WO2022014132A1 - X線ct装置の評価用器具 - Google Patents

X線ct装置の評価用器具 Download PDF

Info

Publication number
WO2022014132A1
WO2022014132A1 PCT/JP2021/018077 JP2021018077W WO2022014132A1 WO 2022014132 A1 WO2022014132 A1 WO 2022014132A1 JP 2021018077 W JP2021018077 W JP 2021018077W WO 2022014132 A1 WO2022014132 A1 WO 2022014132A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
spheres
instrument
sphere
cylinder
Prior art date
Application number
PCT/JP2021/018077
Other languages
English (en)
French (fr)
Inventor
利之 高辻
真莉 渡邉
聡一 寺田
司 渡部
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2022536147A priority Critical patent/JP7366467B2/ja
Publication of WO2022014132A1 publication Critical patent/WO2022014132A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]

Definitions

  • the present invention relates to an X-ray CT evaluation instrument.
  • the X-ray CT (Computed Tomography) device developed for medical use has been used for measuring industrial products in recent years, that is, for measuring dimensions and shapes.
  • CMM Coordinate Measuring Machine
  • ISO 10360-2 standard is used as the accuracy evaluation method.
  • X-ray CT there is a request for the establishment of an accuracy evaluation method standard, and discussions are underway to issue it as ISO 10360-11.
  • the X-ray CT apparatus for three-dimensional shape measurement includes an X-ray irradiation unit 11, an X-ray detector 12, and a rotary stage 13.
  • This X-ray CT apparatus is non-destructive by installing a measurement object (also referred to as a work) on a rotating stage 13 arranged between an X-ray irradiation unit 11 and an X-ray detector 12 arranged so as to face each other. It is used for internal observation and three-dimensional shape measurement.
  • the X-ray irradiation unit 11 includes an X-ray tube as an X-ray source inside, and generates X-rays from the X-ray tube according to the tube voltage and tube current supplied from the high voltage generator 15.
  • the high voltage generator 15 is controlled by the X-ray control unit 16, and the X-ray control unit 16 is connected to a PC (Personal Computer) in which control software for controlling the entire X-ray CT device is installed.
  • the X-ray detector 12 is a combination of an image intensifier and a CCD (Charge Coupled Device) camera, or an FPD (Flat Panel Detector), and is connected to a PC via a CT image reconstruction calculation device 18. ..
  • the X-ray detector 12 is configured to be detachable from the rotating stage 13 in order to enlarge or reduce the fluoroscopic imaging region. Further, the rotary stage 13 can also be separated from the X-ray irradiation unit 11.
  • the rotary stage 13 rotates with the Z axis orthogonal to the X axis along the X-ray optical axis L connecting the X-ray irradiation unit 11 to the X-ray detector 12 as the rotation axis R, and the stage drive mechanism 14 causes an XY plane. Can be moved in the horizontal direction and the vertical direction in the Z direction. Then, the stage drive mechanism 14 is connected to and controlled by the PC via the stage control unit 17.
  • the object to be inspected installed on the rotation stage 13 is irradiated with X-rays from the X-ray irradiation unit 11 and the rotation stage 13 is rotated about the rotation axis R. Then, the X-ray detector 12 detects the X-rays transmitted from all directions over 360 degrees around the object to be inspected, and the X-ray transmission data is taken into the CT image reconstruction calculation device 18.
  • a three-dimensional reconstruction image (CT image) of the inspected object sliced along the plane along the XY plane is constructed by using the captured 360-degree X-ray transmission data. Will be done.
  • the CT image is transmitted from the CT image reconstruction arithmetic unit 18 to the PC, and is used for three-dimensional imaging by the three-dimensional image construction program installed in the PC.
  • a display device 23 such as a liquid crystal display and an input device 22 including a keyboard 22a and a mouse 22b are connected to the PC.
  • the keyboard 22a and the mouse 22b are used for input by the operator in various operations.
  • the display device 23 displays the CT image transmitted from the CT image reconstruction calculation device 18 to the PC, and also displays the three-dimensional image constructed by using the CT image.
  • the PC also measures the dimensions and shape of the object to be measured.
  • the function of the CT image reconstruction arithmetic unit 18 may be integrated with the PC and realized by one computer as a peripheral device or software of the computer.
  • a two-dimensional detector (area detector) is used as described above (FIG. 2A: cone beam CT), and a one-dimensional detector (line detector) is used.
  • FIG. 2B fan beam CT.
  • the obtained reconstructed image is only a one-dimensional cross section, so in order to obtain a three-dimensional reconstructed image, the object to be measured is moved up or down little by little for each rotation. It will be.
  • an area detector is used, a three-dimensional reconstructed image can be generated by one rotation of the measurement object, but the quality of the obtained reconstructed image is superior to using the one-dimensional detector.
  • the X-ray CT device can measure the inside of the object to be measured, but there are two points to be considered as an accuracy evaluation method for X-ray CT. The first is whether the moving mechanism of the X-ray CT apparatus and the parts are correctly aligned. If there is an error due to this factor, the dimensions cannot be measured correctly or the entire object to be measured is distorted and observed. The second is that a non-linear effect occurs on the attenuation of X-rays when the X-rays pass through the object to be measured, and if this factor is present, it is measured as if the object to be measured has local irregularities. Will end up.
  • ISO / 2CD 10360-11 is designed to perform an E test for the first consideration point and a P test for the second consideration point, and both are evaluated independently as much as possible. Is desirable. That is, when performing the E test, it is preferable that X-rays do not pass through objects other than the object to be measured as much as possible in order to avoid the influence of the material of the object to be measured.
  • the accuracy is evaluated by arranging a large number of spheres and cylinders in the space and measuring the distance between them.
  • the distance between balls is calibrated in advance with a high-precision measuring instrument such as CMM, and the accuracy is evaluated by comparing the calibration result with the measurement result of X-ray CT.
  • the evaluation instrument A used for testing a high-precision X-ray CT apparatus is calibrated by a high-precision CMM in the prior art.
  • the evaluation instrument B for a popular type X-ray CT device which is not so high-precision, is calibrated using a CMM or a high-precision X-ray CT device.
  • Evaluation instruments used in the E-test include a so-called forest in which spheres are arranged in space (Fig. 4), and a hole plate with a large number of holes in the plate.
  • the hole plate is not suitable as an E-test evaluator in that respect because a large amount of X-rays pass through the material, but it is used because it has another advantage.
  • the forest will be described a little. Since the material and thickness of an X-ray CT device that can be transmitted are limited by the energy of the X-ray source used, it is difficult to measure iron with medium-energy X-rays of about 225 kV, which is widely used, and it is a measurement target. Most of the things are aluminum.
  • the forest contains the base, shaft, and sphere to be measured. As the material of the base, low expansion metal or ceramic is often used.
  • aluminum or a material having an X-ray transmittance close to that (for example, ruby or ceramic) is used for the sphere to be measured.
  • Another object of the present invention is, as one aspect, to provide a new evaluation instrument for an X-ray CT apparatus suitable for testing.
  • the evaluation instrument of the X-ray CT apparatus can realize a first state having an outer shape in which at least two adjacent side surfaces are flat and a second state having a columnar shape.
  • An evaluation instrument for an X-ray CT apparatus which contains a plurality of spheres inside. Then, in the first state, a plurality of spheres can be optically observed from each of the two side surfaces without overlapping each other, and in the second state, they are rotated around the long axis of the cylinder.
  • a plurality of spheres are arranged so that any X-ray emitted from an X-ray source at a predetermined position with respect to the cylinder passes through the cylinder without passing through two or more spheres at any rotation angle. It is what has been done.
  • the evaluation instrument for the X-ray CT apparatus is a columnar evaluation instrument for the X-ray CT apparatus, and includes a plurality of spheres inside. When rotated around the long axis of the cylinder, any X-ray emitted from the X-ray source at a predetermined position with respect to the cylinder does not pass through two or more spheres at any rotation angle. A plurality of balls are arranged so as to pass through the evaluation instrument.
  • FIG. 1 is a diagram for showing an outline of an X-ray CT apparatus.
  • FIG. 2A is a diagram for showing an outline of an X-ray CT apparatus.
  • FIG. 2B is a diagram for showing an outline of the X-ray CT apparatus.
  • FIG. 3 is a diagram for explaining calibration and testing in the present application.
  • FIG. 4 is a perspective view of an evaluation instrument called a forest.
  • FIG. 5 is a perspective view of the first instrument according to the first embodiment.
  • FIG. 6 is a perspective view of the second instrument according to the first embodiment.
  • FIG. 7A is a diagram for explaining how to use it at the time of calibration in the first embodiment.
  • FIG. 7B is a diagram for explaining how to use it at the time of calibration in the first embodiment.
  • FIG. 8 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 9 is a diagram for explaining the arrangement of the first sphere.
  • FIG. 10 is a diagram for explaining the arrangement of the first sphere.
  • FIG. 11 is a diagram for explaining the arrangement of the second sphere.
  • FIG. 12 is a diagram for explaining the arrangement of the second sphere.
  • FIG. 13 is a diagram for explaining the arrangement of the second sphere.
  • FIG. 14 is a diagram for explaining the arrangement of the third sphere.
  • FIG. 15 is a diagram for explaining the arrangement of the third sphere.
  • FIG. 16 is a diagram for explaining the arrangement of the third sphere.
  • FIG. 17 is a diagram for explaining the arrangement of the fourth sphere.
  • FIG. 18 is a diagram for explaining the arrangement of the fourth sphere.
  • FIG. 19 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 20 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 21 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 22 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 23 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 24 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 25 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 26 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 27 is a diagram for explaining the arrangement of a plurality of spheres.
  • FIG. 28 (a) to 28 (c) are diagrams for explaining a case where the condition that each sphere can be observed from two directions without being obstructed by other spheres is satisfied.
  • FIG. 29 is a diagram for explaining a calibration method.
  • 30 (a) to 30 (c) are perspective views for explaining the evaluation instrument in the second embodiment.
  • 31 (a) to 31 (c) are perspective views for explaining another evaluation instrument in the second embodiment.
  • 32 (a) to 32 (c) are views for explaining the method of manufacturing the first apparatus according to the first embodiment.
  • 33 (a) to 33 (c) are diagrams for explaining another manufacturing method of the first apparatus according to the first embodiment.
  • FIG. 34 is a diagram for explaining a problem when using a support column.
  • FIG. 35 is a diagram for explaining a problem when using a support column.
  • FIG. 36 is a diagram for explaining a problem when using a support column.
  • FIG. 37 is a diagram for explaining other embodiments.
  • FIG. 38 is a diagram for explaining other embodiments.
  • FIG. 39 is a diagram for explaining other embodiments.
  • a plurality of spheres having an X-ray transmittance different from that of the evaluation instrument are embedded in the evaluation instrument. In a mode such as a forest where the spheres are supported by a shaft, the influence of the shaft is exerted. It is preferable that multiple balls are floating without any support because they will come out. In order to realize this, condition 1 can be considered.
  • the X-ray transmittance of the material that has the sensitivity in the X-ray CT.
  • a ruby sphere and air have significantly different X-ray transmittances, so that the sphere can be regarded as a sphere.
  • the difference in X-ray transmittance is smaller than that of floating in the air, but the ruby sphere and the resin. Since the X-ray transmittances of are quite different, it is possible to capture the sphere correctly.
  • the material of the sphere and the exterior body the X-ray transmittance of the sphere and the exterior body may be different, and the X-ray transmittance of the sphere may be relatively high or low.
  • the X-ray CT measures the evaluation instrument by rotating it once.
  • a cylinder made of some material is rotated around its long axis, the transmitted image does not change at all during one round.
  • any X-ray emitted from an X-ray source at a predetermined position is a cylinder without passing through two or more spheres at any rotation angle.
  • the transmittance will change as a result.
  • An undesired transmission image will be obtained by the detector. That is, it is preferable to avoid a situation in which X-rays transmitted through the sphere pass through a material other than the exterior body. Different materials also include different spheres.
  • the side surface is a flat surface, but it is preferable that the sphere is a cylinder when measuring with X-rays. It will be adopted. This point will be described in a specific embodiment.
  • the evaluation instrument in the present embodiment includes a columnar first instrument as shown in FIG. 5 and a second instrument as shown in FIG.
  • the first instrument was used for testing on an X-ray CT device, and the placement of multiple spheres inside will be described below.
  • the second instrument is a substantially rectangular parallelepiped in the example of FIG. 6, and has a hole capable of accommodating the first instrument from the upper surface. However, it does not have to be a rectangular parallelepiped as long as at least two side surfaces are flat.
  • the second instrument is preferably a material (for example, resin) having the same refractive index as the first instrument.
  • the second instrument is an instrument for accommodating the first instrument in the hole so that the sphere can be optically observed from at least two sides without being distorted. .. Even in FIG. 7A, the sphere does not appear distorted. Therefore, it is preferable that the first instrument and the second instrument are optically integrated. Also, it is not desirable for the columnar first instrument to move in the hole of the second instrument. Therefore, the inner surface of the hole of the second instrument may be in contact with the outer surface of the first instrument. Further, for example, when a gap is provided between the inner surface of the hole of the second instrument and the outer surface of the first instrument for ease of handling, as shown in FIG. 7B, a marker (black in FIG. 7B) is provided. By aligning with a triangle) or the like and injecting matching oil with the same refractive index as the first and second instruments into the gap, it is possible to optically integrate the first and second instruments. preferable.
  • FIG. 8 shows a state in which a sphere is arranged on the central axis (long axis of the cylinder, here, the Z axis) of the first columnar instrument. No other sphere is placed in any of the X-ray shadows created by the sphere. In addition, it can be observed optically without overlapping at any rotation angle.
  • an evaluation instrument for an X-ray CT apparatus there is another request that the spheres be distributed and arranged as three-dimensionally as possible in the measurement area, and the arrangement of the spheres shown in FIG. 8 is for evaluation of the X-ray CT apparatus. Not very suitable as an instrument.
  • the above E test can be performed by measuring the interval and comparing with the calibration value, but the three-dimensional measurement performance of the X-ray CT apparatus will be investigated in more detail. Two is not enough for that.
  • ISO / 2CD 10360-11 states that there are at least eight.
  • the first sphere is arranged directly above the upper and lower intermediate surfaces 101 and on the Z axis.
  • the second, third, and fourth spheres shall be installed 120 degrees out of phase in the XY plane shown by the dotted line.
  • FIG. 10 is a side view of the state of FIG. 9.
  • the X-rays in contact with the sphere are shown by solid lines.
  • An X-ray shadow is formed on the right side of the sphere.
  • the second and subsequent spheres cannot be placed in this shadow area. Since this sphere is arranged on the Z axis, a shadow of the same shape can be formed over 360 degrees when the evaluation instrument is rotated. Therefore, in FIG. 10, the second and subsequent spheres cannot be installed in the region below the dotted line, which is the height at which the X-rays are emitted from the columnar first instrument.
  • the locus created by the shadow is not a low-height cylinder, but a shape with a dent in the center of the upper surface, and it is possible to install the second and subsequent spheres in the dented part.
  • the shadow area is assumed to be cylindrical.
  • FIG. 11 shows a side view in a state where the second sphere is arranged
  • FIG. 12 shows a perspective view.
  • the second sphere rests on the upper surface 103 of the shadow region 102 by the first sphere.
  • the second sphere is placed away from the Z axis.
  • the distance to be separated is arbitrary, but it is desirable to separate as much as possible from the viewpoint of testing a wider measurement area.
  • the azimuth angle of the placement position with respect to the Z axis is arbitrary, but for example, the direction in which the second sphere is placed is set to 0 ° for the following explanation. Further, this direction is defined as the X-axis direction.
  • FIG. 13 shows the area of the shadow of the X-ray by the second sphere.
  • FIG. 14 shows a region 104 in the shadow of the first and second spheres by X-ray, and the third sphere is placed on the upper surface 105 of this region 104. Further, as shown in FIG. 15, it is arranged at a position shifted by 120 degrees from the second sphere in the XY plane. The distance from the Z-axis is the same as the distance from the Z-axis of the second sphere here.
  • FIG. 16 shows the area of the shadow of the X-ray by the third sphere.
  • FIG. 17 shows a region 106 of the shadow of the first to third spheres by X-rays, and the fourth sphere is placed on the upper surface 107 of this region 106. Further, as shown in FIG. 18, it is arranged at a position shifted by 120 degrees from the third sphere in the XY plane. The distance from the Z-axis is the same as the distance from the Z-axis of the second sphere here.
  • the four spheres are three-dimensionally dispersed in the columnar first instrument. Further, in the arrangement as shown in FIG. 18, even if the Z axis is rotated as the rotation axis, the Z coordinate values of all the spheres are different, so that all the spheres are optically observed at any rotation angle. can do. That is, conditions 3 and 5 are satisfied.
  • the first region of the shadow and the first shadow generated when the sphere is arranged near the side surface of the cylinder and on the X-ray source side in order from the central portion of the cylinder.
  • the region of the shadow above (or below) the second region of the shadow, which occurs when the sphere is placed near the side surface of the cylinder and on the X-ray source side.
  • you create a shadow area such as the fourth area of the shadow that occurs when the sphere is placed on the side of the cylinder and on the X-ray source side, which position in the XY plane on the sphere placement surface is created for each shadow area. It is also possible to place a sphere. If it is a distributed arrangement, the distance from the Z axis may be randomly changed.
  • the possible placement position of the sphere is limited by the size of the evaluation instrument, the size of the sphere, and the distance between the X-ray source and the evaluation instrument.
  • the distance between the X-ray source and the evaluation instrument must be determined in advance.
  • the number of spheres that can be placed is also limited. For example, if the size of the evaluation device is fixed and you want to place many balls, you have to use a small ball.
  • the degree of freedom regarding the arrangement increases.
  • the area of the shadow of the sphere by X-rays is approximated to a cylindrical shape, but since it is actually a more complicated shape, it may be used.
  • the shadow area will be specifically described.
  • FIG. 19 First, as shown in FIG. 19, consider a case where only two spheres are enclosed in a columnar first instrument.
  • the Z coordinate values of the sphere are the same. That is, two spheres are arranged on a plane orthogonal to the long axis of the cylinder and close to the upper surface of the cylinder.
  • the number of spheres "2" is an example.
  • FIG. 20 is a top view of FIG. 19, and when X-rays are emitted from the direction shown in this figure, the other sphere does not enter the shadow of each sphere.
  • FIG. 20 is a top view of FIG. 19, and when X-rays are emitted from the direction shown in this figure, the other sphere does not enter the shadow of each sphere.
  • FIG. 20 is a top view of FIG. 19, and when X-rays are emitted from the direction shown in this figure, the other sphere does not enter the shadow of each sphere.
  • FIG. 20 is a top view of FIG. 19, and
  • the arrangement of these two spheres seems to be unfavorable because the right sphere is placed in the shadow of the X-ray formed by the sphere on the left side.
  • the size of the evaluation instrument, the size of the sphere, and the X-ray source and the evaluation instrument are used.
  • the spheres other than these two spheres may be arranged, for example, in the lower half region of the cylinder by the above method.
  • FIG. 23 schematically shows this situation, and the shaded area shows the shadow of the sphere by X-rays.
  • the shadow draws a three-dimensional trajectory, but the figure becomes very complicated, so here we show the case of observing from the side. ..
  • the second sphere is arranged in the area other than this shadow.
  • the first sphere must not be in the shadow created by the second sphere.
  • the shadows may overlap each other.
  • FIG. 24 shows this state two-dimensionally.
  • FIG. 25 shows a state when the rotation phase changes.
  • the rotation phase remains the same, but the X-ray irradiation direction is changed. X-rays coming from the lower right cast a shadow on the upper left of the sphere.
  • the shadow When the first instrument is rotated once, the shadow also rotates once, and its trajectory is shaped like an inverted umbrella. No other sphere should be in this trajectory. In other words, the second sphere may be placed anywhere except for this locus, as shown in FIG. 27. However, it is different whether or not the condition 5 is satisfied.
  • condition 3 the actual arrangement of the sphere is determined in consideration of factors such as the positional relationship between the X-ray source and the first instrument, the size of the first instrument, and the size of the sphere. It will be. On the other hand, if only condition 5 is considered, for example, each surface to be observed is divided into squares larger than the number of spheres to be arranged, and spheres are arranged so that two or more spheres do not enter each square. Deploy. As shown in FIG. 28 (a), it is assumed that the side surface of the cylinder is observed from two directions, that is, the first direction and the second direction orthogonal to the first direction, considering three examples of the sphere. .. When viewed from the first direction, as shown in FIG.
  • one ball is arranged in each of three of the four squares. Further, when viewed from the second direction, as shown in FIG. 28 (c), one ball is arranged in each of three of the four squares. In such a case, the condition 5 is satisfied.
  • the method using such squares is only an example, but it is easy to satisfy the condition 5 if the coordinate values in the Z-axis direction are different.
  • the internal sphere is squeezed from the two side surfaces A and B of the second instrument by the camera 300. It is done by shooting.
  • FIG. 29 shows a scene of shooting from the front of the side surface A
  • the camera 300 may be moved, but the stage on which the first and second instruments are mounted is rotated. You may let me.
  • the information processing apparatus 200 calculates the three-dimensional coordinates of each internal sphere from the angles of the side surfaces A and B and the images taken from both directions. do. This will result in calibration. Since the specific contents of the calculation are known, the description thereof will be omitted here.
  • the material of the sphere is preferably ruby, ceramic, glass or the like.
  • the material of the outer body of the sphere (that is, the first instrument and the second instrument other than the sphere) is preferably epoxy resin or the like.
  • these materials are only examples, and the sphere may have a large difference in X transmittance from its outer body and a highly accurate shape can be obtained. Further, another resin or the like may be adopted because of the ease of forming the first instrument and the second instrument.
  • the shape of the first instrument as a base is cylindrical, and when calibrating, the first instrument and the second instrument are combined and deformed into a rectangular parallelepiped shape.
  • the shape of the first instrument as a base is rectangular parallelepiped, and when the test is performed, the second instrument, which is an auxiliary member, is used to deform the first instrument into a columnar shape.
  • FIG. 30A shows a first instrument as a base.
  • it is a vertically long rectangular parallelepiped, and includes a plurality of spheres arranged so as to satisfy conditions 3 and 5 inside. In this state, calibration is performed by optically observing from two adjacent sides and measuring the position of the sphere.
  • FIG. 30B shows an example of a second instrument which is an auxiliary member. The second instrument is divided into four members, which is the difference between the smallest cylinder containing the first instrument and the first instrument. Then, as shown in FIG. 30 (c), at the time of the test, each of the second instruments is attached to any side surface of the first instrument to form a cylinder.
  • the first instrument and the second instrument in the present embodiment may have the same or negligible difference in X-ray transmittance, and the second instrument may not be transparent.
  • the first instrument is a solid in which only two adjacent side surfaces are flat and the remaining side surface is a part of the side surface of the cylinder, and conditions 3 and 5 are internally set. Includes multiple spheres arranged to fill. In this state, calibration is performed by optically observing from two plane surfaces.
  • FIG. 31 (b) an example of a second instrument which is an auxiliary member is shown. The second instrument is divided into two members, which is the difference between the smallest cylinder containing the first instrument and the first instrument. Then, as shown in FIG. 31 (c), at the time of the test, each of the second instruments is attached to either of the two side surfaces of the first instrument to form a cylinder.
  • Such an evaluation instrument can also be used for calibration and testing as in the first embodiment.
  • the first instrument containing a plurality of spheres is formed of, for example, a resin that becomes transparent when cured.
  • the resin is poured into the mold to a height at which the first sphere should be placed. Then, after the resin has hardened, the first sphere is placed on the surface of the resin (hatched surface). Then, as shown in FIG. 32 (b), the resin is further poured to the height at which the second sphere should be placed in the mold, and after the resin is solidified, the second sphere is placed on the surface (hatched surface) of the resin. To place. Further, as shown in FIG.
  • the resin is further poured to the height at which the third sphere should be placed in the mold, and after the resin is solidified, the third sphere is placed on the surface (hatched surface) of the resin. To place. After that, the same applies, and when only three spheres are arranged, the resin is poured to a predetermined height (for example, the upper edge of the mold) so that the spheres are solidified.
  • a predetermined height for example, the upper edge of the mold
  • a rectangular parallelepiped may be cut out from a cylinder created by the procedure shown in FIGS. 32 (a) to 32 (c). At this time, the sphere should not be included in the part other than the rectangular parallelepiped.
  • Such a method has a problem that it takes time to manufacture because it takes time to cure the resin.
  • the resin is poured into the mold many times, but since the resin is usually made by mixing two kinds of liquids, it is necessary to mix the resin many times, and the composition of the resin is slightly different each time. As a result, there is also a problem that the refractive index is not constant and a resin layer appears.
  • the spheres in a desired three-dimensional position in the mold and then pour the resin at once.
  • a support column for supporting the sphere at a desired three-dimensional position is installed on the base at the tip, and as shown in FIG. 33 (b), the sphere is attached to the tip of the support column.
  • the mold is put on the mold, and the resin is poured at once as shown in FIG. 33 (c). By doing so, the resin layer does not appear.
  • the columns will be prepared separately, that point becomes a problem. If the columns are made of the same material as the resin, the refractive index and the X-ray transmittance are the same, but in reality they are not exactly the same. The difference in X-ray transmittance is considered to be negligible, but the difference in refractive index may cause a problem that the sphere cannot be observed by the columns.
  • the third sphere and the fourth sphere are aligned on a straight line parallel to the Z axis.
  • the third sphere is in front of the stanchion for the fourth sphere, the third sphere can be observed without being obstructed by the stanchion.
  • the columnar first instrument when the columnar first instrument is observed from the second direction, it may be in the state as shown in FIG. 35. That is, the first sphere and the second sphere are lined up on a straight line parallel to the Z axis, and the support for the second sphere is in front of the first sphere, so the first sphere. Is obstructed by the pillars and cannot be observed. Such a state is not preferable.
  • the following condition 6 is added to the condition 5. 6.
  • Any of the plurality of spheres can be optically observed from any of the two different directions without being obstructed by any of the columns, that is, as shown in FIG. 36, the first sphere and the second sphere.
  • the second sphere is lined up on a straight line parallel to the Z axis, but the first sphere is in front of the stanchion that supports the second sphere, so all spheres can be observed. .. It should be noted that there is no problem even if the columns overlap each other.
  • the material of the resin and the material of the column may be different.
  • the X-ray transmittance of the resin and the X-ray transmittance of the column are not the same or a negligible difference, there is an effect during the test. That is, when a support column is used, it is also a condition that the X-ray transmittances of the support column and the resin are the same or have a negligible difference.
  • the two sides of a rectangular parallelepiped second instrument that can accommodate the first instrument through a hole in the top surface can be used as is during calibration, but those surfaces are not necessarily perfectly flat.
  • the deviation from the plane gives an error in the calibration of the position of the sphere. Therefore, as shown in the top view of FIG. 37, the optical flat glass is brought close to the two side surfaces used for the measurement, and the same refractive index as the material (for example, resin) of the first instrument and the second instrument is placed in the gap between the two surfaces. Fill with matching oil. Then, both are optically integrated, and the observation surface becomes the surface of glass having good flatness, so that more accurate calibration can be performed.
  • the optical flat glass may be brought into close contact with the two side surfaces of the second instrument to integrate them. ..
  • the two adjacent side surfaces of the first rectangular parallelepiped instrument can be used as they are at the time of calibration, but those surfaces are not necessarily completely flat surfaces.
  • the deviation from the plane gives an error in the calibration of the position of the sphere. Therefore, as shown in the top view of FIG. 39, the optical flat glass is brought close to the two side surfaces used for the measurement, and the gap between the two is filled with the matching oil having the same refractive index as the material of the first instrument (for example, resin). .. Then, both are optically integrated, and the observation surface becomes the surface of glass having good flatness, so that more accurate calibration can be performed.
  • the present invention is not limited to this, and even if other shapes of the first and second appliances that satisfy the above-mentioned conditions are adopted. good.
  • the spheres when the spheres are arranged using the stanchions, only some of the spheres may be supported by the stanchions. Further, a 3D printer may be used as the manufacturing method. By doing so, it becomes possible to manufacture the sphere without hardening the resin each time the sphere is arranged and without using a support. Although an example of arranging eight spheres is described, the number of spheres may be three or more.
  • the evaluation instrument of the X-ray CT apparatus can realize a first state having an outer shape in which at least two adjacent side surfaces are flat and a second state having a columnar shape. It is an evaluation instrument of an X-ray CT apparatus, and contains a plurality of spheres inside. Then, in the first state, a plurality of spheres can be optically observed from each of the two side surfaces without overlapping each other, and in the second state, they are rotated around the long axis of the cylinder.
  • a plurality of spheres are arranged so that any X-ray emitted from an X-ray source at a predetermined position with respect to the cylinder passes through the cylinder without passing through two or more spheres at any rotation angle. Has been done.
  • An evaluation instrument having a mode of including a plurality of spheres as described above can be calibrated and tested by realizing the two states described above and arranging the plurality of spheres as described above. It will be possible to use it for both. Regarding the arrangement of the plurality of spheres, it is preferable to further disperse them in the instrument, and it is preferable to avoid arranging them in a straight line. Further, it is preferable that the two sides are in vertical contact with each other.
  • the evaluation instrument has a columnar first instrument including the plurality of spheres and a second instrument capable of accommodating the first instrument and having at least two adjacent side surfaces flat. You may do so. For example, it is an embodiment like the first embodiment.
  • a transparent flat plate may be added to at least two adjacent side surfaces of the second instrument.
  • a glass plate is brought into close contact with the device or a matching oil is sandwiched between the tools.
  • the evaluation instrument includes a plurality of spheres, and the first instrument is attached to the first instrument whose at least two adjacent side surfaces are flat and the first instrument to be attached to the at least two adjacent sides of the first instrument. It may have a second instrument having a columnar outer shape of the instrument. For example, it is an embodiment like the second embodiment.
  • a transparent flat plate may be added to at least two adjacent side surfaces. This is to improve the flatness of the side surface of the first instrument.
  • the column is preferably made of a material having substantially the same X-ray transmittance as the X-ray transmittance of the evaluation instrument.
  • the substantially same X-ray transmittance or the same X-ray transmittance shall be applicable as long as the difference cannot be discriminated in the transmitted image.
  • the evaluation instrument for the X-ray CT apparatus is a columnar evaluation instrument for the X-ray CT apparatus, and includes a plurality of spheres inside. When rotated around the long axis of the cylinder, any X-ray emitted from the X-ray source at a predetermined position with respect to the cylinder does not pass through two or more spheres at any rotation angle. A plurality of balls are arranged so as to pass through the evaluation instrument. It can be used for testing popular X-ray CT equipment.
  • the columnar first instrument according to the first aspect is housed in the accommodating portion of the second instrument, and a plurality of spheres are observed from each of the above two sides, and the observation result. You may try to determine the position of each of the plurality of spheres from. In this case, matching oil may be injected into the gap between the accommodating portion and the evaluation device. Further, a transparent flat plate may be added to each of the two side surfaces, or a transparent flat plate may be added by sandwiching matching oil on each of the two side surfaces, and then a plurality of spheres may be observed.
  • a plurality of spheres are formed on a plane orthogonal to the long axis of the cylinder and included in the region of the upper half or the lower half of the cylinder. Two or more of the spheres may be arranged, and the spheres other than the two or more spheres among the plurality of spheres may be arranged in a region outside the region in the cylinder. It is also effective to arrange a plurality of spheres by such a simple method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本願に係るX線CT装置の評価用器具は、少なくとも隣接する2つの側面が平面である外形を有する第1の状態と円柱状の第2の状態とを実現可能である、X線CT装置の評価用器具であって、内部に複数の球を含む。そして、第1の状態で、複数の球が、2つの側面の各々から、互いに重なることなく光学的に観測可能であり、且つ、第2の状態で、円柱の長軸を中心として回転させた場合、いずれの回転角度においても、円柱に対して所定位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく円柱を通過するように、複数の球が配置されているものである。

Description

X線CT装置の評価用器具
本発明は、X線CTの評価用器具に関する。
医療用として開発されたX線CT(Computed Tomography)装置は、近年工業製品の計測用途、つまり寸法や形状の計測に使用されている。工業製品の形状測定には従来接触式の三次元測定機(CMM:Coordinate Measuring Machine)が用いられており、その精度評価法としてISO 10360-2規格が使われている。X線CTについても、精度評価法規格の制定の要求がありISO 10360-11として発行すべく審議が進んでいる。
ここでX線CTの測定原理について図1を用いて簡単に説明する。三次元形状測定用のX線CT装置は、X線照射部11と、X線検出器12と、回転ステージ13とを備える。このX線CT装置は、対向配置されたX線照射部11とX線検出器12との間に配設された回転ステージ13上に測定対象物(ワークとも呼ぶ)を設置して、非破壊による内部の観測や三次元形状測定を行うものである。
X線照射部11は、内部にX線源としてのX線管を備え、高電圧発生装置15から供給される管電圧、管電流に応じたX線をX線管から発生させる。この高電圧発生装置15はX線制御部16によって制御され、X線制御部16はX線CT装置全体の制御を行う制御用ソフトウェアがインストールされたPC(Personal Computer)に接続されている。X線検出器12は、イメージインテンシファイアにCCD(Charge Coupled Device)カメラを組み合わせたもの、もしくは、FPD(Flat Panel Detector)であり、CT画像再構成演算装置18を介してPCに接続される。なお、X線検出器12は、透視撮影領域の拡大縮小のために回転ステージ13に対して離接可能に構成される。また、回転ステージ13もX線照射部11に対して離接可能である。
回転ステージ13は、X線照射部11からX線検出器12を結ぶX線光軸Lに沿ったX軸に直交するZ軸を回転軸Rとして回転するとともに、ステージ駆動機構14により、XY平面の水平方向とZ方向の上下方向への移動が可能となっている。そして、ステージ駆動機構14は、ステージ制御部17を介してPCに接続されて、制御される。
X線CT撮影に際しては、回転ステージ13に設置した被検査物に、X線照射部11からX線を照射しつつ回転ステージ13に回転軸Rを中心として回転を与える。そして、被検査物の周囲の360度にわたる全方向から透過したX線をX線検出器12により検出し、そのX線透過データをCT画像再構成演算装置18に取り込む。
CT画像再構成演算装置18では、取り込んだ360度分のX線透過データを用いて、X-Y平面に沿った面でスライスした被検査物の三次元の再構成像(CT画像)が構築される。CT画像は、CT画像再構成演算装置18からPCに送信され、PCにインストールされた三次元画像構築プログラムによる三次元画像化に利用される。
PCには、液晶ディスプレイ等の表示装置23、および、キーボード22aとマウス22bを含む入力装置22が接続されている。なお、キーボード22aやマウス22bは、種々の操作において、オペレータによる入力を行うものである。表示装置23は、CT画像再構成演算装置18からPCに送信されたCT画像を表示するとともに、CT画像を利用して構築された三次元画像を表示する。また、PCは測定対象物の寸法や形状の計測も行う。なお、CT画像再構成演算装置18の機能は、PCと一体化されて、コンピュータの周辺装置やソフトウェアとして一つのコンピュータで実現してもよい。
このようなX線CT装置を用いれば、測定対象物の透過像を得ることができるようになるが、測定対象物の厚さが厚かったり、密度が高かったりすると、透過できるX線の量が少なくなり、透過像としては暗く観察される。
また、X線検出器12としては、上で述べたように二次元の検出器(エリア検出器)を用いる場合(図2A:コーンビームCT)と、一次元の検出器(ライン検出器)を用いる場合(図2B:ファンビームCT)とがある。ライン検出器を用いる場合には、得られる再構成像は一次元の断面のみであるため、三次元の再構成像を得るためには一回転毎に測定対象物を上又は下に少しずつ動かすことになる。一方、エリア検出器を使う場合には、測定対象物一回転で三次元の再構成像が生成できるが、得られる再構成像の品質は一次元の検出器を使った方が優れている。
X線CT装置は、CMMとは異なり、測定対象物の内部まで測定が可能であるが、そのためX線CTの精度評価法として考慮すべき点が2つある。第1は、X線CT装置の移動機構や部品のアライメントが正しくなされているかであり、この要因による誤差があると寸法が正しく測れなかったり、測定対象物全体が歪んで観察されたりする。第2は、測定対象物をX線が通過するときにX線の減衰に非線形な効果が起こることであり、この要因があると測定対象物に局所的な凹凸があたかも存在するように計測されてしまう。審議中の規格ではあるがISO/2CD 10360-11では、第1の考慮点についてはEテスト、第2の考慮点についてはPテストを行うようになっており、両者はできる限り独立に評価することが望ましい。すなわち、Eテストを行う際には、測定対象物の材質の影響を避けるため、X線ができる限り測定対象以外の物を通過しないことが好ましい。
X線CTの機械的な誤差を評価するEテストでは、空間中に多数の球や円筒を配置し、それらの間の距離を計測することで精度を評価する。球間距離は予めCMMなどの高精度な計測器で校正されており、その校正結果とX線CTの測定結果を比較することにより精度を評価する。
なお、本願では、X線CTの精度評価用のゲージ(評価用器具)に正確な値を付けることを「校正」と呼ぶものとする。一方、校正された評価器を使ってX線CT装置の誤差を評価したり、性能を確認したりすることを「試験」あるいは「テスト」と呼ぶものとする。図3に模式的に示すように、高精度なX線CT装置を試験するために使用する評価用器具Aは、従来技術では高精度なCMMで校正される。一方、それほど高精度ではない普及型のX線CT装置用の評価用器具Bは、CMM又は高精度なX線CT装置を使って校正される。
Eテストに用いられる評価用器具として、球を空間上に配置したフォレストと呼ばれるもの(図4)や、板に多数の穴を空けたホールプレートなどがある。ホールプレートはX線が材質を多く通過するので、その点においてはEテストの評価器としては適していないが、別の利点もあることから利用されている。
ここでは、フォレストについて若干説明する。X線CT装置は、使用するX線源のエネルギーによって透過できる材質や厚さが制限されるので、一般的に広く用いられている225kV程度の中エネルギーX線では鉄の測定は難しく、測定対象物の多くはアルミニウムである。フォレストには、ベース、シャフト、及び測定対象である球が含まれる。ベースの材質としては、低膨張の金属やセラミックが使われることが多い。測定対象である球には、中エネルギーX線CT装置の評価用器具の場合、アルミニウムあるいはX線透過率がそれに近い材質(例えばルビーやセラミック)が使われる。
図4から分かるように、真ん中の一番高い球を除いて測定中に球を透過するX線は必然的にシャフトも透過する。Eテストの目的を考えた場合、シャフトにはできるだけX線が容易に透過する、例えば樹脂などが適している。しかしながら、そのような材質は機械的強度に欠けるため、やむを得ずセラミックや炭素繊維が用いられている。従って、球の材質とシャフトの材質のX線透過率がほぼ同じとなる。結果として、材料の影響を排除したいEテストの結果が影響を受けることになり、少しでも小さい測定誤差を表記したいX線CT装置のメーカとしては、好ましくない。
なお、フォレストではない評価用器具としては、円柱状の樹脂に測定対象である複数の球を埋め込んだもの、円柱状の樹脂の側面に測定対象の複数の球が半分だけ埋め込まれたものなどが存在している。円柱状の樹脂の側面に複数の球が半分だけ埋め込まれた評価用器具であればCMMによって球の位置を測定できるので校正が可能となるが、球は側面上でないと配置できず、円柱の内部の評価はできない。一方、円柱状の樹脂に測定対象である複数の球を埋め込んだ評価用器具の場合、CMMでは球の位置を測定できず校正が不可能であり、そのために別の手法を導入しなければならない。一方、球の配置には自由度がある。
これまでの技術では、工業用のX線CT装置のための評価用器具が備えるべき要件の整理ができておらず、高精度なX線CT装置に好ましい評価用器具が示されていない。また、普及型のX線CTでも同様である。
国際公開2018/193800号公報 特開2012-189517号公報 特開2014-190933号公報 特開2018-179983号公報
相澤淳平、「X線XT装置による寸法測定の誤差評価」,長野県工技センター研報、No.7, p.M39-M41(2012)
従って、本発明の目的は、一側面として、校正及び試験に適した、X線CT装置の新たな評価用器具を提供することである。
また、本発明の別の目的は、一側面として、試験に適した、X線CT装置の新たな評価用器具を提供することである。
本発明の第1の態様に係るX線CT装置の評価用器具は、少なくとも隣接する2つの側面が平面である外形を有する第1の状態と円柱状の第2の状態とを実現可能である、X線CT装置の評価用器具であって、内部に複数の球を含む。そして、第1の状態で、複数の球が、2つの側面の各々から、互いに重なることなく光学的に観測可能であり、且つ、第2の状態で、円柱の長軸を中心として回転させた場合、いずれの回転角度においても、円柱に対して所定位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく円柱を通過するように、複数の球が配置されているものである。
本発明の第2の態様に係るX線CT装置の評価用器具は、X線CT装置の円柱状の評価器具であって、内部に複数の球を含む。そして、円柱の長軸を中心として回転させた場合、いずれの回転角度においても、円柱に対して所定位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく評価用器具を通過するように、複数の球が配置されているものである。
図1は、X線CT装置の概要を示すための図である。 図2Aは、X線CT装置の概要を示すための図である。 図2Bは、X線CT装置の概要を示すための図である。 図3は、本願における校正と試験について説明するための図である。 図4は、フォレストという評価用器具の斜視図である。 図5は、第1の実施の形態における第1の器具の斜視図である。 図6は、第1の実施の形態における第2の器具の斜視図である。 図7Aは、第1の実施の形態における校正時の用い方を説明するための図である。 図7Bは、第1の実施の形態における校正時の用い方を説明するための図である。 図8は、複数の球の配置について説明するための図である。 図9は、1番目の球の配置について説明するための図である。 図10は、1番目の球の配置について説明するための図である。 図11は、2番目の球の配置について説明するための図である。 図12は、2番目の球の配置について説明するための図である。 図13は、2番目の球の配置について説明するための図である。 図14は、3番目の球の配置について説明するための図である。 図15は、3番目の球の配置について説明するための図である。 図16は、3番目の球の配置について説明するための図である。 図17は、4番目の球の配置について説明するための図である。 図18は、4番目の球の配置について説明するための図である。 図19は、複数の球の配置について説明するための図である。 図20は、複数の球の配置について説明するための図である。 図21は、複数の球の配置について説明するための図である。 図22は、複数の球の配置について説明するための図である。 図23は、複数の球の配置について説明するための図である。 図24は、複数の球の配置について説明するための図である。 図25は、複数の球の配置について説明するための図である。 図26は、複数の球の配置について説明するための図である。 図27は、複数の球の配置について説明するための図である。 図28(a)乃至(c)は、2方向から他の球に遮られることなく各球を観測可能であるという条件を満たす場合について説明するための図である。 図29は、校正の方法を説明するための図である。 図30(a)乃至(c)は、第2の実施の形態における評価用器具を説明するための斜視図である。 図31(a)乃至(c)は、第2の実施の形態のおける他の評価用器具を説明するための斜視図である。 図32(a)乃至(c)は、実施の形態1に係る第1の器具の製造方法を説明するための図である。 図33(a)乃至(c)は、実施の形態1に係る第1の器具の他の製造方法を説明するための図である。 図34は、支柱を使用する場合の問題点を説明するための図である。 図35は、支柱を使用する場合の問題点を説明するための図である。 図36は、支柱を使用する場合の問題点を説明するための図である。 図37は、その他の実施の形態を説明するための図である。 図38は、その他の実施の形態を説明するための図である。 図39は、その他の実施の形態を説明するための図である。
[本発明の実施の形態に係る基本的な考え方]
ここでは、評価用器具Aのように、校正及び試験(特にEテスト)に用いることができる評価用器具の好ましい条件について整理する。
1.評価用器具の内部に、当該評価用器具のX線透過率とは異なるX線透過率の複数個の球を埋め込んだもの
フォレストのようなシャフトで球を支持するような態様ではシャフトの影響が出てしまうので、複数の球が何の支えもなく浮いていることが好ましい。これを実現するためには、条件1が考えられる。
また、X線CTで感度を持つのは、材質のX線透過率である。例えば、ルビーの球と空気ではX線透過率が大きく異なるため、球を球として捉えることができる。一方、樹脂に球が封入されている場合、すなわち球の外装体として樹脂が用いられる場合、空気中に浮いているのと比べてX線透過率の差は小さくなるが、ルビーの球と樹脂のX線透過率はかなり異なるため、球を正しく捉えることが可能である。ここで球及び外装体の材質としては、球とその外装体のX線透過率が異なっていればよく、相対的に球のX線透過率が高いものでも低いものでもよい。
2.球の外装体の形状が円柱状であること
試験を行う際には、X線CTでは評価用器具を一回転させて測定する。何らかの材質からなる円柱を、その長軸を中心として回転させると、一周する間に透過像は全く変化しない。上でも述べたように、測定したいもの以外のものをX線が通過しないのが望ましいが、円柱に関してはX線が通過するものの通過長さが変化しないので外装体はないのと同じである。よって、この条件2が考えられる。
3.X線CT装置の試料台に載せて回転させた場合に、いずれの回転角度においても、所定の位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく円柱を通過すること
試験を行うために評価用器具を回転させてX線で測定する時に、ある球を透過したX線が他の球も透過することになると、結果として透過率が変化するため、好ましくない透過像を検出器で得ることになってしまう。すなわち、球を透過したX線が外装体以外の別の材質を透過する事態は避けることが好ましい。別の材質には別の球も含まれる。
4.光学的に校正が可能であること
球の外装体が透明で円柱状である場合、図5に示すように、外部から光学的に観測すると、球が歪んだように見える。これは円柱の表面で光線が屈折するためであり、中に入っている球が真球であってもこのように見えてしまう。外装体内部に球を埋め込む場合、CMMでは球の位置の校正は困難であり、光学的に校正することになるが、円柱状のままでは無理である。
球が歪んだまま観測されないようにするためには側面を平面とすることが好ましいが、X線での測定時には円柱であることが好ましいので、条件3及び4を満たすためには特別な構成を採用することになる。この点については、具体的な実施の形態で説明する。
5.異なる2方向のいずれの方向からでも、複数の球のいずれもが互いに重なることなく光学的に観測可能であること
歪みがなく観測できたとしても、重なってしまうと観測できず、観測できなければ校正できなくなるためである。なお、2方向は、直交していなくても良いが、それらの角度は既知であるものとする。
以下では、このような条件を満たすような具体的な構成を有する評価用器具について詳細に説明する。
[実施の形態1]
本実施の形態における評価用器具は、図5に示したような円柱状の第1の器具と、図6に示したような第2の器具とを含む。第1の器具は、X線CT装置での試験に用いられ、内部の複数の球の配置については、以下に述べる。一方、第2の器具は、図6の例ではほぼ直方体で、第1の器具を上面から収容可能な穴を有している。但し、少なくとも2側面が平面であればよく必ずしも直方体でなくても良い。また、第2の器具は、第1の器具と同一の屈折率を有する素材(例えば樹脂)であることが好ましい。
第2の器具は、図7Aに示すように、その穴に第1の器具を収納して、少なくとも2つの側面から、球が歪まない状態で光学的に観測できるようにするための器具である。図7Aでも球は歪んで見えていない。このため、第1の器具と第2の器具とは、光学的に一体となることが好ましい。また、円柱状の第1の器具が、第2の器具の穴の中で動くことは好ましくない。そのため、第2の器具の穴の内側面と、第1の器具の外側面とが接するような形態であってもよい。また、例えば取り扱いを容易にするため、第2の器具の穴の内側面と、第1の器具の外側面とに隙間を設ける場合には、図7Bに示すように、マーカ(図7Bでは黒三角形)などで位置合わせを行い、隙間に第1及び第2の器具と同じ屈折率のマッチングオイルを注入することで、第1の器具及び第2の器具の光学的な一体化を図ることが好ましい。
次に、条件3及び5を満たすための具体的な球の具体的配置について図8乃至図18を用いて説明する。
図8は、円柱状の第1の器具の中心軸(円柱の長軸。ここではZ軸とする)上に球を配置した状態を示したものである。球によって作られるX線の影のいずれにも、他の球は配置されていない。また、いずれの回転角においても重ならずに光学的に観測可能である。しかしながら、X線CT装置の評価用器具として、測定領域内において球を可能な限り三次元的に分散配置したいという別の要求があり、図8に示す球の配置はX線CT装置の評価用器具としてはあまり適切ではない。
また、少なくとも2個の球があれば、その間隔を測定して校正値と比較することにより上記Eテストを実施可能であるが、X線CT装置の三次元的な計測性能をより詳細に調べるためには2個では不十分である。例として、審議中の規格ではあるがISO/2CD 10360-11では、少なくとも8個とされている。
そこで、8個の球を一個ずつ順に配置する場合の手順について説明する。円柱形の第1の器具の上下半分のそれぞれに4個配置すると仮定して、ここでは上半分の配置についてのみ説明する。
図9に示すように、1番目の球を、上下の中間面101の直上、且つZ軸上に配置する。2番目、3番目、4番目の球は、点線で示したXY平面内で120度位相がずれたところに設置するものとする。
図9の状態を横から見た図が図10である。図10において、球に接するX線は実線で示されている。球より右側にはX線による影ができる。この影の領域に2番目以降の球を配置できない。この球はZ軸上に配置されているので、評価用器具を回転させたとき、同じ形状の影が360度にわたってできる。従って、図10において、X線が円柱状の第1の器具から出射する高さである点線より下の領域には、2番目以降の球を設置できない。厳密には影がつくる軌跡は、高さの低い円柱形ではなく、上面の中央がへこんだような形状であり、へこんだ箇所には2番目以降の球を設置することは可能であるが、ここでは簡略化するため影の領域は円柱形であるものとする。
2番目の球は、1番目の球が作る影の領域の直上に設置する。図11に、2番目の球を配置した状態の側面図を示し、図12に斜視図を示す。2番目の球は、1番目の球による影の領域102の上面103に載っている。2番目の球はZ軸から離れた位置に配置する。離す距離も任意ではあるが、より広い測定領域を試験するという趣旨からすると、できるだけ離すことが望ましいことになる。配置位置のZ軸に対する方位角は任意であるが、例えば以下の説明のため2番目の球を配置した方位を0°とする。また、この方位をX軸方向とする。
図13に、2番目の球によるX線の影の領域を示す。評価用器具が回転すると影の大きさは変化するが、最大の影ができるのは球がX線源に最も近づいたときであるので、図13の状態で影が最大の状態となる。すなわち、点線以下の領域内には3番目以降の球を配置できない。
図14は、X線による1番目及び2番目の球の影の領域104を示しており、この領域104の上面105に3番目の球を配置する。また、図15に示すように、XY平面内で、2番目の球から120度ずれた位置に配置する。なお、Z軸からの距離は、ここでは2番目の球のZ軸からの距離と同じとする。
図16に、3番目の球によるX線の影の領域を示す。第1の器具が回転すると影の大きさは変化するが、最大の影ができるのは球がX線源に最も近づいたときであるので、図16の状態で影が最大の状態となる。すなわち、点線以下の領域内には4番目の球を配置できない。
図17は、X線による1番目乃至3番目の球の影の領域106を示しており、この領域106の上面107に4番目の球を配置する。また、図18に示すように、XY平面内で、3番目の球から120度ずれた位置に配置する。なお、Z軸からの距離は、ここでは2番目の球のZ軸からの距離と同じとする。
図18からも分かるように、円柱状の第1の器具内において、4つの球は三次元的に分散配置されていることが分かる。また、図18のような配置であれば、Z軸を回転軸として回転させたとしても、全ての球のZ座標値が異なっているので、いずれの回転角度でも全ての球を光学的に観測することができる。すなわち、条件3及び5は満たされている。
また、図9乃至図18で示した手順からすれば、円柱の中央部分から順に、円柱の側面ぎりぎり且つX線源側に球を配置した場合に生ずる影の第1の領域、影の第1の領域の上(又は下)であって円柱の側面ぎりぎり且つX線源側に球を配置した場合に生ずる影の第2の領域、影の第3の領域の上(又は下)であって円柱の側面ぎりぎり且つX線源側に球を配置した場合に生ずる影の第4の領域、といったように影の領域を作成すれば、影の領域毎に球配置面におけるXY平面内ではどの位置にも球を配置することが可能である。分散配置ということであれば、Z軸からの距離をランダムに変化させてもよい。
なお、一般的に、球の可能な配置位置は、評価用器具の大きさ、球の大きさ、X線源と評価用器具の距離によって制限される。評価用器具の設計に当たっては、X線源と評価用器具の距離を予め決めなければならない。また配置可能な球の数も制限を受ける。例えば評価用器具のサイズが決まっていて、多くの球を配置したい場合には、小さい球を使わざるを得ない。
少しでも大きな球、あるいは少しでも多くの球を配置したい場合、評価用器具の大きさと、評価用器具とX線源との距離とを考慮すると、配置に関する自由度が増す。上の例では、X線による球の影の領域を円柱形に近似していたが、実際はもっと複雑な形状であるので、それを利用してもよい。以下、影の領域について具体的に説明する。
まず、図19に示すように、円柱状の第1の器具に球が2つだけ封入された場合を考える。球のZ座標値は同じである。すなわち、円柱の長軸に直交する平面であって当該円柱の上面に近い平面に2つの球が配置されている。但し、球の数「2」は一例である。図20は、図19の上面図であり、X線がこの図に示すような方向から照射された場合、それぞれの球の影にもう一方の球が入ることはない。一方、第1の器具を90度回転させた図21の場合、左側の球によってできたX線の影に右の球が入るため、この2つの球の配置は好ましくないように見える。しかしながら、図22に示すように、X線源と検出器を結ぶ線から離れた位置に球を配置した場合、評価用器具の大きさ、球の大きさ、そしてX線源と評価用器具との位置関係によっては、Z軸上の同じ高さに2つの球を配置しても、一方の球の影に他方の球が入ることはないということがあり得る。なお、これらの2つの球以外の球については、例えば円柱の下半分の領域に例えば上記方法で配置すれば良い。
この状況を模式的に示したものが図23であり、斜線部はX線による球の影を示している。X線CT装置のステージ上で第1の器具を回転させた場合、影は三次元的な軌跡を描くが、図が非常に複雑になるため、ここでは横方向から観測した場合を示している。1番目の球を配置し、次に2番目の球の配置を考える場合、この影以外の領域に2番目の球を配置する。また、2番目の球によってできる影の中に1番目の球が入ってもいけない。但し、影同士は重なってもよい。
この状態を二次元的に示したものが図24である。このように球を配置する度にそれによって作られる影を描き、その次の球は既に設置された全ての球によって作られる影のいずれにも触れない位置に設置することを繰り返すことにより、条件3を満たすことができるようになり、より多くの球を配置することが可能である。なお、条件5を満たすか否かは別である。
なお、図24では平面で説明したが、実際には三次元で検討する。1つの球が作る影の三次元的な軌跡がどのようなものかを図25乃至図27を用いて説明する。図25に示すように、円柱に球が1つだけ封入され、回転ステージがある回転位相にある場合を考える。左下方からのX線は、球の右上に向かって影を作る。この影の中に別の球が入ってはいけない。回転位相が変わったときの様子を図26に示す。但し、三次元での位置関係の把握を容易にするため、図26では回転位相はそのままで、X線の照射方向を変えて描いている。右下から来たX線は、球の左上方に影を作る。
第1の器具を一回転させると、影も一回転し、その軌跡は傘を逆さまにしたような形状になる。この軌跡の中に別の球が入ってはいけない。言い換えると、二つ目の球は、図27に示すように、この軌跡を除いた部分のどこに配置しても良い。但し、条件5を満たすか否かは別である。
条件3については、上で述べたようにX線源と第1の器具との位置関係、第1の器具の大きさ、球の大きさといった要因を考慮して球の実際の配置を決定することになる。一方、条件5のみを考慮するのであれば、例えば、配置する球の個数よりも多いマス目で、観測する各面を分割し、それぞれのマス目に2以上の球が入らないように球を配置する。図28(a)に示すように、球が3つの例を考えて、第1の方向と、当該第1の方向と直交する第2の方向の2方向から円柱の側面を観測するものとする。第1の方向から見た場合、図28(b)に示すように、4つのマス目のうち3つにそれぞれ1つの球が入るように配置されている。また、第2の方向から見た場合、図28(c)に示すように、4つのマス目のうち3つにそれぞれ1つの球が入るように配置されている。このような場合には、条件5を満たしている。このようなマス目を用いる方法は一例に過ぎないが、Z軸方向の座標値が異なっていれば、条件5を満たすのは容易である。
なお、校正は、図29に示すように、第1の器具を第2の器具の上面の穴に収容した状態で、第2の器具の2つの側面A及びBからカメラ300で内部の球を撮影することで行われる。図29では側面A正面から撮影する場面を示しているが、側面B正面から撮影する場合には、カメラ300を移動させてもよいが、第1及び第2の器具を載せているステージを回転させても良い。側面Aから撮影された画像及び側面Bから撮影された画像は、情報処理装置200で、側面A及びBの角度と、両方向から撮影された画像とから、内部の各球の三次元座標を演算する。これによって、校正がなされることになる。演算の具体的内容は、既知であるからここでは説明を省略する。
なお、球の材質は、ルビー、セラミック、ガラスなどが好ましい。球の外装体(すなわち球以外の第1の器具及び第2の器具)の材質は、エポキシ樹脂等が好ましい。但し、これらの材質は一例に過ぎず、球についてはその外装体とのX透過率の差が大きく高精度な形状が得られるものであれば良い。また、第1の器具及び第2の器具の形成のしやすさから、他の樹脂などを採用しても良い。
[実施の形態2]
第1の実施の形態では、ベースとなる第1の器具の形状が円柱状で、校正する場合に第1の器具と第2の器具とを組み合わせて直方体状に変形させていたが、本実施の形態では、ベースとなる第1の器具の形状が直方体状で、試験する場合に補助部材である第2の器具を用いて円柱状に変形させるものである。
具体的には、図30(a)に、ベースとなる第1の器具を示す。本実施の形態では、縦長の直方体であり、内部に条件3及び5を満たすように配置された複数の球が含まれる。この状態で、隣接する2側面から光学的に観測して球の位置を測定することで校正を行う。一方、図30(b)に、補助部材である第2の器具の例を示す。第2の器具は、第1の器具を包含する最小の円柱と第1の器具との差分である4つの部材に分かれている。そして、図30(c)に示すように、試験時には第2の器具それぞれを第1の器具のいずれかの側面に貼り付けることで円柱を形成するようになっている。本実施の形態における第1の器具と第2の器具とはX線透過率が同一または無視できる程度の差であればよく、第2の器具は透明でなくても良い。
このように第1の器具及び第2の器具を導入することで、条件1乃至5を満たして校正及び試験を適切に行うことができるようになる。
なお、隣り合う2側面から内部の球を光学的に観測できれば良いので、その観点から変形が可能である。すなわち、図31(a)に示すように、第1の器具は、隣接する2側面のみ平面であり、残余の側面が円柱側面の一部となっている立体で、内部に条件3及び5を満たすように配置された複数の球が含まれる。この状態で、平面である2側面から光学的に観測することで校正を行う。一方、図31(b)に示すように、補助部材である第2の器具の例を示す。第2の器具は、第1の器具を包含する最小の円柱と第1の器具との差分である2つの部材に分かれている。そして、図31(c)に示すように、試験時には第2の器具それぞれを第1の器具の2つの側面のいずれかに貼り付けることで円柱を形成するようになっている。このような評価用器具でも、第1の実施の形態と同様に、校正及び試験に用いることができる。
[製造方法について]
複数の球を内包する第1の器具については、例えば硬化した場合に透明になる樹脂で形成する。例えば、図32(a)に示すように、型枠に1番目の球を配置すべき高さまで樹脂を流し込む。そして、樹脂が固まった後、樹脂の表面(斜線の面)上に1番目の球を配置する。その後、図32(b)に示すように、型枠に2番目の球を配置すべき高さまでさらに樹脂を流し込み、樹脂が固まった後、樹脂の表面(斜線の面)上に2番目の球を配置する。さらに、図32(c)に示すように、型枠に3番目の球を配置すべき高さまでさらに樹脂を流し込み、樹脂が固まった後に、樹脂の表面(斜線の面)上に3番目の球を配置する。その後は同様で、3つしか球を配置しない場合には、所定の高さ(例えば型枠の上縁)まで樹脂を流し込んで固まるようにする。これで第1の実施の形態における第1の器具が形成される。なお、第2の実施の形態における第1の器具については、図32(a)乃至(c)で示したような手順で作成された円柱から直方体を切り出すようにしても良い。この際、直方体以外の部分には球が含まれないようにする。
このような方法では、樹脂の硬化に時間がかかるため製造に時間がかかるという問題がある。また、何度も樹脂を型枠に流し込むが、樹脂は通常2種類の液体を混合して作るため、何度も混合を行うことになり、混合の都度微妙に樹脂の組成が異なってしまい、結果として屈折率が一定にならず、樹脂の層が現れてしまうという問題もある。
そこで、型枠内で球を所望の三次元位置に配置した上で、樹脂を一気に流し込む方法も考えられる。球を所望の三次元位置に配置するには、上部からつるすか、下から支柱で支える方法が考えられる。例えば、図33(a)に示すように、土台上に、先端に球を所望の三次元位置に支持するための支柱を設置し、図33(b)に示すように、支柱の先端に球を置いた上で型枠をかぶせ、図33(c)に示すように、樹脂を一気に流し込む。このようにすれば、樹脂の層が現れることはなくなる。
一方で、支柱を別途用意することになるので、その点が問題となる。支柱を樹脂と同じ材質にすれば、屈折率もX線透過率も同じであるが、実際は全く同一にはならない。X線透過率の差については無視できる程度であると考えられるが、屈折率の差により、支柱によって球が観測できないという問題が生じ得る。
例えば、第1の方向から円柱状の第1の器具を観測した場合、図34に示すような状態である場合を考える。この例では、3番目の球と4番目の球は、Z軸に平行な直線上に並んでしまっている。しかしながら、3番目の球が、4番目の球のための支柱より手前にあるので、3番目の球は支柱に遮られることなく観測できている。
一方、第2の方向から円柱状の第1の器具を観測した場合、図35に示すような状態である場合がある。すなわち、1番目の球と2番目の球は、Z軸に平行な直線上に並んでしまっており、2番目の球のための支柱が1番目の球より手前にあるので、1番目の球が支柱で遮られて観測できなくなっている。このような状態は好ましくない。
よって、条件5には、支柱で球を支持するようにして球を配置する場合には、以下のような条件6が加えられる。
6.異なる2方向のいずれの方向からでも、複数の球のいずれもが、いずれの支柱にも遮られることなく光学的に観測可能であること
すなわち、図36に示すように、1番目の球と2番目の球は、Z軸に平行な直線上に並んでしまっているが、1番目の球は、2番目の球を支持する支柱より手前にあるので、全ての球を観測可能になっている。なお、支柱同士が重なっていてもそれは問題は無い。
条件6を満たすのであれば、樹脂の材質と支柱の材質とは異なっていても良い。但し、樹脂のX線透過率と支柱のX線透過率とが同一または無視できる程度の差でなければ、試験時に影響がある。すなわち、支柱を用いる場合には、支柱と樹脂のX線透過率が同一または無視できる程度の差であることも条件となる。
[実施の形態1及び2の変形例]
第1の実施の形態において、第1の器具を上面の穴から収容できる直方体の第2の器具の2側面を、校正時にそのまま使用できるが、それらの面は必ずしも完全な平面ではない。平面からのずれは球の位置の校正に誤差を与える。そこで、図37の上面図に示すように、測定に用いる2側面に、光学平面ガラスを近接させ、両者の隙間に、第1の器具及び第2の器具の素材(例えば樹脂)と同じ屈折率のマッチングオイルで満たす。そうすると、両者は光学的には一体となり、その観測面は平面度のよいガラスの表面となるので、より正確な校正を行うことができるようになる。
なお、第2の器具については校正時に用いる物であるから、図38の上面図に示すように、第2の器具の2側面に光学平面ガラスを密着させて、それらを一体化させても良い。
さらに、第2の実施の形態においても、直方体である第1の器具の隣接する2側面についても、校正時にそのまま使用できるが、それらの面は必ずしも完全な平面ではない。平面からのずれは球の位置の校正に誤差を与える。そこで、図39の上面図に示すように、測定に用いる2側面に、光学平面ガラスを近接させ、両者の隙間に、第1の器具の素材(例えば樹脂)と同じ屈折率のマッチングオイルで満たす。そうすると、両者は光学的には一体となり、その観測面は平面度のよいガラスの表面となるので、より正確な校正を行うことができるようになる。
[その他]
上では、校正及び試験に用いることができるX線CT装置の評価用器具を説明したが、例えば高精度のX線CT装置で校正した上で、普及型のX線CT装置で試験する場合には、試験のみであるから、校正についての条件は満たさなくても良い。すなわち、条件4及び5については満たさなくても良くなる。
以上、本発明の実施の形態を説明したが、本発明はこれに限定されるものではなく、上で述べた条件を満たすような第1及び第2の器具の他の形状を採用しても良い。
特に、球の配置については、本願において図示した以外にも様々なパターンを採用可能である。特に、規則的に並べるのであれば、らせん曲線上に載せるような形態も考えられる。例えば、中央から徐々に回転半径が広がり且つ高さ方向(Z軸方向)の増分が徐々に大きくなるようならせん曲線であれば、比較的容易に上で述べた条件3及び5を満たす配置が実現される。
また、支柱を用いて球を配置する場合、一部の球についてのみ支柱で支持するようにしても良い。さらに、製造方法には、3Dプリンタを用いるようにしても良い。このようにすれば、球を配置する毎に樹脂を固めることなく、また、支柱を用いることなく製造することができるようになる。なお、8個の球を配置する例を述べているが、球の個数は3個以上であれば良い。
以上述べた実施の形態をまとめると以下のようになる。
本実施の形態の第1の態様に係るX線CT装置の評価用器具は、少なくとも隣接する2つの側面が平面である外形を有する第1の状態と円柱状の第2の状態とを実現可能である、X線CT装置の評価用器具であって、内部に複数の球を含む。そして、第1の状態で、複数の球が、2つの側面の各々から、互いに重なることなく光学的に観測可能であり、且つ、第2の状態で、円柱の長軸を中心として回転させた場合、いずれの回転角度においても、円柱に対して所定位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく円柱を通過するように、複数の球が配置されている。
このように複数の球を内包するような態様の評価用器具は、上で述べたような2つの状態を実現し且つ上で述べたような複数の球の配置を行うことで、校正及び試験の両方に用いることができるようになる。なお、複数の球の配置については、さらに器具内において分散配置を行うことが好ましく、1直線上に配置するのは避けた方が好ましい。また、2つの側面は垂直に接することが好ましい。
なお、上記評価用器具は、上記複数の球を含む、円柱状の第1の器具と、第1の器具を収容可能で、少なくとも隣接する2つの側面が平面である第2の器具とを有するようにしても良い。例えば、第1の実施の形態のような態様である。
さらに、上記第2の器具の少なくとも隣接する2つの側面に、透明な平板が付加されている場合もある。第2の器具の側面の平面性を改善するために、例えばガラス板を密着させるか、マッチングオイルを挟んで付加する。
また、上記評価用器具は、複数の球を含み、少なくとも隣接する2つの側面が平面である第1の器具と、第1の器具の上記少なくとも隣接する2つの側面に貼り付けることで第1の器具の外形を円柱状にする第2の器具とを有するようにしても良い。例えば、第2の実施の形態のような態様である。
このような態様においても、上記少なくとも隣接する2つの側面に透明な平板が付加されている場合もある。第1の器具の側面の平面性を改善するためである。
また、複数の球の少なくともいずれかが支柱に支持されている場合には、上記2つの側面の各々からも、さらに複数の球のいずれもが支柱に遮ることなく光学的に観測可能であるように、複数の球が配置されるようにする。これによって、支柱を用いている場合でも校正を適切に行うことができるようになる。なお、支柱は、評価用器具のX線透過率と実質的に同じX線透過率を有する材質であることが好ましい。実質的に同じX線透過率又は同じX線透過率というのは、透過像において差が識別できない程度であれば該当するものとする。
本実施の形態の第2の態様に係るX線CT装置の評価用器具は、X線CT装置の円柱状の評価器具であって、内部に複数の球を含む。そして、円柱の長軸を中心として回転させた場合、いずれの回転角度においても、円柱に対して所定位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく評価用器具を通過するように、複数の球が配置されているものである。普及型のX線CT装置の試験に用いることができる。
なお、第1の態様に係る円柱状の第1の器具を、第2の器具の収容部に位置を合わせて収容させて、上記2つの側面の各々から複数の球を観測して、観測結果から複数の球の各々の位置を決定するようにしても良い。この場合、収容部と評価用器具との隙間にマッチングオイルを注入しても良い。さらに、上記2つの側面の各々に透明な平板を付加するか又は上記2つの側面の各々にマッチングオイルを挟んで透明な平板を付加した後に、複数の球を観測するようにしても良い。
また、第1又は第2の態様に係るX線CT装置の評価用器具において、円柱の長軸に直交する平面であって当該円柱の上半分又は下半分の領域に含まれる平面に複数の球のうちの2以上の球が配置され、複数の球のうち上記2以上の球以外の球を、円柱内において上記領域外の領域に配置するようにしても良い。このように簡易な方法にて複数の球を配置しても有効である。

Claims (10)

  1.  少なくとも隣接する2つの側面が平面である外形を有する第1の状態と円柱状の第2の状態とを実現可能である、X線CT装置の評価用器具であって、
     内部に複数の球を含み、
     前記第1の状態で、前記複数の球が、前記2つの側面の各々から、互いに重なることなく光学的に観測可能であり、且つ、
     前記第2の状態で、円柱の長軸を中心として回転させた場合、いずれの回転角度においても、前記円柱に対して所定位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく前記円柱を通過するように、
     前記複数の球が配置されている
     X線CT装置の評価用器具。
  2.  前記複数の球を含む、円柱状の第1の器具と、
     前記第1の器具を収容可能な収容部を有し、少なくとも隣接する2つの側面が平面である第2の器具と、
     を有する請求項1記載のX線CT装置の評価用器具。
  3.  前記第2の器具の前記少なくとも隣接する2つの側面に、透明な平板が付加されている
     請求項2記載のX線CT装置の評価用器具。
  4.  前記複数の球を含み、少なくとも隣接する2つの側面が平面である第1の器具と、
     前記第1の器具の前記少なくとも隣接する2つの側面に貼り付けることで前記第1の器具の外形を円柱状にする第2の器具と、
     を有する請求項1記載のX線CT装置の評価用器具。
  5.  前記少なくとも隣接する2つの側面に透明な平板が付加されている
     請求項4記載のX線CT装置の評価用器具。
  6.  前記複数の球の少なくともいずれかが支柱に支持されている場合、前記2つの側面の各々からも、さらに前記複数の球のいずれもが前記支柱に遮ることなく光学的に観測可能であるように、前記複数の球が配置されている
     請求項1乃至5のいずれか1つ記載のX線CT装置の評価用器具。
  7.  前記支柱が、前記評価用器具において前記複数の球以外の部分のX線透過率と同じX線透過率を有する請求項6記載のX線CT装置の評価用器具。
  8.  X線CT装置の円柱状の評価用器具であって、
     内部に複数の球を含み、
     円柱の長軸を中心として回転させた場合、いずれの回転角度においても、前記円柱に対して所定位置のX線源から放出されるいずれのX線も、2以上の球を通過することなく前記評価用器具を通過するように、
     前記複数の球が配置されている
     X線CT装置の評価用器具。
  9.  前記第2の状態で、前記円柱の長軸に直交する平面であって当該円柱の上半分又は下半分の領域に含まれる平面に前記複数の球のうちの2以上の球が配置され、前記複数の球のうち前記2以上の球以外の球を、前記円柱内において前記領域外の領域に配置する
     請求項1記載のX線CT装置の評価用器具。
  10.  前記円柱の長軸に直交する平面であって当該円柱の上半分又は下半分の領域に含まれる平面に前記複数の球のうちの2以上の球が配置され、前記複数の球のうち前記2以上の球以外の球を、前記円柱内において前記領域外の領域に配置する
     請求項8記載のX線CT装置の評価用器具。
PCT/JP2021/018077 2020-07-17 2021-05-12 X線ct装置の評価用器具 WO2022014132A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536147A JP7366467B2 (ja) 2020-07-17 2021-05-12 X線ct装置の評価用器具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122685 2020-07-17
JP2020-122685 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014132A1 true WO2022014132A1 (ja) 2022-01-20

Family

ID=79554653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018077 WO2022014132A1 (ja) 2020-07-17 2021-05-12 X線ct装置の評価用器具

Country Status (2)

Country Link
JP (1) JP7366467B2 (ja)
WO (1) WO2022014132A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050094771A1 (en) * 2003-10-31 2005-05-05 Basu Samit K. Method and apparatus for calibrating volumetric computed tomography systems
JP2016538552A (ja) * 2013-11-28 2016-12-08 ニコン・メトロロジー・エヌヴェ コンピュータ断層撮影の較正装置および方法
WO2018193800A1 (ja) * 2017-04-21 2018-10-25 株式会社島津製作所 三次元形状測定用x線ct装置の長さ測定誤差評価用器物
JP2018179983A (ja) * 2017-04-07 2018-11-15 神津精機株式会社 X線ct装置用基準ゲージ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050094771A1 (en) * 2003-10-31 2005-05-05 Basu Samit K. Method and apparatus for calibrating volumetric computed tomography systems
JP2016538552A (ja) * 2013-11-28 2016-12-08 ニコン・メトロロジー・エヌヴェ コンピュータ断層撮影の較正装置および方法
JP2018179983A (ja) * 2017-04-07 2018-11-15 神津精機株式会社 X線ct装置用基準ゲージ
WO2018193800A1 (ja) * 2017-04-21 2018-10-25 株式会社島津製作所 三次元形状測定用x線ct装置の長さ測定誤差評価用器物

Also Published As

Publication number Publication date
JP7366467B2 (ja) 2023-10-23
JPWO2022014132A1 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
CN108007400B (zh) 用于坐标测量装置和测量x射线ct设备的坐标对准工具
US7386090B2 (en) Processes and a device for determining the actual position of a structure of an object to be examined
JP5615260B2 (ja) 機械的ワークを断層撮影法によって測定するための方法
JP7164130B2 (ja) 三次元形状測定用x線ct装置の長さ測定誤差評価用器物
JP5408873B2 (ja) 座標測定装置におけるx線感知装置の校正方法
WO2016170685A1 (ja) X線検査装置、x線検査方法および構造物の製造方法
JP6471151B2 (ja) X線検査システム及びそのようなx線検査システムを用いて試験対象物を回転する方法
US11041818B2 (en) Dimensional X-ray computed tomography system and CT reconstruction method using same
US6853744B2 (en) System and method for confirming electrical connection defects
JP6994952B2 (ja) 計測用x線ct装置、及び、その校正方法
WO2019191259A1 (en) Computed tomographic system calibration
CN110686624B (zh) 利用由x射线ct装置获得的投影像的尺寸测定方法
CN103759681A (zh) 显微ct转轴运动误差校正方法
WO2022014132A1 (ja) X線ct装置の評価用器具
JP7286485B2 (ja) 計測用x線ct装置
Sbettega et al. Simulation-based sensitivity analysis of geometrical misalignments in X-ray computed tomography systems for dimensional metrology–detector angular misalignments
DaoDanga et al. Measurement of size error in industrial CT system with calotte cube
JP2023130084A (ja) X線ct装置の評価装置および評価方法
Hermanek Reference standards and methods for traceable X-ray computed tomography dimensional metrology
WO2015145548A1 (ja) X線装置、x線計測装置および構造物の製造方法
JPH0427888A (ja) X線内部観察装置
JPH05305080A (ja) 位置計測方法及びこれに用いる形状物差し

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843062

Country of ref document: EP

Kind code of ref document: A1