sample no. The hermetic packages 1 to 4 are considered to have high hermetic reliability.
 本発明のガラス粉末及びそれを用いた封着材料は、MEMSパッケージ、LEDパッケージ等の気密パッケージのレーザー封着に好適であり、色素増感型太陽電池、CIGS系薄膜化合物太陽電池等の太陽電池のレーザー封着にも好適である。 The glass powder of the present invention and the sealing material using the glass powder are suitable for laser sealing of airtight packages such as MEMS packages and LED packages, and are solar cells such as dye-sensitized solar cells and CIGS thin film compound solar cells. It is also suitable for laser sealing.

Claims (9)

  1.  ガラス組成として、下記酸化物換算のモル%で、AgO 10~50%、P 10~35%未満、TeO 1~35%未満、ZnO 3超~25%未満、Nb 0~10%、CuO+MnO+Fe+V+NiO+WO+MoO+Co 1~30%を含有することを特徴とするガラス粉末。 The glass composition is mol% in terms of the following oxides: Ag 2 O 10 to 50%, P 2 O 5 10 to less than 35%, TeO 2 1 to less than 35%, ZnO 3 to less than 25%, Nb 2 O 5 0 ~ 10%, CuO + MnO + Fe 2 O 3 + V 2 O 5 + NiO + WO 3 + MoO 3 + Co 3 O 4 1 ~ glass powder, characterized in that it contains 30%.
  2.  CuO+MnOの含有量が1~30モル%であることを特徴とする請求項1に記載のガラス粉末。 The glass powder according to claim 1, wherein the content of CuO + MnO is 1 to 30 mol%.
  3.  実質的にPbOを含有しないことを特徴とする請求項1又は2に記載のガラス粉末。 The glass powder according to claim 1 or 2, wherein the glass powder does not substantially contain PbO.
  4.  ガラス粉末 50~90体積%、耐火性フィラー粉末 10~50体積%、レーザー吸収材 0~20体積%を含有し、
     ガラス粉末が請求項1~3の何れかに記載のガラス粉末であることを特徴とする封着材料。
    Contains 50 to 90% by volume of glass powder, 10 to 50% by volume of refractory filler powder, 0 to 20% by volume of a laser absorber,
    A sealing material, wherein the glass powder is the glass powder according to any one of claims 1 to 3.
  5.  耐火性フィラー粉末が、NaZr(PO型固溶体、ウイレマイト、コージエライト、ジルコン、酸化スズ、β-ユークリプタイト、リン酸ジルコニウム、五酸化ニオブ、石英ガラス、ムライト、チタン酸アルミニウム、アルミナ、立方晶ジルコニア、チタニア、スズ酸亜鉛、マグネシア、石英、スピネル、ガーナイトから選ばれる一種又は二種以上であることを特徴とする請求項4に記載の封着材料。 The refractory filler powder is NaZr 2 (PO 4 ) type 3 solid solution, willemite, cordierite, zircon, tin oxide, β-eucryptite, zirconium phosphate, niobium pentoxide, quartz glass, mullite, aluminum titanate, alumina, 5. The sealing material according to claim 4, wherein the sealing material is one or more selected from cubic zirconia, titania, zinc stannate, magnesia, quartz, spinel, and garnite.
  6.  レーザー吸収材の含有量が5体積%以下であることを特徴とする請求項4又は6に記載の封着材料。 The sealing material according to claim 4 or 6, wherein the content of the laser absorber is 5% by volume or less.
  7.  レーザー封着に用いることを特徴とする請求項4~6の何れかに記載の封着材料。 7. The sealing material according to claim 4, which is used for laser sealing.
  8.  パッケージ基体とガラス蓋とが封着材料層を介して気密封着された気密パッケージであって、封着材料層が請求項4~7の何れかに記載の封着材料を含むことを特徴とする気密パッケージ。 A hermetic package in which a package base and a glass lid are hermetically sealed via a sealing material layer, wherein the sealing material layer includes the sealing material according to any one of claims 4 to 7. Airtight package.
  9.  パッケージ基体が、基部と基部上に設けられた枠部とを有し、封着材料層が該枠部の頂部とガラス蓋の間に介在していることを特徴とする請求項8に記載の気密パッケージ。 The package base has a base and a frame provided on the base, and a sealing material layer is interposed between the top of the frame and the glass lid. Airtight package.
PCT/JP2019/003769 2018-02-28 2019-02-04 Glass powder and sealing material using same WO2019167549A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018034879 2018-02-28
JP2018-034879 2018-02-28
JP2018073042A JP2019151539A (en) 2018-02-28 2018-04-05 Glass powder and sealing material using the same
JP2018-073042 2018-04-05

Publications (1)

Publication Number Publication Date
WO2019167549A1 true WO2019167549A1 (en) 2019-09-06

Family

ID=67806065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003769 WO2019167549A1 (en) 2018-02-28 2019-02-04 Glass powder and sealing material using same

Country Status (1)

Country Link
WO (1) WO2019167549A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037644A (en) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd Glass for sealing and sealing material which uses it
JP2002179436A (en) * 2000-12-14 2002-06-26 Nippon Electric Glass Co Ltd Silver phosphate glass and sealing material by using the same
JP2009067632A (en) * 2007-09-13 2009-04-02 Nippon Electric Glass Co Ltd Sealing glass for optical component, and method for sealing optical component
JP2009256116A (en) * 2008-04-14 2009-11-05 Nippon Electric Glass Co Ltd Glass composition for sealing and sealing material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037644A (en) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd Glass for sealing and sealing material which uses it
JP2002179436A (en) * 2000-12-14 2002-06-26 Nippon Electric Glass Co Ltd Silver phosphate glass and sealing material by using the same
JP2009067632A (en) * 2007-09-13 2009-04-02 Nippon Electric Glass Co Ltd Sealing glass for optical component, and method for sealing optical component
JP2009256116A (en) * 2008-04-14 2009-11-05 Nippon Electric Glass Co Ltd Glass composition for sealing and sealing material

Similar Documents

Publication Publication Date Title
CN107112974B (en) Method for manufacturing hermetic package
WO2015060248A1 (en) Sealing material
US10377086B2 (en) Manufacturing method for airtight package
KR20200071675A (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package, and organic electroluminescence element
WO2017170051A1 (en) Glass powder and sealing material using same
WO2020071047A1 (en) Airtight package
KR102380455B1 (en) confidential package
JP2019151539A (en) Glass powder and sealing material using the same
KR102400344B1 (en) Package airframe and airtight package using it
JP2013119501A (en) Methods for producing glass member added with sealing material layer, and hermetic member
WO2019167549A1 (en) Glass powder and sealing material using same
JP6768194B2 (en) Bismuth-based glass, manufacturing method of bismuth-based glass and sealing material
JP6944642B2 (en) Manufacturing method of airtight package and airtight package
JP7082309B2 (en) Cover glass and airtight package
CN109415244B (en) Bismuth glass, method for producing bismuth glass, and sealing material
JP6840982B2 (en) Bismuth glass and sealing materials using it
WO2024057823A1 (en) Sealant-layer-equipped glass substrate and method for producing hermetic package
JP7047270B2 (en) Manufacturing method of package substrate with sealing material layer and manufacturing method of airtight package
WO2018193767A1 (en) Cover glass and airtight package using same
WO2018186200A1 (en) Sealing material and method for producing crystallized glass powder
JP5874250B2 (en) Method for producing glass substrate with sealing material layer for laser sealing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761022

Country of ref document: EP

Kind code of ref document: A1