WO2018186200A1 - Sealing material and method for producing crystallized glass powder - Google Patents

Sealing material and method for producing crystallized glass powder Download PDF

Info

Publication number
WO2018186200A1
WO2018186200A1 PCT/JP2018/011577 JP2018011577W WO2018186200A1 WO 2018186200 A1 WO2018186200 A1 WO 2018186200A1 JP 2018011577 W JP2018011577 W JP 2018011577W WO 2018186200 A1 WO2018186200 A1 WO 2018186200A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
glass
material layer
glass powder
crystallized glass
Prior art date
Application number
PCT/JP2018/011577
Other languages
French (fr)
Japanese (ja)
Inventor
将行 廣瀬
光佑 吉田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2019511154A priority Critical patent/JPWO2018186200A1/en
Publication of WO2018186200A1 publication Critical patent/WO2018186200A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • the present invention relates to a sealing material and a method for producing crystallized glass powder, and more specifically to a sealing material used for laser sealing and a method for producing crystallized glass powder.
  • a composite powder material including glass powder and ceramic powder is used as the sealing material.
  • This sealing material is excellent in chemical durability and heat resistance as compared with a resin-based adhesive, and is suitable for ensuring airtightness.
  • high-expansion low-melting glass such as PbO glass or bismuth glass is used (see Patent Documents 1 and 2).
  • the thermal expansion coefficient of the sealing material can be effectively reduced.
  • the thickness of the sealing material layer In recent years, there is a demand for reducing the thickness of the sealing material layer. For example, when laser sealing (sealing by laser light irradiation) is performed, the accuracy of laser sealing can be significantly increased by reducing the thickness of the sealing material layer. Moreover, reducing the thickness of the sealing material layer can contribute to the reduction in the height and size of the display and the hermetic package.
  • the particle size of the ceramic powder in the sealing material must be reduced.
  • the ceramic powder is produced by a solid phase reaction method, it is very hard and requires a large impact and time for pulverization. Also, the solid phase reaction itself takes time. Therefore, when the ceramic powder is refined, there arises a problem that the productivity of the sealing material is greatly reduced.
  • the present invention has been made in view of the above circumstances, and its technical problem is to create a sealing material that does not decrease productivity even when the constituent material is made finer and has a low coefficient of thermal expansion. That is.
  • the sealing material of the present invention is characterized by containing at least a bismuth-based glass powder and a negatively expanded crystallized glass powder.
  • bismuth-based glass refers to a glass having a Bi 2 O 3 content of 25 mol% or more in the glass composition.
  • the negatively-expanded crystallized glass powder is produced by once forming a glass melt to obtain a crystalline glass, followed by crystallization. In this way, the glass phase remains in the crystallized glass and cracks are generated in the glass phase, so that the crystallized glass powder can be easily refined. Furthermore, negative expansion crystals such as LAS crystals can be easily precipitated. As a result, it is possible to achieve both the finer sealing material and the lower expansion without reducing the productivity.
  • the main crystal of the crystallized glass powder is ⁇ -eucryptite or ⁇ -quartz solid solution.
  • LAS-based crystals Li 2 O—Al 2 O 3 —nSiO 2
  • ⁇ -eucryptite Li 2 O—Al 2 O 3 —2SiO 2
  • ⁇ -eucryptite are further solidified from SiO 2.
  • the melted ⁇ -quartz solid solution Li 2 O—Al 2 O 3 —nSiO 2 : n> 2 has a negative expansion characteristic due to distortion of grain boundaries between crystal grains.
  • the crystallized glass powder does not substantially contain components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 .
  • substantially free of components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 means SiO 2 , Al 2 O 3 , Li 2 O, TiO in the composition. This refers to the case where the total content of 2 and ZrO 2 is 99.7 mol% or more.
  • the sealing material of the present invention preferably has a thermal expansion coefficient of less than 74 ⁇ 10 ⁇ 7 / ° C. in the temperature range of 30 to 300 ° C.
  • the “thermal expansion coefficient at 30 to 300 ° C.” can be measured by TMA (push bar type thermal expansion coefficient measurement).
  • the sealing material of the present invention is preferably used for laser sealing.
  • the manufacturing method of the crystallized glass powder of the present invention includes a melting step of melting a raw material batch to obtain a glass melt, a molding step of forming a glass melt to obtain a crystalline glass, and crystallizing the crystalline glass. And a crystallization step for obtaining crystallized glass and a pulverization step for pulverizing the crystallized glass to obtain a crystallized glass powder.
  • crystallized glass powder of the present invention it is preferable to crystallize the crystalline glass at a temperature of 900 to 1400 ° C.
  • the sealing material of the present invention contains at least a bismuth-based glass powder and a negatively expanded crystallized glass powder.
  • the content of crystallized glass powder in the sealing material is preferably 1 to 45% by volume, 10 to 45% by volume, 15 to 40% by volume, particularly 20 to 35% by volume.
  • content of crystallized glass powder When there is too little content of crystallized glass powder, it will become difficult to reduce the thermal expansion coefficient of a sealing material, and the mechanical strength of a sealing material layer will fall easily.
  • content of bismuth-type glass powder will become relatively small, and it will become difficult to ensure desired softening fluidity
  • ⁇ -eucryptite or ⁇ -quartz solid solution is preferably precipitated as the main crystal, and other crystals are preferably not precipitated, but the effect of the present invention is significantly impaired. Unless otherwise, a small amount of other crystals may be precipitated.
  • the crystallized glass powder has a composition of mol%, Li 2 O 10 to 35% (preferably 16 to 28%), Al 2 O 3 10 to 60% (preferably 25 to 50%), SiO 2 20 to It is preferable to contain 65% (preferably 25 to 55%) and TiO 2 + ZrO 2 0.005 to 5% (preferably 0.1 to 4%).
  • TiO 2 and ZrO 2 are components that increase the production rate of LAS-based crystals, but if their content is too large, the thermal expansion coefficient of the crystallized glass powder tends to increase.
  • the crystallized glass powder does not substantially contain components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 . If a component other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , ZrO 2 is contained in the crystallized glass powder, the compatibility with the bismuth-based glass powder is reduced, and the bismuth-based powder is sealed at the time of laser sealing. There is a risk of devitrification of the glass. In addition, a high expansion glass phase remains in the crystallized glass powder, which may increase the thermal expansion coefficient of the crystallized glass powder. In addition, when substantially no components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 are contained, the moldability and foaming properties are reduced. It doesn't matter.
  • the manufacturing method of the crystallized glass powder of the present invention includes a melting step of melting a raw material batch to obtain a glass melt, a molding step of forming a glass melt to obtain a crystalline glass, and crystallizing the crystalline glass. And a crystallization step for obtaining crystallized glass and a pulverization step for pulverizing the crystallized glass to obtain a crystallized glass powder. If it does in this way, it will become easy to refine
  • the raw material batch can be melted in an electric furnace, a gas furnace or the like.
  • the melting temperature of the raw material batch is preferably 1450 to 1650 ° C., particularly 1500 to 1600 ° C. If the melting temperature is too low, the glass melt becomes inhomogeneous and the amount of crystallized crystals of the crystallized glass powder tends to decrease. On the other hand, when the melting temperature is too high, a part of the glass component is volatilized and the glass composition tends to fluctuate.
  • the melting time of the raw material batch is preferably 1 to 3 hours. If the melting time is too short, the glass melt becomes inhomogeneous and the amount of crystallized crystals of the crystallized glass powder tends to decrease. On the other hand, if the firing time is too long, part of the glass component volatilizes and the glass composition tends to fluctuate.
  • the raw material batch is preferably mixed using a multi-mill or the like. In this way, since the uniformity of the raw material batch is improved, the glass melt is likely to be homogeneous.
  • the glass melt is preferably formed into a film. In this way, since many cracks are generated in the crystalline glass, the pulverization efficiency of the crystallized glass is improved and the crystallized glass powder is easily refined.
  • the method for producing crystallized glass powder of the present invention it is preferable to crystallize the crystalline glass at a temperature of 900 to 1400 ° C., particularly 1000 to 1300 ° C. If the crystallization temperature is too low, the formation of crystal nuclei does not proceed sufficiently, and there is a risk that many highly expanded glass phases remain. On the other hand, if the crystallization temperature is too high, the crystals melt and become a glass melt.
  • the crystallized glass can be pulverized by a ball mill, a jaw crusher, a jet mill, a disk mill, a spectro mill, a grinder, a mixer mill or the like. From this point of view, it is preferable to carry out by a wet or dry method using a ball mill. In this way, since the particle diameter of the crystallized glass powder becomes small, it can be suitably applied to an airtight package in which the sealing material layer has a small thickness.
  • Bismuth glass powder is a glass composition including, in mol%, Bi 2 O 3 28 ⁇ 60%, B 2 O 3 15 ⁇ 37%, preferably contains 1 ⁇ 30% ZnO.
  • the reason for limiting the content range of each component as described above will be described below. In the description of the glass composition range,% display indicates mol%.
  • Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 28 to 60%, 33 to 55%, particularly preferably 35 to 45%. If the content of Bi 2 O 3 is too small, too high softening point, softening fluidity tends to decrease. On the other hand, when the content of Bi 2 O 3 is too large, the glass tends to be devitrified at the time of laser sealing, and softening fluidity is likely to be lowered due to this devitrification.
  • B 2 O 3 is an essential component as a glass forming component, and its content is preferably 15 to 37%, 20 to 33%, particularly preferably 25 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to form a glass network, so that the glass is easily devitrified at the time of laser sealing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
  • ZnO is a component that enhances thermal stability, and its content is preferably 1 to 30%, 3 to 25%, 5 to 22%, particularly preferably 9 to 20%. If the ZnO content is too low or too high, the component balance of the glass composition is impaired and the thermal stability tends to decrease.
  • SiO 2 is a component that increases water resistance, but has an action of increasing the softening point. However, if the content of SiO 2 is too large, the softening fluidity tends to decrease, and the glass tends to devitrify during laser sealing. Therefore, the content of SiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 2%, particularly preferably 0 to 1%.
  • Al 2 O 3 is a component that enhances water resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
  • Li 2 O, Na 2 O and K 2 O are components that lower the thermal stability. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
  • MgO, CaO, SrO and BaO are components that increase the thermal stability, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
  • the CuO content is preferably 0 to 40%, 5 to 35%, 10 to 30%, and particularly preferably 15 to 25%.
  • Fe 2 O 3 is a component that enhances thermal stability and laser absorption characteristics, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 3%. When the content of Fe 2 O 3 is too large, is impaired balance of components glass composition, thermal stability tends to decrease in reverse.
  • MnO 2 is a component that enhances laser absorption characteristics. However, when the content of MnO 2 is too large, the thermal stability tends to decrease. Therefore, the content of MnO 2 is preferably 0 to 20%, 1 to 15%, particularly 3 to 10%.
  • Sb 2 O 3 is a component that enhances thermal stability, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of Sb 2 O 3 is too large, is impaired balance of components glass composition, thermal stability tends to decrease in reverse.
  • PbO is not substantially contained from an environmental viewpoint, that is, less than 0.1 mol%.
  • the sealing material of the present invention may introduce other powder materials besides glass powder and crystallized glass powder.
  • a laser absorber such as Mn—Fe—Al oxide or Mn—Fe—Cr oxide may be contained. Glass beads, spacers, etc. may be introduced.
  • a small amount of ceramic powder may be added as a thermal expansion adjusting material.
  • ceramic powder for example, cordierite, zircon, alumina, mullite, willemite, zirconium phosphate, zirconium tungstate phosphate, tungstic acid
  • the total content is preferably 0 to 15% by volume, 0 to 10% by volume, 0 to 5% by volume, particularly preferably 0 to less than 1% by volume. .
  • the average particle diameter D 50 is preferably 20 ⁇ m or less, 10 ⁇ m or less, 7 ⁇ m or less, 5 ⁇ m or less, particularly 1 to 3 ⁇ m.
  • the “average particle diameter D 50 ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.
  • the maximum particle diameter D max is preferably 50 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, particularly 2 to 10 ⁇ m. If the maximum particle diameter Dmax of the sealing material is too large, it is difficult to increase the accuracy of laser sealing. “Maximum particle diameter D max ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle size is 99%.
  • the thermal expansion coefficient in the temperature range of 30 to 300 ° C. is preferably less than 74 ⁇ 10 ⁇ 7 / ° C., 73 ⁇ 10 ⁇ 7 / ° C. or less, particularly 50 ⁇ 10 ⁇ 7 / ° C. or more. And 72 ⁇ 10 ⁇ 7 / ° C. or less. If the thermal expansion coefficient is too high, it becomes difficult to ensure airtight reliability.
  • the sealing material of the present invention may be used in a powder state, but is preferably kneaded uniformly with a vehicle and made into a paste for easy handling.
  • a vehicle usually includes a solvent and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the produced paste is applied to the surface of an object to be sealed using an applicator such as a dispenser or a screen printer.
  • acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used.
  • acrylic acid esters and nitrocellulose are preferable because they have good thermal decomposability.
  • Solvents include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), - methyl-2-pyrrolidone or the like can be used.
  • ⁇ -terpineol is preferable because of its high viscosity
  • the sealing material of the present invention is preferably used for sealing an airtight package.
  • the hermetic package preferably has a structure in which the package base and the glass lid are hermetically sealed via a sealing material layer.
  • the airtight package will be described in detail.
  • the package base preferably has a base and a frame provided on the base. If it does in this way, it will become easy to accommodate internal elements, such as a LED element, in the frame part of a package base.
  • the frame portion of the package base is preferably formed in a frame shape along the outer edge region of the package base. In this way, the effective area that functions as a device can be expanded. Further, it becomes easy to accommodate internal elements such as LED elements in the frame portion of the package base, and it is easy to perform wiring bonding and the like.
  • the surface roughness Ra of the surface of the region where the sealing material layer is disposed at the top of the frame is preferably less than 1.0 ⁇ m. If the surface roughness Ra of the surface increases, the accuracy of laser sealing tends to decrease.
  • the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
  • the width of the top of the frame is preferably 100 to 3000 ⁇ m, 200 to 1500 ⁇ m, particularly 300 to 900 ⁇ m. If the width of the top of the frame is too narrow, it is difficult to align the sealing material layer and the top of the frame. On the other hand, if the width of the top of the frame is too wide, the effective area that functions as a device is reduced.
  • the package substrate is preferably made of glass, glass ceramic, aluminum nitride, or aluminum oxide, or a composite material thereof (for example, aluminum nitride and glass ceramic integrated). Since glass easily forms a sealing material layer and a reaction layer, a strong sealing strength can be secured by laser sealing. Glass ceramic has the feature that it is easy to optimize the wettability with the sealing material layer. Furthermore, since the thermal via can be easily formed, it is possible to appropriately prevent the temperature of the hermetic package from rising excessively. Since aluminum nitride and aluminum oxide have good heat dissipation, it is easy to suppress the temperature rise of the hermetic package.
  • the glass ceramic, aluminum nitride, and aluminum oxide preferably have a black pigment dispersed (sintered in a state in which the black pigment is dispersed).
  • the package base can absorb the laser light transmitted through the sealing material layer.
  • the portion of the package base that comes into contact with the sealing material layer is heated during laser sealing, so that the formation of the reaction layer can be promoted at the interface between the sealing material layer and the package base.
  • the package substrate in which the black pigment is dispersed has the property of absorbing the laser beam to be irradiated, that is, the thickness is 0.5 mm, and the total light transmittance at the wavelength of the laser beam to be irradiated (808 nm) is 10% or less ( Desirably, it is preferably 5% or less. If it does in this way, it will become easy to raise the temperature of a sealing material layer in the interface of a package base
  • the thickness of the base of the package substrate is preferably 0.1 to 2.5 mm, particularly preferably 0.2 to 1.5 mm. Thereby, thickness reduction of an airtight package can be achieved.
  • the height of the frame portion of the package substrate that is, the height obtained by subtracting the thickness of the base portion from the package substrate is preferably 100 to 2000 ⁇ m, particularly 200 to 900 ⁇ m. In this way, it becomes easy to reduce the thickness of the hermetic package while properly accommodating the internal elements.
  • the glass lid may be a laminated glass obtained by bonding a plurality of glass plates.
  • a functional film may be formed on the surface of the glass lid on the inner element side, or a functional film may be formed on the outer surface of the glass lid.
  • an antireflection film is preferable as the functional film.
  • the thickness of the glass lid is preferably 0.1 mm or more, 0.2 to 2.0 mm, 0.4 to 1.5 mm, particularly 0.5 to 1.2 mm. If the thickness of the glass lid is small, the strength of the hermetic package is likely to decrease. On the other hand, when the thickness of the glass lid is large, it is difficult to reduce the thickness of the hermetic package.
  • the difference in thermal expansion coefficient between the glass lid and the sealing material layer is preferably less than 50 ⁇ 10 ⁇ 7 / ° C., less than 40 ⁇ 10 ⁇ 7 / ° C., particularly preferably 30 ⁇ 10 ⁇ 7 / ° C. or less.
  • this difference in thermal expansion coefficient is too large, the stress remaining in the sealed portion becomes unreasonably high, and the hermetic reliability of the hermetic package tends to decrease.
  • the sealing material layer is composed of the sealing material of the present invention, and is softened and deformed by absorbing laser light to form a reaction layer on the surface layer of the package substrate, and the package substrate and the glass lid are hermetically integrated. It has a function to convert.
  • the end portion (inner end portion and / or outer end portion) of the sealing material layer preferably protrudes laterally in an arc shape in a cross-sectional view, and the inner end portion and the outer end portion of the sealing material layer are circular. More preferably, it projects in an arc. This makes it difficult for the sealing material layer to be bulk broken when shearing stress is applied to the hermetic package. As a result, the airtight reliability of the airtight package can be improved.
  • the sealing material layer is preferably formed so that the contact position with the frame portion is separated from the inner edge of the top portion of the frame portion, and is separated from the outer edge of the top portion of the frame portion, More preferably, it is formed at a position 50 ⁇ m or more, 60 ⁇ m or more, 70 to 2000 ⁇ m, particularly 80 to 1000 ⁇ m apart from the inner edge of the top of the frame. If the distance between the inner edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. .
  • the distance between the inner edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package. Further, it is preferably formed at a position 50 ⁇ m or more, 60 ⁇ m or more, 70 to 2000 ⁇ m, particularly 80 to 1000 ⁇ m apart from the outer edge of the top of the frame portion. If the distance between the outer edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. . On the other hand, if the distance between the outer edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package.
  • the sealing material layer is preferably formed so that the position of contact with the glass lid is 50 ⁇ m or more, 60 ⁇ m or more, 70 to 1500 ⁇ m, particularly 80 to 800 ⁇ m away from the edge of the glass lid. If the separation distance between the edge of the glass lid and the sealing material layer is too short, the surface temperature difference between the surface on the inner element side and the outer surface of the glass lid in the edge region of the glass lid during laser sealing. It becomes large and the glass lid is easily broken.
  • the sealing material layer is preferably formed on the center line in the width direction of the top of the frame, that is, formed in the central region of the top of the frame. In this way, the heat generated by local heating is easily escaped at the time of laser sealing, so that the glass lid is difficult to break. In addition, when the width
  • the average thickness of the sealing material layer is preferably less than 8.0 ⁇ m, particularly 1.0 ⁇ m or more and less than 6.0 ⁇ m.
  • the smaller the average thickness of the sealing material layer the lower the stress remaining in the sealing portion after laser sealing when the thermal expansion coefficients of the sealing material layer and the glass lid are mismatched.
  • the accuracy of laser sealing can be increased.
  • Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying the composite powder paste, a method of polishing the surface of the sealing material layer, and the like.
  • the maximum width of the sealing material layer is preferably 1 ⁇ m or more and 2000 ⁇ m or less, 10 ⁇ m or more, 1000 ⁇ m or less, 50 ⁇ m or more and 800 ⁇ m or less, particularly 100 ⁇ m or more and 600 ⁇ m or less.
  • the maximum width of the sealing material layer is narrowed, the sealing material layer is easily separated from the edge of the frame portion, so that it is easy to reduce the stress remaining in the sealing portion after laser sealing. Furthermore, the width of the frame portion of the package substrate can be reduced, and the effective area that functions as a device can be increased.
  • the maximum width of the sealing material layer is too narrow, the sealing material layer easily breaks in bulk when a large shear stress is applied to the sealing material layer. Furthermore, the accuracy of laser sealing tends to be reduced.
  • a value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is preferably 0.003 or more, 0.005 or more, 0.01 to 0.1, particularly 0.02 to 0.05. is there.
  • the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too small, the bulk of the sealing material layer is easily broken when a large shear stress is applied to the sealing material layer.
  • the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too large, the accuracy of laser sealing tends to be lowered.
  • the surface roughness Ra of the sealing material layer is preferably less than 0.5 ⁇ m, 0.2 ⁇ m or less, and particularly 0.01 to 0.15 ⁇ m. Further, the surface roughness RMS of the sealing material layer is preferably less than 1.0 ⁇ m and 0.5 ⁇ m or less, particularly 0.05 to 0.3 ⁇ m. In this way, the adhesion between the package substrate and the sealing material layer is improved, and the accuracy of laser sealing is improved.
  • the “surface roughness RMS” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter. Examples of the method for regulating the surface roughness Ra and RMS of the sealing material layer as described above include a method of polishing the surface of the sealing material layer, a method of reducing the particle size of the refractory filler powder, and the like. .
  • the package base and the glass lid are hermetically sealed by irradiating a laser beam from the glass lid side toward the sealing material layer and softening and deforming the sealing material layer. It is preferable to obtain an airtight package.
  • the glass lid may be disposed below the package substrate, but it is preferable to dispose the glass lid above the package substrate from the viewpoint of laser sealing efficiency.
  • a semiconductor laser a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
  • the atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • the glass lid When performing laser sealing, if the glass lid is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistance temperature of the internal element, it becomes easy to suppress breakage of the glass lid due to thermal shock during laser sealing. Further, if the annealing laser is irradiated from the glass lid side immediately after the laser sealing, it becomes easier to further suppress the breakage of the glass lid due to thermal shock or residual stress.
  • FIG. 1 is a schematic cross-sectional view for explaining an embodiment of an airtight package.
  • the hermetic package 1 includes a package base 10 and a glass lid 11.
  • the package base 10 includes a base 12 and a frame-shaped frame portion 13 on the outer peripheral edge of the base 12.
  • An internal element 14 is accommodated in the frame portion 13 of the package base 10.
  • An electrical wiring (not shown) that electrically connects the internal element 14 and the outside is formed in the package base 10.
  • the sealing material layer 15 is arranged over the entire circumference of the top of the frame 13 between the top of the frame 13 of the package base 10 and the surface of the glass lid 11 on the internal element 14 side. Moreover, the sealing material layer 15 is comprised with the sealing material of this invention.
  • the width of the sealing material layer 15 is smaller than the width of the top portion of the frame portion 13 of the package substrate 10, and is further away from the edge of the end portions of the glass lid 11 and the frame portion 13. Furthermore, the average thickness of the sealing material layer 15 is less than 8.0 ⁇ m.
  • the airtight package 1 can be manufactured as follows. First, the glass lid 11 on which the sealing material layer 15 is formed in advance is placed on the package base 10 so that the sealing material layer 15 and the top of the frame portion 13 are in contact with each other. Subsequently, the laser beam L emitted from the laser irradiation device 18 is irradiated along the sealing material layer 15 from the glass lid 11 side while pressing the glass lid 11 using a pressing jig. As a result, the sealing material layer 15 softens and flows and reacts with the top layer of the frame portion 13 of the package base 10, whereby the package base 10 and the glass lid 11 are hermetically integrated, and the airtight structure of the hermetic package 1. Is formed.
  • the glass melt was poured between forming rollers (double rollers) to rapidly cool the glass melt and to form a film shape. Subsequently, the glass film was crystallized at the crystallization temperature and crystallization time described in Table 1.
  • the obtained crystallized glass film was pulverized by dry pulverization and wet pulverization until the average particle diameter D 50 became 1.0 ⁇ m, and then classified by a 350 mesh test sieve. Crystallized glass powders according to 1 to 7 were obtained.
  • the obtained sealing material was fired at 500 ° C. to obtain a dense fired body, and then the fired body was processed into a predetermined shape to prepare a measurement sample for TMA. Using this measurement sample, TMA was performed in the temperature range of 30 to 300 ° C., and the thermal expansion coefficient of the sealing material was calculated. The results are shown in Table 1.
  • the thermal stability is evaluated by visually observing the surface of the fired body and evaluating as “ ⁇ ” when crystals are not precipitated and as “X” when crystals are precipitated.
  • sample no. Nos. 1 to 6 had good thermal stability. Therefore, sample no. 1 to 6 are considered suitable for the sealing material.
  • Sample No. The crystallized glass powders according to Nos. 1 and 2 were crystallized at 1000 ° C. substantially free of components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 and ZrO 2 in the composition.
  • Sample No. The crystallized glass powder according to No. 3 was crystallized at 1300 ° C. substantially free of components other than SiO 2 , Al 2 O 3 , and Li 2 O in the composition.
  • sample no. 1 to 3 had a thermal expansion coefficient of 72 ⁇ 10 ⁇ 7 / ° C. or less.
  • the crystallized glass powders according to 4 to 5 substantially contain components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 and ZrO 2 in the composition. Since the crystallized glass powder according to No. 6 had a crystallization temperature of less than 900 ° C., each had a thermal expansion coefficient of 75 ⁇ 10 ⁇ 7 / ° C. or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

This sealing material is characterized by including at least bismuth-based glass powder and crystallized glass powder of negative expansion.

Description

封着材料及び結晶化ガラス粉末の製造方法Sealing material and method for producing crystallized glass powder
 本発明は、封着材料及び結晶化ガラス粉末の製造方法に関し、具体的にはレーザー封着に用いる封着材料及び結晶化ガラス粉末の製造方法に関する。 The present invention relates to a sealing material and a method for producing crystallized glass powder, and more specifically to a sealing material used for laser sealing and a method for producing crystallized glass powder.
 封着材料として、一般的に、ガラス粉末とセラミック粉末を含む複合粉末材料が用いられている。この封着材料は、樹脂系の接着剤に比べ、化学的耐久性や耐熱性に優れており、また気密性の確保に適している。 Generally, a composite powder material including glass powder and ceramic powder is used as the sealing material. This sealing material is excellent in chemical durability and heat resistance as compared with a resin-based adhesive, and is suitable for ensuring airtightness.
 この用途のガラス粉末として、PbO系ガラス、ビスマス系ガラス等の高膨張の低融点ガラスが用いられている(特許文献1、2等参照)。 As the glass powder for this use, high-expansion low-melting glass such as PbO glass or bismuth glass is used (see Patent Documents 1 and 2).
 ところで、アルミナ基板、ガラス基板等の低膨張基板を封着する場合、封着材料の熱膨張係数が高過ぎると、封着後に封着材料層や低膨張基板に不当な残留歪みが生じて、封着材料層や低膨張基板にクラックが発生し、気密リーク等に至る虞がある。よって、低膨張基板を封着する場合、封着材料の熱膨張係数を低下させることが重要になる。特にガラス粉末としてビスマス系ガラスを用いる場合、ビスマス系ガラスの低膨張化には、熱的安定性(耐失透性)の関係から限界があるため、セラミック粉末の熱膨張係数を低下させることが重要になる。 By the way, when sealing a low expansion substrate such as an alumina substrate or a glass substrate, if the thermal expansion coefficient of the sealing material is too high, an undue residual strain occurs in the sealing material layer and the low expansion substrate after sealing, Cracks may occur in the sealing material layer and the low expansion substrate, leading to airtight leaks and the like. Therefore, when sealing a low expansion substrate, it is important to reduce the thermal expansion coefficient of the sealing material. In particular, when bismuth-based glass is used as the glass powder, there is a limit to the reduction in expansion of bismuth-based glass due to thermal stability (devitrification resistance), so the thermal expansion coefficient of ceramic powder may be reduced. Become important.
 そこで、ビスマス系ガラス粉末と負膨張のセラミック粉末を複合化すると、封着材料の熱膨張係数を有効に低下させることができる。 Therefore, when the bismuth glass powder and the negative expansion ceramic powder are combined, the thermal expansion coefficient of the sealing material can be effectively reduced.
特開昭63-315536号公報JP 63-315536 A 特開平8-59294号公報JP-A-8-59294
 近年、封着材料層の厚みを小さくするという要求がある。例えば、レーザー封着(レーザー光の照射による封着)を行う場合、封着材料層の厚みを小さくすると、レーザー封着の精度を顕著に高めることができる。また、封着材料層の厚みを小さくすると、ディスプレイや気密パッケージの低背化、小型化に寄与することができる。 In recent years, there is a demand for reducing the thickness of the sealing material layer. For example, when laser sealing (sealing by laser light irradiation) is performed, the accuracy of laser sealing can be significantly increased by reducing the thickness of the sealing material layer. Moreover, reducing the thickness of the sealing material layer can contribute to the reduction in the height and size of the display and the hermetic package.
 封着材料層の厚みを小さくするためには、封着材料中のセラミック粉末の粒子径を小さくしなければならない。しかし、セラミック粉末は、固相反応法で作製されているため、非常に硬く、粉砕には大きな衝撃と時間が必要となる。また、固相反応自体にも時間を要する。よって、セラミック粉末を細粒化すると、封着材料の生産性を大幅に低下させるという問題が生じる。 In order to reduce the thickness of the sealing material layer, the particle size of the ceramic powder in the sealing material must be reduced. However, since the ceramic powder is produced by a solid phase reaction method, it is very hard and requires a large impact and time for pulverization. Also, the solid phase reaction itself takes time. Therefore, when the ceramic powder is refined, there arises a problem that the productivity of the sealing material is greatly reduced.
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、構成材料を細粒化した場合でも生産性を低下させず、しかも熱膨張係数が低い封着材料を創案することである。 Therefore, the present invention has been made in view of the above circumstances, and its technical problem is to create a sealing material that does not decrease productivity even when the constituent material is made finer and has a low coefficient of thermal expansion. That is.
 本発明者は、鋭意努力の結果、ビスマス系ガラス粉末と負膨張の結晶化ガラス粉末を複合化して、封着材料とすることにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の封着材料は、少なくともビスマス系ガラス粉末と負膨張の結晶化ガラス粉末とを含むことを特徴とする。ここで、「ビスマス系ガラス」は、ガラス組成中のBiの含有量が25モル%以上であるガラスを指す。なお、結晶化ガラス粉末の熱膨張係数を直接測定することは困難であるが、ビスマス系ガラスと複合化して、封着材料とした後に、その封着材料の熱膨張係数を測定すれば、結晶化ガラス粉末の熱膨張係数を計算により算出することができる。 As a result of diligent efforts, the inventor has found that the above technical problem can be solved by combining a bismuth-based glass powder and a negative-expansion crystallized glass powder into a sealing material. It is what we propose. That is, the sealing material of the present invention is characterized by containing at least a bismuth-based glass powder and a negatively expanded crystallized glass powder. Here, “bismuth-based glass” refers to a glass having a Bi 2 O 3 content of 25 mol% or more in the glass composition. Although it is difficult to directly measure the thermal expansion coefficient of the crystallized glass powder, if the thermal expansion coefficient of the sealing material is measured after compounding with bismuth glass to form a sealing material, The thermal expansion coefficient of the vitrified glass powder can be calculated.
 負膨張の結晶化ガラス粉末は、一旦、ガラス融液を成形して、結晶性ガラスを得た後、結晶化することにより作製される。このようにすれば、結晶化ガラス中にガラス相が残存すると共に、そのガラス相内にクラックが発生するため、結晶化ガラス粉末の微細化が容易になる。更にLAS系結晶等の負膨張の結晶を容易に析出させることができる。結果として、生産性を低下させずに、封着材料の細粒化と低膨張化を両立することができる。 The negatively-expanded crystallized glass powder is produced by once forming a glass melt to obtain a crystalline glass, followed by crystallization. In this way, the glass phase remains in the crystallized glass and cracks are generated in the glass phase, so that the crystallized glass powder can be easily refined. Furthermore, negative expansion crystals such as LAS crystals can be easily precipitated. As a result, it is possible to achieve both the finer sealing material and the lower expansion without reducing the productivity.
 また、本発明の封着材料は、結晶化ガラス粉末の主結晶(最も析出量が多い結晶)が、β-ユークリプタイト又はβ-石英固溶体であることが好ましい。LAS系結晶(LiO-Al-nSiO)の内、β-ユークリプタイト(LiO-Al-2SiO)と、β-ユークリプタイトからSiOが更に固溶したβ-石英固溶体(LiO-Al-nSiO:n>2)とは、結晶粒子間の粒界の歪によって負膨張特性を有している。よって、主結晶相としてβ-ユークリプタイト又はβ-石英固溶体が析出すると、封着材料の熱膨張係数を効果的に低下させることが可能になる。なお、LAS系結晶(LiO-Al-nSiO)の内、nが4付近を超えるまでSiOが固溶していくと、正の熱膨張係数を有するβ-スポジュメン固溶体へ転移してしまう。 In the sealing material of the present invention, it is preferable that the main crystal of the crystallized glass powder (crystal having the largest amount of precipitation) is β-eucryptite or β-quartz solid solution. Of LAS-based crystals (Li 2 O—Al 2 O 3 —nSiO 2 ), β-eucryptite (Li 2 O—Al 2 O 3 —2SiO 2 ) and β-eucryptite are further solidified from SiO 2. The melted β-quartz solid solution (Li 2 O—Al 2 O 3 —nSiO 2 : n> 2) has a negative expansion characteristic due to distortion of grain boundaries between crystal grains. Therefore, when β-eucryptite or β-quartz solid solution is precipitated as the main crystal phase, it is possible to effectively reduce the thermal expansion coefficient of the sealing material. In addition, among the LAS-based crystals (Li 2 O—Al 2 O 3 —nSiO 2 ), when SiO 2 is solid-solved until n exceeds about 4, it becomes a β-spodumene solid solution having a positive thermal expansion coefficient. It will transfer.
 また、本発明の封着材料は、結晶化ガラス粉末が、SiO、Al、LiO、TiO、ZrO以外の成分を実質的に含まないことが好ましい。ここで、「SiO、Al、LiO、TiO、ZrO以外の成分を実質的に含まない」とは、組成中のSiO、Al、LiO、TiO及びZrOの合計含有量が99.7モル%以上である場合を指す。 In the sealing material of the present invention, it is preferable that the crystallized glass powder does not substantially contain components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 . Here, “substantially free of components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 ” means SiO 2 , Al 2 O 3 , Li 2 O, TiO in the composition. This refers to the case where the total content of 2 and ZrO 2 is 99.7 mol% or more.
 また、本発明の封着材料は、30~300℃の温度範囲における熱膨張係数が74×10-7/℃未満であることが好ましい。ここで、「30~300℃における熱膨張係数」は、TMA(押棒式熱膨張係数測定)で測定可能である。 The sealing material of the present invention preferably has a thermal expansion coefficient of less than 74 × 10 −7 / ° C. in the temperature range of 30 to 300 ° C. Here, the “thermal expansion coefficient at 30 to 300 ° C.” can be measured by TMA (push bar type thermal expansion coefficient measurement).
 また、本発明の封着材料は、レーザー封着に用いることが好ましい。 The sealing material of the present invention is preferably used for laser sealing.
 本発明の結晶化ガラス粉末の製造方法は、原料バッチを溶融して、ガラス融液を得る溶融工程と、ガラス融液を成形して、結晶性ガラスを得る成形工程と、結晶性ガラスを結晶化して、結晶化ガラスを得る結晶化工程と、結晶化ガラスを粉砕して、結晶化ガラス粉末を得る粉砕工程と、を有することを特徴とする。 The manufacturing method of the crystallized glass powder of the present invention includes a melting step of melting a raw material batch to obtain a glass melt, a molding step of forming a glass melt to obtain a crystalline glass, and crystallizing the crystalline glass. And a crystallization step for obtaining crystallized glass and a pulverization step for pulverizing the crystallized glass to obtain a crystallized glass powder.
 また、本発明の結晶化ガラス粉末の製造方法は、結晶性ガラスを900~1400℃の温度で結晶化することが好ましい。 In the method for producing crystallized glass powder of the present invention, it is preferable to crystallize the crystalline glass at a temperature of 900 to 1400 ° C.
気密パッケージの一実施形態を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating one Embodiment of an airtight package.
 本発明の封着材料は、少なくともビスマス系ガラス粉末と負膨張の結晶化ガラス粉末とを含む。封着材料中の結晶化ガラス粉末の含有量は、好ましくは1~45体積%、10~45体積%、15~40体積%、特に20~35体積%である。結晶化ガラス粉末の含有量が少な過ぎると、封着材料の熱膨張係数を低下させ難くなり、また封着材料層の機械的強度が低下し易くなる。一方、結晶化ガラス粉末の含有量が多過ぎると、ビスマス系ガラス粉末の含有量が相対的に少なくなり、所望の軟化流動性を確保し難くなる。 The sealing material of the present invention contains at least a bismuth-based glass powder and a negatively expanded crystallized glass powder. The content of crystallized glass powder in the sealing material is preferably 1 to 45% by volume, 10 to 45% by volume, 15 to 40% by volume, particularly 20 to 35% by volume. When there is too little content of crystallized glass powder, it will become difficult to reduce the thermal expansion coefficient of a sealing material, and the mechanical strength of a sealing material layer will fall easily. On the other hand, when there is too much content of crystallized glass powder, content of bismuth-type glass powder will become relatively small, and it will become difficult to ensure desired softening fluidity | liquidity.
 結晶化ガラス粉末は、主結晶として、β-ユークリプタイト又はβ-石英固溶体が析出していることが好ましく、それら以外の結晶が析出していないことが好ましいが、本発明の効果を著しく損なわない限り、それ以外の結晶が少量析出していてもよい。 In the crystallized glass powder, β-eucryptite or β-quartz solid solution is preferably precipitated as the main crystal, and other crystals are preferably not precipitated, but the effect of the present invention is significantly impaired. Unless otherwise, a small amount of other crystals may be precipitated.
 結晶化ガラス粉末は、組成として、モル%で、LiO 10~35%(好ましくは16~28%)、Al 10~60%(好ましくは25~50%)、SiO 20~65%(好ましくは25~55%)、TiO+ZrO 0.005~5%(好ましくは0.1~4%)を含有することが好ましい。結晶化ガラスの組成が上記範囲外になると、主結晶として、β-ユークリプタイト又はβ-石英固溶体が析出し難くなり、負膨張特性を発揮し難くなる。なお、TiOとZrOは、LAS系結晶の生成速度を高める成分であるが、これらの含有量が多過ぎると、結晶化ガラス粉末の熱膨張係数が上昇し易くなる。 The crystallized glass powder has a composition of mol%, Li 2 O 10 to 35% (preferably 16 to 28%), Al 2 O 3 10 to 60% (preferably 25 to 50%), SiO 2 20 to It is preferable to contain 65% (preferably 25 to 55%) and TiO 2 + ZrO 2 0.005 to 5% (preferably 0.1 to 4%). When the composition of the crystallized glass is out of the above range, β-eucryptite or β-quartz solid solution as the main crystal is difficult to precipitate and the negative expansion property is hardly exhibited. TiO 2 and ZrO 2 are components that increase the production rate of LAS-based crystals, but if their content is too large, the thermal expansion coefficient of the crystallized glass powder tends to increase.
 結晶化ガラス粉末は、SiO、Al、LiO、TiO、ZrO以外の成分を実質的に含まないことが好ましい。結晶化ガラス粉末中にSiO、Al、LiO、TiO、ZrO以外の成分が含まれると、ビスマス系ガラス粉末との適合性が低下して、レーザー封着時にビスマス系ガラスが失透する虞が生じる。また結晶化ガラス粉末中に高膨張のガラス相が残留して、結晶化ガラス粉末の熱膨張係数を上昇させる虞も生じる。なお、SiO、Al、LiO、TiO、ZrO以外の成分を実質的に含まない場合、成形性や泡切れ性が低下するが、粉末用途では、それらの特性は殆ど問題にならない。 It is preferable that the crystallized glass powder does not substantially contain components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 . If a component other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , ZrO 2 is contained in the crystallized glass powder, the compatibility with the bismuth-based glass powder is reduced, and the bismuth-based powder is sealed at the time of laser sealing. There is a risk of devitrification of the glass. In addition, a high expansion glass phase remains in the crystallized glass powder, which may increase the thermal expansion coefficient of the crystallized glass powder. In addition, when substantially no components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 are contained, the moldability and foaming properties are reduced. It doesn't matter.
 本発明の結晶化ガラス粉末の製造方法は、原料バッチを溶融して、ガラス融液を得る溶融工程と、ガラス融液を成形して、結晶性ガラスを得る成形工程と、結晶性ガラスを結晶化して、結晶化ガラスを得る結晶化工程と、結晶化ガラスを粉砕して、結晶化ガラス粉末を得る粉砕工程と、を有することを特徴とする。このようにすれば、負膨張の結晶化ガラス粉末を微細化し易くなる。 The manufacturing method of the crystallized glass powder of the present invention includes a melting step of melting a raw material batch to obtain a glass melt, a molding step of forming a glass melt to obtain a crystalline glass, and crystallizing the crystalline glass. And a crystallization step for obtaining crystallized glass and a pulverization step for pulverizing the crystallized glass to obtain a crystallized glass powder. If it does in this way, it will become easy to refine | miniaturize the crystallized glass powder of negative expansion.
 原料バッチの溶融は、電気炉、ガス炉等で行うことができる。原料バッチの溶融温度は、好ましくは1450~1650℃、特に1500~1600℃である。溶融温度が低過ぎると、ガラス融液が不均質になり、結晶化ガラス粉末の析出結晶量が少なくなり易い。一方、溶融温度が高過ぎると、ガラス成分の一部が多く揮発して、ガラス組成が変動し易くなる。原料バッチの溶融時間は1~3時間が好ましい。溶融時間が短過ぎると、ガラス融液が不均質になり、結晶化ガラス粉末の析出結晶量が少なくなり易い。一方、焼成時間が長過ぎると、ガラス成分の一部が多く揮発して、ガラス組成が変動し易くなる。 The raw material batch can be melted in an electric furnace, a gas furnace or the like. The melting temperature of the raw material batch is preferably 1450 to 1650 ° C., particularly 1500 to 1600 ° C. If the melting temperature is too low, the glass melt becomes inhomogeneous and the amount of crystallized crystals of the crystallized glass powder tends to decrease. On the other hand, when the melting temperature is too high, a part of the glass component is volatilized and the glass composition tends to fluctuate. The melting time of the raw material batch is preferably 1 to 3 hours. If the melting time is too short, the glass melt becomes inhomogeneous and the amount of crystallized crystals of the crystallized glass powder tends to decrease. On the other hand, if the firing time is too long, part of the glass component volatilizes and the glass composition tends to fluctuate.
 原料バッチは、マルチミル等を用いて混合されることが好ましい。このようにすれば、原料バッチの均一性が向上するため、ガラス融液が均質になり易い。 The raw material batch is preferably mixed using a multi-mill or the like. In this way, since the uniformity of the raw material batch is improved, the glass melt is likely to be homogeneous.
 本発明の結晶化ガラス粉末の製造方法において、ガラス融液をフィルム状に成形することが好ましい。このようにすれば、結晶性ガラスにクラックが多く発生するため、結晶化ガラスの粉砕効率が向上し、結晶化ガラス粉末を微細化し易くなる。 In the method for producing crystallized glass powder of the present invention, the glass melt is preferably formed into a film. In this way, since many cracks are generated in the crystalline glass, the pulverization efficiency of the crystallized glass is improved and the crystallized glass powder is easily refined.
 本発明の結晶化ガラス粉末の製造方法において、結晶性ガラスを900~1400℃、特に1000~1300℃の温度で結晶化することが好ましい。結晶化温度が低過ぎると、結晶核の形成が充分に進まず、高膨張のガラス相が多く残存する虞が生じる。一方、結晶化温度が高過ぎると、結晶が融解してガラス融液になってしまう。 In the method for producing crystallized glass powder of the present invention, it is preferable to crystallize the crystalline glass at a temperature of 900 to 1400 ° C., particularly 1000 to 1300 ° C. If the crystallization temperature is too low, the formation of crystal nuclei does not proceed sufficiently, and there is a risk that many highly expanded glass phases remain. On the other hand, if the crystallization temperature is too high, the crystals melt and become a glass melt.
 本発明の結晶化ガラス粉末の製造方法において、結晶化ガラスの粉砕は、ボールミル、ジョークラッシャー、ジェットミル、ディスクミル、スペクトロミル、グラインダー、ミキサーミル等で行うことができるが、ランニングコスト及び粉砕効率の観点から、ボールミルを用いて、湿式又は乾式で行うことが好ましい。このようにすれば、結晶化ガラス粉末の粒子径が小さくなるため、封着材料層の厚みが小さい気密パッケージに好適に適用可能になる。 In the method for producing crystallized glass powder of the present invention, the crystallized glass can be pulverized by a ball mill, a jaw crusher, a jet mill, a disk mill, a spectro mill, a grinder, a mixer mill or the like. From this point of view, it is preferable to carry out by a wet or dry method using a ball mill. In this way, since the particle diameter of the crystallized glass powder becomes small, it can be suitably applied to an airtight package in which the sealing material layer has a small thickness.
 結晶化ガラスを粉砕した後、必要に応じて、篩分級又は空気分級を行い、粒子径を調整することが好ましい。 After pulverizing the crystallized glass, it is preferable to adjust the particle diameter by sieving or air classification as necessary.
 ビスマス系ガラス粉末は、ガラス組成として、モル%で、Bi 28~60%、B 15~37%、ZnO 1~30%を含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス組成範囲の説明において、%表示はモル%を指す。 Bismuth glass powder is a glass composition including, in mol%, Bi 2 O 3 28 ~ 60%, B 2 O 3 15 ~ 37%, preferably contains 1 ~ 30% ZnO. The reason for limiting the content range of each component as described above will be described below. In the description of the glass composition range,% display indicates mol%.
 Biは、軟化点を低下させるための主要成分であり、その含有量は28~60%、33~55%、特に35~45%が好ましい。Biの含有量が少な過ぎると、軟化点が高くなり過ぎて、軟化流動性が低下し易くなる。一方、Biの含有量が多過ぎると、レーザー封着時にガラスが失透し易くなり、この失透に起因して、軟化流動性が低下し易くなる。 Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 28 to 60%, 33 to 55%, particularly preferably 35 to 45%. If the content of Bi 2 O 3 is too small, too high softening point, softening fluidity tends to decrease. On the other hand, when the content of Bi 2 O 3 is too large, the glass tends to be devitrified at the time of laser sealing, and softening fluidity is likely to be lowered due to this devitrification.
 Bは、ガラス形成成分として必須の成分であり、その含有量は15~37%、20~33%、特に25~30%が好ましい。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、レーザー封着時にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、軟化流動性が低下し易くなる。 B 2 O 3 is an essential component as a glass forming component, and its content is preferably 15 to 37%, 20 to 33%, particularly preferably 25 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to form a glass network, so that the glass is easily devitrified at the time of laser sealing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
 ZnOは、熱的安定性を高める成分であり、その含有量は1~30%、3~25%、5~22%、特に9~20%が好ましい。ZnOの含有量が少な過ぎたり、或いは多過ぎたりすると、ガラス組成の成分バランスが損なわれて、熱的安定性が低下し易くなる。 ZnO is a component that enhances thermal stability, and its content is preferably 1 to 30%, 3 to 25%, 5 to 22%, particularly preferably 9 to 20%. If the ZnO content is too low or too high, the component balance of the glass composition is impaired and the thermal stability tends to decrease.
 上記成分以外にも、例えば、以下の成分を添加してもよい。 In addition to the above components, for example, the following components may be added.
 SiOは、耐水性を高める成分であるが、軟化点を上昇させる作用を有する。しかし、SiOの含有量が多過ぎると、軟化流動性が低下し易くなり、またレーザー封着時にガラスが失透し易くなる。よって、SiOの含有量は0~5%、0~3%、0~2%、特に0~1%が好ましい。 SiO 2 is a component that increases water resistance, but has an action of increasing the softening point. However, if the content of SiO 2 is too large, the softening fluidity tends to decrease, and the glass tends to devitrify during laser sealing. Therefore, the content of SiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 2%, particularly preferably 0 to 1%.
 Alは、耐水性を高める成分であり、その含有量は0~10%、0~5%、特に0.1~2%が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。 Al 2 O 3 is a component that enhances water resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
 LiO、NaO及びKOは、熱的安定性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。 Li 2 O, Na 2 O and K 2 O are components that lower the thermal stability. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
 MgO、CaO、SrO及びBaOは、熱的安定性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。 MgO, CaO, SrO and BaO are components that increase the thermal stability, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
 ビスマス系ガラスの軟化点を下げるためには、ガラス組成中にBiを多量に導入する必要があるが、Biの含有量を増加させると、レーザー封着時にガラスが失透し易くなり、この失透に起因して軟化流動性が低下し易くなる。特に、Biの含有量が30%以上になると、その傾向が顕著になる。この対策として、CuOを添加すれば、Biの含有量が30%以上であっても、ガラスの失透を効果的に抑制することができる。更にCuOを添加すれば、レーザー封着時のレーザー吸収特性を高めることができる。しかし、CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下し易くなる。よって、CuOの含有量は0~40%、5~35%、10~30%、特に15~25%が好ましい。 In order to lower the softening point of bismuth glass, it is necessary to introduce a large amount of Bi 2 O 3 into the glass composition. However, if the content of Bi 2 O 3 is increased, the glass is devitrified at the time of laser sealing. The softening fluidity tends to decrease due to the devitrification. In particular, when the Bi 2 O 3 content is 30% or more, the tendency becomes remarkable. As a countermeasure, if CuO is added, devitrification of the glass can be effectively suppressed even if the content of Bi 2 O 3 is 30% or more. Furthermore, if CuO is added, the laser absorption characteristic at the time of laser sealing can be improved. However, when there is too much content of CuO, the component balance of a glass composition will be impaired and conversely thermal stability will fall easily. Therefore, the CuO content is preferably 0 to 40%, 5 to 35%, 10 to 30%, and particularly preferably 15 to 25%.
 Feは、熱的安定性とレーザー吸収特性を高める成分であり、その含有量は0~10%、0.1~5%、特に0.5~3%が好ましい。Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下し易くなる。 Fe 2 O 3 is a component that enhances thermal stability and laser absorption characteristics, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 3%. When the content of Fe 2 O 3 is too large, is impaired balance of components glass composition, thermal stability tends to decrease in reverse.
 MnOは、レーザー吸収特性を高める成分である。しかし、MnOの含有量が多過ぎると、熱的安定性が低下し易くなる。よって、MnOの含有量は0~20%、1~15%、特に3~10%が好ましい。 MnO 2 is a component that enhances laser absorption characteristics. However, when the content of MnO 2 is too large, the thermal stability tends to decrease. Therefore, the content of MnO 2 is preferably 0 to 20%, 1 to 15%, particularly 3 to 10%.
 Sbは、熱的安定性を高める成分であり、その含有量は0~5%、特に0~2%が好ましい。Sbの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下し易くなる。 Sb 2 O 3 is a component that enhances thermal stability, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of Sb 2 O 3 is too large, is impaired balance of components glass composition, thermal stability tends to decrease in reverse.
 PbOは、環境的観点から、実質的に含有しない、つまり0.1モル%未満であることが好ましい。 It is preferable that PbO is not substantially contained from an environmental viewpoint, that is, less than 0.1 mol%.
 本発明の封着材料は、ガラス粉末と結晶化ガラス粉末以外にも、他の粉末材料を導入してもよい。例えば、レーザー吸収特性を高めるために、Mn-Fe-Al系酸化物、Mn-Fe-Cr系酸化物等のレーザー吸収剤を1~15体積%含んでいてもよい。またガラスビーズ、スペーサー等を導入してもよい。 The sealing material of the present invention may introduce other powder materials besides glass powder and crystallized glass powder. For example, in order to enhance the laser absorption characteristics, 1 to 15% by volume of a laser absorber such as Mn—Fe—Al oxide or Mn—Fe—Cr oxide may be contained. Glass beads, spacers, etc. may be introduced.
 熱膨張調整材料として、結晶化ガラス粉末以外にも、セラミック粉末を少量添加してもよく、例えば、コーディエライト、ジルコン、アルミナ、ムライト、ウイレマイト、リン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タングステン酸ジルコニウム等から選ばれる一種又は二種以上を含んでもよいが、その含有量は合量で0~15体積%、0~10体積%、0~5体積%、特に0~1体積%未満が好ましい。 In addition to crystallized glass powder, a small amount of ceramic powder may be added as a thermal expansion adjusting material. For example, cordierite, zircon, alumina, mullite, willemite, zirconium phosphate, zirconium tungstate phosphate, tungstic acid One or two or more kinds selected from zirconium and the like may be contained, but the total content is preferably 0 to 15% by volume, 0 to 10% by volume, 0 to 5% by volume, particularly preferably 0 to less than 1% by volume. .
 本発明の封着材料において、平均粒子径D50は、好ましくは20μm以下、10μm以下、7μm以下、5μm以下、特に1~3μmである。封着材料の平均粒子径D50が大き過ぎると、レーザー封着の精度を高め難くなる。ここで、「平均粒子径D50」は、レーザー回折法で測定した値を指し、レーザー回折法で測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 In the sealing material of the present invention, the average particle diameter D 50 is preferably 20 μm or less, 10 μm or less, 7 μm or less, 5 μm or less, particularly 1 to 3 μm. When the average particle diameter D 50 of the sealing material is too large, it becomes difficult improve the accuracy of the laser sealing. Here, the “average particle diameter D 50 ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.
 本発明の封着材料において、最大粒子径Dmaxは、好ましくは50μm以下、30μm以下、20μm以下、15μm以下、特に2~10μmである。封着材料の最大粒子径Dmaxが大き過ぎると、レーザー封着の精度を高め難くなる。なお、「最大粒子径Dmax」は、レーザー回折法で測定した値を指し、レーザー回折法で測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 In the sealing material of the present invention, the maximum particle diameter D max is preferably 50 μm or less, 30 μm or less, 20 μm or less, 15 μm or less, particularly 2 to 10 μm. If the maximum particle diameter Dmax of the sealing material is too large, it is difficult to increase the accuracy of laser sealing. “Maximum particle diameter D max ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle size is 99%.
 本発明の封着材料において、30~300℃の温度範囲における熱膨張係数は、好ましくは74×10-7/℃未満、73×10-7/℃以下、特に50×10-7/℃以上、且つ72×10-7/℃以下である。熱膨張係数が高過ぎると、気密信頼性を確保し難くなる。 In the sealing material of the present invention, the thermal expansion coefficient in the temperature range of 30 to 300 ° C. is preferably less than 74 × 10 −7 / ° C., 73 × 10 −7 / ° C. or less, particularly 50 × 10 −7 / ° C. or more. And 72 × 10 −7 / ° C. or less. If the thermal expansion coefficient is too high, it becomes difficult to ensure airtight reliability.
 本発明の封着材料は、粉末状態で使用に供してもよいが、ビークルと均一に混練し、ペースト化すると取り扱い易くなり、好ましい。ビークルは、通常、溶媒と樹脂を含む。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製されたペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて、被封着物の表面に塗布される。 The sealing material of the present invention may be used in a powder state, but is preferably kneaded uniformly with a vehicle and made into a paste for easy handling. A vehicle usually includes a solvent and a resin. The resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed. The produced paste is applied to the surface of an object to be sealed using an applicator such as a dispenser or a screen printer.
 樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好であるため、好ましい。 As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid esters and nitrocellulose are preferable because they have good thermal decomposability.
 溶媒としては、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、α-ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため好ましい。 Solvents include N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), - methyl-2-pyrrolidone or the like can be used. In particular, α-terpineol is preferable because of its high viscosity and good solubility in resins and the like.
 本発明の封着材料は、気密パッケージの封着に用いることが好ましい。気密パッケージは、パッケージ基体とガラス蓋とが封着材料層を介して気密封着された構造であることが好ましい。以下、気密パッケージについて、詳細に説明する。 The sealing material of the present invention is preferably used for sealing an airtight package. The hermetic package preferably has a structure in which the package base and the glass lid are hermetically sealed via a sealing material layer. Hereinafter, the airtight package will be described in detail.
 パッケージ基体は、基部と基部上に設けられた枠部とを有することが好ましい。このようにすれば、パッケージ基体の枠部内にLED素子等の内部素子を収容し易くなる。パッケージ基体の枠部は、パッケージ基体の外側端縁領域に沿って、額縁状に形成されていることが好ましい。このようにすれば、デバイスとして機能する有効面積を拡大することができる。またLED素子等の内部素子をパッケージ基体の枠部内に収容し易くなり、且つ配線接合等も行い易くなる。 The package base preferably has a base and a frame provided on the base. If it does in this way, it will become easy to accommodate internal elements, such as a LED element, in the frame part of a package base. The frame portion of the package base is preferably formed in a frame shape along the outer edge region of the package base. In this way, the effective area that functions as a device can be expanded. Further, it becomes easy to accommodate internal elements such as LED elements in the frame portion of the package base, and it is easy to perform wiring bonding and the like.
 枠部の頂部における封着材料層が配される領域の表面の表面粗さRaは1.0μm未満であることが好ましい。この表面の表面粗さRaが大きくなると、レーザー封着の精度が低下し易くなる。ここで、「表面粗さRa」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。 The surface roughness Ra of the surface of the region where the sealing material layer is disposed at the top of the frame is preferably less than 1.0 μm. If the surface roughness Ra of the surface increases, the accuracy of laser sealing tends to decrease. Here, the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
 枠部の頂部の幅は、好ましくは100~3000μm、200~1500μm、特に300~900μmである。枠部の頂部の幅が狭過ぎると、封着材料層と枠部の頂部との位置合わせが困難になる。一方、枠部の頂部の幅が広過ぎると、デバイスとして機能する有効面積が小さくなる。 The width of the top of the frame is preferably 100 to 3000 μm, 200 to 1500 μm, particularly 300 to 900 μm. If the width of the top of the frame is too narrow, it is difficult to align the sealing material layer and the top of the frame. On the other hand, if the width of the top of the frame is too wide, the effective area that functions as a device is reduced.
 パッケージ基体は、ガラス、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料(例えば、窒化アルミニウムとガラスセラミックを一体化したもの)であることが好ましい。ガラスは、封着材料層と反応層を形成し易いため、レーザー封着で強固な封着強度を確保することができる。ガラスセラミックは、封着材料層との濡れ性を適正化し易いという特長がある。更にサーマルビアを容易に形成し得るため、気密パッケージが過度に温度上昇する事態を適正に防止することができる。窒化アルミニウムと酸化アルミニウムは、放熱性が良好であるため、気密パッケージの温度上昇を抑制し易くなる。 The package substrate is preferably made of glass, glass ceramic, aluminum nitride, or aluminum oxide, or a composite material thereof (for example, aluminum nitride and glass ceramic integrated). Since glass easily forms a sealing material layer and a reaction layer, a strong sealing strength can be secured by laser sealing. Glass ceramic has the feature that it is easy to optimize the wettability with the sealing material layer. Furthermore, since the thermal via can be easily formed, it is possible to appropriately prevent the temperature of the hermetic package from rising excessively. Since aluminum nitride and aluminum oxide have good heat dissipation, it is easy to suppress the temperature rise of the hermetic package.
 ガラスセラミック、窒化アルミニウム、酸化アルミニウムは、黒色顔料が分散されている(黒色顔料が分散された状態で焼結されてなる)ことが好ましい。このようにすれば、パッケージ基体が、封着材料層を透過したレーザー光を吸収することができる。その結果、レーザー封着の際にパッケージ基体の封着材料層と接触する箇所が加熱されるため、封着材料層とパッケージ基体の界面で反応層の形成を促進することができる。 The glass ceramic, aluminum nitride, and aluminum oxide preferably have a black pigment dispersed (sintered in a state in which the black pigment is dispersed). In this way, the package base can absorb the laser light transmitted through the sealing material layer. As a result, the portion of the package base that comes into contact with the sealing material layer is heated during laser sealing, so that the formation of the reaction layer can be promoted at the interface between the sealing material layer and the package base.
 黒色顔料が分散されているパッケージ基体は、照射すべきレーザー光を吸収する性質を有すること、つまり厚み0.5mm、照射すべきレーザー光の波長(808nm)における全光線透過率が10%以下(望ましくは5%以下)であることが好ましい。このようにすれば、パッケージ基体と封着材料層の界面で封着材料層の温度が上がり易くなる。 The package substrate in which the black pigment is dispersed has the property of absorbing the laser beam to be irradiated, that is, the thickness is 0.5 mm, and the total light transmittance at the wavelength of the laser beam to be irradiated (808 nm) is 10% or less ( Desirably, it is preferably 5% or less. If it does in this way, it will become easy to raise the temperature of a sealing material layer in the interface of a package base | substrate and a sealing material layer.
 パッケージ基体の基部の厚みは0.1~2.5mm、特に0.2~1.5mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。 The thickness of the base of the package substrate is preferably 0.1 to 2.5 mm, particularly preferably 0.2 to 1.5 mm. Thereby, thickness reduction of an airtight package can be achieved.
 パッケージ基体の枠部の高さ、つまりパッケージ基体から基部の厚みを引いた高さは、好ましくは100~2000μm、特に200~900μmである。このようにすれば、内部素子を適正に収容しつつ、気密パッケージの薄型化を図り易くなる。 The height of the frame portion of the package substrate, that is, the height obtained by subtracting the thickness of the base portion from the package substrate is preferably 100 to 2000 μm, particularly 200 to 900 μm. In this way, it becomes easy to reduce the thickness of the hermetic package while properly accommodating the internal elements.
 ガラス蓋として、種々のガラスが使用可能である。例えば、無アルカリガラス、アルカリホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。なお、ガラス蓋は、複数枚のガラス板を貼り合わせた積層ガラスであってもよい。 Various glass can be used as the glass lid. For example, alkali-free glass, alkali borosilicate glass, and soda lime glass can be used. The glass lid may be a laminated glass obtained by bonding a plurality of glass plates.
 ガラス蓋の内部素子側の表面に機能膜を形成してもよく、ガラス蓋の外側の表面に機能膜を形成してもよい。特に機能膜として反射防止膜が好ましい。これにより、ガラス蓋の表面で反射する光を低減することができる。 A functional film may be formed on the surface of the glass lid on the inner element side, or a functional film may be formed on the outer surface of the glass lid. In particular, an antireflection film is preferable as the functional film. Thereby, the light reflected on the surface of the glass lid can be reduced.
 ガラス蓋の厚みは、好ましくは0.1mm以上、0.2~2.0mm、0.4~1.5mm、特に0.5~1.2mmである。ガラス蓋の厚みが小さいと、気密パッケージの強度が低下し易くなる。一方、ガラス蓋の厚みが大きいと、気密パッケージの薄型化を図り難くなる。 The thickness of the glass lid is preferably 0.1 mm or more, 0.2 to 2.0 mm, 0.4 to 1.5 mm, particularly 0.5 to 1.2 mm. If the thickness of the glass lid is small, the strength of the hermetic package is likely to decrease. On the other hand, when the thickness of the glass lid is large, it is difficult to reduce the thickness of the hermetic package.
 ガラス蓋と封着材料層の熱膨張係数差は50×10-7/℃未満、40×10-7/℃未満、特に30×10-7/℃以下が好ましい。この熱膨張係数差が大き過ぎると、封着部分に残留する応力が不当に高くなり、気密パッケージの気密信頼性が低下し易くなる。 The difference in thermal expansion coefficient between the glass lid and the sealing material layer is preferably less than 50 × 10 −7 / ° C., less than 40 × 10 −7 / ° C., particularly preferably 30 × 10 −7 / ° C. or less. When this difference in thermal expansion coefficient is too large, the stress remaining in the sealed portion becomes unreasonably high, and the hermetic reliability of the hermetic package tends to decrease.
 封着材料層は、本発明の封着材料により構成されており、レーザー光を吸収することにより軟化変形して、パッケージ基体の表層に反応層を形成し、パッケージ基体とガラス蓋とを気密一体化する機能を有している。 The sealing material layer is composed of the sealing material of the present invention, and is softened and deformed by absorbing laser light to form a reaction layer on the surface layer of the package substrate, and the package substrate and the glass lid are hermetically integrated. It has a function to convert.
 封着材料層の端部(内側端部及び/又は外側端部)は、断面視で円弧状に側方に突出していることが好ましく、封着材料層の内側端部及び外側端部が円弧状に突き出ていることが更に好ましい。このようにすれば、気密パッケージにせん断応力がかかった時に、封着材料層がバルク破壊し難くなる。結果として、気密パッケージの気密信頼性を高めることができる。 The end portion (inner end portion and / or outer end portion) of the sealing material layer preferably protrudes laterally in an arc shape in a cross-sectional view, and the inner end portion and the outer end portion of the sealing material layer are circular. More preferably, it projects in an arc. This makes it difficult for the sealing material layer to be bulk broken when shearing stress is applied to the hermetic package. As a result, the airtight reliability of the airtight package can be improved.
 封着材料層は、枠部との接触位置が枠部の頂部の内側端縁から離間するように形成されると共に、枠部の頂部の外側端縁から離間するように形成することが好ましく、枠部の頂部の内側端縁から50μm以上、60μm以上、70~2000μm、特に80~1000μm離間した位置に形成されることが更に好ましい。枠部の頂部の内側端縁と封着材料層の離間距離が短過ぎると、レーザー封着の際に、局所加熱で発生した熱が逃げ難くなるため、冷却過程でガラス蓋が破損し易くなる。一方、枠部の頂部の内側端縁と封着材料層の離間距離が長過ぎると、気密パッケージの小型化が困難になる。また枠部の頂部の外側端縁から50μm以上、60μm以上、70~2000μm、特に80~1000μm離間した位置に形成されていることが好ましい。枠部の頂部の外側端縁と封着材料層の離間距離が短過ぎると、レーザー封着の際に、局所加熱で発生した熱が逃げ難くなるため、冷却過程でガラス蓋が破損し易くなる。一方、枠部の頂部の外側端縁と封着材料層の離間距離が長過ぎると、気密パッケージの小型化が困難になる。 The sealing material layer is preferably formed so that the contact position with the frame portion is separated from the inner edge of the top portion of the frame portion, and is separated from the outer edge of the top portion of the frame portion, More preferably, it is formed at a position 50 μm or more, 60 μm or more, 70 to 2000 μm, particularly 80 to 1000 μm apart from the inner edge of the top of the frame. If the distance between the inner edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. . On the other hand, if the distance between the inner edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package. Further, it is preferably formed at a position 50 μm or more, 60 μm or more, 70 to 2000 μm, particularly 80 to 1000 μm apart from the outer edge of the top of the frame portion. If the distance between the outer edge of the top of the frame and the sealing material layer is too short, the heat generated by local heating will be difficult to escape during laser sealing, and the glass lid will be easily damaged during the cooling process. . On the other hand, if the distance between the outer edge of the top of the frame and the sealing material layer is too long, it is difficult to reduce the size of the hermetic package.
 封着材料層は、ガラス蓋との接触位置がガラス蓋の端縁から50μm以上、60μm以上、70~1500μm、特に80~800μm離間するように形成されていることが好ましい。ガラス蓋の端縁と封着材料層の離間距離が短過ぎると、レーザー封着の際に、ガラス蓋の端縁領域において、ガラス蓋の内部素子側の表面と外側の表面の表面温度差が大きくなり、ガラス蓋が破損し易くなる。 The sealing material layer is preferably formed so that the position of contact with the glass lid is 50 μm or more, 60 μm or more, 70 to 1500 μm, particularly 80 to 800 μm away from the edge of the glass lid. If the separation distance between the edge of the glass lid and the sealing material layer is too short, the surface temperature difference between the surface on the inner element side and the outer surface of the glass lid in the edge region of the glass lid during laser sealing. It becomes large and the glass lid is easily broken.
 封着材料層は、枠部の頂部の幅方向の中心線上に形成されている、つまり枠部の頂部の中央領域に形成されていることが好ましい。このようにすれば、レーザー封着の際に、局所加熱で発生した熱が逃げ易くなるため、ガラス蓋が破損し難くなる。なお、枠部の頂部の幅が充分に大きい場合は、枠部の頂部の幅方向の中心線上に封着材料層を形成しなくてもよい。 The sealing material layer is preferably formed on the center line in the width direction of the top of the frame, that is, formed in the central region of the top of the frame. In this way, the heat generated by local heating is easily escaped at the time of laser sealing, so that the glass lid is difficult to break. In addition, when the width | variety of the top part of a frame part is large enough, it is not necessary to form the sealing material layer on the center line of the width direction of the top part of a frame part.
 封着材料層の平均厚みは、好ましくは8.0μm未満、特に1.0μm以上、且つ6.0μm未満である。封着材料層の平均厚みが小さい程、封着材料層とガラス蓋の熱膨張係数が不整合である時に、レーザー封着後に封着部分に残留する応力を低減することができる。またレーザー封着の精度を高めることもできる。なお、上記のように封着材料層の平均厚みを規制する方法としては、複合粉末ペーストを薄く塗布する方法、封着材料層の表面を研磨処理する方法等が挙げられる。 The average thickness of the sealing material layer is preferably less than 8.0 μm, particularly 1.0 μm or more and less than 6.0 μm. The smaller the average thickness of the sealing material layer, the lower the stress remaining in the sealing portion after laser sealing when the thermal expansion coefficients of the sealing material layer and the glass lid are mismatched. In addition, the accuracy of laser sealing can be increased. Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying the composite powder paste, a method of polishing the surface of the sealing material layer, and the like.
 封着材料層の最大幅は、好ましくは1μm以上、且つ2000μm以下、10μm以上、且つ1000μm以下、50μm以上、且つ800μm以下、特に100μm以上、且つ600μm以下である。封着材料層の最大幅を狭くすると、封着材料層を枠部の端縁から離間させ易くなるため、レーザー封着後に封着部分に残留する応力を低減し易くなる。更にパッケージ基体の枠部の幅を狭くすることができ、デバイスとして機能する有効面積を拡大することができる。一方、封着材料層の最大幅が狭過ぎると、封着材料層に大きなせん断応力がかかった場合に、封着材料層がバルク破壊し易くなる。更にレーザー封着の精度が低下し易くなる。 The maximum width of the sealing material layer is preferably 1 μm or more and 2000 μm or less, 10 μm or more, 1000 μm or less, 50 μm or more and 800 μm or less, particularly 100 μm or more and 600 μm or less. When the maximum width of the sealing material layer is narrowed, the sealing material layer is easily separated from the edge of the frame portion, so that it is easy to reduce the stress remaining in the sealing portion after laser sealing. Furthermore, the width of the frame portion of the package substrate can be reduced, and the effective area that functions as a device can be increased. On the other hand, if the maximum width of the sealing material layer is too narrow, the sealing material layer easily breaks in bulk when a large shear stress is applied to the sealing material layer. Furthermore, the accuracy of laser sealing tends to be reduced.
 封着材料層の平均厚みを封着材料層の最大幅で除した値は、好ましくは0.003以上、0.005以上、0.01~0.1、特に0.02~0.05である。封着材料層の平均厚みを封着材料層の最大幅で除した値が小さ過ぎると、封着材料層に大きなせん断応力がかかった場合に、封着材料層がバルク破壊し易くなる。一方、封着材料層の平均厚みを封着材料層の最大幅で除した値が大き過ぎると、レーザー封着の精度が低下し易くなる。 A value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is preferably 0.003 or more, 0.005 or more, 0.01 to 0.1, particularly 0.02 to 0.05. is there. When the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too small, the bulk of the sealing material layer is easily broken when a large shear stress is applied to the sealing material layer. On the other hand, if the value obtained by dividing the average thickness of the sealing material layer by the maximum width of the sealing material layer is too large, the accuracy of laser sealing tends to be lowered.
 封着材料層の表面粗さRaは、好ましくは0.5μm未満、0.2μm以下、特に0.01~0.15μmである。また、封着材料層の表面粗さRMSは、好ましくは1.0μm未満、0.5μm以下、特に0.05~0.3μmである。このようにすれば、パッケージ基体と封着材料層の密着性が向上し、レーザー封着の精度が向上する。ここで、「表面粗さRMS」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。なお、上記のように封着材料層の表面粗さRa、RMSを規制する方法としては、封着材料層の表面を研磨処理する方法、耐火性フィラー粉末の粒度を小さくする方法等が挙げられる。 The surface roughness Ra of the sealing material layer is preferably less than 0.5 μm, 0.2 μm or less, and particularly 0.01 to 0.15 μm. Further, the surface roughness RMS of the sealing material layer is preferably less than 1.0 μm and 0.5 μm or less, particularly 0.05 to 0.3 μm. In this way, the adhesion between the package substrate and the sealing material layer is improved, and the accuracy of laser sealing is improved. Here, the “surface roughness RMS” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter. Examples of the method for regulating the surface roughness Ra and RMS of the sealing material layer as described above include a method of polishing the surface of the sealing material layer, a method of reducing the particle size of the refractory filler powder, and the like. .
 気密パッケージを製造する方法としては、ガラス蓋側から封着材料層に向けてレーザー光を照射し、封着材料層を軟化変形させることにより、パッケージ基体とガラス蓋とを気密封着して、気密パッケージを得ることが好ましい。この場合、ガラス蓋をパッケージ基体の下方に配置してもよいが、レーザー封着の効率の観点から、ガラス蓋をパッケージ基体の上方に配置することが好ましい。 As a method for manufacturing an airtight package, the package base and the glass lid are hermetically sealed by irradiating a laser beam from the glass lid side toward the sealing material layer and softening and deforming the sealing material layer. It is preferable to obtain an airtight package. In this case, the glass lid may be disposed below the package substrate, but it is preferable to dispose the glass lid above the package substrate from the viewpoint of laser sealing efficiency.
 レーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。 Various lasers can be used as the laser. In particular, a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
 レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。 The atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
 レーザー封着を行う際に、100℃以上、且つ内部素子の耐熱温度以下の温度でガラス蓋を予備加熱すると、レーザー封着の際にサーマルショックによるガラス蓋の破損を抑制し易くなる。またレーザー封着直後に、ガラス蓋側からアニールレーザーを照射すると、サーマルショックや残留応力によるガラス蓋の破損を更に抑制し易くなる。 When performing laser sealing, if the glass lid is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistance temperature of the internal element, it becomes easy to suppress breakage of the glass lid due to thermal shock during laser sealing. Further, if the annealing laser is irradiated from the glass lid side immediately after the laser sealing, it becomes easier to further suppress the breakage of the glass lid due to thermal shock or residual stress.
 ガラス蓋を押圧した状態でレーザー封着を行うことが好ましい。これにより、レーザー封着の際に、封着材料層の端部を円弧状に突出させ易くなる。そして、封着材料層の端部を円弧状に突出させた場合、気密パッケージにせん断応力がかかった時に、封着材料層がバルク破壊し難くなる。結果として、気密パッケージの気密信頼性を高めることができる。 It is preferable to perform laser sealing while pressing the glass lid. Thereby, at the time of laser sealing, it becomes easy to project the edge part of the sealing material layer in circular arc shape. And when the edge part of the sealing material layer is protruded in circular arc shape, when a shearing stress is applied to an airtight package, it becomes difficult to bulk-break a sealing material layer. As a result, the airtight reliability of the airtight package can be improved.
 以下、図面を参照しながら、本発明を説明する。図1は、気密パッケージの一実施形態を説明するための概略断面図である。図1から分かるように、気密パッケージ1は、パッケージ基体10とガラス蓋11とを備えている。また、パッケージ基体10は、基部12と、基部12の外周端縁上に額縁状の枠部13とを有している。そして、パッケージ基体10の枠部13内には、内部素子14が収容されている。なお、パッケージ基体10内には、内部素子14と外部を電気的に接続する電気配線(図示されていない)が形成されている。 Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view for explaining an embodiment of an airtight package. As can be seen from FIG. 1, the hermetic package 1 includes a package base 10 and a glass lid 11. Further, the package base 10 includes a base 12 and a frame-shaped frame portion 13 on the outer peripheral edge of the base 12. An internal element 14 is accommodated in the frame portion 13 of the package base 10. An electrical wiring (not shown) that electrically connects the internal element 14 and the outside is formed in the package base 10.
 封着材料層15は、パッケージ基体10の枠部13の頂部とガラス蓋11の内部素子14側の表面との間に、枠部13の頂部の全周に亘って配されている。また、封着材料層15は、本発明の封着材料により構成されている。そして、封着材料層15の幅は、パッケージ基体10の枠部13の頂部の幅よりも小さく、更にガラス蓋11及び枠部13の端部の端縁から離間している。更に封着材料層15の平均厚みは8.0μm未満になっている。 The sealing material layer 15 is arranged over the entire circumference of the top of the frame 13 between the top of the frame 13 of the package base 10 and the surface of the glass lid 11 on the internal element 14 side. Moreover, the sealing material layer 15 is comprised with the sealing material of this invention. The width of the sealing material layer 15 is smaller than the width of the top portion of the frame portion 13 of the package substrate 10, and is further away from the edge of the end portions of the glass lid 11 and the frame portion 13. Furthermore, the average thickness of the sealing material layer 15 is less than 8.0 μm.
 また、上記気密パッケージ1は、次のようにして作製することができる。まず封着材料層15と枠部13の頂部が接するように、封着材料層15が予め形成されたガラス蓋11をパッケージ基体10上に載置する。続いて、押圧治具を用いてガラス蓋11を押圧しながら、ガラス蓋11側から封着材料層15に沿って、レーザー照射装置18から出射したレーザー光Lを照射する。これにより、封着材料層15が軟化流動し、パッケージ基体10の枠部13の頂部の表層と反応することで、パッケージ基体10とガラス蓋11が気密一体化されて、気密パッケージ1の気密構造が形成される。 The airtight package 1 can be manufactured as follows. First, the glass lid 11 on which the sealing material layer 15 is formed in advance is placed on the package base 10 so that the sealing material layer 15 and the top of the frame portion 13 are in contact with each other. Subsequently, the laser beam L emitted from the laser irradiation device 18 is irradiated along the sealing material layer 15 from the glass lid 11 side while pressing the glass lid 11 using a pressing jig. As a result, the sealing material layer 15 softens and flows and reacts with the top layer of the frame portion 13 of the package base 10, whereby the package base 10 and the glass lid 11 are hermetically integrated, and the airtight structure of the hermetic package 1. Is formed.
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
(結晶化ガラスの原料バッチの作製)
 表1に記載の組成になるように調合した各種原料を内容積1.0Lのポリエチレン製容器に入れて、マルチミルで3分間混合し、原料バッチを作製した。
(Preparation of crystallized glass raw material batch)
Various raw materials prepared so as to have the composition shown in Table 1 were put into a polyethylene container having an internal volume of 1.0 L, and mixed for 3 minutes with a multimill to prepare a raw material batch.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(結晶化ガラスの作製)
 次に、原料バッチを白金製の坩堝に入れ、1550℃の電気炉内で1時間保持した後、白金棒でガラス融液を攪拌し、更に1550℃の電気炉内で30分保持した。
(Production of crystallized glass)
Next, the raw material batch was placed in a platinum crucible and held in an electric furnace at 1550 ° C. for 1 hour, and then the glass melt was stirred with a platinum rod and further held in an electric furnace at 1550 ° C. for 30 minutes.
 その後、成形ローラー(双ローラー)間に、ガラス融液を流し出すことにより、ガラス融液を急冷すると共に、フィルム形状に成形した。続いて、表1に記載の結晶化温度及び結晶化時間で、ガラスフィルムを結晶化した。 Thereafter, the glass melt was poured between forming rollers (double rollers) to rapidly cool the glass melt and to form a film shape. Subsequently, the glass film was crystallized at the crystallization temperature and crystallization time described in Table 1.
 得られた結晶化ガラスフィルムについて、乾式粉砕及び湿式粉砕により平均粒子径D50が1.0μmになるまで粉砕した後、350メッシュの試験篩で分級し、試料No.1~7に係る結晶化ガラス粉末を得た。 The obtained crystallized glass film was pulverized by dry pulverization and wet pulverization until the average particle diameter D 50 became 1.0 μm, and then classified by a 350 mesh test sieve. Crystallized glass powders according to 1 to 7 were obtained.
 主結晶は、X線回折装置(リガク製RINT-2100)で評価したものである。なお、測定範囲を2θ=10~60°とした。 The main crystal was evaluated by an X-ray diffractometer (RINT-2100 manufactured by Rigaku). The measurement range was 2θ = 10 to 60 °.
(ビスマス系ガラス粉末の作製)
 ガラス組成として、モル%で、Bi 36.4%、B 28%、ZnO 4.4%、BaO 4%、CuO 25.2%、Fe 1%、Al 1%を含有するガラス粉末が得られるように、各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝に入れて1000~1100℃で2時間溶融した。次に、得られたガラス融液を水冷ローラーにより薄片状に成形した。最後に、薄片状のガラスをボールミルにて粉砕後、空気分級し、ビスマス系ガラス粉末を得た。なお、ビスマス系ガラス粉末の平均粒子径D50は2.5μm、最大粒子径Dmaxは10μm、30~300℃における熱膨張係数は104×10-7/℃であった。
(Preparation of bismuth glass powder)
As glass composition, Bi 2 O 3 36.4%, B 2 O 3 28%, ZnO 4.4%, BaO 4%, CuO 25.2%, Fe 2 O 3 1%, Al 2 O in mol%. 3 A glass batch prepared by preparing raw materials such as various oxides and carbonates so as to obtain glass powder containing 1% was prepared, and this was put in a platinum crucible and melted at 1000 to 1100 ° C. for 2 hours. Next, the obtained glass melt was formed into a thin piece with a water-cooled roller. Finally, the flaky glass was pulverized with a ball mill and air classified to obtain a bismuth glass powder. The average particle diameter D 50 of the bismuth-based glass powder was 2.5 μm, the maximum particle diameter D max was 10 μm, and the thermal expansion coefficient at 30 to 300 ° C. was 104 × 10 −7 / ° C.
(封着材料の作製)
 上記ビスマス系ガラス粉末と表1に記載の負膨張の結晶化ガラス粉末とを体積比で75:25になるように混合し、封着材料を得た。
(Preparation of sealing material)
The bismuth-based glass powder and the negatively expanded crystallized glass powder listed in Table 1 were mixed at a volume ratio of 75:25 to obtain a sealing material.
 得られた封着材料を500℃で焼成することにより、緻密な焼成体を得た後、この焼成体を所定形状に加工して、TMA用の測定試料を作製した。この測定試料を用いて、30~300℃の温度範囲でTMAを行い、封着材料の熱膨張係数を算出した。その結果を表1に示す。 The obtained sealing material was fired at 500 ° C. to obtain a dense fired body, and then the fired body was processed into a predetermined shape to prepare a measurement sample for TMA. Using this measurement sample, TMA was performed in the temperature range of 30 to 300 ° C., and the thermal expansion coefficient of the sealing material was calculated. The results are shown in Table 1.
 熱的安定性は、焼成体の表面を目視で観察して、結晶が析出していないものを「○」、結晶が析出していたものを「×」として評価したものである。 The thermal stability is evaluated by visually observing the surface of the fired body and evaluating as “◯” when crystals are not precipitated and as “X” when crystals are precipitated.
 表1から分かるように、試料No.1~6は、熱的安定性が良好であった。よって、試料No.1~6は、封着材料に適していると考えられる。 As can be seen from Table 1, sample no. Nos. 1 to 6 had good thermal stability. Therefore, sample no. 1 to 6 are considered suitable for the sealing material.
 なお、試料No.1、2に係る結晶化ガラス粉末は、組成中にSiO、Al、LiO、TiO、ZrO以外の成分を実質的に含まず、1000℃で結晶化させた。また試料No.3に係る結晶化ガラス粉末は、組成中にSiO、Al、LiO以外の成分を実質的に含まず、1300℃で結晶化させた。その結果、試料No.1~3は、熱膨張係数が72×10-7/℃以下であった。一方、試料No.4~5に係る結晶化ガラス粉末は、組成中にSiO、Al、LiO、TiO、ZrO以外の成分を実質的に含有しており、また試料No.6に係る結晶化ガラス粉末は、結晶化温度が900℃未満であるため、それぞれ熱膨張係数が75×10-7/℃以上であった。 Sample No. The crystallized glass powders according to Nos. 1 and 2 were crystallized at 1000 ° C. substantially free of components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 and ZrO 2 in the composition. Sample No. The crystallized glass powder according to No. 3 was crystallized at 1300 ° C. substantially free of components other than SiO 2 , Al 2 O 3 , and Li 2 O in the composition. As a result, sample no. 1 to 3 had a thermal expansion coefficient of 72 × 10 −7 / ° C. or less. On the other hand, sample No. The crystallized glass powders according to 4 to 5 substantially contain components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 and ZrO 2 in the composition. Since the crystallized glass powder according to No. 6 had a crystallization temperature of less than 900 ° C., each had a thermal expansion coefficient of 75 × 10 −7 / ° C. or more.
1 気密パッケージ
10 パッケージ基体
11 ガラス蓋
12 基部
13 枠部
14 内部素子
15 封着材料層
L レーザー光
DESCRIPTION OF SYMBOLS 1 Airtight package 10 Package base | substrate 11 Glass cover 12 Base part 13 Frame part 14 Internal element 15 Sealing material layer L Laser beam

Claims (7)

  1.  少なくともビスマス系ガラス粉末と負膨張の結晶化ガラス粉末とを含むことを特徴とする封着材料。 A sealing material comprising at least a bismuth-based glass powder and a negatively expanded crystallized glass powder.
  2.  結晶化ガラス粉末の主結晶が、β-ユークリプタイト又はβ-石英固溶体であることを特徴とする請求項1に記載の封着材料。 The sealing material according to claim 1, wherein the main crystal of the crystallized glass powder is β-eucryptite or β-quartz solid solution.
  3.  結晶化ガラス粉末が、SiO、Al、LiO、TiO、ZrO以外の成分を実質的に含まないことを特徴とする請求項1又は2の封着材料。 3. The sealing material according to claim 1, wherein the crystallized glass powder is substantially free from components other than SiO 2 , Al 2 O 3 , Li 2 O, TiO 2 , and ZrO 2 .
  4.  30~300℃の温度範囲における熱膨張係数が74×10-7/℃未満であることを特徴とする請求項1~3の何れかに記載の封着材料。 4. The sealing material according to claim 1, wherein a thermal expansion coefficient in a temperature range of 30 to 300 ° C. is less than 74 × 10 −7 / ° C.
  5.  レーザー封着に用いることを特徴とする請求項1~4の何れかに記載の封着材料。 The sealing material according to any one of claims 1 to 4, which is used for laser sealing.
  6.  原料バッチを溶融して、ガラス融液を得る溶融工程と、ガラス融液を成形して、結晶性ガラスを得る成形工程と、結晶性ガラスを結晶化して、結晶化ガラスを得る結晶化工程と、結晶化ガラスを粉砕して、結晶化ガラス粉末を得る粉砕工程と、を有することを特徴とする結晶化ガラス粉末の製造方法。 A melting step of melting a raw material batch to obtain a glass melt, a molding step of shaping the glass melt to obtain a crystalline glass, and a crystallization step of crystallizing the crystalline glass to obtain a crystallized glass. And a pulverizing step of pulverizing the crystallized glass to obtain the crystallized glass powder.
  7.  結晶性ガラスを900~1400℃の温度で結晶化することを特徴とする請求項6に記載の結晶化ガラス粉末の製造方法。 The method for producing crystallized glass powder according to claim 6, wherein the crystalline glass is crystallized at a temperature of 900 to 1400 ° C.
PCT/JP2018/011577 2017-04-06 2018-03-23 Sealing material and method for producing crystallized glass powder WO2018186200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511154A JPWO2018186200A1 (en) 2017-04-06 2018-03-23 Sealing material and method for producing crystallized glass powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075967 2017-04-06
JP2017-075967 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186200A1 true WO2018186200A1 (en) 2018-10-11

Family

ID=63712933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011577 WO2018186200A1 (en) 2017-04-06 2018-03-23 Sealing material and method for producing crystallized glass powder

Country Status (3)

Country Link
JP (1) JPWO2018186200A1 (en)
TW (1) TW201841852A (en)
WO (1) WO2018186200A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172048A (en) * 1998-10-23 2001-06-26 Ohara Inc Negative thermal expandable glass ceramic and method for producing the same
JP2002104841A (en) * 2000-09-28 2002-04-10 Ohara Inc Glass ceramics and temperature compensating parts
JP2007091577A (en) * 2005-09-05 2007-04-12 Ohara Inc Inorganic substance powder and composite material using the same
WO2012090943A1 (en) * 2010-12-27 2012-07-05 旭硝子株式会社 Glass member with sealing material layer, electronic device using same and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486253B2 (en) * 2008-10-31 2014-05-07 株式会社オハラ Glass and crystallized glass
WO2011105547A1 (en) * 2010-02-27 2011-09-01 株式会社オハラ Glass ceramic, method for producing same, and use of same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172048A (en) * 1998-10-23 2001-06-26 Ohara Inc Negative thermal expandable glass ceramic and method for producing the same
JP2002104841A (en) * 2000-09-28 2002-04-10 Ohara Inc Glass ceramics and temperature compensating parts
JP2007091577A (en) * 2005-09-05 2007-04-12 Ohara Inc Inorganic substance powder and composite material using the same
WO2012090943A1 (en) * 2010-12-27 2012-07-05 旭硝子株式会社 Glass member with sealing material layer, electronic device using same and method for producing same

Also Published As

Publication number Publication date
JPWO2018186200A1 (en) 2020-02-20
TW201841852A (en) 2018-12-01

Similar Documents

Publication Publication Date Title
JP6966724B2 (en) Method for manufacturing composite ceramic powder, sealing material and composite ceramic powder
JPWO2017212828A1 (en) Airtight package manufacturing method and airtight package
CN113105117A (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealed package, and organic electroluminescent element
WO2017183490A1 (en) Ceramic powder, composite powder material, and sealing material
JPWO2017170051A1 (en) Glass powder and sealing material using the same
KR102380455B1 (en) confidential package
JP7222245B2 (en) airtight package
JP6952950B2 (en) Composite powder material
WO2018186200A1 (en) Sealing material and method for producing crystallized glass powder
TWI751146B (en) Manufacturing method of ceramic powder
JP7082309B2 (en) Cover glass and airtight package
JP7169739B2 (en) Bismuth-based glass powder, sealing material and hermetic packaging
JP7148877B2 (en) ceramic powder
JP7047270B2 (en) Manufacturing method of package substrate with sealing material layer and manufacturing method of airtight package
JP2019036637A (en) Manufacturing method of airtight package, and airtight package
WO2019167549A1 (en) Glass powder and sealing material using same
CN109415244B (en) Bismuth glass, method for producing bismuth glass, and sealing material
JP6840982B2 (en) Bismuth glass and sealing materials using it
WO2018193767A1 (en) Cover glass and airtight package using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780475

Country of ref document: EP

Kind code of ref document: A1