WO2023053688A1 - Electronic device and method for manufacturing electronic device - Google Patents

Electronic device and method for manufacturing electronic device Download PDF

Info

Publication number
WO2023053688A1
WO2023053688A1 PCT/JP2022/028255 JP2022028255W WO2023053688A1 WO 2023053688 A1 WO2023053688 A1 WO 2023053688A1 JP 2022028255 W JP2022028255 W JP 2022028255W WO 2023053688 A1 WO2023053688 A1 WO 2023053688A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
frame member
electronic device
sealing material
content
Prior art date
Application number
PCT/JP2022/028255
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 西宮
徹 平尾
徹 白神
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023053688A1 publication Critical patent/WO2023053688A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container

Definitions

  • the present disclosure relates to electronic devices and methods of manufacturing electronic devices.
  • Patent Document 1 discloses an example of an electronic device having an airtight structure.
  • the electronic device (light emitting device 1) disclosed in the same document includes an LED (light source 20), a base material (first member 11) on which the LED is mounted, and the LED with one end opening joined to the base material. and a lid member (cover member 40) joined to the frame member so as to close the other end opening of the frame member.
  • the base material is often composed of metal, metal oxide ceramics, LTCC, or metal nitride ceramics.
  • the frame material may be made of glass that transmits ultraviolet rays. In this case, when the base material and the frame material made of glass are joined together in the manufacture of the electronic device, the two may be directly fused together by laser irradiation.
  • the airtightness is likely to be impaired due to the high degree of difficulty in joining, such as the time it takes to determine the conditions for welding and processing.
  • the technical issue to be resolved is to improve the reliability of the airtight structure in electronic devices.
  • a method of manufacturing an electronic device for solving the above problems includes: an electronic component; a base material on which the electronic component is mounted; and a lid member directly joined to the frame member so as to close the other end opening of the frame member, the method for manufacturing an electronic device between the base material and the one end opening of the frame member.
  • a joining preparation step in which a sealing material containing a glass material is interposed; and after the joining preparation step, a laser is irradiated to soften and deform the sealing material, thereby joining the base material and the opening at one end of the frame material.
  • This step is characterized by comprising:
  • the base material and the frame material are joined by the joining preparation process and the main joining process. That is, when joining both the base material and the frame material made of glass, the laser is irradiated to the sealing material containing the glass material interposed between them instead of directly welding them. Then, the sealing material is softened and deformed to be joined.
  • the softening point of the sealing material is preferably 550°C or less.
  • the softening point of the sealing material is excessively high, it will be necessary to irradiate the laser in the main joining process to heat the sealing material to that high softening point. This heating of the sealing material may damage the base material and the frame material. However, if the softening point of the sealing material is 550° C. or less, the above fears can be accurately eliminated.
  • the sealing material preferably has a thermal expansion coefficient of 35 ⁇ 10 -7 /°C to 90 ⁇ 10 -7 /°C in the temperature range of 30°C to 200°C.
  • the glass material contains 28 to 60% Bi 2 O 3 , 15 to 37% B 2 O 3 , 0 to 30% ZnO, and 1 to 40% CuO+MnO in terms of mol % of the glass composition. is preferred.
  • the sealing material is at least one refractory material selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, ⁇ -eucryptite, and ⁇ -quartz solid solution.
  • it further contains a filler powder.
  • the joining preparation step and the main joining step may be performed after joining the frame material and the lid material.
  • the frame member and the lid member may be joined after performing this joining step.
  • the lid material and the other end opening of the frame material are in contact with each other, and the contact portion between the two is irradiated with a laser. It is preferable to directly weld the cover material.
  • An electronic device for solving the above problems includes an electronic component, a base material on which the electronic component is mounted, a frame member made of glass surrounding the electronic component with one end opening joined to the base material, and a frame member and a lid member directly joined to the frame member so as to close the other end opening of the electronic device, wherein the base member and the frame member are joined via a sealing material containing a glass material. It is characterized by
  • the electronic device and the electronic device manufacturing method according to the present disclosure it is possible to improve the reliability of the airtight structure in the electronic device.
  • FIG. 1 is a cross-sectional view showing an electronic device
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; It is sectional drawing which shows the manufacturing method of an electronic device. It is sectional drawing which shows the manufacturing method of an electronic device. It is a top view which shows the manufacturing method of an electronic device.
  • FIG. 4 is a cross-sectional view showing a bonding preparation step in the method of manufacturing an electronic device;
  • FIG. 4 is a cross-sectional view showing a bonding preparation step in the method of manufacturing an electronic device;
  • FIG. 4 is a cross-sectional view showing a main joining step in the method of manufacturing an electronic device;
  • FIG. 1 and 2 illustrate an electronic device 1.
  • FIG. 1 and 2 illustrate an electronic device 1.
  • the electronic device 1 includes an electronic component 2, a base material 3 on which the electronic component 2 is mounted, a protective cap 4 disposed on the base material 3 so as to accommodate the electronic component 2 inside, and the base material 3. a layer of sealing material 5 joining with the protective cap 4;
  • the side of the substrate 3 is taken as the bottom and the side of the protective cap 4 is taken as the top, but the vertical direction is not limited to this.
  • the electronic component 2 is not particularly limited, but examples include optical devices such as laser modules, LEDs, optical sensors, imaging elements, and optical switches.
  • the electronic component 2 is an ultraviolet LED (light emitting element)
  • the electronic device 1 is a light emitting device.
  • the substrate 3 is made of, for example, metal, metal oxide ceramics, LTCC or metal nitride ceramics.
  • metals include copper and metallic silicon.
  • metal oxide ceramics include aluminum oxide.
  • LTCC include sintered composite powder containing crystallizable glass and refractory filler.
  • metal nitride ceramics include aluminum nitride.
  • the base material 3 is made of aluminum nitride.
  • the thermal expansion coefficient of aluminum nitride in the temperature range of 30 to 380°C is, for example, 46 ⁇ 10 -7 /°C.
  • the base material 3 is a plate-like body in which both the upper surface 3a and the lower surface 3b are flat surfaces.
  • the substrate 3 may be provided with a concave portion in a portion of the upper surface 3a where the electronic component 2 is mounted.
  • the protective cap 4 includes a frame member 6 that surrounds the electronic component 2 while being joined to the base material 3, a cover member 7 that covers and closes the frame member 6 from above, and joins the frame member 6 and the cover member 7. a joint portion 8;
  • the joint portion 8 is formed of a weld portion 9 in which the frame member 6 and the lid member 7 are directly welded (directly joined).
  • Various functional films are preferably formed on the surface of the protective cap 4.
  • an antireflection film may be formed on at least one of the upper and lower surfaces 7a and 7b of the lid member 7 in order to reduce light reflection loss. is preferred.
  • Antireflection films are preferably formed on the upper and lower surfaces 7a and 7b of the lid member 7, respectively.
  • the antireflection film may be formed only on a portion of at least one of the upper and lower surfaces 7a and 7b of the lid member 7 corresponding to the through holes H of the frame member 6, or may be formed on the entire surface.
  • the antireflection film for example, a dielectric multilayer film in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately laminated is preferable. This makes it easier to control the reflectance at each wavelength.
  • the antireflection film can be formed by, for example, a sputtering method, a CVD method, or the like.
  • the reflectance of the antireflection film in the wavelength band (for example, 250 to 350 nm) of the light emitted from the electronic component 2 is, for example, 1% or less, 0.5% or less, 0.3% or less, particularly 0.1% or less. is preferably
  • the frame member 6 is a cylindrical body having a through hole H extending in the thickness direction (vertical direction) at the center. Thereby, openings are formed at the upper end and the lower end of the frame member 6, respectively.
  • the frame member 6 surrounds the electronic component 2 accommodated in the space corresponding to the through hole H.
  • the upper end opening of the frame member 6 is formed by an upper end surface 6a that is annular in plan view, and the lower end opening of the frame member 6 is similarly formed by a lower end surface 6b that is annular in plan view.
  • the frame member 6 is configured as a rectangular cylinder, but may be of other shapes such as a cylinder.
  • the inner wall surface 6c of the frame member 6 shifts from the inside to the outside as it goes from the lower end surface 6b side to the upper end surface 6a side of the frame member 6 in order to improve the efficiency of extracting ultraviolet rays through the lid member 7. Consists of sloping surfaces.
  • the inner wall surface 6c may be a non-inclined surface (vertical surface).
  • the through holes H can be formed by subjecting the base material of the frame member 6 to etching, laser processing, sandblasting, or the like.
  • a reflective film for reflecting the light emitted from the electronic component 2 may be formed on the inner wall surface 6c of the frame member 6.
  • the reflective film is preferably made of resin paint or glass paste containing metals such as aluminum and gold, and ceramics such as alumina, zirconia and titania.
  • the thickness of the reflective film is preferably 0.1 to 100 ⁇ m, for example.
  • the reflectance of the reflective film in the wavelength band (for example, 250 to 350 nm) of light emitted from the electronic component 2 is preferably 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more. is preferable, and 70% or more is particularly preferable.
  • the reflectance can be calculated by measuring the transmittance at each wavelength in the wavelength range of 250 to 350 nm using UH-4150 manufactured by Hitachi High-Tech Science.
  • a spray coating method As a method for forming the reflective film on the inner wall surface 6c of the frame member 6, it is desirable to use a spray coating method.
  • a spray coating liquid liquid that becomes a reflective film
  • a reflective film can be easily formed on the inner wall surface 6c of the frame member 6 by coating and then peeling off the mask. Note that the method of forming the reflective film is not limited to this, and for example, a dip coating method or the like can also be used.
  • the frame material 6 having the through holes H is immersed in a dip coating liquid (liquid that becomes a reflective film), and then formed on the unnecessary portions of the surface of the frame material 6 (upper and lower end surfaces 6a, 6b, etc.).
  • a reflective film can be formed on the inner wall surface 6c of the frame member 6 by removing the reflective film formed thereon by polishing or the like. In this case, by polishing the upper end surface 6a of the frame member 6 when removing the unnecessary portion of the reflective film, the surface precision when joined to the lid member 7 can be adjusted.
  • the frame material 6 is made of glass having a thermal expansion coefficient of 30 ⁇ 10 -7 to 100 ⁇ 10 -7 /°C in the temperature range of 30 to 380°C.
  • the thermal expansion coefficient of the frame material 6 is preferably 40 ⁇ 10 ⁇ 7 /° C. or higher, more preferably 50 ⁇ 10 ⁇ 7 /° C. or higher, still more preferably 60 ⁇ 10 ⁇ 7 /° C. or higher, particularly preferably 70 ⁇ 10 ⁇ 7 /° C. or higher. -7 /°C or higher.
  • the thermal expansion coefficient of the frame member 6 is preferably 95 ⁇ 10 ⁇ 7 /° C. or less, particularly preferably 90 ⁇ 10 ⁇ 7 /° C. or less. By doing so, the thermal expansion coefficient of the frame member 6 matches that of the base material 3 made of metal, metal nitride ceramics, or the like.
  • the glass forming the frame member 6 is preferably ultraviolet-transmitting glass.
  • the transmittance at an optical path length of 0.7 mm and a wavelength of 200 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, and 60%. 70% or more, particularly preferably 80% or more.
  • the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is preferably 50% or more, 60% or more, 70% or more, and particularly preferably 80% or more.
  • the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is T250
  • the transmittance at an optical path length of 0.7 mm and a wavelength of 300 nm is T300
  • the value of T250/T300 is , preferably 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, and particularly preferably 0.9 or more.
  • the transmittance of ultraviolet rays is at the same level, and the light emitted from the electronic component 2 made of an ultraviolet LED can be transmitted without problems. It is possible to maintain the efficiency of extracting ultraviolet rays at a high level.
  • the strain point of the glass forming the frame material 6 is preferably 430°C or higher, 460°C or higher, 480°C or higher, 500°C or higher, 520°C or higher, 530°C or higher, and particularly preferably 550°C or higher.
  • the softening point of the glass forming the frame member 6 is preferably 1000°C or lower, 950°C or lower, 900°C or lower, 850°C or lower, and particularly preferably 800°C or lower. In this way, when the frame member 6 and the lid member 7 are directly welded by laser welding or the like, the frame member 6 is easily softened, so that the bonding time can be shortened.
  • the temperature of the glass constituting the frame material 6 at 10 2.5 dPa ⁇ s is preferably 1580° C. or less, 1550° C. or less, 1520° C. or less, 1500° C. or less, 1480° C. or less, and particularly preferably 1470° C. or less. If the temperature at 10 2.5 dPa ⁇ s is too high, the meltability of the glass is lowered, which tends to increase the manufacturing cost of the glass.
  • the "temperature at 10 2.5 dPa ⁇ s" can be measured by the platinum ball pull-up method. The temperature at 10 2.5 dPa ⁇ s corresponds to the melting temperature, and the lower the temperature, the better the meltability.
  • the liquidus temperature of the glass forming the frame material 6 is preferably less than 1150°C, 1120°C or less, 1100°C or less, 1080°C or less, 1050°C or less, 1030°C or less, 980°C or less, 960°C or less, or 950°C or less. , and particularly preferably 940° C. or less.
  • the liquidus viscosity of the glass forming the frame member 6 is preferably 10 4.0 dPa ⁇ s or more, 10 4.3 dPa ⁇ s or more, 10 4.5 dPa ⁇ s or more, 10 4.8 dPa ⁇ s or more, or 10 5.1 dPa ⁇ s.
  • the liquidus temperature refers to the glass powder that passes through a 30-mesh (500 ⁇ m) standard sieve and remains on the 50-mesh (300 ⁇ m) sieve. It is a value obtained by measuring the precipitation temperature by microscopic observation.
  • the "liquidus viscosity” is a value obtained by measuring the viscosity of the glass at the liquidus temperature by the platinum ball pull-up method.
  • the Young's modulus of the glass forming the frame material 6 is preferably 55 GPa or higher, 60 GPa or higher, 65 GPa or higher, and particularly preferably 70 GPa or higher. If the Young's modulus is too low, the frame member 6 is likely to be deformed, warped, and damaged.
  • Young's modulus refers to a value measured by a resonance method.
  • the glass constituting the frame member 6 has a glass composition of 50 to 80% SiO 2 , 1 to 45% Al 2 O 3 +B 2 O 3 , 0 to 25% Li 2 O + Na 2 O + K 2 O, and MgO + CaO + SrO + BaO in mass %. It preferably contains 0 to 25%.
  • the reasons for limiting the content of each component as described above are as follows.
  • % display represents the mass % unless there is a notice in particular.
  • SiO 2 is the main component that forms the skeleton of glass.
  • the content of SiO 2 is preferably 50-80%, 55-75%, 58-70%, particularly preferably 60-68%. If the SiO 2 content is too low, the Young's modulus and acid resistance tend to decrease. On the other hand, if the SiO 2 content is too high, the viscosity at high temperatures tends to increase and the meltability tends to decrease. Become.
  • Al 2 O 3 and B 2 O 3 are components that improve devitrification resistance.
  • the content of Al 2 O 3 +B 2 O 3 is preferably 1-40%, 5-35%, 10-30%, particularly preferably 15-25%. If the content of Al 2 O 3 +B 2 O 3 is too small, the glass tends to devitrify. On the other hand, if the content of Al 2 O 3 +B 2 O 3 is too large, the component balance of the glass composition is impaired, and the glass tends to devitrify.
  • Al 2 O 3 is a component that increases Young's modulus and suppresses phase separation and devitrification.
  • the content of Al 2 O 3 is preferably 1-20%, 3-18%, particularly preferably 5-16%. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of Al 2 O 3 is too high, the high-temperature viscosity increases and the meltability tends to decrease.
  • B 2 O 3 is a component that enhances meltability and resistance to devitrification, and is a component that improves scratch resistance and enhances strength.
  • the content of B 2 O 3 is preferably 3-25%, 5-22%, 7-19%, particularly preferably 9-16%. If the B 2 O 3 content is too low, the meltability and resistance to devitrification tend to deteriorate, and the resistance to hydrofluoric acid-based chemicals tends to deteriorate. On the other hand, if the B 2 O 3 content is too high, Young's modulus and acid resistance tend to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that lower the high-temperature viscosity to remarkably improve the meltability and contribute to the initial melting of the glass raw material.
  • the content of Li 2 O+Na 2 O+K 2 O is preferably 0-25%, 1-20%, 4-15%, particularly preferably 7-13%. If the content of Li 2 O+Na 2 O+K 2 O is too small, the meltability tends to be lowered. On the other hand, if the content of Na 2 O is too high, the coefficient of thermal expansion may become unduly high.
  • Li 2 O is a component that lowers the high-temperature viscosity and remarkably enhances the meltability and contributes to the initial melting of the glass raw material.
  • the content of Li 2 O is preferably 0-5%, 0-3%, 0-1%, particularly preferably 0-0.1%. If the content of Li 2 O is too low, the meltability tends to decrease, and the coefficient of thermal expansion may unduly decrease. On the other hand, if the content of Li 2 O is too high, the glass tends to undergo phase separation.
  • Na 2 O is a component that lowers the high-temperature viscosity and remarkably enhances the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of Na 2 O is preferably 0-25%, 1-20%, 3-18%, 5-15%, particularly preferably 7-13%. If the content of Na 2 O is too low, the meltability tends to be lowered and the coefficient of thermal expansion may be lowered unduly. On the other hand, if the content of Na 2 O is too high, the coefficient of thermal expansion may become unduly high.
  • K 2 O is a component that lowers the high-temperature viscosity and remarkably enhances the meltability and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of K 2 O is preferably 0-15%, more preferably 0.1-10%, particularly preferably 1-5%. If the K 2 O content is too high, the coefficient of thermal expansion may be unduly high.
  • MgO, CaO, SrO, and BaO are components that lower high-temperature viscosity and increase meltability.
  • the content of MgO+CaO+SrO+BaO is preferably 0-25%, 0-15%, 0.1-12%, 1-5%. If the content of MgO+CaO+SrO+BaO is too high, the glass tends to devitrify.
  • MgO is a component that lowers high-temperature viscosity and increases meltability, and among alkaline earth metal oxides, it is a component that significantly increases Young's modulus.
  • the content of MgO is preferably 0-10%, 0-8%, 0-5%, particularly preferably 0-1%. If the MgO content is too high, the devitrification resistance tends to decrease.
  • CaO is a component that lowers high-temperature viscosity and significantly increases meltability.
  • the raw material to be introduced since the raw material to be introduced is relatively inexpensive, it is a component that reduces the raw material cost.
  • the CaO content is preferably 0-15%, more preferably 0.5-10%, and particularly preferably 1-5%. If the CaO content is too high, the glass tends to devitrify. If the content of CaO is too small, it becomes difficult to obtain the effect of improving meltability and the effect of reducing raw material cost.
  • SrO is a component that enhances devitrification resistance.
  • the content of SrO is preferably 0-7%, 0-5%, 0-3%, particularly preferably 0-1%. If the SrO content is too high, the glass tends to devitrify.
  • BaO is a component that enhances devitrification resistance.
  • the content of BaO is preferably 0-7%, 0-5%, 0-3%, 0-1%. If the BaO content is too high, the glass tends to devitrify.
  • the total content of components other than the above components is preferably 10% or less, 5% or less, and particularly preferably 3% or less.
  • ZnO is a component that enhances meltability, but if it is contained in a large amount in the glass composition, the glass tends to devitrify. Therefore, the content of ZnO is preferably 0-5%, 0-3%, 0-1%, 0-1%, particularly preferably 0-0.1%.
  • ZrO 2 is a component that enhances acid resistance, but if contained in a large amount in the glass composition, the glass tends to devitrify.
  • the content of ZrO 2 is therefore preferably 0-5%, 0-3%, 0-1%, 0-0.5%, particularly preferably 0.001-0.2%.
  • Fe 2 O 3 and TiO 2 are components that reduce transmittance in the deep ultraviolet region.
  • the content of Fe 2 O 3 +TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 0.1-40 ppm or less, particularly preferably 1-20 ppm. If the content of Fe 2 O 3 +TiO 2 is too large, the glass will be colored, and the transmittance in the deep ultraviolet region will tend to decrease. If the content of Fe 2 O 3 +TiO 2 is too low, high-purity glass raw materials must be used, resulting in an increase in batch cost.
  • Fe 2 O 3 is a component that lowers the transmittance in the deep ultraviolet region.
  • the content of Fe 2 O 3 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, particularly preferably 1 to 8 ppm. If the content of Fe 2 O 3 is too high, the glass tends to be colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of Fe 2 O 3 is too low, a high-purity glass raw material must be used, resulting in an increase in batch cost.
  • Fe ions in iron oxide exist in the form of Fe 2+ or Fe 3+ . If the proportion of Fe 2+ is too low, the transmittance in deep ultraviolet rays tends to decrease. Therefore, the mass ratio of Fe 2+ /(Fe 2+ +Fe 3+ ) in iron oxide is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, and particularly preferably 0.4 or more. 5 or more.
  • TiO 2 is a component that lowers the transmittance in the deep ultraviolet region.
  • the content of TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, particularly preferably 0.5 to 5 ppm. If the content of TiO 2 is too high, the glass tends to be colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of TiO 2 is too low, high-purity glass raw materials must be used, resulting in an increase in batch cost.
  • Sb 2 O 3 is a component that acts as a refining agent.
  • the content of Sb 2 O 3 is preferably 1000 ppm or less, 800 ppm or less, 600 ppm or less, 400 ppm or less, 200 ppm or less, 100 ppm or less, particularly preferably less than 50 ppm. If the Sb 2 O 3 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
  • SnO 2 is a component that acts as a fining agent.
  • the SnO 2 content is preferably 2000 ppm or less, 1700 ppm or less, 1400 ppm or less, 1100 ppm or less, 800 ppm or less, 500 ppm or less, 200 ppm or less, particularly preferably 100 ppm or less. If the SnO 2 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
  • F2 , Cl2 and SO3 are components that act as fining agents.
  • the content of F 2 +Cl 2 +SO 3 is preferably 10-10000 ppm.
  • the preferred lower limit range of F 2 +Cl 2 +SO 3 is 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, especially 500 ppm or more, and the preferred upper limit range is 3000 ppm or less, 2000 ppm or less, 1000 ppm or less, especially 800 ppm or less. is.
  • each of F 2 , Cl 2 and SO 3 preferably has a lower limit range of 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, particularly 500 ppm or more, and a preferable upper limit range of 3000 ppm or less and 2000 ppm or less. It is 1000 ppm or less, especially 800 ppm or less. If the content of these components is too low, it will be difficult to exhibit the refining effect. On the other hand, if the content of these components is too high, the fining gas may remain in the glass as bubbles.
  • the glass that constitutes the frame member 6 is prepared, for example, by preparing various glass raw materials to obtain a glass batch, melting this glass batch, refining and homogenizing the resulting molten glass, and molding it into a predetermined shape. It can be made by
  • a reducing agent as a part of the glass raw material in the manufacturing process of the glass forming the frame member 6 .
  • a reducing agent such as wood powder, carbon powder, metal aluminum, metal silicon, and aluminum fluoride can be used as the reducing agent, and among these, metal silicon and aluminum fluoride are preferred.
  • Metallic silicon is preferably used as a part of the raw material for glass in the manufacturing process of the glass constituting the frame member 6, and the amount thereof added is 0.001 to 3% by mass, 0.001 to 3% by mass, and 0.001 to 3% by mass, based on the total mass of the glass batch. 005 to 2% by weight, 0.01 to 1% by weight, particularly 0.03 to 0.1% by weight. If the amount of metal silicon added is too small, the Fe 3+ contained in the glass will not be reduced, and the transmittance in deep ultraviolet rays will tend to decrease. On the other hand, if the amount of metal silicon added is too large, the glass tends to be colored brown.
  • AlF 3 aluminum fluoride
  • 4% by mass, 0.1 to 3% by mass, 0.2 to 2% by mass, and 0.3 to 1% by mass are preferred.
  • F 2 gas may remain in the glass as bubbles. If the amount of aluminum fluoride added is too small, the Fe 3+ contained in the glass will not be reduced, and the transmittance in deep ultraviolet rays will tend to decrease.
  • the glass plate In the manufacturing process of the glass that constitutes the frame member 6, it is preferable to form the glass plate from which the frame member 6 is based by a down-draw method, particularly an overflow down-draw method.
  • a down-draw method particularly an overflow down-draw method.
  • molten glass is overflowed from both sides of a heat-resistant gutter-shaped structure, and while the overflowed molten glass is joined at the lower end of the gutter-shaped structure, it is stretched downward to form a glass sheet.
  • the surface to be the surface of the glass sheet does not come into contact with the gutter-like structure and is formed in a free surface state. Therefore, it becomes easy to produce a thin glass plate, and variations in plate thickness can be reduced without polishing the surface.
  • the structure and material of the gutter-like structure are not particularly limited as long as desired dimensions and surface accuracy can be achieved.
  • the method of applying a force during the downward stretching is not particularly limited. For example, a method of stretching by rotating a heat-resistant roll having a sufficiently large width in contact with the glass may be adopted, or a plurality of pairs of heat-resistant rolls are brought into contact only near the end face of the glass. You may employ
  • a slot downdraw method, a redraw method, a float method, etc. can also be adopted as a method of forming the glass that constitutes the frame member 6 .
  • BU-41 manufactured by Nippon Electric Glass Co., Ltd.
  • the coefficient of thermal expansion of BU-41 in the temperature range of 30 to 380°C is, for example, 42 ⁇ 10 -7 /°C.
  • quartz glass may be used in addition to the BU-41.
  • the thickness (vertical dimension) of the frame member 6 is preferably larger than the electronic component 2, preferably 0.01 to 1 mm larger than the electronic component 2, more preferably 0.05 to 0.5 mm larger, Most preferably 0.1-0.2 mm larger.
  • the lid member 7 is made of quartz glass. "Quartz glass” in this embodiment includes fused silica and synthetic silica. The coefficient of thermal expansion of fused silica glass in the temperature range of 30 to 380° C. is, for example, 6.3 ⁇ 10 ⁇ 7 /° C., and the coefficient of thermal expansion of synthetic silica glass in the temperature range of 30 to 380° C. is, for example, 4.0 ⁇ . 10 -7 /°C. Further, in the present embodiment, the lid member 7 is a plate-like body in which both the upper surface 7a and the lower surface 7b are flat.
  • the thickness (vertical dimension) of the lid member 7 is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and more preferably 0.3 to 0.6 mm. Most preferred.
  • the welded part 9 is formed by laser welding. Specifically, the welded portion 9 is formed by melting at least one of the frame member 6 and the lid member 7 in the laser irradiation region and then solidifying the melted portion. In other words, it is preferable that the welded portion 9 is made of at least one material of the frame member 6 and the lid member 7 and does not substantially contain materials other than the frame member 6 and the lid member 7 .
  • a plurality of welded portions 9 are formed concentrically around the through hole H, but only one may be formed. Although the plurality of welded portions 9 are separated from each other in the radial direction of the through hole H, they may overlap in the radial direction.
  • Each welded portion 9 is configured in a quadrangular ring shape in a plan view, but is not limited to this, and may be configured in an annular shape or other ring shape.
  • the welded portion 9 is formed continuously across the frame member 6 and the lid member 7 in the thickness direction. In this embodiment, there is no interface between the frame member 6 and the lid member 7 inside the welded portion 9 . Of course, an interface may remain between the frame member 6 and the lid member 7 inside the welded portion 9 .
  • the width S1 of the welded portion 9 is preferably 10-200 ⁇ m, more preferably 10-100 ⁇ m, and most preferably 10-50 ⁇ m.
  • the thickness S2 of the welded portion 9 is preferably 10-200 ⁇ m, more preferably 10-150 ⁇ m, and most preferably 10-100 ⁇ m.
  • the maximum residual stress in the planar direction of the welded portion 9 is preferably 10 MPa or less, more preferably 7 MPa or less, and most preferably 5 MPa or less.
  • the maximum value of the residual stress in the plane direction is the birefringence (unit: nm) near the joint on a glass plate having a size of 10 mm ⁇ 10 mm or more, using a birefringence measuring device: ABR-10A manufactured by Uniopt. and the maximum value when converted to the residual stress in the plane direction.
  • D is the optical path difference (nm)
  • W is the distance (cm) passed by the polarized wave
  • C is the photoelastic constant (proportionality constant), usually 20 to 40 (nm/ cm)/(MPa).
  • the residual stress in the planar direction includes tensile stress and compressive stress, and the absolute values of both are evaluated here.
  • the sealing material layer 5 joins the base material 3 and the frame member 6 while being interposed between the upper surface 3 a of the base material 3 and the lower end opening (lower end surface 6 b ) of the frame member 6 .
  • the sealing material layer 5 is made of a sealing material containing a glass material.
  • the sealing material layer 5 in this embodiment is produced by applying a sealing material paste produced by kneading a sealing material and a vehicle onto the substrate 3, drying, removing the binder, and sintering. The details of the sealing material layer 5 and the sealing material will be described in the electronic device manufacturing method below.
  • 3 to 8 illustrate the manufacturing method of the electronic device 1 described above.
  • the manufacturing method of the electronic device 1 includes a first bonding step of bonding the frame material 6 and the lid material 7 to obtain the protective cap 4, and bonding the base material 3 on which the electronic component 2 is mounted and the protective cap 4. and a second bonding step.
  • the frame member 6 and the lid member 7 are prepared.
  • the upper end surface 6a of the frame member 6 and the lower surface 7b of the lid member 7 are brought into direct contact.
  • the laser irradiation device 10 irradiates the contact portion between the frame member 6 and the cover member 7 with a focused laser L.
  • the laser L is irradiated from at least one side of the frame member 6 and the lid member 7 .
  • the laser L is irradiated from the lid member 7 side.
  • the contact portion is welded to form the welded portion 9
  • the frame member 6 and the lid member 7 are joined by the welded portion 9 .
  • the arithmetic average roughness Ra of the upper end surface 6a of the frame member 6 and the lower surface 7b of the lid member 7 is preferably 2.0 nm or less, more preferably 1.0 nm or less, and 0.5 nm or less. It is more preferably 0.2 nm or less, and most preferably 0.2 nm or less.
  • Arithmetic mean roughness Ra means a value measured by a method conforming to JIS B0601:2001. In this way, the frame member 6 and the lid member 7 are brought into close contact with each other due to the intermolecular force (optical contact) between the bonding surfaces, so that the handleability before laser bonding is improved.
  • an ultrashort pulse laser having a pulse width on the order of picoseconds or femtoseconds is preferably used.
  • the wavelength of the laser L is not particularly limited as long as it can pass through the glass member, but for example, it is preferably 400 to 1600 nm, more preferably 500 to 1300 nm.
  • the pulse width of the laser L is preferably 10 ps or less, more preferably 5 ps or less, and most preferably 200 fs to 3 ps.
  • the focused diameter of the laser L is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the repetition frequency of the laser L is required to cause continuous heat accumulation, specifically preferably 100 kHz or more, more preferably 200 kHz or more, and 500 kHz or more. is more preferred.
  • burst mode burst mode
  • one pulse is divided into multiple parts and the pulse intervals are further shortened.
  • heat accumulation is likely to occur, and the welded portion 9 can be stably formed.
  • the laser L scans around the through-hole H so as to draw a circular trajectory T along the through-hole H.
  • the laser L is scanned so that the irradiation area R overlaps the circular orbit T and makes one round of the circular orbit T.
  • the laser L is scanned so as to go around the circular orbit T multiple times.
  • the joint may be formed in a frame shape by intersecting four straight lines so as to surround the through hole H.
  • the sealing material layer 5 is interposed between the base material 3 and the lower end opening (lower end surface 6b) of the frame material 6.
  • a joining preparation step (FIGS. 6 and 7), and a joining book for joining the base material 3 and the lower end opening of the frame member 6 by irradiating the sealing material layer 5 with a laser L to soften and deform it after the joining preparation step. and a step (FIG. 8).
  • the base material 3 is first coated with a sealing material paste.
  • the sealing material paste is applied to a portion of the upper surface 3a of the base material 3 that will be overlaid on the lower end surface 6b of the frame member 6 later.
  • the sealing material paste is applied along the edge of the upper surface 3a of the base material 3.
  • Application of the sealing material paste to the substrate 3 can be performed by a well-known method. For example, screen printing, dispenser application, or the like can be used.
  • the sealing material that is kneaded with the vehicle when producing the sealing material paste is generally a composite powder containing glass powder and refractory filler powder, and if necessary, a laser absorbing material such as a coloring pigment. It may be added. If the thermal expansion coefficient of the glass powder is low (for example, the thermal expansion coefficient is 90 ⁇ 10 ⁇ 7 /° C. or less in the temperature range of 30° C. to 300° C.), the glass powder alone may be used as the sealing material. be.
  • the sealing material is a material that softens and flows (softens and deforms) by laser irradiation in the subsequent main joining process, thereby integrating the base material 3 and the frame material 6 .
  • a vehicle generally refers to a mixture of an organic resin and a solvent, that is, a viscous liquid in which the organic resin is dissolved, and a sealing material paste is obtained by dispersing the sealing material in the vehicle.
  • a surfactant, a thickening agent, etc. may be added to the vehicle, if necessary.
  • the glass powder alone may be used as described above, but it is preferable to use a composite powder containing the glass powder and the refractory filler powder.
  • the composite powder it is preferable to use a composite powder containing 60 to 100 vol% glass powder and 0 to 40 vol% refractory filler powder, and 65 to 95 vol% glass powder and 5 to 35 vol% It is more preferable to use a composite powder containing a refractory filler powder.
  • the refractory filler powder is added to facilitate matching of the coefficient of thermal expansion of the sealing material with that of the substrate 3 and the frame member 6 . As a result, it is possible to prevent damage to the electronic device 1 due to excessive stress remaining around the sealing material layer 5 after the main bonding step.
  • the content of the refractory filler powder is too large, the content of the glass powder is relatively small, so that the surface smoothness of the sealing material layer 5 is reduced, and the sealing material layer 5 is sealed to the upper surface 3a of the substrate 3. The adhesion with the material layer 5 is lowered, and the sealing strength tends to be lowered.
  • the softening point of the sealing material is preferably 550°C or lower, more preferably 520°C or lower, and particularly preferably 480°C or lower. If the softening point of the sealing material is too high, it becomes difficult to improve the surface smoothness of the sealing material layer 5 . In addition, since it is necessary to excessively raise the temperature of the sealing material (sealing material layer 5) when irradiating the laser L in the main joining process, the base material 3 and the frame material 6 are likely to be damaged due to this. . Although the lower limit of the softening point of the sealing material is not particularly set, considering the thermal stability of the glass powder, the softening point of the sealing material is preferably 350° C. or higher.
  • the "softening point" corresponds to the fourth inflection point when measured with a macro-type DTA device.
  • the glass powder is preferably bismuth-based glass from the viewpoint of increasing the sealing strength of the sealing material layer 5 (bonding strength between the base material 3 and the frame member 6). Further, the bismuth-based glass has a glass composition of 28 to 60% Bi 2 O 3 , 15 to 37% B 2 O 3 , 0 to 30% ZnO, CuO+MnO (total amount of CuO and MnO) 1 to 1%. It preferably contains 40%. The reason why the content range of each component is limited as described above will be explained below. In addition, in description of content of each component about glass powder, % display represents mol% unless otherwise specified.
  • Bi 2 O 3 is the main ingredient for lowering the softening point.
  • the content of Bi 2 O 3 is preferably 28-60%, more preferably 33-55%, particularly preferably 35-45%. If the content of Bi 2 O 3 is too small, the softening point becomes too high, and softening fluidity tends to decrease. On the other hand, if the content of Bi 2 O 3 is too large, the glass tends to devitrify when irradiated with the laser L in the main joining step, and this devitrification tends to reduce softening fluidity. .
  • B 2 O 3 is an essential component as a glass-forming component.
  • the content of B 2 O 3 is preferably 15-37%, more preferably 19-33%, particularly preferably 22-30%. If the B 2 O 3 content is too low, the formation of a glass network becomes difficult, and the glass tends to devitrify when irradiated with the laser L. On the other hand, if the content of B 2 O 3 is too high, the viscosity of the glass increases and softening fluidity tends to decrease.
  • ZnO is a component that enhances devitrification resistance.
  • the content of ZnO is preferably 0-30%, more preferably 3-25%, still more preferably 5-22%, and particularly preferably 5-20%. If the ZnO content is too high, the balance of components in the glass composition is lost, and the devitrification resistance tends to decrease.
  • CuO and MnO are components that greatly enhance the laser absorption ability.
  • the total amount of CuO and MnO is preferably 1-40%, more preferably 3-35%, even more preferably 10-30%, and particularly preferably 15-30%. If the total amount of CuO and MnO is too small, the laser absorbing power tends to decrease. On the other hand, if the total amount of CuO and MnO is too large, the softening point becomes too high, and even if the laser L is irradiated, the glass becomes difficult to soften and flow. Moreover, the glass becomes thermally unstable, and the glass tends to devitrify when the laser L is irradiated.
  • the CuO content is preferably 1 to 30%, particularly preferably 10 to 25%.
  • the content of MnO is preferably 0-25%, more preferably 1-25%, and particularly preferably 3-15%.
  • SiO 2 is a component that enhances water resistance.
  • the content of SiO 2 is preferably 0-5%, more preferably 0-3%, even more preferably 0-2%, and particularly preferably 0-1%. If the SiO 2 content is too high, the softening point may unduly increase. In addition, the glass tends to devitrify during the laser irradiation in the main joining step.
  • Al 2 O 3 is a component that enhances water resistance.
  • the content of Al 2 O 3 is preferably 0-10%, 0.1-5%, particularly 0.5-3%. If the Al 2 O 3 content is too high, the softening point may unduly increase.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are preferably 0 to 5%, 0 to 3%, and particularly preferably 0 to less than 1%.
  • MgO, CaO, SrO and BaO are components that increase devitrification resistance, but also components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are preferably 0 to 20%, 0 to 10%, and particularly 0 to 5%, respectively.
  • Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption ability.
  • the content of Fe 2 O 3 is preferably 0-10%, more preferably 0.1-5%, particularly preferably 0.4-2%. If the content of Fe 2 O 3 is too high, the composition of the glass will be out of balance, and the resistance to devitrification will tend to decrease.
  • Sb 2 O 3 is a component that enhances devitrification resistance.
  • the content of Sb 2 O 3 is preferably 0-5%, particularly preferably 0-2%. If the content of Sb 2 O 3 is too large, the component balance of the glass composition is lost, and the devitrification resistance tends to decrease.
  • Zinc borate glass is characterized by a lower coefficient of thermal expansion than bismuth glass. Compared to bismuth-based glass, silver phosphate-based glass and tellurium-based glass are more likely to soften and flow at low temperatures, and can reduce thermal strain that occurs after irradiation with the laser L. Therefore, they have high thermal reliability and mechanical reliability. It has the characteristic that it can be enhanced. Furthermore, silver phosphate glass and tellurium glass can increase the mechanical strength of the sealing material layer 5 by mixing refractory filler powder, as with bismuth glass. The coefficient of thermal expansion can be lowered.
  • the zinc borate glass should contain 40 to 80% SiO 2 +ZnO, 5 to 25% B 2 O 3 , 0 to 20% Al 2 O 3 and 0 to 20% MgO as the glass composition. is preferred.
  • the content of SiO 2 +ZnO (total amount of SiO 2 and ZnO) is preferably 40-80%, more preferably 45-70%, and particularly preferably 50-65%. If the content of SiO 2 +ZnO is too small, the weather resistance tends to be lowered and vitrification becomes difficult. On the other hand, if the content of SiO 2 +ZnO is too high, the softening point may unduly increase.
  • the content of SiO 2 is preferably 15-45%, more preferably 20-40%, particularly preferably 22-36%. If the content of SiO 2 is too low, the weather resistance tends to decrease and vitrification becomes difficult. On the other hand, if the SiO 2 content is too high, the softening point may unduly increase.
  • the content of ZnO is preferably 20-55%, more preferably 25-50%, and particularly preferably 30-45%. If the ZnO content is too low, the devitrification property during melting becomes strong, making it difficult to obtain a homogeneous glass. On the other hand, if the ZnO content is too high, the weather resistance tends to decrease.
  • the molar ratio SiO 2 /ZnO (value obtained by dividing the content of SiO 2 by the content of ZnO) is preferably 0.6 to 2.0, more preferably 0.7 to 1.8, particularly preferably 0.7 to 1.8. 8 to 1.7. If the molar ratio SiO 2 /ZnO is too small, the glass tends to undergo phase separation and the weather resistance tends to decrease. On the other hand, if the molar ratio SiO 2 /ZnO is too large, the softening point may unduly increase.
  • B 2 O 3 is a network-forming component of glass and a component that enhances softening fluidity.
  • the content of B 2 O 3 is preferably 5-25%, more preferably 7-23%, particularly preferably 8-20%. If the content of B 2 O 3 is too small, the crystallinity will be strong, which will impair the softening fluidity and make it difficult to secure the sealing strength. On the other hand, when the content of B 2 O 3 is too high, the weather resistance tends to decrease.
  • Al 2 O 3 is a component that stabilizes the glass.
  • the content of Al 2 O 3 is preferably 0-20%, more preferably 2-18%, particularly preferably 5-15%. If the content of Al 2 O 3 is too small, vitrification becomes difficult. On the other hand, if the Al 2 O 3 content is too high, the softening point may unduly increase.
  • MgO is a component that lowers the viscosity of glass. By containing a predetermined amount of MgO, low-temperature sintering becomes possible even when a large amount of SiO 2 is contained.
  • the content of MgO is preferably 0-20%, more preferably 3-18%, particularly preferably 5-15%. If the MgO content is too low, the softening point may unduly increase. On the other hand, if the MgO content is too high, the coefficient of thermal expansion tends to be too high.
  • glass compositions may include other components (e.g., Li2O , Na2O , K2O , CaO, SrO, BaO, MnO2 , Ta2O5 , Nb2O5 , CeO2 , Sb 2 O 3 etc.) may be contained up to 7% (preferably up to 3%).
  • other components e.g., Li2O , Na2O , K2O , CaO, SrO, BaO, MnO2 , Ta2O5 , Nb2O5 , CeO2 , Sb 2 O 3 etc.
  • the glass composition does not substantially contain lead components (for example, PbO, etc.) and that it does not substantially contain F and Cl.
  • the silver phosphate glass should contain 10 to 50% Ag 2 O, 10 to 35% P 2 O 5 , 3 to 25% ZnO, and 0 to 30% transition metal oxide in terms of mol % of the glass composition. is preferred.
  • Ag 2 O is a component that lowers the melting point of glass and increases water resistance because it is difficult to dissolve in water.
  • the content of Ag 2 O is preferably 10-50%, more preferably 20-40%. If the content of Ag 2 O is too small, the viscosity of the glass increases, and the fluidity and water resistance of the glass tend to decrease. On the other hand, when the Ag 2 O content is too high, vitrification becomes difficult.
  • P 2 O 5 is a component that lowers the melting point of glass. Its content is preferably 10 to 35%, more preferably 15 to 25%. If the P 2 O 5 content is too low, vitrification becomes difficult. On the other hand, if the content of P 2 O 5 is too large, the weather resistance and water resistance tend to deteriorate.
  • ZnO is a component that enhances resistance to devitrification, and its content is preferably 3-25%, 5-22%, and particularly preferably 9-20%. If the ZnO content is outside the above range, the component balance of the glass composition is impaired, and devitrification resistance tends to decrease.
  • a transition metal oxide is a component having laser absorption properties, and its content is preferably 0-30%, 1-30%, and particularly preferably 3-15%. If the transition metal oxide content is too high, the devitrification resistance tends to decrease.
  • the CuO content is preferably 0 to 30%, 1 to 30%, particularly 3 to 15%. If the CuO content is too high, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
  • TeO 2 is a glass-forming component and a component that lowers the melting point of glass.
  • the content of TeO 2 is preferably 0-40%, more preferably 10-30%.
  • Nb 2 O 5 is a component that enhances water resistance.
  • the content of Nb 2 O 5 is preferably 0-25%, more preferably 1-12%. If the content of Nb 2 O 5 is too high, the viscosity of the glass increases and the fluidity tends to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance.
  • the content of Li 2 O, Na 2 O and K 2 O is thus respectively 0-5%, 0-3% and in particular 0-1%.
  • MgO, CaO, SrO and BaO are components that increase devitrification resistance, but also components that increase the softening point.
  • the contents of MgO, CaO, SrO and BaO are thus respectively 0-20%, 0-10% and especially 0-5%.
  • the tellurium-based glass preferably contains 20 to 80% TeO 2 , 0 to 25% Nb 2 O 5 and 0 to 40% transition metal oxide in terms of mol % of glass composition.
  • TeO 2 is a glass-forming component and a component that lowers the melting point of glass.
  • the content of TeO 2 is preferably 20-80%, more preferably 40-75%.
  • Nb 2 O 5 is a component that enhances water resistance.
  • the content of Nb 2 O 5 is preferably 0-25%, 1-20%, particularly 5-15%. If the content of Nb 2 O 5 is too high, the viscosity of the glass increases and the fluidity tends to decrease.
  • a transition metal oxide is a component having laser absorption properties, and its content is preferably 0 to 40%, 5 to 30%, and particularly preferably 15 to 25%. If the transition metal oxide content is too high, the devitrification resistance tends to decrease.
  • CuO is highly effective in enhancing laser absorption characteristics and is also highly effective in enhancing thermal stability.
  • the CuO content is preferably 0 to 40%, 5 to 30%, particularly 15 to 25%. If the CuO content is too high, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance.
  • the content of Li 2 O, Na 2 O and K 2 O is thus respectively 0-5%, 0-3% and in particular 0-1%.
  • MgO, CaO, SrO and BaO are components that increase devitrification resistance, but also components that increase the softening point.
  • the contents of MgO, CaO, SrO and BaO are thus respectively 0-20%, 0-10% and especially 0-5%.
  • the average particle size D 50 of the glass powder is preferably less than 15 ⁇ m, more preferably 0.5-10 ⁇ m, particularly preferably 1-5 ⁇ m.
  • the softening point of the glass powder decreases as the average particle size D50 of the glass powder decreases.
  • average particle diameter D50 refers to a value measured on a volume basis by a laser diffraction method.
  • the refractory filler powder preferably contains one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, ⁇ -eucryptite, and ⁇ -quartz solid solution. , especially ⁇ -eucryptite or cordierite.
  • These refractory filler powders have a low coefficient of thermal expansion, high mechanical strength, and good compatibility with glass powder.
  • the average particle size D 50 of the refractory filler powder is preferably less than 2 ⁇ m, in particular greater than or equal to 0.1 ⁇ m and less than 1.5 ⁇ m. If the average particle diameter D50 of the refractory filler powder is too large, the surface smoothness of the sealing material layer 5 tends to decrease, and the average thickness of the sealing material layer 5 tends to increase. The irradiation accuracy of the laser L at .
  • the 99% particle size D 99 of the refractory filler powder is preferably less than 5 ⁇ m and less than or equal to 4 ⁇ m, in particular greater than or equal to 0.3 ⁇ m and less than or equal to 3 ⁇ m. If the 99% particle diameter D 99 of the refractory filler powder is too large, the surface smoothness of the sealing material layer 5 tends to decrease, and the average thickness of the sealing material layer 5 tends to increase. The irradiation accuracy of is likely to decrease.
  • “99% particle size D 99 " refers to a value measured on a volume basis by a laser diffraction method.
  • the sealing material may further contain a laser absorbing material in order to enhance the laser absorption properties, but the laser absorbing material has the effect of promoting devitrification of the glass. Furthermore, if a laser absorbing material is introduced, the laser absorption characteristics of the sealing material become too high, and the difference in laser absorption characteristics between the base material 3 and the sealing material layer 5 tends to increase. Therefore, the content of the laser absorbing material in the sealing material layer 5 is preferably 10% by volume or less, 5% by volume or less, 1% by volume or less, and 0.5% by volume or less, and particularly preferably not substantially contained. . Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides, spinel-type composite oxides thereof, and the like can be used as the laser absorber.
  • the coefficient of thermal expansion of the sealing material is preferably 35 ⁇ 10 -7 to 90 ⁇ 10 -7 /°C, 40 ⁇ 10 -7 to 70 ⁇ 10 -7 /°C, particularly 45 ⁇ 10 -7 to 65 ⁇ 10 -7 . 7 /°C.
  • the "thermal expansion coefficient” is a value measured in a temperature range of 30 to 200°C with a TMA (push rod type thermal expansion coefficient measurement) device.
  • a first example is a composite powder material of bismuth-based glass powder and ⁇ -eucryptite (BF-0901 manufactured by Nippon Electric Glass Co., Ltd., thermal expansion coefficient 4.9 ppm/°C at 30 to 380°C).
  • a second example is a zinc borate glass powder (GP-014 manufactured by Nippon Electric Glass Co., Ltd., thermal expansion coefficient at 30 to 380° C. of 4.3 ppm/° C.).
  • the sealing material paste is usually prepared by kneading and dispersing the sealing material and vehicle with a three-roller or the like.
  • the vehicle contains an organic resin and a solvent as described above.
  • the organic resin is added for the purpose of adjusting the viscosity of the paste.
  • acrylic acid ester (acrylic organic resin), ethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic acid ester, etc.
  • Solvents used in vehicles include N,N'-dimethylformamide (DMF), ⁇ -terpineol, higher alcohols, ⁇ -butyl lactone ( ⁇ -BL), tetralin, terpene, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol.
  • DMF N,N'-dimethylformamide
  • ⁇ -terpineol higher alcohols
  • ⁇ -BL ⁇ -butyl lactone
  • tetralin terpene
  • butyl carbitol acetate ethyl acetate
  • isoamyl acetate diethylene glycol.
  • Monoethyl ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol Monomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone and the like can be used.
  • the applied film of the sealing material paste is dried.
  • the coating film may be dried naturally, but from the viewpoint of drying efficiency, it is preferably dried in an electric oven or a drying oven.
  • the dried film obtained by drying the coating film is subjected to binder removal treatment by heating the entire substrate 3 using an electric furnace or the like, and is heated at a temperature equal to or higher than the softening point of the glass powder to soften and flow. Then, a sealing material layer 5 having high surface smoothness is obtained.
  • the dry film can also be sintered by irradiating it with a laser beam.
  • the average thickness of the sealing material layer 5 is preferably less than 10.0 ⁇ m, particularly preferably 1.0 ⁇ m or more and less than 7.0 ⁇ m. Even if the thermal expansion coefficients of the sealing material layer 5, the base material 3, and the frame material 6 are inconsistent, the smaller the average thickness of the sealing material layer 5, the more after irradiation with the laser L (after the main bonding step) Residual stress in the sealing area can be reduced. Also, the irradiation accuracy of the laser L in the main joining process can be improved.
  • a method for regulating the average thickness of the sealing material layer 5 as described above a method of applying a thin layer of sealing material paste and a method of polishing the surface of the sealing material layer 5 can be mentioned.
  • the average width of the sealing material layer 5 (the average dimension in the horizontal direction of the sealing material layer 5 shown in FIG. 6) is preferably less than 3500 ⁇ m, less than 1200 ⁇ m, particularly 150 ⁇ m or more and less than 800 ⁇ m.
  • the average width of the sealing material layer 5 is preferably less than 3500 ⁇ m, less than 1200 ⁇ m, particularly 150 ⁇ m or more and less than 800 ⁇ m.
  • the upper surface 3a of the base material 3 and the frame material are then formed as shown by the two-dot chain line in FIG. 6 and the lower end surface 6a of 6 are overlapped with the sealing material layer 5 interposed therebetween. This completes the bonding preparation process.
  • the substrate 3 is first preheated prior to the laser L irradiation.
  • the substrate 3 is heated to a temperature of, for example, 250.degree. C. to 450.degree.
  • a temperature of, for example, 250.degree. C. to 450.degree As a result, heat conduction to the base material 3 side can be inhibited when the laser L is irradiated, so that the sealing material layer 5 can be softened and deformed efficiently.
  • the preheating of the base material 3 is not essential and may be omitted.
  • the sealing material layer 5 is softened and deformed to join the base material 3 and the frame member 6 .
  • the sealing material layer 5 sandwiched between the base material 3 and the lower end opening of the frame member 6 is pressed from above and below. This makes it possible to promote the softening deformation of the sealing material layer 5 .
  • the pressing of the sealing material layer 5 is not essential and may be omitted.
  • the arithmetic average roughness Ra of each of the upper surface 3a of the base material 3 and the lower end surface 6b of the frame member 6 is preferably 2.0 nm or less, more preferably 1.0 nm or less, and 0.5 nm or less. It is more preferably 0.2 nm or less, and most preferably 0.2 nm or less.
  • lasers can be used as the laser L with which the sealing material layer 5 is irradiated.
  • semiconductor lasers YAG lasers, CO 2 lasers, excimer lasers, and infrared lasers are preferred because they are easy to handle.
  • the beam shape of the laser light when the laser L is irradiated is not particularly limited.
  • the beam shape is generally circular, elliptical, or rectangular, but other shapes may be used.
  • the beam diameter of the laser light during irradiation with the laser L is preferably 0.3 to 3.5 mm.
  • the atmosphere in which the laser L is irradiated is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
  • the sealing material layer 5 provided in the electronic device 1 contains, as a glass material, the glass powder originally contained in the sealing material.
  • the frame member 6 and the lid member 7 are joined, the base material 3 and the frame member 6 are joined by executing the joining preparation step and the main joining step.
  • the order of bonding may be reversed. That is, the frame member 6 and the lid member 7 may be joined after the base member 3 and the frame member 6 are joined by performing the joining preparation step and the joining main step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

This method is for manufacturing an electronic device 1 provided with an electronic component 2, a base material 3 on which the electronic component 2 is mounted, a frame material 6 made of glass and surrounding the electronic component 2 in a state where a one-end opening is joined to the base material 3, and a lid material 7 directly joined to the frame material 6 so as to close the other-end opening of the frame material 6. The method comprises: a joining preparation step for interposing a sealing material layer 5 containing a glass material between the base material 3 and the one-end opening of the frame material 6; and a real joining step for joining, after the joining preparation step, the base material 3 and the one-end opening of the frame material 6 by irradiating the sealing material layer 5, with a laser beam L, so as to soften and deform the sealing material layer.

Description

電子装置および電子装置の製造方法ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE
 本開示は、電子装置および電子装置の製造方法に関する。 The present disclosure relates to electronic devices and methods of manufacturing electronic devices.
 LED等の電子部品を備えた電子装置の一種として、紫外線LEDが発する光線により殺菌を行う装置がある。この種の電子装置においては、紫外線LEDが気密構造内に配置される。特許文献1には気密構造を有する電子装置の一例が開示されている。 As a type of electronic device equipped with electronic components such as LEDs, there is a device that sterilizes using the light emitted by ultraviolet LEDs. In this kind of electronic device, a UV LED is arranged in a hermetic structure. Patent Document 1 discloses an example of an electronic device having an airtight structure.
 同文献に開示された電子装置(発光デバイス1)は、LED(光源20)と、LEDが搭載される基材(第1の部材11)と、一端開口が基材に接合された状態でLEDを囲う枠材(第2の部材12)と、枠材の他端開口を閉塞するように枠材と接合された蓋材(カバー部材40)と、を備えている。 The electronic device (light emitting device 1) disclosed in the same document includes an LED (light source 20), a base material (first member 11) on which the LED is mounted, and the LED with one end opening joined to the base material. and a lid member (cover member 40) joined to the frame member so as to close the other end opening of the frame member.
国際公開第2015/190242号WO2015/190242
 上記のような電子装置において、基材は、金属、金属酸化物セラミックス、LTCC又は金属窒化物セラミックスから構成される場合が多い。一方、枠材は、紫外線を透過させるガラスで構成される場合がある。この場合、電子装置の製造に際し、基材とガラスでなる枠材との両者を接合するにあたっては、レーザー照射により両者を直接溶着させて接合することがある。しかしながら、溶着のための条件出しや加工に時間が掛かる等、接合の難易度が高いことに起因して、気密性が損なわれやすくなる問題が生じていた。 In the above electronic devices, the base material is often composed of metal, metal oxide ceramics, LTCC, or metal nitride ceramics. On the other hand, the frame material may be made of glass that transmits ultraviolet rays. In this case, when the base material and the frame material made of glass are joined together in the manufacture of the electronic device, the two may be directly fused together by laser irradiation. However, there has been a problem that the airtightness is likely to be impaired due to the high degree of difficulty in joining, such as the time it takes to determine the conditions for welding and processing.
 以上の事情に鑑みて解決すべき技術的課題は、電子装置における気密構造の信頼性を向上させることである。 In view of the above circumstances, the technical issue to be resolved is to improve the reliability of the airtight structure in electronic devices.
 上記の課題を解決するための電子装置の製造方法は、電子部品と、電子部品が搭載される基材と、一端開口が基材に接合された状態で電子部品を囲うガラスでなる枠材と、枠材の他端開口を閉塞するように枠材と直接接合された蓋材と、を備えた電子装置を製造するための方法であって、基材と枠材の一端開口との相互間に、ガラス材を含んだ封着材料を介在させる接合準備工程と、接合準備工程後に、封着材料にレーザーを照射して軟化変形させることにより基材と枠材の一端開口とを接合する接合本工程と、を備えることを特徴とする。 A method of manufacturing an electronic device for solving the above problems includes: an electronic component; a base material on which the electronic component is mounted; and a lid member directly joined to the frame member so as to close the other end opening of the frame member, the method for manufacturing an electronic device between the base material and the one end opening of the frame member. a joining preparation step in which a sealing material containing a glass material is interposed; and after the joining preparation step, a laser is irradiated to soften and deform the sealing material, thereby joining the base material and the opening at one end of the frame material. This step is characterized by comprising:
 本方法では、接合準備工程および接合本工程により基材と枠材とを接合する。すなわち、基材とガラスでなる枠材との両者を接合するにあたり、両者を直接溶着させて接合するのではなく、両者の相互間に介在させたガラス材を含んだ封着材料にレーザーを照射し、封着材料を軟化変形させることで接合する。これにより、両者を直接溶着させる場合のごとく条件出しや加工に時間が掛かるような不具合が回避され、接合の難易度が易化するのに伴い、製造される電子装置の気密構造の信頼性を向上させることが可能となる。 In this method, the base material and the frame material are joined by the joining preparation process and the main joining process. That is, when joining both the base material and the frame material made of glass, the laser is irradiated to the sealing material containing the glass material interposed between them instead of directly welding them. Then, the sealing material is softened and deformed to be joined. This makes it possible to avoid problems such as the time required for setting conditions and processing as in the case of directly welding the two, and as the degree of difficulty in joining becomes easier, the reliability of the airtight structure of the manufactured electronic device is improved. can be improved.
 上記の方法では、封着材料の軟化点が550℃以下であることが好ましい。 In the above method, the softening point of the sealing material is preferably 550°C or less.
 封着材料の軟化点が過度に高い場合には、接合本工程においてレーザーを照射し、その高い軟化点まで封着材料を加熱する必要が生じる。この封着材料の加熱に伴い、基材や枠材の破損を招いてしまう恐れがある。しかしながら、封着材料の軟化点が550℃以下であれば、上述のような恐れを的確に排除することができる。 If the softening point of the sealing material is excessively high, it will be necessary to irradiate the laser in the main joining process to heat the sealing material to that high softening point. This heating of the sealing material may damage the base material and the frame material. However, if the softening point of the sealing material is 550° C. or less, the above fears can be accurately eliminated.
 上記の方法では、30℃~200℃の温度範囲での封着材料の熱膨張係数が、35×10-7/℃~90×10-7/℃であることが好ましい。 In the above method, the sealing material preferably has a thermal expansion coefficient of 35×10 -7 /°C to 90×10 -7 /°C in the temperature range of 30°C to 200°C.
 このようにすれば、封着材料の熱膨張係数を基材や枠材の熱膨張係数に整合させやすくなるため、接合本工程後の封着材料に残留する応力を小さくする上で有利となる。 This makes it easier to match the thermal expansion coefficient of the sealing material with the thermal expansion coefficient of the base material and the frame material, which is advantageous in reducing the stress remaining in the sealing material after the main joining step. .
 上記の方法では、ガラス材が、ガラス組成として、モル%で、Bi23 28~60%、B23 15~37%、ZnO 0~30%、CuO+MnO 1~40%を含有することが好ましい。 In the above method, the glass material contains 28 to 60% Bi 2 O 3 , 15 to 37% B 2 O 3 , 0 to 30% ZnO, and 1 to 40% CuO+MnO in terms of mol % of the glass composition. is preferred.
 このようにすれば、封着材料による封着強度(基材と枠材との接合強度)を高めることが可能となる。 By doing so, it is possible to increase the sealing strength (bonding strength between the base material and the frame material) by the sealing material.
 上記の方法では、封着材料が、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、及び、β-石英固溶体から選ばれる少なくとも一種の耐火性フィラー粉末を更に含むことが好ましい。 In the above method, the sealing material is at least one refractory material selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, β-eucryptite, and β-quartz solid solution. Preferably, it further contains a filler powder.
 このようにすれば、封着材料の熱膨張係数を基材や枠材の熱膨張係数に整合させやすくなり、その結果、接合本工程後の封着材料に不当な応力が残留し、破損が生じるような事態を防止する上で有利となる。 By doing so, it becomes easier to match the coefficient of thermal expansion of the sealing material with that of the base material and the frame material. This is advantageous in preventing such situations from occurring.
 上記の方法では、接合本工程前に、基材を加熱することが好ましい。 In the above method, it is preferable to heat the base material before the main joining step.
 このようにすれば、接合本工程におけるレーザーの照射時に基材側への熱伝導を阻害し得ることから、接合本工程において効率よく封着材料を軟化変形させることができる。 By doing so, heat conduction to the base material side can be inhibited during laser irradiation in the main joining process, so that the sealing material can be softened and deformed efficiently in the main joining process.
 上記の方法では、接合本工程では、基材と枠材の一端開口とにより封着材料を押圧した状態でレーザーを照射することが好ましい。 In the above method, it is preferable to irradiate the laser in a state in which the sealing material is pressed by the base material and the opening at one end of the frame material in the main joining step.
 このようにすれば、接合本工程におけるレーザーの照射時に封着材料の軟化変形を促進することが可能となる。 By doing so, it is possible to promote softening deformation of the sealing material during laser irradiation in the main joining process.
 上記の方法では、枠材と蓋材とを接合した後に、接合準備工程および接合本工程を実行してもよい。一方で、接合本工程を実行した後に、枠材と蓋材とを接合してもよい。 In the above method, the joining preparation step and the main joining step may be performed after joining the frame material and the lid material. On the other hand, the frame member and the lid member may be joined after performing this joining step.
 上記の方法では、枠材と蓋材とを接合するに際し、枠材の他端開口と蓋材との両者を接触させた状態で、両者の接触部にレーザーを照射することにより、枠材と蓋材とを直接溶着することが好ましい。 In the above-described method, when joining the frame material and the lid material, the lid material and the other end opening of the frame material are in contact with each other, and the contact portion between the two is irradiated with a laser. It is preferable to directly weld the cover material.
 このようにすれば、たとえば電子装置として発光装置を製造する場合に、枠材と蓋材との接合に伴って接合部に光を吸収する層が形成されてしまうような事態が回避されるため、発光装置における光の取出効率が悪化することを防止できる。 By doing so, for example, when a light-emitting device is manufactured as an electronic device, a situation in which a light-absorbing layer is formed at the joint portion due to the joint between the frame member and the lid member can be avoided. , it is possible to prevent the light extraction efficiency from deteriorating in the light emitting device.
 上記の課題を解決するための電子装置は、電子部品と、電子部品が搭載される基材と、一端開口が基材に接合された状態で電子部品を囲うガラスでなる枠材と、枠材の他端開口を閉塞するように枠材と直接接合された蓋材と、を備えた電子装置であって、ガラス材を含んだ封着材料を介して基材と枠材とが接合されていることを特徴とする。 An electronic device for solving the above problems includes an electronic component, a base material on which the electronic component is mounted, a frame member made of glass surrounding the electronic component with one end opening joined to the base material, and a frame member and a lid member directly joined to the frame member so as to close the other end opening of the electronic device, wherein the base member and the frame member are joined via a sealing material containing a glass material. It is characterized by
 本装置によれば、上記の電子装置の製造方法について既述の作用・効果を同様に得ることが可能である。 According to this device, it is possible to similarly obtain the actions and effects described above with respect to the method of manufacturing the electronic device described above.
 本開示に係る電子装置および電子装置の製造方法によれば、電子装置における気密構造の信頼性を向上させることが可能である。 According to the electronic device and the electronic device manufacturing method according to the present disclosure, it is possible to improve the reliability of the airtight structure in the electronic device.
電子装置を示す断面図である。1 is a cross-sectional view showing an electronic device; FIG. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; 電子装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of an electronic device. 電子装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of an electronic device. 電子装置の製造方法を示す平面図である。It is a top view which shows the manufacturing method of an electronic device. 電子装置の製造方法における接合準備工程を示す断面図である。FIG. 4 is a cross-sectional view showing a bonding preparation step in the method of manufacturing an electronic device; 電子装置の製造方法における接合準備工程を示す断面図である。FIG. 4 is a cross-sectional view showing a bonding preparation step in the method of manufacturing an electronic device; 電子装置の製造方法における接合本工程を示す断面図である。FIG. 4 is a cross-sectional view showing a main joining step in the method of manufacturing an electronic device;
 以下、実施形態に係る電子装置および電子装置の製造方法について、添付の図面を参照しながら説明する。 An electronic device and a method for manufacturing an electronic device according to embodiments will be described below with reference to the accompanying drawings.
 図1及び図2は、電子装置1を例示している。 1 and 2 illustrate an electronic device 1. FIG.
 電子装置1は、電子部品2と、電子部品2が搭載された基材3と、電子部品2を内部に収容するように基材3の上に配置された保護キャップ4と、基材3と保護キャップ4とを接合している封着材料層5と、を備えている。なお、以下の説明では、便宜上、基材3側を下、保護キャップ4側を上として説明するが、上下方向はこれに限定されない。 The electronic device 1 includes an electronic component 2, a base material 3 on which the electronic component 2 is mounted, a protective cap 4 disposed on the base material 3 so as to accommodate the electronic component 2 inside, and the base material 3. a layer of sealing material 5 joining with the protective cap 4; In the following description, for the sake of convenience, the side of the substrate 3 is taken as the bottom and the side of the protective cap 4 is taken as the top, but the vertical direction is not limited to this.
 電子部品2は、特に限定されるものではないが、例えば、レーザーモジュール、LED、光センサー、撮像素子、光スイッチ等の光学デバイスが挙げられる。本実施形態では、電子部品2は紫外線LED(発光素子)であり、電子装置1は発光装置である。 The electronic component 2 is not particularly limited, but examples include optical devices such as laser modules, LEDs, optical sensors, imaging elements, and optical switches. In this embodiment, the electronic component 2 is an ultraviolet LED (light emitting element), and the electronic device 1 is a light emitting device.
 基材3は、例えば金属、金属酸化物セラミックス、LTCC又は金属窒化物セラミックスから構成される。金属としては、例えば銅、金属シリコンなどが挙げられる。金属酸化物セラミックスとしては、例えば酸化アルミニウムなどが挙げられる。LTCCとしては、例えば結晶性ガラスと耐火性フィラーを含む複合粉末を焼結させたものなどが挙げられる。金属窒化物セラミックスとしては、例えば窒化アルミニウムなどが挙げられる。本実施形態では、基材3は、窒化アルミニウムから構成されている。窒化アルミニウムの30~380℃の温度範囲における熱膨張係数は、例えば46×10-7/℃である。また、本実施形態では、基材3は、上面3a及び下面3bがともに平面から構成される板状体である。なお、基材3は、上面3aのうち、電子部品2が搭載される部分に凹部が設けられていてもよい。 The substrate 3 is made of, for example, metal, metal oxide ceramics, LTCC or metal nitride ceramics. Examples of metals include copper and metallic silicon. Examples of metal oxide ceramics include aluminum oxide. Examples of LTCC include sintered composite powder containing crystallizable glass and refractory filler. Examples of metal nitride ceramics include aluminum nitride. In this embodiment, the base material 3 is made of aluminum nitride. The thermal expansion coefficient of aluminum nitride in the temperature range of 30 to 380°C is, for example, 46×10 -7 /°C. Moreover, in this embodiment, the base material 3 is a plate-like body in which both the upper surface 3a and the lower surface 3b are flat surfaces. In addition, the substrate 3 may be provided with a concave portion in a portion of the upper surface 3a where the electronic component 2 is mounted.
 保護キャップ4は、基材3に接合された状態で電子部品2を囲う枠材6と、枠材6を上方から覆って閉塞する蓋材7と、枠材6と蓋材7とを接合する接合部8と、を備えている。接合部8は、枠材6と蓋材7とが直接溶着(直接接合)された溶着部9から形成されている。なお、保護キャップ4の表面には各種機能膜を形成することが好ましく、例えば、光反射ロスを低減するために、蓋材7の上下面7a,7bの少なくとも一方に反射防止膜を形成することが好ましい。反射防止膜は、蓋材7の上下面7a,7bにそれぞれ形成することが好ましい。反射防止膜は、蓋材7の上下面7a,7bの少なくとも一方のうち、枠材6の貫通孔Hに対応する部分のみに形成されていてもよいし、全面に形成されていてもよい。反射防止膜としては、例えば、相対的に屈折率が低い低屈折率層と、相対的に屈折率が高い高屈折率層と、が交互に積層された誘電体多層膜が好ましい。これにより、各波長における反射率を制御しやすくなる。反射防止膜は、例えば、スパッタリング法やCVD法などにより形成することができる。電子部品2から出射された光の波長帯(例えば、250~350nm)における反射防止膜の反射率は、例えば1%以下、0.5%以下、0.3%以下、特に0.1%以下であることが好ましい。 The protective cap 4 includes a frame member 6 that surrounds the electronic component 2 while being joined to the base material 3, a cover member 7 that covers and closes the frame member 6 from above, and joins the frame member 6 and the cover member 7. a joint portion 8; The joint portion 8 is formed of a weld portion 9 in which the frame member 6 and the lid member 7 are directly welded (directly joined). Various functional films are preferably formed on the surface of the protective cap 4. For example, an antireflection film may be formed on at least one of the upper and lower surfaces 7a and 7b of the lid member 7 in order to reduce light reflection loss. is preferred. Antireflection films are preferably formed on the upper and lower surfaces 7a and 7b of the lid member 7, respectively. The antireflection film may be formed only on a portion of at least one of the upper and lower surfaces 7a and 7b of the lid member 7 corresponding to the through holes H of the frame member 6, or may be formed on the entire surface. As the antireflection film, for example, a dielectric multilayer film in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately laminated is preferable. This makes it easier to control the reflectance at each wavelength. The antireflection film can be formed by, for example, a sputtering method, a CVD method, or the like. The reflectance of the antireflection film in the wavelength band (for example, 250 to 350 nm) of the light emitted from the electronic component 2 is, for example, 1% or less, 0.5% or less, 0.3% or less, particularly 0.1% or less. is preferably
 枠材6は、中心に厚み方向(上下方向)に延びる貫通孔Hを有する筒状体である。これにより、枠材6の上端および下端のそれぞれに開口が形成されている。枠材6は、貫通孔Hに対応する空間に収容された電子部品2の周囲を取り囲む。枠材6の上端開口は、平面視で環状をなす上端面6aにより形作られ、枠材6の下端開口は、同様に平面視で環状をなす下端面6bにより形作られている。図示例では、枠材6は、四角筒で構成されているが、円筒などの他の形状であってもよい。なお、枠材6の内壁面6cは、蓋材7を通じた紫外線の取り出し効率を向上させるために、枠材6の下端面6b側から上端面6a側に向かうに連れて内側から外側に移行する傾斜面で構成されている。内壁面6cは、非傾斜面(垂直面)であってもよい。貫通孔Hは、枠材6の元材に、エッチング加工、レーザー加工、サンドブラスト加工などを施すことにより形成することができる。 The frame member 6 is a cylindrical body having a through hole H extending in the thickness direction (vertical direction) at the center. Thereby, openings are formed at the upper end and the lower end of the frame member 6, respectively. The frame member 6 surrounds the electronic component 2 accommodated in the space corresponding to the through hole H. As shown in FIG. The upper end opening of the frame member 6 is formed by an upper end surface 6a that is annular in plan view, and the lower end opening of the frame member 6 is similarly formed by a lower end surface 6b that is annular in plan view. In the illustrated example, the frame member 6 is configured as a rectangular cylinder, but may be of other shapes such as a cylinder. In addition, the inner wall surface 6c of the frame member 6 shifts from the inside to the outside as it goes from the lower end surface 6b side to the upper end surface 6a side of the frame member 6 in order to improve the efficiency of extracting ultraviolet rays through the lid member 7. Consists of sloping surfaces. The inner wall surface 6c may be a non-inclined surface (vertical surface). The through holes H can be formed by subjecting the base material of the frame member 6 to etching, laser processing, sandblasting, or the like.
 枠材6の内壁面6cには、電子部品2から出射した光を反射するための反射膜が形成されていてもよい。反射膜は、例えばアルミニウム、金などの金属や、アルミナ、ジルコニア、チタニアなどのセラミックスを含有させた樹脂塗料やガラスペーストなどから構成されることが好ましい。 A reflective film for reflecting the light emitted from the electronic component 2 may be formed on the inner wall surface 6c of the frame member 6. The reflective film is preferably made of resin paint or glass paste containing metals such as aluminum and gold, and ceramics such as alumina, zirconia and titania.
 反射膜の厚みは、例えば0.1~100μmであることが好ましい。 The thickness of the reflective film is preferably 0.1 to 100 μm, for example.
 電子部品2から出射した光の波長帯(例えば、250~350nm)における反射膜の反射率は、好ましくは10%以上、20%以上、30%以上、40%以上、50%以上、60%以上であることが好ましく、特に好ましいのは70%以上である。ここで、反射率は、日立ハイテクサイエンス製UH-4150を用いて250~350nmの波長範囲の各波長における透過率を測定することにより、算出できる。 The reflectance of the reflective film in the wavelength band (for example, 250 to 350 nm) of light emitted from the electronic component 2 is preferably 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more. is preferable, and 70% or more is particularly preferable. Here, the reflectance can be calculated by measuring the transmittance at each wavelength in the wavelength range of 250 to 350 nm using UH-4150 manufactured by Hitachi High-Tech Science.
 反射膜を枠材6の内壁面6cに形成する方法としては、スプレーコート法を用いることが望ましい。スプレーコート法を用いる場合、枠材6の上下端面6a,6b(上下端開口)の平坦部をマスクで保護した状態で枠材6の内壁面6cにスプレーコート液(反射膜となる液)を塗布し、その後にマスクを剥がすことで、枠材6の内壁面6cに反射膜を簡単に形成できる。なお、反射膜の形成方法は、これに限定されず、例えばディップコート法なども用いることができる。ディップコート法を用いる場合、貫通孔Hを有する枠材6をディップコート液(反射膜となる液)に浸漬し、その後に枠材6の表面の不要部分(上下端面6a,6bなど)に形成された反射膜を研磨などにより除去することで、枠材6の内壁面6cに反射膜を形成できる。この場合、不要部分の反射膜を除去する際に、枠材6の上端面6aを研磨することで、蓋材7との接合時の面精度を整えることができる。 As a method for forming the reflective film on the inner wall surface 6c of the frame member 6, it is desirable to use a spray coating method. When using the spray coating method, a spray coating liquid (liquid that becomes a reflective film) is applied to the inner wall surface 6c of the frame member 6 while the flat portions of the upper and lower end surfaces 6a and 6b (upper and lower end openings) of the frame member 6 are protected by masks. A reflective film can be easily formed on the inner wall surface 6c of the frame member 6 by coating and then peeling off the mask. Note that the method of forming the reflective film is not limited to this, and for example, a dip coating method or the like can also be used. When the dip coating method is used, the frame material 6 having the through holes H is immersed in a dip coating liquid (liquid that becomes a reflective film), and then formed on the unnecessary portions of the surface of the frame material 6 (upper and lower end surfaces 6a, 6b, etc.). A reflective film can be formed on the inner wall surface 6c of the frame member 6 by removing the reflective film formed thereon by polishing or the like. In this case, by polishing the upper end surface 6a of the frame member 6 when removing the unnecessary portion of the reflective film, the surface precision when joined to the lid member 7 can be adjusted.
 枠材6は、30~380℃の温度範囲における熱膨張係数が30×10-7~100×10-7/℃であるガラスから構成されている。枠材6の熱膨張係数は、好ましくは40×10-7/℃以上、より好ましくは50×10-7/℃以上、更に好ましくは60×10-7/℃以上、特に好ましくは70×10-7/℃以上である。また、枠材6の熱膨張係数は、好ましくは95×10-7/℃以下、特に好ましくは90×10-7/℃以下である。このようにすれば、枠材6の熱膨張係数が、金属、金属窒化物セラミックスなどから構成される基材3の熱膨張係数と整合する。 The frame material 6 is made of glass having a thermal expansion coefficient of 30×10 -7 to 100×10 -7 /°C in the temperature range of 30 to 380°C. The thermal expansion coefficient of the frame material 6 is preferably 40×10 −7 /° C. or higher, more preferably 50×10 −7 /° C. or higher, still more preferably 60×10 −7 /° C. or higher, particularly preferably 70×10 −7 /° C. or higher. -7 /°C or higher. Also, the thermal expansion coefficient of the frame member 6 is preferably 95×10 −7 /° C. or less, particularly preferably 90×10 −7 /° C. or less. By doing so, the thermal expansion coefficient of the frame member 6 matches that of the base material 3 made of metal, metal nitride ceramics, or the like.
 枠材6を構成するガラスは、紫外線透過ガラスであることが好ましい。詳細には、枠材6を構成するガラスにおいて、光路長0.7mm、波長200nmにおける透過率は、好ましくは10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、特に好ましくは80%以上である。また、枠材6を構成するガラスにおいて、光路長0.7mm、波長250nmにおける透過率は、好ましくは50%以上、60%以上、70%以上、特に好ましくは80%以上である。さらに、枠材6を構成するガラスにおいて、光路長0.7mm、波長250nmにおける透過率をT250とし、光路長0.7mm、波長300nmにおける透過率をT300としたときに、T250/T300の値は、好ましくは0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.85以上、特に好ましくは0.9以上である。このようにすれば、枠材6が例えば石英ガラスで構成されるような場合に比べて、紫外線の透過率が同等レベルになり、紫外線LEDからなる電子部品2から出射される光を問題なく透過させることができ、紫外線の取り出し効率を高いレベルで維持できる。 The glass forming the frame member 6 is preferably ultraviolet-transmitting glass. Specifically, in the glass constituting the frame member 6, the transmittance at an optical path length of 0.7 mm and a wavelength of 200 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, and 60%. 70% or more, particularly preferably 80% or more. Further, in the glass forming the frame material 6, the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is preferably 50% or more, 60% or more, 70% or more, and particularly preferably 80% or more. Furthermore, in the glass constituting the frame material 6, when the transmittance at an optical path length of 0.7 mm and a wavelength of 250 nm is T250, and the transmittance at an optical path length of 0.7 mm and a wavelength of 300 nm is T300, the value of T250/T300 is , preferably 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, and particularly preferably 0.9 or more. In this way, compared with the case where the frame member 6 is made of, for example, quartz glass, the transmittance of ultraviolet rays is at the same level, and the light emitted from the electronic component 2 made of an ultraviolet LED can be transmitted without problems. It is possible to maintain the efficiency of extracting ultraviolet rays at a high level.
 枠材6を構成するガラスにおいて、歪点は、好ましくは430℃以上、460℃以上、480℃以上、500℃以上、520℃以上、530℃以上、特に好ましくは550℃以上である。 The strain point of the glass forming the frame material 6 is preferably 430°C or higher, 460°C or higher, 480°C or higher, 500°C or higher, 520°C or higher, 530°C or higher, and particularly preferably 550°C or higher.
 枠材6を構成するガラスにおいて、軟化点は、好ましくは1000℃以下、950℃以下、900℃以下、850℃以下、特に好ましくは800℃以下である。このようにすれば、枠材6と蓋材7とをレーザー接合などにより直接溶着する場合に、枠材6が容易に軟化するため、接合時間を短くすることができる。 The softening point of the glass forming the frame member 6 is preferably 1000°C or lower, 950°C or lower, 900°C or lower, 850°C or lower, and particularly preferably 800°C or lower. In this way, when the frame member 6 and the lid member 7 are directly welded by laser welding or the like, the frame member 6 is easily softened, so that the bonding time can be shortened.
 枠材6を構成するガラスにおいて、102.5dPa・sにおける温度は、好ましくは1580℃以下、1550℃以下、1520℃以下、1500℃以下、1480℃以下、特に好ましくは1470℃以下である。102.5dPa・sにおける温度が高すぎると、溶融性が低下して、ガラスの製造コストが高騰しやすくなる。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。なお、102.5dPa・sにおける温度は、溶融温度に相当し、この温度が低いほど溶融性が向上する。 The temperature of the glass constituting the frame material 6 at 10 2.5 dPa·s is preferably 1580° C. or less, 1550° C. or less, 1520° C. or less, 1500° C. or less, 1480° C. or less, and particularly preferably 1470° C. or less. If the temperature at 10 2.5 dPa·s is too high, the meltability of the glass is lowered, which tends to increase the manufacturing cost of the glass. Here, the "temperature at 10 2.5 dPa·s" can be measured by the platinum ball pull-up method. The temperature at 10 2.5 dPa·s corresponds to the melting temperature, and the lower the temperature, the better the meltability.
 枠材6を構成するガラスの液相温度は、好ましくは1150℃未満、1120℃以下、1100℃以下、1080℃以下、1050℃以下、1030℃以下、980℃以下、960℃以下、950℃以下、特に好ましくは940℃以下である。また、枠材6を構成するガラスの液相粘度は、好ましくは104.0dPa・s以上、104.3dPa・s以上、104.5dPa・s以上、104.8dPa・s以上、105.1dPa・s以上、105.3dPa・s以上、特に好ましくは105.5dPa・s以上である。このようにすれば、耐失透性が向上する。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を顕微鏡観察にて測定した値である。「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquidus temperature of the glass forming the frame material 6 is preferably less than 1150°C, 1120°C or less, 1100°C or less, 1080°C or less, 1050°C or less, 1030°C or less, 980°C or less, 960°C or less, or 950°C or less. , and particularly preferably 940° C. or less. The liquidus viscosity of the glass forming the frame member 6 is preferably 10 4.0 dPa·s or more, 10 4.3 dPa·s or more, 10 4.5 dPa·s or more, 10 4.8 dPa·s or more, or 10 5.1 dPa·s. Above, it is 10 5.3 dPa·s or more, and particularly preferably 10 5.5 dPa·s or more. By doing so, the devitrification resistance is improved. Here, the "liquidus temperature" refers to the glass powder that passes through a 30-mesh (500 μm) standard sieve and remains on the 50-mesh (300 μm) sieve. It is a value obtained by measuring the precipitation temperature by microscopic observation. The "liquidus viscosity" is a value obtained by measuring the viscosity of the glass at the liquidus temperature by the platinum ball pull-up method.
 枠材6を構成するガラスのヤング率は、好ましくは55GPa以上、60GPa以上、65GPa以上、特に好ましくは70GPa以上である。ヤング率が低すぎると、枠材6の変形、反り、破損が発生しやすくなる。ここで、「ヤング率」は、共振法により測定した値を指す。 The Young's modulus of the glass forming the frame material 6 is preferably 55 GPa or higher, 60 GPa or higher, 65 GPa or higher, and particularly preferably 70 GPa or higher. If the Young's modulus is too low, the frame member 6 is likely to be deformed, warped, and damaged. Here, "Young's modulus" refers to a value measured by a resonance method.
 枠材6を構成するガラスは、ガラス組成として、質量%で、SiO2 50~80%、Al23+B23 1~45%、Li2O+Na2O+K2O 0~25%、MgO+CaO+SrO+BaO 0~25%を含有することが好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、枠材6を構成するガラスについての各成分の含有量の説明において、%表示は、特に断りが無い限り、質量%を表す。 The glass constituting the frame member 6 has a glass composition of 50 to 80% SiO 2 , 1 to 45% Al 2 O 3 +B 2 O 3 , 0 to 25% Li 2 O + Na 2 O + K 2 O, and MgO + CaO + SrO + BaO in mass %. It preferably contains 0 to 25%. The reasons for limiting the content of each component as described above are as follows. In addition, in description of the content of each component about the glass which comprises the frame material 6, % display represents the mass % unless there is a notice in particular.
 SiO2は、ガラスの骨格を形成する主成分である。SiO2の含有量は、好ましくは50~80%、55~75%、58~70%、特に好ましくは60~68%である。SiO2の含有量が少なすぎると、ヤング率、耐酸性が低下しやすくなる。一方、SiO2の含有量が多すぎると、高温粘度が高くなり、溶融性が低下しやすくなることに加えて、クリストバライト等の失透結晶が析出しやすくなって、液相温度が上昇しやすくなる。 SiO 2 is the main component that forms the skeleton of glass. The content of SiO 2 is preferably 50-80%, 55-75%, 58-70%, particularly preferably 60-68%. If the SiO 2 content is too low, the Young's modulus and acid resistance tend to decrease. On the other hand, if the SiO 2 content is too high, the viscosity at high temperatures tends to increase and the meltability tends to decrease. Become.
 Al23とB23は、耐失透性を高める成分である。Al23+B23の含有量は、好ましくは1~40%、5~35%、10~30%、特に好ましくは15~25%である。Al23+B23の含有量が少なすぎると、ガラスが失透しやすくなる。一方、Al23+B23の含有量が多すぎると、ガラス組成の成分バランスが損なわれて、ガラスが失透しやすくなる。 Al 2 O 3 and B 2 O 3 are components that improve devitrification resistance. The content of Al 2 O 3 +B 2 O 3 is preferably 1-40%, 5-35%, 10-30%, particularly preferably 15-25%. If the content of Al 2 O 3 +B 2 O 3 is too small, the glass tends to devitrify. On the other hand, if the content of Al 2 O 3 +B 2 O 3 is too large, the component balance of the glass composition is impaired, and the glass tends to devitrify.
 Al23は、ヤング率を高める成分であるとともに、分相、失透を抑制する成分である。Al23の含有量は、好ましくは1~20%、3~18%、特に好ましくは5~16%である。Al23の含有量が少なすぎると、ヤング率が低下しやすくなり、またガラスが分相、失透しやすくなる。一方、Al23の含有量が多すぎると、高温粘度が高くなり、溶融性が低下しやすくなる。 Al 2 O 3 is a component that increases Young's modulus and suppresses phase separation and devitrification. The content of Al 2 O 3 is preferably 1-20%, 3-18%, particularly preferably 5-16%. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of Al 2 O 3 is too high, the high-temperature viscosity increases and the meltability tends to decrease.
 B23は、溶融性、耐失透性を高める成分であり、また傷の付きやすさを改善して強度を高める成分である。B23の含有量は、好ましくは3~25%、5~22%、7~19%、特に好ましくは9~16%である。B23の含有量が少なすぎると、溶融性、耐失透性が低下しやすくなり、またフッ酸系の薬液に対する耐性が低下しやすくなる。一方、B23の含有量が多すぎると、ヤング率、耐酸性が低下しやすくなる。 B 2 O 3 is a component that enhances meltability and resistance to devitrification, and is a component that improves scratch resistance and enhances strength. The content of B 2 O 3 is preferably 3-25%, 5-22%, 7-19%, particularly preferably 9-16%. If the B 2 O 3 content is too low, the meltability and resistance to devitrification tend to deteriorate, and the resistance to hydrofluoric acid-based chemicals tends to deteriorate. On the other hand, if the B 2 O 3 content is too high, Young's modulus and acid resistance tend to decrease.
 Li2O、Na2O及びK2Oは、高温粘性を下げて溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。Li2O+Na2O+K2Oの含有量は、好ましくは0~25%、1~20%、4~15%、特に好ましくは7~13%である。Li2O+Na2O+K2Oの含有量が少なすぎると、溶融性が低下しやすくなる。一方、Na2Oの含有量が多すぎると、熱膨張係数が不当に高くなるおそれがある。 Li 2 O, Na 2 O and K 2 O are components that lower the high-temperature viscosity to remarkably improve the meltability and contribute to the initial melting of the glass raw material. The content of Li 2 O+Na 2 O+K 2 O is preferably 0-25%, 1-20%, 4-15%, particularly preferably 7-13%. If the content of Li 2 O+Na 2 O+K 2 O is too small, the meltability tends to be lowered. On the other hand, if the content of Na 2 O is too high, the coefficient of thermal expansion may become unduly high.
 Li2Oは、高温粘性を下げて溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。Li2Oの含有量は、好ましくは0~5%、0~3%、0~1%、特に好ましくは0~0.1%である。Li2Oの含有量が少なすぎると、溶融性が低下しやすくなることに加えて、熱膨張係数が不当に低くなるおそれがある。一方、Li2Oの含有量が多すぎると、ガラスが分相しやすくなる。 Li 2 O is a component that lowers the high-temperature viscosity and remarkably enhances the meltability and contributes to the initial melting of the glass raw material. The content of Li 2 O is preferably 0-5%, 0-3%, 0-1%, particularly preferably 0-0.1%. If the content of Li 2 O is too low, the meltability tends to decrease, and the coefficient of thermal expansion may unduly decrease. On the other hand, if the content of Li 2 O is too high, the glass tends to undergo phase separation.
 Na2Oは、高温粘性を下げて溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。Na2Oの含有量は、好ましくは0~25%、1~20%、3~18%、5~15%、特に好ましくは7~13%である。Na2Oの含有量が少なすぎると、溶融性が低下しやすくなることに加えて、熱膨張係数が不当に低くなるおそれがある。一方、Na2Oの含有量が多すぎると、熱膨張係数が不当に高くなるおそれがある。 Na 2 O is a component that lowers the high-temperature viscosity and remarkably enhances the meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion. The content of Na 2 O is preferably 0-25%, 1-20%, 3-18%, 5-15%, particularly preferably 7-13%. If the content of Na 2 O is too low, the meltability tends to be lowered and the coefficient of thermal expansion may be lowered unduly. On the other hand, if the content of Na 2 O is too high, the coefficient of thermal expansion may become unduly high.
 K2Oは、高温粘性を下げて溶融性を顕著に高めるとともに、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。K2Oの含有量は、好ましくは0~15%、より好ましくは0.1~10%、特に好ましくは1~5%である。K2Oの含有量が多すぎると、熱膨張係数が不当に高くなるおそれがある。 K 2 O is a component that lowers the high-temperature viscosity and remarkably enhances the meltability and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion. The content of K 2 O is preferably 0-15%, more preferably 0.1-10%, particularly preferably 1-5%. If the K 2 O content is too high, the coefficient of thermal expansion may be unduly high.
 MgO、CaO、SrO及びBaOは、高温粘性を下げて溶融性を高める成分である。MgO+CaO+SrO+BaOの含有量は、好ましくは0~25%、0~15%、0.1~12%、1~5%である。MgO+CaO+SrO+BaOの含有量が多すぎると、ガラスが失透しやすくなる。 MgO, CaO, SrO, and BaO are components that lower high-temperature viscosity and increase meltability. The content of MgO+CaO+SrO+BaO is preferably 0-25%, 0-15%, 0.1-12%, 1-5%. If the content of MgO+CaO+SrO+BaO is too high, the glass tends to devitrify.
 MgOは、高温粘性を下げて溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量は、好ましくは0~10%、0~8%、0~5%、特に好ましくは0~1%である。MgOの含有量が多すぎると、耐失透性が低下しやすくなる。 MgO is a component that lowers high-temperature viscosity and increases meltability, and among alkaline earth metal oxides, it is a component that significantly increases Young's modulus. The content of MgO is preferably 0-10%, 0-8%, 0-5%, particularly preferably 0-1%. If the MgO content is too high, the devitrification resistance tends to decrease.
 CaOは、高温粘性を下げて溶融性を顕著に高める成分である。またアルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、好ましくは0~15%、より好ましくは0.5~10%、特に好ましくは1~5%である。CaOの含有量が多すぎると、ガラスが失透しやすくなる。なお、CaOの含有量が少なすぎると、上記の溶融性を高める効果、及び、原料コストを低廉化する効果を享受しにくくなる。 CaO is a component that lowers high-temperature viscosity and significantly increases meltability. In addition, among the alkaline earth metal oxides, since the raw material to be introduced is relatively inexpensive, it is a component that reduces the raw material cost. The CaO content is preferably 0-15%, more preferably 0.5-10%, and particularly preferably 1-5%. If the CaO content is too high, the glass tends to devitrify. If the content of CaO is too small, it becomes difficult to obtain the effect of improving meltability and the effect of reducing raw material cost.
 SrOは、耐失透性を高める成分である。SrOの含有量は、好ましくは0~7%、0~5%、0~3%、特に好ましくは0~1%未満である。SrOの含有量が多すぎると、ガラスが失透しやすくなる。 SrO is a component that enhances devitrification resistance. The content of SrO is preferably 0-7%, 0-5%, 0-3%, particularly preferably 0-1%. If the SrO content is too high, the glass tends to devitrify.
 BaOは、耐失透性を高める成分である。BaOの含有量は、好ましくは0~7%、0~5%、0~3%、0~1%未満である。BaOの含有量が多すぎると、ガラスが失透しやすくなる。 BaO is a component that enhances devitrification resistance. The content of BaO is preferably 0-7%, 0-5%, 0-3%, 0-1%. If the BaO content is too high, the glass tends to devitrify.
 上記成分以外にも、任意成分として、以下に列挙する他の成分を導入してもよい。なお、上記成分以外の他の成分の含有量は、合量で10%以下、5%以下、特に3%以下が好ましい。 In addition to the above components, other components listed below may be introduced as optional components. The total content of components other than the above components is preferably 10% or less, 5% or less, and particularly preferably 3% or less.
 ZnOは、溶融性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透しやすくなる。よって、ZnOの含有量は、好ましくは0~5%、0~3%、0~1%、0~1%未満、特に好ましくは0~0.1%である。  ZnO is a component that enhances meltability, but if it is contained in a large amount in the glass composition, the glass tends to devitrify. Therefore, the content of ZnO is preferably 0-5%, 0-3%, 0-1%, 0-1%, particularly preferably 0-0.1%.
 ZrO2は、耐酸性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透しやすくなる。よって、ZrO2の含有量は、好ましくは0~5%、0~3%、0~1%、0~0.5%、特に好ましくは0.001~0.2%である。 ZrO 2 is a component that enhances acid resistance, but if contained in a large amount in the glass composition, the glass tends to devitrify. The content of ZrO 2 is therefore preferably 0-5%, 0-3%, 0-1%, 0-0.5%, particularly preferably 0.001-0.2%.
 Fe23とTiO2は、深紫外域での透過率を低下させる成分である。Fe23+TiO2の含有量は、好ましくは100ppm以下、80ppm以下、60ppm以下、0.1~40ppm以下、特に好ましくは1~20ppmである。Fe23+TiO2の含有量が多すぎると、ガラスが着色して、深紫外域での透過率が低下しやすくなる。なお、Fe23+TiO2の含有量が少なすぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。 Fe 2 O 3 and TiO 2 are components that reduce transmittance in the deep ultraviolet region. The content of Fe 2 O 3 +TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 0.1-40 ppm or less, particularly preferably 1-20 ppm. If the content of Fe 2 O 3 +TiO 2 is too large, the glass will be colored, and the transmittance in the deep ultraviolet region will tend to decrease. If the content of Fe 2 O 3 +TiO 2 is too low, high-purity glass raw materials must be used, resulting in an increase in batch cost.
 Fe23は、深紫外域での透過率を低下させる成分である。Fe23の含有量は、好ましくは100ppm以下、80ppm以下、60ppm以下、40ppm以下、20ppm以下、10ppm以下、特に好ましくは1~8ppmである。Fe23の含有量が多すぎると、ガラスが着色して、深紫外域での透過率が低下しやすくなる。なお、Fe23の含有量が少なすぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。 Fe 2 O 3 is a component that lowers the transmittance in the deep ultraviolet region. The content of Fe 2 O 3 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, particularly preferably 1 to 8 ppm. If the content of Fe 2 O 3 is too high, the glass tends to be colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of Fe 2 O 3 is too low, a high-purity glass raw material must be used, resulting in an increase in batch cost.
 酸化鉄中のFeイオンは、Fe2+又はFe3+の状態で存在する。Fe2+の割合が少なすぎると、深紫外線での透過率が低下しやすくなる。よって、酸化鉄中のFe2+/(Fe2++Fe3+)の質量割合は、好ましくは0.1以上、0.2以上、0.3以上、0.4以上、特に好ましくは0.5以上である。 Fe ions in iron oxide exist in the form of Fe 2+ or Fe 3+ . If the proportion of Fe 2+ is too low, the transmittance in deep ultraviolet rays tends to decrease. Therefore, the mass ratio of Fe 2+ /(Fe 2+ +Fe 3+ ) in iron oxide is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, and particularly preferably 0.4 or more. 5 or more.
 TiO2は、深紫外域での透過率を低下させる成分である。TiO2の含有量は、好ましくは100ppm以下、80ppm以下、60ppm以下、40ppm以下、20ppm以下、10ppm以下、特に好ましくは0.5~5ppmである。TiO2の含有量が多すぎると、ガラスが着色して、深紫外域での透過率が低下しやすくなる。なお、TiO2の含有量が少なすぎると、高純度のガラス原料を使用しなければならず、バッチコストの高騰を招く。 TiO 2 is a component that lowers the transmittance in the deep ultraviolet region. The content of TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, particularly preferably 0.5 to 5 ppm. If the content of TiO 2 is too high, the glass tends to be colored and the transmittance in the deep ultraviolet region tends to decrease. If the content of TiO 2 is too low, high-purity glass raw materials must be used, resulting in an increase in batch cost.
 Sb23は、清澄剤として作用する成分である。Sb23の含有量は、好ましくは1000ppm以下、800ppm以下、600ppm以下、400ppm以下、200ppm以下、100ppm以下、特に好ましくは50ppm未満である。Sb23の含有量が多すぎると、深紫外域での透過率が低下しやすくなる。 Sb 2 O 3 is a component that acts as a refining agent. The content of Sb 2 O 3 is preferably 1000 ppm or less, 800 ppm or less, 600 ppm or less, 400 ppm or less, 200 ppm or less, 100 ppm or less, particularly preferably less than 50 ppm. If the Sb 2 O 3 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
 SnO2は、清澄剤として作用する成分である。SnO2の含有量は、好ましくは2000ppm以下、1700ppm以下、1400ppm以下、1100ppm以下、800ppm以下、500ppm以下、200ppm以下、特に好ましくは100ppm以下である。SnO2の含有量が多すぎると、深紫外域での透過率が低下しやすくなる。 SnO 2 is a component that acts as a fining agent. The SnO 2 content is preferably 2000 ppm or less, 1700 ppm or less, 1400 ppm or less, 1100 ppm or less, 800 ppm or less, 500 ppm or less, 200 ppm or less, particularly preferably 100 ppm or less. If the SnO 2 content is too high, the transmittance in the deep ultraviolet region tends to decrease.
 F2、Cl2及びSO3は、清澄剤として作用する成分である。F2+Cl2+SO3の含有量は10~10000ppmであることが好ましい。F2+Cl2+SO3の好適な下限範囲は10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特に500ppm以上であり、好適な上限範囲は3000ppm以下、2000ppm以下、1000ppm以下、特に800ppm以下である。また、F2、Cl2、SO3の各々の好適な下限範囲は10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特に500ppm以上であり、好適な上限範囲は3000ppm以下、2000ppm以下、1000ppm以下、特に800ppm以下である。これらの成分の含有量が少なすぎると、清澄効果を発揮しにくくなる。一方、これらの成分の含有量が多すぎると、清澄ガスがガラス中に泡として残存するおそれがある。 F2 , Cl2 and SO3 are components that act as fining agents. The content of F 2 +Cl 2 +SO 3 is preferably 10-10000 ppm. The preferred lower limit range of F 2 +Cl 2 +SO 3 is 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, especially 500 ppm or more, and the preferred upper limit range is 3000 ppm or less, 2000 ppm or less, 1000 ppm or less, especially 800 ppm or less. is. Further, each of F 2 , Cl 2 and SO 3 preferably has a lower limit range of 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, particularly 500 ppm or more, and a preferable upper limit range of 3000 ppm or less and 2000 ppm or less. It is 1000 ppm or less, especially 800 ppm or less. If the content of these components is too low, it will be difficult to exhibit the refining effect. On the other hand, if the content of these components is too high, the fining gas may remain in the glass as bubbles.
 枠材6を構成するガラスは、例えば、各種ガラス原料を調合して、ガラスバッチを得た上で、このガラスバッチを溶融し、得られた溶融ガラスを清澄、均質化し、所定形状に成形することで作製することができる。 The glass that constitutes the frame member 6 is prepared, for example, by preparing various glass raw materials to obtain a glass batch, melting this glass batch, refining and homogenizing the resulting molten glass, and molding it into a predetermined shape. It can be made by
 枠材6を構成するガラスの製造工程において、ガラス原料の一部として、還元剤を用いることが好ましい。このようにすれば、ガラス中に含まれるFe3+が還元されて、深紫外線での透過率が向上する。還元剤として、木粉、カーボン粉末、金属アルミニウム、金属シリコン、フッ化アルミニウム等の材料が使用可能であるが、その中でも金属シリコン、フッ化アルミニウムが好ましい。 It is preferable to use a reducing agent as a part of the glass raw material in the manufacturing process of the glass forming the frame member 6 . By doing so, the Fe 3+ contained in the glass is reduced, and the transmittance of deep ultraviolet rays is improved. Materials such as wood powder, carbon powder, metal aluminum, metal silicon, and aluminum fluoride can be used as the reducing agent, and among these, metal silicon and aluminum fluoride are preferred.
 枠材6を構成するガラスの製造工程において、ガラス原料の一部として、金属シリコンを用いることが好ましく、その添加量は、ガラスバッチの全質量に対して0.001~3質量%、0.005~2質量%、0.01~1質量%、特に0.03~0.1質量%が好ましい。金属シリコンの添加量が少なすぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下しやすくなる。一方、金属シリコンの添加量が多すぎると、ガラスが茶色に着色する傾向がある。 Metallic silicon is preferably used as a part of the raw material for glass in the manufacturing process of the glass constituting the frame member 6, and the amount thereof added is 0.001 to 3% by mass, 0.001 to 3% by mass, and 0.001 to 3% by mass, based on the total mass of the glass batch. 005 to 2% by weight, 0.01 to 1% by weight, particularly 0.03 to 0.1% by weight. If the amount of metal silicon added is too small, the Fe 3+ contained in the glass will not be reduced, and the transmittance in deep ultraviolet rays will tend to decrease. On the other hand, if the amount of metal silicon added is too large, the glass tends to be colored brown.
 ガラス原料の一部として、フッ化アルミニウム(AlF3)を用いることも好ましく、その添加量は、ガラスバッチの全質量に対して、F2換算で0.01~5質量%、0.05~4質量%、0.1~3質量%、0.2~2質量%、0.3~1質量%が好ましい。一方、フッ化アルミニウムの添加量が多すぎると、F2ガスがガラス中に泡として残存するおそれがある。フッ化アルミニウムの添加量が少なすぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下しやすくなる。 It is also preferable to use aluminum fluoride (AlF 3 ) as a part of the glass raw material . 4% by mass, 0.1 to 3% by mass, 0.2 to 2% by mass, and 0.3 to 1% by mass are preferred. On the other hand, if the added amount of aluminum fluoride is too large, F 2 gas may remain in the glass as bubbles. If the amount of aluminum fluoride added is too small, the Fe 3+ contained in the glass will not be reduced, and the transmittance in deep ultraviolet rays will tend to decrease.
 枠材6を構成するガラスの製造工程において、ダウンドロー法、特にオーバーフローダウンドロー法で枠材6の元となるガラス板を成形することが好ましい。オーバーフローダウンドロー法は、耐熱性を有する樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状構造物に接触せず、自由表面の状態で成形される。このため、薄型のガラス板を作製しやすくなるとともに、表面を研磨しなくても、板厚ばらつきを低減することができる。結果として、ガラス板の製造コストを低廉化することができる。なお、樋状構造物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。 In the manufacturing process of the glass that constitutes the frame member 6, it is preferable to form the glass plate from which the frame member 6 is based by a down-draw method, particularly an overflow down-draw method. In the overflow down-draw method, molten glass is overflowed from both sides of a heat-resistant gutter-shaped structure, and while the overflowed molten glass is joined at the lower end of the gutter-shaped structure, it is stretched downward to form a glass sheet. It is a way to In the overflow down-draw method, the surface to be the surface of the glass sheet does not come into contact with the gutter-like structure and is formed in a free surface state. Therefore, it becomes easy to produce a thin glass plate, and variations in plate thickness can be reduced without polishing the surface. As a result, the manufacturing cost of the glass plate can be reduced. The structure and material of the gutter-like structure are not particularly limited as long as desired dimensions and surface accuracy can be achieved. In addition, the method of applying a force during the downward stretching is not particularly limited. For example, a method of stretching by rotating a heat-resistant roll having a sufficiently large width in contact with the glass may be adopted, or a plurality of pairs of heat-resistant rolls are brought into contact only near the end face of the glass. You may employ|adopt the method of letting and extending|stretching.
 枠材6を構成するガラスの成形方法として、オーバーフローダウンドロー法以外にも、例えば、スロットダウンドロー法、リドロー法、フロート法等を採択することもできる。 In addition to the overflow downdraw method, for example, a slot downdraw method, a redraw method, a float method, etc., can also be adopted as a method of forming the glass that constitutes the frame member 6 .
 枠材6を構成するガラスとしては、具体的には、例えば、日本電気硝子株式会社製のBU-41を使用できる。BU-41の30~380℃の温度範囲における熱膨張係数は、例えば42×10-7/℃である。なお、枠材6を構成するガラスとしては、上記BU-41の他、石英ガラスを使用してもよい。 As the glass constituting the frame member 6, for example, BU-41 manufactured by Nippon Electric Glass Co., Ltd. can be used. The coefficient of thermal expansion of BU-41 in the temperature range of 30 to 380°C is, for example, 42×10 -7 /°C. As the glass forming the frame member 6, quartz glass may be used in addition to the BU-41.
 枠材6の厚み(上下方向寸法)は、電子部品2よりも大きいことが好ましく、電子部品2よりも0.01~1mm大きいことが好ましく、0.05~0.5mm大きいことがより好ましく、0.1~0.2mm大きいことが最も好ましい。 The thickness (vertical dimension) of the frame member 6 is preferably larger than the electronic component 2, preferably 0.01 to 1 mm larger than the electronic component 2, more preferably 0.05 to 0.5 mm larger, Most preferably 0.1-0.2 mm larger.
 蓋材7は、石英ガラスから構成される。本実施形態における「石英ガラス」には、溶融石英と合成石英とが含まれる。溶融石英ガラスの30~380℃の温度範囲における熱膨張係数は例えば6.3×10-7/℃であり、合成石英ガラスの30~380℃の温度範囲における熱膨張係数は例えば4.0×10-7/℃である。また、本実施形態では、蓋材7は、上面7a及び下面7bがともに平面から構成される板状体である。 The lid member 7 is made of quartz glass. "Quartz glass" in this embodiment includes fused silica and synthetic silica. The coefficient of thermal expansion of fused silica glass in the temperature range of 30 to 380° C. is, for example, 6.3×10 −7 /° C., and the coefficient of thermal expansion of synthetic silica glass in the temperature range of 30 to 380° C. is, for example, 4.0×. 10 -7 /°C. Further, in the present embodiment, the lid member 7 is a plate-like body in which both the upper surface 7a and the lower surface 7b are flat.
 蓋材7の厚み(上下方向寸法)は、0.1~1.0mmであることが好ましく、0.2~0.8mmであることがより好ましく、0.3~0.6mmであることが最も好ましい。 The thickness (vertical dimension) of the lid member 7 is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.8 mm, and more preferably 0.3 to 0.6 mm. Most preferred.
 溶着部9は、レーザー接合により形成される。詳細には、溶着部9は、レーザーの照射領域において、枠材6及び蓋材7の少なくとも一方を溶融した後に、その溶融部を固化させることにより形成される。つまり、溶着部9は、例えば、枠材6及び蓋材7の少なくとも一方の材料から構成され、枠材6及び蓋材7以外の材料を実質的に含まないことが好ましい。 The welded part 9 is formed by laser welding. Specifically, the welded portion 9 is formed by melting at least one of the frame member 6 and the lid member 7 in the laser irradiation region and then solidifying the melted portion. In other words, it is preferable that the welded portion 9 is made of at least one material of the frame member 6 and the lid member 7 and does not substantially contain materials other than the frame member 6 and the lid member 7 .
 溶着部9は、貫通孔Hの周囲で同心環状に複数(図示例では二つ)形成されているが、一つのみが形成されていてもよい。複数の溶着部9は、互いに貫通孔Hの径方向に離間しているが、径方向で重なっていてもよい。各溶着部9は、平面視で四角環状に構成されるが、これに限らず、円環状その他の環形状に構成され得る。 A plurality of welded portions 9 (two in the illustrated example) are formed concentrically around the through hole H, but only one may be formed. Although the plurality of welded portions 9 are separated from each other in the radial direction of the through hole H, they may overlap in the radial direction. Each welded portion 9 is configured in a quadrangular ring shape in a plan view, but is not limited to this, and may be configured in an annular shape or other ring shape.
 溶着部9は、厚み方向において、枠材6と蓋材7とに連続して跨って形成されている。なお、本実施形態では、溶着部9の内部において、枠材6と蓋材7との間には界面がない。もちろん、溶着部9の内部において、枠材6と蓋材7との間に界面が残っていてもよい。 The welded portion 9 is formed continuously across the frame member 6 and the lid member 7 in the thickness direction. In this embodiment, there is no interface between the frame member 6 and the lid member 7 inside the welded portion 9 . Of course, an interface may remain between the frame member 6 and the lid member 7 inside the welded portion 9 .
 溶着部9の幅S1は、10~200μmであることが好ましく、10~100μmであることがより好ましく、10~50μmであることが最も好ましい。溶着部9の厚みS2は、10~200μmであることが好ましく、10~150μmであることがより好ましく、10~100μmであることが最も好ましい。 The width S1 of the welded portion 9 is preferably 10-200 μm, more preferably 10-100 μm, and most preferably 10-50 μm. The thickness S2 of the welded portion 9 is preferably 10-200 μm, more preferably 10-150 μm, and most preferably 10-100 μm.
 溶着部9の平面方向の残留応力の最大値は、10MPa以下であることが好ましく、7MPa以下であることがより好ましく、5MPa以下であることが最も好ましい。平面方向の残留応力の最大値は、10mm×10mm以上の寸法を有するガラス板において、ユニオプト社製複屈折測定機:ABR-10Aを用いて、接合部付近の複屈折(単位:nm)を計測し、平面方向の残留応力に換算した場合の最大値である。また、光学的な複屈折の測定、すなわち直交する直線偏光波の光路差の測定により、ガラス板中の残留応力値を見積ることが可能であり、残留応力により発生する偏差応力F(MPa)は、F=D/CWの式で表記される。「D」は光路差(nm)であり、「W」は偏光波が通過した距離(cm)であり、「C」は光弾性定数(比例定数)であり、通常、20~40(nm/cm)/(MPa)の値になる。なお、平面方向の残留応力には、引張応力と圧縮応力が存在するが、ここでは両者の絶対値を評価するものとする。 The maximum residual stress in the planar direction of the welded portion 9 is preferably 10 MPa or less, more preferably 7 MPa or less, and most preferably 5 MPa or less. The maximum value of the residual stress in the plane direction is the birefringence (unit: nm) near the joint on a glass plate having a size of 10 mm × 10 mm or more, using a birefringence measuring device: ABR-10A manufactured by Uniopt. and the maximum value when converted to the residual stress in the plane direction. Further, by optically measuring birefringence, that is, by measuring the optical path difference of orthogonal linearly polarized waves, it is possible to estimate the residual stress value in the glass plate, and the deviatoric stress F (MPa) generated by the residual stress is , F=D/CW. "D" is the optical path difference (nm), "W" is the distance (cm) passed by the polarized wave, and "C" is the photoelastic constant (proportionality constant), usually 20 to 40 (nm/ cm)/(MPa). The residual stress in the planar direction includes tensile stress and compressive stress, and the absolute values of both are evaluated here.
 封着材料層5は、基材3の上面3aと枠材6の下端開口(下端面6b)との相互間に介在した状態で基材3と枠材6とを接合している。基材3と枠材6とが封着材料層5により接合されることで、基材3および保護キャップ4の両者により電子部品2を包囲する気密構造が形成される。封着材料層5は、ガラス材を含んだ封着材料で構成される。本実施形態における封着材料層5は、封着材料とビークルを混練して作製される封着材料ペーストを基材3に塗布、乾燥、脱バインダー、及び焼結することにより作製される。封着材料層5および封着材料の詳細については、以下の電子装置の製造方法で説明する。 The sealing material layer 5 joins the base material 3 and the frame member 6 while being interposed between the upper surface 3 a of the base material 3 and the lower end opening (lower end surface 6 b ) of the frame member 6 . By joining the base material 3 and the frame material 6 with the sealing material layer 5 , an airtight structure surrounding the electronic component 2 is formed by both the base material 3 and the protective cap 4 . The sealing material layer 5 is made of a sealing material containing a glass material. The sealing material layer 5 in this embodiment is produced by applying a sealing material paste produced by kneading a sealing material and a vehicle onto the substrate 3, drying, removing the binder, and sintering. The details of the sealing material layer 5 and the sealing material will be described in the electronic device manufacturing method below.
 図3~図8は、上記の電子装置1の製造方法を例示している。 3 to 8 illustrate the manufacturing method of the electronic device 1 described above.
 電子装置1の製造方法は、保護キャップ4を得るために枠材6と蓋材7とを接合する第一接合工程と、電子部品2が搭載された基材3と保護キャップ4とを接合する第二接合工程と、を備えている。 The manufacturing method of the electronic device 1 includes a first bonding step of bonding the frame material 6 and the lid material 7 to obtain the protective cap 4, and bonding the base material 3 on which the electronic component 2 is mounted and the protective cap 4. and a second bonding step.
 第一接合工程では、まず、図3に示すように、枠材6と蓋材7とを準備する。次に、同図に二点鎖線で示すように、枠材6の上端面6aと蓋材7の下面7bとを直接接触させる。その後、図4に示すように、レーザー照射装置10により、枠材6と蓋材7との接触部に対してレーザーLを集光して照射する。レーザーLは、枠材6及び蓋材7の少なくとも一方側から照射される。本実施形態では、レーザーLは、蓋材7側から照射される。これにより、接触部を溶着して溶着部9を形成すると共に、溶着部9により枠材6と蓋材7とを接合する。 In the first joining step, first, as shown in FIG. 3, the frame member 6 and the lid member 7 are prepared. Next, as indicated by a chain double-dashed line in the figure, the upper end surface 6a of the frame member 6 and the lower surface 7b of the lid member 7 are brought into direct contact. After that, as shown in FIG. 4, the laser irradiation device 10 irradiates the contact portion between the frame member 6 and the cover member 7 with a focused laser L. As shown in FIG. The laser L is irradiated from at least one side of the frame member 6 and the lid member 7 . In this embodiment, the laser L is irradiated from the lid member 7 side. As a result, the contact portion is welded to form the welded portion 9 , and the frame member 6 and the lid member 7 are joined by the welded portion 9 .
 枠材6の上端面6a及び蓋材7の下面7bのそれぞれの算術平均粗さRaは、2.0nm以下であることが好ましく、1.0nm以下であることがより好ましく、0.5nm以下であることが更に好ましく、0.2nm以下であることが最も好ましい。算術平均粗さRaは、JIS B0601:2001に準拠した方法で測定した値を意味する。このようすれば、枠材6及び蓋材7が互いに接合面間の分子間力(オプティカルコンタクト)により密着するため、レーザー接合前におけるハンドリング性が向上する。 The arithmetic average roughness Ra of the upper end surface 6a of the frame member 6 and the lower surface 7b of the lid member 7 is preferably 2.0 nm or less, more preferably 1.0 nm or less, and 0.5 nm or less. It is more preferably 0.2 nm or less, and most preferably 0.2 nm or less. Arithmetic mean roughness Ra means a value measured by a method conforming to JIS B0601:2001. In this way, the frame member 6 and the lid member 7 are brought into close contact with each other due to the intermolecular force (optical contact) between the bonding surfaces, so that the handleability before laser bonding is improved.
 レーザーLとしては、ピコ秒オーダーやフェムト秒オーダーのパルス幅を有する超短パルスレーザが好適に使用される。 As the laser L, an ultrashort pulse laser having a pulse width on the order of picoseconds or femtoseconds is preferably used.
 レーザーLの波長は、ガラス部材を透過する波長であれば特に限定されるものではないが、例えば、400~1600nmであることが好ましく、500~1300nmであることがより好ましい。レーザーLのパルス幅は、10ps以下であることが好ましく、5ps以下であることがより好ましく、200fs~3psであることが最も好ましい。レーザーLの集光径は、50μm以下であることが好ましく、30μm以下であることがより好ましく、20μm以下であることが更に好ましい。 The wavelength of the laser L is not particularly limited as long as it can pass through the glass member, but for example, it is preferably 400 to 1600 nm, more preferably 500 to 1300 nm. The pulse width of the laser L is preferably 10 ps or less, more preferably 5 ps or less, and most preferably 200 fs to 3 ps. The focused diameter of the laser L is preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less.
 レーザーLの繰り返し周波数は、連続的な熱蓄積を生じさせる程度であることが必要であり、具体的には100kHz以上であることが好ましく、200kHz以上であることがより好ましく、500kHz以上であることが更に好ましい。 The repetition frequency of the laser L is required to cause continuous heat accumulation, specifically preferably 100 kHz or more, more preferably 200 kHz or more, and 500 kHz or more. is more preferred.
 また、1パルスを複数に分配させ、パルス間隔を更に短くして照射する手法(バーストモード)を利用することが好ましい。これにより、熱蓄積が生じやすくなり、溶着部9を安定して形成することができる。 In addition, it is preferable to use a technique (burst mode) in which one pulse is divided into multiple parts and the pulse intervals are further shortened. As a result, heat accumulation is likely to occur, and the welded portion 9 can be stably formed.
 図5に示すように、レーザーLは、貫通孔Hの周囲で、貫通孔Hに沿った環状軌道Tを描くように走査される。この場合において、レーザーLは、その照射領域Rが環状軌道T上で重なりながら環状軌道Tを一周するように走査される。あるいは、レーザーLは、その環状軌道Tを複数回にわたって周回するように走査される。なお、溶着部9を同心環状に複数形成する場合には、レーザーLを走査する環状軌道Tも同心環状に複数設定される。 As shown in FIG. 5, the laser L scans around the through-hole H so as to draw a circular trajectory T along the through-hole H. In this case, the laser L is scanned so that the irradiation area R overlaps the circular orbit T and makes one round of the circular orbit T. As shown in FIG. Alternatively, the laser L is scanned so as to go around the circular orbit T multiple times. When forming a plurality of welded portions 9 concentrically, a plurality of circular orbits T for scanning the laser L are also set concentrically.
 また、貫通孔Hを囲むように4本の直線を井桁状に交差させることにより、枠状に接合部を形成してもよい。このような形態を利用すれば、複数の保護キャップ4を一度に作製することも可能となるため、電子装置1の製造効率を高めることができる。 In addition, the joint may be formed in a frame shape by intersecting four straight lines so as to surround the through hole H. By using such a form, it is possible to manufacture a plurality of protective caps 4 at once, so that the manufacturing efficiency of the electronic device 1 can be improved.
 第二接合工程は、基材3と枠材6とを接合するための準備として、基材3と枠材6の下端開口(下端面6b)との相互間に封着材料層5を介在させる接合準備工程(図6及び図7)と、接合準備工程後に、封着材料層5にレーザーLを照射して軟化変形させることにより基材3と枠材6の下端開口とを接合する接合本工程(図8)と、を含んでいる。 In the second bonding step, as preparation for bonding the base material 3 and the frame material 6, the sealing material layer 5 is interposed between the base material 3 and the lower end opening (lower end surface 6b) of the frame material 6. A joining preparation step (FIGS. 6 and 7), and a joining book for joining the base material 3 and the lower end opening of the frame member 6 by irradiating the sealing material layer 5 with a laser L to soften and deform it after the joining preparation step. and a step (FIG. 8).
 接合準備工程では、はじめに基材3に封着材料ペーストを塗布する。封着材料ペーストは、基材3の上面3aのうち、後に枠材6の下端面6bと重ね合わされる箇所に塗布する。本実施形態では、基材3の上面3aの縁部に沿って封着材料ペーストを塗布している。基材3への封着材料ペーストの塗布は、周知の方法で行うことができる。例えば、スクリーン印刷、ディスペンサー塗布等で行うことができる。 In the bonding preparation process, the base material 3 is first coated with a sealing material paste. The sealing material paste is applied to a portion of the upper surface 3a of the base material 3 that will be overlaid on the lower end surface 6b of the frame member 6 later. In this embodiment, the sealing material paste is applied along the edge of the upper surface 3a of the base material 3. As shown in FIG. Application of the sealing material paste to the substrate 3 can be performed by a well-known method. For example, screen printing, dispenser application, or the like can be used.
 封着材料ペーストの作製に際してビークルと混錬される封着材料は、一般的に、ガラス粉末と耐火性フィラー粉末とを含む複合粉末であり、必要に応じて、着色顔料等のレーザー吸収材を添加する場合もある。また、ガラス粉末の熱膨張係数が低い場合(一例として、30℃~300℃の温度範囲における熱膨張係数が90×10-7/℃以下)は、ガラス粉末単独を封着材料として用いる場合もある。封着材料は、後の接合本工程でのレーザー照射によって軟化流動(軟化変形)し、これに伴って基材3と枠材6とを一体化する材料である。ビークルは、一般的に、有機樹脂と溶媒の混合物、つまり有機樹脂が溶解した粘稠液を指し、ビークル中に封着材料を分散させることで封着材料ペーストが得られる。なお、ビークル中に、必要に応じて、界面活性剤、増粘剤等を添加する場合もある。 The sealing material that is kneaded with the vehicle when producing the sealing material paste is generally a composite powder containing glass powder and refractory filler powder, and if necessary, a laser absorbing material such as a coloring pigment. It may be added. If the thermal expansion coefficient of the glass powder is low (for example, the thermal expansion coefficient is 90×10 −7 /° C. or less in the temperature range of 30° C. to 300° C.), the glass powder alone may be used as the sealing material. be. The sealing material is a material that softens and flows (softens and deforms) by laser irradiation in the subsequent main joining process, thereby integrating the base material 3 and the frame material 6 . A vehicle generally refers to a mixture of an organic resin and a solvent, that is, a viscous liquid in which the organic resin is dissolved, and a sealing material paste is obtained by dispersing the sealing material in the vehicle. A surfactant, a thickening agent, etc. may be added to the vehicle, if necessary.
 封着材料として、上記のとおりガラス粉末単独を用いてもよいが、ガラス粉末と耐火性フィラー粉末とを含む複合粉末を用いることが好ましい。複合粉末として、60~100体積%のガラス粉末と0~40体積%の耐火性フィラー粉末とを含有する複合粉末を用いることが好ましく、65~95体積%のガラス粉末と5~35体積%の耐火性フィラー粉末とを含有する複合粉末を用いることが更に好ましい。耐火性フィラー粉末は、封着材料の熱膨張係数を基材3および枠材6の熱膨張係数と整合しやすくするために添加する。その結果、接合本工程後において、封着材料層5の周辺に不当な応力が残留し、電子装置1が破損してしまうような事態を防止することができる。一方、耐火性フィラー粉末の含有量が多すぎると、ガラス粉末の含有量が相対的に少なくなるため、封着材料層5の表面平滑性が低下して、基材3の上面3aと封着材料層5との密着性が低下して、封着強度が低下しやすくなる。 As the sealing material, the glass powder alone may be used as described above, but it is preferable to use a composite powder containing the glass powder and the refractory filler powder. As the composite powder, it is preferable to use a composite powder containing 60 to 100 vol% glass powder and 0 to 40 vol% refractory filler powder, and 65 to 95 vol% glass powder and 5 to 35 vol% It is more preferable to use a composite powder containing a refractory filler powder. The refractory filler powder is added to facilitate matching of the coefficient of thermal expansion of the sealing material with that of the substrate 3 and the frame member 6 . As a result, it is possible to prevent damage to the electronic device 1 due to excessive stress remaining around the sealing material layer 5 after the main bonding step. On the other hand, if the content of the refractory filler powder is too large, the content of the glass powder is relatively small, so that the surface smoothness of the sealing material layer 5 is reduced, and the sealing material layer 5 is sealed to the upper surface 3a of the substrate 3. The adhesion with the material layer 5 is lowered, and the sealing strength tends to be lowered.
 封着材料の軟化点は、好ましくは550℃以下、より好ましくは520℃以下、特に好ましくは480℃以下である。封着材料の軟化点が高すぎると、封着材料層5の表面平滑性を高めにくくなる。また、接合本工程でのレーザーLの照射時に過度に封着材料(封着材料層5)の温度を高める必要が生じるため、これに起因して基材3や枠材6が破損しやすくなる。封着材料の軟化点の下限は特に設定されないが、ガラス粉末の熱的安定性を考慮すると、封着材料の軟化点は350℃以上が好ましい。ここで、「軟化点」は、マクロ型DTA装置で測定した際の第四変曲点に相当する。 The softening point of the sealing material is preferably 550°C or lower, more preferably 520°C or lower, and particularly preferably 480°C or lower. If the softening point of the sealing material is too high, it becomes difficult to improve the surface smoothness of the sealing material layer 5 . In addition, since it is necessary to excessively raise the temperature of the sealing material (sealing material layer 5) when irradiating the laser L in the main joining process, the base material 3 and the frame material 6 are likely to be damaged due to this. . Although the lower limit of the softening point of the sealing material is not particularly set, considering the thermal stability of the glass powder, the softening point of the sealing material is preferably 350° C. or higher. Here, the "softening point" corresponds to the fourth inflection point when measured with a macro-type DTA device.
 ガラス粉末は、封着材料層5による封着強度(基材3と枠材6との接合強度)を高める観点から、ビスマス系ガラスが好ましい。更に、ビスマス系ガラスは、ガラス組成として、モル%で、Bi23 28~60%、B23 15~37%、ZnO 0~30%、CuO+MnO(CuOとMnOの合量) 1~40%を含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス粉末についての各成分の含有量の説明において、%表示は、特に断りが無い限り、モル%を表す。 The glass powder is preferably bismuth-based glass from the viewpoint of increasing the sealing strength of the sealing material layer 5 (bonding strength between the base material 3 and the frame member 6). Further, the bismuth-based glass has a glass composition of 28 to 60% Bi 2 O 3 , 15 to 37% B 2 O 3 , 0 to 30% ZnO, CuO+MnO (total amount of CuO and MnO) 1 to 1%. It preferably contains 40%. The reason why the content range of each component is limited as described above will be explained below. In addition, in description of content of each component about glass powder, % display represents mol% unless otherwise specified.
 Bi23は、軟化点を低下させるための主要成分である。Bi23の含有量は、好ましくは28~60%、より好ましくは33~55%、特に好ましくは35~45%である。Bi23の含有量が少なすぎると、軟化点が高くなりすぎて、軟化流動性が低下しやすくなる。一方、Bi23の含有量が多すぎると、接合本工程でのレーザーLの照射の際にガラスが失透しやすくなり、この失透に起因して、軟化流動性が低下しやすくなる。 Bi 2 O 3 is the main ingredient for lowering the softening point. The content of Bi 2 O 3 is preferably 28-60%, more preferably 33-55%, particularly preferably 35-45%. If the content of Bi 2 O 3 is too small, the softening point becomes too high, and softening fluidity tends to decrease. On the other hand, if the content of Bi 2 O 3 is too large, the glass tends to devitrify when irradiated with the laser L in the main joining step, and this devitrification tends to reduce softening fluidity. .
 B23は、ガラス形成成分として必須の成分である。B23の含有量は、好ましくは15~37%、より好ましくは19~33%、特に好ましくは22~30%である。B23の含有量が少なすぎると、ガラスネットワークが形成されにくくなるため、レーザーLの照射の際にガラスが失透しやすくなる。一方、B23の含有量が多すぎると、ガラスの粘性が高くなり、軟化流動性が低下しやすくなる。 B 2 O 3 is an essential component as a glass-forming component. The content of B 2 O 3 is preferably 15-37%, more preferably 19-33%, particularly preferably 22-30%. If the B 2 O 3 content is too low, the formation of a glass network becomes difficult, and the glass tends to devitrify when irradiated with the laser L. On the other hand, if the content of B 2 O 3 is too high, the viscosity of the glass increases and softening fluidity tends to decrease.
 ZnOは、耐失透性を高める成分である。ZnOの含有量は、好ましくは0~30%、より好ましくは3~25%、更に好ましくは5~22%、特に好ましくは5~20%である。ZnOの含有量が多すぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下しやすくなる。 ZnO is a component that enhances devitrification resistance. The content of ZnO is preferably 0-30%, more preferably 3-25%, still more preferably 5-22%, and particularly preferably 5-20%. If the ZnO content is too high, the balance of components in the glass composition is lost, and the devitrification resistance tends to decrease.
 CuOとMnOは、レーザー吸収能を大幅に高める成分である。CuOとMnOの合量は、好ましくは1~40%、より好ましくは3~35%、更に好ましくは10~30%、特に好ましくは15~30%である。CuOとMnOの合量が少なすぎると、レーザー吸収能が低下しやすくなる。一方、CuOとMnOの合量が多すぎると、軟化点が高くなりすぎて、レーザーLを照射しても、ガラスが軟化流動しにくくなる。またガラスが熱的に不安定になり、レーザーLの照射時にガラスが失透しやすくなる。なお、CuOの含有量は、好ましくは1~30%、特に好ましくは10~25%である。MnOの含有量は、好ましくは0~25%、より好ましくは1~25%、特に好ましくは3~15%である。 CuO and MnO are components that greatly enhance the laser absorption ability. The total amount of CuO and MnO is preferably 1-40%, more preferably 3-35%, even more preferably 10-30%, and particularly preferably 15-30%. If the total amount of CuO and MnO is too small, the laser absorbing power tends to decrease. On the other hand, if the total amount of CuO and MnO is too large, the softening point becomes too high, and even if the laser L is irradiated, the glass becomes difficult to soften and flow. Moreover, the glass becomes thermally unstable, and the glass tends to devitrify when the laser L is irradiated. The CuO content is preferably 1 to 30%, particularly preferably 10 to 25%. The content of MnO is preferably 0-25%, more preferably 1-25%, and particularly preferably 3-15%.
 上記成分以外にも、ガラス組成として、例えば以下に列挙する他の成分を添加してもよい。 In addition to the above components, other components listed below, for example, may be added as the glass composition.
 SiO2は、耐水性を高める成分である。SiO2の含有量は、好ましくは0~5%、より好ましくは0~3%、更に好ましくは0~2%、特に好ましくは0~1%である。SiO2の含有量が多すぎると、軟化点が不当に上昇する虞がある。また接合本工程でのレーザー照射の際にガラスが失透しやすくなる。 SiO 2 is a component that enhances water resistance. The content of SiO 2 is preferably 0-5%, more preferably 0-3%, even more preferably 0-2%, and particularly preferably 0-1%. If the SiO 2 content is too high, the softening point may unduly increase. In addition, the glass tends to devitrify during the laser irradiation in the main joining step.
 Al23は、耐水性を高める成分である。Al23の含有量は0~10%、0.1~5%、特に0.5~3%が好ましい。Al23の含有量が多すぎると、軟化点が不当に上昇する虞がある。 Al 2 O 3 is a component that enhances water resistance. The content of Al 2 O 3 is preferably 0-10%, 0.1-5%, particularly 0.5-3%. If the Al 2 O 3 content is too high, the softening point may unduly increase.
 Li2O、Na2O及びK2Oは、耐失透性を低下させる成分である。よって、Li2O、Na2O及びK2Oの含有量は、それぞれ0~5%、0~3%、特に0~1%未満が好ましい。 Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are preferably 0 to 5%, 0 to 3%, and particularly preferably 0 to less than 1%.
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%が好ましい。 MgO, CaO, SrO and BaO are components that increase devitrification resistance, but also components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are preferably 0 to 20%, 0 to 10%, and particularly 0 to 5%, respectively.
 Fe23は、耐失透性とレーザー吸収能を高める成分である。Fe23の含有量は、好ましくは0~10%、より好ましくは0.1~5%、特に好ましくは0.4~2%である。Fe23の含有量が多すぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下しやすくなる。 Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption ability. The content of Fe 2 O 3 is preferably 0-10%, more preferably 0.1-5%, particularly preferably 0.4-2%. If the content of Fe 2 O 3 is too high, the composition of the glass will be out of balance, and the resistance to devitrification will tend to decrease.
 Sb23は、耐失透性を高める成分である。Sb23の含有量は、好ましくは0~5%、特に好ましくは0~2%である。Sb23の含有量が多すぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下しやすくなる。 Sb 2 O 3 is a component that enhances devitrification resistance. The content of Sb 2 O 3 is preferably 0-5%, particularly preferably 0-2%. If the content of Sb 2 O 3 is too large, the component balance of the glass composition is lost, and the devitrification resistance tends to decrease.
 また、封着材料に含まれるガラス粉末としては、上記ビスマス系ガラスだけでなく、亜鉛系ホウ酸系ガラス、銀リン酸系ガラスまたはテルル系ガラスの何れかを使用することもできる。亜鉛ホウ酸系ガラスは、ビスマス系ガラスに比べて、熱膨張係数が低いという特徴を有する。銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと比較して、低温で軟化流動しやすく、レーザーLの照射後に生じる熱歪みを低減し得るため、熱的信頼性及び機械的信頼性を高めることができるという特徴を有する。更に、銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと同様に、耐火性フィラー粉末を混合すると、封着材料層5の機械的強度を高めることができ、且つ封着材料層5の熱膨張係数を低下させることができる。 As the glass powder contained in the sealing material, not only the bismuth-based glass but also zinc-based borate-based glass, silver-phosphate-based glass, or tellurium-based glass can be used. Zinc borate glass is characterized by a lower coefficient of thermal expansion than bismuth glass. Compared to bismuth-based glass, silver phosphate-based glass and tellurium-based glass are more likely to soften and flow at low temperatures, and can reduce thermal strain that occurs after irradiation with the laser L. Therefore, they have high thermal reliability and mechanical reliability. It has the characteristic that it can be enhanced. Furthermore, silver phosphate glass and tellurium glass can increase the mechanical strength of the sealing material layer 5 by mixing refractory filler powder, as with bismuth glass. The coefficient of thermal expansion can be lowered.
 亜鉛ホウ酸系ガラスは、ガラス組成として、モル%で、SiO2+ZnO 40~80%、B23 5~25%、Al23 0~20%、MgO 0~20%を含有することが好ましい。 The zinc borate glass should contain 40 to 80% SiO 2 +ZnO, 5 to 25% B 2 O 3 , 0 to 20% Al 2 O 3 and 0 to 20% MgO as the glass composition. is preferred.
 SiO2+ZnOの含有量(SiO2とZnOの合量)は、好ましくは40~80%、より好ましくは45~70%、特に好ましくは50~65%である。SiO2+ZnOの含有量が少なすぎると、耐候性が低下しやすく、またガラス化しにくくなる。一方、SiO2+ZnOの含有量が多すぎると、軟化点が不当に上昇する虞がある。 The content of SiO 2 +ZnO (total amount of SiO 2 and ZnO) is preferably 40-80%, more preferably 45-70%, and particularly preferably 50-65%. If the content of SiO 2 +ZnO is too small, the weather resistance tends to be lowered and vitrification becomes difficult. On the other hand, if the content of SiO 2 +ZnO is too high, the softening point may unduly increase.
 SiO2の含有量は、好ましくは15~45%、より好ましくは20~40%、特に好ましくは22~36%である。SiO2の含有量が少なすぎると、耐候性が低下しやすく、またガラス化しにくくなる。一方、SiO2の含有量が多すぎると、軟化点が不当に上昇する虞がある。 The content of SiO 2 is preferably 15-45%, more preferably 20-40%, particularly preferably 22-36%. If the content of SiO 2 is too low, the weather resistance tends to decrease and vitrification becomes difficult. On the other hand, if the SiO 2 content is too high, the softening point may unduly increase.
 ZnOの含有量は、好ましくは20~55%、より好ましくは25~50%、特に好ましくは30~45%である。ZnOの含有量が少なすぎると、溶融時の失透性が強くなり、均質なガラスを得にくくなる。一方、ZnOの含有量が多すぎると、耐候性が低下しやすくなる。 The content of ZnO is preferably 20-55%, more preferably 25-50%, and particularly preferably 30-45%. If the ZnO content is too low, the devitrification property during melting becomes strong, making it difficult to obtain a homogeneous glass. On the other hand, if the ZnO content is too high, the weather resistance tends to decrease.
 モル比SiO2/ZnO(SiO2の含有量をZnOの含有量で除した値)は、好ましくは0.6~2.0、より好ましくは0.7~1.8、特に好ましくは0.8~1.7である。モル比SiO2/ZnOが小さすぎると、ガラスが分相しやすくなり、また耐候性が低下しやすくなる。一方、モル比SiO2/ZnOが大きすぎると、軟化点が不当に上昇する虞がある。 The molar ratio SiO 2 /ZnO (value obtained by dividing the content of SiO 2 by the content of ZnO) is preferably 0.6 to 2.0, more preferably 0.7 to 1.8, particularly preferably 0.7 to 1.8. 8 to 1.7. If the molar ratio SiO 2 /ZnO is too small, the glass tends to undergo phase separation and the weather resistance tends to decrease. On the other hand, if the molar ratio SiO 2 /ZnO is too large, the softening point may unduly increase.
 B23は、ガラスの網目形成成分であり、軟化流動性を高める成分である。B23の含有量は、好ましくは5~25%、より好ましくは7~23%、特に好ましくは8~20%である。B23の含有量が少なすぎると、結晶性が強くなるため、軟化流動性が損なわれて、封着強度を確保することが困難になる。一方、B23の含有量が多すぎると、耐候性が低下する傾向がある。 B 2 O 3 is a network-forming component of glass and a component that enhances softening fluidity. The content of B 2 O 3 is preferably 5-25%, more preferably 7-23%, particularly preferably 8-20%. If the content of B 2 O 3 is too small, the crystallinity will be strong, which will impair the softening fluidity and make it difficult to secure the sealing strength. On the other hand, when the content of B 2 O 3 is too high, the weather resistance tends to decrease.
 Al23は、ガラスを安定化する成分である。Al23の含有量は、好ましくは0~20%であり、より好ましくは2~18%、特に好ましくは5~15%である。Al23の含有量が少なすぎると、ガラス化しにくくなる。一方、Al23の含有量が多すぎると、軟化点が不当に上昇する虞がある。 Al 2 O 3 is a component that stabilizes the glass. The content of Al 2 O 3 is preferably 0-20%, more preferably 2-18%, particularly preferably 5-15%. If the content of Al 2 O 3 is too small, vitrification becomes difficult. On the other hand, if the Al 2 O 3 content is too high, the softening point may unduly increase.
 MgOは、ガラスの粘性を下げる成分である。MgOを所定量含有させることにより、SiO2を多量に含有する場合であっても低温焼結が可能になる。MgOの含有量は、好ましくは0~20%、より好ましくは3~18%、特に好ましくは5~15%である。MgOの含有量が少なすぎると、軟化点が不当に上昇する虞がある。一方、MgOの含有量が多すぎると、熱膨張係数が高くなりすぎる傾向がある。 MgO is a component that lowers the viscosity of glass. By containing a predetermined amount of MgO, low-temperature sintering becomes possible even when a large amount of SiO 2 is contained. The content of MgO is preferably 0-20%, more preferably 3-18%, particularly preferably 5-15%. If the MgO content is too low, the softening point may unduly increase. On the other hand, if the MgO content is too high, the coefficient of thermal expansion tends to be too high.
 上記成分以外にも、ガラス組成として、他の成分(例えば、Li2O、Na2O、K2O、CaO、SrO、BaO、MnO2、Ta25、Nb25、CeO2、Sb23等)を7%まで(好ましくは3%まで)含有してもよい。 In addition to the above components, glass compositions may include other components (e.g., Li2O , Na2O , K2O , CaO, SrO, BaO, MnO2 , Ta2O5 , Nb2O5 , CeO2 , Sb 2 O 3 etc.) may be contained up to 7% (preferably up to 3%).
 一方、環境面の観点から、ガラス組成として、実質的に鉛成分(例えばPbO等)を含有せず、実質的にF、Clも含有しないことが好ましい。 On the other hand, from an environmental point of view, it is preferable that the glass composition does not substantially contain lead components (for example, PbO, etc.) and that it does not substantially contain F and Cl.
 銀リン酸系ガラスは、ガラス組成として、モル%で、Ag2O 10~50%、P25 10~35%、ZnO 3~25%、遷移金属酸化物 0~30%を含有することが好ましい。 The silver phosphate glass should contain 10 to 50% Ag 2 O, 10 to 35% P 2 O 5 , 3 to 25% ZnO, and 0 to 30% transition metal oxide in terms of mol % of the glass composition. is preferred.
 Ag2Oは、ガラスを低融点化させると共に、水に溶けにくいため、耐水性を高める成分である。Ag2Oの含有量は10~50%、特に20~40%が好ましい。Ag2Oの含有量が少なすぎると、ガラスの粘性が高くなって、流動性が低下しやすくなると共に、耐水性が低下しやすくなる。一方、Ag2Oの含有量が多すぎると、ガラス化が困難になる。 Ag 2 O is a component that lowers the melting point of glass and increases water resistance because it is difficult to dissolve in water. The content of Ag 2 O is preferably 10-50%, more preferably 20-40%. If the content of Ag 2 O is too small, the viscosity of the glass increases, and the fluidity and water resistance of the glass tend to decrease. On the other hand, when the Ag 2 O content is too high, vitrification becomes difficult.
 P25は、ガラスを低融点化させる成分である。その含有量は10~35%、特に15~25%が好ましい。P25の含有量が少なすぎると、ガラス化が困難になる。一方、P25の含有量が多すぎると、耐候性、耐水性が低下しやすくなる。 P 2 O 5 is a component that lowers the melting point of glass. Its content is preferably 10 to 35%, more preferably 15 to 25%. If the P 2 O 5 content is too low, vitrification becomes difficult. On the other hand, if the content of P 2 O 5 is too large, the weather resistance and water resistance tend to deteriorate.
 ZnOは、耐失透性を高める成分であり、その含有量は3~25%、5~22%、特に9~20%が好ましい。ZnOの含有量が上記範囲外になると、ガラス組成の成分バランスが損なわれて、耐失透性が低下しやすくなる。 ZnO is a component that enhances resistance to devitrification, and its content is preferably 3-25%, 5-22%, and particularly preferably 9-20%. If the ZnO content is outside the above range, the component balance of the glass composition is impaired, and devitrification resistance tends to decrease.
 遷移金属酸化物は、レーザー吸収特性を有する成分であり、その含有量は0~30%、1~30%、特に3~15%が好ましい。遷移金属酸化物の含有量が多すぎると、耐失透性が低下しやすくなる。 A transition metal oxide is a component having laser absorption properties, and its content is preferably 0-30%, 1-30%, and particularly preferably 3-15%. If the transition metal oxide content is too high, the devitrification resistance tends to decrease.
 成分として、CuOを添加すれば、レーザー吸収特性を高めることができる。CuOの含有量は0~30%、1~30%、特に3~15%が好ましい。CuOの含有量が多すぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下しやすくなる。 By adding CuO as a component, the laser absorption characteristics can be enhanced. The CuO content is preferably 0 to 30%, 1 to 30%, particularly 3 to 15%. If the CuO content is too high, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
 上記成分以外にも、ガラス組成として、例えば以下に列挙する他の成分を添加してもよい。 In addition to the above components, other components listed below, for example, may be added as the glass composition.
 TeO2は、ガラス形成成分であり、ガラスを低融点化させる成分である。TeO2の含有量は0~40%、特に10~30%が好ましい。 TeO 2 is a glass-forming component and a component that lowers the melting point of glass. The content of TeO 2 is preferably 0-40%, more preferably 10-30%.
 Nb25は、耐水性を高める成分である。Nb25の含有量は0~25%、特に1~12%が好ましい。Nb25の含有量が多すぎると、ガラスの粘性が高くなって、流動性が低下しやすくなる。 Nb 2 O 5 is a component that enhances water resistance. The content of Nb 2 O 5 is preferably 0-25%, more preferably 1-12%. If the content of Nb 2 O 5 is too high, the viscosity of the glass increases and the fluidity tends to decrease.
 Li2O、Na2O及びK2Oは、耐失透性を低下させる成分である。よって、Li2O、Na2O及びK2Oの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。 Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. The content of Li 2 O, Na 2 O and K 2 O is thus respectively 0-5%, 0-3% and in particular 0-1%.
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。 MgO, CaO, SrO and BaO are components that increase devitrification resistance, but also components that increase the softening point. The contents of MgO, CaO, SrO and BaO are thus respectively 0-20%, 0-10% and especially 0-5%.
 テルル系ガラスは、ガラス組成として、モル%で、TeO2 20~80%、Nb25 0~25%、遷移金属酸化物 0~40%を含有することが好ましい。 The tellurium-based glass preferably contains 20 to 80% TeO 2 , 0 to 25% Nb 2 O 5 and 0 to 40% transition metal oxide in terms of mol % of glass composition.
 TeO2は、ガラス形成成分であり、ガラスを低融点化させる成分である。TeO2の含有量は20~80%、特に40~75%が好ましい。 TeO 2 is a glass-forming component and a component that lowers the melting point of glass. The content of TeO 2 is preferably 20-80%, more preferably 40-75%.
 Nb25は、耐水性を高める成分である。Nb25の含有量は0~25%、1~20%、特に5~15%が好ましい。Nb25の含有量が多すぎると、ガラスの粘性が高くなって、流動性が低下しやすくなる。 Nb 2 O 5 is a component that enhances water resistance. The content of Nb 2 O 5 is preferably 0-25%, 1-20%, particularly 5-15%. If the content of Nb 2 O 5 is too high, the viscosity of the glass increases and the fluidity tends to decrease.
 遷移金属酸化物は、レーザー吸収特性を有する成分であり、その含有量は0~40%、5~30%、特に15~25%が好ましい。遷移金属酸化物の含有量が多すぎると、耐失透性が低下しやすくなる。 A transition metal oxide is a component having laser absorption properties, and its content is preferably 0 to 40%, 5 to 30%, and particularly preferably 15 to 25%. If the transition metal oxide content is too high, the devitrification resistance tends to decrease.
 遷移金属酸化物の中では、CuOが、レーザー吸収特性を高める効果が高く、熱的安定性を高める効果も高い。CuOの含有量は0~40%、5~30%、特に15~25%が好ましい。CuOの含有量が多すぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下しやすくなる。 Among transition metal oxides, CuO is highly effective in enhancing laser absorption characteristics and is also highly effective in enhancing thermal stability. The CuO content is preferably 0 to 40%, 5 to 30%, particularly 15 to 25%. If the CuO content is too high, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
 上記成分以外にも、ガラス組成として、例えば以下に列挙する他の成分を添加してもよい。 In addition to the above components, other components listed below, for example, may be added as the glass composition.
 Li2O、Na2O及びK2Oは、耐失透性を低下させる成分である。よって、Li2O、Na2O及びK2Oの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。 Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. The content of Li 2 O, Na 2 O and K 2 O is thus respectively 0-5%, 0-3% and in particular 0-1%.
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。 MgO, CaO, SrO and BaO are components that increase devitrification resistance, but also components that increase the softening point. The contents of MgO, CaO, SrO and BaO are thus respectively 0-20%, 0-10% and especially 0-5%.
 ガラス粉末の平均粒径D50は、好ましくは15μm未満、より好ましくは0.5~10μm、特に好ましくは1~5μmである。ガラス粉末の平均粒径D50が小さい程、ガラス粉末の軟化点が低下する。ここで、「平均粒径D50」は、レーザー回折法により体積基準で測定した値を指す。 The average particle size D 50 of the glass powder is preferably less than 15 μm, more preferably 0.5-10 μm, particularly preferably 1-5 μm. The softening point of the glass powder decreases as the average particle size D50 of the glass powder decreases. Here, "average particle diameter D50 " refers to a value measured on a volume basis by a laser diffraction method.
 耐火性フィラー粉末としては、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上を含むことが好ましく、特にβ-ユークリプタイト又はコーディエライトを含むことが好ましい。これらの耐火性フィラー粉末は、熱膨張係数が低いことに加えて、機械的強度が高く、しかもガラス粉末との適合性が良好である。 The refractory filler powder preferably contains one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, β-eucryptite, and β-quartz solid solution. , especially β-eucryptite or cordierite. These refractory filler powders have a low coefficient of thermal expansion, high mechanical strength, and good compatibility with glass powder.
 耐火性フィラー粉末の平均粒径D50は、好ましくは2μm未満、特に0.1μm以上、且つ1.5μm未満である。耐火性フィラー粉末の平均粒径D50が大きすぎると、封着材料層5の表面平滑性が低下しやすくなると共に、封着材料層5の平均厚みが大きくなりやすく、結果として、接合本工程でのレーザーLの照射精度が低下しやすくなる。 The average particle size D 50 of the refractory filler powder is preferably less than 2 μm, in particular greater than or equal to 0.1 μm and less than 1.5 μm. If the average particle diameter D50 of the refractory filler powder is too large, the surface smoothness of the sealing material layer 5 tends to decrease, and the average thickness of the sealing material layer 5 tends to increase. The irradiation accuracy of the laser L at .
 耐火性フィラー粉末の99%粒径D99は、好ましくは5μm未満、4μm以下、特に0.3μm以上、且つ3μm以下である。耐火性フィラー粉末の99%粒径D99が大きすぎると、封着材料層5の表面平滑性が低下しやすくなると共に、封着材料層5の平均厚みが大きくなりやすく、結果として、レーザーLの照射精度が低下しやすくなる。ここで、「99%粒径D99」は、レーザー回折法により体積基準で測定した値を指す。 The 99% particle size D 99 of the refractory filler powder is preferably less than 5 μm and less than or equal to 4 μm, in particular greater than or equal to 0.3 μm and less than or equal to 3 μm. If the 99% particle diameter D 99 of the refractory filler powder is too large, the surface smoothness of the sealing material layer 5 tends to decrease, and the average thickness of the sealing material layer 5 tends to increase. The irradiation accuracy of is likely to decrease. Here, "99% particle size D 99 " refers to a value measured on a volume basis by a laser diffraction method.
 封着材料は、レーザー吸収特性を高めるために、更にレーザー吸収材を含んでもよいが、レーザー吸収材は、ガラスの失透を助長する作用を有する。更にレーザー吸収材を導入すると、封着材料のレーザー吸収特性が高くなりすぎて、基材3と封着材料層5のレーザー吸収特性の差が大きくなりやすい。よって、封着材料層5中のレーザー吸収材の含有量は、好ましくは10体積%以下、5体積%以下、1体積%以下、0.5体積%以下、特に実質的に含有しないことが好ましい。なお、レーザー吸収材として、Cu系酸化物、Fe系酸化物、Cr系酸化物、Mn系酸化物及びこれらのスピネル型複合酸化物等が使用可能である。 The sealing material may further contain a laser absorbing material in order to enhance the laser absorption properties, but the laser absorbing material has the effect of promoting devitrification of the glass. Furthermore, if a laser absorbing material is introduced, the laser absorption characteristics of the sealing material become too high, and the difference in laser absorption characteristics between the base material 3 and the sealing material layer 5 tends to increase. Therefore, the content of the laser absorbing material in the sealing material layer 5 is preferably 10% by volume or less, 5% by volume or less, 1% by volume or less, and 0.5% by volume or less, and particularly preferably not substantially contained. . Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides, spinel-type composite oxides thereof, and the like can be used as the laser absorber.
 封着材料の熱膨張係数は、好ましくは35×10-7~90×10-7/℃、40×10-7~70×10-7/℃、特に45×10-7~65×10-7/℃である。このようにすれば、封着材料の熱膨張係数が基材3や枠材6の熱膨張係数に整合して、封着領域(封着材料層5の周辺)に残留する応力が小さくなる。なお、「熱膨張係数」は、30~200℃の温度範囲において、TMA(押棒式熱膨張係数測定)装置で測定した値である。 The coefficient of thermal expansion of the sealing material is preferably 35×10 -7 to 90×10 -7 /°C, 40×10 -7 to 70×10 -7 /°C, particularly 45×10 -7 to 65×10 -7 . 7 /°C. In this way, the thermal expansion coefficient of the sealing material matches that of the base material 3 and the frame member 6, and the stress remaining in the sealing region (around the sealing material layer 5) is reduced. The "thermal expansion coefficient" is a value measured in a temperature range of 30 to 200°C with a TMA (push rod type thermal expansion coefficient measurement) device.
 ここで、封着材料の具体例を挙げる。第一例としては、ビスマス系ガラス粉末とβ―ユークリプタイトとの複合粉末材料(日本電気硝子社製BF-0901、30~380℃における熱膨張係数4.9ppm/℃)が挙げられる。第二例としては、亜鉛ホウ酸系ガラス粉末(日本電気硝子社製GP-014、30~380℃における熱膨張係数4.3ppm/℃)が挙げられる。 Specific examples of sealing materials are given here. A first example is a composite powder material of bismuth-based glass powder and β-eucryptite (BF-0901 manufactured by Nippon Electric Glass Co., Ltd., thermal expansion coefficient 4.9 ppm/°C at 30 to 380°C). A second example is a zinc borate glass powder (GP-014 manufactured by Nippon Electric Glass Co., Ltd., thermal expansion coefficient at 30 to 380° C. of 4.3 ppm/° C.).
 封着材料ペーストは、通常、三本ローラー等により、封着材料とビークルとを混練、分散することにより作製される。ビークルは、上記のとおり有機樹脂と溶媒とを含む。有機樹脂は、ペーストの粘性を調整する目的で添加される。 The sealing material paste is usually prepared by kneading and dispersing the sealing material and vehicle with a three-roller or the like. The vehicle contains an organic resin and a solvent as described above. The organic resin is added for the purpose of adjusting the viscosity of the paste.
 ビークルに添加する有機樹脂として、アクリル酸エステル(アクリル有機樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、ポリプロピレンカーボネート、メタクリル酸エステル等が使用可能である。ビークルに用いる溶剤として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、テルペン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。 As the organic resin added to the vehicle, acrylic acid ester (acrylic organic resin), ethyl cellulose, polyethylene glycol derivatives, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic acid ester, etc. can be used. Solvents used in vehicles include N,N'-dimethylformamide (DMF), α-terpineol, higher alcohols, γ-butyl lactone (γ-BL), tetralin, terpene, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol. Monoethyl ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol Monomethyl ether, tripropylene glycol monobutyl ether, propylene carbonate, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone and the like can be used.
 基材3への封着材料ペーストの塗布が完了すると、次いで、塗布された封着材料ペーストでなる塗布膜を乾燥させる。塗布膜の乾燥は自然乾燥でもよいが、乾燥効率の観点から、電気炉、乾燥炉で行うことが好ましい。 After the application of the sealing material paste to the base material 3 is completed, the applied film of the sealing material paste is dried. The coating film may be dried naturally, but from the viewpoint of drying efficiency, it is preferably dried in an electric oven or a drying oven.
 次に、塗布膜を乾燥させてなる乾燥膜に対して、電気炉等を用いた基材3の全体加熱により脱バインダー処理を行い、且つガラス粉末の軟化点以上の温度で加熱して軟化流動させると、表面平滑性が高い封着材料層5が得られる。なお、乾燥膜に対して、レーザー光の照射によって焼結処理を行うこともできる。 Next, the dried film obtained by drying the coating film is subjected to binder removal treatment by heating the entire substrate 3 using an electric furnace or the like, and is heated at a temperature equal to or higher than the softening point of the glass powder to soften and flow. Then, a sealing material layer 5 having high surface smoothness is obtained. The dry film can also be sintered by irradiating it with a laser beam.
 封着材料層5の平均厚さは、好ましくは10.0μm未満、特に好ましくは1.0μm以上、且つ7.0μm未満である。封着材料層5の平均厚みが小さい程、封着材料層5、基材3、及び枠材6の熱膨張係数が不整合であっても、レーザーLの照射後(接合本工程後)に封着領域に残留する応力を低減することができる。また接合本工程でのレーザーLの照射精度を高めることもできる。なお、上記のように封着材料層5の平均厚みを規制する方法としては、封着材料ペーストを薄く塗布する方法、封着材料層5の表面を研磨処理する方法が挙げられる。 The average thickness of the sealing material layer 5 is preferably less than 10.0 µm, particularly preferably 1.0 µm or more and less than 7.0 µm. Even if the thermal expansion coefficients of the sealing material layer 5, the base material 3, and the frame material 6 are inconsistent, the smaller the average thickness of the sealing material layer 5, the more after irradiation with the laser L (after the main bonding step) Residual stress in the sealing area can be reduced. Also, the irradiation accuracy of the laser L in the main joining process can be improved. As a method for regulating the average thickness of the sealing material layer 5 as described above, a method of applying a thin layer of sealing material paste and a method of polishing the surface of the sealing material layer 5 can be mentioned.
 封着材料層5の平均幅(図6に示す封着材料層5の左右方向における平均寸法)は、好ましくは3500μm未満、1200μm未満、特に150μm以上、且つ800μm未満である。封着材料層5の平均幅を狭くすると、レーザーLの照射後に封着領域に残留する応力を低減することができる。更に基材3の縁部(枠材6と重なり合う箇所)の幅を狭小化することができ、気密構造のデバイスとして機能する有効面積を拡大することができる。 The average width of the sealing material layer 5 (the average dimension in the horizontal direction of the sealing material layer 5 shown in FIG. 6) is preferably less than 3500 μm, less than 1200 μm, particularly 150 μm or more and less than 800 μm. By narrowing the average width of the sealing material layer 5, the stress remaining in the sealing region after the laser L irradiation can be reduced. Furthermore, the width of the edge of the base material 3 (where it overlaps with the frame member 6) can be narrowed, and the effective area functioning as a device with an airtight structure can be increased.
 以上のようにして、図6に示した封着材料層5が基材3上に形成されると、次に、図7に二点鎖線で示すように、基材3の上面3aと枠材6の下端面6aとを封着材料層5を介して重ね合わせる。これにより、接合準備工程が完了する。 After the sealing material layer 5 shown in FIG. 6 is formed on the base material 3 as described above, the upper surface 3a of the base material 3 and the frame material are then formed as shown by the two-dot chain line in FIG. 6 and the lower end surface 6a of 6 are overlapped with the sealing material layer 5 interposed therebetween. This completes the bonding preparation process.
 接合準備工程が完了すると、次に、接合本工程を実行する。接合本工程では、はじめにレーザーLの照射に先行して基材3を予備加熱する。予備加熱では、例えば250℃~450℃の温度となるまで基材3を加熱する。これにより、レーザーLの照射時に基材3側への熱伝導を阻害し得るため、効率よく封着材料層5を軟化変形させることができる。ただし、基材3の予備加熱は必須ではなく、省略してもよい。 When the bonding preparation process is completed, next, the main bonding process is executed. In this bonding step, the substrate 3 is first preheated prior to the laser L irradiation. In preheating, the substrate 3 is heated to a temperature of, for example, 250.degree. C. to 450.degree. As a result, heat conduction to the base material 3 side can be inhibited when the laser L is irradiated, so that the sealing material layer 5 can be softened and deformed efficiently. However, the preheating of the base material 3 is not essential and may be omitted.
 基材3の予備加熱が完了すると、次に、図8に示すように、レーザー照射装置10により封着材料層5に対してレーザーLを集光して照射する。レーザーLは、基材3と枠材6とのうち、レーザーLを透過する枠材6側から照射される。これにより、封着材料層5を軟化変形させて基材3と枠材6とを接合する。なお、レーザーLを照射する際には、基材3と枠材6の下端開口との両者3,6により、両者3,6の相互間に挟まった封着材料層5を上下から押圧する。これにより、封着材料層5の軟化変形を促進することが可能となる。ただし、封着材料層5の押圧は必須ではなく、省略してもよい。 When the preheating of the base material 3 is completed, next, as shown in FIG. The laser L is irradiated from the frame member 6 side through which the laser L is transmitted between the base material 3 and the frame member 6 . As a result, the sealing material layer 5 is softened and deformed to join the base material 3 and the frame member 6 . When irradiating the laser L, the sealing material layer 5 sandwiched between the base material 3 and the lower end opening of the frame member 6 is pressed from above and below. This makes it possible to promote the softening deformation of the sealing material layer 5 . However, the pressing of the sealing material layer 5 is not essential and may be omitted.
 基材3の上面3a及び枠材6の下端面6bのそれぞれの算術平均粗さRaは、2.0nm以下であることが好ましく、1.0nm以下であることがより好ましく、0.5nm以下であることが更に好ましく、0.2nm以下であることが最も好ましい。 The arithmetic average roughness Ra of each of the upper surface 3a of the base material 3 and the lower end surface 6b of the frame member 6 is preferably 2.0 nm or less, more preferably 1.0 nm or less, and 0.5 nm or less. It is more preferably 0.2 nm or less, and most preferably 0.2 nm or less.
 封着材料層5に照射するレーザーLとしては、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、CO2レーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。 Various lasers can be used as the laser L with which the sealing material layer 5 is irradiated. In particular, semiconductor lasers, YAG lasers, CO 2 lasers, excimer lasers, and infrared lasers are preferred because they are easy to handle.
 レーザーLの照射時におけるレーザー光のビーム形状は、特に限定されない。ビーム形状としては、円形、楕円形、矩形が一般的であるが、その他の形状でもよい。また、レーザーLの照射時におけるレーザー光のビーム径は0.3~3.5mmが好ましい。 The beam shape of the laser light when the laser L is irradiated is not particularly limited. The beam shape is generally circular, elliptical, or rectangular, but other shapes may be used. Moreover, the beam diameter of the laser light during irradiation with the laser L is preferably 0.3 to 3.5 mm.
 レーザーLの照射を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。以上のようにして接合本工程が完了すると、電子装置1が製造される。この電子装置1に備わった封着材料層5には、元は封着材料に含まれたガラス粉末であったものがガラス材として含有されている。 The atmosphere in which the laser L is irradiated is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere. When the main joining process is completed as described above, the electronic device 1 is manufactured. The sealing material layer 5 provided in the electronic device 1 contains, as a glass material, the glass powder originally contained in the sealing material.
 ここで、上記の実施形態に対しては、以下のような変形例を適用することも可能である。上記の実施形態では、電子装置1の製造にあたり、枠材6と蓋材7とを接合した後、接合準備工程および接合本工程を実行して基材3と枠材6とを接合しているが、接合の順番は逆であってもよい。つまり、接合準備工程および接合本工程を実行して基材3と枠材6とを接合した後、枠材6と蓋材7とを接合するようにしてもよい。 Here, it is also possible to apply the following modifications to the above embodiment. In the above-described embodiment, in manufacturing the electronic device 1, after the frame member 6 and the lid member 7 are joined, the base material 3 and the frame member 6 are joined by executing the joining preparation step and the main joining step. However, the order of bonding may be reversed. That is, the frame member 6 and the lid member 7 may be joined after the base member 3 and the frame member 6 are joined by performing the joining preparation step and the joining main step.
1   電子装置
2   電子部品
3   基材
5   封着材料層
6   枠材
7   蓋材
L   レーザー
1 electronic device 2 electronic component 3 base material 5 sealing material layer 6 frame material 7 lid material L laser

Claims (11)

  1.  電子部品と、前記電子部品が搭載される基材と、一端開口が前記基材に接合された状態で前記電子部品を囲うガラスでなる枠材と、前記枠材の他端開口を閉塞するように前記枠材と直接接合された蓋材と、を備えた電子装置を製造するための方法であって、
     前記基材と前記枠材の一端開口との相互間に、ガラス材を含んだ封着材料を介在させる接合準備工程と、
     前記接合準備工程後に、前記封着材料にレーザーを照射して軟化変形させることにより前記基材と前記枠材の一端開口とを接合する接合本工程と、
    を備えることを特徴とする電子装置の製造方法。
    an electronic component, a base material on which the electronic component is mounted, a frame member made of glass that surrounds the electronic component with one end opening being joined to the base material, and a frame member that closes the other end opening of the frame member and a lid member directly bonded to the frame member in a method for manufacturing an electronic device comprising:
    A bonding preparation step of interposing a sealing material containing a glass material between the base material and the opening at one end of the frame material;
    After the bonding preparation step, a main bonding step of bonding the base material and the one end opening of the frame member by irradiating the sealing material with a laser to soften and deform it;
    A method of manufacturing an electronic device, comprising:
  2.  前記封着材料の軟化点が550℃以下であることを特徴とする請求項1に記載の電子装置の製造方法。 The method of manufacturing an electronic device according to claim 1, wherein the softening point of the sealing material is 550°C or lower.
  3.  30℃~200℃の温度範囲での前記封着材料の熱膨張係数が、35×10-7/℃~90×10-7/℃であることを特徴とする請求項1又は2に記載の電子装置の製造方法。 3. The sealing material according to claim 1, wherein the sealing material has a thermal expansion coefficient of 35×10 -7 /°C to 90×10 -7 /°C in a temperature range of 30°C to 200°C. A method of manufacturing an electronic device.
  4.  前記ガラス材が、ガラス組成として、モル%で、Bi23 28~60%、B23 15~37%、ZnO 0~30%、CuO+MnO 1~40%を含有することを特徴とする請求項1~3のいずれかに記載の電子装置の製造方法。 The glass material contains 28 to 60% Bi 2 O 3 , 15 to 37% B 2 O 3 , 0 to 30% ZnO, and 1 to 40% CuO+MnO in terms of mol % of the glass composition. The method for manufacturing an electronic device according to any one of claims 1 to 3.
  5.  前記封着材料が、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、及び、β-石英固溶体から選ばれる少なくとも一種の耐火性フィラー粉末を更に含むことを特徴とする請求項1~4のいずれかに記載の電子装置の製造方法。 The sealing material further contains at least one refractory filler powder selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, β-eucryptite, and β-quartz solid solution. 5. The method for manufacturing an electronic device according to claim 1, comprising:
  6.  前記接合本工程前に、前記基材を加熱することを特徴とする請求項1~5のいずれかに記載の電子装置の製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 5, wherein the base material is heated before the main bonding step.
  7.  前記接合本工程では、前記基材と前記枠材の一端開口とにより前記封着材料を押圧した状態でレーザーを照射することを特徴とする請求項1~6のいずれかに記載の電子装置の製造方法。 7. The electronic device according to any one of claims 1 to 6, wherein in the main joining step, the laser is irradiated while the sealing material is pressed by the base material and one end opening of the frame member. Production method.
  8.  前記枠材と前記蓋材とを接合した後に、前記接合準備工程および前記接合本工程を実行することを特徴とする請求項1~7のいずれかに記載の電子装置の製造方法。 The method of manufacturing an electronic device according to any one of claims 1 to 7, wherein the bonding preparation step and the bonding main step are performed after bonding the frame member and the lid member.
  9.  前記接合本工程を実行した後に、前記枠材と前記蓋材とを接合することを特徴とする請求項1~7のいずれかに記載の電子装置の製造方法。 The method of manufacturing an electronic device according to any one of claims 1 to 7, wherein the frame member and the lid member are joined after the main joining step is performed.
  10.  前記枠材と前記蓋材とを接合するに際し、前記枠材の他端開口と前記蓋材との両者を接触させた状態で、前記両者の接触部にレーザーを照射することにより、前記枠材と前記蓋材とを直接溶着することを特徴とする請求項1~9のいずれかに記載の電子装置の製造方法。 When joining the frame member and the lid member, the contact portion between the other end opening of the frame member and the lid member is in contact with each other, and the contact portion between the two is irradiated with a laser beam. 10. The method of manufacturing an electronic device according to claim 1, wherein the cover material is directly welded to the cover material.
  11.  電子部品と、前記電子部品が搭載される基材と、一端開口が前記基材に接合された状態で前記電子部品を囲うガラスでなる枠材と、前記枠材の他端開口を閉塞するように前記枠材と直接接合された蓋材と、を備えた電子装置であって、
     ガラス材を含んだ封着材料を介して前記基材と前記枠材とが接合されていることを特徴とする電子装置。
    an electronic component, a base material on which the electronic component is mounted, a frame member made of glass that surrounds the electronic component with one end opening being joined to the base material, and a frame member that closes the other end opening of the frame member and a lid member directly joined to the frame member,
    An electronic device, wherein the base material and the frame material are joined via a sealing material containing a glass material.
PCT/JP2022/028255 2021-09-29 2022-07-20 Electronic device and method for manufacturing electronic device WO2023053688A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021159194A JP2023049453A (en) 2021-09-29 2021-09-29 Electronic device and method for manufacturing electronic device
JP2021-159194 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053688A1 true WO2023053688A1 (en) 2023-04-06

Family

ID=85782233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028255 WO2023053688A1 (en) 2021-09-29 2022-07-20 Electronic device and method for manufacturing electronic device

Country Status (2)

Country Link
JP (1) JP2023049453A (en)
WO (1) WO2023053688A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173834A1 (en) * 2017-03-24 2018-09-27 日本電気硝子株式会社 Cover glass and airtight package
JP2019204878A (en) * 2018-05-23 2019-11-28 セイコーエプソン株式会社 Light source device, projector, and method for manufacturing light source device
JP2021048247A (en) * 2019-09-18 2021-03-25 日本電気硝子株式会社 Package base material, package, and manufacturing method of package base material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173834A1 (en) * 2017-03-24 2018-09-27 日本電気硝子株式会社 Cover glass and airtight package
JP2019204878A (en) * 2018-05-23 2019-11-28 セイコーエプソン株式会社 Light source device, projector, and method for manufacturing light source device
JP2021048247A (en) * 2019-09-18 2021-03-25 日本電気硝子株式会社 Package base material, package, and manufacturing method of package base material

Also Published As

Publication number Publication date
JP2023049453A (en) 2023-04-10

Similar Documents

Publication Publication Date Title
WO2020071047A1 (en) Airtight package
KR102380455B1 (en) confidential package
JP7222245B2 (en) airtight package
JPWO2017170051A1 (en) Glass powder and sealing material using the same
US11398585B2 (en) Airtight package
WO2018216587A1 (en) Method for producing hermetic package, and hermetic package
WO2023053688A1 (en) Electronic device and method for manufacturing electronic device
KR102400344B1 (en) Package airframe and airtight package using it
WO2018173834A1 (en) Cover glass and airtight package
JP7169739B2 (en) Bismuth-based glass powder, sealing material and hermetic packaging
JP7405031B2 (en) Electronic device and method for manufacturing electronic device
WO2024057823A1 (en) Sealant-layer-equipped glass substrate and method for producing hermetic package
JP6922253B2 (en) Glass lid
JP2019036637A (en) Manufacturing method of airtight package, and airtight package
WO2023281961A1 (en) Glass substrate with sealing material layer, and hermetic packaging manufacturing method
TWI835845B (en) airtight package
WO2020003989A1 (en) Method for producing glass cover with sealing material layer and method for producing airtight package
JP7047270B2 (en) Manufacturing method of package substrate with sealing material layer and manufacturing method of airtight package
WO2018131471A1 (en) Airtight package and glass lid
WO2018193767A1 (en) Cover glass and airtight package using same
JP2023008800A (en) Glass substrate with sealing material layer and method of manufacturing airtight package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE